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Improvements to the Sliding DFT Algorithm 

by Richard Lyons and Carl Howard (July 2021) 

 

This article presents two networks that improve upon the behavior and performance of previously 

published sliding DFT (SDFT) algorithms. 

 

The proposed networks are structurally simple, computationally-efficient, guaranteed stable 

networks used for real-time sliding spectrum analysis. The first real-time network computes one 

spectral output sample, equal to a single-bin output of an N-point discrete Fourier transform (DFT), 

for each input signal sample. The second real-time network is frequency-flexible in that its analysis 

frequency can be any scalar value in the range of zero to one half the input data sample rate 

measured in Hz. 

https://doi.org/10.1109/MSP.2021.3075416
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Background 
 

The process of sliding spectrum analysis can be defined as successive z-transforms of N consecutive 

samples of an x(n) input sequence evaluated at an arbitrary point zo on the z-plane. Figure 1(a) shows 

a general sliding spectrum analysis network, comprising a specialized comb filter followed by a 

complex resonator, that computes those sliding (successive) z-transforms. Figure 1(b) shows the 

network's z-plane pole/zero locations when, for example, zo = Mej and N = 8. The network's pole is 

located a z = zo, whose magnitude is less than one, where angle  is measured in radians. 
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                        FIGURE 1. General N-sample sliding z-transform: (a) network structure; 

                                         (b) z-plane pole/zero locations for zo = Mej and N = 8. 

 

The time-domain difference equation and the z-domain transfer function of the Figure 1(a) network 

are: 
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The development of the Figure 1(a) network and derivation of (1) are given in Appendix A. The 

network in Figure 1(a) is the foundation upon which we will build our proposed SDFT networks. 

 

The Sliding DFT 
 

Of particular interest in sliding spectrum analysis is the sliding discrete Fourier transform (SDFT). 

The SDFT algorithm is an efficient spectrum analysis technique when only a few frequency bin 

outputs, on a real-time basis, of an N-point DFT are desired [1,2]. The primary application of the 

SDFT is to detect and estimate the instantaneous peak-to-peak amplitude (instantaneous magnitude 

envelope) of a single-frequency sinusoid contained within an input signal. The phase angles of 
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SDFT output samples enable the estimation of the instantaneous phase, or time delay, of an input 

sinusoid. (An N-point fast Fourier transform (FFT) is not appropriate for such applications because it 

computes N spectral samples where most of those samples are discarded, as being unwanted.) The 

SDFT, whose DFT size N is not restricted to be an integer power of two, is real-time in the sense that 

a new complex output spectral sample is computed for each new input signal sample. 

 

To compute SDFTs we modify the Figure 1(a) network by setting zo = ej2k/N, where frequency 

variable k is an integer in the set k  {1,2,...,N–1}, to produce the traditional integer k SDFT network 

shown in Figure 2(a). (When k is an integer the Figure 1(a) comb's coefficient zo
–N = e–j2k is equal 

to unity.) Sequence Xk(n) is an N-point DFT's kth-bin spectral output sequence computed on a 

sample-by-sample basis. 

 

 

                    FIGURE 2. Traditional marginally stable, N-sample, integer k SDFT: (a) network  
                                     structure; (b) z-plane pole/zero locations for N = 8 and k = 1; 
                                     (c) frequency magnitude response. 
 

 

Figures 2(b) and 2(c) show the traditional SDFT network's z-plane pole/zero locations and frequency 

magnitude response when, for example, k = 1 and N = 8. The network's single pole is located on the 

unit circle at an angle of 2k/N radians (corresponding to a cyclic frequency of kfs/N Hz) as shown in 

Figure 2(b). The frequency magnitude response in Figure 2(c), where the k = 0 frequency (DC) is 

located in the center of the frequency axis, is identical to the frequency magnitude response of the 

k = 1 bin of a conventional 8-point DFT. 
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The Figure 2 traditional SDFT network's difference equation is: 
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and its z-domain transfer function is: 
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The details of the traditional SDFT's properties and behavior are found in [1,2]. 
 

