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A B S T R A C T   

Our understanding of chronic pain and the underlying molecular mechanisms remains limited due to a lack of 
tools to identify the complex phenomena responsible for exaggerated pain behaviours. Furthermore, currently 
there is no objective measure of pain with current assessment relying on patient self-scoring. Here, we applied a 
fully biologically unsupervised technique of hyperspectral autofluorescence imaging to identify a complex 
signature associated with chronic constriction nerve injury known to cause allodynia. The analysis was carried 
out using deep learning/artificial intelligence methods. The central element was a deep learning autoencoder we 
developed to condense the hyperspectral channel images into a four- colour image, such that spinal cord tissue 
based on nerve injury status could be differentiated from control tissue. 

This study provides the first validation of hyperspectral imaging as a tool to differentiate tissues from nerve 
injured vs non-injured mice. The auto-fluorescent signals associated with nerve injury were not diffuse 
throughout the tissue but formed specific microscopic size regions. Furthermore, we identified a unique fluo
rescent signal that could differentiate spinal cord tissue isolated from nerve injured male and female animals. The 
identification of a specific global autofluorescence fingerprint associated with nerve injury and resultant 
neuropathic pain opens up the exciting opportunity to develop a diagnostic tool for identifying novel contrib
utors to pain in individuals.   

1. Introduction 

Despite impacting one in five individuals worldwide, currently there 
are no objective measures of pain. Instead, clinicians rely on self-scoring 
by patients which presents many challenges when treating children and 
non-verbal patients. Self-reporting of pain may also lead to drug abuse 
potential due to misreporting. With opioids implicated in over 70% of 
drug-related deaths worldwide, this is a major concern (WHO, 2020). 

Our understanding of pain and the underlying mechanisms is, at best, 
limited (Nightingale, 2012). Paradoxically, one of the major limitations 
preventing the advancement of knowledge is the utilisation of research 
methodologies which rely on our current, incomplete understanding of 
the mechanisms behind pain. With the exception of unbiased 

approaches like RNA-seq (Wang et al., 2009; Grace et al., 2012), many 
methodologies often measure defined proteins including those thought 
to play key roles in pain signalling (Jacobsen et al., 2016). Not only are 
these methods unable to detect currently unknown contributors to pain 
signalling, but they also cannot measure changes at a global level. This is 
important because pain mechanisms are likely to include numerous 
components contributing in a highly regulated manner (Grace et al., 
2014). 

Tissue autofluorescence is generally considered background noise in 
imaging studies and much effort is placed to reduce its impact on 
exogenous fluorescent labelling. However, this autofluorescence signal 
is derived from various cellular metabolites and co-enzymes of meta
bolic pathways critical for normal cellular functions as well in 
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pathophysiological signal transduction. These include nicotinamide 
adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide 
phosphate (NADPH) which have been implicated in neuropathic pain 
via their generation of reactive oxygen species (Grace et al., 2016). 
Acting as a signalling molecule, ROS contributes towards metabolic 
dysfunction and inflammatory signalling. Therefore, this highlights the 
potential to exploit the autofluorescence characteristics of the metabolic 
pathway to ultimately identify an autofluorescence fingerprint associ
ated with chronic pain. 

Autofluorescence hyperspectral imaging, is a sophisticated label-free 
technology that is capable of identifying endogenous fluorescent signals 
from cells and tissues with the use of multiple excitation and emission 
wavelengths. Previous studies have reported the use of autofluorescence 
hyperspectral imaging to reveal subtle signatures of cell metabolic ac
tivity, which are reflected in complex physiological processes such as 
neurodegeneration (Gosnell et al., 2016a) or cancer (Habibalahi et al., 
2019a) and the identification of developmentally healthy bovine em
bryos (Monteiro et al., 2021). To date, there have been no studies 
identifying the complex autofluorescence signature associated with pe
ripheral nerve injury and subsequent chronic pain. By exploring the 
utility of natural tissue autofluorescence as a global marker of metabolic 
change caused by nerve injury and its associated development of 
neuropathic pain, this study will overcome limitations of targeted ap
proaches which assume the involvement of specific cells or proteins. 

In this study, we determine if hyperspectral imaging has the potential 
to differentiate spinal cord tissue derived from control and an estab
lished neuropathic pain model of chronic constriction injury (CCI) 
(Grace et al., 2014). The CCI mouse model uses chromic gut sutures 
placed subcutaneously and around the sciatic nerve which cause nerve 
injury and induce nociceptive hypersensitivity and neuroimmune ad
aptations at the level of the lumbar spinal cord dorsal horn. This model 
has been shown to produce mid to high degree of allodynia, which is 
relevant to clinical human chronic pain presentation (Grace et al., 
2012). Following hyperspectral autofluorescent image acquisition, 
quantitative image analysis to extract mathematical features of spectral 
and spatial distribution of autofluorescence was conducted to uncover 
subtle hitherto hidden signatures of CCI. In an extension to this study, 
we investigated if the autofluorescent signatures in male and female CCI 
mice was unique and whether hyperspectral imaging was able to iden
tify these. 

