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Abstract

This thesis explores topics related to the geodesic completeness of compact locally sym-
metric Lorentzian manifolds. In particular, it discusses some important results relating to
locally and globally symmetric spaces as well as the theory of geometric manifolds. These
results are used to present a proof of a key proposition in Klingler (1996), which proves
the geodesic completeness of compact Lorentzian manifolds with constant curvature. We
also prove a new result, that compact Lorentzian manifolds which are locally isometric to
the product of Cahen-Wallach space and flat Riemannian space are geodesically complete
by extending methods used in Leistner & Schliebner (2016). These results may be helpful
in the study of geodesic completeness of compact locally symmetric Lorentzian manifolds
more generally as they reduce the number of open cases.
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Chapter 1

Introduction

1.1 Background and motivation

An important aspect of geometry is the study of curves with constant speed, known as
geodesics. Locally, geodesics are described by a system of second order ODEs, called the
geodesic equations. In Riemannian geometry, geodesics are distance minimising curves.
We say that a manifold is geodesically complete if every maximal geodesic is defined
on R, i.e. the curves can continue for an infinite amount of time. One reason why
we are specifically interested in the geodesic completeness of compact locally symmetric
manifolds is that they are exactly the compact quotients of globally symmetric spaces.
This result follows from the fact that geodesically complete, simply connected locally
symmetric semi-Riemannian manifolds are symmetric (8.21 in O’Neill (1983)).

It follows from the Hopf-Rinow theorem that any compact Riemannian manifold is
geodesically complete (this can be directly proven without the use of Hopf-Rinow also).
This result does not extend to Lorentzian manifolds; a standard example of a non-complete
compact Lorentzian manifold is the Clifton-Pohl Torus, which is constructed in Chapter 2.
In light of this counterexample, there have been attempts to impose additional conditions
on compact Lorentzian manifolds in order to ensure geodesic completeness. These condi-
tions can be broadly classified as either global or local.

We shall first discuss a result which imposes global conditions on the manifold. The
geodesic completeness of compact homogeneous manifolds with arbitrary signature was
shown in Marsden (1973). This is quite a general result and so many subsequent results
impose either local or a combination of local and global conditions.

Now we shall consider some local conditions which ensure the geodesic completeness of
compact Lorentzian manifolds. Most of the results with local conditions are restrictions
on the Riemann curvature tensor. Firstly Carrière (1989) showed that flat, i.e. vanishing
curvature tensor, compact Lorentzian manifolds are geodesically complete. This result was
then extended upon in Klingler (1996), which proves that compact Lorentzian manifolds of

1



2 Chapter 1. Introduction

constant sectional curvature are geodesically complete. It then seems natural to ask “are
compact Lorentzian manifolds with covariantly constant curvature (∇R = 0) geodesically
complete?”. This is still an open question. There was some progress towards an answer
in Lafuente-López (1988), which proves that if a (not necessarily compact) Lorentzian
manifold with covariantly constant curvature has the property that if all geodesics of a
single causal characteristic are complete, then the manifold is geodesically complete.

Next we shall discuss results which impose both local and global conditions. The
geodesic completeness of a compact Lorentzian manifold of constant curvature (a local
condition) admitting a timelike Killing vector field (a global condition) was shown in
Kamishima et al. (1993). This result was later generalised in Romero & Sánchez (1995)
with no curvature conditions imposed and only requiring a timelike vector field which is
conformally Killing. A more recent result which has a combination of global and local
assumptions, Leistner & Schliebner (2016), showed that compact Lorentzian manifolds
admitting a global null parallel vector field V and having a curvature tensor such that
R(U,W ) = 0 for all U,W in the orthogonal complement to V are geodesically complete.
Manifolds that satisfy the previous two properties are called pp-wave. Being pp-wave is
completely separate set of conditions to the previous cases as in general, manifolds admit-
ting such a null vector field will not necessarily be homogeneous, have constant curvature
or admit a timelike conformally Killing vector field. Finally Hau & Sánchez (2016) showed
any compact affine manifolds with precompact holonomy group are geodesically complete.

In light of these results, we will focus on the geodesic completeness of compact
Lorentzian manifolds with covariantly constant curvature. One property that may sug-
gest the geodesic completeness of compact Lorentzian manifolds with covariantly constant
curvature (a property also known as being locally symmetric), is that they are locally
isometric to an important class of geodesically complete manifolds, symmetric spaces.
Symmetric spaces are manifolds with an involution symmetry at each point. Classifica-
tion results in Wu (1964) and Cahen & Wallach (1970) have shown that each Lorentzian
symmetric spaces is isometric to the product of either flat Minkowski space, or an inde-
composable symmetric Lorentzian space and a Riemannian symmetric space. There are
two classes of indecomposable Lorentzian symmetric spaces. The first are those with con-
stant curvature, which consists of positively curved de Sitter space and negatively curved
Anti-de Sitter space. The second have non-constant curvature but covariantly constant
curvature and are called Cahen-Wallach space. The previous results verify that a compact
locally symmetric Lorentzian manifold which is locally isometric to an indecomposable
symmetric space is complete as Klingler (1996) covers the constant curvature cases and
being locally isometric to Cahen-Wallach is a special case of being pp-wave and is thus
complete by Leistner & Schliebner (2016). Hence the remaining cases are locally symmet-
ric compact manifolds which are locally isometric to the product of an indecomposable
or flat Lorentzian symmetric space and a Riemannian symmetric space.
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1.2 Summary of thesis

This thesis aims to provide the tools required to obtain a clear understanding of the rele-
vant proofs in Klingler (1996) and Leistner & Schliebner (2016). It also slightly generalises
a result in Leistner & Schliebner (2016) in order to show that compact locally symmetric
Lorentzian manifolds which are locally isometric to the product of Cahen-Wallach space
and Riemannian flat space are complete before finally giving a detailed presentation of a
key result in Klingler (1996) then discussing attempts to generalise this result. In order to
achieve this goal we must first discuss some prerequisite topics, namely symmetric spaces
and (G,X)-structures. We first consider symmetric, and locally symmetric, spaces in or-
der to develop an understanding of the types of manifolds we are considering. Importantly,
we give the classification of Lorentzian symmetric spaces up to isometry and locally sym-
metric spaces up to local isometry. Additionally, we show that locally symmetric spaces
must be locally isometric to a symmetric space, this result is required for both sections in
Chapter 5 and also allows us to equip locally symmetric manifolds with (G,X)-structures.
(G,X)-structures are a particular notion of being locally homogeneous. The theory of
(G,X)-structures is related to geodesic completeness by a particular local isometry called
the development map from the universal cover of the (G,X)-manifold to X. In the locally
symmetric case, it is a fact that such a manifold is geodesically complete if and only if
this development map is a covering, which is how geodesic completeness is shown in both
Carrière (1989) and Klingler (1996). We then show that any locally symmetric space can
be equipped with a (G,X)-structure where X is the corresponding symmetric space and
G is the isometry group of X. After these results we are able to present results from
Klingler (1996) and Leistner & Schliebner (2016) in enough detail to provide a slight ex-
tension to the latter and discuss attempts at extending the former.
An outline of the thesis is as follows:

Chapter 2: Semi-Riemannian geometry. This chapter covers some preliminary stan-
dard results that will be used in the later chapters. Many of the standard results through-
out the thesis are in O’Neill (1983).

Chapter 3 Symmetric Spaces. This chapter begins by defining symmetric spaces. We
then show that symmetric spaces are geodesically complete by taking any geodesic and
applying an appropriate symmetry to extend it. Next, we discuss some symmetric spaces:
semi-Euclidean space, Cahen-Wallach space and Hyperquadrics are defined and the sym-
metries, geodesics, curvature and isometry groups of these spaces are calculated. Hyper-
quadrics are defined in terms of an arbitrary metric so as to cover both the Riemannian
sphere and hyperbolic space as well as the Lorentzian de Sitter and Anti de Sitter spaces.
A brief overview of Lie triples and symmetric triples is then given in order to present
two important results. The first result: A manifold M is locally symmetric if and only
if there exists a simply connected symmetric space S such that M is locally isometric to
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S. This is a well known result, but most sources only present the proof for Riemannian
spaces. We broadly follow the methods used in Neukirchner (2003). An outline of the
proof is below. If M is locally isometric to S, then since isometries preserve curvature,
and symmetric spaces are locally symmetric, the pushforward of ∇R shows M is locally
symmetric. Now suppose M is locally symmetric, for any point p ∈ M we can construct
a local isometry as such:

1. Show (TpM, gp, R|p) is a Lie triple.

2. Construct a symmetric triple system from (TpM, gp, R|p).

3. Construct a symmetric space S from the symmetric triple.

4. Extend isometry at p to local isometry.

The second key result is the classification of indecomposable simply connected Lorentzian
symmetric spaces. We say that a simply connected Lorentzian symmetric space is inde-
composable if it is not isometric to the product of two other manifolds. Because the
metric signature of the product of two manifolds is equal to the sum of their respective
signatures we immediately see that if a Lorentzian manifold is a product, it must be the
product of a Lorentzian manifold and a Riemannian manifold. The classification follows
Cahen & Wallach (1970) and relies on classifying the symmetric triples rather than the
spaces directly. Importantly, when these two results are combined, we see that each locally
symmetric Lorentzian manifold is locally isometric to the product of an indecomposable
Lorentzian symmetric space and a Riemannian symmetric space.

Chapter 4: Geometric manifolds. This chapter discusses the theory of (G,X)-manifolds
and follows Ratcliffe (2006) and Goldman (2021). Given a Lie group G that acts transi-
tively on a manifold X, M is said to be a (G,X)-manifold if it can be equipped with an
atlas of charts {ϕi : Ui → X} such that the transition maps ϕij = ϕi ◦ ϕ−1

i locally agree
with an element of G. From this, we eventually construct a development map D : M̃ → X.
M is called (G,X)-complete if D is a covering map, in particular, in the locally symmetric
case, if G is the isometry group of X then (G,X)-completeness is equivalent to geodesic
completeness. This theory was used in Carrière (1989) to show compact, flat Lorentzian
manifolds can be given a complete (O(n− 1, 1)⋉R⋉,Rn−1

1 )- structure, and was extended
by Klingler (1996) to show the completeness of compact Lorentzian manifolds with con-
stant curvature. In addition to discussing the general theory of (G,X)-structures the
chapter concludes with a key result which allows Carrière (1989) and Klingler (1996) to
use (G,X)-theory: if M is a locally symmetric Lorentzian manifold, locally isometric to
a symmetric space S, then M can be given a (Iso(S), S)-structure.

Chapter 5: Completeness of compact Lorentzian locally symmetric spaces. This chapter
uses the tools presented throughout the thesis in order to explain and then attempt to gen-
eralise two theorems on geodesic completeness of compact locally symmetric Lorentzian
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manifolds. The first theorem is from Leistner & Schliebner (2016) and the second is from
Klingler (1996). The geodesic completeness of compact locally Cahen-Wallach manifolds
was shown in Leistner & Schliebner (2016) as a corollary to a more general theorem about
pp-waves. A Lorentzian manifold (M, g) is called pp-wave if it admits a global parallel
null vector field V ∈ Γ(TM), i.e. V ̸= 0, g(V, V ) = 0 and ∇V = 0, and if its curvature
tensor R satisfies

R(U,W ) = 0, for all U,W ∈ V ⊥

Theorem 2 in Leistner & Schliebner (2016) shows that every compact pp-wave (M, g)
is geodesically complete. They later show that compact locally symmetric Lorentzian
manifolds which are locally isometric to Cahen-Wallach space have a time-orientable cover
that is a compact pp-wave and is hence complete. By considering the bundle of the kernel
of the curvature endomorphism and intersecting it with its orthogonal complement we are
able to extend this result and prove that compact locally symmetric Lorentzian manifolds
which are locally isometric to the product Cahen-Wallach space with Rn are geodesically
complete.

Next we discuss Klingler (1996), who proves that compact Lorentzian manifolds with
constant sectional curvature are geodesically complete. This result uses both the theory of
symmetric spaces and (G,X)-manifolds, in particular, it shows that the developing map
is surjective. In our attempt to generalise this result, we focus on the central proposition
of Klingler (1996), which describes the convexity of the image of geodesic stars under the
development map.

1.3 Outlook

One may aim to show that compact locally symmetric Lorentzian manifolds are geodesi-
cally complete by considering all the possible Lorentzian symmetric spaces separately,
which are products of indecomposable Lorentzian symmetric spaces and Riemannian sym-
metric spaces as shown in Chapter 3.

It may seem like a natural choice to attempt to extend the methods in Section 5.1
to compact Lorentzian manifolds which are locally isometric to the product of Cahen-
Wallach space and a non-flat Riemannian symmetric space. Unfortunately, it appears
that this approach is not possible without significant changes, as the manifold will no
longer be a pp-wave. As before, we can define a global parallel null vector field V by
intersecting the bundle defined by the kernel of the curvature endomorphism with its
complement, however there will now be vector fields in V ⊥ such that

R(U,W ) ̸= 0

because of the non-flat Riemannian factor. Therefore the manifold is not pp-wave.
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We would eventually like to show that compact locally symmetric manifolds which
are locally isometric to the product of a constant curvature Lorentzian symmetric space
and a Riemannian symmetric space are geodesically complete by extending the results of
Klingler (1996). A first step towards this would be generalising Proposition 1 in Klingler
(1996) to these cases. In Section 5.2.3 we provide a list of properties which are used in
the proof and show that the constant curvature cases satisfy these properties. It remains
to be seen if any additional manifolds satisfy all of the properties, if any such manifolds
do exist then it would be an encouraging step towards showing that they are geodesi-
cally complete, as Proposition 1 is considered the central proposition of Klingler (1996),
however further work would be needed to extend the later results in the paper. In partic-
ular we would first like to extend these methods to the product of a constant curvature
Lorentzian manifold with a constant curvature Riemannian manifold.

There are other approaches which might prove fruitful, however these are outside
the scope of this thesis so this is purely conjecture. In light of Hau & Sánchez (2016)
proving that compact manifolds with precompact holonomy are geodesically complete,
it would be interesting to discover if compact manifolds with discompacity 0 holonomy
are geodesically complete, as all precompact groups have discompacity 0. The proof of
Hau & Sánchez (2016) directly uses the precompactness of the holonomy group, so such
a proof would be difficult to discover. However if such a result were true, then by the
de Rham-Wu theorem we would have that compact manifolds which are locally isomet-
ric to the product of Cahen-Wallach space and any Riemannian symmetric space with
are geodesically complete as all Riemannian symmetric spaces have compact holonomy
groups.



Chapter 2

Basic notions in semi-Riemannian
geometry

We assume that the reader is familiar with the basics of semi-Riemannian geometry and in
particular, has some understanding of semi-Riemannian metrics. Throughout this thesis
we will always be considering semi-Riemannian manifolds (M, g) equipped with the Levi-
Civita connection, written ∇.
This chapter states some standard results presented mostly without proof. The reader
is most likely familiar with many, if not all, of these results and so the purpose of this
chapter is to provide references used in the later chapters. The majority of these results
can be found in O’Neill (1983).

2.1 Isometries and local isometries

Definition 2.1 (Isometry). Let (M, gM) and (N, gN) be Lorentzian manifolds, an isom-
etry from M to N is a diffeomorphism ϕ : M → N that preserves the metric tensors:
ϕ∗(gN) = gM |p. More explicitly:

gN |ϕ(p)(dϕ|p(v), dϕ|p(w)) = gM(v, w)

for all v, w ∈ TpM for any p ∈M .

From this definition, we can immediately see that:

1. The identity map is an isometry.

2. The composition of isometries is an isometry.

3. The inverse of an isometry is an isometry.

7
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So isometry endomorphisms form a group and we will call this the group of isometries of
M , written Iso(M).

Definition 2.2 (Isotropy subgroup of isometry group). Given a semi-Riemannian mani-
fold (M, g) with isometry group Iso(M), let p ∈M , then the isotropy subgroup of Iso(M)
fixing p is the subgroup

Isop(M) := {ϕ ∈ Iso(M)|ϕ(p) = p)} ⊂ Iso(M).

This definition can be extended to subgroups of G ⊂ Iso(M). We can define the
isotropy group of G fixing p as such

Isop(G) := {ϕ ∈ Iso(G)|ϕ(p) = p)} ⊂ Iso(G).

Lemma 2.3 (3.7 in O’Neill (1983)). If ψ : V → W is a linear isometry of scalar product
spaces, then ψ : V → W is an isometry.

Proposition 2.4 (3.59 in O’Neill (1983)). If ϕ :M → M̂ is an isometry, then dϕ(∇XY ) =
∇̂dϕX(dϕY ).

Definition 2.5. A smooth map ϕ : M → N of semi-Riemannian manifolds is a local
isometry if for each point p ∈M , there exists a neighbourhood U of p such that ϕ|U is an
isometry onto a neighbourhood of ϕ(p).