The Figure 2 network is called “marginally stable” due to its pole being located on the unit circle 

only when the network's complex coefficient is numerically infinitely precise. When that coefficient 

is quantized by rounding and represented by a finite number of binary bits the pole will migrate 

slightly inside or outside the unit circle and may cause the network to become unstable. Our 

proposed SDFT network, described in the next section, avoids that potential instability problem. 

 

Proposed Guaranteed Stable Integer k SDFT 
 

We develop our proposed guaranteed stable integer k SDFT by converting the Figure 2(a) traditional 

SDFT's complex resonator into a 2nd-order real-valued resonator. To do so we multiply the transfer 

function numerator and denominator in (4) by (1–e–j2k/Nz–1) as: 
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The network corresponding to transfer function (5) is shown in Figure 3(a). 
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                  FIGURE 3. Proposed guaranteed stable, N-sample, integer k SDFT: (a) network  
                                   structure; (b) z-plane pole/zero locations for N = 8 and k = 1; 
                                   (c) frequency magnitude response. 
 

 

In Figure 3 we see the proposed network's real resonator has conjugate poles lying on the z-plane's 

unit circle as shown in Figure 3(b) where the number 2 near the lower pole indicates dual zeros at 

z = e–j2k/N. The second of those dual zeros, produced by the feedforward center stage of the network, 

cancels the pole at z = e–j2k/N . Identical to that of the Figure 2 network, the Figure 3 network's time-

domain impulse response is an N-sample complex exponential containing exactly k cycles. Thus the 

two networks have identical frequency responses. 

 

Quantization of the center term coefficient in the denominator in (5) will cause the real resonator's 

poles to shift, as will be discussed later, slightly from their desired positions along the unit circle. 

However, what is not widely known is that regardless of coefficient quantization the poles will 

always lie exactly on the unit circle guaranteeing resonator numerical stability. (A proof of this 

important fact is given in Appendix B.) So the proposed Figure 3 network produces the same 

spectral output samples as a single bin of an N-point DFT, and the venerable Goertzel algorithm [4], 

with the additional advantage that its output spectral samples are updated for each new input signal 

sample. 
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Comparison With Previously Published SDFT Algorithms 
 

For completeness, we now compare our proposed Figure 3 SDFT network to several previously 

published sliding spectrum analysis networks.  

 

Due to their use of complex resonators such as the resonator shown in Figure 2, to avoid potential 

instability problems [1-3] suggest replacing their complex resonators' feedforward coefficient with 

rej2k/N, where scalar r is close to but slightly smaller than one. This r damping factor forces their 

networks' single SDFT pole to be located just inside the unit circle. While ensuring numerical 

stability, unfortunately the r damping factor introduces a small error in the SDFT output that 

accumulates as each new Xk(n) output sample is computed. In addition, the SDFT in [3] requires 

phase correction making it much less computationally efficient than our proposed SDFT network in 

Figure 3. 

 

Several sliding spectrum analysis algorithms have been proposed that compute a single-bin DFT 

output sample for every N input samples [5-7]. Unlike our proposed Figure 3 network, those 

algorithms are not strictly real-time because they do not compute one output spectral sample for each 

input signal sample. 

 

A sliding Goertzel algorithm presented in Figure 2(a) in [8] uses a real resonator and is guaranteed 

stable. However, it computes real-time integer k single bin DFT output samples having correct 

magnitudes but incorrect phases. Adding a phase correction stage to that algorithm makes it less 

computationally efficient than our proposed SDFT network in Figure 3. (Correct phase measurement 

is mandatory in applications that estimate the time delay between two signals [9].)  