2. Materials and methods 

2.1. Grace model of chronic constriction nerve injury-induced 
neuropathic pain 

2.1.1. Subjects 
Pathogen-free adult male and female Balb/c mice (20–25 g; Labo

ratory Animal Services, University of Adelaide) were used in all exper
iments. Mice were housed in temperature (18–21 degree C) and light- 
controlled (12 h light/dark cycle; lights on at 07:00 h) rooms with 
standard rodent food and water available ad libitum and allowed to 
habituate to the holding facility for 1 week prior to experimentation. All 
procedures were approved by the Animal Ethics Committee of the 
University of Adelaide (M-2013-277) and were conducted in accordance 
with the NHMRC Australian Code of Practice for the Care and Use of 
Animals for Scientific Purposes (8th edition 2013). Sample sizes were 
based on our experience in our previous publication (Grace et al., 2010) 
that allowed for adequate power to account for behavioural variance 
which is classically normally distributed in this model of pain. Owing to 
the novel nature of the imaging approach applied here we chose this 
proven approach as variance in the hyperspectral imaging could not be 
predicted a priori. Animals were randomly assigned to groups at the 
time of surgery by the surgeon conducting the chronic constriction 
injury. 

2.1.2. Groups and design 
The chronic constriction injury (CCI model) adapted by Grace et al11, 

using 1–4 chromic gut sutures around the sciatic nerve, was modified by 
ligating the sciatic nerve (N) with 3 chromic gut sutures and 1 suture 
placed subcutaneously (S) over the hip to control for the inflammatory 
component that contributes to the nociceptive hypersensitivity associ
ated with the CCI model (Grace et al., 2010). This model has been shown 
to produce mid to high degree of allodynia, which is relevant to clinical 
human pain presentation. Mice with 0 sutures around the sciatic nerve 
had 4 chromic gut pieces placed subcutaneously over the hip, such that 
each treated animal was exposed to a total of 4 chromic gut pieces of 
equivalent length, and hence the same systemic inflammatory challenge. 
The treatment groups used were separate groups of male and female 
mice N0S4 (sham surgery), N3S1 (nerve injury group, CCI surgery) and 
N0S0 (no surgery control). Animals were followed to postoperative (PO) 
day 21 to allow for the development of neuropathy and underwent 
behavioural von Frey testing confirming mechanical allodynia. 

In our analysis, we combined our control and sham animals into one 
control group (70% of all animals) as this encourages the search to be 
based in a discriminant space characterised by minimal individual ani
mal differences (intra class). Such a grouping also encourages a 
discriminant space which is minimally affected by the surgery and 
anaesthesia. Data shown in Fig. 2, Figs. 3-6 and Fig. 7 were from 3 
different animal cohorts (n - number of animals: Fig. 2: male: N3S1 - n =
5, N0S4 - n = 5, N0S0 - n = 4, Figs. 3-6: male: N3S1 - n = 4, N0S4 - n = 4, 
N0S0 - n = 5; female: N3S1 - n = 8, N0S4 - n = 7, N0S0 - n = 8; Fig. 7: 
male: N3S1 - n = 1, N0S4 - n = 1, N0S0 - n = 1 examples for image 
presentation). 

2.1.3. Surgery 
The Grace CCI model of sciatic nerve injury (Grace et al., 2010) was 

performed at the mid-thigh level of the left hindleg. Briefly, animals 
were anesthetised with isofluorane (2% in oxygen), the shaved skin was 
cleansed with 100% ethanol and the surgery was aseptically performed. 
Zero or 3 sterile chromic gut sutures (cuticular 4–0 chromic gut, FS-2; 
Ethicon, Somerville, NJ, USA) were loosely tied around the gently iso
lated sciatic nerve. Once the superficial muscle overlying the nerve was 
sutured, additional lengths of chromic gut (4 or 1) were placed subcu
taneously. No surgical intervention was conducted on the control group 
(N0S0). Animals were monitored postoperatively until fully ambulatory 
prior to return to their home cage and checked daily for any sign of 
infection. 

2.1.4. von Frey testing of mechanical allodynia 
The Nicotra method of von Frey testing (Nicotra et al., 2014) was 

performed by an independent tester who was blinded to group assign
ment. Briefly, mice underwent a week of habituation to the von Frey 
apparatus prior to testing. Baseline testing was taken at day 0 prior to 
surgery with subsequent behavioural assessment taken at days 1, 5, 7, 14 
and 21 following surgery allowing for a verification of the anticipated 
allodynia as per ethics approval requirements. For testing, mice were 
subjected to 10 stimulations with 6 calibrated von Frey filaments (2.44, 
2.83, 3.22, 3.61, 3.84 and 4.08 g). von Frey filaments were applied for 1 
s at 1 s intervals. Filaments were not applied in ascending order of force, 
but rather random assignment each test session. To avoid sensitisation, 
10 min break was given between each set of stimulations, with 10 
stimulations per filament. The response frequency at each von Frey 
filament and behavioural responses were recorded as the average 
number of responses out of 10 for each von Frey stimulus. The per
centage withdrawal responses to von Frey filaments was calculated 
based on the total number of responses to all filaments applied at each 
hind paw (ipsilateral and contralateral) demonstrating that allodynia 
was stable on PO Day 21. 
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2.2. Preparing tissue for imaging 

Following von Frey testing on day 21 post-surgery, mice were hu
manely killed with an i.p. overdose of sodium pentobarbital (60 mg/kg). 
Animals then underwent transcardial perfusion with 0.9% saline to clear 
the blood from the organs before the spinal lumbar enlargement was 
quickly dissected and snap frozen in liquid nitrogen. The tissue was then 
embedded in OCT (Tissue Tek Compound, Sakura Finetek, USA) before 
cutting at 10um on the cryostat, mounted onto glass coverslips and 
stored at minus 80 degrees prior to imaging. Tissue was taken to include 
the lumbar segment 3, 4 and 5 (L3, L4 and L5) of the spinal cord which is 
innervated by both the injured (ipsilateral) and non-injured (contralat
eral) sciatic nerves. These regions have been reported to exhibit changes 
following nerve injury (Mahbub, 2017). 

