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Abstract

This study utilises a third-order expansion of the strain energy density func-

tion and finite strain elastic theory to derive an analytical solution for an

isolated, spherical void subjected to axisymmetric loading conditions. The

solution has been validated with previously published results for incompress-

ible materials and hydrostatic loading. Using this new solution and a ho-

mogenisation methodology, the effective linear and nonlinear properties of a

material containing a dilute distribution of voids are derived. The effective

nonlinear elastic properties are shown to be typically much more sensitive

to the concentration of voids than the linear elastic properties. The derived

analytical expressions for effective material properties may be useful for the

development and justification of new experimental methods for the evalua-

tion of porosity and theoretical models describing the evolution of mechanical

damage associated with void nucleation and growth (e.g. creep).
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void, effective properties

1. Introduction

It is well known from experimental studies that the properties of sec-

ondary phases may significantly influence the stiffness, strength, and ductility

of inhomogeneous materials [1]. The exact details of the internal stress and

strain fields associated with inhomogeneities are exceedingly complex, and5

therefore theoretical research has largely focussed on predicting the effective

properties using various homogenisation methodologies and linear constitu-

tive relationships [2, 3, 4]. However, very limited progress has been made

towards solving the corresponding problem for nonlinear elastic materials,

primarily due to the lack of closed-form nonlinear analytic solutions for non-10

trivial geometries [5].

The permanent interest in nonlinear phenomena in composites, and re-

cent progress in advanced material manufacturing and nondestructive dam-

age characterisation using nonlinear ultrasonic waves [6] motivate further

investigations of the effective properties of inhomogeneous nonlinear elastic15

materials. In the spirit of the Hashin-Shtrikman bounds derived within lin-

ear elasticity, several attempts have been made to develop variational bounds

for nonlinear elasticity, though they have been hindered by the absence of

explicit extremum principles for nonlinear continuum mechanics. Ogden [7]

developed upper and lower bounds for nonlinear elastic materials which can20

be described by a convex strain energy function. Ponte Castañeda [8] con-

sidered the more general class of polyconvex strain energy functions, though

the obtained upper and lower bounds were generally far apart, and could
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in some cases only be developed for incompressible media. The variational

bounds for materials with nonlinear constitutive relations expressed in terms25

of the linear strain tensor have also been investigated [9].

Many numerical techniques have also been developed in the past to deter-

mine effective material properties of heterogeneous materials. These include

asymptotic, static, dynamic, stochastic, Voronoi cell FE and other homog-

enization methods, [10, 11, 12]. Such numerical models are extremely com-30

putationally intensive, and in the case of a dilute distribution, the numerical

error becomes comparable with the effect of the secondary phases [13]. It

has also been demonstrated that, at non-dilute concentrations, the averaged

properties derived from numerical simulations are highly sensitive to the spa-

tial distribution of the secondary phases [14]. However, recent studies based35

on elastomers [15, 16] have concluded that for cavities and composites where

the inclusion phase is soft relative to the matrix, the influence of the spatial

arrangement, and even the shape of the cavity, is not strong. The correspond-

ing analysis for a compressible material has not, to the best knowledge of the

authors, been conducted. An additional complication exists for weakly non-40

linear materials, in which the loading which can be tolerated without causing

permanent deformation is quite small, typically featuring strains less than

0.2%. Consequently, the departure from a linear elastic response associated

with such low levels of strain is extremely small, and the nonlinear effects

will be practically indistinguishable from numerical errors associated with45

a FE simulation. One proposed answer to these objections is the use of a

multilevel FE method [17, 18], though such models require detailed analysis

of the presence of modelling and discretisation errors, and the use of adap-
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tive modelling to ensure accuracy [19, 20]. Additionally, it is expected that

computational and numerical precision issues will be amplified in the case50

of weakly- nonlinear elastic materials, e.g. many common structural mate-

rials and composites, for which the magnitude of nonlinear effects is small

compared to the dominant linear response.

Due to the unavailability of variational bounds, and the difficulties asso-

ciated with applications of numerical modelling discussed above, analytical55

approaches appear to be more attractive. For incompressible materials, some

exact solutions have been derived, such as the Neo-Hookean incompressible

model for a 2D porous medium [21]. For weakly-nonlinear compressible ma-

terials, the most promising approach has focussed on a third-order expansion

of the strain energy function can be utilised, which represents the lowest or-60

der of nonlinear response of elastic materials [6]. Hashin [22] investigated

radially symmetric motions of incompressible media containing voids. The

incompressible Mooney-Rivlin strain energy density function was employed,

and results for expansion and compression were presented. Ogden [23] de-

rived the effective second-order bulk modulus for a compressible material65

featuring a dilute distribution of spherical particles using referential volume

averages and a second-order elastic solution. Using this method, it was pos-

sible to derive a simple solution for the effective second-order bulk modulus

in closed form under the assumption that the overall material was isotropic.

Chen & Jiang [24] used three independent boundary displacement conditions70

to calculate the third-order elastic constants (TOECs), though expressions

for the effective properties were cumbersome, and instead of explicit expres-

sions, graphs of the effective properties for a few pairs of materials were
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presented. Imam, Johnson, and Ferrari [25] found the effective constants for

a particulate composite using the incompressible Mooney-Rivlin material.75

Displacement boundary conditions were applied to a medium containing in-

compressible spherical particles, and the resulting effective properties were

calculated using a perturbation approach; a transformation [26] was used to

reduce the perturbation problem to two linear elasticity problems for incom-

pressible media. Recently, Giordano, Palla, and Colombo [27] generalised80

the Eshelby problem of linear elasticity to nonlinear inclusions under the as-

sumption that the matrix phase is linear elastic. Using this approach, it was

possible to derive closed-form expressions for the effective third-order elastic

constants of a particulate composite in which the particle phase is nonlinear

elastic, while the matrix is linear elastic. However, to the best knowledge of85

the authors there are no published results in the literature for the effective

TOECs for a compressible material where the matrix, or both the matrix and

the secondary phase are described by nonlinear elastic constitutive equations.