Lemma 2.6 (3.60 O’Neill (1983)). A smooth map ϕ : M → N of semi-Riemannian
manifolds is a local isometry if and only if each differential map dϕ : TpM → Tϕ(p)N is a
linear isometry.

Proposition 2.7 (3.62 O’Neill (1983)). Let ϕ, ψ : M → N be local isometries of a
connected semi-Riemannian manifold M . If there is a point p ∈ M such that dϕp = dψp
(and hence ϕ(p) = ψ(p)), then ϕ = ψ.

2.2 Curvature

Definition 2.8 (Riemannian curvature tensor). Let M be a semi-Riemannian manifold
with Levi-Civita connection ∇, we define

R : Γ(TM)3 → Γ(TM)

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Proposition 2.9 (Properties of the Riemannian curvature tensor). If x, y, z, w, v ∈ TpM
then:

1. R is a multi-linear map.
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2. R(x, y) = −R(y, x).

3. g(R(x, y)v, w) = −g(R(x, y)w|v).

4. R(x, y)z +R(y, z)x+R(z, x)y = 0 (First Bianchi Identity).

5. g(R(x, y)v, w) = g(R(v, w)x, y).

6. (∇zR)(x, y) + (∇xR)(y, z) + (∇yR)(z, x) = 0 (Second Bianchi Identity).

Proposition 2.10 (Describing Riemann curvature tensor locally). If x1, . . . , xn is a co-
ordinate system, then on a neighborhood,

R(∂i, ∂j)∂k = Rijk
l∂l,

where Rijk
l =

∂

∂xj
Γlik −

∂

∂xl
Γijk − ΓlipΓ

p
jk − ΓljpΓ

p
ik.

Furthermore, we can lower the index by the metric g in order to obtain the (4, 0)-Riemann
curvature tensor, which is locally described as such:

g(R(∂i, ∂i)∂k, ∂l) = Rijkl,

where Rijkl = (
∂

∂xi
Γpjk −

∂

∂xj
Γpik + ΓqjkΓ

p
iq − ΓqikΓ

p
jq)gpl.

A two dimensional subspace of the tangent space TpM is called a tangent plane of M
at p. For tangent vectors v, w we define

Q(v, w) = g(v, v)g(w,w)− (g(v, w))2.

We say that Π is non-degenerate if Q(v, w) ̸= 0 for any (and hence every) basis of Π.

Lemma 2.11 (3.39 in O’Neill (1983)). If Π is a non-degenerate tangent plane of M at p
with basis vectors v, w. We define the sectional curvature K(Π) as such:

K(v, w) =
g(R(v, w)v, w)

Q(v, w)
.

It is independent of choice of basis for Π.

Proposition 2.12 (3.41 in O’Neill (1983)). If K = 0 at p ∈M , then R = 0 at p.

We say that a manifold has constant curvature if K is a constant function independent
of point p and choice of tangent plane.
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2.3 Geodesics

Definition 2.13 (Geodesic). Given a semi-Riemannian manifold M , a curve γ : I →M
is a geodesic if its acceleration is zero, i.e.

∇γ̇(t)
dt

= 0.

Lemma 2.14 (Geodesic Equation). Let x1, . . . , xn be a coordinate system on a neigh-
bourhood U . Then a curve γ in U is a geodesic if and only if

0 = γ̈k + γ̇iγ̇jΓkij ◦ γ

for all k = 1, . . . , n where γk = xk ◦ γ.

This is a system of non-linear second order ordinary differential equations.

Lemma 2.15. If v ∈ TpM , then there exists an interval I containing 0 such that there
exists a unique geodesic γ : I →M with γ′(0) = v.

Lemma 2.16 (3.23 in O’Neill (1983)). If γ, η : I → M are geodesics such that there is
some a ∈ I such that γ̇(a) = η̇(a), then γ = η.

Lemma 2.17 (3.32 in O’Neill (1983)). A semi-Riemannian manifold M is connected if
and only if any two of its points can be connected by a piecewise geodesic curve.

Definition 2.18. Let (M, g) be a semi-Riemannian manifold, we say that M is geodesi-
cally complete, or complete, if every maximal geodesic is defined on all of R.

The key theorem about geodesic completeness of Riemannian manifolds is the Hopf-
Rinow theorem:

Theorem (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold. Then the
following are equivalent:

1. The closed and bounded subsets of M are compact,

2. M is a complete metric space,

3. M is geodesically complete.

This theorem does not extend to Lorentzian manifolds, with one example of a non-
complete compact Lorentzian manifold being the Clifton-Pohl torus.
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Example (Clifton-Pohl Torus). [7.16 in O’Neill (1983)] Consider the Lorentzian manifold
(M = R2 \ {0}, g = 2dudv

u2+v2
). Then the non-zero Christoffel symbols of M are Γuuu =

−2u
u2+v2

,

Γvvv =
−2v
u2+v2

Then by the geodesic equation: 0 ≡ γ̈k + γ̇iγ̇jΓkij ◦ γ, a curve γ(t) = (u(t), v(t)), γ is
a geodesic if and only if it satisfies:

ü = (u̇)2
2u

u2 + v2
and v̈ = (v̇)2

2v

u2 + v2
.

Now notice that the curve α(t) = ( 1
1−t , 0) for t ∈ (−∞, 1) satisfies the geodesic equation, so

it is a geodesic. Then α(t) is inextendible to t = 1 and henceM is geodesically incomplete.
This is not surprising as we have the non-compact manifold R2 with a point removed.
However, it is somewhat surprising that we can take the quotient of M by a group of
isometries to obtain a compact Lorentzian manifold which is geodesically incomplete.
This coset manifold is defined as such. First notice that the metric g is preserved by
scalar multiplication:

2(dcu)(dcv)

(cu)2 + (cv)2
=

2c2du dv

c2(u2 + v2)
=

2du dv

u2 + v2
.

So the map µ : (u, v) 7→ (2u, 2v) is an isometry of M . The group generated by µ, written
Γ := {µn} has a properly discontinuous action on M and so the quotient T = M/Γ is a
Lorentz surface. T is topologically a torus as it is identified with the closed annulus of
M of radii 1 ≤ r ≤ 2 with the boundary points identified and hence it is compact. Since
Γ is a group of isometries α projects to a geodesic on T , which is inextendible so T is a
compact Lorentzian manifold which it not geodesically complete.

2.4 Submanifolds

Definition 2.19. A manifold M is a submanifold of a manifold M̄ provided:

1. M is a topological subspace of M̄ .

2. The inclusion map i : M ↪→ M̄ is smooth and at each point its differential di is
injective.

Definition 2.20. Let M be a submanifold of a semi-Riemannian manifold (M̄, g), then
M is a semi-Riemannian submanifold when the pullback metric i∗g is non-degenerate.

If M is a semi-Riemannian submanifold, then each tangent space TpM must be a
non-degenerate subspace of TpM̄ . It turns out there is the direct sum decomposition

TpM̄ = TpM ⊕ TpM
⊥.
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Vectors in TpM are tangent to M and vectors in TpM
⊥ are normal to M . We can define

the following orthogonal projections

tan : TpM̄ → TpM

nor : TpM̄ → TpM
⊥.

We can extend this concepts to vector fields. Given X ∈ Γ(M,TM̄), we can apply tan and
nor at each point to define tan X ∈ Γ(M,TM) and nor X ∈ Γ(M,TM)⊥ ⊂ Γ(M,TM̄).
Similarly we can extend the above orthogonal projections to

tan : Γ(M,TM̄) → Γ(M,TM)

nor : Γ(M,TM̄) → Γ(M,TM)⊥.

In order to understand the relationship between geodesics on manifolds and geodesics
on submanifolds, we must first discuss the relationship between their respective (Levi-
Civita) connections.

Given the Levi-Civita connection on M̄ ,∇M̄ we can define the induced connection from
M̄ on M , which is a smooth function from ∇̄M : Γ(M,TM)× Γ(M,TM̄) → Γ(M,TM̄).
It is defined as such: given V ∈ Γ(M,TM), X ∈ Γ(M,TM̄), then there exists local
extension of V and X to vector fields on M̄ , they are written V̄ and X̄. Finally we define:

∇̄M
V X := ∇M̄

V̄ X̄.

Lemma 2.21 (4.1 in O’Neill (1983)). ∇̄M
V X is well defined with respect to choice of local

extension.

Lemma 2.22 (4.3 in O’Neill (1983)). If V,W ∈ Γ(M,TM), then

∇M
V W = tan ∇̄M

V W.

Definition 2.23. We can define a function called the shape tensor of M ⊂ M̄

II : Γ(TM) → Γ(TM)⊥

II(V,W ) = nor ∇̄M
V W.

In particular, this allows us to write ∇̄M = ∇M + II(·, ·). Let Y be a tangent vector
field toM , which is defined along some curve α ⊂M , then we adopt the following notation

Ẏ =
∇Y
dt

, Y ′ =
∇Y
dt

.

Proposition 2.24 (4.8 in O’Neill (1983)). Let Y be a vector field as defined above. Then

Ẏ = Y ′ + II(α′, Y ).
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Corollary 2.25 (4.9 in O’Neill (1983)). Let α be a curve in M ⊂ M̄ . If α̈ is the
acceleration of α in M̄ and α′ is the acceleration of α in M then

α̈ = α′′ + II(α′, α′).

Since geodesics are curves such that ∇γ
dt

= 0, we can then immediately deduce the
following corollary.

Corollary 2.26. A curve α of M ⊂ M̄ is a geodesic of M if and only if α̈ is normal to
M at each point.

Definition 2.27. If a submanifold M ⊂ M̄ has a shape tensor that is identically equal
to zero, II = 0, then we say M is a totally geodesic submanifold of M̄ .

Proposition 2.28 (4.13 in O’Neill (1983)). Let M be a submanifold of M̄ . The following
are equivalent.

1. M is totally geodesic in M̄ .

2. Every geodesic in M is also a geodesic in M̄ .

3. If v ∈ TpM̄ is tangent to M , then there is some interval J such that the geodesic of
barM starting at p with initial velocity v, γv : I → M̄ is a geodesic of M , i.e. γv|J
is a geodesic in M .

4. If α is a curve in M and v ∈ Tα(0)M , then the parallel transport of v along α is the
same in both M and M̄ .

Lemma 2.29 (4.14 in O’Neill (1983)). Let M and N be complete, connected, totally
geodesic semi-Riemannian submanifolds of M̄ . If there is a point p ∈ M ∩ N at which
TpM = TpN , then N =M .

Definition 2.30. A point p of M ⊂ M̄ is umbillic if there is a normal vector z ∈ TpM
⊥

such that

II(v, w) = g(v, w)z for all v, w ∈ TpM.

Then z is called the normal curvature vector of M at p.

A semi-Riemannian submanifold M of M̄ is said to be totally umbillic if each point of
M is umbillic.
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2.5 Hypersurfaces

Definition 2.31. LetM be a semi-Riemannian submanifold of M̄ . IfM has codimension
1 in M̄ we say that M is a semi-Riemannian hypersurface of M̄ . The co-index of M , the
index of all one dimensional normal subspaces to TpM be either 0 or 1.

We are particularly interested in submanifolds of codimension 1 because the semi-
Riemannian manifolds with constant curvature can be described as a hypersurface of
semi-Euclidean space.

Definition 2.32. The sign θ of a semi-Riemannian hypersurface M of M̄ is:

• +1 if the co-index of M is 0. i.e. ⟨z, z⟩ > 0 for every normal vector z ̸= 0.

• −1 if the co-index of M is 1. i.e. ⟨z, z⟩ < 0 for every normal vector z ̸= 0.

In the Riemannian case every hypersurface will have a sign +1 but in the Lorentzian
case both signs are possible.

Proposition 2.33 (4.17 in O’Neill (1983)). Let f : M̄ → R and let c be a value of f . Then
M = f−1(c) is a semi-Riemannian hypersurface of M̄ if and only if g(grad f, grad f) is
non-zero on M . In this case g(grad f, grad f) will be either exclusively greater than or
less than zero, the sign of g(grad f, grad f) will be the sign of M . U = grad f

|grad f | is a unit
normal vector field on M .

When considering hypersurfaces, the shape tensor can be simplified as such.

Definition 2.34. Let U be a unit normal vector field on a semi-Riemannian hypersurface
M ⊂ M̄ . The (1, 1)-tensor field S on M such that

g(S(V ),W ) = g(II(V,W ), U) for all V,W ∈ Γ(TM)

is called the shape operator of M ⊂ M̄ derived from U .

At each point S defines a linear operator TpM → TpM .

Lemma 2.35 (4.19 in O’Neill (1983)). If S is the shape operator derived from U , then
S(v) = −∇̄vU , and at each point the linear operator S on TpM is self-adjoint.

Corollary 2.36. (4.20 in O’Neill (1983)) Let S be the shape operator of a semi-Riemannian
hypersurface M ⊂ M̄ . If v, w span a non-degenerate tangent plane on M , then

K(v, w) = K̄(v, w) + θ
g(S, v)g(Sw,w)− g(Sv, w)2

g(v, v)g(w,w)− g(v, w)2
,

where θ is the sign of M ⊂ M̄ .

Lemma 2.37 (4.21 in O’Neill (1983)). A semi-Riemannian hypersurface M ⊂ M̄ is
totally umbillic if and only if its shape operator is scalar.
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2.6 Covering spaces and covering maps

In order to classify symmetric spaces and explore (G,X)-manifolds we require some results
relating to covering maps and the fundamental group.

Definition 2.38. Let M be a manifold and x, y be two points of M . If α, β : I →M are
two paths from x to y then an endpoint fixing homotopy from α to β is a continuous map
H : I × I →M such that for all s, t ∈ I

H(t, 0) = α(t), H(t, 1) = β(t),

H(0, s) = p, H(1, s) = q.

If such a homotopy exists we say that α and β are homotopic and write α ≃ β.

Lemma 2.39 (A.2 in O’Neill (1983)). Endpoint fixing homotopy ≃ is an equivalence
relation on paths between two fixed points. The homotopy equivalence class of a curve α
is written [α].

Definition 2.40. Let M be a manifold and x, y, z be points of M . Then if α is a path
from x to y and β is a path from y to z then we can define a path from x to z called the
concatenation of α and β by:

(α#β)(t) :=

{
α(2t) 0 ≤ t ≤ 1

2

β(2t− 1) 1
2
≤ t ≤ 1

.

Paths with the same start and end point are called loops.

Proposition 2.41 (A.4 in O’Neill (1983)). Write the set of homotopy equivalence classes
of loops at x as π1(M,x). This set, equipped with the operation [α][β] = [α#β] forms a
group called the fundamental group of M at x.

When M is connected the fundamental groups at any two points are isomorphic, so
when considering the fundamental group of a connected manifold we can describe the
fundamental group of M , written π1(M). If M is connected and has trivial fundamental
group then M is said to be simply connected.

Definition 2.42. Let M and N be manifolds. A surjective smooth map k : N → M is
called a covering map if for each point x ∈ M there exits some neighbourhood U of x
such that each connected component of k−1(U) is diffeomorphic to U . We say that N is
a cover of M .

Definition 2.43. A deck transformation of a covering map k : N → M is a diffeomor-
phism ϕ : N → N such that k ◦ ϕ = k.
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Deck transformations must therefore map a fibre k−1(p) to itself.

Lemma 2.44 (A.8 in O’Neill (1983)). If k : N → M is a covering map and M is
connected then the number of points in k−1(p) is the same for all points p ∈ M . This
number is called the multiplicity of the covering.

Definition 2.45. Given manifolds M,N and P and maps π : N → M and ϕ : P → M ,
we say that a function ϕ̃ : N →M is a lift of ϕ via π if π ◦ ϕ̃ = ϕ.

Lemma 2.46 (A.9 in O’Neill (1983)). Let k : N →M be a covering map. Let α : I →M
be a smooth. curve, and let k(q) = α(0). Then there is a unique smooth lift α̃ : J → M̃
of α via k such that α̃(0) = q.

This means paths can be uniquely lifted to any level of the cover.

Corollary 2.47 (A.10 in O’Neill (1983)). Let k : N → M be a covering, and let α and
β be fixed point homotopic paths in M . If α̃ and β̃ are lifts of α and β by k such that
α̃(0) = β̃(0) then α̃ and β̃ are fixed-endpoint homotopic. In particular α̃(1) = β̃(1).

Proposition 2.48 (A.11 in O’Neill (1983)). Let k : N → M be a covering map and
ϕ : P →M be a smooth map. Let p0 ∈ P and q0 ∈ N such that ϕ(p0) = k(q0). Then

1. if P is connected, there is at most one lift ϕ̃ of ϕ by k such that ϕ̃(p0) = q0,

2. if P is simply connected, such a lift exists.

Proposition 2.49 (1.30 in Hatcher (2002)). Given a covering space k : M̃ → M , a
homotopy ft : N → M and a map f̃0 : N → M̃ lifting f0, then there exists a unique
homotopy f̃t : N → M̃ of f0 that lifts ft.

Theorem 2.50 (A.12 in O’Neill (1983)). Every connected manifold M has a simply
connected covering. It is called the universal cover and is written M̃ .