2.3. Hyperspectral imaging system 

An adapted fluorescence microscope (Olympus iX71™) was used in 
this work with a 40× water U12™ series objective (with wide trans
mission in UV range). LEDs with excitation wavelength bands centred at 
334, 375, 365, 385, 395, 405, 415, 425, 435, 455, 475, 495 nm, each 
about 10 nm wide produced close to monochromatic light to excite 
tissue auto-fluorescence. The corresponding tissue emission was 
measured with three epifluorescence filter cubes with the emission 
bands centred at 447 nm (60 nm wide), 587 nm (35 nm wide) and 700 
nm long pass. Overall, in this work we used spectral channels as listed in 
Supplementary Table 1), and each field of view was imaged in all these 
channels forming a hyperspectral image. All images were captured by an 
iXON™ 885 DU EMCCD camera (Andor Technology Ltd., UK) with 
image size 1002 × 1004 pixels. 

2.4. Hyperspectral imaging data preparation and image analysis 

To exclude any autofluorescence bias caused by white versus grey 
matter within the spinal cord, regions of interest (ROIs) of relevant 
images were selected to limit the analysis to the grey matter of the dorsal 
horn. This region processes sensory information, which is then trans
mitted to several higher brain regions, including those responsible for 
pain perception. All hyperspectral images underwent conditioning 
which consist of filtering using a log-gabor phase preserving wavelet 
filter, background removal, calibration, and non-uniformity reduction 
by fitting a common, channel-dependent illumination function to each 
channel of the data set (Campbell et al., 2020a; Campbell et al., 2019; 
Campbell et al., 2020b; Habibalahi et al., 2019b; Habibalahi et al., 2020; 
Mahbub, 2017; Mahbub et al., 2017; Singh et al., 2014). 

Only the ipsilateral (ipsi) images are analysed, the corresponding 
contralateral (contra) images are used as controls, whereby each ipsi
lateral spectral image had subtracted from it, the mean spectra of the 
corresponding contralateral tissue image. The data is then standardised 
by setting the mean of each variable to zero and the standard deviation 
to one. For the nerve injury projection carried out by the autoencoder 
(Møller, 1993), the variables values are linearly transformed to fit into a 
range between − 0.5 and 0.5. 

2.5. Immunofluorescence 

In a separate group of male animals which had undergone similar 
surgery as outlined above (control, sham operated and CCI operated), 
spinal cord tissue perfused with 0.9% saline followed by 4% para
formaldehyde (4% PFA) was collected and prepared for cryostat cutting. 
Briefly, tissue was placed in 4% PFA overnight followed by 3 × 10 min 
washes in PBS (0.01 M) then placed in 20% sucrose - PBS overnight. 
Lumbar segment 4 (L4) was separated and frozen in OCT (Optimal 
Cutting Temperature solution) and cut on the cryostat (10 um) and 
placed onto Superfrost plus™ glass slides. The tissue sections were 
allowed to air dry for an hour at room temperature before being 

processed for immunofluorescence (IF). The sections were blocked for 1 
h at room temperature with 1% BSA in PBS - Triton (0.3%), followed by 
a two-night incubation at 4 degrees with the following primary antibody 
combinations made up in blocking buffer; 1) Rabbit anti CGRP (Sigma- 
Aldrich Australia C8198; 1:500) and Goat anti IBA1 (Sigma-Aldrich 
Australia SAB2500041; 1:500), 2) Rabbit anti CGRP (Sigma-Aldrich 
Australia C8198; 1:500) and Mouse anti GFAP (G85) conjugated to 
Alexa Fluor 488 (eBiosciences 53–9892-82; 1:2000). Sections were then 
washed 3 × 10 min with PBS - Triton (0.3%) followed by an hour in
cubation in secondary antibody; Donkey at Rabbit (IgG) 594 Alexa Fluor 
(Molecular Probes A21207; 1:1000), Donkey anti Goat (IgG) 488 Alexa 
Fluor (Molecular Probes A11055; 1:1000) and DAPI nuclear stain 
(Invitrogen D1306; 1:10,000) at room temperature. Following 3 × 10 
min washes in PBS, sections were then placed on coverslips using anti
fade aqueous mounting media (PST: IM030). Images of the immuno
fluorescence staining were taken at the following wavelengths (405 
laser: 461/359 nm emission/excitation; 594 laser: 618/590 nm emis
sion/excitation; 488 laser: 520/488 nm emission/excitation) on an 
Olympus confocal scanning microscope (FV3000) using a 60× silica (NA 
1.4) objective. 

2.6. Quantification of immunofluorescence images 

To assess changes in immunofluorescent staining for each of the 
markers using Image J (Fiji; version 2.1.0/1.53c). Briefly, the Integrated 
Density of CGRP was measured in the outer laminae (L1− 2) of the 
ipsilateral dorsal horn from 3 sections of each treatment group and the 
mean determined and compared using one-way ANOVA. Changes in 
glial staining patterns, (such as cell numbers and morphology) were 
observed in both superficial and deeper laminae layers of the dorsal 
horn, therefore we measured the number of cells in three randomly 
assigned 100 × 100 um boxes along the laminae 1–4 region from 3 
sections of each treatment group and determined the mean and 
compared using one-way ANOVA. Data was expressed as mean ± SEM 
and significance determined when p < 0.05. 

