Lab Resource: Multiple Cell Lines

Generation of four iPSC lines from peripheral blood mononuclear cells (PBMCs) of an attention deficit hyperactivity disorder (ADHD) individual and a healthy sibling in an Australia-Caucasian family

Janette Tonga,⁎,1, Kyung Min Leea,1, Xiaodong Liub,c,d, Christian M. Nezgerb,c,d, Prasidhee Vijayakumare, Ziarih Hawia, Ken C. Pangf,g,h,i, Clare L. Parishj, Jose M. Polo,c,d, Mark A. Bellgrovea

a Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Wellington Road, Clayton, Victoria, Australia
b Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia
c Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia
d Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
e Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
f Murdoch Children’s Research Institute, Parkville, VIC, Australia
g Royal Children’s Hospital, Melbourne, VIC, Australia
h Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
i Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
j Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia

ABSTRACT

Peripheral blood mononuclear cells were donated by a male teenager with clinically diagnosed attention deficit hyperactivity disorder (ADHD) under the Diagnostic and Statistical Manual of Mental Disorders IV criteria and his unaffected male sibling. Induced pluripotent stem cells were developed using integration-free Sendai Reprogramming factors containing OCT4, SOX2, KLF4, and c-MYC. All four iPSC lines displayed pluripotent cell morphology, pluripotency-associated factors at the DNA and protein level, alkaline phosphatase enzymatic activity and a male karyotype of 46, XY. All lines had capacity for in vitro differentiation into all the three germ layers. All were negative for Mycoplasma.

Resource table

<table>
<thead>
<tr>
<th>Unique stem cell lines identifier</th>
<th>Alternative names of stem cell lines</th>
<th>Institution</th>
<th>Contact information of distributor</th>
<th>Type of cell lines</th>
<th>Origin</th>
<th>Clonality</th>
<th>Method of reprogramming</th>
<th>Multiline rationale</th>
<th>Gene modification</th>
<th>Type of modification</th>
<th>Associated disease</th>
<th>Gene locus</th>
<th>Method of modification</th>
<th>Name of transgene or resistance</th>
<th>Inducible/constitutive system</th>
<th>Date archived/stock date</th>
<th>Cell line repository/bank</th>
<th>Ethical approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MCCCC001-A</td>
<td>N/A</td>
<td>Monash Institute of Cognitive and Clinical Neurosciences, Melbourne, Australia</td>
<td>Dr Janette Tong (<a href="mailto:janette.tong@monash.edu">janette.tong@monash.edu</a>)</td>
<td>iPSC</td>
<td>Human</td>
<td>Clonal</td>
<td>CytoTune®-iPS 2.0 Sendai Reprogramming Kit</td>
<td>ADHD-affected and unaffected male pair</td>
<td>NO</td>
<td>N/A</td>
<td>Attention deficit hyperactivity disorder</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>August 7, 2018</td>
<td>Details for all cell lines can be assessed from <a href="https://hpscreg.eu/cell-line/MCCCN001-1">https://hpscreg.eu/cell-line/MCCCN001-1</a>; <a href="https://hpscreg.eu/cell-line/MCCCN001-2">https://hpscreg.eu/cell-line/MCCCN001-2</a>; <a href="https://hpscreg.eu/cell-line/MCCCN002-1">https://hpscreg.eu/cell-line/MCCCN002-1</a>; <a href="https://hpscreg.eu/cell-line/MCCCN002-2">https://hpscreg.eu/cell-line/MCCCN002-2</a></td>
<td>Monash University Human Research Ethics Committee, CF15/2566 – 2015001048</td>
</tr>
<tr>
<td>2. MCCCC001-B</td>
<td></td>
</tr>
<tr>
<td>3. MCCCC002-A</td>
<td></td>
</tr>
<tr>
<td>4. MCCCC002-B</td>
<td></td>
</tr>
</tbody>
</table>

⁎ Corresponding author.
E-mail address: janette.tong@monash.edu (J. Tong).
1 Joint first authorship.

https://doi.org/10.1016/j.scr.2018.11.014
Received 13 September 2018; Received in revised form 14 November 2018; Accepted 26 November 2018
Available online 19 December 2018
1873-5061/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
1. Resource utility

The pathophysiology of attention deficit hyperactivity disorder (ADHD) is poorly understood due to a lack of cellular models that faithfully represent the clinical ADHD features, and a limited availability of live tissues for long-term mechanistic studies. We generated iPSCs from a patient and an unaffected sibling to understand the pathophysiology of ADHD.