The current paper presents the analytical derivation of the effective lin-

ear and nonlinear properties of a material containing a dilute distribution90

of spherical voids. The voids are assumed to be randomly distributed, such

that the overall material is isotropic. The paper is organised as follows.

The next section provides the mathematical formulation and background of

the second-order elasticity problem and homogenisation methodology. After

that the perturbation solution for a spherical void subjected to axisymmetric95

loading is presented. This solution is validated against published results for

hydrostatic loading. Using this new solution and a homogenisation method-

ology proposed by Hill [28], the effective linear and nonlinear properties of

5



a material containing a dilute distribution of voids are finally derived. For

the particular case of an incompressible material, the derived expressions for100

material properties reproduce previously published results [25]. The paper

concludes with a numerical example and a discussion of the implications of

the current work for different fields of mechanics of materials.

2. Formulation and background

2.1. Governing equations105

The governing equations of nonlinear elasticity are briefly reviewed, and

further details may be found in [29]. Let the material and spatial points of

a body be given by X and x, respectively. The position vectors of X and x

are denoted Z and z, respectively. The motion is the mapping ϕ : Br → B

from a fixed reference configuration Br to the configuration B. The local

properties of the deformation are described by the deformation gradient,

with component representation

F a
A =

∂ϕa

∂XA
. (1)

The right Cauchy-Green deformation tensor is defined C = FTF. The second

Piola-Kirchhoff stress tensor S for an isotropic, hyperelastic material with

strain energy density functionW may be expressed in terms of C, its principal

invariants I1, I2, I3, and the metric tensor of the material coordinates G

S = 2

(
∂W

∂I1

+ I1
∂W

∂I2

)
G− 2

∂W

∂I2

C + 2I3
∂W

∂I3

C−1 (2)

where the invariants are

I1 = tr(C) , I2 = 1
2
tr(C)2 − 1

2
tr(C2) , I3 = det C. (3)
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In the absence of body forces, the equations of equilibrium in terms of the

first Piola-Kirchhoff stress tensor are

Div P = 0 (4)

where the divergence is taken with respect to the coordinate system of the

material points. The third order expansion of the strain energy density func-

tion [30] for a compressible, isotropic material is

W (I1, I2, I3) = 1
8
(K + 4

3
µ)(I1 − 3)2 − 1

2
µ(I2 − 2I1 + 3) + 1

24
(l + 2m)(I1 − 3)3

− 1
4
m(I1 − 3)(I2 − 2I1 + 3) + 1

8
n(I1 − I2 + I3 − 1).

(5)

where the bulk modulus is K = λ + 2
3
µ, the Lamé parameters are λ and µ,

and l, m and n are the TOECs, expressed in Murnaghan’s form [30].

2.2. Axisymmetric deformations

The material configuration is described by the spherical coordinates (R,Θ,Φ)

and the spatial configuration is described by the spherical coordinates (r, θ, φ).

The basis vectors, metric tensor, and shifting tensors associated with these

coordinate systems are presented in Appendix A. Axisymmetric deformations

are described by the mapping

r = r(R,Θ), θ = θ(R,Θ), φ = Φ. (6)

Consider a spherical cavity of radius a embedded in an infinite medium with

a strain energy function given by (5). The cavity, located at the origin of the

coordinates and with a radius of a, must be free of traction at its surface,

which requires

PdR = 0, R = a. (7)
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If the medium is subjected to a homogeneous deformation which is axisym-

metric with respect to the polar axis Θ = 0, the boundary condition at

infinity is

z− Z = U(αXdX + αY dY + ZdZ), R→∞ (8)

where α is a parameter, and dR is the radial unit vector in the material con-

figuration. The boundary conditions reduce to a radially symmetric motion110

when α = 1, a simple extension without lateral contraction when α = 0, and

a pure extension consistent with isochoric deformation when α = −1
2
.

2.3. Homogenisation methodology

Effective constitutive relations for nonlinear materials are formulated by

relating macroscale variables to volume averages of microscale fields over a115

representative volume. Hill [28] discussed the development of effective con-

stitutive relations for nonlinear materials at finite strain, finding that the

appropriate field variables are the first Piola-Kirchhoff stress and the defor-

mation gradient, as these quantities possess the property that their represen-

tative volume averages over a body are dependent only on data prescribed120

on the surface of the body.

The referential volume average of the deformation gradient in a body Br

with surface ∂Br is denoted F̄, and the referential volume average of the first

Piola-Kirchhoff stress tensor is denoted P(F), where

F̄ =
1

V

∫
Br

FdV =
1

V

∫
∂Br

z⊗ ndS (9)

P =
1

V

∫
Br

PdV =
1

V

∫
∂Br

(Pn)⊗ ZdS (10)
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where n is the outward unit normal to the surface in the material coordinate

system. In the above equations, the divergence theorem has been used to

express the deformation gradient and the first Piola-Kirchhoff stress in terms

of surface data [31, 32]. Ogden [23] discussed the application of Hill’s results125

to a hyperelastic material, showing that the referential volume average of

the strain energy function W (F) serves as a potential for the effective ma-

terial. Nemat-Nasser [33] discussed the choice of kinematical and dynamical

variables for homogenisation, with a particular focus on finite deformation

plasticity and phase transformation problems.130

In this paper, the solutions for the effective elastic properties are obtained

from the elastic field of an isolated spherical void in a compressible nonlinear

elastic material of infinite extent, following the methodology of a previous

solution for incompressible materials [25]. Using this solution, it is possible

to develop a solution for the representative spherical shell in Figure 1 and135

the effective homogeneous material in Figure 2. Following [25], the effective

elastic properties are developed by imposing identical boundary displacement

conditions, and equating the referential volume average of the strain energies

in each model. As discussed by Chen & Jiang [24], the necessary geometric

and boundary conditions for this model to provide exact results are not gen-140

erally satisfied; the results for non-dilute concentrations must be interpreted

as an approximation.

