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Background: Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that lacks 

any disease-modifying drug for the prevention and treatment. Edaravone (EDR), an approved free 

radical scavenger, has proven to have potential against AD by targeting multiple key pathologies 

including amyloid-beta (Aβ), tau phosphorylation, oxidative stress, and neuroinflammation. 

To enable its oral use, novel edaravone formulation (NEF) was previously developed. The 

aim of the present investigation was to evaluate safety and efficacy of NEF by using in vitro/

in vivo disease model.

Materials and methods: In vitro therapeutic potential of NEF over EDR was studied against 

the cytotoxicity induced by copper metal ion, H
2
O

2
 and Aβ42 oligomer, and cellular uptake on 

SH-SY5Y695 amyloid-β precursor protein (APP) human neuroblastoma cell line. For in vivo safety 

and efficacy assessment, totally seven groups of APP/PS1 (five treatment groups, one each as a 

basal and sham control) and one group of C57BL/6 mice as a positive control for behavior tests 

were used. Three groups were orally treated for 3 months with NEF at an equivalent dose of EDR 

46, 138, and 414 µmol/kg, whereas one group was supplied with each Donepezil (5.27 µM/kg) and 

Soluplus (amount present in NEF of 414 µmol/kg dose of EDR). Behavior tests were conducted to 

assess motor function (open-field), anxiety-related behavior (open-field), and cognitive function 

(novel objective recognition test, Y-maze, and Morris water maze). For the safety assessment, 

general behavior, adverse effects, and mortality were recorded during the treatment period. More-

over, biochemical, hematological, and morphological parameters were determined.

Results: Compared to EDR, NEF showed superior cellular uptake and neuroprotective effect 

in SH-SY5Y695 APP cell line. Furthermore, it showed nontoxicity of NEF up to 414 µM/kg 

dose of EDR and its potential to reverse AD-like behavior deficits of APP/PS1 mice in a dose-

dependent manner. 

Conclusion: Our results indicate that oral delivery of NEF holds a promise as a safe and effec-

tive therapeutic agent for AD. 

Keywords: edaravone, Soluplus, dose–response relationship, APPSwe/PS1deE9 mice, learning 

and memory, safety assessment 

Introduction
Due to modern advancement in medical technology to combat dreadful diseases and 

providing a high quality of life in the 21st century, the aging population is increasing.1 

Alzheimer’s disease (AD), the most common cause of dementia, is a chronic neuro-

degenerative disease linked to the progressive cognitive deficits specifically in elder 
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community with a sufficient severity to compromise an indi-

vidual’s daily function.2 It causes huge social and economic 

burden such as the estimated cost of care for global patients 

of AD and dementia is equivalent to 1% global gross domes-

tic product.3 Currently, 47 million global people live with 

dementia, and this figure is projected to rise to 74 million by 

the year 2030.4 Even after a century of its discovery, effective 

therapy is still not available which could prevent, cure, and 

even stop its progression.5 Drug development for AD has 

also become a holy grail as 99.6% failure rate is encoun-

tered in clinical trials.6 The complexity of the disease is the 

main reason for several failures in clinical trials due to the 

involvement of multiple pathways in the development and 

progression of the disease such as amyloid-beta (Aβ) plaques, 

phosphorylated tau neurofibrillary tangles, oxidative stress, 

neuroinflammation, mitochondrial dysfunctions, glial acti-

vation, synaptic dysfunction, and neurotransmission-related 

mechanisms.2,7,8 Most mechanisms form vicious cycles to 

accelerate the disease progression. Thus, targeting multiple 

key pathways of AD pathogenesis is the key to the successful 

therapeutic outcome.2,9

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, 

MCI-186, EDR) is a free radical scavenger, developed 

by Mitsubishi Tanabe Pharma Corporation (Osaka, Japan). 

It has been approved for the treatment of acute cerebral 

infarction in Japan and amyotrophic lateral sclerosis (ALS) 

in the USA and Japan.10,11 The protective effect of EDR 

against AD-like insults in neuroblastoma N2a cells was 

reported by attenuating cytochrome c release, suppressing 

the activation of caspase-3 and decreasing the Bax/Bcl-2 

ratio.12 Also, its inhibitory effect on amyloid-β precursor 

protein (APP) processing and enhancing nonamyloidogenic 

pathway for the regulation of Aβ production by using human 

“Swedish” APP mutation APP695 (SY5Y-APP695swe) 

was shown by downregulating beta-secretase (BACE1) in a 

dose-dependent manner.13 Also, its efficacy in streptozotocin-

induced and Aβ-induced rat models have been demonstrated 

by improvement against the cognitive dysfunction.14–16 

Moreover, its therapeutic potential in double transgenic 

(Tg) APPSwe/PS1deE9 (APP/PS1) mice after 3 months of 

treatment was revealed by targeting multiple pathologies 

such as Aβ, oxidative stress, tau hyperphosphorylation, 

synaptic dysfunction, neuronal loss, neuroinflammation, 

and glial activation and improving the behavioral deficits.2 

The dose-dependent efficacy assessment of EDR is yet to 

be explored as it showed a dose-dependent effect against 

cerebral arachidonate cascade,17 cardioembolic stroke,18 and 

neonatal hypoxic-ischemic encephalopathy.19

Among the various routes of drug delivery, the oral route 

is accepted as the most favored by the patients as well as 

clinicians. The poor oral bioavailability (BA) due to poor 

aqueous solubility, stability, dissolution, and permeability 

has been reported for EDR. It was considered as one of the 

potential reasons for the failure of a number of potential 

drugs including curcumin in clinical trials.20,21 Thus, there 

is a need for the appropriate oral formulation to conduct 

the clinical trials for its safety and efficacy study at a large 

scale for the development of EDR as a drug for AD-like 

chronic diseases. Several efforts have been reported for the 

improvement of its oral BA; however, these investigational 

findings have not yielded significant success for effectively 

translating their use for clinical purpose.11,22–24 The novel 

edaravone formulation (NEF) was developed in part I of 

this study, by using the strategy called self-nanomicellizing 

solid dispersion which is the combination of solid disper-

sion and nanomicelles strategies. There was a significant 

dose-dependent enhancement of oral BA of 10.2, 16.1, and 

14.8-fold compared to EDR suspension for 46, 138, and 

414 µM/kg doses of EDR. The dramatic improvement of 

solubility, stability, dissolution, intestinal permeability, 

and inhibitory effect on glucuronidation contributed to the 

exceptional outcome. Previously, several nanoformulations 

of drugs showed significantly better efficacy than the crude 

drugs for AD probably by improving oral BA.25,26 Therefore, 

we assessed the efficacy of NEF in AD mouse model in the 

second part of the study in the present paper.

AD is a progressive and irreversible brain disease in which 

a steady decline in cognitive, behavioral, and physical abili-

ties is the key clinical manifestation. Memory loss is one of 

the main clinical manifestations of AD; hence, the efficacy 

of any potential intervention candidates could be judged 

based on its ability to prevent or restore learning and memory 

ability.27 Furthermore, progressive cognitive impairment is 

always accomplished with the progression of the pathogenesis 

of AD such as Aβ accumulation, downstream pathological 

events such as oxidative stress, tau hyperphosphorylation, 

glial activation, neuroinflammation, neuronal loss, and 

synaptic dysfunction.28 The potential therapeutic candidates 

that significantly inhibit the downstream pathologies could 

improve the behavioral deficits of APP/PS1 mice.2 Thus, 

the improvement in behavioral deficits was considered as a 

marker for the efficacy of NEF and evaluated by well-accepted 

behavioral tests such as open-field, novel objective recogni-

tion test (NORT), Y-maze, and Morris water maze (MWM) 

tests.2,29 The information regarding the toxicity of EDR via 

oral administration and Soluplus® (SOL)-based preparation 
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are very limited, thus it is necessary to evaluate the safety of 

NEF to provide guidance for clinical applications.

The work reported here aimed to evaluate the safety and 

efficacy of NEF in vitro with SH-SY5Y695 APP human 

neuroblastoma cell line, followed by in vivo using transgenic 

AD mouse models in a dose-dependent manner for long-term 

exposure (3 months) via the oral route.

Materials and methods
Materials
EDR made by Aldrich Chemical Co with 99% purity was 

bought from Aladdin Industrial Corporation (Shanghai, 

China). SOL was gifted from BASF Australia Ltd (Victoria, 

Australia). DMEM, fetal bovine serum (FBS), penicillin, 

streptomycin, and l-glutamine were purchased from Life 

Technology (Victoria, Australia). Acetic acid was obtained 

from Chem Supply (South Australia, Australia). High-

performance liquid chromatography-grade ethanol and 

methanol were purchased from Merck (Victoria, Australia). 