A covering k : M̃ →M is trivial if each component of M is evenly covered by k.

Corollary 2.51 (A.14 in O’Neill (1983)). Every covering of a simply connected manifold
is trivial.

Proposition 2.52 (7.4 in O’Neill (1983)). If π : M̃ →M is a simply connected covering
then its deck transformation group is isomorphic to the fundamental group π1(M) of M .

Definition 2.53. If N and M are semi-Riemannian manifolds then a semi-Riemannian
covering map k : N →M is a covering map which is also a local isometry.

Corollary 2.54 (7.12 in O’Neill (1983)). If Γ is a properly discontinuous group of isome-
tries of a semi-Riemannian manifold M , then there is a unique way to make M/Γ a
semi-Riemannian manifold such that k : M → M/Γ is a semi-Riemannian covering. If
M is connected, then the deck transformation group is Γ.
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Proposition 2.55 (7.27 in O’Neill (1983)). If k : M̃ →M is a semi-Riemannian covering
with M̃ connected and M simply connected, then k is an isometry.

As we are particularly interested in geodesics, we briefly discuss some results about
lifting geodesics to geodesics in the covering space.

Theorem 2.56 (7.28 in O’Neill (1983)). Let ϕ : M → N be a local isometry with N
connected. Let γ : I → N be an arbitrary geodesic and let p ∈ N be a point such that
ϕ(p) = γ(0). If there exists a lift γ̃ : I → M of γ through ϕ starting at p then ϕ is a
semi-Riemannian covering map.

Corollary 2.57 (7.29 in O’Neill (1983)). Let ϕ : M → N be a local isometry, with N
connected. Then M is complete if and only if N is complete and ϕ is a semi-Riemannian
covering map.

2.7 Product manifolds

Definition 2.58. Let (M, gM) and (N, gN) be semi-Riemannian manifolds, we can define
the product manifold (M ×N, gM ⊕ gN).

Lemma 2.59 (1.43 in O’Neill (1983)). The tangent space T(p,q)(M ×N) is the direct sum
of it subspaces T(p,q)M and T(p,q)N ; that is each element of T(p,q)(M × N) has a unique
expression as

x+ v, where x ∈ T(p,q)M and v ∈ T(p,q)N.

Similarly, we can decompose a vector field X of (M ×N) into XM +XN where XM

is the lift of a vector field on M and XN is the lift of a vector field on N .

Proposition 2.60 (3.56 in O’Neill (1983)). Let XM , Y M and V N ,WN be lifts of vector
fields X, Y on M and V,W on N respectively to (M ×N), then

1. ∇XMY M is the lift of ∇M
X Y ∈ Γ(TM).

2. ∇V NWN is the lift of ∇N
VW ∈ Γ(TN).

3. ∇V NXM = 0 = ∇XMV N .

Corollary 2.61 (3.57 in O’Neill (1983)). A curve γ(t) = (α(t), β(t)) in M × N is a
geodesic if and only if its projections α in M and β in N are both geodesics. Furthermore,
M ×N is geodesically complete if and only if both M and N are complete.

Corollary 2.62 (3.58 in O’Neill (1983)). On M × N the curvature tensor R(X, Y )Z =
RM(XM , Y M)ZM +RN(XN , Y N , ZN) where RM(XM , Y M)ZM is the lift of the curvature
tensor on M and RN(XN , Y N , ZN) is the lift of the curvature tensor on N .
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2.8 Holonomy

We briefly explain what a holonomy group is. See Chapter 10 in Besse (1987) for a more
detailed discussion of the topic. Let (M, g) be a semi-Riemannian manifold, and x be
an arbitrary point of M , then for any loop γ, we can parallel transport a tangent vector
v ∈ TxM around the loop γ, we write this as Pγ : TxM → TxM . Since Pγ is invertible and
linear it is an element of GL(TxM). We define the holonomy group of M at x as such:

Holx(M) := {Pγ ∈ GL(TpM) | γ is a loop based at x}.

In particular, the holonomy group at each point is isomorphic as, given any loop γ at x
we can define a loop at y by η ◦ γ ◦ η−1 where η is a path from x to y, so we can write
Hol(M) for the holonomy group of an arbitrary point. If we consider only loops which
are homotopic to the identity we have the restricted holonomy group, written Hol0(M).
When M is simply connected we have that Hol(M) = Hol0(M). There is a canonical
homomorphism π1(M) → Hol(M)/Hol0(M) which sends equivalence classes of a loop [γ]
to the equivalence class of parallel transport around that curve [Pγ].



Chapter 3

Symmetric spaces

This chapter discusses symmetric spaces, which are an important class of geodesically
complete manifolds. Symmetric spaces are particularly nice manifolds to consider as they
can be described in a number of ways. Symmetric spaces are defined to be manifolds
with a symmetry at each point, but they can also be described as a homogeneous space
G/H equipped with a G-invariant metric tensor, or even described purely algebraically
by symmetric triples. We begin this chapter with a general discussion of symmetric
spaces, showing they are geodesically complete and homogeneous. Next we discuss some
specific semi-Riemannian symmetric spaces, flat semi-Euclidean space, the constant sec-
tional curvature hyperquadrics and finally Lorentzian Cahen-Wallach spaces, which have
covariantly constant curvature. For each of these examples we calculate the curvature
tensors, geodesics, isometry groups and the symmetry at a point. We then briefly dis-
cuss some results which describe symmetric spaces in terms of homogeneous spaces before
showing that simply connected symmetric spaces are in a one to one correspondence with
symmetric triples, which are algebraic objects. Throughout this section we are able to
prove Theorem 3.59, which states that a manifold is locally symmetric if and only if it is
locally isometric to a symmetric space. Finally, we discuss the results in Cahen & Wallach
(1970) which show that every Lorentzian symmetric space is isometric to the product of a
Riemannian symmetric space and one of the four Lorentzian symmetric spaces discussed
earlier. These two results allow us to locally describe each locally symmetric Lorentzian
manifold, which is required for Chapter 4.

3.1 Symmetric spaces

Definition 3.1 (Symmetry). Let (M, g) be a semi-Riemannian manifold. A symmetry
sx at x ∈M is an isometry with the properties

sx(x) = x, (dsx)x = −I,
where I is the identity map of TxM .

19



20 Chapter 3. Symmetric spaces

Definition 3.2 (Symmetric space). A symmetric space is a semi-Riemannian manifold
(M, g) where for all points x, there is a symmetry sx.

Lemma 3.3. A semi-Riemannian symmetric space is geodesically complete.

Proof. Let M be a symmetric manifold, γ be some geodesic defined on [0, b) and choose
some c ∈ ( b

2
, b). Let s = sγ(c) be the symmetry at γ(c). So then, since s is an isometry,

s ◦ γ : [0, b) →M is a geodesic with s ◦ γ(c) = γ(c) and (s ◦ γ)′(c) = −γ′(c). We can then
affinely reparameterise the geodesic as such:

η : (0, b] →M,

η(t) := s ◦ γ(b− t),

η′(t) = −s ◦ γ′(b− t).

Then η(b−c) = γ(c) and η′(b−c) = γ′(c), so by the uniqueness of geodesics (Lemma 2.16)
we have that η is an extension of γ. Since we can arbitrarily extend any geodesic using
this method M is geodesically complete.

This argument uses a useful property of symmetries and geodesics, namely that at
some point γ(s),

sγ(s)γ(s+ ϵ) = γ(s− ϵ),

and so in general

sγ(s)γ(t) = sγ(s)γ(s+ (t− s)) = γ(s− (t− s)) = γ(2s− t). (3.1)

Definition 3.4 (Transvection). An isometry ϕ : M → M is a transvection along a
geodesic γ if:

1. ϕ translates along γ; i.e. ϕ(γ(s)) = γ(s+ c) for any s ∈ R and some c ∈ R.

2. dϕ parallel translates along γ; i.e. if x ∈ Tγ(s)M , then dϕ(x) ∈ Tγ(s+c)M is the
parallel translation of x along γ.

Lemma 3.5 (8.30 in O’Neill (1983)). Let γ be a geodesic in a symmetric space and let
sγ(t) be the symmetry at γ(t). Then for any c, the isometry sγ( c

2
)sγ(0) is a transvection

along γ that translates γ(t) by c.

Proof. First, notice Equation (3.1) shows that sγ( c
2
) ◦ sγ(0) translates along γ:

sγ( c
2
) ◦ sγ(0)γ(t) = sγ( c

2
)γ(−t) = sγ( c

2
)γ(

c

2
− (t+

c

2
)) = γ(t+ c). (3.2)

Now to show that transvections act by parallel transport. Let X be a parallel vector field
on γ. Since sγ(t) is an isometry, dsγ(t)X is a parallel vector field on sγ(t)γ, which is a



3.1. Symmetric spaces 21

reparametrisation of γ. If x ∈ Tγ(t)M , then let y be the parallel transport along γ of x to
Tγ(0)M . Then (dsγ(0))γ(t)(x) will be parallel transported along γ to (dsγ(0))γ(0)(y) = −y
at γ(0), and it will also be parallel transported along γ to some vector z at γ( c

2
). So

therefore, dsγ( c
2
)ds(γ(0))(x) will be parallel to dsγ( c

2
)z = −z. So dsγ( c

2
)ds(γ(0))(x) is

parallel transported along γ to −z in Tγ( c
2
)M , which is parallel transported to y in Tγ(0)M ,

which is the parallel transport of x in Tγ(t)M .

It follows that all the transvections in a symmetric space can be given by the compo-
sition of two symmetries. We define the transvection group, written G(M) as the group
generated by the elements sx ◦ sy for all points x, y in M .

Corollary 3.6. LetM be a connected symmetric space, then the transvection group G(M)
acts transitively on M .

Proof. As M is connected, any two of its points can be connected by a piecewise geodesic
curve by Lemma 2.17. Let p, q be two points of M connected by the piecewise geodesic
curve γ1# . . .#γn, then for each γi, there is a transvection ϕi which maps γi(0) to γi(1) =
γi+1(0), so the composition ϕ1 ◦ . . . ◦ ϕn−1 maps p to q.

Definition 3.7 (Locally symmetric space). A locally symmetric space is a semi-Riemannian
manifold M with parallel curvature tensor, i.e., with ∇R = 0.

Lemma 3.8. Let S be a symmetric space, then S is locally symmetric.

Proof. Our proof follows Theorem 5 in Eschenburg (2012). Let p be an arbitrary point of
S. By applying Proposition 2.4 to the isometry sp from S to itself we see that dsp(∇XY ) =
∇dsp(X)dsp(Y ) for all X, Y ∈ Γ(TS). As R is a tensor we evaluate it at a single point, p.
Now let

w = ∇v1(R(v2, v3)v4)

for vi ∈ TpM . Then by applying dsp,

(dsp)pw = (dsp)p∇v1(R(v2, v3)v4)

−w = −I(∇v1(R(v2, v3)v4)) = ∇−v1(−I(R(v2, v3)v4)).
Then expanding and simplifying −I(R(v2, v3)v4),

−I(R(v2, v3)v4)
= −I(∇v2∇v3v4 −∇v3∇v2v4 −∇[v2,v3]v4)

= ∇−v2 − I(∇v3v4)−∇−v3 − I(∇v2v4)−∇−[v2,v3] − v4

= ∇−v2(−∇−v3 − v4)−∇−v3(−∇−v2(−v4))−∇−[v2,v3] − v4

= ∇v2∇v3v4 −∇v3∇v2v4 −∇[v2,v3]v4

= R(v2, v3)v4.

So, w = −w and hence ∇R = w = 0.



22 Chapter 3. Symmetric spaces

Since all symmetric spaces are locally symmetric, it is natural to ask the following
question: Given a locally symmetric spaceM , can we relateM to some globally symmetric
space S? This question will be answered by Theorem 3.59, which states that M is
locally symmetric if and only if it is locally isometric to some (unique) simply connected
symmetric space S.

The following results provide tools to extend linear isometries between (locally) sym-
metric spaces to (local) isometries.

Theorem 3.9 (8.14 in O’Neill (1983)). LetM and N be locally symmetric semi-Riemannian
manifolds, and let L : TpM → TqN be a linear isometry that preserves curvature. Then
if U is a sufficiently small neighborhood of p, there is a unique isometry ϕ of U onto a
normal neighborhood V of q such that dϕp = L.

Theorem 3.10 (8.17 in O’Neill (1983)). Let M and N be complete, connected, locally
symmetric semi-Riemannian manifolds, with M simply connected. If L : TpM → TqN
is a linear isometry that preserves curvature, then there is a unique semi-Riemannian
covering map ϕ :M → N such that dϕp = L.

Corollary 3.11 (8.21 in O’Neill (1983)). A complete, simply connected, locally symmetric
semi-Riemannian manifold is symmetric.

Proof. Given any point p ∈M , then the linear isometry −I of TpM preserves the Riemann
curvature tensor by the calculation shown above in Lemma 3.8. So then by Theorem 3.10,
there exists a unique semi-Riemannian covering map sp :M →M with (dsp)p = −I. Since
M is simply connected, all covering maps must be trivial by Corollary 2.51 and hence sp
is an isometry.

In the next sections we will give some examples of symmetric spaces, describe some
properties relating to geodesics and calculate their isometry groups and isotropy sub-
groups. We will discuss semi-Euclidean spaces, hyperquadrics and Cahen-Wallach spaces.
Minkowski space is the Lorentzian semi-Euclidean space, while Lorentzian hyperquadrics
are either de Sitter space or anti de Sitter space. This chapter will then conclude by show-
ing that any simply connected Lorentzian symmetric space is isometric to the product of
either Minkowski space, (the universal cover of) de Sitter space, anti de Sitter space or a
Cahen-Wallach space and a Riemannian symmetric space.

3.2 Flat semi-Riemannian model spaces

The first example of a symmetric space, is the simplest possible semi-Riemannian mani-
fold, Rn equipped with an arbitrary index generalisation of the Euclidean metric.
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3.2.1 Vector spaces as manifolds

Before discussing semi-Euclidean space, we first make a brief detour to arbitrary vector
spaces. Let V be a real n-dimensional vector space. Then there is a unique way to make
V a manifold such that every linear isomorphism ξ : V → Rn is a coordinate system. We
will introduce some conventions that will be used throughout this thesis.

Definition 3.12. If p, v ∈ V , then let vp ∈ TpV be the initial velocity α′(0) of the curve
α(t) = p+ tv.

Lemma 3.13 (1.46 in O’Neill (1983)). If x1, . . . , xn is a linear coordinate system on V ,
then

vp = xi(v)∂i|p.

Note vp is the tangent vector at p with the same coordinates as v ∈ V . Therefore:

1. for a fixed p ∈ V the function v 7→ vp is a linear isomorphism V ≈ TpV .

2. For p, q ∈ V the function vp 7→ vq is a linear isomorphism TpV ≈ TqV .

These canonical isomorphisms identify v with vp.
The position vector field P ∈ Γ(TM) assigns each p ∈ V to the tangent vector pp ∈

TpV .

Remark 3.14 (Scalar product spaces as manifolds). Let V be an n-dimensional vector
space equipped with inner product ⟨·, ·⟩. Then V can be equipped with a natural semi-
Riemannian metric tensor g defined as such

g(vp, wp) := ⟨v, w⟩.

This metric tensor will be used when discussing manifolds described as submanifolds
of vector spaces, in particular, semi-Euclidean spaces and hyperquadrics.

3.2.2 Semi-Euclidean Space

Definition 3.15 (Semi-Euclidean space). Semi-Euclidean space, denoted Rn
m is the space

(Rn, g) where Rn is the vector space spanned by the orthonormal basis {e1, . . . , en} and
g is the standard semi-Riemannian metric of index m;

for v = viei and w = wiei

g(v, w) = −Σn
i=mv

iwi + Σn
j=m+1v

jwj.

In this standard basis gij = ±δij, and so the Levi-Civita connection is simply the direc-
tional derivative, i.e. ∇ = ∂.
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When m = 1, Rn
1 is a Lorentzian manifold called Minkowski space.

Lemma 3.16. Semi-Euclidean space is flat.

Proof. The Christoffel symbols Γkij are equal to 0, so it immediately follows thatR ≡ 0.

Corollary 3.17. Semi-Euclidean Space is locally symmetric.

Lemma 3.18. The geodesics of semi-Euclidean space are linear parameterisations of
straight lines.

Proof. Since the Christoffel symbols are all 0, the geodesic equations become:

0 = γ̈k.

Which we integrate twice to see:

akt+ bk = γk.

So the geodesics in Semi-Euclidean space are straight lines.

In particular, we can extend these geodesics indefinitely by increasing t, so Semi-
Euclidean space is geodesically complete.

Lemma 3.19. Semi-Euclidean space is symmetric.

Proof. We will show that semi-Euclidean space is symmetric by finding the symmetry at
an arbitrary point x. Let x be a point of Rn

m then the symmetry at x is defined as such:

sx(x+ y) := x− y, or equivalently,

sx(p) = sx(x+ (p− x)) = 2x− p.