3. Perturbation solution for single spherical void

As discussed in section 1, exact solutions for nonlinear elasticity are, in

general, only available for simple geometries and loading conditions. How-

9



Figure 1: Isolated void model. Figure 2: Effective homogeneous material.

ever, approximate solutions may be derived using perturbation methods (for

example, [34, 35, 36]). Applying this procedure to the problem described in

section 2.2, the boundary condition (8) may be expanded as a power series

provided that the displacement gradient is small [24]. Using the shifting ten-

sor (Appendix A, equation (A.4)) and expanding the displacement as a series

in physical components,

rgAr dA −RdR = Uu1 + U2u2 (11)

where the summation convention is applied to the index A, and the vectors

u1 and u2 represent the first-order displacement vector and the second-order

displacement vector, respectively. The condition |u2| � |u1| is assumed to

ensure the validity of the perturbation expansion. For axisymmetric defor-

mations, these vectors have the form

u1 = u1(R,Θ)dR +
v1(R,Θ)

R
dΘ , u2 = u2(R,Θ)dR +

v2(R,Θ)

R
dΘ (12)
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where the functions u1, v1, u2, v2 are the physical components of the respec-

tive displacement vectors, and U is assumed to be a small parameter. The

expansions for the functions r(R,Θ) and θ(R,Θ) in terms of u1, v1, u2, v2

are,

r(R,Θ) = R + Uu1(R,Θ) + U2

(
u2(R,Θ) +

v1(R,Θ)2

2R

)
(13)

θ(R,Θ) = Θ + U
v1(R,Θ)

R
+ U2

(
u1(R,Θ)

R
− u1(R,Θ)v1(R,Θ)

R2

)
. (14)

Using (12), the left Cauchy-Green deformation tensor and the Cauchy stress

tensor are expanded up to second order in U to provide [37]

B = G + 2ε(u1 + u2) +∇u1 (∇u1)T (15)

T = σ(u1 + u2)− ϑσ(u1) + 2ε(u1)σ(u1) + T′(u1) (16)

T′(u1) =
(
λω · ω +

(
l −m+ 1

2
n
)
ϑ2 + 1

2
(λ+ 2m− n)

)
G

+ (2m− n)ϑε(u1) + nε(u1)2 + µ∇u1(∇u1)T
(17)

where G is the metric tensor of the material coordinate system, and ϑ and

ω are the linear dilatation and the linear rotation vector corresponding to

u1. The functions ε(u) and σ(u) are the strain and stress tensors for linear

isotropic elasticity,

ε(u) = 1
2

(
∇u + (∇u)T

)
σ(u) = λ(Div u)G + µ

(
∇u + (∇u)T

)
.

11



The terms in the expansion of the boundary condition (7) at R = a are

therefore

σ(u1)dR = 0 (18a)

σ(u2)dR = [ϑσ(u1)− 2ε(u1)σ(u1)−T′(u1)] dR. (18b)

where the fact that the first Piola-Kirchhoff traction is zero has been used

to write the boundary condition in terms of the Cauchy traction. Expansion

of the boundary condition (8) leads to the following boundary conditions for

the linear and second-order problems:

u1 = 1
2
[1 + α + (1− α) cos 2Θ]dR − 1

2
(1− α) sin 2ΘdΘ (19a)

u2 = 0. (19b)

Using the perturbation expansion, the nonlinear elastic problem has been

reduced to two sequential linear elasticity problems, which may be solved145

using standard techniques.

3.1. Linear solution

The linear solution to the axisymmetric deformation of an infinite medium

containing an isolated spherical void is a standard problem in elasticity, which

may be solved using potential functions. The displacement solution is con-

structed using the axisymmetric potentials for isotropic materials discussed

by Green and Zerna [38],

u1 =
1

2µ
∇(χ+ Zη)− 2(1− ν)

µ
ηdZ (20)

where χ and η are potential functions which can be represented in terms of

the axisymmetric spherical harmonic functions. The forms of the potentials

12



χ and η which are consistent the linear boundary conditions (18a) and (19a)

are

χ = F0a
3R−1 + (A2R

2 + F2a
5R−3)P2(cos Θ) (21a)

η = (B1R +G1a
3R−2)P1(cos Θ) (21b)

where Pn(cos Θ) is the zonal spherical harmonic of degree n, and F0, A2,

F2, B1 and G1 are arbitrary constants to be determined from the boundary

conditions (18a) and (19a). The constants are found to satisfy

A2 = −2Uαµ , B1 = −1
3
U(1 + 2α)(3K + µ)

F0 =
5(3λ+ 5µ)

9λ+ 14µ
A2 +

3(3λ2 − 8µ2)

2(λ+ µ)(9λ+ 14µ)
B1

F2 =
6(λ+ µ)

9λ+ 14µ
A2 −

4µ

9λ+ 14µ
B1

5F2 + 2G1 = 0.

(22)

3.2. Second-order solution

The second-order solution requires solving a linear elasticity problem for

u2, v2 subjected to a body force and surface tractions dependent on the linear

solution u1. Additionally, the linear solution may be shown to no longer sat-

isfy the equilibrium condition when considering second order terms. As such,

it is necessary to impose an additional displacement to achieve equilibrium.

Using (16), the second-order equation of equilibrium may be shown to be

Div [σ(u2) + σ(u1)∇u1 + T′(u1)] = 0. (23)

The particular solution necessary to maintain equilibrium at second order

is formed using a potential ζ, and a Galerkin vector w, with the particular

13



solution for the displacement having the form

u
(P )
2 =

λ+ 3µ+ 2m

2µ(λ+ 2µ)
∇ζ +

λ+ 2µ

2µ

(
1

λ+ µ
∇2w − 1

λ+ 2µ
∇div w

)
. (24)

The potential ζ and the Galerkin vector w = wRdR + R−1wΘdΘ may be

found using trial solutions of the form

ζ = C1a
6R−4 + C2a

3R−1P2(cos Θ) + C3a
5R−3P4(cos Θ)

+ C4a
10R−8(4 cos4 Θ + sin4 Θ)

(25a)

wR =

(
a3D1 +

a6D2

R3
+
a8D3

R5

)
+

(
a3D4 +

a6D5

R3
+
a8D6

R5

)
P2(cos Θ)

+

(
a3D7 +

a6D8

R3
+
a8D9

R5

)
P4(cos Θ)