 

A modulated SDFT (mSDFT) network was presented in Figure 3 of [10]. That network frequency 

translates the N-delay comb stage's output spectral energy, originally centered at kfs/N Hz, down to 

zero Hz and implements a complex resonator where exact pole/zero cancellation occurs at z = 1 on 

the z-plane. While that network is guaranteed stable, it is less computationally efficient than is our 

proposed SDFT network in Figure 3. 

 

A previously published sliding spectrum analysis network cleverly implements a bank of N paths 

where each path is equivalent to the complex resonator in Figure 2 tuned to a frequency of 2k/N 

radians/sample [11,12]. The value for k in each path are one of the integers in the set k  {1,2,...,N–

1}. This network, called an “observer-based recursive SDFT” (oSDFT), is advantageous in that it 
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requires no delay-line comb stage and can be made guaranteed stable. The oSDFT computes real-

time spectral outputs for all N bins of an N-point DFT and is best used when we need to 

simultaneously compute the outputs of multiple DFT bins. Because its paths cannot be pruned the 

oSDFT network is not computationally efficient in our desire to compute a single-bin DFT output. In 

the next section we quantify various guaranteed stable SDFT networks' computational requirements. 

 

Proposed Integer k SDFT Computational Efficiency 
 

For computing real-time single kth bin samples of an N-point DFT our proposed Figure 3 guaranteed 

stable integer k SDFT network is computationally more efficient compared to similar real-time, 

guaranteed stable, integer k SDFT networks discussed in this article. That comparison, for real-

valued input signals, is presented in Table 1. 

 

   Table 1. Guaranteed stable N-point integer k SDFT  

                  computational complexity per real input sample 

SDFT Network: Real 

Multiplies: 

Real 

Additions: 

Real 

Divides: 

Reference [8] 

magnitude only, no 

phase correction 

5 4 0 

Reference [8] with 

phase correction 

9 6 0 

Reference [8] 10 7 0 

Reference [11]  4N 6N-1 2 

Proposed Figure 3 4 6 0 
 

 

A Windowed Integer k SDFT 
 

It's worth noting that to reduce the inherent spectral leakage (high spectral sidelobe levels) of the 

N-point DFT outputs of our Figure 3 SDFT, we can perform the equivalent of time-domain 

windowing of an input signal by way of frequency-domain convolution using three individual SDFT 

networks. That process is described in [1].  

 

Sliding Spectrum Analysis for a Non-integer k Analysis Frequency 
 

A limitation of the Figure 3 SDFT network is that k, the N-point DFT frequency bin index, must be 

an integer. However, often there is interest in measuring the spectral value of an input signal of 

interest whose frequency does not equal a DFT analysis frequency determined by an integer value of 

k. For example, rotating machinery can experience harmful gearbox or bearing vibrations or internal 

combustion engines can generate objectionable audio exhaust noise at variable frequencies. It is 

often desirable to evaluate the spectral magnitude at the exact vibration frequency, which often does 
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not correspond to an integer value of k. As such we now propose networks that compute a single 

spectral sample of the discrete-time Fourier transform (DTFT) of an N-sample input signal. The 

frequency of the computed spectral sample is a non-integer value of frequency variable k. 

 

To perform sliding spectrum analysis for an analysis frequency not restricted to be an integer 

multiple of fs/N Hz, we modify the Figure 1(a) network by setting zo = ej2k/N, where scalar k is any 

value in the range 0 ≤ k < N, to produce the network shown in Figure 4(a). 

 

 

                FIGURE 4. Marginally stable, N-sample, non-integer k sliding spectrum analysis:  
                                 (a) network structure; (b) z-plane pole/zero locations for N = 8 and 
                                 k = 0.8; (c) frequency magnitude response. 
 