2. Resource details

A blood sample was donated from a pair of dizygotic twin brothers; one brother met the Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) criteria (DuPaul et al., 2001) for ADHD, his male sibling was unaffected. Both individuals completed the Conners’ Parent Rating Scale-Revised: Long Form (CPRS-R:L) which is designed to assess symptoms (inattention, impulsivity, hyperactivity) of ADHD (Conners et al., 1998). For the child’s gender and age, the affected sibling scored above the 98th percentile on the Impulsivity subscale and above the 95th percentile on the Hyperactivity, ADHD Index and DSM-IV Inattentive subscales of CPRS-R:L, which is consistent with the diagnostic interview conducted by an experienced psychiatrist. The unaffected sibling scored at or below average T-Scores and percentiles across all CPRS-R:L subscales. The affected sibling was managed by Ritalin and fluoxetine at the time of testing and sample collection. The study was approved by the Monash University Human Research Ethics Committee Australia under the approval number, CF15/2566 – 2015001048.

Four induced pluripotent stem cell (iPSC) lines (two from the affected sibling- MICCNi002-A and -B; two from the unaffected sibling - MICCNi001-A and -B) were generated from peripheral blood mononuclear cells (PBMCs) by reprogramming with integration-free Sendai viral vectors expressing KLF4, OCT3/4, c-MYC and SOX2. All iPSC colonies showed a round compact shape with clear peripheral outline, which is typical colony morphology (Fig. 1A). RT-PCR analyses of the viral genome and transgenes confirmed that our iPSC lines were Sendai-negative and vector-free after 10 passages (Fig. 1B). Quantitative RT-PCR (qRT-PCR) of iPSC lines at passage 10 showed comparable fold changes in expression of pluripotency-related genes POU5F1 and SOX2 in all lines when compared to the positive control, an established iPSC line at passage number 33 (Fig. 1C). Immunocytochemistry analyses of MICCNi001-A and -B and MICCNi002-A and -B at passage number 12 showed strong expression of pluripotency markers TRA 1–60, OCT4, and NANOG, and were positive for alkaline phosphatase enzymatic activity (Fig. 1D and E). Mycoplasma testing of all lines at passage 15 was negative by luminescence (Supp. File 1). G-band analyses at passage 10 exhibited normal male karyotypes of 46, XY for MICCNi002-A (Fig. 1F) and others (Suppl. File 1). Our iPSC lines had adequate potential for in vitro differentiation into the three germ layers via embryoid bodies using a conventional method (Fig. 1G). Subsequently, the generated embryoid bodies were tested for expression of >80 differentiation-associated markers for all three germ layers as well as key pluripotency genes using the hPSC Scorecard assay. All in vitro differentiated iPSC lines showed reduced expression of self-renewal genes and upregulation of markers for mesoderm, ectoderm, mesoderm and endoderm (Fig. 1H). Lastly, MICCNi001-A, MICCNi001-B, MICCNi002-A and MICCNi002-B lines were authenticated with 100%
concordance with parental PBMCs using Short Tandem Repeat profiling (available with the authors).

3. Materials and methods

3.1. Human sample

Human peripheral blood mononuclear cells (PBMCs) were isolated from 30 mL blood in Leucosep™ Tubes (Greiner Bio-One) filled with 15 mL Ficoll-Paque Plus™ (GE Healthcare). Within 1 h of collection, the blood sample was centrifuged at 800×g for 15 min at room temperature (RT), washed three times with PBS and centrifuged at 250×g for 10 min at RT. 1×10⁶ cells were frozen in 20% Dimethyl sulfoxide and 80% Fetal Bovine Serum (Bovogen) until Sendai transduction.