High purity (Milli-Q) water from Millipore Ultra-Pure Water 

System (Millipore, North Ryde, NSW, Australia) was used 

throughout the study. All other reagents were of analytical 

grade. 

in vitro neuroprotection assay
MTT assay
Human neuroblastoma cell line SH-SY5YAPP695 was used 

to evaluate the efficacy of EDR and NEF against cytotoxicity 

induced by CuSO
4
, H

2
O

2
, and Aβ42 following the protocol 

reported in our previous study.22 Briefly, SH-SY5YAPP695 

cells were seeded in a 96-well plate by using DMEM contain-

ing FBS (10%), l-glutamine (2 mM), penicillin (50 IU/mL), 

and streptomycin (50 IU/mL) in a humidified incubator 

accompanied with 95% air and 5% CO
2
 at 37°C. The cells 

were treated with CuSO
4
 (0.5 µM,) H

2
O

2
 (50 µM), and A-β 42 

(1 µM) to induce cytotoxicity. The dosage of EDR and NEF 

(3 µM and equivalent dose to 3 µM of EDR) was decided 

based on our previous study.2,22 After incubation time (19 h), 

MTT reagent (25 µL) was added and incubated at 37°C for 

an hour. After discarding MTT reagent, dimethyl sulfoxide 

(200 µL) was used to solubilize the intracellular formazan 

crystals, and the color intensity was measured at 570 nm by 

using multi-well scanning spectrophotometer (WALLAC 

1420; PerkinElmer Inc, Waltham, MA, USA). 

in vitro cellular uptake study
The cellular uptake of EDR and NEF in SH-SY5YAPP695 

cells was studied as per the protocol reported in our 

previous publication.22 After seeding cells with density 

2×105 cells/mL in a 6-well plate, cells were treated with EDR 

(3 mM) and NEF containing equivalent concentrations of 

EDR (3 mM) for 0.5 and 2 h. Later, the cells were washed 

three times with cold PBS, followed by lysing by using radio-

immunoprecipitation assay buffer. Liquid chromatography-

mass spectrometry was used to quantify EDR in order to 

determine the cellular uptake at 0.5 and 2 h.

Behavioral tests 
suitability of drinking water to supply neF
The behavior of animals could be adversely affected due 

to daily gavage or injection for 3 months. Supplying with 

drinking water was considered as the best way to perform 

long-term safety and efficacy study. The acidic water (pH of 

2.5–3.0) is provided to the animals to prevent the spread of 

bacterial disease.30,31 Thus, stability study was conducted to 

investigate the suitability of drinking water to supply NEF. 

To determine the stability of NEF, 300 mL of the formula-

tion at the concentration equivalent to 0.27 (46 µM/kg), 

0.82 (138 µM/kg), and 2.48 mM (414 µM/kg) of EDR using 

NEF was prepared and filled in the water bottles. The dosage 

was determined by the measurement of the volume of water 

consumed by the mice prior to drug delivery. These bottles 

were stored at room temperature in the animal house facility. 

The samples were collected at predetermined time intervals 

and loaded in high-performance liquid chromatography for 

further analysis after dilution and filtration. 

animals
APP/PS1 transgenic mice with C57BL/6 background was 

procured from Jackson Laboratory, Inc (West Grove, PA, 

USA). The animal ethics committee of the University of 

South Australia approved animal ethics for breeding proce-

dures and the experiments under South Australian Animal 

Welfare Act 1985. The breeding was done in the Reid animal 

facility of the University of South Australia. The standard 

conditions were maintained, which include standard light/

dark cycles of 12 h each, the temperature of 22°C±1°C, and 

humidity of 52%±2%. All the animals were assessed for 

their health, general behavior, and appearance to confirm 

the suitability for the whole experiment.

Based on our previous publications, SD was determined 

within the 20% of means. Thus, sample size (n=8–12) was 

calculated for the detection of the difference of 20% between 

groups at beta level of 80% and alpha at 5%.2,29 The APP/PS1 

(at the age of 14 months) was randomly divided into seven 

groups mentioned in Table 1. The group of 17-month-old 
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wild-type (WT) C57BL/6 mice supplied with normal 

drinking water was utilized as a positive control for the 

behavioral tests. The required amount of SOL and NEF 

were dissolved in drinking water, filtered, and supplied to 

animals as per the requirement. For donepezil (DNP), Aricept 

tablet (Pfizer, Inc, New York, NY, USA) was crushed using 

mortar and pestle and mixed with the required quantity of 

drinking water, filtered, and supplied to the animals. Open-

field, NORT, Y-maze, and MWM tests were conducted to 

investigate the effect of 3 months of treatment of NEF on 

change in the behavioral phenotype of APP/PS1 compared 

to the control groups. All behavioral tests were carried out 

in isolated behavior room in the Reid animal facility. To 

acclimate to the environment, animals were moved to the 

behavior room 1 h before initiating the test. ANY-maze video 

tracking software (Stoelting Co., Wood Dale, IL, USA) and 

a digital camera were used to record the animal behaviors as 

per the previous reports.2,29,32 The persons who did behavioral 

tests were blind to the group identities, and all data were 

analyzed according to precoded labels. The results were 

revealed after the data analysis was completed.

Measurement of water and food consumption
To determine the appropriate dosing, average water and 

food intake of the animals were recorded. The animals were 

divided into different groups, and average water and food 

consumption was documented up to 14 days before and after 

the addition of NEF to confirm the appropriate dosing. The 

initial amount and the amount left at the end of the day were 

recorded to get the amount consumed over a period. 

Open-field test
The white square open arena with an area of 40×40×40 cm 

was used for the test. Each animal was placed gently at the 

center of the arena, letting them move freely for the first 

5 min. Each test lasts for about 10 min, and the arena was 

cleaned by using 70% ethanol and water after each trial. 

In this test, a number of various conventional and ethological 

parameters were recorded during each session including 

1) spontaneous locomotor activity assessed by the entire 

distance covered and the number of rearing and 2) anxious 

behavior determined by the % time spent in the central arena, 

the number of grooming, defecation, and urination.32

novel objective recognition test
NORT test assesses the mice’s ability to identify the novel 

object in the environment. The experiment was carried out 

in the same arena used in open-field test. The test was con-

ducted in the three different phases that include 1) habitua-

tion; 2) familiarization; and 3) test phase. During habituation 

phase, each mouse was allowed to explore the whole arena 

without any objects. The mouse was then removed from the 

arena and put back into the holding cage. In the familiariza-

tion phase, the mouse was kept for some time in the open 

arena consisting of two identical objects (a+a). In the final 

testing phase, one of the identical objects was replaced with 

the novel object and the mouse was then kept in the white 

open arena composed of one identical and one novel object 

(a+b). In the second and third phases, the objects were kept in 

the opposite direction and 15 cm away from each other. Here, 

the time spent close to the familiar object versus the time 

spent close to the novel object on days 2 and 3 were recorded 

to generate the recognition and discrimination index.33 The 

ratio of time spent exploring one object over the total time 

spent in exploring both the objects was calculated as a recog-

nition index. The equation [DI=(TN−TF)/(TN+TF)], where 

time spent to explore the novel object (TN) and familiar 

object (TF) was used to calculate discrimination index.

Table 1 experimental design for behavioral tests with mouse models of aD

Groups Treatment Dose APP/PS1 mice

Identity Age 
(months)

Sample 
size (n)

normal control normal drinking water – 17 mo WT ctrl 17 8
Basal control normal drinking water – 14 mo Tg ctrl 14 11
sham control normal drinking water – 17 mo Tg ctrl 17 12
Bc sOl – 17 mo Tg Bc 17 10
neF treated neF lD 46 µM/kg 17 mo Tg neF lD 17 11
neF treated neF MD 138 µM/kg 17 mo Tg neF MD 17 12
neF treated neF hD 414 µM/kg 17 mo Tg neF hD 17 9
DnP DnP 5.27 µM/kg 17 mo Tg DnP 17 9

Abbreviations: AD, Alzheimer’s disease; LD, low dose; MD, medium dose; HD, high dose; Tg, transgenic mice; DNP, donepezil; NEF, novel edaravone formulation; 
Bc, blank control; WT ctrl, wild-type control; sOl, soluplus.
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Y-maze test
Y-maze spontaneous alteration test was carried out to assess 

the willingness of mice to discover new environment. 