2.7. Statistics 

Kolmogorov-Smirnov, ordinary one-way ANOVA and two-way 
ANOVA tests were used to establish statistical significance (Massey Jr, 
1951). Significance levels are marked with *, **,*** and # and p-values 
are given in the respective figures. Generally, differences were consid
ered significant for p < 0.05. 

2.8. Code availability 

Software developed for this project is available upon request from 
Quantitative Pty Ltd. 

3. Results 

3.1. Overview of bioinformatics analysis in this work 

We first identified broad autofluorescent differences in the spinal 
cord tissue which correlated with CCI. We then tested the hypothesis 
that this autofluorescent signature will cluster spatially and will overlay 
specific cells in the dorsal spinal cord. We also investigated the existence 
of a sex-dependent autofluorescence signature. To visualise the CCI- 
affected regions we developed a sophisticated hyperspectral “CCI 
colour” projection method, condensing multichannel hyperspectral im
ages into four variables (CMYK). We performed an in-depth discrimi
natory analysis on the tissue segments comprising CCI-activated pixels 
allowing us to compare CCI and control groups. This has confirmed that 
microscopic-sized areas within spinal cord tissue sections are different in 
the CCI and control groups. We quantified the spatial distribution of the 
autofluorescent signature in male and female models of CCI. We verified 
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that the observed differences are not an artefact of the analysis. Our final 
cross-discriminatory analysis is consistent with the finding that male 
and female autofluorescent colour associated with CCI is different. The 
schematic diagram of our analysis is shown in Fig. 1. 

3.2. Spinal autofluorescence signatures linked to nerve-injury 

Hyperspectral autofluorescence signature related to CCI and behav
ioural allodynia was explored in the post-mortem lumbar spinal cord 
tissue images from the dorsal horn from male mice and compared to 
sham injured and control mice. The presence of mechanical allodynia 
was confirmed at day 21 following CCI surgery in the left (ipsilateral) 
hind-paw of both male and female mice. No allodynia was observed in 
the right (contralateral) hind-paw of CCI injured animals or either hind- 
paw of sham or control animals. (Supplementary Fig. 1). 

In order to verify that an autofluorescent signature can identify tissue 
from the CCI animal group from similar (L4) (Rigaud et al., 2008) tissue 
isolated from the control and sham groups, several regions were 
extracted from the centre of each tissue image. Each of these regions 
represents a random selection of 10 rectangles each approximately 15 
μm × 15 μm in size (Supplementary Fig. 2). For each of these regions, a 
vector of spectral and spectral morphology features was calculated as 
described in Supplementary Material Note 1; these features are sensitive 
to the biochemistry in that region (Habibalahi et al., 2019a; Mahbub 
et al., 2017; Gosnell et al., 2016b; Mahbub et al., 2019; Mahbub et al., 
2021). A linear discriminant analysis (LDA) was carried out (Gosnell 
et al., 2016a; Gosnell et al., 2016b) using the vectors of features 
extracted from autofluorescent signatures of L4 tissue, to maximally 
discriminate the nerve-injured and control groups which produced 
clusters shown in Fig. 2. By projecting these data onto a single 
discriminating variable, we found that the hyperspectral signature from 
nerve-injured tissue could clearly differentiate tissue from control and 
sham animals (Supplementary Fig. 2 a, h). This means that the auto
fluorescent signatures allow accurate classification of the nerve-injured 
and control groups. 

3.3. Deep learning algorithm identifies the “CCI projection” 

We developed a deep learning algorithm to create an expertly 
interpreted version of hyperspectral image datasets which highlight CCI- 

related tissue signatures. The algorithm compresses the highly dimen
sional hyperspectral data into exactly four colour (CMYK) variables 
(Møller, 1993) (see Supplementary Methods Note 2, Supplementary 
Fig. 3), enabling clear visualisation of regions where the auto
fluorescence was modified by nerve injury. A network topology where 
the output data at each iterative step have the same dimension (image 
size) as the input data enabled the algorithm to be iteratively trained. 
Example tissue images processed by this algorithm are illustrated in 
Supplementary Fig. 4. The ‘CCI projection’ images optimally visualise 
CCI-induced changes in tissue autofluorescent signatures relative to 
known anatomical regions within the spinal cord responsible for pain 
processing. 

3.4. Search algorithm creates “CCI masks” for isolating biological targets 

We further sought to identify if the nerve injury signal detected in the 
images is localised to specific biologically relevant tissue areas. To this 
end, we developed a search algorithm in order to identify selected pixels 
in our hyperspectral images which correlate with allodynia and create 
masks. The algorithm was designed to search for cell-size segments in 
the nerve injury-affected tissue that are significantly spectrally different 
(in the pixel feature space) to similar segments in the control-sham tis
sue. A set of candidate masks was produced by feature selection from 
Cohort 3 L3 tissue, as described in Supplementary Methods Note 3. We 
then identified the best masks from our candidate set which met the 
criteria: (1) the masked segments being similar in size and shape to cells 
using an expert guided comparative histology approach (Treuting et al., 
2017); (2) being created using a channel ratio feature image known to 
have a metabolic meaning (Gosnell et al., 2016b); and (3) providing 
significant group discrimination between the control-sham and nerve- 
injured animals across the entire animal set. The top 97 (out of 
~1800) highest distance-scoring feature masks were examined for 
compliance with the above criteria. The best mask (Mask 630) is shown 
in Supplementary Figs. 5–23. Therefore the ‘CCI mask’, (Mask 630), 
allows for optimal identification of structural features throughout the 
tissue image based on specific hyperspectral CCI signatures. For ease of 
visualisation, the hyperspectral tissue images have been processed by 
using our “CCI projection” (Section 3.2). The results show that this mask 
filters through small round-shaped areas, mostly in the order of 10–25 
μm in size. The masked regions can be clearly visually discriminated 