3.2. PBMC reprogramming, iPSC generation and culture

After recovery from cryopreservation PBMCs (5×10⁵ cells per well of a 24-well plate 4 days prior to transduction) were cultured in PBMC medium until transduction with Sendai virus particles containing OCT, SOX2, KLF4, and c-MYC using CytoTune®-iPS 2.0 Sendai Reprogramming Kit (Life Technologies) according to manufacturer's instruction. The PBMCs were initially seeded in PBMC medium and half of the medium was replaced with fresh medium until the transduction, where the reprogrammed cells were plated on irradiated Mouse Embryonic Fibroblasts (MEFs) in StemPro®-34 medium without cytokines the subsequent day (Netzger et al., 2014). The cells were grown on MEFs in iPSC medium for 20 days with an addition of fresh MEF culture dishes every 7 days to allow colony formation. Each colony was manually picked, transitioned in culture vessels coated with Vitronectin (Thermofisher) and cultured in E8 medium (Invitrogen). The reprogrammed cells were passaged when confluent, trypsinized by 0.5μM EDTA (Invitrogen) in 1/20 ratio every 10 days, and cultured on vitronectin-coated plates in E8 with ROCK inhibitor (Merck-Millipore) for 24 h after the passaging. The ROCK-inhibitor was removed, and the media was replaced every day during the expansion. Both PBMCs and iPSCs were cultured at 37°C with 5% CO₂.

3.3. Immunocytochemistry and alkaline phosphatase staining of iPSC

Pluripotency of iPSCs were examined by immunocytochemistry analyses with TRA 1–60, OCT3/4, and NANOG antibodies. Cells were seeded from one well of a 6-well culture plate on vitronectin-coated eight-chamber culture slide (Falcon, USA) in the iPSC medium with ROCK inhibitor for 6 days. Cells were fixed in 4% formaldehyde solution (Merck) for 15 min at RT, washed with PBS and incubated with 0.1% Triton X 100 for 30 min. Cells were subsequently washed with PBS and incubated with 5% donkey serum (Merck-Millipore) in PBS with 0.1% Tween 20 (Thermofisher), PBST, for 30 min in RT. Cells were incubated with primary antibodies for TRA 1–60, OCT4 and NANOG diluted in PBST (Table 3) for 24 h at 4°C. Cell were then washed three times with PBS and incubated with secondary Alexa Fluor antibodies diluted in PBST (Table 3) for 16 h at 4°C. Lastly, cells were washed 3× PBS and fixed with FluoroShield™ with DAPI (Sigma-Aldrich). Images were acquired using IX71 inverted microscope (Olympus) and processed in ImageJ software. Alkaline phosphatase staining was performed using Vector® Black Alkaline Phosphatase Substrate Kit II as per manufacturer’s instruction (Vector Laboratories, USA) Tables 1 and 2.

### Table 2

<table>
<thead>
<tr>
<th>Characterization and validation.</th>
<th>Test</th>
<th>Result</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Classification</strong></td>
<td>Bright-field microscopy</td>
<td>Normal with colony borders</td>
<td>Fig. 1A</td>
</tr>
<tr>
<td></td>
<td>Qualitative analysis: immunocytochemistry</td>
<td>Positive expression of pluripotency markers (TRA 1–60, OCT4 and NANOG)</td>
<td>Fig. 1D</td>
</tr>
<tr>
<td></td>
<td>Alkaline phosphatase enzymatic activity</td>
<td>Positive for alkaline phosphatase activity</td>
<td>Fig. 1E</td>
</tr>
<tr>
<td></td>
<td>Quantitative analysis: qRT-PCR</td>
<td>Positive for POUSF1 and SOX2.</td>
<td>Fig. 1C</td>
</tr>
<tr>
<td></td>
<td>Karyotype (G-banding) and resolution</td>
<td>46,XY Resolution 300-400</td>
<td>Fig. 1F, Supplementary file 1A</td>
</tr>
<tr>
<td></td>
<td>STR analysis report</td>
<td>Performed DNA Profiling of 15 loci with 100% concordance with parental PBMCs</td>
<td>Available with the authors</td>
</tr>
<tr>
<td></td>
<td>Sequencing</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Southern Blot OR WGS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Mycoplasma</td>
<td>Mycoplasma testing by luminescence using MycoAlert™ mycoplasma detection kit (Lonza) - Negative</td>
<td>Supplementary file 1B</td>
</tr>
<tr>
<td></td>
<td>Embryoid body formation and Scorecard</td>
<td>Differentiation markers such as PAX6 for ectoderm, ODAM for mesoderm and AFP for endoderm are markedly upregulated from the undifferentiated reference standard of Scorecard</td>
<td>Fig. 1G and H</td>
</tr>
<tr>
<td>Donor screening (optional)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Genotype additional info (Optional)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Genotype additional info (Optional)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3.4. Karyotyping