An immediate spatial working memory was evaluated by 

using a Y-shaped maze composed of three opaque arms at the 

angle of 120° from each other as per the previous study.2 The 

mouse was kept at the center of the opaque block and allowed 

to walk freely during 5-min session. The movement of each 

mouse on the opaque block was visually recorded. Alteration 

means successive entry to each arm when performed. The 

% alteration was calculated based on the actual alterations 

to possible alterations. For the novel arm exploration, the 

mouse was kept on any of the two arms and allowed to walk 

through the opaque block during the 5 min of the first session. 

In the second session, the mouse was allowed to explore all 

three arms and to discover the novel arm. The total number 

of entries in the novel arm and the time spent on the novel 

arm were recorded. 

MWM test
A circular arena of 120 cm diameter and 45 cm height was 

used to carry out the MWM test as per the previous reports.2,32 

The test apparatus was filled up to the height of 30 cm with 

water having a temperature of 23°C–25°C. The water was 

made cloudy using a nontoxic white dye prior to initiating 

the test. The MWM test pool was theoretically divided into 

four different parts. In one of the four quadrants, a white 

platform of 7.5 cm diameter was placed, and others were 

marked in accordance with the testing quadrant with left, 

right, and opposite. The mice were allowed to freely swim 

in the pool for ~1 min so as to adjust themselves in the test-

ing environment (habituation phase). Here, the mice were 

trained in two phases known as visible and hidden phases. 

In the visible phase, the platform was 0.5 cm above the water 

level, whereas in the hidden phase, the platform was below 

0.5 cm water level. Here, the training to find out a visible 

platform was given for 1 day (60 s/trial, 3 trials/d), and for 

the hidden platform, the training was given for 4 days (60 s/

trial, 3 trials/d). The animals were allowed to swim from each 

quadrant except the quadrant closer to the platform during 

each trial for up to 60 s. They were led to the platform if they 

could not find it by themselves within 60 s and allowed to 

be there for 30 s. Moreover, they were allowed to be on the 

platform even if they find it in 60 s. The probe test (single trial 

of 60 s) without a platform for each mouse was performed on 

the last day of the study. The escape latency curve, swimming 

speed, and path length (habituation phase) in platform trials, 

while a number of annulus crossing and time spent in target 

quadrant compared to all other quadrants were recorded. 

assessment of long-term repeated dose 
toxicity
Body weight
Once the treatment was initiated, the weight of each mouse 

was documented on daily basis for up to 2 weeks and then 

on weekly basis.

Water and food consumption
Food and water consumption (g/d/10 g body weight) were 

recorded during the whole treatment period on weekly basis.

general behavior and mortality
All the mice were monitored for any abnormal behavior and 

symptoms every day such as mortality or morbidity, dull/ruffled 

coat, hunched posture, reluctant to move, dehydration by skin 

tent, diarrhea/abnormal bloating, changes in skin and fur, eyes 

and mucous membranes, and behavior patterns.34 The clinical 

record sheet for each group was maintained for everyday and 

was recorded up to 3 months. The individual clinical record 

sheet was used for mice with abnormal behavior or symptoms 

for close monitoring. The weight loss of .10% was used as a 

standard for humane killing under veterinary advice.

hematological parameters
To investigate the different hematological parameters, the 

blood samples were collected in the EDTAK
2
-coated vials 

at the end the experiment. A fully automated five-part dif-

ferential hematology analyzer (Sysmex XN550, Sysmex 

Europe GmbH, Norderstedt, Germany) was used for the 

analysis of hematological parameters such as white blood 

cells, red blood cells, hemoglobin, hematocrit, mean corpus-

cular volume, mean corpuscular hemoglobin (MCH), mean 

corpuscular hemoglobin concentration, platelets (PLT), mean 

platelet volume, platelet hematocrit, platelet distribution 

width, neutrophils, lymphocytes, monocytes, eosinophils, 

and basophils.35 

coagulation parameters
Different coagulation parameters including prothrombin 

time (PT) and activated partial thromboplastin time (APTT) 

were measured manually by using blood plasma. For PT 

estimation, the Innovin reagent was preheated at 37°C by 

using a water bath. 100 µL of plasma was taken in the glass 

test tube. In the glass test tube with plasma, 200 µL of the 
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previously heated Innivon reagent was added, and the time 

for the fibrin strand formation was recorded. In case of APTT 

determination, APTT reagent and 0.025 M calcium chloride 

were preheated at 37°C. 100 µL of plasma sample was 

mixed with 100 µL of APTT reagent in the glass test tube. 

The resultant mixture was then incubated for 180 s at 37°C. 

In the above mixture, 100 µL of the calcium chloride was 

added and the time to start the fibrin strand formation (first 

appearance of the fibrin) was documented at 37°C. Analysis 

of each sample was performed in triplicate.

serum biochemistry
An automatic biochemistry meter (SELECRTA-E; Vital Sci-

entific, Van Rensselaerweg, AV Spankeren, the Netherlands) 

was used to measure the different biochemical parameters 

such as alanine aminotransferase, aspartate aminotransferase, 

alkaline phosphatase, amylase, lipase, gamma-glutamyl 

transferase, sodium, bicarbonate, anion gap, potassium, 

calcium, sodium:potassium ratio, chloride, inorganic phos-

phorus, calcium:phosphorus ratio, albumin, total protein, 

globulin, total bilirubin, creatinine, urea nitrogen, glucose, 

and total cholesterol. 

Organ weight
Each animal was euthanized by carbon dioxide inhalation and 

perfused intracardially with cold PBS (pH 7.4) after complet-

ing the experiment. Different organs including brain, stom-

ach, small intestine (SI), large intestine (LI), liver, kidneys, 

spleen, and heart were collected and weighed individually. 

histopathology
The histopathological examination was performed on all the 

collected tissues including brain, stomach, SI, LI, liver, kidneys, 

spleen, heart, and lungs. The tissues were fixed in 10% formalin 

and subsequently processed in Fully Enclosed Tissue Processor 

(Leica ASP300, Leica Microsystems Pty Ltd, Mt Waverley, 

VIC, Australia) with a routine schedule of treatments of 70% 

ethanol, 90% ethanol, absolute ethanol, xylene, and paraffin wax 

(Table S1). The tissues were embedded in the paraffin (Leica EG 

1160) prior to taking standard sections via Microm Microtome 

and histology water bath (Leica HI1210). The sections were 

then stained with H&E dye and observed under the microscope 

(Olympus CX 41; Olympus Corporation, Tokyo, Japan).36

statistical analysis
Mean and SD or mean and standard error of the mean was 

used to express all values. The statistical analysis of data was 

conducted by using GraphPad Prism 6 (GraphPad Software, 

Inc, La Jolla, CA, USA) for normal distribution first by 

using Shapiro–Wilk test followed by Student’s t-test for two 

groups, one way and two-way analysis of variance for mul-

tiple groups. P-values ,0.05 were considered significant.

Results and discussion
in vitro neuroprotection assay
Therapeutic efficacy of EDR and NEF was investigated by 

using human neuroblastoma cell line which is most widely 

accepted to test the neuroprotection in vitro.22 In AD patho-

genesis, the viability of neuron is significantly affected with 

cytotoxicity induced by hydrogen peroxide, copper metal 

ions, and Aβ42.2,22 The statistically significant neuroprotec-

tion action was observed in the treatment group EDR and 

NEF compared to nontreated group against cytotoxicity by 

copper metal ions (Figure 1A; Table S2), H
2
O

2
 (Figure 1B; 

Table S3), and Aβ42 (Figure 1C; Table S4). Moreover, NEF 

showed better neuroprotection compared to EDR; however, it 

was nonsignificant statistically. The results of cellular uptake 

demonstrated that NEF was internalized more efficiently 

compared to crude EDR at 0.5 and 2 h (Figure 1D; Table S5). 

The results of significant enhancement in cellular uptake and 

neuroprotective effect of NEF demonstrated that NEF may 

be useful as a potential anti-Alzheimer drug and considered 

for further evaluation in vivo.

Behavior tests
The purpose of the study was to determine the therapeutic 

potential of NEF against AD, and for that, suitable animal 

model, age, duration of treatment, and evaluation tests were 

the key requirements. The ideal animal model should closely 

mimic the symptoms and neuropathology of AD disease. 