(25b)

wΘ =

(
a3E1 +

a6E2

R3
+
a8E3

R5

)
d

dΘ
[P2(cos Θ)]

+

(
a3E4 +

a6E5

R3
+
a8E6

R5

)
d

dΘ
[P4(cos Θ)]

(25c)

where the C, D and E coefficients are to be determined by substitution

into the second-order equation of equilibrium (23). Complete expressions

are presented for each constant in Appendix B. As with the linear solution,

the homogeneous solution to the second order problem may be derived using

potential functions,

u
(h)
2 =

1

2µ
∇(χ2 + Zη2)− 2(1− ν)

µ
η2dZ (26)
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where the potentials χ2 and η2 are constructed using axisymmetric spherical

harmonic functions

χ2 = a3F1R
−1 + a5F3R

−3P2(cos Θ) + a7F5R
−5P4(cos Θ) (27a)

η2 = a3G2R
−2P1(cos Θ) + a5G4R

−4P3(cos Θ) (27b)

and the values of the constants F1, F3, F5, G2, and G4 are determined

through the second-order boundary conditions. The particular solution (24)

may be shown to vanish at infinity, and therefore only singular harmonics

need to be included in the expressions for χ2 and η2. The complete second-

order displacement is

u2 = u
(h)
2 + u

(P )
2 , (28)

the equilibrium equation at second order reduces to

Divσ(u
(h)
2 ) = 0, (29)

and the second order boundary conditions become

σ(u2)dR = [ϑσ(u1)− 2ε(u1)σ(u1)−T′(u1)] dR (30)

u
(h)
2 = 0. (31)

Though the calculations to determine the constants in equation (27) are

extremely cumbersome, the problem is a standard linear elasticity problem150

which, having found the particular solution, may be solved using standard

methods. Due to the length of the expressions involved, the explicit solutions

for each coefficient are omitted.

The present solution, of the spherical void problem, may be generalised

to the more general problem of a spherical inhomogeneity embedded in a155
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medium of infinite extent. The particular solution presented in equations

(25) may also be used to construct the solution for a spherical inhomogeneity

embedded in an infinite medium subjected to homogeneous axisymmetric

displacement conditions at infinity: the second-order solution in the matrix

phase may be found using the results as they are presented in Appendix160

B, after making the appropriate adjustments to the values of the constants

F0, A2, F2, B1 and G1 for the inhomogeneity problem. The second-order

deformation of the particulate phase does not require a particular solution,

as the contribution of the linear solution to the second-order equilibrium

equation vanishes. The only second-order solution that is necessary for the165

particulate phase is the homogeneous solution, which is required to satisfy

additional continuity conditions at the matrix-particle interface.

3.3. Accuracy of the perturbation solution

The perturbation approach used to derive the solution presented in Sec-

tion 3.2 relies on an expansion of the displacement as a power series about the170

unstressed configuration of the body. Similarly, the strain energy function

which has been employed, equation (5), consists of a power series expansion

which is terminated at third-order in the principal extensions [34]. The va-

lidity of employing these expansions rests upon the condition |u2| � |u1|,

i.e. that the displacement associated with the second-order correction be175

small in comparison with the displacement associated with the linear elastic-

ity solution [36]. One consequence of this condition is that the results of the

present study are not suitable for characterising the effective behaviour of

materials which can sustain large deformations, as the perturbation solution

is not appropriate to capture the response of such a material.180
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The materials to which the present study is directed are weakly-nonlinear

materials subjected to loading which does not cause yielding. Such condi-

tions are appropriate for many common structural materials, including steel

and aluminium alloys, and composite materials [6]. Under these conditions,

the deformations are sufficiently small (e.g. below 0.2%) that a perturbation185

approach may be expected to yield accurate results. Some possible practical

applications of the current work is in the acoustoelasticity and the propa-

gation of nonlinear ultrasonic waves in structures, which have been of great

interest in the area of nondestructive testing and evaluation in recent years,

and has been the subject of many recent experimental studies [6, 39].190

3.4. Comparison with previously published results

The above solution presented for axisymmetric deformations may be re-

duced to a purely radial expansion by setting the parameter α = 1. This

case is of particular interest, as the second-order solution for this problem

has been derived in previous studies [23]. For an infinite medium containing

a spherical void subjected to radial expansion, the coefficients in the linear

elasticity solution (22) are

A2 = −2Uµ , B1 = −3U(λ+ µ) , F0 = 1
2
U(3λ+ 2µ)

F2 = G1 = 0.

The potential function and biharmonic vector involved in the particular so-

lution for the displacement at second order (25) are

ζ =
1

32

a6

R4
(3λ+ 2µ)2U2 , w = 0

17



such that

u
(P )
R =

a6(3λ+ 2µ)2(λ+ 3µ+ 2m)

16µ2(λ+ 2µ)R5

which may be shown to have the same form as the second-order solution

presented by Ogden [23].

4. Effective homogeneous material

The solution for an isolated spherical void in an infinite matrix is adapted

to the methodology for calculating effective elastic constants described in

section 2.3 by considering the spherical shell a ≤ R ≤ A, where a3/A3 = c,

to replicate the volume fraction of voids in the composite medium. The

displacement on the surface R = A is imposed as a boundary condition on

the effective homogeneous medium. Due to (9), this boundary condition

establishes the condition

F∗ =

(
1− Vv

V

)
F (32)

where V is the volume of the effective homogeneous medium, and Vv is the195

volume of the void in the RVE.

Due to the arrangement of the voids, the effective body may be assumed

to possess isotropic symmetry, such that the strain energy density function

of the effective medium is assumed to take the form

W ∗(I1, I2, I3) = 1
8
(K∗ + 4

3
µ∗)(I1 − 3)2 − 1

2
µ∗(I2 − 2I1 + 3)

+ 1
24

(l∗ + 2m∗)(I1 − 3)3 − 1
4
m∗(I1 − 3)(I2 − 2I1 + 3)

+ 1
8
n∗(I1 − I2 + I3 − 1).