 

The complex coefficient in the network's comb stage provides the desired rotation of the angles of 

the comb's N z-plane zeros. The z-domain transfer function of the Figure 4(a) network is: 
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The Figure 4(a) non-integer k sliding spectrum analysis network, with its single pole on the unit 

circle, has the same undesirable marginal stability characteristics as the integer k SDFT in Figure 2.  
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We develop our proposed guaranteed stable non-integer k sliding spectrum analyzer by converting 

the Figure 4(a) complex resonator into a 2nd-order real-valued resonator. We do that by multiplying 

the transfer function numerator and denominator in (6) by (1–e–j2k/Nz–1) as: 
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The network corresponding to transfer function H5(z) is shown in Figure 5(a). 

 

 

                FIGURE 5. Proposed guaranteed stable, N-sample, non-integer k sliding spectrum analysis:  
                                 (a) network structure; (b) z-plane pole/zero locations for N = 8 and k = 0.8; 
                                 (c) frequency magnitude response. 
 

The proposed Figure 5 real-time non-integer k SDFT requires 8 real multiplies and 9 real additions 

per input sample. It's worth noting that when k is an integer in Figure 5(a) that network then becomes 

the integer k SDFT network in Figure 3(a). 

 

Again for completeness, we mention a previously published Goertzel-like algorithm that computes 

non-integer k spectral samples [13]. That algorithm computes a single non-integer k output spectral 

sample for each block of N input samples. As such, unlike our proposed Figure 5(a) network, it does 

not have the desired real-time behavior because it does not compute one output spectral sample for 

each input signal sample. 
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Effects of Quantized Coefficients 
 

As mentioned earlier, quantization of the 2cos(2k/N) feedback coefficient in the proposed Figure 3 

and Figure 5 real resonators will cause the resonators' poles to shift slightly along the unit circle 

from their desired positions on the z-plane's unit circle. The amount of undesired angular shift of a 

quantized pole is predictable, and is inversely proportional to the number of binary bits used to 

represent the feedback coefficients. 

 

Let's assume a real resonator's feedback coefficient, C = 2cos(2k/N), corresponds to a desired 

resonator center frequency of fdes Hz and places a positive-frequency pole on the z-plane's unit circle 

at an angle of des radians. If we quantize C, by way of rounding C to a fixed number of binary bits, 

to produce a quantized feedback coefficient of Cq, the resonator's actual positive-frequency pole 

location will be the radian angle act defined by: 

 

   act q
1 )cos ( /2C   .                                                                                             (8) 

 

Using (8) we state that a quantized-coefficient real resonator's actual resonant frequency, fact, is 

defined by: 
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where fs is the input signal sample rate in Hz. 

 

Estimating the Numerical Accuracy of an Integer k SDFT 
 

The long-term numerical accuracy of any given SDFT network depends on the network's structure, 

the network's resonant frequency, the amount of coefficient quantization, and the length of the 

network's input signal sequence. Thus to fully characterize the numerical accuracy of an SDFT 

network is a daunting task. 

 

However, it is straightforward to estimate the numerical accuracy of a single specific integer k SDFT 

network design. We perform that estimation by applying a unity-amplitude sine wave, having 

hundreds of thousands or millions of samples, to a previously designed N-point integer k SDFT 

network having a value of k corresponding to the input signal's frequency. For an ideal SDFT 

network, after the initial transient N output samples all the remaining magnitude output samples will 

be unity-valued and the unwrapped output phase samples will increase linearly. For an actual SDFT 
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network we monitor the network's final magnitude output samples to measure how much their 

magnitudes deviate from a value of one and examine how the unwrapped output phase samples 

deviate from linearity. 

 

Integer k and Non-integer k SDFT Signal Tracking Examples 
 

Our first signal amplitude tracking example demonstrates the signal tracking capability of the 

proposed integer k SDFT network given in Figure 3. Figure 6(a) shows a noise-free 200-sample x(n) 

time-domain input sine wave, having one cycle over eight samples (a frequency of fs/8 Hz), whose 

peak-peak amplitude fluctuates over time. When we set the DFT size to N = 8 and set the DFT 

analysis frequency to k = 1 (1·fs/8 Hz) the input sinusoid's frequency is then centered at the DFT's 

k = 1 bin. We note that the value of k is equal to the number of input sinusoidal cycles used in the 

SDFT processing. 