APP/PS1 mouse model was created by expressing variants 

of chimeric human APP and a mutant human presenilin 1.37 

It is well accepted to investigate the therapeutic potential 

candidates against AD because it showed key characters 

such as cognitive dysfunction as a result of pathological 

changes manifested by senile plaques, neuroinflammation, 

and neuronal loss. The potential therapeutic candidates such 

as EDR,2 docosahexaenoic acid,38 Puerarin,39 and p75NTR 

ectodomain protein29 ameliorated the cognitive dysfunction 

in APP/PS1 mice by improving AD-like pathology. There-

fore, the efficacy of NEF against AD was evaluated based 

on its potential to improve learning and memory in AD 

mice. In addition, the age-dependent cognitive decline was 

observed with APP/PS1 mouse models; hence, selection of 

suitable age is critical. The 14 months of age for APP/PS1 

mice as a starting point because of the fully developed 
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AD-like pathology and behavioral deficits similar to the 

clinical AD was observed in the previous studies.28 More-

over, due to the chronic nature of AD, 3 months of the 

treatment period was selected as appropriate for efficacy 

evaluation from the previous report.2 As an improvement of 

learning and memory of APP/PS1 mice used as a marker in 

evaluating efficacy against AD, a number of behavior tests 

were selected to assess the motor function (open field), 

anxiety-related behavior (open field), and cognitive function 

(NORT, Y-maze, and MWM). APP/PS1 mice showed AD-

like behavioral deficits in the open-field, NORT, Y-maze, and 

MWM tests.2,29,40 A group of C57BL/6 WT mice was used 

as a normal aging control as APP/PS1 mice were genetically 

modified mice with the background of C57BL/6. One group 

of APP/PS1 mice aged 14 months was considered as a basal 

control, which had undergone for the behavioral tests at the 

starting point of treatments. Other groups of mice were used 

as a negative control without any treatment, blank formula-

tion control (without EDR), and DNP-positive control group 

(for details of grouping designs, see Table 1). All behavioral 

tests were conducted at 17 months similar to NEF treatment 

groups, except the basal control group which was done at 

14 months. The data of control groups such as 17 mo WT 

Ctrl, 14 mo Tg Ctrl, 17 mo Tg Ctrl, 17 mo Tg BC, and 

17 mo Tg DNP are used in other similar projects to reduce 

the utilization of an overall number of animals as per the 

animal ethics guideline.

Daily injection or gavage for 3 months could affect the 

behaviors of mice and impact on the outcome as well as a 

welfare issue. Therefore, mixing of NEF with drinking water 

β β β

Figure 1 In vitro safety and efficacy of NEF compared with EDR in SH-SY5Y695 cell line. 
Notes: effect of eDr and neF on cell viability in the presence of cusO4 (A), h2O2 (B), and aβ42 (C). In vitro cellular uptake efficiency of NEF and EDR in SH-SY5Y695 
cell line after incubating for 0.5 and 2 h (D) (mean±se, n=3). *P,0.05 and **P,0.01. One and two-way ANOVA and Sidak’s multiple comparisons test. Data for EDR were 
adapted from the earlier report.22

Abbreviations: neF, novel edaravone formulation; eDr, edaravone; anOVa, analysis of variance.
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was selected to allow voluntary oral administration of NEF, 

Blank formulation and DNP. In animal house facility, acidic 

drinking water was used to avoid the spreading of bacterial 

infections among the animals in a cage.30,31 Thus, evaluating 

the stability of NEF in acidic drinking water was performed 

to determine its suitability as an administration technique 

and frequency of changing the water bottle. The frequency of 

changing water bottle in our animal house facility was weekly 

as per the standard; hence, stability study was conducted for 

7 days. Less than 1% decrease in EDR content with all three 

doses of NEF was detected in 1 week, which confirmed the 

suitability of mixing NEF with acidic drinking water as a 

way of administration. The concentration of NEF, SOL, and 

DNP in acidic drinking water was calculated for appropriate 

dosing as per the data of average water consumption and 

weight of the mice mentioned in Table 2. The amount of 

water intake was used to calculate the dose for the prepara-

tion of drinking water mixed with the different doses of NEF, 

blank formulation, and DNP. 

Open-field test
The locomotor and exploration activity (measuring total 

distance traveled and the number of rearing) and anxiety 

behaviors (% time spent in the central zone and number of 

rearing, grooming, urination, and defecation) of all APP/PS1 

mice were evaluated by open-field test.29 There was a signifi-

cant decrease in locomotor and exploration activity as well as 

high level of anxiety observed at 14 and 17 months of age of 

APP/PS1 mice without any treatment and with blank formu-

lation treatment compared to WT control mice. The treatment 

groups with NEF displayed dose-dependent increase in the 

locomotor activity, which revealed a statistically significant 

increase in total distance traveled (Figure 2A; Table S6) 

and number of rearing (Figure 2B; Table S6). Moreover, 

mice treated with NEF with middle dose (MD) and high dose 

(HD) but not low dose (LD) spent significantly longer time in 

the central zone (Figure 2C; Table S6), which indicated the 

lowering of anxiety-type behavior. Also, NEF-treated mice 

showed decreased but not statistically significant number 

of grooming (Figure 2D; Table S6), urination (Figure 2E; 

Table S6), and defecation (Figure 2F; Table S6). Besides, 

the DNP-treated mice showed similar results to the mice 

treated with NEF LD, but NEF MD- and HD-treated mice 

revealed better performance than DNP-treated mice. There 

was no statistically significant difference in locomotor and 

exploration activities and anxiety behaviors of NEF-treated 

mice with standard WT mice, suggesting a potential of NEF 

treatment on the reversal of the behavioral deficits to the 

normal level. It is worthy to note that the NEF groups with 

all dosages performed better than the basal control group at 

14 months on the total travel distance, number of rearing, 

and the time spent in the central zone in the open-field test 

(Figure 2A–C), suggesting that the NEF treatment can reverse 

the mood status of aged AD mice to a much younger age.

novel objective recognition test 
The NORT reflects the learning and memory of mice based 

on their natural tendency of exploring novel object instead of 

familiar one after exposed to a novel environment.41 The poor 

performance of APP/PS1 in NORT made it an ideal study 

to examine the potential of intervention therapy for AD.42 

All APP/PS1 and WT mice showed statistically insignificant 

difference in recognition index in the phase of familiarization 

(Figure 3A; Table S7). In the test phase, the 17-month-old 

Table 2 Measurement of food and water consumption and body weight of Tg mice (mean±sD, n=5)

Parameter Time APP/PS1 mice

17 mo Tg 
Ctrl

17 mo Tg 
BC

17 mo Tg 
NEF HD

Food intake 
(g/d/10 g body weight)

Before addition (14 months)*
after addition (14 months)+

1.34±0.19
–

1.36±0.26
1.33±0.22

1.38±0.25
1.33±0.31

at 17 months 1.22±0.31 1.24±0.22 1.19±0.25
Water intake 
(g/d/10 g body weight)

Before addition (14 months)*
after addition (14 months)+

1.42±0.42
–

1.41±0.32
1.48±0.24

1.43±0.32
1.52±0.34

at 17 months 1.25±0.20 1.27±0.28 1.23±0.27
Body weight (g) Before addition (14 months)* 33.13±3.24 33.9±4.82 32.81±2.59

after addition (14 months)+ – 34.6±3.45 34.32±2.99
at 17 months 34.15±3.13 34.24±3.17 34.58±3.12

Notes: *Before addition of treatment such as blank formulation (17 mo Tg Bc) and neF (17 mo Tg neF hD). +after addition of treatment such as blank formulation 
(17 mo Tg Bc) and neF (17 mo Tg neF hD).
Abbreviations: Tg, transgenic mice; 17 mo Tg ctrl, 17-month-old transgenic sham control mice; 17 mo Tg Bc, 17-month-old transgenic blank control mice; 17 mo Tg neF 
hD, 17-month-old transgenic mice treated with high dose of neF; neF, novel edaravone formulation.
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Figure 2 Results of open-field test. 
Notes: Total distance traveled (A), number of rearing (B), time spent in central zone (C), number of grooming (D), number of urination (E), and number of defecation (F). 
*P,0.05, **P,0.01, ***P,0.001, and ****P,0.0001 (one-way ANOVA, Tukey’s test) (mean±seM).
Abbreviations: neF, novel edaravone formulation; 17 mo WT ctrl, 17-month-old normal wild-type control mice; 17 mo Tg ctrl, 17-month-old transgenic sham control mice; 
14 mo Tg ctrl, 14-month-old transgenic mice as a basal control; 17 mo Tg Bc, 17-month-old transgenic blank control mice; 17 mo Tg neF lD, 17-month-old transgenic mice 
treated with low dose of neF; 17 mo Tg neF MD, 17-month-old transgenic mice treated with medium dose of neF; 17 mo Tg neF hD, 17-month-old transgenic mice treated 
with high dose of neF; 17 mo Tg DnP, 17-month-old transgenic mice treated with high dose of donepezil; seM, standard error of the mean; anOVa, analysis of variance.
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APP/PS1 mice without any treatment and with blank formu-

lation treatment showed no tendency to explore the novel 

object, while NEF-treated mice presented significantly higher 

and dose-dependent increase in the discrimination index 

(Figure 3B and C; Tables S7 and S8). Moreover, NEF-treated 

mice with all doses displayed significantly better performance 

in a dose-dependent manner compared to the basal control 

at 14 months. DNP-treated mice reflected the improvement 

of AD-related deficits to the much younger aged mice and 

better than untreated control groups. The performance of 

NEF-treated mice evaluated based on discrimination index in 

test phase was comparable to WT normal mice at 17 months 

and better than the positive control DNP group. These results 

suggest that NEF treatment at all dosages can reverse the 

cognitive decline to the much younger age of AD mice and 

to the level near WT normal aging mice. 