(33)
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where K∗, µ∗, l∗, m∗, and n∗ are the elastic constants of the effective mate-

rial. The displacement solution for the effective medium is constructed using

spherical harmonic functions

u
(H)
1 =

1

2µ∗
∇(χ(H) + Zη(H))− 2(1− ν∗)

µ∗
η(H)dZ (34a)

u
(H)
2 =

1

2µ∗
∇(χ

(H)
2 + Zη

(H)
2 )− 2(1− ν∗)

µ∗
η

(H)
2 dZ (34b)

where the potential functions are

χ(H) = A
(H)
2 R2P2(cos Θ) + A

(H)
4 A−2R4P4(cos Θ) (35a)

η(H) = B
(H)
1 R1P1(cos Θ) +B

(H)
3 A−2R3P3(cos Θ) (35b)

χ
(H)
2 = A

(H)
3 R2P2(cos Θ) + A

(H)
5 A−2R4P4(cos Θ) + A

(H)
7 A−4R6P6(cos Θ)

(35c)

η
(H)
2 = B

(H)
2 R1P1(cos Θ) +B

(H)
4 A−2R3P3(cos Θ) +B

(H)
6 A−4R5P5(cos Θ)

(35d)

and no particular solution at second order is necessary, due to the form of

u
(H)
1 . The coefficients in (35) are identified using the boundary conditions,

and the results for the linear solution are

A
(H)
2 =

µ∗

µ

(
A2 + cF0 − 3

3K∗ − 2µ∗

6K∗ + 17µ∗
cG1 −

21

2

3K∗ + µ∗

6K∗ + 17µ∗
c5/3F2

)
(36a)

A
(H)
4 =

µ∗(3K∗ − 2µ∗)

µ(6K∗ + 17µ∗)

(
2cG1 − 5c5/3F2

)
(36b)

B
(H)
1 =

3K∗ + µ∗

µ

(
µ

3(λ+ µ)
B1 +

1

2
cF0 +

3λ+ 5µ

6(λ+ µ)
cG1

)
(36c)

B
(H)
3 =

7µ∗(3K∗ + µ∗)

2µ(6K∗ + 17µ∗)

(
2cG1 + 5c5/3F2

)
. (36d)

The corresponding coefficients for the second-order solution are omitted, as200

they are the solution to a standard linear elasticity problem.
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4.1. Volume averaged stress fields

The referential volume average of the first Piola-Kirchhoff stress in the

effective medium is

P∗ =
1

V

∫
B∗

P∗dV (37)

and the total strain energy stored in the part of the matrix a ≤ R ≤ A is

P =
1

V − Vv

∫
B

PdV. (38)

In (37) and (38), the respective tensors are written in terms of a fixed Carte-

sian basis. After evaluation of the above integrals, the effective properties

are derived using

P∗ =

(
1− Vv

V

)
P. (39)

The averaged strain energies consist of terms proportional to U , correspond-

ing to the linear solution of the problem, and terms proportional to U2,

corresponding to the second order part of the solution. Using the solution205

presented in section 3, expressions for the three effective elastic properties

l∗,m∗, n∗ in terms of the volume fraction of voids c may be derived.

4.2. Effective elastic constants

Solving equation (39) considering first order terms in U allows for the

calculation of the effective bulk modulus and the effective shear modulus.

By considering radially symmetric deformation, α = 1 in (8), the referential

volume averages of the first Piola-Kirchhoff stress in the matrix and in the

effective homogeneous medium are

P = 3KU [ez ⊗ dZ + ex ⊗ dX + ey ⊗ dY ]

P∗ = 3K∗U

(
1 +

3cK

4µ

)
[ez ⊗ dZ + ex ⊗ dX + ey ⊗ dY ]
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where the volumetric concentration of voids is c = a3/A3. Hence the effective

bulk modulus K∗ is

K∗ =
4(1− c)Kµ
4µ+ 3Kc

. (40a)

A similar calculation for α = −1
2

provides

P = µU [2ez ⊗ dZ − (ex ⊗ dX + ey ⊗ dY )]

P∗ = µ∗U

(
1 +

6c(K + 2µ)

9K + 8µ

)
[2ez ⊗ dZ − (ex ⊗ dX + ey ⊗ dY )]

and hence the effective shear modulus,

µ∗ =
µ(1− c)(9K + 8µ)

9K + 8µ+ 6c(K + 2µ)
. (40b)

Equations (40a) and (40b) are identical to previously published dilute con-

centration results for the effective shear modulus of a solid containing a210

randomly-arranged distribution of voids [40], and therefore demonstrate that

the homogenisation method considered here is consistent with results derived

within linear elasticity.

The effective Murnaghan constants are identified using the terms associ-

ated with the second-order solution in (39). For radially symmetric defor-

mations, α = 1, an expression for the second-order bulk modulus l+ 1
9
n may

be written in the simple form

l∗ + 1
9
n∗ =

27c(1− c)2K3µ

(3cK + 4µ)3
− 4(1− c)µ(9cK2 − 16µ2)

(3cK + 4µ)3

(
l + 1

9
n
)

+
72c(1− c)K2µ

(3cK + 4µ)3
m

− c(1− c)K2(3(c+ 1)K + 8µ)

(3cK + 4µ)3
n+

36c(1− c)K2µ

(3cK + 4µ)3
l.

(41)

The solution (41) is equivalent to a result found by Ogden [23], Chen &

Jiang [24], though those authors considered an inhomogeneity rather than a
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void. The remaining effective constants may be found by solving a system

of equations based on considering two other values of α. The closed form

solutions are too cumbersome to present in full, however expansions correct

to first order in the concentration c for three linearly independent third-order

elastic constants are

l∗ + 1
9
n∗ = l + 1

9
n− c

[(
1 +

9K

4µ

)(
l + 1

9
n
)
− 9K2

8µ2

(
m− 1

6
n
)

+
3K3

64µ3
n− 27K3

64µ2

]

(42a)

m∗ − 1
6
n∗ = m− 1

6
n− c

[
243K3 + 792K2µ+ 1572Kµ2 + 640µ3

4µ(9K + 8µ)2

(
m− 1

6
n
)

− 120µ2

(9K + 8µ)2

(
l + 1

9
n
)
− 3K(33K2 + 132Kµ+ 92µ2)

8µ(9K + 8µ)2
n

−K(63K2 + 222Kµ+ 247µ2)

2(9K + 8µ)2

]
(42b)

n∗ = n− c
[

45(300K3 + 1149K2µ+ 1376Kµ2 + 536µ3)

7(9K + 8µ)3
n

+
7200µ3

7(9K + 8µ)3

(
l + 1

9
n
)
− 60µ2(−9K2 + 84Kµ+ 134µ2)

7(9K + 8µ)3

−540µ(33K2 + 132Kµ+ 92µ2)

7(9K + 8µ)3

(
m− 1

6
n
)]
.