First, notice sx(x) = x. Additionally, (dsx)p = −I at each point so in particular, (dsx)x =
−I. Since metrics are bilinear, sx is an isometry and thus sx is the symmetry at x.

Now we will describe the full isometry and isotropy groups of semi-Euclidean space.
This is of particular importance as the tangent space at a point of any semi-Riemannian
manifold is isometric to semi-Euclidean space of the same dimension and index.
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3.2.3 Indefinite orthogonal groups

In Euclidean geometry, the group of linear isometries of Rn is of particular importance. It
is called the orthogonal group of dimension n and is written O(n). In particular, a matrix
A is orthogonal if and only if its inverse is equal to its transpose; A⊤A = AA⊤ = I. This
idea can be generalised to inner product of arbitrary index.

Consider Rn
m equipped with the standard basis of Rn, then the inner product can

be represented by the diagonal matrix ε with diagonal entries ε1 = . . . = εm = −1,
εm+1 = . . . = εn = 1 .

The group of transformations which preserve the matrix ε under conjugation, i.e.

A⊤εA = ε

is called the indefinite orthogonal group of indexm and dimension n, written O(m,n−m).

Lemma 3.20. [9.8 in O’Neill (1983)] Let A be a n× n matrix. The following are equiv-
alent:

1. ⟨Av,Aw⟩ = ⟨v, w⟩ for all v, w ∈ Rn.

2. A ∈ O(m,n−m).

3. A maps orthonormal bases of Rn
m to orthonormal bases.

Proof. (1) ⇐⇒ (2).

⟨Av,Aw⟩ = ⟨v, w⟩
⟨εAv,Aw⟩ = ⟨εv, w⟩ (by the definition of ε)

⟨A⊤εAv, w⟩ = ⟨εv, w⟩ (the transpose of a matrix is its adjoint for the dot product.)

A⊤εAv = εv (the above holds for all w)

A⊤εA = ε (the above holds for all v)

ε−1A⊤ε = A−1

εA⊤ε = A−1 (ε2 = I).

(1) ⇒ (3). Let e1, . . . , en be an orthonormal basis of Rn
m, then ⟨ei, ej⟩ = εiδij. Since A

preserves the inner product ⟨Aei, Aej⟩ = ⟨ei, ej⟩ = εiδij so Ae1, . . . , Aen is an orthonormal
basis of Rn

m.
(3) ⇒ (1). Now suppose that e1, . . . , en and Ae1, . . . , Aen are two orthonormal bases
of Rn

m, then it immediately follows that ⟨ei, ei⟩ = ⟨Aei, Aei⟩, and since A is a matrix,
⟨Ax,Ay⟩ = ⟨x, y⟩.

The indefinite orthogonal group describes all the linear isometries of Rn
m, but the full

isometry group can also contain translations.
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Proposition 3.21 (9.10 in O’Neill (1983)). The isometry group of Rn
m is O(m,n−m)⋉

Rn
m. We can write each isometry as a pair (A, c) such that A ∈ O(m,n−m) and c ∈ Rn

m

with action (A, c)x = Ax+ c. The composition of elements is as such

(B, d) · (A, c) = (BA,Bc+ d).

Proof. Let ϕ be an isometry of Rn
m. First, we will show that if ϕ(0) = 0, then ϕ ∈

O(m,n − m). Since ϕ is an isometry, dϕ0 : T0Rn
m → T0Rn

m is a linear isometry by
Lemma 2.6. In particular, since T0Rn

m is identified with Rn
m, dϕ0 is identified with some

A ∈ O(m,n − m). Then since A is linear A = dA0, so A(0) = 0 and by construction
dA0 = dϕ0 so A and ϕ are equal at 0 and have the same differential at 0, thus by
Proposition 2.7, A = ϕ.

Now suppose ϕ(0) = p. Then the map ψ(x) = ϕ(x) − p is an isometry such that
ψ(0) = ϕ(0)− p = 0. Then by the previous argument ψ = A for some A ∈ O(m,n−m),
and therefore ϕ(x) = Ax+ p. Now we can see that this is unique: if (A, c) = (B, d) then

c = (A, c)(0) = (B, d)(0) = d.

Therefore, Aei = Bei for each basis vector, so A = B.

Lemma 3.22. The isotropy subgroup of Iso(Rn
m) is O(m,n−m).

Proof. First, notice that the isotropy subgroup of Iso(Rn
m) at 0 is O(m,n −m). This is

immediate from the definition of the isometry group action. We can then construct the
isotropy group at some point p by conjugating with translations. If (A, 0) fixes the point
0 then,

(I, p) · (A, 0) · (I,−p) = (A, p− Ap)

is an isometry that fixes the point p.

Lemma 3.23. The transvection subgroup Iso(Rn
m) is the group of translations Rn.

Proof. By Lemma 3.5 we know that transvections are of the form sγ( c
2
) ◦ sγ(0), which act

on a point p as such

sγ( c
2
) ◦ sγ(0)(p) = sγ( c

2
)(2γ(0)− x) = 2γ(

c

2
)− (2γ(0)− x).

Since geodesics have the form γ = at+ b this simplifies to

2γ(
c

2
)− (2γ(0)− x) = (at+ 2b)− 2b+ x = x+ at.

So the group of transvections in Rn
m are the translations.
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3.3 Hyperquadrics

Symmetric spaces with constant curvature can be described as hypersurfaces of semi-
Euclidean space. In this section we will discuss semi-Riemannian hyperquadrics of any
index, as we will consider both the Lorentzian and Riemannian cases.

Consider Rn+1
m and define the following quadratic form q(v) = ⟨v, v⟩:

q(v) = −Σm
i=1(v

i)2 + Σn+1
j=m+1(v

j)2.

If P is the position vector field, we induce a metric tensor ḡ(P (u), P (v)) := ⟨u, v⟩ on
Rn+1
m . In particular, q(u) = ḡ(P (u), P (u)). So grad q = 2P since for all V ,

ḡ(grad q, V ) = V q = V ḡ(P, P ) = 2ḡ(∇V P, P ) = 2ḡ(V, P ).

Therefore, ḡ(grad q, grad q) = 4q. Thus, it follows from Proposition 2.33 that the level
sets q−1(θr2) are semi-Riemannian hypersurfaces with unit normal U = P

r
and sign θ.

3.3.1 Definition and curvature

Definition 3.24. Let n ≥ 2 and 0 ≤ m ≤ n. Then:
The pseudosphere of radius r > 0 in Rn+1

m is the hyperquadric

Snm(r) = q−1(r2) = {p ∈ Rn+1
m : q(p) = r2}

with dimension n and index m. If m = 0 this is the Riemannian sphere, when m = 1 it
is called de Sitter Space.

Pseudohyperbolic space of radius r > 0 in Rn+1
m+1 is the hyperquadric

Hn
m(r) = q−1(−r2) = {p ∈ Rn+1

m+1 : q(p) = −r2}

with dimension n and index m. If m = 0 this is hyperbolic space. When m = 1 it is
called Anti de Sitter Space.

In particular, there are the unit hyperquadrics, Snm := Snm(1) and H
n
m := Hn

m(1). For
any r, any hyperquadric Snm(r) and H

n
m(r) is homothetic to the unit hyperquadrics via the

map x 7→ x
r
. Thus, any discussion can be simplified to a discussion of unit hyperquadrics.

Lemma 3.25 (4.24 in O’Neill (1983)). The mapping σ : Rn+1
m → Rn+1

n−m+1 given by

σ(p1, . . . , pn+1) = (pm+1, . . . , pn+1, p1, . . . , pm)

is an anti-isometry that carries each Snm anti isometrically onto Hn
n−m and vice versa.
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Proof. Since σ is a linear isomorphism and

⟨σ(p), σ(q)⟩Rn+1
m

= −Σn+1
m+1(pj)

2 + Σm
1 (pi)

2 = −⟨p, p⟩Rn+1
m

(3.3)

it follows by an equivalent argument to the proof of Lemma 2.3 that σ is an anti isom-
etry. Equation (3.3) shows that σ maps Snm to Hn

n−m and vice versa, thus σ|Sn
m

is a
diffeomorphism and hence and anti-isometry.

Lemma 3.26 (4.25 in O’Neill (1983)). Snm is diffeomorphic to Rm × Sn−m and Hn
m is

diffeomorphic to Sm × Rn−m.

Proof. First, consider Snm. Let x ∈ Rm and p ∈ Sm−n, define the map

ϕ(x, p) = (x, (1 + |x|2)
1
2p) ∈ Rm

m × Rn+1−m = Rn+1
m .

Now notice that

⟨ϕ(x, p), ϕ(x, p)⟩ = −|x|2 + (1 + |x|2) = 1.

So ϕ maps Rm × Sn−m into Smn . ϕ is evidently smooth and has an inverse map (x, q) 7→
(x, (1 + |x|2)−1

2 q), so it is a diffeomorphism. This map can be composed with σ from
Lemma 3.25 to obtain a diffeomorphism from Sm × Rn−m to Hn

m.

It follows from this lemma that Sn1 is simply connected for all n ≥ 3. More generally,
Snm is simply connected for all n−m ≥ 2.

Lemma 3.27 (4.27 in O’Neill (1983)). The hyperquadric Q = q−1(θ) ⊂ Rn+1
m of sign θ is

totally umbillic, with shape operator S = −I derived from the outward unit normal P .

Proof. If V ∈ Γ(TQ), then S(V ) = −∇̄V (P ) = −V .

Proposition 3.28 (4.29 in O’Neill (1983)). Let n ≥ 2 and 0 ≤ m ≤ m.

1. The pseudosphere Snm has constant positive curvature K = 1.

2. The pseudohyperbolic space Hn
m has constant negative curvature K = −1.

Proof. Let X, Y be coordinate vectors so that [X, Y ] = 0. Using the fact that ∇XY =
∇̄XY − II(X, Y ) and that the scalar curvature of semi-Euclidean space is equal to 0, we
calculate:

0 = ⟨R̄(X, Y )X, Y ⟩ = ⟨∇̄X∇̄YX − ∇̄Y ∇̄XX⟩
= ⟨∇̄X∇YX − ∇̄X(II(X, Y ))− ∇̄Y∇XX + ∇̄Y (II(X,X)), Y ⟩
= ⟨∇̄X∇YX − ∇̄Y∇XX, Y ⟩+ ⟨−∇̄X(II(X, Y )) + ∇̄Y (II(X,X)), Y ⟩.
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Since Y is tangent to the hypersurface, ⟨∇̄AB, Y ⟩ = ⟨∇AB, Y ⟩. Additionally, we use
the compatibility of the Levi-Civita connection with the metric to simplify the rightmost
inner product to see:

⟨R̄(X, Y )X, Y ⟩ = ⟨∇X∇YX −∇Y∇XX, Y ⟩+−⟨II(X, Y ), Y ⟩
+ ⟨II(X, Y ), ∇̄XY ⟩+ Y ⟨II(X,X), Y ⟩ − ⟨II(X,X), ∇̄Y Y ⟩.

Similarly, since II(A,B) is normal to the hypersurface we have:

⟨R̄(X, Y )X, Y ⟩ = ⟨R(X, Y )X, Y ⟩+ ⟨II(X, Y ), II(X, Y )⟩ − ⟨II(X,X), II(Y, Y )⟩,

i.e.

⟨R(X, Y )X, Y ⟩ = ⟨II(X,X), II(Y, Y )⟩ − ⟨II(X, Y ), II(X, Y )⟩.

Now utilising the fact that II(V,W ) = ⟨S(V ),W ⟩U = −⟨V,W ⟩P
r
, where S is the shape

operator, U is the unit normal and P is the position vector field, the above equation
becomes

⟨R(X, Y )X, Y ⟩ = ⟨⟨X,X⟩P
r
, ⟨Y, Y ⟩P

r
⟩ − ⟨⟨X, Y ⟩P

r
, ⟨X, Y ⟩P

r
⟩

=
⟨P, P ⟩
r2

(⟨X,X⟩⟨Y, Y ⟩ − ⟨X, Y ⟩2).

Hence the sectional curvature K is equal to θ
r2
, where θ is the sign of the hyperquadric,

therefore Snm has constant positive curvature K = 1 and Hn
m has constant negative cur-

vature K = −1.

3.3.2 Geodesics

Proposition 3.29. Let γ be a non-constant unit velocity or lightlike geodesic of Snm ⊂
Rn+1
m . Then γ has one of the following forms:

1. γ(t) = sin(t)γ̇(0) + cos(t)γ(0),

2. γ(t) = sinh(t)γ̇(0) + cosh(t)γ(0),

3. γ(t) = γ(0) + γ̇(0)t.

Proof. Choose an arbitrary point γ(0) ∈ Snm and velocity γ̇(0) ∈ Tγ(0)S
n
m as initial condi-

tions for some geodesic γ.
Writing γ as a curve in Rn+1

m it follows from Corollary 2.26 that γ is a geodesic of Snm
if and only if pr⊥Sn

m
(γ̈) = 0. Then there are three possible cases.
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1. If ⟨γ̇(t), γ̇(t)⟩ > 0, then consider the curve

α(t) = sin(t)γ̇(0) + cos(t)γ(0).

Notice that this curve has α(0) = γ(0) and α̇(0) = γ̇(0) and that

α̈(t) = − sin(t)γ̇(0)− cos(t)γ(0) = −α(t).

So α̈ is normal to Sn1 and is hence a geodesic by Corollary 2.26 and therefore by
Lemma 2.16 γ = α.

2. If ⟨γ̇(t), γ̇(t)⟩ < 0, then consider the curve

α(t) = sinh(t)γ̇(0) + cosh(t)γ(0).

Then α(0) = γ(0) and α̇(0) = γ̇(0) Finally:

α̈(t) = sinh(t)γ̇(0) + cosh(t)γ(0) = α(t).

So α̈ is normal to Snm, so α is a geodesic of Snm by Corollary 2.26 and therefore by
Lemma 2.16 γ = α.

3. If ⟨γ̇(t), γ̇(t)⟩ = 0, then consider the curve

α(t) = γ(0) + γ̇(0)t.

Then α(0) = γ(0) and α̇(0) = γ̇(0) Finally:

α̈(t) = 0,

so α is a geodesic and by Lemma 2.16 α = γ.

Notice that in each case these geodesics can be extended indefinitely and hence Snm is
geodesically complete.

Remark 3.30. Notice that each geodesic remains in a plane, P , of Rn
m containing 0, γ(0)

and γ̇(0). The causal characteristic of γ will determine the signature of the inner prod-
uct restricted to P , and by the parametrisations of γ given above we can describe the
intersection of P with Snm.

1. When ⟨γ̇(t), γ̇(t)⟩ > 0, ⟨·, ·⟩|P is positive definite and P ∩ Snm is diffeomorphic to a
circle.

2. When ⟨γ̇(t), γ̇(t)⟩ < 0, ⟨·, ·⟩|P is non-degenerate, with index 1 and P ∩ Snm is diffeo-
morphic to a hyperbola of two branches.
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3. When ⟨γ̇(t), γ̇(t)⟩ = 0, ⟨·, ·⟩|P is degenerate with a 1-dimensional nullspace and
P ∩ Snm is diffeomorphic to two parallel straight lines in P .

From the above proposition and the anti-isometry of Lemma 3.25 we see that the
geodesics of pseudohyperbolic space will correspond to the geodesics of pseudospheres
with opposite index. In Hn

m the timelike geodesics are ellipses and the spacelike geodesics
are branches of hyperbolae.

We can now discuss the geodesic connectedness of hyperquadrics.

Proposition 3.31 (5.38 in O’Neill (1983)). Let p and q be distinct non-antipodal points
of Snm. Then:

1. If ⟨p, q⟩ > 1 then p and q lie on a unique geodesic, which is timelike and one-to-one.

2. If ⟨p, q⟩ = 1 then p and q lie on a unique geodesic, which is also a null geodesic of
Rn+1
m .

3. If −1 < ⟨p, q⟩ < 1, then p and q lie on a unique geodesic, which is spacelike and
periodic.

4. If ⟨p, q⟩ ≤ −1, then there is no geodesic joining p and q.

Proof. Since p and q are non-antipodal, they lie on a unique plane P ⊂ Rn+1
m containing

p, q and 0. From the proof of Proposition 3.29 it is known that each geodesic remains in
a plane of Rn

m, so the only possible geodesic joining p and q must be a parameterisation
of the one dimensional manifold P ∩ Snm. Now consider the three possible cases for the
plane P .

1. P is positive definite, so it has an orthonormal basis e1, e1. Then P ∩ Snm is a circle
of radius 1. So −1 < ⟨p, q⟩ < 1 and are connected by a periodic spacelike geodesic.

2. P is non-degenerate with index one, so it has an orthonormal basis e0, e1 with e0
being timelike. Then P ∩ Snm is a hyperbola of two branches. Then p and q are on
the same branch if and only if ⟨p, q⟩ > 1 and are on opposite branches if and only
if ⟨p, q⟩ < −1.

