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Abstract

Subterranean ecosystems host highly adapted aquatic invertebrate biota which play a key

role in sustaining groundwater ecological functioning and hydrological dynamics. However,

functional biodiversity studies in groundwater environments, the main source of unfrozen

freshwater on Earth, are scarce, probably due to the cryptic nature of the systems. To

address this, we investigate groundwater trophic ecology via stable isotope analysis,

employing δ13C and δ15N in bulk tissues, and amino acids. Specimens were collected from

a shallow calcrete aquifer in the arid Yilgarn region of Western Australia: a well-known hot-

spot for stygofaunal biodiversity. Sampling campaigns were carried out during dry (low

rainfall: LR) and the wet (high rainfall: HR) periods. δ13C values indicate that most of the

stygofauna shifted towards more 13C-depleted carbon sources under HR, suggesting a pref-

erence for fresher organic matter. Conversion of δ15N values in glutamic acid and phenylala-

nine to a trophic index showed broadly stable trophic levels with organisms clustering as

low-level secondary consumers. However, mixing models indicate that HR conditions trigger

changes in dietary preferences, with increasing predation of amphipods by beetle larvae.

Overall, stygofauna showed a tendency towards opportunistic and omnivorous habits—

typical of an ecologically tolerant community—shaped by bottom-up controls linked with

changes in carbon flows. This study provides baseline biochemical and ecological data for

stygofaunal trophic interactions in calcretes. Further studies on the carbon inputs and taxa-

specific physiology will help refine the interpretation of the energy flows shaping biodiversity

in groundwaters. This will aid understanding of groundwater ecosystem functioning and

allow modelling of the impact of future climate change factors such as aridification.

Introduction

During recent decades, investigations of trophic webs have become a cornerstone for the inter-

pretation of functional biodiversity in freshwater ecosystems. Within both lentic and lotic
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environments, macroinvertebrate food web dynamics play a key role in shaping process-level

aquatic ecosystem attributes [1]. Aquatic faunal trophic characterization is usually conducted

by employing the morpho-behavioural based concept of functional feeding groups (FFGs) [2].

Since its inception, FFGs have been extensively used in ecological assessments and biomoni-

toring studies, and have allowed detailed assessment of ecological patterns in both natural and

disturbed environments [3,4,5].

However, despite the hydraulic and ecological continuum in groundwater dependent eco-

systems, the subsurface ecosystem and the study of its food chain interactions have suffered

from a conceptual disconnection from surficial aquatic habitats. The main reasons are attri-

butable to methodological limitations [6,7], scarce aquifer accessibility [8] and the lack of

interdisciplinary approaches [9]. Moreover, compared to surface freshwater ecosystems,

groundwaters are subjected to relatively extreme environmental conditions: sparse organic

inputs, lack of light and primary production, and truncated trophic webs [10,11,12,13]. Alto-

gether, these unique conditions shape obligate subterranean aquatic communities (stygofauna)

dominated by plastic and opportunistic trophic behaviours [14,15], whose categorization via
feeding modes such as FFGs is constantly at risk of misinterpretation. As a result, our knowl-

edge about how food web interactions shape groundwater ecological functioning and commu-

nity patterns is fragmented [16].

Stygofauna—when present—play a key role in regulating both ecological and hydrological

dynamics in aquifers [17,18]: they actively bioturbate the sediment, facilitate nutrient recycling

and, in combination with microbial communities, degrade/retain contaminants. In groundwa-

ters, carbon inputs (allochthonous dissolved organic carbon (DOC) and chemoautotrophic

production) are mediated by microbes which are then grazed by basal stygofauna [19].

Organic matter (OM) is transferred along the trophic chain via prey-predator interactions.

Therefore, OM inputs, microbial communities, and the stygofaunal trophic web, all shape the

energy flows sustaining the subterranean biodiversity [20].

The incorporation of biogeochemical approaches (i.e. stable isotopes composition, fatty

acids content, radiocarbon analysis) has recently led to re-evaluation of the archetype of poorly

structured–and generalist-dominated–trophic dynamics in groundwaters [21]. These designs

are leading a vital transition from purely descriptive to functionally-based investigations, pro-

viding wider perspectives to the field [22].

Carbon (δ13C) and nitrogen (δ15N) stable isotope analysis (SIA) is a well-established

approach enabling quantitative investigation of food webs [23,24]. Since its initial application

in groundwater trophic ecology, several studies have benefited from the insights provided by

the study of naturally-occurring stable isotopes [25,26]. However, δ13C and δ15N SIA investiga-

tions on bulk material are limited by the mixing of tissues and different biochemical pathways

[27]. These limitations can be addressed by the complementary or alternative use of com-

pound-specific approaches.

δ13C and δ15N Compound Specific Isotope Analysis (CSIA) on amino acids allows detailed

characterization of food web interactions [28], by focusing on compounds created by definable

biosynthetic pathways. Single amino acids can be divided into essential (EAA) and non-essen-

tial (NEAA). Whilst primary producers (plants, algae and bacteria) biosynthetise de novo EAA

from a bulk carbon pool, animals lack these enzymatic pathways and acquire EAA from their

diet [29]. As a result, tracking of EAA allows carbon fingerprinting of food sources down to

the base of food webs [30]. Concurrently, δ15N CSIA can distinguish between compounds

reflecting the source isotopic signal, and that enriched with each trophic step, thus providing

crucial information on prey-predator interactions [31]. The application of CSIA in amino

acids has allowed a much more thorough understanding of food web dynamics in freshwater

[32], marine [33] and terrestrial environments [34], but despite the greater potential than bulk
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analysis [35], this technique has yet to be applied to food web studies of groundwater

environments.

This study is, to our best knowledge, the first based on the combination of carbon and

nitrogen CSIA in groundwaters, and focuses on a calcrete stygofaunal community under two

contrasting environmental conditions: low rainfall (LR, dry season) and high rainfall (HR, wet

season). We hypothesise that different environmental conditions trigger species-specific adap-

tations that are ultimately responsible for distinct food web interactions. The specific objec-

tives of this work are: 1) unravel OM incorporation trends across the stygofaunal community,

2) decipher the trophic habits of the species and elucidate prey-predator interactions, and 3)

provide biochemically-based knowledge about trophic web interactions in arid zone calcrete

aquifers.

Methodology

Study area and field work

The field work was carried out at a calcrete aquifer (28˚41‘S 120˚ 58‘E) located on Sturt Mead-

ows pastoral station, Western Australia, ~42 km from the settlement of Leonora (833 km

northeast of Perth, Fig 1A).

The Sturt Meadows calcrete hosts a very shallow aquifer, located two to four metres below

the surface, and accessible through bores characterised by water depths ranging from a few

centimetres to ten metres. The bore grid was initially drilled for mineral exploration and com-

prises 115 bore holes of between 5–11 m in depth forming a 1.4 km by 2.5 km (3.5 km2) area

(Fig 1A). The bores are unlined, except for about the upper 0.5 m which are lined with 10 cm

diameter PVC pipe for stability, and capped [36]. Three sampling campaigns–two of them cor-

responding to low rainfall periods (LR) and one during the wet season (high rainfall, HR)

[37]–were carried out in July and November 2017, and March 2018. More details about the

sampling design, monitoring of water depth and hydrogeological background at Sturt Mead-

ows can be found in Saccò et al. [38].