Y-maze test
Mouse has a natural tendency to explore a novel environ-

ment, but AD-like cognitive deficits could affect its ability 

Figure 3 results of nOrT. 
Notes: recognition index in the phase of familiarization (A) and the test phase (B), discrimination index in the test phase (C). ****P,0.0001 (one-way ANOVA, Tukey’s test) 
(mean±seM).
Abbreviations: neF, novel edaravone formulation; nOrT, novel objective recognition test; 17 mo WT ctrl, 17-month-old normal wild-type control mice; 17 mo Tg ctrl, 
17-month-old transgenic sham control mice; 14 mo Tg ctrl, 14-month-old transgenic mice as a basal control; 17 mo Tg Bc, 17-month-old transgenic blank control mice; 
17 mo Tg neF lD, 17-month-old transgenic mice treated with low dose of neF; 17 mo Tg neF MD, 17-month-old transgenic mice treated with medium dose of neF; 17 mo 
Tg neF hD, 17-month-old transgenic mice treated with high dose of neF; 17 mo Tg DnP, 17-month-old transgenic mice treated with high dose of donepezil; seM, standard 
error of the mean; anOVa, analysis of variance.
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to discriminate between familiar and novel environment.43 

Y-maze test was conducted in two phases including 

spontaneous alternation and novel arm exploration tests.2,29 

The performance of APP/PS1 mice without any treatment and 

treated with blank formulation was poor in both the phases 

compared with WT control, which indicated AD-like behav-

ioral deficits such as impairment in remembering the already 

explored arm in spontaneous alternation and the previously 

blocked arm in novel arm exploration test. The NEF-treated 

mice showed the significantly greater number of alteration 

(Figure 4A; Table S9) and entry to each arm (Figure 4B; 

Table S9) in a dose-dependent manner compared to control 

mice without any treatment or treated with the SOL vehicle. 

Moreover, significantly higher number of entry (Figure 4C 

and D; Table S9) and time spent (Figure 4E; Table S9) in 

the novel arm in comparison with other arms were witnessed 

in NEF-treated mice compared with the mice without any 

treatment or treated with the vehicle. All NEF-treated mice 

performed better than the basal control mice at 14 months of 

age, indicating that the NEF treatment can reverse the cogni-

tive status to a much younger age than 14 months, although 

these basal control younger mice performed slightly better 

than 17-month-old untreated controls but had no statistical 

difference. Also, NEF-treated mice showed better results 

but statistically insignificant compared with mice treated 

with DNP in both the phases. Also, most importantly, the 

performance of NEF-treated mice in both the phases was not 

statistically different from that of WT normal aging control, 

indicating amendment by NEF at all dosages in AD-like 

cognitive functions to the normal mice with same age.

MWM test
The MWM test is one of the most sensitive tests which 

represents the AD-like deficits as it examines the function 

of the hippocampus, the most affected region of the brain 

in AD. The determination of hippocampal spatial memory 

deficits was performed by motivating mice to escape from 

water by finding the platform after placing into the water 

tank.2,29 The test was performed in four phases including 

habituation, visible platform, hidden platform, and probe 

test. The performance of all APP/PS1 and WT mice in first 

and second phases was evaluated by measuring the path 

length (Figure 5A; Table S10), swimming speed (Figure 5B; 

Table S11), and escape latency time, which was not sig-

nificantly different among groups, which indicated that all 

groups had similar motor and visual capabilities. The learning 

and memory of all mice were assessed in the third phase by 

comparing escape latency time (Figure 5C; Table S12) and 

the fourth phase by measuring a number of annulus crossing 

(Figure 5D; Table S13) and time spent in target quadrant 

compared with all other quadrants (Figure 5E; Table S14) 

of MWM. The mice without treatment or treated with the 

blank formulation in APP/PS1 mice at 14 or 17 months dis-

played significantly impaired learning compared with WT 

mice. NEF-treated mice performed significantly better in a 

dose-dependent manner showing a reduction in the escape 

latency time in the third phase and a higher number of annulus 

crossing, and longer time spent in the target quadrant in the 

fourth phase, compared with those of untreated or vehicle-

treated mice in both the phases. Moreover, these mice treated 

with MD and HD of NEF exhibited better performance than 

the DNP group. Again, the most important finding is that all 

mice treated with NEF improved their capacity of learning 

and memory to the extent comparable to the level of WT, as 

no statistical difference was seen between the WT normal 

aging control and NEF-treated groups. 

Overall, the performance of untreated or blank formula-

tion treated mice at 17 months showed AD-like behavioral 

deficits in open-field, NORT, Y-maze, and MWM behavior 

tests compared with WT control. The basal control group 

of mice presented slightly better but insignificant than 

17-month-old mice, while blank formulation treatment 

did not show any improvement compared with 17-month-

old untreated mice. DNP treatment rescues the cognitive 

deficits of APP/PS1 mice in all behavioral tests compared 

with 17-month-old untreated mice but only able to match 

the performance of NEF LD treatment. The NEF MD- and 

HD-treated mice revealed exceptional learning and memory 

ability which was better than DNP-treated, basal control and 

quite similar to the WT control mice in all behavior tests. 

The expressed NEF treatment could not just prevent the 

deterioration of cognitive functions but also made a reversal 

of AD-like behavioral deficits in APP/PS1 mice similar to 

the much younger mice or same age normal mice. 

Previously, EDR ameliorates the AD-like memory deficits 

in APP/PS1 mice by reducing Aβ deposition and alleviates 

oxidative stress and attenuates the downstream pathologies 

including tau hyperphosphorylation, glial activation, neu-

roinflammation, neuronal loss, and synaptic dysfunction.2 

Moreover, it also showed improved streptozotocin-induced 

cognitive damage by reducing oxidative stress and hyper-

phosphorylation of tau.15 In addition, EDR amended spatial 

learning and memory deficits in Aβ-induced neurotoxicity 

in rats by lowering 4-hydroxynonenal level, acetylcholin-

esterase and choline acetyl transferase activities.14 NEF 

is a more bioavailable form (.10-fold compared with 

EDR suspension) of EDR which could not only achieve 

a higher concentration in systemic circulation but also in 
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Figure 4 The behavioral performances of Tg mice in Y-maze test. 
Notes: % alternation (A) and numbers of entries in each arm (B) and in the spontaneous alternation test, % of total entry in novel arm compared with other arms (C), 
total number of entry to the novel arm (D), and time (%) (E) in the novel arm test. *P,0.05, **P,0.01, ***P,0.001, and ****P,0.0001 (one-way ANOVA, Tukey’s test) 
(mean±seM).
Abbreviations: neF, novel edaravone formulation; 17 mo WT ctrl, 17-month-old normal wild-type control mice; 17 mo Tg ctrl, 17-month-old transgenic sham control mice; 
14 mo Tg ctrl, 14-month-old transgenic mice as a basal control; 17 mo Tg Bc, 17-month-old transgenic blank control mice; 17 mo Tg neF lD, 17-month-old transgenic mice 
treated with low dose of neF; 17 mo Tg neF MD, 17-month-old transgenic mice treated with medium dose of neF; 17 mo Tg neF hD, 17-month-old transgenic mice treated 
with high dose of neF; 17 mo Tg DnP, 17-month-old transgenic mice treated with high dose of donepezil; seM, standard error of the mean; anOVa, analysis of variance.
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Figure 5 The performances of Tg mice in MWM test. 
Notes: Path length (cm) to the platform (A), swim speed (cm/s) during platform trials and probe test (B), escape latency (s) during platform trials and distance travelled on 
each day of training (C), number of annulus crossings in probe trial (D), comparison of time spent in target zone (Q3) (first bar) where platform was located compared with 
the average of all other zones (o.a.) (second bar) (E). *P,0.05 and **P,0.01 (two-way or one-way ANOVA, Tukey’s test) (mean±seM).
Abbreviations: neF, novel edaravone formulation; MWM, Morris water maze; 17 mo WT ctrl, 17-month-old normal wild-type control mice; 17 mo Tg ctrl, 17-month-old 
transgenic sham control mice; 14 mo Tg ctrl, 14-month-old transgenic mice as a basal control; 17 mo Tg Bc, 17-month-old transgenic blank control mice; 17 mo Tg neF 
lD, 17-month-old transgenic mice treated with low dose of neF; 17 mo Tg neF MD, 17-month-old transgenic mice treated with medium dose of neF; 17 mo Tg neF hD, 
17-month-old transgenic mice treated with high dose of neF; 17 mo Tg DnP, 17-month-old transgenic mice treated with high dose of donepezil; seM, standard error of the 
mean; anOVa, analysis of variance.
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the brain as 50%–65% of the relative ratio of plasma to the 