3. P is degenerate. Then P ∩ Snm consists of two parallel null straight lines of Rn
m. As

in Proposition 3.29 we write p = a1e0 + b1v, q = a2e0 + b2v where e0 is a spacelike
normal vector and v is a null vector. Then recall ai = ±1, and p and q will lay on
the same line if and only if a1 = a2, i.e. ⟨p, q⟩ = 1. They will lie on parallel lines,
and thus not be connected if a1 = −a2 i.e. ⟨p, q⟩ = −1.

Corollary 3.32. If p and q are antipodal points of Snm, for m < n, then p and q are
joined by infinitely many geodesics.
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Proof. Since p and q are antipodal, they are on a single affine line of Rn1
m , therefore there

are infinitely many planes Pα containing p and q and thus infinitely many geodesics joining
p and q in Pα ∩ Snm.

As before, the anti-isometry from Lemma 3.25 provides an equivalent result for Hn
m

with the sign of ⟨p, q⟩ and therefore causal characteristic swapped.

3.3.3 Isometry groups and symmetries

Proposition 3.33 (9.8 in O’Neill (1983)). (Isometry group of pseudospheres) Iso(Snm),
is equal to O(m,n−m+ 1) and the isometry group of pseudohyperbolic space, Iso(Hn

m),
is O(m+ 1, n−m).

Proof. The proof is both cases are almost identical. We will present the pseudosphere
case and then describe the changes to make the proof valid in the pseudohyperbolic case.
First, we show that O(m,n−m+1) is a subset of Iso(Snm). Since O(m,n−m+1) is both
a linear isometry and an isometry on Rn+1

m , it follows that each element of O(m,n−m+1)
will map Snm to itself, and as Snm is a semi-Riemannian submanifold of Rn+1

m each element
of O(m,n−m+ 1) is also an isometry of Snm. So O(m,n−m+ 1) ⊂ Iso(Snm).

Now we show Iso(Snm) ⊂ O(m,n − m + 1). Let ϕ be an isometry of Snm such that
ϕ(p) = q. Let e1, . . . , en and f1, . . . , fn be tangent frames on Snm at points p and q
respectively. The position vector pp at p ∈ Snm is normal to Snm. Then if ẽi is the
element of Rn

m which canonically corresponds to the tangent vector ei, then ẽ1, . . . , ẽn, p
is an orthonormal basis for Rn

m. Then there is a unique linear map A that maps the
orthonormal basis ẽi, to f̃i and pp to pq, and by Lemma 3.20 A ∈ O(m,n − m). Then
since Snm is connected whenever m < n, A|Sn

m
(p) = ϕ(p) and (dA|Sn

m
)p = dϕp they must

be equal by Proposition 2.7. So Iso(Snm) = O(m,n−m+ 1).

The proof is the same in the Hn
m case except we consider Rn+1

m+1.

Proposition 3.34. The isotropy subgroup of Iso(Snm) is isomorphic to O(m,n−m) and
the isotropy subgroup of Iso(Hn

m) is isomorphic to O(m,n−m).

Proof. As Snm and Hn
m are homogeneous spaces, their isometry groups act transitively on

them, so we can calculate their isotropy subgroups at a point.

We will first calculate the isotropy subgroup of Iso(Snm). Consider the point en+1 ∈ Snm:

en+1 =


0
...
0
1

 .



3.4. Cahen-Wallach spaces 33

Then consider A ∈ Isoen+1(S
n
m), since A ∈ Iso(Snm) = O(m,n−m+1) Lemma 3.20 shows

A maps orthonormal bases to other orthonormal bases, and since Aen+1 = en+1, we see
that A must be of the form

A =

[
B 0
0 1

]
. (3.4)

Additionally, since A maps the orthonormal basis {ei : i = 1, . . . , n−1} to an orthonormal
basis, B must do also, and thus by Lemma 3.20, B ∈ O(m,n − m). It is immediately
evident that any isometry A in the block diagonal form shown above fixes en+1 and
therefore Isoen+1(S

n
m) = O(m,n −m). An equivalent argument holds in the case of Hn

m

with the following substitutions: consider e1 ∈ Hn
m ⊂ Rn+1m+1, then C ∈ O(m+1, n−m)

will have block diagonal form

C =

[
1 0
0 D

]
.

With D ∈ O(m,n− 1).

Proposition 3.35. The hyperquadrics Snm and Hn
m are symmetric spaces.

Proof. As with the isotropies, we will calculate the symmetry at a point. First, con-
sider Sn1 with point en+1. As sen+1 ∈ Isoen+1(S

n
m) it must be of the form described in

Equation (3.4). As this is a linear group, (dsen+1)en+1 = sen+1 . As sen+1 is a symmetry
(dsen+1)en+1 |Ten+1S

n
m

= −I. In particular, the position vector field is normal to Snm so
Ten+1S

n
m ≃ span{e1, . . . , en} so sen+1 will have the form

sen+1 =

[
−I 0
0 1

]
.

An equivalent argument holds for Hn
m by making the same substitutions as in the previous

proposition.

3.4 Cahen-Wallach spaces

3.4.1 Definitions and curvature

Definition 3.36. Let S be a symmetric n×n matrix. Then we can define the Lorentzian
manifold:

CWn+2(S) := (M = Rn+2, g = 2dx+dx− + x⊤Sx(dx+)2 + dx⊤dx)

for x+, x− ∈ R, x ∈ Rn. In particular, if S has non-zero determinant we call CWn+2(S) a
Cahen-Wallach space.
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We choose to use the coordinates x+, x−, x1, . . . , xn, within which we can represent
the metric g by the following matrix:

[gij] =

 x⊤Sx 1 0
1 0 0
0 0

[
I
]


with inverse matrix

[gij] =

 0 1 0
1 −(x⊤Sx) 0
0 0

[
I
]
 .

We adopt the notation that Greek indices µ, ν run from 1, . . . , n and Latin indices i, j
ect run from +,−, 1, . . . , n. Notice we can write x⊤Sx = xµxνSµν . Since every other

term is constant, we notice:
∂

∂xk
(gij) =


0 if k = +,−,
0 if (i, j) ̸= (+,+),

2xνSkν if k = 1, . . . , n, and (i, j) = (+,+).
Let µ = 1, . . . , n. From direct calculation the only non-zero Christoffel symbols are:

Γ−
µ+ = Γ−

+µ = xνSµν ,

Γµ++ = −xνSµν .

Now to calculate the local Riemann curvature tensor:

Rijkl = (
∂

∂xi
Γpjk −

∂

∂xj
Γpik + ΓqjkΓ

p
iq − ΓqikΓ

p
jq)gpl.

Consider the cases i = +,−, µ for µ = 1, . . . , n it follows from direct calculation that
ΓqjkΓ

p
iq − ΓqikΓ

p
jq ≡ 0. From there, further calculations show that the non-zero cases are:

Sµν = R+µ+ν = Rµ+ν+ = −R+µν+ = −Rµ++ν .

Equivalently we can describe the (3, 1)-Riemann curvature tensor locally as such:

Rijk
l =

∂

∂xi
Γljk −

∂

∂xj
Γlik + Σp(Γ

q
jkΓ

p
iq − ΓqikΓ

p
jq).

With an equivalent set of calculations showing

Sµν = Rµ+ν
− = R+ν+

µ = −Rµν+
− = −R++ν

µ.

Proposition 3.37. The only non-zero component of the Ricci tensor of CWn+2(S) is
Ric++, which is equal to −tr(S), where tr(S) is the trace of S.
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Proof. First, recall the definition of the Ricci tensor

Ricij = Rkij
k.

The only non-zero components of this form are Rµ++
ν = −R+µ+

ν with

Ric++ = −ΣµR+µ+
µ = −ΣµSµµ = −tr(S).

Proposition 3.38. The scalar curvature of CWn+2(S) is equal to 0.

Proof. By definition

Sc = gijRicij = g++Ric++ = 0.

Proposition 3.39. Let S be a symmetric matrix, then CWn+2(S) is locally symmetric
i.e., the Riemannian curvature tensor, R is covariantly constant, ∇R ≡ 0.

Proof. Since ∇R is a tensor we will evaluate it in terms of standard basis of TpM , ei. For
the sake of brevity we will write xνSµν = cµ. Recall that,

(∇WR)(X, Y )Z = ∇W (R(X, Y )Z)−R(∇WX, Y )Z −R(X,∇WY )Z −R(X, Y )(∇WZ).

This will be used to make the calculations simple.
We will now proceed by considering the following cases, which, after application of

the second Bianchi identity and the symmetries of the Riemann curvature tensor, cover
all possible combinations of basis vectors.

Firstly, if any of the basis vectors are e−, it immediately immediately follows from the
Christoffel symbols that∇R = 0. In the case with only e+ it follows that∇e+R(e

+, e+)e+ =
0 from the skew-symmetry of the tensor.

Now consider the case with one eµ and three e+:

(∇e+R)(e
+, eµ)e+

= ∇e+(R(e
+, eµ)e+)−R(∇e+e

+, eµ)e+ −R(e+,∇e+e
µ)e+ −R(e+, eµ)(∇e+e

+)

= ∇e+(Sµνe
ν)−R(−cνeν , eµ)e+ −R(e+, cµe

−)e+ −R(e+, eµ)(−cνeν)
= Sµνcνe

− − cνSµνe
− − 0− 0

= 0.

Now consider the cases with two eµ and two e+:

(∇e+R)(e
+, eν)eµ

= ∇e+(R(e
+, e+)eµ)−R(∇e+e

+, e+)eµ −R(e+,∇e+e
+)eµ −R(e+, e+)(∇e+e

µ)

= ∇e+(−Sµνeν)−R(−cνeν , e+)eµ −R(e+,−cµeµ)e+ −R(e+, e+)(cµe
−)

= −Sµνcνe− + cνSµνe
− − 0− 0

= 0.
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Then we have that (∇e+R)(e
ν , e+)eµ = 0 by the skew-symmetry of R and hence

(∇e+R)(e
ν , eµ)e+ = 0,

by the first Bianchi identity.
Now notice that ∇eνX = cµX

−, so we immediately have that

0 = −R(∇eνX, Y )Z −R(X,∇eνY )Z −R(X, Y )(∇eνZ).

So for the following cases we will only have to evaluate ∇eν (R(X, Y )Z).

(∇eνR)(e
+, eµ)e+ = ∇eν (R(e

+, eµ)e+) = ∇eν (Sµηe
η) = 0.

Now consider the cases with three eµ and one e+:

(∇e+R)(e
µ, eν)eη

= ∇e+(R(e
µ, eν)eη)−R(∇e+e

µ, eν)eη −R(eµ,∇e+e
ν)eη −R(eµ, eν)(∇e+e

η)

= 0−R(cµe
−, eν)eη −R(eµ, cνe

−)eη −R(eµ, eν)(cηe
−)

= 0.

Then it immediately follows that 0 = ∇eµR(e
+, eν)eη = ∇eµR(e

ν , e+)eη by the skew-
symmetry of R and the second Bianchi identity. So then (∇eµR)(e

ν , eη)e+ = 0 by the first
Bianchi identity.

And finally consider the case with only eµ:

(∇eµR)(e
ν , eη)eγ

= ∇eµ(R(e
ν , eη)eγ)−R(∇eµe

ν , eη)eγ −R(eν ,∇eµe
η)eγ −R(eν , eη)(∇eµe

γ)

= 0− 0− 0− 0

= 0.

This covers every possible combination of basis vectors, and therefore ∇R ≡ 0.

3.4.2 Geodesics

We will now specifically consider Cahen-Wallach spaces, i.e. CWn+2(S) for a symmetric
matrix S with non-zero determinant.

Proposition 3.40. A Cahen-Wallach space CWn+2(S) is geodesically complete.

Proof. A curve γ = (γ+, γ−, γi), where γ+ = x+ ◦ γ, γ− = x− ◦ γ and γi = xi ◦ γ, is a
geodesic in a Cahen-Wallach space if and only if

1. γ̈+ = 0,
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2. γ̈µ = (γ̇+)2Sµνγ
ν ,

3. γ̈− = −2γ̇µγ̇+Sµνγ
ν .

From this it follows that γ+ = at+ b and therefore γ̈µ = a2Sµνγ
ν . We can then write the

system of second order homogeneous linear equations with constant coefficients:

¨̃γ = a2Sγ̃.

Hence, it has solutions defined on all of R. Finally, γ̈− does not depend on γ− and so we
can integrate twice to get solutions that are defined on all of R. Hence Cahen-Wallach
spaces are geodesically complete.

And so we are able to immediately conclude:

Corollary 3.41. Cahen-Wallach spaces are symmetric spaces.

Proof. Cahen-Wallach are complete, simply connected (as they are topologically Rn+2),
locally symmetric Lorentzian manifolds and so they are symmetric spaces by Corol-
lary 3.11.

Since Cahen-Wallach spaces are symmetric, they are homogeneous, so it suffices to
describe the geodesic connectedness at a single point, for simplicity we choose the point
0.

Proposition 3.42. Consider the Cahen-Wallach space CWn+2(S). There exists a geodesic
from 0 to (p+, p−, p) if and only if p = 0 or p+

√
−λµ is not equal to an integer multiple

of π for all negative eigenvalues λµ of S. If a geodesic exists, then it is unique.

Proof. Since S is symmetric it is diagonalisable, so choose a basis of Rn such that S is
diagonalised. Let p be a point in CW (S) and suppose γ is a geodesic with γ(0) = 0 and
γ(1) = p. We can then use the geodesic equations as described in Proposition 3.40 to
examine the existence of such a γ.

Firstly we have that γ̈+ = 0, and γ+ must be of the form at + b. By imposing the
boundary conditions we get the unique solution a = p+ and b = 0, i.e. γ+ = p+t.

Next we consider γµ for µ = 1, . . . , n. As in Proposition 3.40, let γ̃ be the vector with
entries γµ from the geodesic equations we get

¨̃γ = a2Sγ̃.

Since S is diagonal, this is equivalent to

γ̈µ = a2Sµµγ
µ = a2λµγ

µ.

Where λµ is the µ-th eigenvalue of S.
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Which we can solve:

γµ =

{
cµ1e

a
√
λµt + cµ2e

−a
√
λµt λµ > 0,

cµ1 sin(a
√

−λµt) + cµ2 cos(a
√

−λµt) λµ < 0.

Whenever λµ > 0 this has a unique solution once imposing our boundary conditions.
So now suppose that λµ < 0, since γ(0) = 0 the above equation simplifies to

γµ = c1 sin(a
√

−λµt).

Which is equal to 0 whenever a
√
−λµ is an integer multiple of π, so γµ will not have a

solution whenever pµ ̸= 0. When a
√

−λµ ̸= kπ we have the unique solution cµ1 = pµ

a
√

−λµ
Finally, we consider γ−, supposing we can find a solution for each γµ. From the

geodesic equations we have

γ̈− = −2aγ̇µSµνγ
ν .

As S is symmetric this simplifies to

γ̈− = −2aλµγ̇
µγµ,

which does not depend on γ−, so we can integrate twice and apply boundary conditions
to obtain a unique solution.

3.4.3 Isometry groups and symmetries

The isometry group of Cahen-Wallach spaces have been known since their construction
in Cahen & Wallach (1970), with more details discussed in many sources such as Kath &
Olbrich (2019), however most of these descriptions have been heavily algebraic. We will
use as formulation as found in 4.2.1 of Teisseire (2021) because it explicitly describes how
the isometry group acts.

Proposition 3.43 (Isometry group of Cahen-Wallach space). The isometries of Cahen-
Wallach space are of the form

ϕ : =

x+x−
x

 7→

 ax+ + c

a(x− + b− ⟨β̇(x+), Ax+ 1
2
β(x+)⟩)

Ax+ β(x+)

 .

Where a = ±1, b, c ∈ R, A ∈ ZO(n)(S) is an orthogonal matrix commuting with S and

β : R → Rn, satisfying the second order ODE β̈ = Sβ, where β̈ denotes ∂β
∂x+

and ⟨·, ·⟩ is
the standard Euclidean inner product on Rn.
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Proof. This proof is an involved calculation in Teisseire (2021).

As before, we will calculate the isotropy subgroup of Iso(CWn+2(S)) at a point, as
CWn+2(S) is a homogeneous space. We will consider the point 0.

Lemma 3.44. The isotropies of Cahen-Wallach space that fix 0 are of the form:

ψ : =

x+x−
x

 7→

 ax+

a(x− − ⟨β̇(x+), Ax+ 1
2
β(x+)⟩)

Ax+ β(x+)

 .

where a = ±1, A ∈ ZO(n)(S) is an orthogonal matrix commuting with S and β : R → Rn

satisfies the second order ODE β̈ = Sβ with initial condition β(0) = 0.

Proof. Let ψ be an isometry that fixes 0, then:

ψ(0) =

 c

a(b− ⟨β̇(0), 1
2
β(0)⟩)

β(0)

 = 0.