Fig. 1. Schematic diagram of the hyperspectral image analysis.  
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from the surrounding tissue in the nerve-injured animals (see Supple
mentary Figs. 5–23). The specific feature upon which this feature mask 
was derived was a channel ratio intensity image of channels 6 and 8. 

3.5. Discriminant analysis of “CCI masks” in the investigated groups 

The feature CCI mask developed as described above isolates seg
ments of strongly CCI-correlated pixels in the tissue images. From these 
segments we then generated a suite of segment features, including sta
tistical metrics, mean, median, variance, skewness, kurtosis and entropy 
of both the intensity values and pairwise average intensity ratios from all 
available channels (see Reference (Gosnell et al., 2016b) for mathe
matical feature definitions). These features were assigned a group label 
of either “control-sham” or “CCI” and used for a discriminatory analysis. 
Features were generated for all 546 segments (selection shown in Sup
plementary Figs. 14–16. We then used sequential feature selection to 
identify a total of 18 features, upon which a linear discriminant model 
was built. The outcome for the mask 630 is illustrated in Fig. 3. This 
Figure confirms that tissue features calculated in the masked segments 
were highly distinctive between control and CCI. This finding indicates 
that ‘CCI mask’ 630 can be used to distinguish between tissue from 
injured and non-injured animals using specified feature sets. 

3.6. Co-localisation of nuclear area with the “CCI mask” 

We explored co-localisation of masked regions with individual cells 
in the examined tissue. A fluorescent stain, DAPI (4′,6-diamidino-2- 
phenylindole) was used to highlight cell nuclei in a randomly selected 
sample of our tissue (Fig. 4). Prior to staining, this tissue section was 
imaged in hyperspectral mode and transformed using our “CCI projec
tion” to enable visualisation. The feature mask algorithm was then used 
to construct the matching mask (mask 630). The hyperspectral images 

prepared with our CCI projection algorithm were then overlaid with the 
mask confirming that the regions selected by the feature mask co- 
registered to a high degree with cell nuclei regions. The result 
(Fig. 4d) confirms that much of the interesting pathology captured by 
the feature mask throughput regions occur around cellular nuclei. 

3.7. Abundance of “CCI mask” tissue 

We applied the “CCI mask” (mask 630) that best fits the mask criteria 
to the remaining cohorts and tissue types investigated here 

Fig. 2. Broad differences in tissue auto
fluorescence between CCI and control ani
mals. Data taken from L4 tissue of male CCI 
group (N3S1, numbered 4,7,9,12,14, n = 5), 
and male control (N0S4, numbered 
5,8,10,13 n = 4) and male sham (N0S4, 
numbered 1,2,3,6,11, n = 5). Linear 
discrimination analysis (LDA) projection of 
the eight-dimensional hyperspectral feature 
vectors corresponding to tissue regions from 
all 14 animals. Each symbol represents a 
single region from a tested animal. Animals 
are colour coded as shown on the scale. 
Crosses indicate regions from animals from 
the CCI groups. The canonical variables 
forming the axes are specific linear combi
nation of the eight features utilised by this 
LDA.   

Fig. 3. Discriminatory analysis of the segments defined by the selected “CCI” 
mask. Results shown are for Mask 630 and they are based upon 18 intensity and 
intensity ratio statistical features. “CCI” segments in red, sham-control seg
ments in blue. Statistical distance between “CCI” and sham-control clusters is 
1.0872 (p < 5.85e-46). Data taken from L3 Cohort 3 female tissue. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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(Supplementary Figs. 5–23). This generated an overview of the CCI- 
responsive areas in the dorsal spinal cord sections (highlighted in red 
in Supplementary Figs. 5–23). We then calculated the abundance factor 
we defined in this work as the number of individual segments selected 
by the mask in an image divided by the number of unmasked pixels (area 
of artefact-free grey matter tissue which is able to contain the CCI 
signal). Figs. 5a and b, respectively, show the abundance factor in males 
and females. The result suggests significant differences in the auto
fluorescent nerve injury-activation profile, both in males and females as 
we move caudally along the spinal column. We also note that the 
baseline in females (control-sham) appears different to the baseline in 
males in L4 and L5 tissue. 