cerebral spinal fluid of EDR was reported previously.44 The 

dose-dependent therapeutic effect of EDR against AD in 

in vitro and in vivo studies against ALS has been already 

revealed.2,13,45 Therefore, due to the enhancement of oral 

BA of EDR, NEF could more effectively target multiple 

pathways of AD pathogenesis and thus rescue the cognitive 

deficits of a mouse model of AD.

assessment of long-term repeated dose 
toxicity
As a result of superior pharmacological properties of EDR 

against AD and the exceptional performance of NEF, a more 

bioavailable form or EDR in a behavioral study conducted 

on APP/PS1 mice, NEF could be developed as a therapeutic 

agent for AD. The available information on the toxicity of 

SOL-based preparation is very limited. Thus, as a part of 

safety assessment, the objective of this study was to evaluate 

the long-term toxicity study of NEF when supplied for con-

secutively 3 months. It could provide guidance for clinical 

applications of NEF not only for AD but various neurologic 

and nonneurologic diseases related to organs such as heart, 

lung, intestine, liver, pancreas, kidney, bladder, and testis.46 

The data of 17 mo Tg Ctrl and 17 mo Tg BC control groups 

are used in other similar projects based on SOL-based prepa-

rations to reduce the use of an overall number of animals as 

per the animal ethics guideline.

No death or clinical signs were noticed related to the 

treatment in any groups including blank formulation and NEF 

with all doses. Also, the insignificant difference was observed 

in body weight, water, and food consumption in NEF-treated 

groups compared with the nontreated group except the first 

week (Table 2). During the first week after initiating the 

treatment, an increase in water intake and weight gain but a 

decrease in food intake was noted in both blank formulation, 

and NEF-treated groups than in untreated groups. The prefer-

able taste of SOL might be the possible reason to explain the 

higher water intake, which led to a weight gain, and a slight 

and transient decrease in food intake may not affect the body 

weight. After 1 week, the water and food intake and weight 

of the mice remained consistent throughout the study. 

hematological parameter
The data of hematological parameters of NEF-treated mice 

showed a slight but not significant decrease in most of the 

parameters except MCH, PLT, monocyte, and basophil counts 

compared with nontreated mice group (Table 3). The SOL 

treatment did not cause any statistically significant increase 

and decrease in the values of various hematological parame-

ters, compared with nontreated mouse groups. The biological 

significance of the results was further assessed from the study 

of organ weight and histology of the spleen.

coagulation parameters
There was no statistically significant increase or decrease in 

the value of PT and APTT detected in the case of the NEF-

treated mice and the SOL vehicle-treated mice, compared 

with nontreated mice (Table 3). 

Blood electrolytic parameters
The results indicated that there was no statistically signifi-

cant increase or decrease in the values of blood electrolytic 

parameters between the mice treated with SOL or NEF and 

those control mice without any treatment (Table 4). 

Biochemical parameters
The analysis of serum biochemistry was performed to assess 

the impact of the treatment of NEF and SOL on the standard 

Table 3 analysis of hematological and coagulation parameters of 
Tg mice (mean±sD, n=5)

Parameters APP/PS1 mice

17 mo Tg 
Ctrl 

17 mo Tg 
BC 

17 mo Tg 
NEF HD

Hematological parameters
rBc (×1012/l) 9.52±0.39 9.38±0.51 9.12±0.47
WBc (×109/l) 7.17±3.28 7.56±3.94 6.95±3.08
hgB (g/dl) 13.64±0.45 13.95±0.61 13.28±0.62
hcT (%) 48.92±1.43 47.67±1.92 46.18±2.42
McV (fl) 49.81±1.36 48.53±1.89 49.17±2.05
Mch (pg) 14.68±0.82 15.28±0.61 14.80±0.49
Mchc (g/dl) 29.53±1.16 28.95±1.99 29.18±1.82

PlT (×109/l) 496.81±282.34 521.94±196.05 529.27±297.26
MPV (fl) 6.95±0.14 6.57±0.27 6.58±0.31
PcT (%) 0.23±0.16 0.19±0.11 0.22±0.18
PDW (fl) 8.3±1.62 8.29±1.72 7.96±2.44
neutrophils (%) 14.35±4.53 12.24±5.25 13.45±4.98
lymphocytes (%) 81.82±5.74 77.56±5.23 76.95±6.29
Monocytes (%) 4.61±2.16 5.25±2.49 4.99±2.46
eosinophils (%) 1.86±1.65 1.52±1.16 1.79±1.04
Basophils (%) 0.04±0.05 0.05±0.05 0.05±0.03
Coagulation parameters
PT (s) 10.12±0.62 10.25±1.12 12.21±2.48
aPTT (s) 26.67±8.97 28.45±8.12 26.19±9.29

Abbreviations: aPP/Ps1, aPPswe/Ps1dee9; Tg, transgenic mice; 17 mo Tg ctrl, 
17-month-old transgenic sham control mice; 17 mo Tg Bc, 17-month-old transgenic 
blank control mice; 17 mo Tg neF hD, 17-month-old transgenic mice treated with 
high dose of neF; WBc, white blood cells; rBc, red blood cells; hgB, hemoglobin; 
hcT, hematocrit; McV, mean corpuscular volume; Mch, mean corpuscular 
hemoglobin; Mchc, mean corpuscular hemoglobin concentration; PlT, platelets; 
MPV, mean platelet volume; PcT, platelet hematocrit; PDW, platelet distribution 
width; PT, prothrombin time; aPTT, activated partial thromboplastin time; neF, 
novel edaravone formulation.
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function of liver, kidneys, heart, liver, and digestive system 

of mice (Table 4). At the end of the treatment period, there 

was a slight increase in values of creatinine, total bilirubin, 

and urea in NEF- and SOL-treated groups compared with the 

untreated controls, but no statistically significant difference. 

There was no statistically significant difference in the rest of 

liver enzymes and metabolites between treated and control 

mice. These results indicate that the treatment of SOL did not 

show any significant alterations in the serum biochemistry 

compared with nontreated groups. The biological significance 

of the results was further evaluated based on the study of 

organ weight and histology study.

Organ weight 
The results of weights of all the key organs of the mice treated 

with blank formulations and NEF and without any treatment 

are presented in Table 5. The NEF-treated mice showed a 

slight increase in weight of all organs but without statistical 

significance. The average weight of NEF-treated mice was 

higher than the nontreated mice that could explain slight 

more weights of all the key organs. There was no change 

in the weight of organs in SOL-treated mice compared with 

untreated mice. 

histopathology
Histopathological examinations of the all the vital organs 

including liver, kidney, brain, heart, spleen, lung, stomach, 

SI, and LI did not reveal any treatment-related changes 

in NEF- or SOL-treated mouse group compared with 

Table 4 analysis of biochemical parameters of Tg mice (mean±sD, n=5)