(42c)

4.3. Incompressible material

The procedure used in section 3 applies for compressible media. Imam,

Johnson, and Ferrari [25] addressed the incompressible case, using a trans-

formation [26] to absorb the conservative part of the body force into the
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Lagrange multiplier associated with the incompressibility constraint. An al-

ternate approach is to apply a limiting procedure to each of the elastic con-

stants [41]. The strain energy function for the incompressible Mooney-Rivlin

material is

WMR = 1
2

(
1
2
µ+ ξ

)
(I1 − 3) + 1

2

(
1
2
µ− ξ

)
(I2 − 3). (43)

where µ and ξ are the two incompressible elastic constants. In the incom-

pressible limit, the two linear elastic and the three third-order elastic con-

stants of the compressible case collapse into two constants, µ and ξ. The

appropriate limits necessary to specialise the strain energy function (5) to

(43) have been discussed in [41], finding that in addition to the classical

constraint ν → 1
2
,

(1− 2ν)B → −µ , (1− 2ν)3C → 0 , 1
4
A+ 3

2
µ→ ξ (44)

where ν is the classical Poisson ratio and the TOECs A, B, and C are

expressed in the form of Landau & Lifshitz [41], related to the Murnaghan

constants by

A = n , B = m− 1
2
n , C = l −m+ 1

2
n. (45)

Expressing the TOECs in the form (45) and applying the limits to the matrix

material in equations (40b), (42a), (42b) and (42c), the effective properties
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of the incompressible medium containing voids are

µ∗ =
3µ(1− c)

3 + 2c
(46a)

ν∗ =
6 + c

11 + 12c
(46b)

A∗ = A− 20
189

(25A+ 33µ) c+ . . . (46c)

(1− 2ν∗)B∗ = −µ+ 1
72

(174µ− 7A)c+ . . . (46d)

(1− 2ν∗)3C∗ = − 3
64

(15µ+ A)c (46e)

The five elastic constants of the Murnaghan constitutive relation reduce to215

two, and the properties of the effective medium are consistent with an in-

compressible material when c = 0. After making the substitution given in

Equation (44), the expansion for the effective third-order elastic constant ξ∗

is identical to the result presented for incompressible materials in [25] (after

setting the elastic constants of the particulate phase to zero).220

4.4. Incompressible Neo-Hookean material

Another common incompressible material model is the Neo-Hookean ma-

terial, with the strain energy density function

WNH = 1
2
µ(I1 − 3)

and which can be obtained as a special case of the Mooney-Rivlin mate-

rial (43) by applying ξ = 1
2
µ. After applying this condition to the matrix
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material, the effective third-order elastic constants become

A∗ = −4µ− 1340
189

µc+ . . .

(1− 2ν∗)B∗ = −µ+ 101
36
µc+ . . .

(1− 2ν∗)3C∗ = −33
64
µc.

and the effective strain energy function may be written in terms of the macro-

scopic deformation gradient F. Considering purely radial deformations, i.e.

F = J
1/3

I, where I is the unit tensor, the effective strain energy function has

the form

W (J
1/3

I) = 9
8
(J

2/3 − 1)2K∗ + 9
8
(J

2/3 − 1)3(l∗ + 1
9
n∗).

Then, equation (41) may be used in combination with the appropriate in-

compressible limits to show that

W (J
1/3

I) = µ

[
3(1− c)

2c
(J

2/3 − 1)2 − (1− c)(11 + 5c)

8c2
(J

2/3 − 1)3

]
(48)

which, considering terms up to third order in J − 1, is identical to the result

presented in [16] for the effective strain energy of a Neo-Hookean material

containing cavities.

5. Discussion225

5.1. Effect of voids on linear and nonlinear properties: numerical example

It is difficult to draw general conclusions from equations (42a), (42b)

and (42c) as they feature five independent elastic constants, except to note

that the linear elastic constants must satisfy the conditions K > 0, µ >

25
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Figure 3: The effective elastic constants of the a porous medium with a matrix phase

consisting of (a) aluminium alloy B53S P, (b) steel alloy Hecla 37, (c) steel alloy Hecla

ATV using the elastic constants reported by [42]. Dashed lines are used to indicate the

linear approximations to each property, given for the TOECs by (42a), (42b), and (42c).

Each effective property reduces to zero at c = 1, though they are only displayed for volume

concentrations less than 50%, due to the dilute distribution assumption involved in the

derivation.
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0. However, for common structural materials, the Poisson’s ratio may be

reasonably approximated as ν = 1
3
. Using this condition in the equations for

the effective properties, the first order expansions are

µ∗ = µ− 15

8
cµ+ . . . (49a)

K∗ = K − 3cK + . . . (49b)

l∗ + 1
9
n∗ = (1− 7c)

(
l + 1

9
n
)

+ 8c
(
m− 1

6
n
)
− 8

9
cn+ 8cµ+ . . . (49c)

m∗ − 1
6
n∗ =

(
1− 471c

128

)(
m− 1

6
n
)

+
509

768
cn+

15

128
c
(
l + 1

9
n
)

+
429

256
cµ+ . . .

(49d)

n∗ =

(
1− 101615c

28672

)
n+

22905

14336
c
(
m− 1

6
n
)
− 225

7168
c
(
l + 1

9
n
)

+
315

4096
cµ+ . . .