The high morphologically (Fig 1B) and taxonomically diverse stygofaunal community at

Sturt Meadows comprises three sister species of subterranean beetles (Paroster macrosturtensis
(Watts & Humphreys 2006), Paroster mesosturtensis (Watts & Humphreys 2006) and Paroster
microsturtensis (Watts & Humphreys 2006) and respective larvae)), three species of amphipods

(Scutachiltonia axfordi (King, 2012), Yilgarniella sturtensis (King, 2012) and Stygochiltonia
bradfordae (King, 2012)), aquatic worms (family Tubificidae (Vejdovský, 1884)) and water

mites (order Oribatida; Dugès, 1834). Within the stygobiotic meiofaunal community, two spe-

cies of harpacticoids (Novanitocrella cf. aboriginesi (Karanovic, 2004), Schizopera cf. austin-
downsi (Karanovic, 2004) and four species of cyclopoids: Halicyclops kieferi (Karanovic, 2004),

Halicyclops cf. ambiguous (Kiefer, 1967), Schizopera slenderfurca (Karanovic & Cooper, 2012)

and Fierscyclops fiersi (De Laurentiis et al., 2001)) can be found.

Adult and larval stygofaunal specimens were collected by hauling a small weighted plankton

net (mesh 100 μm, [36]) five times from the bottom through the water column of 30 boreholes

(Fig 1A) selected by simple random sampling [38]. Stygofaunal abundance data across the

boreholes are reported in S1 Table.

All biological samples were kept frozen (–20˚C) in darkness until further processing in the

laboratory where individual organisms were counted and identified (and consequently sepa-

rated) to the lowest taxonomic level via optical microscopy and reference to specific taxonomic

keys. Roots and sediment samples from the bottom of the aquifer were obtained through the

stygofaunal haul netting procedure, and were separated by using sterile glass pipettes during

the sorting in the laboratory according to the sampling campaign (LR or HR). Sediment
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Fig 1. a) Borehole grid and its location in the Yilgarn region, Western Australia. b) Photos of some specimens from the bore samples (from left

to right Paroster macrosurtensis adult, Paroster microsturtensis larvae, Scutachiltoni axfordi, Oligochaeta sp. and Oribatida sp.).

https://doi.org/10.1371/journal.pone.0223982.g001
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samples were soaked in acid (0.1 N HCl) to remove inorganic carbon and dried at 60˚C for 24

hours. Given the delicacy of the hydrological dynamics in shallow calcretes [39], extensive

water extractions spread along the bores were avoided and preliminary tests were carried out

to quantify the potential risk of dewatering the calcrete.

Bores D13 and W4 host groundwater systems which are representative of the geological

conformations of the area—phreatic and vadose calcretes interspersed with clay material—

and were finally selected because of their hydrological and biotic stability (lowest risk of drying

and representative ranges of Sturt Meadows stygofaunal diversity) [38]. Water samples for

POC (particulate organic carbon) analysis were collected using a submersible centrifugal

pump (GEOSub 12V Purging Pump) after wells were purged of three well-volumes and stabili-

sation of in-field parameters was observed. POC samples were obtained by filtering water

from the bores D13 and W4 through GF/F filters (pre-combusted for 12 hours at 450˚C),

washed with 1.2 N HCl to remove any inorganic carbon, and subsequently dried at 60˚C

for 24 hours. The field site was accessed and samples were collected with permit approval

(permit number 08-003150-1) from the Department of Parks and Wildlife of Western

Australia.

Sample preparation and study design

All individuals from a single taxon were pooled for each sampling campaign (LR1, LR2 or HR)

and subsequently washed with MilliQ water to remove external contaminants. Subsequently,

samples were oven dried at 60˚C overnight and crushed to a fine powder which was stored at

–20˚C until further analysis (Fig 2).

Due to sample size constraints, the samples for each taxon from the two low rainfall periods

were further combined. Previous metagenomics investigations, together with mesocosm

experiments and field observations at Sturt Meadows provided some information about the

trophic habits of beetles and amphipods [40]. Adult subterranean beetles had active predatory

feeding on epigean amphipods and copepods (including group feeder behaviours) together

with scavenger habits (and potential active predatory pressures) on sister species. Beetle larvae

(third and last instar) showed opportunistic predatory habits with a range of prey from cope-

pods and amphipods to adult beetles from the three species (inter and intraspecific cannibal-

ism), while amphipods displayed predation of copepods, epilithic biofilm grazing, root

shredding and sediment filter feeding.

Bulk stable isotope analysis

δ13C and δ15N SIA on bulk homogenised samples of sediment, roots and stygofauna (respec-

tively 1.28 mg, 0.08–0.14 mg and 0.63–2.79 mg per samples, S2 Table) were performed at the

Australian Nuclear Science and Technology Organisation (ANSTO, Sydney). Samples were

loaded into tin capsules and analysed with a continuous flow isotope ratio mass spectrometer

(CF-IRMS, Delta V Plus, Thermo Scientific Corporation, U.S.A.), interfaced with an elemental

analyser (Thermo Fisher Flash 2000 HT EA, Thermo Electron Corporation, U.S.A.) following

the procedure of Mazumder et al. [41]. δ13C values are reported in per mil (‰) relative to the

Vienna Peedee Belemnite (VPDB), while δ15N values are reported relative to reference N2 of

known nitrogen isotopic composition (in ‰), previously calibrated against the AIR interna-

tional isotope standard. δ13C POC (0.6 mg, S2 Table) was analysed at the Western Australian

Biogeochemistry Centre at The University of Western Australia using a GasBench II coupled

with a Delta XL Mass Spectrometer (Thermo-Fisher Scientific). Results have a precision

of ± 0.10 ‰, and are reported relative to the NBS19 and NSB18 international carbonate stan-

dard [42].

Stygofaunal food webs through isotopes
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Single amino acid carbon and nitrogen isotope analysis

δ13C CSIA. Stygofaunal samples (0.16–2.89 mg per sample, S2 Table) were hydrolysed

under vacuum with 0.5 to 1 ml of amino acid-free 6 M HCl (Sigma-Aldrich) at 110 ˚C for 24

h. The protein hydrolysates were dried overnight in a rotary vacuum concentrator and stored

in a freezer. Prior to analysis, the samples were resolved in Milli-Q water and 10 μl of 1-mmol

solution of 2-aminoisobutyric acid (Sigma-Aldrich) was added as internal standard. The sam-

ple stock had a concentration of approximately 8 to 10 mg/ml, which was further diluted as

Fig 2. Methodological scheme of the study for stygofaunal samples (including copepods for bulk SIA). EAA: essential amino acids; NEAA: non-essential amino

acids; TP: trophic position; TDF: trophic discrimination Factor; β = ratio between δ15NGlu and δ15NPhe values in primary producers; SIMM: stable isotopes mixing

models; LC-iRMS: Liquid Chromatography-isotope Ratio Mass Spectrometry; GC-iRMS: Gas Chromatography-isotope Ratio Mass Spectrometry; EA-CF-iRMS:

Elemental Analyser-Continuous Flow-isotope Ratio Mass Spectrometry.

https://doi.org/10.1371/journal.pone.0223982.g002
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needed. Single amino acid carbon isotope analysis was carried out at the La Trobe Institute for

Molecular Sciences (LIMS, La Trobe University, Melbourne, Australia) using an Accela 600

pump connected to a Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific

LC Isolink (Thermo Scientific).