 

 

                  FIGURE 6. Integer k SDFT network signal tracking example: (a) input sine wave;  
                                   (b) Figure 3 network magnitude output samples for N = 8 and k = 1. 
 

Figure 6(b) shows how the proposed integer k SDFT's |Xk(n)| output magnitude samples accurately 

track the input sinusoid's fluctuating peak amplitude. Those samples were divided by N/2 in Figure 

6(b) for easy comparison with Figure 6(a). 

 

Our second example illustrates the signal tracking capability of the proposed non-integer k SDFT 

network given in Figure 5. Figure 7(a) shows a noise-free 200-sample x(n) time-domain input sine 
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wave, having one cycle over ten samples (a frequency of 0.8fs/8 Hz), whose peak-peak amplitude 

fluctuates over time. When we set the DFT size to N = 8 and set the DFT analysis frequency to 

k = 0.8 (0.8fs/8 Hz) the input sinusoid's frequency is then centered at the DFT's scalar frequency of 

k = 0.8. 

 

 

                FIGURE 7. Non-integer k SDFT network signal tracking example: (a) input sine wave;  
                                  (b) Figure 5 network magnitude output samples for N = 8 and k = 0.8;  
                                  (c) Figure 5 network output samples for N = 32 and k = 3.2. 
 

Figure 7(b) shows how the proposed non-integer k SDFT's |Xk(n)| output magnitude samples track 

the input sinusoid's fluctuating peak amplitude. Those samples were divided by N/2 in Figure 7(b) 

for easy comparison with Figure 7(a).  

 

Figure 7(b) also shows the output magnitude fluctuations inherent in all real-time DFT (including 

traditional non-sliding DFT) magnitude tracking when the frequency of a single-frequency real-

valued target input sinusoid is not located at a DFT's bin center. In this signal tracking example those 

magnitude fluctuations are produced because a real-valued input sine wave’s negative-frequency 
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spectral component, located at k = –0.8 in Figure 8(a), does not reside at a sinc magnitude response 

zero (null) as it did with the integer k = 1 scenario in Figure 3(c). And the insufficiently-attenuated 

k = –0.8 spectral component contaminates the output of the Figure 5 SDFT network. 

 

Those unwanted non-integer k SDFT signal magnitude tracking fluctuations will also occur when the 

input signal is periodic containing a fundamental tone and its harmonics. That is because the input 

harmonics will not reside at a sinc magnitude response zero as they would have with the integer 

k = 1 scenario in Figure 3(c). 

 

 

                FIGURE 8. Proposed non-integer k SDFT network frequency magnitude response and  
                                 real-valued target input sine wave spectral component locations at ±k as  
                                 shown by the vertical dashed lines: (a) for N = 8 and k = 0.8; (b) for N = 32  
                                 and k = 3.2. 
 

Keeping in mind that the value k is equal to the number of input sine wave cycles used in our SDFT 

processing window, we can increase the number of cycles used and reduce the undesirable output 

magnitude fluctuations by increasing k and N by a common factor while keeping the ratio k/N 

unchanged. Increasing k and N by a factor of four compresses the Figure 8(a) sinc magnitude 

response and results in improved attenuation of the unwanted negative-frequency k = –3.2 spectral 

component as shown in Figure 8(b). Setting N = 32 and k = 3.2 produces a non-integer k SDFT 

output having reduced magnitude fluctuations as shown in Figure 7(c). 

 

It is worth mentioning that if we can set N freely, it is advisable to choose N so that the 

corresponding k number—and thus the periods of the signal from which the DFT is computed—is as 

close to an integer as possible. This will minimize the distance between the zeros of the sinc 
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frequency response and attenuate unwanted harmonics of the signal, including its negative-frequency 

components. 