(49e)

It may be noted that certain coefficients in equations (49d), and (49e) are

close to zero; for practical purposes these dependences may be neglected.

Previous studies have found that the values of the Murnaghan constants for

many structural materials e.g. aluminium and steel alloys are often negative,230

and typically have a numerical value that is one order of magnitude larger

than the linear elastic constants. The equations (42a), (42b), and (42c) sug-

gest that the influence of the void volume fraction on the TOECs will be

much stronger than on the linear elastic constants. This conclusion may be

illustrated with reference to specific materials: Smith, Stern, and Stephens235

[42] measured the TOECs of a range of steel and aluminium alloys using the

acoustoelastic effect. For three steel and aluminium alloys, the effective elas-

tic properties and the corresponding first order expansions in c are plotted

in Figure 3, demonstrating that the effective TOECs may be significantly
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more sensitive to the presence of voids. For example for AL B53S P, TOEC240

l initially decreases with the increase of void concentration meanwhile two

other elastic constants, m and n, are increasing with void concentration. For

some materials, the slope of the growth of these constants can be of one order

or even two orders of magnitude larger than for their elastic counterparts,

see Figure 3. It is interesting to note that the linear elastic constants, λ and245

µ, always decrease monotonically with the void concentration. However, the

TOEC dependencies can be monotonic or non-monotonic, have tendencies

to increase or decrease and can have extrema. These dependences and non-

monotonic features can be utilised in the development of new methods for

the evaluation of porosity as well as assisting in the explanation of exper-250

imental tendencies on non-linear response for porous materials, which can

be based on the measurement of TOECs. It is important to note that all

dependencies shown in Figure 3 have been derived under the assumption of

a dilute distribution of voids, and therefore the values of elastic constants at

high void concentration should be treated with caution.255

6. Conclusion

The ultimate objective of this research is to develop nonlinear microme-

chanical theory for the evaluation of non-linear elastic properties of inhomo-

geneous materials, similar to classical micromechanical theories, which have

been developed for linear elastic constants. These theories have found many260

applications in Physics, Applied Mechanics, material modelling and engineer-

ing. It is expected that the nonlinear micromechanical theory to be developed

may have a similar impact on many research areas due to growing interest to
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nonlinear properties. As mentioned in the introduction, the micromechanics

of nonlinear materials is an area where analytical approaches have significant265

advantages over numerical methods, which justifies the present derivations

supported by a careful validation.

In this work, the effective third-order elastic constants of isotropic ma-

terials containing spherical voids have been derived using referential volume

average theorems. The results were derived using finite strain elastic theory270

and are valid for dilute distributions of voids. Due to the complexity of the

explicit expressions for the effective properties, first-order expansions with

respect to the volumetric concentration have been presented. The effective

elastic constants of the incompressible Mooney-Rivlin material were derived

by applying limits to each elastic constant; these expressions were found to275

be identical to previously published results for incompressible materials [25].

The authors were unable to find any numerical results of the problem under

consideration, which is not surprising due to many obstacles associated with

numerical modelling of nonlinear response in the case of dilute distribution

of weakly-nonlinear materials.280

An analysis of the derived expressions indicates that for common struc-

tural materials the effective third-order elastic constants may be much more

sensitive to the concentration of voids than the effective linear elastic con-

stants. This suggests that evaluation of the porosity, void nucleation and

monitoring of void growth in such materials, e.g. due to low-cycle fatigue285

loading [43, 44] or ductile damage [45] or creep, would be more effective

based on the measurements of the change of the TOECs than the linear

elastic constants. The measurement of TOECs is typically conducted with
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linear and nonlinear ultrasonic techniques utilising acoustoelastic effects and

nonlinear effects, e.g. higher harmonic generation, respectively [46, 47, 48].290

Indeed, many recent experimental studies utilising ultrasonic methods have

indicated that the TOECs are more sensitive to the accumulation of me-

chanical damage (creep, fatigue, radiation damage) than linear properties

[49], supporting the conclusions of the present study. However, many kinds

of mechanical damage are also associated with other damage mechanisms,295

e.g. accumulation of localised plastic deformations in the case of fatigue

damage. These mechanisms are disregarded in the current work, which is

only focused on the effect of voids. Therefore, though the current results

may not be directly applicable to damage mechanics, they can contribute to

understanding the mechanisms involved.300

The obtained analytical results can also be utilised to verify advanced

numerical techniques, which could be developed to evaluate the effective

nonlinear characteristics of materials and composites. As discussed in the

introduction, the reproduction of the current analytical results can represent

a serious challenge for numerical approaches. Therefore, exact analytical305

results, such as the one presented in this paper, can provide the necessary

benchmark against which the numerical techniques can be calibrated or com-

pared.

Further research to meet the ultimate objective formulated in the be-

ginning of this Section may include investigation of explicit first-order ex-310

pressions for the effective properties of composite material (for example,

particle-reinforced composites or fibre-reinforced composites) using the same

approach as well as experimental studies directed to validate the developed
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approach and analytical solutions. These experimental studies could be based

on ultrasonics methods for measurement of TOECs as it was discussed pre-315

viously. For the metal fatigue field, it would be of interest to derive the

second-order elasticity solution for a point dilatation and the corresponding

expressions for the effective nonlinear properties for dilute distribution of di-

latation in the nonlinear elastic material, the latter probably represents the

most elementary micromechanics model of accumulated fatigue damage in320

the high-cycle fatigue regime.

Funding

This work was supported by the Australian Research Council through

DP200102300 and the Australian Research Training Program Scholarship.

Their support is greatly appreciated.325

Appendix A.