The amino acids were separated using a mixed mode (reverse phase/ion exchange) Prime-

sep A column (2.1 x 250 mm, 100˚C, 5 μm, SIELC Technologies) following the chro-

matographic method described in Mora et al. [43], after Smith et al. [44]. Mobile phases are

those described in Mora et al. [45]. Percentage of Phases B and C in the conditioning run, as

well as flow rate of the analytical run and timing of onset of 100% Phase C were adjusted as

needed. Samples were injected onto the column in the 15 μl—partial loop or no waste—injec-

tion mode, and measured in duplicate or triplicate.

δ15N CSIA. CSIA nitrogen analyses were undertaken at the Organic Geochemistry Unit

of the University of Bristol, UK. To extract the AAs, crushed samples (2.47–5.19 mg per sam-

ple, S2 Table) were hydrolysed in culture tubes (6 M HCl, 2 ml, 100˚C, 24 h). A known quan-

tity of norleucine (1 mg mL–1 in 0.1 M HCl) was added to each sample as an internal standard

prior to hydrolysis. After heating, the tubes were allowed to cool then after centrifugation

(3000 rpm, 5 min) the supernatant containing the hydrolysate from each tube was transferred

to a clean culture tube and dried under N2 whilst being heated to 70˚C. Once dry, each sample

was re-dissolved in 0.1 M HCl and stored in the dark at -18˚C until required for analysis.

The derivatisation procedure followed Styring et al. [46] and included isopropylation, with

a 4:1 mixture of 2-propanol and acetyl chloride heating to 100˚C for 1 hour, the reaction was

quenched by rapidly cooling in a freezer. After removing the residual solvents under N2, acety-

lation of the amino group was achieved by adding a 5:2:1 mixture of acetone, triethylamine

and acetic anhydride then heating to 60˚C for 10 minutes before being allowed to cool. The

derivatised AAs were isolated via liquid-liquid separation, residual solvent being removed by

evaporating under N2. Samples were again stored at -18˚C until required for analysis.

A Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Scientific, Bre-

men, Germany) was used to determine the δ15N values of derivatised AAs. The mass spectrometer

(EI, 100 eV, three Faraday cup collectors for m/z 28, 29 and 30) was interfaced to a Trace 2000 gas

chromatograph via a Combustion III interface (CuO/NiO/Pt oxidation reactor maintained at

980˚C and reduction reactor of Cu wire maintained at 650˚C), both from Thermo Scientific.

Samples were dissolved in ethyl acetate and 1μl of solution was injected via a PTV injector.

Helium at a flow of 1.4 ml min–1 was used as the carrier gas and the mass spectrometer source

pressure was maintained at 9 X 10–4 Pa. The separation of the AAs was accomplished using a

DB-35 capillary column (30 m X 0.32 mm i.d., 0.5 mm film thickness; Agilent Technologies,

Winnersh, UK). The oven temperature of the GC started at 40˚C where it was held for 5 min

before heating at 15˚C min–1 to 120˚C, at 3˚C min–1 to 180˚C, at 1.5˚C min–1 to 210˚C and

finally at 5˚C min–1 to 270˚C and held for 1 min. A Nafion dryer removed water and a cryo-

genic trap was employed to remove CO2 from the oxidised and reduced analyte.

All the δ15N values are reported relative to reference N2 of known nitrogen isotopic compo-

sition, previously calibrated against the AIR international isotope standard, introduced directly

into the ion source in four pulses at the beginning and end of each run. Each reported value is

a mean of duplicate δ15N determinations. A standard mixture of derivatised AAs of known

δ15N values was analysed every three runs in order to monitor instrument performance.

Data treatment and statistical analysis

Only AAs that returned results for each taxon were considered. EAA and NEAA were sepa-

rated according to the classification provided by Boudko [47]. EAAs were used in the

Stygofaunal food webs through isotopes
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interpretation of carbon flows—and potential shifts in OM incorporations—because they per-

sist through the trophic chain [48] due to the little fractionation they undergo when incorpo-

rated into consumer’s tissue [49]. NEAA, which are subjected to much greater fractionation

because of their de novo biosynthesis mainly from intermediates of the Krebs cycle (serine

(Ser), glycine (Gly) and alanine (Ala)) and glycolysis (glutamic acid (Glx), aspartic acid (Asx)

and proline (Pro) [50], were compared to EAA to investigate taxa-specific carbon isotopic

trends (biosynthesis vs assimilation through diet) across the two rainfall periods (LR and HR).

All the statistical analyses were performed in R software version 3.6.0 (Development-Core-

Team, 2016). Analysis of variance (ANOVA) coupled with Tukey’s HSD pairwise comparisons

(R-package ‘stats’) were employed to inspect significant differences between δ13CEAA (Val, Phe

and Arg) and δ13CNEAA (Krebs (Ser, Gly and Ala) and glycolysis (Asx, Glx and Pro) cycles)

within the different rainfall conditions (LR and HR). Principal component analyses (PCA, R-

package ‘vegan’) and Linear Discriminant Analysis (LDA, R-package ‘vegan’) among EAA was

performed to explore sample distribution in the multi-dimensional space. Determination of

EAA driving sample variability in the PCA was carried out via function fviz_contrib (R-pack-

age ‘factoextra’).

Trophic positions (TP) were calculated using the methodology reported by Chikaraishi

et al. [33]:

TP ¼ ½ðd15NGlu � d
15NPhe þ bÞ=TDF� þ 1

where δ15NGlu = δ15N of glutamic acid, δ
15NPhe = δ15N of phenylalanine, β = ratio between

δ15NGlu and δ15NPhe values in primary producers, and TDF = the trophic discrimination factor

at each shift of trophic position.

Incorporation of source carbon from terrestrial vegetation has previously been reported at

Sturt Meadows, with roots from surficial saltbush vegetation (C3 metabolism) frequently

found in the groundwater [40]. β was accordingly assigned the value of +8.4 ± 1.6 ‰, which is

the established value for aquatic food webs involving C3 plants [31]. Although other carbon

sources are possible in groundwaters, as they are not established in this system, a conservative

approach has been taken in using the value of an evidenced source. TDF was assigned the

value of 7.6 ± 1.2‰, based on Steffan et al. [51] who showed it did not vary across trophic lev-

els one to four in multiple controlled-feeding experiments, and for trophic levels one to five in

a natural food chain, using terrestrial arthropod species [28].

Pairwise comparisons for δ15N were carried out with the same approach as for the carbon

CSIA data. Robustness and consistency between CSIA and SIA data from beetles and amphi-

pods were inspected using Pearson correlations (function rcorr in R-package ‘Hmisc’). SIMM

(Stable Isotope Mixing Models, R-package ‘simmr’) were then applied to establish dietary pro-

portions of the key ecological taxa (Fig 2). Since a specific trophic discrimination factor has

not been calculated for stygofauna, we used the widely accepted values of 3.4 ± 2 ‰ for nitro-

gen and 0.5 ± 1 ‰ for carbon [52]. Markov chain Monte Carlo (MCMC) algorithms were

used for simulating posterior distributions in SIMM, and MCMC convergence was evaluated

using the Gelman-Rubin diagnostic by using 1.1 as a threshold value for analysis validation.