 

Other than increasing k and N, at the cost of additional computations alternate processing techniques 

can be effective in reducing the unwanted non-integer k SDFT output magnitude fluctuations. Those 

techniques are: 1) performing simple unity-gain lowpass filtering of the Figure 7(b) output 

magnitude samples; 2) implementing time-domain windowing of the input signal by means of 

frequency-domain convolution [1]; 3) if a real-valued input signal is a single tone we can convert 

that input signal to a positive-frequency only analytic signal, prior to SDFT processing, using a 

Hilbert transform network [14] (note that unlike the other listed options, this Hilbert option will not 

reduce the fluctuations caused by additional input frequency components); and 4) using the oSDFT 

networks in [11,12] will eliminate unwanted signal magnitude tracking fluctuations because their 

sinc frequency functions stretch rather than shift to provide complete attenuation of a real-valued 

input signal’s negative-frequency spectral components and a periodic input signal’s harmonics. 

 

Our third signal amplitude tracking example involves monitoring the exhaust sound pressure of an 8-

cylinder diesel engine where Figure 9(a) shows the output of a microphone located near the engine's 

exhaust pipe. Our goal is to apply an adaptive quarter wave-length tube to the exhaust pipe to reduce 

the peak-peak amplitude of that exhaust sound pressure signal. 

 

An adaptive quarter wavelength tube is a duct of variable length connected to the engine's main 

exhaust duct by a T-junction. The length of the tube is manually adjusted until it corresponds to one-

quarter of the acoustic wavelength of interest, which causes the amplitude of the exhaust sound 

pressure to be reduced. 

 

Because each engine cylinder fires once every two crankshaft revolutions in a four-stroke engine, 

when the crankshaft speed is 1600 rpm (1600/60 revolutions/second) the main cylinder firing 

frequency is (1600/60)*(8/2) = 106.67 Hz. As such, the primary spectral component of the 

microphone signal in Figure 9(a) is a 106.67 Hz sinusoid. After digitizing the microphone signal at a 

sample rate of 1600 Hz, we use an SDFT to monitor the 106.67 Hz signal's amplitude as we adjust 

the length of the quarter-wavelength tube to minimize the exhaust sound pressure at 106.67 Hz. 
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                FIGURE 9. Diesel engine exhaust signal tracking example: (a) microphone output  
                                 signal; (b) 95-point DFT spectral magnitude of the digitized microphone signal;  
                                (c) N = 95 and non-integer k = 6.33 SDFT output magnitude samples versus time. 
 

 

Let's assume that for system design reasons we're restricted to set N = 95. With N = 95, Figure 9(b) 

shows the N-point DFT spectral magnitude of the microphone signal." In that figure we see that our 

high-level 106.67 Hz exhaust signal lies between the DFT bins of k = 6 (101.05 Hz) and k = 7 

(117.89 Hz). The DFT's non-integer frequency variable k for the 106.67 Hz tone is 

 

   
s

106.67 106.67 95

1600
6.33

N
k

f



  .                                                                     (10) 

 

Hence, we are compelled to use the Figure 5 non-integer k SDFT network, with k = 6.33 and N = 95, 

to track the 106.67 Hz exhaust signal. 
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Figure 9(c) shows the magnitude of the exhaust sound pressure at 106.67 Hz when the length of the 

adjustable quarter-wavelength tube starts at its shortest length at time = 0 seconds, to simulate an 

exhaust system with no quarter-wavelength tube installed, and is gradually extended in length. The 

figure shows that at time 130 seconds the quarter-wavelength tube reduced the exhaust sound 

pressure by roughly 13.3 dB—which is a good result. 

 

Although the non-integer k SDFT in this third example was not implemented in an automatic control 

system, that algorithm would be beneficial in such a feedback system where the engine exhaust 

signal is fed back through a non-integer k SDFT network whose output controls a mechanical 

actuator that adjusts the quarter wave tube length in real time as the engine speed varies. Having a 

non-integer k SDFT in the feedback loop would be far more computationally efficient than using an 

N-point FFT algorithm in the feedback loop. 