3.8. Robustness of discrimination of the “CCI mask” using models 
ranging in complexity 

The CCI-activated tissue regions defined by our “CCI mask” (mask 
630) allowed us to generate a suite of segment features (Section 3.4) and 
use them to build discriminatory models. We have further explored 

whether our findings depend on the complexity of our model (the 
number of model features used). To ensure the interpretation derived 
from the model was not confounded by the number of features employed 
we created three classes of models (F4, F9 and F18) using 4, 9 and 18 
features. A total of eighteen models (one for each of the 3 tissue types L3, 
L4, L5 x 2 sexes x three classes of models) were built by sequentially 
selecting from the 1470 segment features to optimise group discrimi
nation (control-sham and CCI). Fig. 5c shows the discriminatory per
formance for each tissue type, each sex and for each model class F4, F9 
and F18. All models showed a consistent and highly significant differ
ence between the male and female cohort in the L3 tissue, with the male 
tissue showing more pronounced discrimination between the groups 
than the females. The same pattern of difference was seen in the L4 
tissue but to a much lesser extent, with very little difference in the L5 
tissue. These findings indicate that the number of features used (ie. the 
complexity of the model) to discriminate between groups did not alter 
the findings determined by CCI mask (630). 

Fig. 4. Our “CCI” projection allows to highlight the CCI affected tissue areas. a) Hyperspectral tissue image after CCI projection with outlines (white) of sub- 
compartments extracted from the CCI mask. Red arrows point to masked CCI regions; b) The CCI mask (mask 630). c) The same section of tissue stained using 
DAPI highlighting cell nuclei. d) An overlay of a and c. Scale bar is 25 um. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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3.9. Cross discriminatory analysis of males and females using the 18 
feature (F18) model 

To investigate whether male and female animal groups show 
different biochemical response to CCI, the following discriminatory test 
was carried out for each of the three tissue types (L3, L4, L5). We started 
from the F18 model in female L3 tissue which was built as previously 
described. We then projected onto this space the male data for same 
tissue type, to see how well the female model discriminates the male 
data. We then used the same metabolic features selected while building 
the female model to create a new model for the male data where the 
canonical weightings (eigenvectors) are recalculated to optimally 
discriminate the male groups, but still using only the chosen features. 
This addresses the questions of whether these same metabolic features 
contain CCI information for both sexes, and if the main discriminating 
vector is in a different direction for males. We repeated this process for 
the other two tissue types (L4 and L5). 

The results for L3 tissue (Fig. 6) show that some metabolic features 
appear to behave differently in the male and female cohort. As this may 
have important mechanistic implications, we explored this in more 
depth by examining the highest-ranking feature chosen during the 
building of the female model. This feature was found to be the median of 
the pixel intensity ratios of channel 3 to channel 4. The analysis in 
Fig. 5g clearly shows that even at the univariate level this feature di
rection in response to CCI is significantly different across the male and 
female animals. The results for L4 are shown in Supplementary Figs. 24, 
25 while the results for L5 are shown in Supplementary Figs. 26, 27, 
where the findings are closely similar to the results for L3 (Fig. 6). 

3.10. Comparative immunofluorescence 

To confirm that cellular and molecular changes were occurring in the 
spinal cord of CCI-injured animals, immunofluorescence was carried out 
in a subset of animals. Immunofluorescent staining of male L4 dorsal 
spinal cord tissue showed increased immunoreactivity of nerve termi
nals (CGRP), and average cell numbers of both microglia (IBA1) and 
astrocyte (GFAP), in the ipsilateral dorsal horn of CCI-injured animals 
when compared with control and sham-operated animals (Fig. 7, see 
quantification in Supplementary Fig. 28). Representative images show 
the increased CGRP staining in the outer superficial laminae of the 
ipsilateral dorsal horn and the increased cell density in the inner laminae 
(L1 - L4) of the ipsilateral dorsal horn of injured animals compared to 
control and sham operated. The cropped images in panel B shows the 
changing fluorescent staining pattern for each marker between treat
ment groups. These data broadly align with our findings of differences in 

the autofluorescence signatures between these groups. 

4. Discussion 

This foundational study provides the first validation of hyperspectral 
autofluorescence imaging as a tool to differentiate spinal cord tissues 
from an established model of neuropathic pain and control mice based 
on their autofluorescent profile. We have identified consistent global 
autofluorescence changes occur in spinal cord tissue of animals 
following chronic constriction injury and subsequent development of an 
exaggerated pain state called allodynia (Ji et al., 2016). The auto
fluorescent signals associated with nerve injury were not diffuse 
throughout the tissue but formed specific microscopic size regions. 
Excitingly, here we also report that spinal cord tissue could be further 
discriminated based on whether they were isolated from male or female 
mice. This is a critical breakthrough, as our approach overcomes the 
difficulty of identifying which subpopulation of the highly heterogenous 
dorsal horn cell population is participating in exaggerated pain. The 
identification of a specific global autofluorescence fingerprint associated 
with nerve injury and resultant neuropathic pain opens up the oppor
tunity to develop a diagnostic tool for identifying novel contributors to 
pain in individuals. 

The transition from acute to a chronic pain state involves critical 
molecular and cellular adaptations throughout peripheral and central 
sites within the somatosensory system, including the spinal cord (Peirs 
et al., 2020). The dorsal spinal cord is an important location for neuronal 
cell bodies and glial cells which play critical roles in chronic pain (Peirs 
et al., 2020). Additionally, peripheral immune cell types contribute to 
the central pain sensitisation processes (Grace et al., 2014). This 
multicellular system, communicating via diverse paracrine and auto
crine molecular signalling, underpins the presentation of exaggerated 
pain behaviours such as hyperalgesia and allodynia (Peirs et al., 2020). 
The identification of currently unknown mediators of cellular events and 
their differentiation from bystanders is an important challenge (Peirs 
et al., 2020) for the understanding of the mechanisms of pain and hence 
the development of diagnostic tools for identifying novel contributors to 
pain in individuals. Therefore, adopting a non-reductionist approach is 
critical. 