Results

Stygofaunal carbon fluxes

During LR, δ13C average values of AAs (δ13CNEAA[LR] and δ13CEAA[LR]) spanned from -31.52

‰ (Phe) to -5.72 ‰ (Gly). Similar values were found under HR conditions (δ13CNEAA[HR] and

δ13CEAA[HR]), ranging from -31.55 ‰ (Phe) to -4.92 ‰ (Ser) (Table 1).
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Table 1. Low (LR) and high rainfall (HR) carbon amino acids spectrum (δ13C values) for stygofaunal specimens separated by non-essentials (NEAA: aspartic acid

(Asx), serine (Ser), glutamic acid (Glx), glycine (Gly), alanine (ala), and proline (Pro)), and essentials (EAA: valine (Val), phenylalanine (Phe), and arginine (Arg)).

Average values (and standard deviation) for the analytical replicates are shown. P values for ANOVA Tukey’s HSD pairwise comparisons between NEAA and EAA are also

illustrated.

Taxon ID NEAA EAA NEAA2 vs

EAA3
NEAA4 vs

EAA3

Asx Ser Glx Gly Ala Pro Val Phe Arg Krebs cycle Glycolysis

LR

Paroster
macrosturtensis

B -17.64

±0.59

-10.43

±0.1

-18.74

±0.53

-10.01

±0.12

-20.01

±0.12

-17.85

±0.53

-24.39

±0.55

-24.44

±0.13

-19.56

±0.55

P < 0.05 P< 0.05

Paroster mesosturtensis M -18.85

±0.6

-11.32

±0.16

-20.31 -12.22

±0.6

-21.23

±0.52

-15.10

±0.63

-24.55

±0.27

-26.24

±0.23

-20.42

±0.07

P < 0.05 P< 0.05

Paroster
microsturtensis

S -22.42

±0.18

-12.39

±0.62

-22.421 -14.84

±0.64

-24.24

±0.35

-18.67

±0.62

-27.73

±0.64

-28.98

±0.07

-23.19

±0.54

P < 0.05 P< 0.05

Paroster
macrosturtensis larvae

Blv -20.56

±0.11

-9.22

±0.18

-20.201 -14.17

±0.6

-22.01

±0.58

-19.31

±0.6

-25.97

±0.17

-26.48

±0.12

-20.59

±0.24

P < 0.05 P = 0.0618

Paroster mesosturtensis
larvae

Mlv -19.09

±0.04

-6.70

±0.18

-20.05

±0.43

-16.12

±0.65

-21.12

±0.37

-16.38

±0.3

-24.92

±0.09

-27.08

±0.1

-19.59

±0.3

P < 0.05 P< 0.05

Paroster
microsturtensis larvae

Slv -19.1

±0.5

-8.41

±0.05

-17.75

±0.03

-14.20

±0.63

-21.57

±0.15

-20.38

±0.2

-25.34

±0.07

-27.02

±0.38

-18.59

±0.21

P < 0.05 P< 0.05

Scutachiltonia axfordi AM1 -16.1

±1.3

-5.87

±0.8

-14.09

±1.4

-5.72

±1.01

-20.42

±2.88

-16.68

±0.2

-24.55

±2.01

-21.94

±0.28

-15.31

±0.74

P < 0.05 P< 0.05

Yilgarniella sturtensis AM2 -19.09

±0.08

-8.31

±0.41

-21.35

±3.77

-6.81

±0.42

-20.29

±0.09

-16.63

±0.12

-25.48

±0.17

-25.6

±1.29

-19.56

±1.39

P < 0.05 P = 0.0511

Stygochiltonia
bradfordae

AM3 -21.7

±0.1

-9.15

±0.64

-24.65

±4.38

-9.00

±0.33

-24.08

±0.19

-22.76

±0.64

-28.84

±0.25

-28.27

±0.1

-23.54

±0.38

P < 0.05 P = 0.0952

Tubificidae sp. OL -21.7

±0.24

-16.01

±0.44

-24.33

±0.31

-20.931 -26.36±0.1 -25.78

±0.36

-31.46

±0.1

-31.52

±0.23

-27.58

±0.04

P < 0.05 P< 0.05

Oribatida sp. OR -20.44

±0.63

-11.99

±0.23

-17.771 -14.12

±0.47

-21.18

±0.07

-19.31

±0.61

-26.36

±0.03

-24.33

±0.55

-18.85

±0.2

P = 0.0955 P = 0.0826

HR

Paroster

macrosturtensis

B -18.67

±0.45

-11.62

±0.29

-18.19

±0.59

-11.31

±0.11

-19.648

±0.45

-16.83

±0.56

-25.44

±0.64

-26.3

±0.61

-20.40

±0.6

P < 0.05 P< 0.005

Paroster

mesosturtensis

M -23.881 -18.061 -23.561 -16.641 -25.961 -21.991 -29.7681 -31.081 -26.051 P < 0.05 P< 0.05

Paroster

microsturtensis

S -20.871 -11.461 -20.81 -13.941 -22.621 -17.821 -26.7731 -29.041 -22.631 P < 0.05 P< 0.005

Paroster

macrosturtensis larvae

Blv -21.64

±0.55

-12.581 -20.631 -13.561 -24.22±0.1 -19.431 -28.12

±0.51

-28.22

±0.57

-22.35

±0.58

P < 0.05 P< 0.05

Paroster

mesosturtensis larvae

Mlv -23.881 -18.061 -23.561 -16.94

±0.42

-25.971 -21.991 -29.38

±0.55

-31.081 -26.051 P < 0.05 P< 0.05

Paroster

microsturtensis larvae

Slv -24.15

±0.35

-18.03

±0.59

-24.24

±0.01

-18.741 -26.11

±0.11

-22.191 -30.0741 -31.551 -26.59

±0.2

P < 0.05 P< 0.005

Scutachiltonia axfordi AM1 -23.73

±0.6

-12.36

±0.21

-23.55

±0.35

-12.89

±0.26

-24.13

±0.47

-21.68

±0.46

-29.52

±0.52

-29.56

±0.43

-23.80

±0.54

P < 0.05 P< 0.05

Yilgarniella sturtensis AM2 -23±0.01 -13.67

±0.25

-23.60

±0.42

-14.92

±0.32

-26.28

±0.65

-24.03

±0.45

-30.87

±0.13

-30.31

±0.63

-24.99

±0.58

P < 0.05 P< 0.05

Stygochiltonia

bradfordae

AM3 -23.39

±0.2

-12.37

±0.62

-22.68

±0.01

-13.19

±0.01

-23.8465

±0.14

-21.41

±0.51

-28.7

±0.22

-28.28

±0.52

-22.94

±0.11

P < 0.05 P< 0.05

Tubificidae sp. OL -20.251 -14.111 -20.251 -15.61 -23.941 -20.471 -27.931 -28.791 -21.621 P < 0.05 P = 0.0951

Oribatida sp. OR -20.42

±0.64

-4.921 -22.11

±0.61

-5.9

±0.11

-22.19

±0.09

-19.69

±0.01

-27.52

±0.11

-27.411 -21.02

±0.39

P < 0.005 P< 0.05

1Unique run
2Calculated as average value of Ser, Gly and Ala
3Calculated as average value of Val, Phe and Arg
4Calculated as average value of Asx, Glx and Pro

https://doi.org/10.1371/journal.pone.0223982.t001
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δ13CNEAA[LR] average values varied from -26.36 ‰ (Ala) to -5.72 ‰ (Gly), similar values to

δ13CNEAA[HR] spanning from -26.28 ‰ (Ala) to -4.92 ‰ (Ser). Overall, δ13CEAA showed trends

towards more negative values than δ13CNEAA, which is involved in both Krebs and glycolytic

cycles (ANOVA, P<0.005). This is consistent with the enrichment of NEAA during biosyn-

thesis in the organism. With the exception of water mites (OR), P. macrosturtensis larvae (Blv),

Y. sturtensis (AM2), S. bradfordae (AM3) under LR, and oligochaetes (OL) under HR, pairwise

comparisons between δ13CEAA and δ13CNEAA confirmed a shift towards more negative values

across the stygofaunal community (Table 1).