The basis vectors for the spherical coordinates of the material and spatial

coordinate systems are

d1 = dR = sin Θ cos Φi + sin Θ sin Φj + cos Θk (A.1a)

d2 = dΘ = R(cos Θ cos Φi + cos Θ sin Φj− sin Θk) (A.1b)

d3 = dΦ = R(− sin Θ sin Φi + sin Θ cos Φj) (A.1c)

e1 = er = sin θ cosφi + sin θ sinφj + cos θk (A.1d)

e2 = eθ = r(cos θ cosφi + cos θ sinφj− sin θk) (A.1e)

e3 = eφ = r(− sin θ sinφi + sin θ cosφj) (A.1f)
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and the metric tensors are

G = GABdA ⊗ dB = dR ⊗ dR +R2dΘ ⊗ dΘ +R2 sin ΘdΦ ⊗ dΦ (A.2a)

g = gabe
a ⊗ eb = er ⊗ er + r2eθ ⊗ eθ + r2 sin θeφ ⊗ eφ. (A.2b)

The contravariant basis vectors follow from the relations dA = GABdB, ek =

gkmem. The shifting tensors have the components

gkA = ek · dA , gAk = ek · dA. (A.3)

Using the basis vectors (A.1), the non-zero components of the shifting tensors

are

grR = cos (θ −Θ) , gRr = cos (θ −Θ) (A.4a)

grΘ = R sin (θ −Θ) , gRθ = −r sin (θ −Θ) (A.4b)

gθR = −sin (θ −Θ)

r
, gΘ

r =
sin (θ −Θ)

R
(A.4c)

gθΘ =
R

r
cos (θ −Θ) , gΘ

θ =
r

R
cos (θ −Θ) (A.4d)

gφΦ =
R sin Θ

r sin θ
, gRr =

r sin θ

R sin Θ
. (A.4e)

where the axisymmetry condition φ = Φ has been applied.

Appendix B.

The constants in the particular solution (24) are calculated using the

equilibrium condition (4). In the following equations, the relation

5F2 + 2G1 = 0

has been applied, which is valid for the spherical cavity considered in the

current paper as well as the more general case of a spherical inhomogene-

ity embedded in an infinite elastic medium. By comparing coefficients, the
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constants for the conservative part of the body force, (25a), are calculated

as

C1 = −1

8
F 2

0 , C2 =

(
1

2
A2 −

µ

3(λ+ µ)
B1

)
F0

C3 =
18F2

7F0

C2 =
18

7

(
1

2
A2 −

µ

3(λ+ µ)
B1

)
F2 , C4 =

9F 2
2

4F 2
0

C1 = − 9

32
F 2

2 .

The constants involved in the components of the Galerkin vector of the body

force, (25b) and (25c), may be shown to satisfy the following equations:

D1 =

(
n

84µ2
− m(63λ+ 65µ)

420µ2(λ+ 2µ)
− 63λ2 + 214λµ+ 115µ2

840µ2(λ+ 2µ)

)
A2G1

+

(
2l

21(λ+ µ)(λ+ 2µ)
+

m(11λ+ 15µ)

210µ(λ+ µ)(λ+ 2µ)
+

λ2 + 38λµ+ 25µ2

420µ(λ+ µ)(λ+ 2µ)

)
B1G1

D2 = −150F0(λ+ µ)(3λ+ 5µ) + 5G1(219λ2 + 742λµ+ 665µ2)

24G1(λ+ µ)(4λ+ 5µ)
D3

+
7

3
D8 −

35(3λ+ 4µ)

54(λ+ µ)
D9 +

(λ+ 4µ)G2
1

12µ2

D3 =
(4λ+ 5µ)(λ+ 3µ+ 2m)

30µ2(λ+ 2µ)
F2G1

D4 =

(
− n

21µ2
+
m(33λ+ 67µ)

84µ2(λ+ 2µ)
+

33λ2 + 134λµ+ 137µ2

168µ2(λ+ 2µ)

)
A2G1

+

(
(5λ+ 7µ)(λ− 5µ)

84µ(λ+ µ)(λ+ 2µ)
− m(3λ+ 17µ)

42µ(λ+ µ)(λ+ 2µ)
− 8l

21(λ+ µ)(λ+ 2µ)

)
B1G1

D5 =
30F0(λ+ µ)(3λ− 5µ) + 5G1(105λ2 + 344λµ+ 310µ2)

12G1(λ+ µ)(4λ+ 5µ)
D3

− 10

3
D8 +

35

54

(
µ

λ+ µ
− 3F0

G1

)
D9 −

(λ+ 4µ)G2
1

12µ2

D6 =
15F0(λ+ µ) +G1(23λ+ 35µ)

G1(4λ+ 5µ)
D3 −

2

9
D9
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D7 =
(λ− 5µ)(λ+ 3µ+ 2m)

105µ(λ+ µ)(λ+ 2µ)
B1G1 −

(λ− 5µ)(λ+ 3µ+ 2m)

70µ2(λ+ 2µ)
A2G1

D8 =

(
m(2λ− µ)(3λ+ 7µ)

105µ2(λ+ µ)(λ+ 2µ)
− n(8λ+ 11µ)

140µ2(λ+ µ)
+

2l

35(λ+ µ)(λ+ 2µ)

−−3λ3 + 49λ2µ+ 199λµ2 + 195µ3

210µ2(λ+ µ)(λ+ 2µ)

)
G2

1

D9 =

(
9n

56µ2
− 3m(12λ+ 25µ)

35µ2(λ+ 2µ)
− 36λ2 + 138λµ+ 135µ2

70µ2(λ+ 2µ)

)
F2G1

E1 = −1

4
D1 +

1

16
D7

E2 = −70F0(λ+ µ)(33λ+ 50µ) + 5G1(1263λ2 + 4402λµ+ 3980µ2)

168G1(λ+ µ)(4λ+ 5µ)
D3

+
5

3
D8 +

5

108

(
7F0

G1

+
11λ

λ+ µ
− 33

)
D9 +

(7λ+ 32µ)G2
1

168µ2

E3 = − 15(λ+ µ)F0

4(4λ+ 5µ)G1

D3 +
1

28

(
19λ

4λ+ 5µ
− 39

)
D3 +

1

9
D9

E4 =
2λ− µ

2(λ− 5µ)
D7

E5 =
9

56

(
38− 51λ

λ+ µ
+

100λ

4λ+ 5µ

)
D3 −

1

2
D8 +

(
3

4
− λ

4(λ+ µ)

)
D9 −

9G2
1

280µ

E6 =
9

70
D3

(
5− 8λ

4λ+ 5µ

)
− 3D9

20
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