Hyperspectral imaging allows the investigation of global fluorescent 
changes in regions of the central nervous system (including cellular 
bodies and extracellular matrix) without preconceptions as to the 
involvement of defined cellular types. Here we have exploited naturally 
fluorescent metabolites and co-enzymes of metabolic pathways modi
fied by CCI and resultant neuropathic pain to identify an associated 
fluorescent fingerprint in spinal cord tissue. 

Fig. 5. (a,b) Abundance of the “CCI mask” regions. a) in male animals across L3, L4 and L5 tissue, we see significant difference between the control-sham and CCI 
groups with greatest differences in the L4 and L5 tissue, and no significant differences between the control-sham baseline in L3, L4 and L5 tissues (p < 0.05). b) in 
female animals across L3, L4 and L5 tissue, we see significant difference between the control-sham and CCI groups in the L3 tissue only, with significant differences in 
control-sham baseline seen in the L4 and L5 tissue (p < 0.05). c) model validation of the observed male-female differences. The statistical distance of various 
discriminatory models (4, 9 and 18 features, in L3, L4 and L5) is presented highlighting that the metabolic features are able to discriminate the control-sham and CCI 
groups to a far greater extent in males than females in the L3 tissue, similarly in other tissue to a lesser extent. p values associated with the group tests are provided in 
Supplementary Table 2. 
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Having confirmed the existence of an autofluorescence signature of 
chronic constriction nerve injury (Fig. 2) we tested the hypothesis that 
autofluorescence from defined cell-like regions within the spinal cord 
tissue is altered by CCI. Using a specific feature mask which selects CCI- 
affected areas (Fig. 3) we have identified regions within dorsal spinal 
cord tissue that showed changes in autofluorescence signatures 
following peripheral nerve injury causing mechanical allodynia. The 
method developed here does not allow us to determine that our best 
feature mask captures all the CCI-related signal and there might be CCI- 
altered tissue beyond the selected mask. However, this mask best 

captures the CCI signal among all masks considered here, while rejecting 
most of the irrelevant variance. 

We verified that the CCI-altered metabolic signal is present near the 
cellular nuclei (Fig. 4). Co-localisation of hyperspectral and DAPI images 
confirms that much of the interesting pathology captured by the feature 
mask throughout regions occur around or close to nuclei. The spinal 
cord is made up of neuronal and glial cells of varying sizes and shapes, 
both of which are important in neuropathic pain (Ji et al., 2016). 
Identification of individual cellular entities is beyond the scope of this 
work, and the hyperspectral signal reported here is likely to originate 

Fig. 6. Application of the same 18-feature model to males and females to further validate sex differences in the tissue. a) Discriminatory model scatter plot of Cohort 
3 (female), L3 CCI-activated tissue regions, (statistical distance 0.797, p = 2.24e-37). b) the exact same model (the same features same discriminating vector) onto 
which Cohort 2 (male) data is projected shows insignificant difference (statistical distance 0.017, p = 0.81). (c) the same features used in female model (a) but with 
recalculation of the discriminating vector to suit male data shows significant discrimination (statistical distance 0.348, p = 1.07e-15), indicating these metabolic 
features are informative across sexes but that the males require a redirected discriminating vector (signature). Green – sham-control, red: CCI. (d) 1st canonical 
variable of Fig. 6 a, (e) 1st canonical variable of Fig. 6 b, (f) 1st canonical variable of Fig. 6 c, all shown as box plots with confidence intervals highlighted by notches. 
P values for tests of (d), (e) and (f) are p = 2.24e-37, p = 0.81, p = 1.07e-15, respectively. (g) Univariate analysis of the highest ranked feature 1, shows that there is a 
significant difference in the direction (control-sham(green), CCI (red)) of this segment feature across sexes (f-female, m-male). Feature 1 is the median of the pixel 
intensity ratios of channel 3 / channel 4. p values associated with the group tests are provided in Supplementary Table 3. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

M.E. Gosnell et al.                                                                                                                                                                                                                              



Neurobiology of Disease 160 (2021) 105528

9

from a mix of these cells. It is worth noting that while the “CCI-affected” 
regions do not fully correlate with nucleated areas, the overlap of these 
regions with the extracellular matrix (ECM) is consistent with recent 
works (Tajerian and Clark, 2019) highlighting its importance in nerve 
injury and accompanying inflammation. The literature supports the 
mechanism of continuous ECM remodelling in response to its sur
roundings (Cox and Erler, 2011). For example, studies have shown that 
following injury an increase in matrix metalloproteinases is observed 
and, ultimately, can lead to microglial activation (Kawasaki et al., 
2008). The identification of a hyperspectral signal in the ECM may be 
able to assist in the identification of previously unknown molecular 
processes following nerve injury. These would include the commonly 
overlooked adaptations in the glycome of the central nervous system 
(Jacobsen et al., 2016). 

The analysis of the abundance of CCI-activated tissue regions 
(Fig. 5a, b) showed that there is significantly more CCI-activated tissue 
area in the L3 tissue nerve injury group for both females and males. This 
concentration around L3 likely reflects the anatomical make-up of the 
region and the prominence of the sciatic nerve. The male group showed 
significant increases in the nerve injury group in the L4 and L5 tissue, 
with no significant difference between the control-sham group across all 
tissues. The females however while showing similar increases in the L4 
and L5 nerve injury, also showed increases in the control-sham group. 
These data are consistent with different autofluorescent CCI signatures 
in males and females, but they may also be influenced by different levels 
of allodynia observed in the male and female groups (Supplementary 
Fig. 1) and/or other factors, e.g. varying levels of immune reactivity due 
to biological variance. It is important to note that the literature supports 
differences between male and female chronic pain in studies carried out 
by traditional methods (Nicotra et al., 2014; Nicotra et al., 2012). 