Neither PCAs nor LDAs on EAA distinguished different clusters within taxa or main

groups (adult and larval beetles, and amphipods) nor among different rainfall periods (LR and

HR). All three EAA correlated positively and significantly (P< 0.005), with phenylalanine and

valine being the most informative AAs explaining the isotopic variability across stygofauna

(~70%). δ13C values of valine (δ13CVal) and phenylalanine (δ13CPhe) show that, with the excep-

tion of P. microsturtensis (S) and S. bradfordae (AM3), the entire stygofaunal community expe-

rienced a significant shift towards more 13C-depleted values under HR (MANOVA,

P< 0.005) (Fig 3, Table 2).

Within the significant trends, P. macrosturtensis adults and larvae (B and Blv) showed the

smallest change in carbon values (B: δ13CVal+Phe = -2.91; Blv: δ13CVal+Phe = -3.89) between rain-

fall regimes, while amphipods S. axfordi and Y. sturtensis (AM1 and AM2) showed the largest

depletion (AM1: δ13CVal+Phe = -12.59 ‰; AM2: δ13CVal+Phe = -10.10 ‰), suggesting differen-

tial carbon incorporations under HR conditions.

δ15N and trophic levels

δ15NGlu average values varied between 15.4±0.4‰ (AM3[HR]) and 22.31±0.29‰ (M[HR]),

while δ15NPhe values ranged from 10.67±0.45‰ (AM3[HR]) to 14.53±0.06‰ (M[HR]). When

converted to trophic positions, the stygofaunal community at Sturt Meadows shows a trun-

cated trophic chain, clustering around the secondary consumer level (Fig 4).

Under LR conditions, P. macrosturtensis larvae (Blv) show the highest trophic position

(TP = 3.33±0.02), while water mites (OR) sit at the lowest (2.78±0.09). Under HR conditions,

P. microsturtensis adults (S) have the highest trophic position (3.27±0.01), whilst S. bradfordae
(AM3) show the lowest value (TP = 2.73±0.01). Due to the low abundances it wasn’t possible

to analyse biochemical fingerprints from water mites (OR[HR]: 37 individuals) and P. micro-
sturtensis larvae (Slv[HR]: 10 individuals) during the wet season (HR) (S1 Table).

Overall, adult beetles (B, M and S) revealed higher trophic levels (TP>3) than amphipods

(AM1, AM2 and AM3, TP<3). However, B, M and S did not show statistically higher values

than AM1 under LR, the same pattern seen in P. mesosturtensis (M) under HR.

S. bradfordae (AM3) and P. macrosturtensis larvae (Blv) are the only organisms to show a

statistically significant change in their TP values between LR and HR (Table 3), with both

decreasing trends.

Food web dynamics

CSIA-based TP correlated significantly with SIA δ15N and δ13C values both under LR (P<0.05

in both cases) and HR conditions (P<0.01 and P<0.05 respectively). Under the latter condi-

tions, δ13CVal values correlated significantly with CSIA-based TP (P<0.05). Copepods are gen-

erally thought to sit at the base of the food web [53,54]. However, these were analysed only via

bulk SIA due to organism and sample size, and so could not be included in the TP analysis.

They showed more 13C-depleted δ13C (cyclopoids: δ13CLR = -20.5‰, δ13CHR = -21.9‰; har-

pacticoids: δ13CLR = -20.6‰, δ13CHR = -23.5‰) and enriched δ15N (cyclopoids: δ15NLR =

Stygofaunal food webs through isotopes
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Fig 3. Biplot of δ13CPhe values vs. δ13CVal values for a) beetles (B, M, S, Blv, Mlv and Slv) and b) amphipods (AM1, AM2 and AM3), water mites (OR) and aquatic

worms (OL). Red arrows indicate significant decreasing trends between LR and HR, while green arrows indicate increasing trends within rainfall periods. Refer to

Table 1 for taxa IDs.

https://doi.org/10.1371/journal.pone.0223982.g003
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13.9‰, δ15NHR = 14.5‰; harpacticoids: δ15NLR = 11.9‰, δ15NHR = 15.8‰) values under HR

(Fig 5A and 5B), indicating that the change in rainfall regimes could play a role in stygobiotic

meiofaunal biochemical incorporations.

Amphipods AM1 and AM2 sat at the base of the trophic web under both rainfall conditions

(TPs always below three, Table 3), and SIA carbon values (δ13C) confirmed a shift–already pin-

pointed via CSIA—towards more 13C-depleted carbon sources under HR. AM3, the smallest

and rarest amphipod species in the calcrete, did not allow bulk SIA analyses due to the low

abundances detected (LR (average value between LR1 and LR2): 27; HR: 19, S1 Table).

With respect to dietary preferences, for the amphipod S. axfordi (AM1), mixing models

suggest that roots (and hosted microbial flora) contributed the greatest proportion (50%) dur-

ing low rainfall conditions (LR) (Fig 6). The remaining diet was composed of POC (16.1%,

derived from allochthonous carbon incorporations, a potential organic source for microbes),

copepods (harpacticoids (13.9%) and cyclopoids (11.9%)) and sediment (8.1%) (i.e. OM laying

at the bottom of the aquifer or epilithic biofilms).

Table 2. Tuckey’s post hoc pairwise comparisons between phenylalanine and valine values under low (LR) and high (HR) rainfall conditions. In bold significant

results.

Taxon ID Phe Val

d.f. T-ratio P d.f. T-ratio P
Paroster macrosturtensis B 28 -4.497 < .0005 28 -2.163 < .005

Paroster mesosturtensis M 28 -4.846 < .0001 28 -3.297 < .005

Paroster microsturtensis S 28 -0.149 0.8829 28 1.967 0.0592

Paroster macrosturtensis larvae Blv 28 -4.218 < .0005 28 -4.42 < .0005

Paroster mesosturtensis larvae Mlv 28 -9.657 < .0001 28 -9.16 < .0001

Paroster microsturtensis larvae Slv 28 -10.933 <0.001 28 -9.73 < .0001

Scutachiltonia axfordi AM1 28 -18.4 < .0001 28 -10.2 < .0001

Yilgarniella sturtensis AM2 28 -11.383 < .0001 28 -11.067 < .0001

Stygochiltonia bradfordae AM3 28 -0.037 0.9704 28 0.282 0.7797

Tubificidae sp. OR 28 -7.418 < .0001 28 -2.389 <0.05

Oribatida sp. OL 28 6.594 < .0001 28 7.252 < .0001

https://doi.org/10.1371/journal.pone.0223982.t002

Fig 4. Calculated trophic positions (TP) of the stygofaunal specimens studied under LR (a) and HR (b) conditions.

https://doi.org/10.1371/journal.pone.0223982.g004

Stygofaunal food webs through isotopes

PLOS ONE | https://doi.org/10.1371/journal.pone.0223982 October 16, 2019 12 / 25

https://doi.org/10.1371/journal.pone.0223982.t002
https://doi.org/10.1371/journal.pone.0223982.g004
https://doi.org/10.1371/journal.pone.0223982


Under HR conditions, the POC dietary contribution reached 66.1%, while roots plum-

meted to 3.3% (Fig 6). Overall, amphipod Y. sturtensis (AM2) showed the same dietary pat-

terns as AM1.