It is then immediate that c = 0 and β(0) = 0. Then

0 = a(b− ⟨β̇(0), 1
2
β(0)⟩) = ab,

so b = 0. So ψ must have the form

ψ : =

x+x−
x

 7→

 ax+

a(x− − ⟨β̇(x+), Ax+ 1
2
β(x+)⟩)

Ax+ β(x+)

 .

Where a = ±1, A ∈ ZO(n)(S) is an orthogonal matrix commuting with S and β : R → Rn

satisfies the second order ODE β̈ = Sβ with initial condition β(0) = 0.

Remark 3.45. An isometry ϕp that maps 0 to the point (p+, p−, p) must have the form

ϕp :

x+x−
x

 7→

 ax+ + p+

a(x− +
p−−⟨β̇(0), 1

2
β(0)⟩

a
− ⟨β̇(x+), Ax+ 1

2
β(x+)⟩)

Ax+ β(x+)

 .

Where β(0) = p.

We can directly calculate the symmetries of Cahen-Wallach space as such:
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Lemma 3.46. The symmetry sp at the point (p+, p−, p) in CWn+2(S) is of the form

sp :

x+x−
x

 7→

 −x+ + 2p+

−x− + 2p− − ⟨β̇(x+),−x+ 1
2
β(x+)⟩

−x+ β(x+)

 .

Where β(p+) = 2x and β̇(p+) = 0.

Proof. First, recall that sp fixes p, i.e.p+p−
p

 = sp(p) =

 ap+ + c

a(p− + b− ⟨β̇(p+), Ap+ 1
2
β(p+)⟩)

Ap+ β(p+)

 .

From the first row we immediately deduce that a = 1 and c = 0 or a = −1 and c = 2p+.
Additionally, we have that (dsp) = −I, so a = −1 and c = 2p+. Similarly we have that
A = −In where In is the n × n identity matrix and that β(p+) = 2p and β̇(p+) = 0.
Finally, we have that

p− = a(p− + b− ⟨β̇(p+), Ap+ 1

2
β(p+)⟩)

= −(p− + b− ⟨0,−p+ 1

2
2x⟩).

So b = −2p−.

Remark 3.47. An arbitrary transvection is of the form sp◦sq, so we can directly calculate
it using the preceding lemma. First, we have that

sp ◦ sq :

x+x−
x

 sq7→

 −x+ + 2q+

−x− + 2q− − ⟨β̇q(x+),−x+ 1
2
βq(x

+)⟩
−x+ βq(x

+)


sp7→

 x+ + c

(x− + b− ⟨β̇(x+), x+ 1
2
β(x+)⟩)

x+ β(x+)

 .

Where c = 2p − 2q, β(x+) = βp(2q
+ − x+) − βq(x

+) and b = 2p− − 2q− + 1
2
(⟨β̇p(2q+ −

x+), βq(x
+)⟩)− ⟨β̇q(x+), βp(2q+ − x+)⟩). Notice this is a constant:

∂

∂x+
(⟨β̇p(2q+ − x+), βq(x

+)⟩)− ⟨β̇q(x+), βp(2q+ − x+)⟩)

= ⟨β̈p(2q+ − x+), βq(x
+)⟩+ ⟨β̈p(2q+ − x+), β̇q(x

+)⟩
−⟨β̈q(x+), βp(2q+ − x+)⟩ − ⟨β̇q(x+), β̇p(2q+ − x+)⟩

= ⟨Sβp(2q+ − x+), βq(x
+)⟩ − ⟨Sβq(x+), βp(2q+ − x+)⟩

= 0

since S is self-adjoint, because it is symmetric.
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3.5 Symmetric spaces as homogeneous spaces

Recall that a semi-Riemannian manifold M is homogeneous if its isometry group Iso(M)
acts transitively on M .

Lemma 3.48. Let M be a symmetric space, then M is homogeneous.

Proof. Since the transvection group G(M) is a subset of Iso(M) it follows from Corol-
lary 3.6 that M is homogeneous.

A particularly appealing property of a homogeneous manifold M is that it can be
described as coset manifolds Iso(M)/Isop(M). In the previous sections, we calculated
the isometry and isotropy groups of some semi-Riemannian symmetric spaces, which we
will use in Chapter 5 when presenting Klingler (1996).

In general, viewing a symmetric space S as a homogeneous space allows for an algebraic
description of S which provides powerful tools to calculate its geodesics and curvature.

Theorem 3.49 (11.29 in O’Neill (1983)). Let H be a closed subgroup of a connected Lie
group G. Let Σ be an involutive automorphism of G such that Fix(Σ)0 ⊂ H ⊂ Fix(Σ)
where Fix(Σ) is the set of points in G fixed by Σ and Fix(Σ)0 is the connected component
containing the identity. Then any G-invariant metric tensor on M makes M = G/H a
semi-Riemannian symmetric space such that s0 ◦ π = π ◦ Σ where s0 is the symmetry at
0 and π is the projection G→M .

Lemma 3.50 (11.30 in O’Neill (1983)). Let H be a closed subgroup of a connected Lie
group G, with respective Lie algebras h ⊂ g, and Σ be an involutive automorphism of G
such that Fix(Σ)0 ⊂ H ⊂ Fix(Σ). We will write σ := dΣ. Then

1. h = {X ∈ g | σ(X) = X},

2. g is the direct sum of h and the subspace m := {X ∈ g | σ(X) = −X},

3. Adh(m) ⊂ m for all h ∈ H,

4. [h, h] ⊂ h, [h,m] ⊂ m, and [m,m] ⊂ h.

Proposition 3.51 (11.31 in O’Neill (1983)). Let M = G/H be a semi-Riemannian sym-
metric space. Then

1. The geodesics starting at O = eH with initial velocity dπ|OX for X ∈ m are given
by

γ(t) = α(t)0 = πα(t) for all t,

where α(t) = exp(tX) is the one-parameter subgroup of X ∈ m.
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2. The curvature tensor at 0 is given by R(x, y)z = dπ[[X, Y ], Z], where x, y, z ∈ T0M
corresponds under dπ to X, Y, Z ∈ m.

Notice that in Theorem 3.49 the involutive automorphism Σ is defined to be a lift of the
symmetry s0, so it would appear that the useful algebraic description of symmetric spaces
requires a manifold to be globally symmetric. In the following section, we will generalise
this algebraic data to symmetric triple systems and proceed to construct symmetric triples
from locally symmetric spaces. From there, we will prove two main results; that a manifold
is locally symmetric if and only if it is locally isometric to a symmetric space and that
there is a one to one correspondence between simply connected symmetric spaces and
symmetric triple systems.

3.6 Symmetric triples and locally symmetric spaces

Definition 3.52 (Symmetric triple system). A symmetric triple (g, σ, B) consists of a
finite dimensional real Lie algebra g, an involutive automorphism σ of g and a non-
degenerate symmetric bilinear form B on g such that the following properties hold:

1. The decomposition g = h ⊕ m induced by the eigenspace decomposition h =
Eigσ(+1) and m = Eigσ(−1) of σ satisfies h = [m,m].

2. B is invariant under σ and ad(g), i.e. σ ∈ SO(B, g) and ad(g) ⊂ so(B, g).

Lemma 3.53. Given a symmetric triple (g, σ, B), h is a sub-algebra of g.

Proof. As h is the 1-eigenspace decomposition of σ, it is a subspace of g, so all that
remains is to show it is closed under the Lie brackets. Let h1, h2 ∈ h, then:

σ([h1, h2]) = [σ(h1), σ(h2)] = [h1, h2].

So therefore, [h1, h2] is in the 1-eigenspace of σ i.e. [h1, h2] ∈ h.

Theorem 3.54. Let (g = m⊕h, σ, B) be a symmetric triple. Then there exists a symmet-
ric space S = G/H, where G is the unique simply connected Lie group with Lie algebra g
and H is the unique connected subgroup of G that has Lie algebra h.

Proof. This construction follows Neukirchner (2003). First, recall Lie’s third theorem: If
g is a finite dimensional real Lie algebra, then there exists a simply connected Lie group
G with g as its Lie algebra. So let G be the unique simply connected Lie group with Lie
algebra g. Recall that if ϕ : LA(G) → LA(H) is a Lie algebra homomorphism and G is
simply connected, then there exists a unique Lie group homomorphism f : G → H such
that df = ϕ (see 3.27 in Warner (1983) for a proof). So then we then lift σ ∈ Aut(g) to
an involutive Lie group automorphism Σ ∈ Aut(G).
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Since LA(G) = T0G = g, we can define a G-invariant metric B̃ on G by B̃|0 = B. Then
consider the fixed points of G under Σ, H = {g ∈ G | Σ(g) = g}, evidently exp(h) ⊂ H
and by (Koh 1965, p.293) H is closed and connected. Then we define S = G/H with
projection π : G → S, the ad(h) invariance of B ensures that B̃ is ad(H) invariant, so B̃
descends to a well defined G-invariant metric B̂ on S. Then the G-invariant metric on
the homogeneous space S makes it a symmetric space by Theorem 3.49. Finally, notice
that S is simply connected by the short exact sequence

1 = π1(G) → π1(G/H) → π0(H) = 1.

Definition 3.55 (Lie Triple System). A Lie triple system (W, b, T ) consists of a vector
spaceW over R, a bilinear form b : W×W → W and a trilinear form T : W×W×W → W
with the following properties:

1. b is symmetric and non-degenerate.

2. T is skew-symmetric in first two variables: T (X, Y )Z = −T (Y,X)Z.

3. T satisfies Bianchi’s identity: T (X, Y )Z + T (Y, Z)X + T (Z,X)Y = 0.

4. The endomorphism TU,V : W → W defined by TU,V (X) := T (U, V )X acts as a
derivation of the triple product, i.e,

TU,V (T (X, Y )Z) = T (TU,VX, Y )Z + T (X,TU,V Y )Z + T (X, Y )(TU,VZ).

5. T is skew-adjoint for b: b(TU,VX, Y ) + b(X,TU,V Y ) = 0.

Theorem 3.56. Given a locally symmetric manifold (M, g) with curvature tensor R, then
(TpM, gp, Rp) forms a Lie triple system.

Proof. Firstly, notice that TpM is a vector space and gp is a non-degenerate bilinear form.
Now notice that R is a trilinear map TpM × TpM × TpM → TpM such that

R(X, Y )Z = −R(Y,X)Z

by definition, and

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

by the 1st Bianchi identity. Also, by the skew-symmetric property of R,

g(R(U, V )X, Y ) + g(X,R(U, V )Y ) = 0.
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So all that remains is to show R(U, V ) is a derivation of R(X, Y )Z. Where the
curvature endomorphism is:

R(U, V ) ∈ End(TM)

R(U, V ) : W 7→ R(U, V )W.

Writing ∇2
U,VW = ∇U∇VW −∇∇UV , then R(U, V ) = ∇2

U,V −∇2
V,U . SinceM is locally

symmetric,

(∇WR)(X, Y, Z)

= ∇W (R(X, Y )Z)−R(∇WX, Y )Z −R(X,∇WY )Z −R(X, Y )(∇WZ)

= 0.

So, for any W,X, Y, Z ∈ Γ(TM), we have that

∇W (R(X, Y )Z) = R(∇WX, Y )Z +R(X,∇WY )Z +R(X, Y )(∇WZ).

We can then take the derivative with respect to U ∈ Γ(TM) and compute

∇2
UWR(X, Y )Z = ∇U(∇W (R(X, Y )Z))−∇W (∇U(R(X, Y )Z)),

which can then be expanded via the Leibniz rule and then simplified to equal

R(U,W )(R(X, Y )Z) = R(R(U,W )X, Y )Z +R(X,R(U,W )Y )Z +R(X, Y )(R(U,W )Z).
(3.5)

Hence R(U,W ) acts as a derivation on R(X, Y )Z and therefore (TpM, gp, R) is a Lie triple
system.

Notice that conditions 1, 2, 3 and 5 are satisfied for all semi-Riemannian manifolds,
however condition 4 does not hold in general and required that ∇R = 0 in this case.

Let (W, b, T ) be a Lie triple system, we can construct a corresponding symmetric triple
(g, σ, B) as follows:

m := W,

h := Span{T (U, V ) : U, V ∈ m} ⊂ so(m),

g := m⊕ h.

Where we define the Lie brackets on g as such: let X, Y ∈ m, and T (U, V ), T (W,Z) ∈ h,
then define

[X, Y ] := T (X, Y ) ∈ h,

[T (U, V ), X] := T (U, V )X,

[T (U, V ), T (W,Z)] := [T (U, V ), T (W,Z)]so(m).
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Furthermore, define an involutive automorphism of g

σ : σ(T (U, V )) = T (U, V ), σ(X) = −X

and extend linearly.
Finally, define a bilinear form B by considering B|m×m, B|m×h and B|h×h separately.

B|m×m(X, Y ) := b(X, Y ),

B|m×h(X,T (U, V )) := 0,

B|h×h(T (U, V ), T (X, Y )) := B(T (U, V )X, Y )

= b(T (U, V )X, Y ).

Notice that B|h×h is well defined: suppose T (X, Y ) = T (X̃, Ỹ ) and T (U, V ) = T (Ũ , Ṽ )
then

B(T (X̃, Ỹ ), T (Ũ , Ṽ )) = b(T (X̃, Ỹ )Ũ , Ṽ ) = b(T (X, Y )Ũ , Ṽ )

= b(T (Ũ , Ṽ )X, Y ) = b(T (U, V )X, Y ) = b(T (X, Y )U, V ),

by the symmetries of T . B is symmetric since b is symmetric, T is skew-symmetric and
T is skew-adjoint for b.

Theorem 3.57. Let (W, b, T ) be a Lie triple system. Then the triple (g, σ, B) defined as
above is a symmetric triple.

Proof. Immediately we have that [·, ·] is skew-symmetric and [·, ·]so(m) and T satisfy the
Bianchi identity, so all that remains is to check that the Bianchi identity is satisfied in
the mixed cases.

First, consider the case of one element in h and two elements in m:

[T (U, V ), [Y, Z]] + [Y, [Z, T (U, V )]] + [Z, [T (U, V ), Y ]]

= [T (U, V ), T (Y, Z)] + [Y,−T (U, V )Z] + [Z, T (U, V )Y ]

= [T (U, V ), T (Y, Z)]− T (Y, T (U, V )Z) + T (Z, T (U, V )Y )

= T (U, V )T (Y, Z)− T (Y, Z)T (U, V )− T (Y, T (U, V )Z) + T (Z, T (U, V )Y ).

Then expanding T (U, V )T (Y, Z) by Equation (3.5)

T (U, V )(T (Y, Z)) = T (T (U, V )Y, Z) + T (Y, T (U, V )Z) + T (Y, Z)(T (U, V ))

and hence

T (U, V )(T (Y, Z))− T (Y, T (U, V )Z) + T (Z, T (U, V )Y )

= T (T (U, V )Y, Z) + T (Y, T (U, V )Z) + T (Y, Z)(T (U, V ))

+ T (Z, T (U, V )Y )− T (Y, T (U, V )Z)

= T (Y, Z)(T (U, V )).



46 Chapter 3. Symmetric spaces

So this case satisfies the Bianchi identity.
Now consider the case with two elements in h and one in m:

[T (U, V ), [T (X, Y ), Z]] + [T (X, Y ), [Z, T (U, V )]] + [Z, [T (U, V ), T (X, Y )]]

= [T (U, V ), T (X, Y )Z] + [T (X, Y ),−T (U, V )Z] +[Z, [T (U, V ), T (X, Y )]]

= T (U, V )(T (X, Y )Z)− T (X, Y )(T (U, V )Z) −[T (U, V ), T (X, Y )](Z)

= T (U, V )(T (X, Y )Z)− T (X, Y )(T (U, V )Z)

− T (U, V )(T (X, Y )Z) + T (X, Y )(T (U, V )Z)

= 0.

So [·, ·] satisfies the Bianchi identity and (g, [, ]) defines a Lie algebra.
Now consider σ. First, we will show that σ is an involution:

σ(σ(X)) = σ(−X) = X

σ(σ(T (U, V ))) = σ(T (U, V )) = T (U, V )

where h is the +1 eigenspace of σ and m is the −1 eigenspace of σ. By definition h =
Span{T (U, V ) = [U, V ] : U, V ∈ m}. Now we will show σ is a Lie algebra homomorphism.

σ([X, Y ]) = σ(T (X, Y )) = T (X, Y )

= [X, Y ] = [−X,−Y ]

= [σ(X), σ(Y )],

σ([T (U, V ), X]) = σ(T (U, V )X) = −T (U, V )X

= −[T (U, V ), X] = [T (U, V ),−X]

= [σ(T (U, V )), σ(X)],

σ([T (U, V ), T (X, Y )]) = [T (U, V ), T (X, Y )]

= [σ(T (U, V )), σ(T (X, Y ))].

Finally, consider B. We must show that B is non-degenerate. As g|p is non-degenerate
all that remains is to show B|h×h is non-degenerate. Suppose there is some T (U, V ) such
that B(T (U, V ), T (X, Y )) = 0 for every T (X, Y ), then

0 = B(T (U, V ), T (X, Y )) = g(T (U, V )X, Y ).