To eliminate the possibility of analysis artefacts we built 18 
discriminatory models with a range of complexity across sexes and tissue 
types, all built using metabolic ratio features evaluated from the CCI- 
activated regions (Fig. 5c). All models showed a consistent difference 

between the sexes in the L3 tissue, with the male tissue showing the 
ability to discriminate the groups using these metabolic features to a far 
greater extent than the females. The same pattern of difference was seen 
in the L4 tissue but to a much lesser extent, with very little difference in 
L5. Again, this likely reflects the anatomical make-up of the region and 
the prominence of the injured sciatic nerve. 

Cross discriminatory analysis confirmed in all cases than the meta
bolic features selected in optimising the female F18 models were also 
informative for the males, but that the direction of the discriminant 
shows significant difference between the groups. We further explored 
the eigenvector signatures (Fig. 6) and noted that in some cases males 
responded in a reverse metabolic direction for some specific features, 
and we demonstrated this was significant at the univariate level. These 
results were obtained through the application of the CCI mask (mask 
630) derived from the image of the ratio of Channel 6: excitation 375 nm 
/ emission 447 nm and Channel 8: excitation 365 nm/ emission 587 nm. 
The signals in these channels correspond closely to the fluorescent 
excitation peaks of the pyridine nucleotides NADH, NADPH and the first 
excitation peak of the flavin co-enzymes. Their ratio is an established 
marker for the cellular redox state (Campbell et al., 2020b; Mahbub 
et al., 2017; Mahbub et al., 2019). This suggests that the flavin:NADH 
ratio appears to be as a key delineator of nerve injury in males and fe
males. This ratio is indicative of oxidative stress, which has a docu
mented role in pain (Grace et al., 2016). 

Interestingly, although the same features were critical in delineating 
male versus female nerve injury, the direction of the discriminant was 
different in males than in females, this provides an insight into the subtle 
complexity in cellular signalling. Although beyond the scope of this 
particular study, we suggest that further exploration of this hyper
spectral signature may have interesting mechanistic and intervention 
implications. This will require the generation of a large library of 
hyperspectral images of known features of cellular or non-cellular 
structures in physiological and pathophysiological models. Taken 
together with detailed characterisation of autofluorescent signals 

Fig. 7. Biological characterisation of immune reactivity in tissue. (a) Representative images of L4 dorsal horn from control, sham-operated and CCI animals showing 
immunofluorescence for CGRP (left column), IBA1 (middle column) and GFAP (right column). White dotted boxes represent the magnified images shown in (b, c). (b) 
Composite images for IBA1 (green), CGRP (red) and DAPI nuclear stain (cyan) and (c) GFAP (green), CGRP (red) and DAPI nuclear stain (cyan). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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following pharmacological intervention, would provide a deeper un
derstanding of which molecules or metabolites were changing their 
fluorescent signals. Our small, but appropriately powered study, iden
tified a unique biological autofluorescent fingerprint associated with 
CCI and associated neuropathic pain in males and females demon
strating the power of this technology. In a field of research which is 
heavily contested, our non-reductionist approach to identifying sex 
differences in pain, paves the way for further larger studies to investigate 
if pharmacological intervention, for instance, can change this fluores
cent signal. 

To date, neuroscientists have looked towards defined cellular bodies 
such as neurons or more recently, glial cells to explain the presence of 
pain pathology. This narrow view and hence limited approach has had 
serious implications on the progress of our understanding of pain 
physiology and the molecular mechanism associated with it. Indeed, as 
recently reviewed by Piers et al.29 many studies have investigated 
relatively large cell populations that are heterogeneous in their pheno
type. This has made it inherently difficult to identify which sub
populations may actually participate in the exaggerated pain state. 
Importantly, evidence suggests that the phenotype of the cells engaged 
during exaggerated pain closely correlated with the pain type. Despite 
the heterogeneity of the cells, this common neuroimmune microcircuit 
underlying the pain supports our methodological process of “CCI mask” 
generation. 

The hyperspectral autofluorescence imaging approach outlined in 
this study is a major advance in the repertoire of tools available to 
neuroscientists to identify biomarkers of pain and develop diagnostic 
tools to identify novel contributors to pain in patients. This study rep
resents a new frontier in pain research; we have demonstrated for the 
first time that a cell type free approach can identify autofluorescent 
changes following nerve injury in regions that encompass cellular bodies 
as well as the extracellular matrix. These are the regions where cumu
lative changes will represent the complete picture of pain pathology. By 
identifying unique biological autofluorescent fingerprints associated 
with CCI and resultant neuropathic pain in male and female mice, our 
study opens up the opportunity to investigate if a similar unique auto
fluorescent signature can be identified in the bloods, saliva, urine or 
tears of mice following CCI injury. An identification of a signal associ
ated with CCI (and the resultant neuropathic pain) in these biological 
samples paves the way for the development of diagnostic tools for 
objective measures of pain and a pathway to translation for the future of 
precision pain medicine in humans. 
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