Adult beetles P. macrosturtensis (B) and P. mesosturtensis (M) show only slight depletions

in their isotopic values during HR in bulk δ13C and δ15N SIA, in contrast to the larger changes

seen in the CSIA data. P. microsturtensis (S), which showed an isotopic enrichment in CSIA,

counter to the rest of the community, shows similar behaviour to P. macrosturtensis (B) and P.

mesosturtensis (M) in the SIA (S3 Table). All the three species show similar dietary preferences

in mixing models across the rainfall periods (S4 Table). While diets were dominated by amphi-

pods AM1 and AM2 during the LR period (B: 39.9%, M: 49.3% and S: 47.9% (Fig 7)), preda-

tion/scavenging of sister beetle species accounted for the biggest dietary proportions during

the wet season (B: 52.9%; M: 49.4%; S: 41.9% (Fig 7)).

Mixing models indicate that P. macrosturtensis larvae (Blv), which showed the biggest shift

in trophic position, has a preference for amphipods S. axfordi (AM1) and Y. sturtensis (AM2)

under LR conditions (accounting for 52% of the diet contributions), but also consumes a

Table 3. δ15NGlu, δ15NPhe and TP values (±SD) during LR and HR regimes. Pairwise comparisons within taxa from the same rainfall conditions and between rainfall

periods (in bold significant patterns) for the same taxa are also illustrated. Taxa sharing the same letter do not differ significantly (Tukey’s HSD test, P< 0.05).

δ15NGlu (‰) δ15NPhe (‰) TP TP pairwise comparison

LR HR LR HR LR HR LR HR LR vs HR

B 20.99±0.79 20.93±0.23 12.23±0.34 12.16±0.30 3.26±0.06 3.26±0.01 de e 0.9712

M 22.29±0.89 22.31±0.29 14.25±0.26 14.53±0.06 3.17±0.08 3.13±0.03 bcde cde 0.5415

S 22.12±0.23 20.69±0.08 13.47±0.13 11.87±0.03 3.25±0.01 3.27±0.01 de e 0.6698

Blv 20.61±0.5 20.77±0.14 11.35±0.68 13.79±0.80 3.33±0.02 3.03±0.09 e bcd < .0001

Slv 21.99±0.55 Na 13.98±1.06 Na 3.16±0.21 Na bcde Na Na

AM1 20.84±0.62 18.19±0.1 14.44±0.83 11.57±0.13 2.95±0.03 2.98±0.01 abcd bc 0.6193

AM2 19.38±0.01 20.45±0.08 13.85±0.7 14.31±0.52 2.84±0.09 2.92±0.08 abc b 0.135

AM3 20.04±0.7 15.4±0.4 14.24±0.13 10.67±0.45 2.87±0.07 2.73±0.01 ab a < .05

OR 16.11±0.85 Na 11.05±0.19 Na 2.78±0.09 Na a Na Na

https://doi.org/10.1371/journal.pone.0223982.t003

Fig 5. SIA biplots of adults P. macrosturtensis (B), P. mesosturtensis (M), P. microsturtensis (S), P. macrosturtensis larvae (Blv), S. axfordi (AM1), Y. sturtensis (AM2),

Cyclopoida sp. (C) and Harpacticoida sp. (H) under low rainfall (a) and high rainfall (b). AM1a and AM2a (in red): taxa showing the biggest depletion in δ13C values for

essential amino acids (phenylalanine and valine) across rainfall conditions; Blvb (in green): taxon showing the biggest drop in trophic position value (TP) between LR

and HR. Refer to S3 Table for δ13C and δ15N values of the taxa.

https://doi.org/10.1371/journal.pone.0223982.g005
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range of other organisms (Fig 8). During HR, Blv’s diet is dominated by the two amphipod

species, accounting for 79.6% of food sources (Fig 8). Overall, these results indicate changes in

amphipods (AM1 and AM2) diet preferences linked with different OM inputs, coupled with

enhanced species-specific predatory pressures from Blv under HR conditions.

Fig 6. Modelled contributions to the diet of amphipod S. axfordi (AM1) under a) LR and b) HR conditions. POC: particulate organic carbon, C: Cyclopoida sp.; H:

Harpacticoida sp. Medians and quartiles of each prey category are represented in the boxplot, see S3 Table for SIA δ13C and δ15N data. AM2 illustrated the same dietary

preferences as AM1 under both rainfall conditions.

https://doi.org/10.1371/journal.pone.0223982.g006

Fig 7. Contributions of P. microsturtensis adults’ diet for a) LR and b) HR. Diet sources: P. macrosturtensis (B), P. mesosturtensis (M), S. axfordi (AM1), Y. sturtensis
(AM2), Cyclopoida sp. (C) and Harpacticoida sp. (H). Medians and quartiles of each prey category are represented in the boxplot, see S3 Table for δ13C and δ15N bulk

data. P. macrosturtensis (B) and P. mesosturtensis (M) illustrated same trends of dietary contributions across rainfall periods (S4 Table). In these analyses, sister species P.

mesosturtensis (M) and P. microsturtensis (S) were considered as Paroster prey items for diet reconstruction of P. macrosturtensis (B), while contributions from Paroster
diet sources P. macrosturtensis (B) and P. microsturtensis (S) were used for P. mesosturtensis (M).

https://doi.org/10.1371/journal.pone.0223982.g007
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Discussion

Shifts in basal OM assimilation

δ13CEAA data suggest that the stygofaunal community at Sturt Meadows experienced a seasonal

shift in carbon flows during the wet season (HR). The overall tendency towards more 13C-

depleted δ13CVal and δ13CPhe values indicate general stygofaunal discrimination against 13C

sources in that season.

Three groups (OL, AM3 and S) showed a counter trend of 13C enrichment in the EAAs dur-

ing HR. Of these, the easiest to account for are the oligochaetes (OL) which also showed

increased abundances (χ2 = 6.7698, P< 0.05) of individuals ranging from 2 (LR1) and 1 (LR2)

to 21(HR) (S1 Table), indicating ideal conditions for the taxon during the wet season. As detri-

tovores, oligocheates may be expected to preferentially consume more degraded, and so 13C-

enriched, OM. The enrichment in S. bradfordae (AM3) and P. microsturtensis (S) is harder to

explain at this stage. The low abundance of S. bradfordae (AM3) means that, like the oligo-

chaetes, it was not included in the SIA analysis and less data is available. This taxon, together

with P. macrosturtensis larvae (Blv), Y. sturtensis (AM2) and water mites (OR), lacked statisti-

cally significant differences when δ13C values of EAA during LR are compared with those of

NEAA involved in the glycolytic cycle. Newsome et al. [50] indicated that δ13C values of

NEAA from diets of omnivorous animals reflect de novo synthesis but also dietary incorpora-

tions. Differential routing of macromolecules by consumers [55] are one possible contributor

to our results. However, to date isotopic routing hypotheses have been tested only in verte-

brates [30,56], with the study of metabolic pathways in aquatic invertebrates largely unex-

plored. Further CSIA investigations involving species-specific bio-assimilation processes

within the stygofaunal community are needed to provide a more accurate understanding of

the biochemical dynamics regulating this system.