Since this holds for all T (X, Y ), it must hold for all X, Y , and so by the non-degeneracy
of b,

0 = T (U, V )X

for all X. As T (U, V )X = 0, then T (U, V ) = 0. Finally, we show that B is σ and ad(g)
invariant. First, we show σ invariance. Since h is the +1-eigenspace of σ it is immediately
invariant. Since σ preserves h and m, B|m×h is σ-invariant also. Now notice for B|m×m:
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b(σ(X), σ(Y )) = b(−X,−Y ) = b(X, Y )

so B is σ-invariant. Now we will show the ad(g)-invariance.
First, consider B|m×m:

B([T (U, V )X], Y ) +B(X, [T (U, V ), Y ]) = B(T (U, V )X, Y ) +B(X,T (U, V )Y )

= b(T (U, V )X, Y ) + b(X,T (U, V )Y )

= 0.

Now consider B|m×h:

B([X, Y ], Z) +B(Y, [X,Z])

= B(T (X, Y ), Z) +B(Y, T (X,Z))

= 0,

B([X,T (U, V )], T (W,Z)) +B(T (U, V ), [X,T (W,Z)])

= B(−T (U, V )X,T (W,Z)) +B(T (U, V ),−T (W,Z)X)

= 0,

B([T (U, V )X], T (W,Z)) +B(X, [T (U, V ), T (W,Z)])

= 0.

Finally, B|h×h:

B([X,T (U, V )], Z) +B(T (U, V ), T (X,Z))

= B(−T (U, V )X,Z) +B(T (U, V ), T (X, Y ))

= 0,

B([T (U, V ), T (W,Z)], T (A,B)) +B(T (W,Z), [T (U, V ), T (A,B)])

= 0.

So B is σ and ad(g) invariant and therefore (g, σ, B) is a symmetric triple.

Remark 3.58. In particular, the combination of Theorem 3.56 and Theorem 3.57 show
that for a locally symmetric space (M, g), the triple (TpM, gp, R) forms a symmetric triple
with

m := TpM,

h := Span{R(U, V ) : U, V ∈ m} ⊂ so(m),

g := m⊕ h.

We will call this the corresponding symmetric triple for (M, g).
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Theorem 3.59. Let (M, g) be a semi-Riemannian manifold. Then (M, g) is locally sym-
metric if and only if there exists some simply connected symmetric space S that is locally
isometric to M .

Proof. Let M be a semi-Riemannian manifold with Levi-Civita connection ∇ and Rie-
mann curvature tensor R. Suppose that M is locally isometric to a symmetric space S
with Levi-Civita connection ∇̂ and Riemann curvature tensor R̂. Since ∇R is a tensor, we
can evaluate it at each point. Let p be an arbitrary point of M , then ϕ is a local isometry
from some neighbourhood U of p to ϕ(U) ⊂ S. Then it follows from Proposition 2.4 that:

dϕ(∇VpR(Xp, Yp)Zp)

= ∇̂dϕVpdϕ(R(Xp, Yp)Zp)

= ∇̂dϕVpdϕ(∇Xp∇YpZp −∇Yp∇XpZ −∇Xp,YpZp)

= ∇̂dϕVp(∇̂dϕXpdϕ(∇YpZ)− ∇̂dϕYpdϕ(∇XpZp)− ∇̂dϕ[Xp,Yp]dϕZp)

= ∇̂dϕVp(∇̂dϕXp∇̂dϕYpdϕZ − ∇̂dϕYp∇̂dϕXpdϕZp − ∇̂[dϕXp,dϕYp]dϕZp)

= ∇̂dϕVpR̂(dϕXp, dϕYp)dϕZp.

Lemma 3.8 showed that ∇̂R̂ = 0 and at each point we see ∇̂R̂ = ∇R so ∇R = 0 i.e. M
is locally symmetric.

Now consider the converse, suppose that M is a semi-Riemannian manifold with a
metric g such that ∇R = 0.
It follows from Theorem 3.56 that (TpM, gp, R) is a Lie triple system, and then Theo-
rem 3.57 shows this corresponds to a symmetric triple (g, σ, B).

Now, we construct a simply connected symmetric space S from the symmetric triple
in a manner identical to Theorem 3.54.

Now notice that by identifying p ∈M with [0] ∈ S, there is a vector space isomorphism
from v ∈ TpM to ϕ(v) ∈ T[0]S because:

ϕ : TpM ≃ m ≃ (m⊕ h)/h ≃ g/h
dπ≃ T[0](G/H) ≃ T[0]S.

There exists a linear isometry ϕ from TpM to T[0]S. Now notice that ϕ preserves curvature:
consider RM(X, Y )Z ∈ TpM , which is identified with RM(X, Y )Z = [[X, Y ]Z] ∈ m, then
by Proposition 3.51, dπ[[X, Y ]Z] = RS(dπX, dπY )dπZ = RS(ϕ(X), ϕ(Y ))ϕ(Z) in T[0]S,
so ϕ preserves curvature. As S is symmetric it is locally symmetric. Since ϕ : TpM →
TxS is a linear isometry between locally symmetric semi-Riemannian manifolds which
preserves curvature so by Theorem 3.9 we can (uniquely) extend this linear isometry to
a neighborhood. Hence M is locally isometric to S.

Remark 3.60. If we additionally require M to be a simply connected symmetric space,
the above theorem can be strengthened such that ϕ is a isometry, as we are able to replace
Theorem 3.9 with Theorem 3.10, and since M and S are simply connected all covering
maps are isometries.
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Definition 3.61 (Isomorphic Symmetric Triples). Let (g1, σ1, B1) and (g2, σ2, B2) be
symmetric triples. We say they are isomorphic as symmetric triples if there exists a Lie
algebra isomorphism A : g1 → g2 such that:

1. A ◦ σ1 = σ2 ◦ A,

2. B1(x, y) = B2(Ax,Ay) for any, x, y ∈ m1.

Theorem 3.62. Let (M, g) and (M̂, ĝ) be isometric simply connected symmetric spaces.
Then their corresponding symmetric triples (g, σ, B) and (ĝ, σ̂, B̂) are isomorphic as sym-
metric triples.

Proof. Let ψ be an isometry from M to M̂ . Then there exists some base-points p, p̂ for
the corresponding symmetric triples, i.e. m = TpM and m̂ = Tp̂M̂ . Then since symmetric

spaces are homogeneous, there exists some ĝ ∈ Iso(M̂) such that ĝψ(p) = p̂, we will call
this isometry ϕ := ĝψ. Then we have the linear isomorphism

dϕp : TpM → Tp̂M̂.

Similarly, since isometries preserve the Riemann curvature tensor, they will preserve the
curvature endomorphism and hence we have the linear isomorphism

R(U, V ) 7→ R̂(dϕ(U), dϕ(V )).

Since (g, σ, B) and (ĝ, σ̂, B̂) are the corresponding symmetric triples for their respective
symmetric spaces, σ, the Lie brackets and bilinear forms B are defined in equivalent
manners, and therefore these maps describe a symmetric triple isomorphism from (g, σ, B)
to (ĝ, σ̂, B̂).

Theorem 3.63. Let (M, g) and (M̂, ĝ) be simply connected symmetric spaces. If their cor-
responding symmetric triples (g, σ, B) and (ĝ, σ̂, B̂) are isomorphic as symmetric triples,
then (M, g) and (M̂, ĝ) are isometric.

Proof. By Remark 3.60, both M and M̂ are isometric to some symmetric space S and
therefore are isometric to each other.

Theorem 3.64. Let (g, σ, B) be a symmetric triple. Then the corresponding symmet-
ric space (S, g) has a corresponding symmetric triple (T0S ⊕ span{R(U, V ) | U, V ∈
T0S}, σ1, B1) that is isomorphic as a symmetric triple to (g, σ, B).

Proof. As before, we let G be the unique simply connected Lie group with Lie algebra
g. Then since G is simply connected, σ ∈ aut(g) lifts to an involutive automorphism
Σ ∈ Aut(G). Since LA(G) = T0G = g, we can define a G-invariant metric B̃ on G
by B̃|0 = B. Then let H = {g ∈ G | Σ(g) = g}, evidently exp(h) ⊂ H and by (Koh
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1965, p.293) H is closed and connected. Then we define S = G/H with projection
π : G → S, the ad(h) invariance of B ensures that B̃ is ad(H) invariant, so B̃ descends
to a well defined metric B̂ on S. Then we define the corresponding symmetric triple
(T0S ⊕ span{R(U, V ) | U, V ∈ T0S}, σ1, B1) as in Remark 3.58. Now define the map

A : g → T0S ⊕ span{R(U, V ) | U, V ∈ T0S}
m ∋ X 7→ dπ|0(X) ∈ T0S,

h = Σi[Xi, Yi] 7→ ΣiR(AX,AY ) ∈ span{R(U, V ) | U, V ∈ T0S}.

A preserves eigenspace decomposition with respect to σ1 and σ by construction. Now we
will show that A preserves Lie brackets. First, consider

A[X, Y ] = R(AX,AY ) = [AX,AY ]1

by the definition of A and the Lie brackets [·, ·]1, of the corresponding symmetric triple.
Now consider the case:

A[[X, Y ], [Z,W ]] = R(A[X, Y ], A[Z,W ])

= [A[X, Y ], A[Z,W ]]1

= [R(AX,AY ), R(AZ,AW )]1

= [[AX,AY ]1, [AZ,AW ]1]1.

Now consider the final case of [[X, Y ], Z], using Proposition 3.51 we have that

A[[X, Y ], Z] = dπ[[X, Y ], Z]

= R(AX,AY )AZ

= [[AX,AY ]1, AZ]1.

So A preserves Lie brackets, so it remains to check that A is an isomorphism and that A
preserves B.

First, we will show A is surjective. Let X ∈ T0S, since π is a projection, there exists
some X̃ ∈ T0G = g such that dπ0(X̃) = X. Then AX̃ = X. Additionally, it follows from
Proposition 3.51 that the geodesics of S starting at 0 are given by

γ(dπX̃)(t) = α(t)(0) = πα(t),

where α is the one-parameter subgroup of X̃ ∈ m, so we have that X̃ ∈ m. Similarly,
consider R(X, Y ), then there exists X̃, Ỹ that are mapped to X, Y by dπ0, then [X̃, Ỹ ] ∈ h
and A[X̃, Ỹ ] = R(X, Y ).

Now we will show that A is injective. First, we will show A is injective on m. Suppose
that dπ|0(X) = 0, then [X] = [0] in T0S, so X ∈ h. Now consider [m1,m2]g ∈ h, and let
A[m1,m2]g = 0 then

0 = A[m1,m2]g = R(dπ|0(m1), dπ|0(m2)).
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Then for an arbitrary dπ|0(e) ∈ T0S we have that

0 = R(dπ|0(m1), dπ|0(m2))dπ|0(e).
Then by applying Proposition 3.51 we have that

0 = dπ[[m1,m2], e].

So [[m1,m2], e] ∈ h, but

σ[[m1,m2], e] = [σ[m1,m2], σ(e)] = −[[m1,m2], e],

so [[m1,m2], e] ∈ m, and therefore [[m1,m2], e] = 0. Since e was an arbitrary choice it
follows that [m1,m2] = 0, and because A is linear this suffices to show A is injective.

Finally, we show that B(m1,m2) = B̂(Am1, Am2) for any m1,m2 ∈ m. This follows
from the definition of each respective metric,

B̂(Am1, Am2) = B̂(dπ|0(m1), dπ|0(m2))

= B̃(m1,m2)

= B(m1,m2).

Corollary 3.65. Let (g, σ, B) and (ĝ, σ̂, B̂) be isomorphic as symmetric triples. Then
their corresponding symmetric spaces S and Ŝ are isometric.

Proof. Let (g, σ, B) and (ĝ, σ̂, B̂) be isomorphic as symmetric triples. Then it follows
from Theorem 3.64 that (g, σ, B) is isomorphic to the corresponding symmetric triple of
the corresponding symmetric space S. The same holds for (ĝ, σ̂, B̂) with corresponding
symmetric space Ŝ. Then it follows from transitivity of isomorphisms that the corre-
sponding symmetric triples of S and Ŝ are isomorphic as symmetric triples and hence by
Theorem 3.63 S and Ŝ are isomorphic.

Remark 3.66. The previous results show a correspondence between simply connected
symmetric spaces (up to isometry) and symmetric triples (up to symmetric triple iso-
morphism). Theorem 3.54 describes how to construct the corresponding symmetric space
from a symmetric triple, Theorem 3.63 ensures that if two symmetric triples are isomor-
phic, then their corresponding symmetric spaces will be isometric. Conversely, given a
symmetric space, Remark 3.58 describes the corresponding symmetric triple, and by The-
orem 3.62, if two simply connected symmetric spaces are isometric, their corresponding
symmetric triples will be isomorphic. Also, by Theorem 3.64, we see that given a sym-
metric triple (g, σ, B), the corresponding symmetric triple to the corresponding symmetric
space of (g, σ, B) will be isomorphic to (g, σ, B). Finally, given a simply connected sym-
metric space S, the corresponding symmetric space to the corresponding symmetric triple
of S will be isometric to S by Remark 3.60.

The above correspondence is vital to the classification of Lorentzian symmetric spaces,
which we will outline in the following section.
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3.7 Classification of Lorentzian symmetric spaces

Definition 3.67. A semi-Riemannian manifold (M, g) is said to be decomposable if for
all points p ∈ M , there exists a neighbourhood U of p such that (U, g) is isometric to a
product (M1, g1)×(M2, g2). We say that (M, g) is indecomposable if it is not decomposable.

If (M, g) is a locally symmetric decomposable semi-Riemannian manifold then by
Proposition 2.60 and Corollary 2.62 we have that 0 = ∇R = ∇M1RM1 + ∇M2RM2 , so
∇M2RM2 = 0 and ∇M1RM1 = 0.

Additionally, if (M, g) is a decomposable Lorentzian manifold we can immediately
notice that M must be locally isometric to the product of a Lorentzian manifold and a
Riemannian manifold.

Lemma 3.68. Let (M, g) be a semi-Riemannian symmetric space, then M is decompos-
able if and only if M is isometric to a product (M1, g1)× (M2, g2).

Proof. Suppose that M is a decomposable semi-Riemannian symmetric space, we will
show it is a global product of manifolds. Suppose that (M, g) is locally isometric to
the product (M1, g1) × (M2, g2). Since each Mi are locally symmetric, it follows from
Theorem 3.59 thatMi is locally isometric to a simply connected symmetric space Si hence
M is locally isometric to the simply connected product space S1 × S2. By Theorem 3.10
this local isometry extends to a global isometry, so M is a global product of manifolds.

Now suppose that M is isometric to a product (M1, g1)× (M2, g2), then M is locally
isometric to the product and is hence decomposable.

Definition 3.69. Let (g = m ⊕ h, σ, B) be a symmetric triple. We say it is decompos-
able if m is the direct sum of two h-invariant, B-orthogonal, non-zero subspaces. It is
indecomposable if it is not decomposable. It is irreducible if m has no h invariant subspace.

Theorem 3.70 (Theorem 2 in Cahen & Wallach (1970)). Let S be a semi-Riemannian
symmetric space with universal cover S̃. Then S̃ is indecomposable if and only if its
symmetric triple is indecomposable.

Let g be a Lie algebra, we say that g is simple if it is non-abelian and has no nonzero
proper ideals, additionally, g is said to be semi-simple if g is the direct sum of simple
Lie algebras. Finally, we say that g is solvable if its derived series terminates in the zero
subalgebra.

Theorem 3.71 (Theorem 3 in Cahen & Wallach (1970)). Let (g, σ, B) be an indecom-
posable symmetric triple, then g is either semi-simple or solvable.

We will now consider the different possible cases for g separately.
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Euclidean Case

First, let consider the case where g has trivial−1-eigenspace decomposition with respect to
σ. A symmetric triple (g, σ, B) is said to be Euclidean if h = 0. By the correspondence be-
tween symmetric triples and simply connected symmetric space described in Remark 3.66,
we see that Minkowski space, Rn

1 has an Euclidean corresponding symmetric triple since
the Riemann curvature tensor is equal to zero and thus

h = span{R(U, V ) | U, V ∈ TpRn
1} = {0}.

Semi-Simple Case

Proposition 3.72 (Proposition 1 in Cahen & Wallach (1970)). Let (g, σ, B) be a semi-
simple indecomposable Lorentzian symmetric triple such that the action of h on m is not
irreducible. Then up to isomorphism g = sl(2,R) and h is the space of all real diagonal
matrices in g.

Then we have the following Lie algebra isomorphisms sl(2,R) ≃ so(2, 1) and h ≃
so(1, 1) which corresponds to H̃2

1 = SO(2, 1)/SO(1, 1) ≃ SO(1, 2)/SO(1, 1) = S2
1 .