 

Conclusions 
 

We described the general notion of sliding spectrum analysis and showed the development of the 

currently most popular marginally stable integer k sliding DFT algorithm presented in Figure 2. Next 

we proposed the computationally efficient integer k sliding DFT network shown in Figure 3. That 

network computes a standard N-point DFT's kth bin output on a real-time sample for sample basis. 

Next we proved the proposed Figure 3 network to be guaranteed stable for all coefficient 

quantization scenarios, and compared the network's characteristics to previously published sliding 

DFT algorithms. Next we proposed the real-time, computationally efficient, guaranteed stable, non-

integer k sliding discrete-time Fourier transform (DTFT) network shown in Figure 5 whose 

frequency parameter k can be any real number in the range 0 ≤ k < N. Finally we provided three real-

time signal tracking examples using our proposed integer k and non-integer k SDFT algorithms. 
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Appendix A: Derivation of (1) 
 

The process of sliding spectrum analysis is based on successive z-transforms of N consecutive 

samples of an x(n) input sequence evaluated at an arbitrary point zo on the z-plane. For example, the 

first and second N-sample sliding z-transforms of an x(n) sequence evaluated at z = zo can be defined 

as: 

 

   
o o o o o

0 1 2 1( ) ( ) ( 1) ( 2) ( 1) N
zX q x n z x n z x n z x n N z            , and         (A-1)  

 

   
o o o o o

0 1 2 1( 1) ( 1) ( 2) ( 3) ( ) N
zX q x n z x n z x n z x n N z             .          (A-2)  

 

Multiplying both sides of (A-2) by zo
-1 and substituting (A-1) into the right side of the resulting 

product allows us to write: 

 

   
o oo o ]( 1) [ ( ) ( ) ( ) N

z zX Xq z q x n x n N z     .                                                       (A-3)  

 

Finally, with no loss in generality, we can modify (A-3)'s time indexing so the x(n) input samples 

and the Xzo(q) output samples use the same time index n. That modification yields our desired 

recursive sliding z-transform of an N-sample x(n) sequence evaluated at z = zo as: 

 

   
o oo o ]( ) [ ( 1) ( ) ( )N

z zX Xn z n x n z x n N    .                                                       (A-4)  

 

 
Appendix B: Proof of Real Resonator Guaranteed Stability 
 

To show the 2nd-order real resonator stage in Figure 3(a), having conjugate poles residing on the 

z-plane's unit circle, to be guaranteed stable we proceed as follows. For mathematical convenience, 

we multiply the real resonator's transfer function numerator and denominator by z2 as: 

 

   
2 2

Res 1 2 2 2

1
( )

1 2cos(2π / ) 2cos(2π / ) 1

z z
H z

k N z z z z k N z    
  .                      (B-1) 

 

If we let cos(2k/N) = p then (B-1)'s denominator becomes: 

 

   z2 – 2pz + 1.                                                                                                            (B-2) 
 

The roots of the (B-2) polynomial, the z-plane locations of the resonator's poles, are: 

 

    2 2

2
2

2

4 4
1 1

p p
z p p pp

 
       .                                            (B-3) 
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Because p is in the range –1 ≤ p ≤ 1, then p2 ≤ 1 and the quantity under the square root sign in (B-3) 

is always zero or negative allowing us to rewrite (B-3) as: 

 

   21z j pp   .                                                                                                  (B-4) 

 

Thus the magnitudes of both roots of polynomial (B-2) are 

 

    2 21 1 1z p p                                                                                      (B-5) 

 

so the Figure 3 real resonator's conjugate pole magnitudes are always unity and the poles lie exactly 

on the z-plane's unit circle providing guaranteed stability. 