In line with our general data trends, Hartland et al. [15], who reported consistent depletion

in δ13C stygofaunal values within OM-enriched groundwaters via sewage contamination, con-

cluded that stress-subsidy gradients in groundwaters trigger profound changes in stygofaunal

Fig 8. Stygofaunal contributions to the diet of P. macrosturtensis larvae for a) LR and b) HR. Diet sources: P. macrosturtensis (B), P. mesosturtensis (M), P.

microsturtensis (S) S.axfordi (AM1), Y. sturtensis (AM2), Cyclopoida sp. (C) and Harpacticoida sp. (H). During HR, diet source P. macrosturtensis (B) was discarded as

the Gelman-Rubin diagnostic reported values exceeding the corresponding upper confidence limits at the 95% confidence level. Medians and quartiles of each prey

category are represented in the boxplot, see S3 Table for δ13C and δ15N bulk data.

https://doi.org/10.1371/journal.pone.0223982.g008
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assemblages and have the potential to trigger shifts in feeding habits. Rainfall events trigger

OM inflows which constitute high quality carbon sources for aquatic biota in groundwaters

[16, 57].

Reiss et al. [26] demonstrated a strong link between nutrient inputs (mainly DOC) and

groundwater microbe functional and metabolic richness after a major flooding event. Unfortu-

nately, their methodology did not allow for corresponding macrofaunal trends to be identified.

Nonetheless, microbially-derived OM incorporation by stygofauna has been reported in a

number of groundwater ecology studies [16,21,58], and the biochemical importance of this

linkage is widely accepted.

A key role in the observed trends at Sturt Meadows is played by amphipods which, together

with copepods, are recognised as crucial actors in transferring OM to the upper stygofaunal

trophic levels [16]. Specialized trophic habits in amphipods include epigean predation [10],

detritivory [59], parasitism [60], biofilm grazing [61] and necrophagy [62]. Several studies

have reported high degrees of trophic opportunism [54] and plasticity [63], allowing amphi-

pods crucial shifts in feeding modes. Concurrently, niche partitioning has been addressed as a

key mechanism to reduce intraspecific competition in ecosystems shaped by scarce nutrient

availability [64]. However, our results do not show any conclusive evidence of epigean amphi-

pod niche partitioning, with amphipods S. axfordi (AM1) and Y. sturtensis (AM2) showing the

same dietary patterns. Overall, the isotopic data support the concept of opportunistic behav-

iours linked with changes in resource availability as a result of different rainfall regimes.

The HR event triggered substantial changes in the dietary proportions of S. axfordi (AM1)

and Y. sturtensis (AM2), with notable decreases in root input and increases in POC. The extent

of direct plant matter consumption by stygobionts reported in the literature–particularly by

amphipods, which are facultative shredders–is both site and species-specific. Jasinska et al.

[65] found that aquatic root mats were a key food source for a biodiverse cave fauna hosted by

a shallow groundwater stream in Western Australia. Conversely, Navel et al. [66], reported the

widely distributed amphipod species Niphargus rhenorhodanensis having preferential OM col-

lector/gatherer feeding habits. In another study, Simon et al. [67] suggested that wood inputs

played a role as indirect source of OM consumed by the ephilitic microbial mats which were

ultimately targeted by common Gammarus amphipods.

At Sturt Meadows, a plausible explanation for the patterns observed is that during the dry

season epigean amphipods rely on a more omnivorous diets where roots falling from the sur-

face, and associated microbial and fungal biota, provide a substantial food source. Conversely,

the wet season triggers inflows of replenished carbon (13C-depleted POC) that might fuel bio-

logical turnovers in microbiological activity, and POC-attached microflora may be ultimately

targeted by epigean amphipods. These assumptions are in line with the finding reported by

Brankvotis et al. [16], and support the concept that grazers play a crucial role in sustaining the

functional diversity in groundwaters. The importance of plant matter input during at least part

of the year is supported by a previous bulk SIA investigation at Sturt Meadows [40], which also

suggested that terrestrial sources of carbon, mainly DOC, reached the aquifer via percolation

and play a crucial role in energy flows within the system. It is worth noting that our δ13C values

of decarbonated sedimentary fractions (referred above as ‘sediment’) were less 13C-depleted

than those in other groundwater investigations ([68,69,70], and had ranges close those for dis-

solved organic carbon (DIC) in the region ([71,72,73]. Portillo et al. [74] reported karst micro-

bial growth induced by both carbonate precipitation and dissolution, suggesting the inclusion

of inorganic carbon within the estimation of global carbon budgets in groundwaters. In line

with this work, Chapelle [75] reported in situ DIC production as a result of microbial metabo-

lism involved in the dissolution of carbonate material in the black Creek aquifer (California,

USA). Our results suggest that carbonate assimilation and/or dissolution processes are likely
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to occur in the sedimentary deposits of the aquifer, transferring an inorganic carbon isotopic

fingerprint into the decarbonated and organic fractions. This can be tested in future by further

functional studies on the microbial community [76] at the site.

Copepods (C and H) showed high δ15N values compared to the rest of the stygofaunal com-

munity (S3 Table), suggesting alternative nitrogen sources linked to different microbial base-

lines. Copepods act as energy drivers in recycling nitrogen via ingestion of sediment and

attached bacteria [12], with ammonia (NH3), together with nitrates (NO3
-), being an essential

nutrient and energy source for subterranean microorganisms [77]. At Sturt Meadows aquifer,

where ammonia levels are considerably higher than the natural concentrations [38], prolifera-

tion of selectively grazed ammonia-oxidising bacteria (AOB) might have played a key role in

triggering the enriched δ15N values in copepods.

The present study is constrained by its focus on stygofauna and therefore cannot provide

direct evidence of microbially-derived ecological shifts. Future research needs to combine sty-

gofaunal and microbial investigations to create a complete picture of the ecosystem. CSIA and

functional genetic studies on microbes and copepods would also help define transitions from

microflora to stygofauna, a process that has been understudied so far. Recent promising inves-

tigations in surface terrestrial [34] and aquatic [78] environments suggest a design—carbon

fingerprinting—based on the incorporation of isotopic data into multifactorial mixing models

that allow specific elucidation of bacterial sources in diets. Overall, despite the methodological

challenges posed by groundwaters, isotopic data on stygofaunal carbon fluxes provides base-

line knowledge that help untangle the intricate biochemical dynamics regulating subsurface

environments.

Trophic interactions

Our data on nitrogen CSIA pinpointed two main trophic levels marked by a small but clear

separation between the top predators—adult beetles (B, M and S)—and primary consumer

amphipods (AM1, AM2 and AM3) under both rainfall conditions. Compared to other ecosys-

tems [29], the Sturt Meadows aquifer shows a very simple and truncated trophic web domi-

nated by omnivorous habits. This is consistent with previous assumptions [67] due to the lack

of primary producers [9] and scarce nutrient availability [79].