Parameters APP/PS1 mice

17 mo Tg Ctrl 17 mo Tg BC 17 mo Tg 
NEF HD

sodium (mmol/l) 147.66±2.94 143.06±2.98 147.38±2.58
Bicarbonate (mmol/l) 27.16±5.79 27.9±5.02 28.31±5.48
anion gap (mmol/l) 22.78±4.70 22.91±5.25 23.46±4.68
Potassium (mmol/l) 11.06±1.52 12.94±1.03 11.00±1.26
calcium (mmol/l) 2.56±0.19 2.84±0.18 2.58±0.22
sodium:potassium ratio 13.6±1.86 13.93±1.92 13.75±1.39
chloride (mmol/l) 107.71±2.52 109.52±2.91 107.73±2.94
inorganic phosphorus (mmol/l) 3.08±0.77 3.56±0.99 3.04±0.84
calcium:phosphorus ratio 0.83±0.19 0.78±0.14 0.81±0.18
albumin (g/l) 34.93±2.68 31.16±3.57 33.45±2.48
Total protein (g/l) 56.69±3.59 54.58±4.56 57.62±3.57
globulin (g/l) 24.8±2.67 23.4±2.96 22.53±2.48
Total bilirubin (µmol/l) 0.43±0.05 0.67±0.07 0.46±0.04
creatinine (µmol/l) 10.84±2.86 12.22±4.76 14.56±3.59
Urea (mmol/l) 7.67±2.12 9.2±3.45 7.24±2.94
glucose (mmol/l) 15.96±3.15 15.06±3.78 15.64±3.26
cholesterol (mmol/l) 2.56±0.59 2.51±0.56 2.64±0.61
asT (U/l) 305.07±200.04 326.94±179.35 256.62±127.48
ggT (U/l) 0 0 0
alkaline phosphatase (U/l) 106.73±31.70 106.44±28.02 115.88±32.14
lipase (U/l) 98.86±39.77 89.28±35.14 105.46±45.20
alT (U/l) 97.01±21.15 99.64±18.04 103.54±23.28
amylase (U/l) 2,181.95±339.34 2,295.26±290.25 1,944.36±424.28

Abbreviations: aPP/Ps1, aPPswe/Ps1dee9; Tg, transgenic mice; 17 mo Tg ctrl, 17-month-old transgenic sham control mice; 17 mo Tg Bc, 17-month-old transgenic blank 
control mice; 17 mo Tg neF hD, 17-month-old transgenic mice treated with high dose of neF; alT, alanine aminotransferase; asT, aspartate aminotransferase; alP, alkaline 
phosphatase; ggT, gamma-glutamyl transferase; neF, novel edaravone formulation.

Table 5 analysis of organ weights of Tg mice (mean±sD, n=5)

Organ (g) APP/PS1 mice

17 mo Tg 
Ctrl

17 mo Tg 
BC

17 mo Tg 
NEF HD

Brain 0.48±0.08 0.49±0.07 0.49±0.08
liver 1.86±0.48 1.84±0.42 1.89±0.44
heart 0.22±0.06 0.21±0.08 0.24±0.05
lung 0.52±0.12 0.55±0.14 0.55±0.10
spleen 0.13±0.03 0.12±0.04 0.16±0.03
Kidney 0.25±0.04 0.23±0.03 0.27±0.04

Abbreviations: aPP/Ps1, aPPswe/Ps1dee9; Tg, transgenic mice; 17 mo Tg ctrl, 
17-month-old transgenic sham control mice; 17 mo Tg Bc, 17-month-old transgenic 
blank control mice; 17 mo Tg neF hD, 17-month-old transgenic mice treated with 
high dose of neF; neF, novel edaravone formulation.
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nontreated mice group (Figure 6). Therefore, these results 

are consistent with no statistically significant change in the 

results observed in hematological, coagulation, blood elec-

trolytic, and biochemical parameters after the treatment of 

NEF or SOL for 3 months. These results together indicate 

that 1) different dosages of EDA 46, 138, and 414 µM/kg 

are well tolerated by animals via oral intake for 3 months 

and 2) the vehicle SOL added into the formulation did not 

alter any organ functions and is also well tolerated in mice 

fed for 3 months.

Previously, the potential of EDR as an intervention 

therapy for AD was disclosed by targeting multiple key AD 

pathways including Aβ, tau phosphorylation, oxidative stress, 

and neuroinflammation. NEF, the more bioavailable form of 

EDR, showed exceptional performance by improving AD-

like behavioral deficits near the normal level that was better 

than the already approved drug product (DNP). In addition, 

based on the long-term repeated dose toxicity assessment 

results, good tolerability of NEF was proven via the oral 

route of administration. As the oral route of administration 

is the most preferred route of administration, our study 

demonstrated NEF as a promising and very safe therapeutic 

candidate in the current preclinical development. 

Conclusion
For the first time, the greater bioavailable form of EDR- and 

SOL-based formulation, NEF, was systematically studied for 

safety and efficacy in in vitro and in vivo disease models. 

NEF showed greater cellular uptake and better neuropro-

tective effect compared with EDR against the cytotoxicity 

induced by copper metal ion, H
2
O

2
, and Aβ42 oligomer in 

SH-SY5Y695 cell line. In in vivo study, it showed dose-

dependent rescues of the behavioral deficits of 17-month-old 

APP/PS1 mice from the open-field, NORT, Y-maze, and 

MWM tests after 3 months of exposure. Also, it appeared 

reversing the cognitive decline of APP/PS1 mice to the cog-

nitive level of WT normal aging mice and performed better 

than DNP. Moreover, the toxicity study data revealed the 

absence of drug-induced toxicity by oral administration of 

up to 414 µM/kg of EDR in the APP/PS1 mice. Thus, NEF 

could be a promising candidate for the AD treatment. Our 

data in the present study, together with the earlier proof-of-

concept study in 12-month-old APP/PS1 mice, warrants a 

large scale of clinical trials in mild cognitive impairment and 

sporadic and familial AD.

Acknowledgments 
The authors would specially like to acknowledge Fujian 

Kangshimei Co, China for the financial support for the 

present research, the University President’s Scholarships 

from University of South Australia for AP and ZS for their 

doctorate study; NHMRC fellowship for XFZ; and a schol-

arship under state scholarship fund from China Scholarship 

Council for JL. Fujian Kangshimei Co, China owns the 

intellectual property for Chinese patent 200610149832.9. 

The authors would like to acknowledge H Md Morshed 

Alam (BASF Australia Ltd) for providing samples of SOL; 

Rupal Pradhan and Andrew Beck from University of South 

Australia for hematological, coagulation parameters, and 

histology studies; Rebecca Summerton and Dr Ian Beck-

man from Veterinary Diagnostic Laboratory, the University 

of Adelaide, for serum biochemistry study; and Noralyn 

Manucat-Tan and Chun-Sheng Ruan for behavior tests. The 

staff members of Reid animal house facility including Alex 

Whittaker, Ruth Brogan, Jayne Skinner, Alysha Servin, 

Jess Parken, and Becky Nitschke from University of South 

Australia are acknowledged for their generous support in 

animal work. 

Figure 6 Photomicrographs of the sections of the tissues of Tg mice.
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17 mo Tg neF hD, 17-month-old transgenic mice treated with high dose of neF; si, small intestine; li, large intestine.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2127

SNMSD of NEF: in vivo assessment of efficacy and safety in AD

Disclosure
AP, XFZ, and SG are the named inventors of Chinese patent 

200610149832.9. The authors report no other conflicts of 

interest in this work.

References
 1. Centers for Disease Control and Prevention. Trends in aging – United 

States and worldwide. MMWR Morb Mortal Wkly Rep. 2003;52(6): 
101–104, 106.

 2. Jiao SS, Yao XQ, Liu YH, et al. Edaravone alleviates Alzheimer’s 
disease-type pathologies and cognitive deficits. Proc Natl Acad Sci 
U S A. 2015;112(16):5225–5230.

 3. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypoth-
esis of Alzheimer disease: implications for therapy. Acta Neuropathol. 
2013;126(4):479–497.

 4. Alzheimer’s Association. Alzheimer’s & Dementia: Global Resources; 
2017. Available from: https://alz.org/global/. Accessed March 1, 2017.

 5. Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his 
disease: a brief history. Neurol Sci. 2011;32(2):275–279.

 6. Cummings J. Lessons learned from Alzheimer disease: clinical trials 
with negative outcomes. Clin Transl Sci. 2018;11(2):147–152.

 7. Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies 
for management of Alzheimer’s disease. J Drug Target. 2014;22(4): 
279–294.

 8. Iqbal K, Liu F, Gong CX. Alzheimer disease therapeutics: focus on the 
disease and not just plaques and tangles. Biochem Pharmacol. 2014; 
88(4):631–639.

 9. Bu XL, Jiao SS, Lian Y, Wang YJ. Perspectives on the tertiary preven-
tion strategy for Alzheimer’s disease. Curr Alzheimer Res. 2016;13(3): 
307–316.

 10. Tokuda E, Furukawa Y. Abnormal protein oligomers for neurodegenera-
tion. Oncotarget. 2017;8(25):39943–39944.

 11. Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF. Development of a 
novel oral delivery system of edaravone for enhancing bioavailability. 
Int J Pharm. 2016;515(1–2):490–500.