G-banding of iPSCs was carried out at the Monash Pathology Services (Monash Medical Centre). A total of 15 cells were analysed; 5 banded cells were analysed for metaphases spread and 10 cells were examined for chromosome analysis.

Reverse transcription polymerase chain reaction (RT-PCR) of Sendai vectors and pluripotency markers.

For all RT-PCR applications, total RNA was isolated using TRIzol (Life technologies) according to manufacturer's instruction. The optical density at 260/280 of all RNA preparations ranged from 2 to 2.1 using Nanodrop™ Spectrophotometer (Thermofisher) prior to reverse transcription reaction. 1μg RNA was converted into cDNA by SuperScript IV Reverse Transcriptase kit (Thermofisher) and 2μL cDNA was used for polymerase chain reactions with primers (Table 3) by T-100™ thermal cycler (BioRad). Sendai vector transgenes KLF4, OCT3/4, c-MYC and SOX2 were amplified with HOT FIREPol® DNA Polymerase (Solis BioDyne) and primers (Table 3) by T-100™ thermal cycler (BioRad). The following cycling conditions are used: initial denaturation at 95°C for 3min, followed by 35cycles of amplification (95°C for 30s, 55°C for 30s, and 72°C for 30s) and a final extension at 72°C for 5min. POU5F1 and SOX2 expression was assessed in triplicate using the SYBR Green master mix (Roche) on LightCycler 480 II instrument (Roche), using B2M and ACTB housekeeper genes (Table 3). The PCR efficiency of POU5F1, SOX2 and ACTB was determined as described previously and analysed using the ΔΔCt method (Schmittgen and Livak, 2008). Data are shown as fold changes in gene expression relative to controls, after normalization with housekeeper gene ACTB. Data represent one of two independent experiments. Error bars represent standard deviation of 3 biological replicates.

3.5. Embryoid bodies (EB) formation and ScoreCard

The differentiation capacity of iPSC lines was analysed by the formation of EB as per manufacturer's instructions of the ScoreCard assay (Thermofisher). Briefly, iPSCs were dissociated and cultured non-adherently in EB differentiation medium for 7 days. The total RNA of cells was extracted and converted into cDNA using the aforementioned methods. Quantitative analyses of cDNA samples were performed in Applied Biosystems 7900HT Fast Real-Time PCR System using the TaqMan hPSC Scorecard Assay (Thermofisher).

3.6. Short tandem repeat analysis

All genomic DNA was extracted from PBMCs and iPSCs using PureLink genomic DNA Mini kit (Thermofisher) according to manufacturer's instruction, and were analysed at the Medical Genomics Facility (MHTP, Melbourne), where 16 loci were investigated by PowerPlex HS16 System kit (Promega).

3.7. Mycoplasma testing

The mycoplasma testing was carried out using Mycoalert™ mycoplasma detection kit (Lonza) following manufacturer's instruction.

Acknowledgements

We acknowledge the financial support of the National Health and Medical Research Council [Early Career Fellowship ID 1112452 (JT)], the Society for Mental Health Research [Early Career Research Project Grant Award (JT)], the Rebecca L Cooper Medical Research Foundation [Medical Research Grant ID 10409 (JT)] and Monash University [Strategic Grant Scheme ID SGS16-0410 (JT)].
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2018.11.014.

References