Within subterranean beetles, the smallest species P. microsturtensis (S), together with P.

macrosturtensis (B), sit at the top of the trophic chain during HR (Table 3). Under those condi-

tions, increased oxygen levels [38] may play a role in shaping changes in stygofaunal niche

occupation. Subterranean beetles’ body size has been found to drive differential physiological

responses to increased exoskeleton respiration rates (inversely proportional to the body size)

which ultimately affect the ability to allocate energy for breeding and foraging [80]. As the

smallest species P. microsturtensis (S) can adapt their metabolism more quickly than direct

competitor sister species P. mesosturtensis (M) under favourable conditions—such as HR

regimes–they are more likely to show shifts in ecological niche occupation [38]. This trend,

combined with the group feeding tendency of P. microsturtensis (S) beetles [40], indicates

higher efficiency in activating more intensified predatory strategies when compared to P.

mesosturtensis (M).

Dytiscidae beetle larval stages—commonly referred as ‘water tigers’—are ferocious carni-

vores [81] with extremely opportunistic feeding behaviours involving scavenging and canni-

balism [82]. At Sturt meadows, the third instar of blind P. macrosturtensis larvae (Blv) has a

considerably bigger head capsule—paired with elongated mouthparts—than adult stages (Fig

9). These morphological features are likely to provide ethological advantages for non-visual

predacious habits within light-less environments such as groundwaters [83]. This is consistent
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with stable isotope data from LR conditions positioning Blv at the top of the trophic web

(Table 3).

Overall, modelled dietary contributions of P. macrosturtensis larvae (Blv) indicated a prefer-

ence for amphipods (AM1 and AM2) coupled with residual cannibalism/scavenging (B, M and S)

and predation of copepods (C and H) (Fig 8). Under HR, P. macrosturtensis larvae (Blv) showed

the biggest drop in TP compared to LR (TPLR-HR = -0.3), which can be explained by an increased

predatory focus on amphipods, and reduced feeding on secondary consumer sister species.

Previous work on surficial Dytiscidae larval stages published by Inoda et al. [84] stressed

the importance of prey recognition through smell. According to their results, prey density was

found not to be a key factor in shaping feeding behaviours, and self-other recognition played a

role in group feeding. Overall, these findings indicated prevention of cannibalism through

scent recognition. In groundwater, with total darkness and high influence of OM inputs on

population dynamics [85,86], these patterns are likely to be strengthened. We suggest that the

shifts in Blv predation seen in our results are dictated by a combination of chemical recogni-

tion and increased likelihood of encountering prey (amphipods) driven by enhanced resource

availability (OM) during HR periods.

The role of bottom-up vs top-down forces in natural communities has been a cornerstone

issue in the field of trophic ecology since the first empirical investigations [87]. Despite the

controversy generated by the debate, there is now consensus that both forces act simulta-

neously on populations. This reinforces the need for whole system studies considering the

interaction between heterogeneous (biotic and abiotic) forces and their effect on communities

[88,89,90].

Our study, in line with a number of other investigations in the field [26,91] confirms that

rainfall events via water advection are key drivers in defining energy flows and ecological

Fig 9. Comparisons between adult and larvae (whole body and head capsule) of P. macrosturtensis (a and b), P. mesosturtensis (c and d) and P. microsturtensis (e and f).

https://doi.org/10.1371/journal.pone.0223982.g009
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patterns within resource-limited environments. We suggest that OM-driven bottom-up regu-

lations, increasingly accepted as driving factors shaping population dynamics in aquifers [92],

shaped the shifts in feeding behaviours among amphipod taxa in the calcrete. However, despite

the beneficial conditions for primary consumers triggered by increased nutrient availability

(i.e. microbial biofilms) and better environmental settings (i.e. increased oxygen, [38]), a

decrease in amphipod populations under HR indicates the existence of additional ecological

factors.

Top-down forces (i.e. natural predators), widely studied in surface aquatic ecosystems

[93,94], have hardly been addressed in groundwater. Previous genetic investigations at Sturt

Meadows pinpointed predatory pressures from beetles on amphipods and copepods [95] and

reported a lack of trophic niche partitioning among the Paroster species. In another study,

Hyde [96] reported evidence from metagenomics data suggesting that subterranean blind bee-

tles at Sturt Meadows feed on both prey invertebrates and their sister species. Our isotope

results support these hypotheses, indicating opportunistic predaceous habits in the calcrete,

mixed with scavenging/cannibalism. However, substantial uncertainty remains about the mag-

nitude of interspecific predatory pressures among Paroster sister species, and further species-

specific lab experiments are needed to investigate these ethological aspects.

Fig 10. Bar chart graphs comparing dry season abundances (as the average value of LR1 and LR2) with HR conditions for top predators (beetles B, M and S) and

key prey items (amphipods primary consumers AM1, AM2 and AM3). See S1 Table for detailed abundance data. None of the abundances of these taxa changed

significantly between LR and HR. See Saccò et al. [38] for detailed statistical analyses across LR1, LR2 and HR.

https://doi.org/10.1371/journal.pone.0223982.g010
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Biochemical functional role interpretation coupled with abundance data suggests that bot-

tom-up population dynamics are counterbalanced in the system by top-down forces. Increased

numbers of top predators (adult beetles B, M and especially S) were paired with a decrease of

key prey items (amphipods AM1, AM2 and AM3) when HR is compared with the dry season

(LR1 and LR2) (Fig 10).

In light of the dynamics shown by our isotope data, we suggest that the reported shift in

amphipods (AM1 and AM2) carbon incorporation during HR might have triggered changes

in their ecological behaviour, exposing them to increased predatory pressures from the top

predator Paroster beetles (B, M and S). However, given the high degree of opportunistic behav-

iour reported by stygofauna [14], further investigations on species-specific ethological dynam-

ics would be helpful to infer community dynamics.

The number of third instar dytiscidae larvae ‘Blv’ did not vary across sampling campaigns,

suggesting differential ecological niche occupations. Previous investigations on Paroster larvae

detected three instars before pupating, with the first two occupying a reduced proportion of

their lifetime [83]. Future investigation of early stages of larval developments are needed to

establish if potential population blooms (i.e. mass reproduction) are linked with contrasting

recharge periods.

Conclusions

The application of CSIA and SIA allows elucidation of the trophic dynamics shaping stygofau-

nal communities in an arid zone calcrete aquifer. Rainfall acts as a driver in regulating both

top down and bottom up changes in dietary habit. Subterranean invertebrate population

dynamics are notoriously hard to investigate due to sampling obstacles and a current lack of

knowledge around stygofaunal biological cycles [7,36]. However, our isotopic results allow a

greater insight into the food web dynamics and the biogeochemical forces that shape them

than has previously been possible. Further investigations involving higher numbers of samples

from more biodiverse systems or complex trophic assemblages (i.e. alluvial aquifers) will help

refine the approach. The incorporation of qualitative analyses such as DNA metabarcoding

would also complement quantitative isotopic methods to provide crucial insights into pro-

cesses (i.e. cannibalism) and key driving forces (i.e. niche partitioning) that are hard to detect

via one method alone. Lastly, investigation of nitrogen sources and their isotopic changes

would open up the nitrogen data collected to interpretation beyond trophic position.

Groundwater environments are fundamentally important to ecosystems, communities and

industry, and a robust understanding of their ecosystem dynamics is essential to accurately

assess environmental impacts, whether anthropogenic, or climatic. Isotopic data, especially if

combined in multidisciplinary studies with other parameters [22] has a key role to play in elu-

cidating previously hard to investigate function within these cryptic systems.
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