 12. Yan Y, Gong K, Ma T, et al. Protective effect of edaravone against 
Alzheimer’s disease-relevant insults in neuroblastoma N2a cells. 
Neurosci Lett. 2012;531(2):160–165.

 13. Shen YE, Wang Y, Yu GC, Liu C, Zhang ZY, Zhang LM. Effects of 
edaravone on amyloid-beta precursor protein processing in SY5Y-
APP695 cells. Neurotox Res. 2013;24(2):139–147.

 14. He F, Cao YP, Che FY, Yang LH, Xiao SH, Liu J. Inhibitory effects of 
edaravone in beta-amyloid-induced neurotoxicity in rats. Biomed Res 
Int. 2014;2014:370368.

 15. Zhou S, Yu G, Chi L, et al. Neuroprotective effects of edaravone on 
cognitive deficit, oxidative stress and tau hyperphosphorylation induced 
by intracerebroventricular streptozotocin in rats. Neurotoxicology. 
2013;38:136–145.

 16. Yang R, Wang Q, Li F, Li J, Liu X. Edaravone injection ameliorates 
cognitive deficits in rat model of Alzheimer’s disease. Neurol Sci. 
2015;36(11):2067–2072.

 17. Watanabe T, Egawa M. Effects of an antistroke agent MCl-186 on 
cerebral arachidonate cascade. J Pharmacol Exp Ther. 1994;271(3): 
1624–1629.

 18. Unno Y, Katayama M, Shimizu H. Does functional outcome in acute 
ischaemic stroke patients correlate with the amount of free-radical 
scavenger treatment? A retrospective study of edaravone therapy. 
Clin Drug Investig. 2010;30(3):143–155.

 19. Ikeda T, Xia YX, Kaneko M, Sameshima H, Ikenoue T. Effect of the free 
radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), on 
hypoxia-ischemia-induced brain injury in neonatal rats. Neurosci Lett. 
2002;329(1):33–36.

 20. Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s 
disease: tolerability and efficacy in a 24-week randomized, double blind, 
placebo-controlled study. Alzheimers Res Ther. 2012;4(5):43.

 21. Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive 
impairment and Alzheimer’s disease. Biochim Biophys Acta. 2012; 
1822(5):631–638.

 22. Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF. Lipid-based nano-
system of edaravone: development, optimization, characterization and 
in vitro/in vivo evaluation. Drug Deliv. 2017;24(1):962–978.

 23. Rong WT, Lu YP, Tao Q, et al. Hydroxypropyl-sulfobutyl-beta- 
cyclodextrin improves the oral bioavailability of edaravone by modu-
lating drug efflux pump of enterocytes. J Pharm Sci. 2014;103(2): 
730–742.

 24. Jian Zenga YR, Zhoua C, Yua S, Chen W-H. Preparation and 
physicochemical characteristics of the complex of edaravone with 
hydroxypropyl – cyclodextrin. Carbohydr Polym. 2010;83:5.

 25. Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L. Highly 
stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier 
model and in Alzheimer’s disease Tg2576 mice. AAPS J. 2013;15(2): 
324–336.

 26. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. 
Nanolipidic particles improve the bioavailability and alpha-secretase 
inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment 
of Alzheimer’s disease. Int J Pharm. 2010;389(1–2):207–212.

 27. West MJ. Regionally specific loss of neurons in the aging human hip-
pocampus. Neurobiol Aging. 1993;14(4):287–293.

 28. Arendash GW, King DL, Gordon MN, et al. Progressive, age-related 
behavioral impairments in transgenic mice carrying both mutant 
amyloid precursor protein and presenilin-1 transgenes. Brain Res. 2001; 
891:42–53.

 29. Yao XQ, Jiao SS, Saadipour K, et al. p75NTR ectodomain is a physiolog-
ical neuroprotective molecule against amyloid-beta toxicity in the brain 
of Alzheimer’s disease. Mol Psychiatry. 2015;20(11):1301–1310.

 30. Tober-Meyer BK, Bieniek HJ, Kupke IR. Studies on the hygiene of 
drinking water for laboratory animals. 2. Clinical and biochemical 
studies in rats and rabbits during long-term provision of acidified 
drinking water. Lab Anim. 1981;15(2):111–117.

 31. Tober-Meyer BK, Bieniek HJ. Studies on the hygiene of drinking water 
for laboratory animals. 1. The effect of various treatments on bacterial 
contamination. Lab Anim. 1981;15(2):107–110.

 32. Ruan CS, Yang CR, Li JY, Luo HY, Bobrovskaya L, Zhou XF. Mice 
with Sort1 deficiency display normal cognition but elevated anxiety-like 
behavior. Exp Neurol. 2016;281:99–108.

 33. Zhang Q, Gao X, Li C, et al. Impaired dendritic development and  
memory in Sorbs2 knock-out mice. J Neurosci. 2016;36(7):2247–2260.

 34. Bakoma B, Berke B, Eklu-Gadegbeku K, et al. Acute and sub-chronic 
(28 days) oral toxicity evaluation of hydroethanolic extract of Bridelia 
ferruginea Benth root bark in male rodent animals. Food Chem Toxicol. 
2013;52:176–179.

 35. Zhang Q, Li J, Zhang W, et al. Acute and sub-chronic toxicity studies 
of honokiol microemulsion. Regul Toxicol Pharmacol. 2014;71(3): 
428–436.

 36. Wang L, Li Z, Li L, et al. Acute and sub-chronic oral toxicity pro-
files of the aqueous extract of Cortex Dictamni in mice and rats. 
J Ethnopharmacol. 2014;158(Pt A):207–215.

 37. Ashe KH. Learning and memory in transgenic mice modeling Alzheimer’s 
disease. Learn Mem. 2001;8(6):301–308.

 38. Perez SE, Berg BM, Moore KA, et al. DHA diet reduces AD pathol-
ogy in young APPswe/PS1 Delta E9 transgenic mice: possible gender 
effects. J Neurosci Res. 2010;88(5):1026–1040.

 39. Zhou Y, Xie N, Li L, Zou Y, Zhang X, Dong M. Puerarin alleviates 
cognitive impairment and oxidative stress in APP/PS1 transgenic mice. 
Int J Neuropsychopharmacol. 2014;17(4):635–644.

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://alz.org/global/


Drug Design, Development and Therapy

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/drug-design-development-and-therapy-journal

Drug Design, Development and Therapy is an international, peer-
reviewed open-access journal that spans the spectrum of drug design 
and development through to clinical applications. Clinical outcomes, 
patient safety, and programs for the development and effective, safe,  
and sustained use of medicines are the features of the journal, which  

has also been accepted for indexing on PubMed Central. The manu-
script management system is completely online and includes a very 
quick and fair peer-review system, which is all easy to use. Visit 
http://www.dovepress.com/testimonials.php to read real quotes from 
published authors.

Drug Design, Development and Therapy 2018:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

2128

Parikh et al

 40. Guo HB, Cheng YF, Wu JG, et al. Donepezil improves learning and 
memory deficits in APP/PS1 mice by inhibition of microglial activation. 
Neuroscience. 2015;290:530–542.

 41. Antunes M, Biala G. The novel object recognition memory: neuro-
biology, test procedure, and its modifications. Cogn Process. 2012; 
13(2):93–110.

 42. Cheng D, Low JK, Logge W, Garner B, Karl T. Chronic cannabidiol 
treatment improves social and object recognition in double trans-
genic APPswe/PS1E9 mice. Psychopharmacology. 2014;231(15): 
3009–3017.

 43. Kim HY, Kim HV, Lee DK, Yang SH, Kim Y. Rapid and sustained 
cognitive recovery in APP/PS1 transgenic mice by co-administration 
of EPPS and donepezil. Sci Rep. 2016;6:34165.

 44. Tabrizchi R. Edaravone Mitsubishi-Tokyo. Curr Opin Investig Drugs. 
2000;1(3):347–354.

 45. Ito H, Wate R, Zhang J, et al. Treatment with edaravone, initiated at 
symptom onset, slows motor decline and decreases SOD1 deposition 
in ALS mice. Exp Neurol. 2008;213(2):448–455.

 46. Kikuchi K, Takeshige N, Miura N, et al. Beyond free radical scavenging: 
beneficial effects of edaravone (radicut) in various diseases (review). 
Exp Ther Med. 2012;3(1):3–8.

http://www.dovepress.com/drug-design-development-and-therapy-journal
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 4: 