Now we can suppose that (g, σ, B) such that g is semi-simple, irreducible and inde-
composable, then from Cahen (1998) the two possible cases are:

1. g is the direct sum of two isomorphic ideals permuted by σ. The only Lorentzian
example of this is

g = sl(2,R)⊕ sl(2,R) h = sl(2,R).

This corresponds to H̃3
1 which is the universal cover of SO(2, 2)/SO(1, 2) ≃ SL(2,R)×

SL(2,R)/SL(2,R).

2. g is a simple real Lie algebra. Then the only Lorentzian signatures in the list of
irreducible symmetric spaces from Berger (1957) are

g = so(1, n) h = so(1, n− 1),

g = so(2, n) h = so(1, n).

Which correspond to Sn1 = SO(1, n)/SO(1, n − 1) and H̃n
1 = SO(2, n)/SO(1, n)

respectively.

Solvable Case

After proving Theorem 3.71, the remainder of Cahen & Wallach (1970) is dedicated to
constructing an indecomposable Lorentzian symmetric manifold with a solvable corre-
sponding symmetric triple. Theorem (Cahen & Wallach 1970, 5) shows that such a space
is isomorphic to the so-called Cahen-Wallach spaces described earlier in Section 3.4.
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The above results allow us to classify locally symmetric Lorentzian manifolds. If M is
an locally symmetric Lorentzian manifold then by Theorem 3.59 M is locally isometric to
some Lorentzian symmetric space S. Then S is either decomposable or indecomposable.
If it is indecomposable it must be one of the four spaces described above. If it is decom-
posable then by Lemma 3.68, S is the product of a Lorentzian symmetric space and a
Riemannian symmetric space, which were completely classified by Cartan.



Chapter 4

Geometric manifolds

This chapter presents a brief introduction to geometric manifolds, which is a particular
way of defining and describing locally homogeneous manifolds. In this context a manifold
M is said to be locally homogeneous if each point is contained in a coordinate neighbour-
hood of charts to some fixed homogeneous space X = G/H, and given pairs of intersecting
neighbourhoods in M , the transition maps between them are locally elements of G. We
will primarily follow Chapter 8 of Ratcliffe (2006) and Goldman (2021). It is worth not-
ing that Ratcliffe is working in the context of geometric spaces, which are homogeneous,
geodesically complete and geodesically connected metric spaces with a continuous map
ε : En → X and some k > 0 such that ε maps the ball B(0, k) homeomorphically onto
B(ε(0), k). Additionally, G is a group of similarities of X. As Lorentzian metrics do not
induce a metric space structure on the manifold, we do not consider similarities of X. We
instead assume that X is a homogeneous semi-Riemannian manifold. Conveniently, many
of the results for the case we are consider follow from identical proofs to those in Ratcliffe
(2006), with only minor changes required at points. As we are interested in geodesic com-
pleteness of manifolds, we are particularly interested in the construction of a particular
local isometry called the development map. Given a (G,X)-manifoldM we will define the
development map D : M̃ → X and show in Proposition 4.19 that if D is a covering map
from M̃ to X, where X is geodesically complete, then M must be geodesically complete.
Once the general theory of (G,X)-manifolds is outlined, we prove Proposition 4.20, which
shows how locally symmetric manifolds can be given (G,X)-structures. This result is key
to the results in Carrière (1989) (and Klingler (1996)) who proves the geodesic complete-
ness of flat (and constant sectional curvature) Lorentzian manifolds by showing that the
development map must be surjective, and thus a covering map.

55
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4.1 (G,X)-structures and (G,X)-maps

Definition 4.1 ((G,X)-atlas). LetX be an manifold, G be a Lie group acting transitively
on X, and M be a smooth manifold. A (G,X)-atlas for M is a collection of charts
ϕi : Ui → X satisfying:

1. The open sets Ui cover M .

2. ϕi is a diffeomorphism onto its image.

3. ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) agrees in a neighbourhood of each point

of its domain with an element of G, that is, for each x ∈ ϕj(Ui ∩ Uj), there exists
some neighbourhood U of x such that ϕij|U = g|U for some g ∈ G. Functions that
satisfy this property are called locally-G.

Throughout this chapter the term charts will always refer to charts from a (G,X)-atlas
and not the charts from M into Rn which give M a manifold structure.

The following theorem is a variation of 8.3.1 in Ratcliffe (2006).

Theorem 4.2. Let A be a (G,X)-atlas for M . Then there is a unique maximal (G,X)-
atlas for M containing A.

Proof. Let A = {ϕi : Ui → X} and let Ā be the set of all functions ϕ : U → X such that

1. The set U is an open connected subset of M .

2. The function ϕ maps U homeomorphically onto an open subset of X.

3. The function

ϕ ◦ ϕ−1
i : ϕi(Ui ∩ U) → ϕ(Ui ∩ U)

is locally-G for each i.

Ā contains A by construction. Given ϕ : U → X and ψ : V → X in Ā, the restriction of
ψ ◦ ϕ−1 to Ui for each i is:

ψ ◦ ϕ−1 : ϕ(U ∩ V ∩ Ui) → ψ(U ∩ V ∩ Ui)
ψ ◦ ϕ−1 = ψ ◦ ϕ−1

i ◦ ϕi ◦ ϕ−1 = gh−1 ∈ G.

So the restrictions of ψ ◦ ϕ−1 to Ui are locally-G. Since {Ui} is an open cover of M , we
get that ψ ◦ ϕ−1 is locally-G at each point of its domain. If Ã is another (G,X)-atlas
containing A with some chart (W, η), then W must be an open connected subset of M , η
must mapW homeomorphically into X and η ◦ϕi must be locally-G for each i, so Ã ⊂ Ā.
So Ā is a unique maximal atlas for A.
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Definition 4.3 ((G,X)-manifold). A manifoldM equipped with a maximal (G,X)-atlas
is called a (G,X)-manifold.

Definition 4.4 ((G,X)-map). A function ξ : M → N between (G,X)-manifolds is a
(G,X)-map if ξ is smooth and for each chart ϕ : U → X for M and chart ψ : V → X for
N , such that U and ξ−1(V ) overlap, the function

ψ ◦ ξ ◦ ϕ−1 : ϕ(U ∩ ξ−1(V )) → ψ(ξ(U) ∩ V )

agrees in a neighbourhood of each point of its domain with an element of G.

4.2 Semi-Riemannian (G,X)-manifolds

Throughout Ratcliffe (2006), the term metric (X,G)-manifold refers to a (G,X)-manifold
such that G is a group of isometries of a metric space X. In particular, since X has a
metric space structure that is compatible with a Riemannian metric they are able to
induce a compatible metric on M . The ability to induce a metric space structure on M
does not generalise to the case of Lorentzian manifolds, we will replace metric (X,G)-
manifolds with semi-Riemannian (G,X)-manifolds. Additionally, an important result
in Chapter 3 is Theorem 3.59 which states that a locally symmetric manifold M must
be locally isometric to a symmetric space. Since we are primarily interested in locally
symmetric manifolds we require an additional assumption, that each of the coordinate
charts are local isometries.

Definition 4.5. Let (X, g) be a semi-Riemannian homogeneous space with G ⊂ Iso(X)
acting transitively on X. We say M is a semi-Riemannian (G,X)-manifold if M is a
(G,X)-manifold and G is the group of isometries on X.

Definition 4.6. Let M be a semi-Riemannian (G,X)-manifold. Then if each coordinate
chart ϕ : U → X is a local isometry, we say thatM is a locally isometric (G,X)-manifold.

The following theorem is analogous to 8.3.3 in Ratcliffe (2006). Ratcliffe uses a Theo-
rem 6.6.10 which states that any geodesically connected and geodesically complete metric
space is rigid to prove that any two similarities that agree on a nonempty open subset
must be equal. As X is not assumed to be a metric space in this thesis, this result will
be replaced by Proposition 2.7, which states that if two isometries are equal at a point
and have the same differential at that point, they must be equal. This substitution allows
most of the results to hold with almost identical proofs.

Theorem 4.7. Let ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) be a coordinate change of a

semi-Riemannian (G,X)-manifold M . Then ϕj ◦ϕ−1
i is equal to an element of G on each

connected component of its domain.
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Proof. Let C be a connected component of ϕi(Ui ∩Uj). Suppose that w and x are points
in C. Then there are open subsets W1, . . . ,Wm of C such that w ∈ W1, x ∈ Wm, the sets
Wk ∩Wk+1 contain a nonempty open subset and ϕj ◦ϕ−1

j are locally gk in each Wk. Then,
since gk and gk+1 must be equal on some nonempty open intersection of Wk and Wk+1,
we have that gk = gk+1 by Proposition 2.7. Therefore, all gk are equal and hence ϕj ◦ ϕ−1

i

is equal to g1 at x and therefore on all of C.

Lemma 4.8. Let M and N be locally isometric (G,X)-manifolds. Then any (G,X)-map
ξ from N to M is a local isometry.

Proof. Let x be an arbitrary point of X and let U be a sufficiently small neighbourhood
of x such that:

(ϕi ◦ ξ ◦ ψ−1
j )|U = h|U

for some h ∈ G. Then

(ϕi ◦ ξ)|ψ−1
j (U) = (h ◦ ψj)|ψ−1

j (U)

ξ|ψ−1
j (U) = (ϕ−1

i ◦ h ◦ ψj)|ψ−1
j (U).

So ξ|ψ−1
j (U) is the composition of local isometries and hence is a local isometry.

4.3 Continuation of curves

As before, let M be a semi-Riemannian (G,X)-manifold. Given a chart ϕ : U → X and
a curve γ : [a, b] → M such that γ(a) ∈ U , there exists the curve ϕ ◦ γ1, in X where γ1
is a restriction of γ to some [a, c] ⊂ [a, b] such that γ([a, c]) is contained in U . We can
define a curve γ̂ in X which extends ϕ ◦ γ1. It is called the continuation of ϕ ◦ γ1 along γ
and is constructed by the following method:

Choose a partition of [a, b] such that

a = t0 < t1 < . . . < tm = b

and a set of charts {(ϕi, Ui)} such that ϕ1 = ϕ and γ([ti−1, ti]) ⊂ Ui. Let gi ∈ G be the
element that is equal to ϕi ◦ ϕ−1

i+1 on the connected component of ϕi+1(Ui ∩ Ui+1) that
contains ϕi+1γ(ti). Let γi = γ|[ti−1,ti]. Then ϕi ◦ γi and giϕi+1 ◦ γi+1 are curves in X such
that:

giϕi+1 ◦ γ(ti) = ϕi ◦ ϕ−1
i+1 ◦ ϕi+1 ◦ γ(ti) = ϕi ◦ γ(ti).
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Definition 4.9. Now we define the continuation (starting at ϕ ◦ γ1) of γ in X, written γ̂
by concatenation:

γ̂ : [a, b] → X

γ̂ = (ϕ1 ◦ γ1)#(g1ϕ2 ◦ γ2)# · · ·#(g1 · · · gm−1ϕm ◦ γm).

Lemma 4.10. Let M be a semi-Riemannian (G,X)-manifold. Given a curve γ in M ,
its continuation in X, γ̂, is independent of choice of charts and choice of partition.

Proof. First, we show that γ̂ does not depend on the choice of charts {ϕi} once a partition
of [a, b] has been fixed. Suppose {ψi : Vi → X} is another set of charts for M such that
ψ1 = ϕ and Vi contains γ([ti1 , ti]) for each i = 1, . . . ,m. Let hi be the element of G that is
equal to ψi ◦ ψ−1

i+1 on the connected component of ψi+1(Vi ∩ Vi+1) containing ψi+1 ◦ γ(ti).
As Ui ∩ Vi contains γ([ti−1, ti]), it is enough to show that

g1 · · · gi−1ϕ1 = h1 · · ·hi−1ψi (4.1)

on the connected component of Ui ∩ Vi containing γ([ti−1, ti]) for each i. This is true in
the case i = 1 as ψ1 = ϕ = ϕ1. So we proceed by induction. Suppose that Equation (4.1)
holds in the case i− 1, i.e.

g1 · · · gi−2ϕ1 = h1 · · ·hi−2ψi−1.

Then ψi ◦ ϕ−1
i is locally-G, so on the connected component of ψi(Ui ∩ Vi) containing

ψi ◦ γ([ti − 1, ti]) it must be equal to some element fi ∈ G. Then notice when we restrict
to the component of ϕi(Ui−1∩Vi−1∩Ui∩Vi) containing ϕi◦γ(ti−1) we see by our inductive
hypothesis:

fi = ψi ◦ ϕ−1
i = ψi ◦ (ψ−1

i−1 ◦ h−1
i−2 · · ·h−1

1 )(g1 · · · gi−2ψi−1) ◦ ϕ−1
i .

Additionally, from the definitions of gi and hi we see that on the same component:

(h−1
i−1 · · ·h−1

1 )(g1 · · · gi−1)

= ψi ◦ ψ−1
i−1(h

−1
i−2 · · ·h−1

1 )(g1 · · · gi−2)ϕi−1 ◦ ϕ−1
i

= fi

and hence by Proposition 2.7 fi = (h−1
i−1 · · ·h−1

1 )(g1 · · · gi−1) on X. So:

(g1 · · · gi−1)ϕi = (h1 · · ·hi−1)(h
−1
i−1 · · ·h−1

1 )(g1 · · · gi−1)ϕi

= (h1 · · ·hi−1)fiϕi

= (h1 · · ·hi−1)ψi
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on the component of Ui ∩ Vi containing γ([ti−1, ti]). This completes the induction.
Now we will show that γ̂ does not depend on the partition of [a, b]. Let {si}li=1 be

another partition with charts {ψi : Vi → X}. Then {ri} = {si} ∪ {ti} is a refinement of
the two partitions. Since the charts {ϕi} and {ψi} can be used separately for the choice
of partition of {ri}, we deduce that all three partitions determine the same curve γ̂.

Theorem 4.11 (8.4.1 in Ratcliffe (2006)). Let ϕ : U → X be a chart for a semi-
Riemannian (G,X)-manifoldM , let α, β : [a, b] →M be curves with the same initial point
in U and the same terminal point in M , and let α̂, β̂ be the continuations of ϕ ◦α1, ϕ ◦ β1
along α, β respectively. If α and β are homotopic by an endpoint fixing homotopy, then α̂
and β̂ have the same endpoints and are homotopic by an endpoint fixing homotopy.

Proof. If α and β only differ along a sub-interval (c, d) such that α([c, d]) and β([c, d])
are contained in a simply connected coordinate neighbourhood U , then the result is im-
mediate, as the continuation of the curves will be defined by the same gi and ϕi. Let
H : [a, b]2 →M be an endpoint fixing homotopy from α to β. As [a, b] is compact, we can
partition [a, b] into a = t0 < t1 . . . tm = b such that H([ti−1, ti]× [tj−1, tj]) is contained in
a simply connected neighbourhood. Finally, we can take a further refinement to ensure
H([ti−1, ti]× [tj−1, tj]) is contained in a simply connected coordinate neighbourhood Uij.
Let αij be the curve determined by applying H to the curve shown in fig. 4.1(a), and
define βij be the curve determined by applying H to the curve shown in fig. 4.1(b). Then

it immediately follows that α̂ij and β̂ij are homotopic by an endpoint fixing homotopy
since each αij and βij only differ on a simply connected coordinate neighbourhood. Since
being homotopy equivalent is a transitive property, can compose these homotopies by
working from left to right, bottom to top in I × I to see:

α̂ = α̂1,m ≃ β̂1,m = α̂1,m−1 ≃ . . . ≃ β̂1,2 = α̂1,1 ≃ β̂2,m = . . . = α̂m−1,1 ≃ β̂m−1,1 = β̂.

So there exists an endpoint fixing homotopy from α̂ to β̂.

The following theorem is equivalent to Theorem 8.4.2 in Ratcliffe (2006).

Theorem 4.12. A continuous function ξ : M → N between semi-Riemannian (G,X)-
manifolds is a (G,X)-map if and only if for each point u ∈ M there is a neighbourhood
U of u and corresponding (G,X)-chart ϕ : U → X such that ξ maps U homeomorphically
onto an open subset of N and ϕ ◦ ξ−1 : ξ(U) → X is a chart for N .

Proof. Suppose that ξ : M → N is a (G,X)-map and u is an arbitrary point of M . Let
ψ : V → X be a chart of N , such that ξ(u) ∈ V . Since ξ is continuous, there is a chart
ψ : U → X such that ξ(U) ⊂ V . Then

ψ ◦ ξ ◦ ϕ−1 : ϕ(U) → ψξ(U)
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Figure 4.1: Routes from (a, a) to (b, b) in the square [a, b]2

a ti−1 ti b

tj−1

tj

b

(a)

a ti−1 ti b

(b)

agrees with an element g ∈ G since ϕ(U) is connected, by Theorem 4.7. Hence ξ maps
U homeomorphically onto an open subset of N and ϕ ◦ ξ−1 : ξ(U) → X agrees with
g−1ψ : V → X. Therefore, ϕ ◦ ξ−1 is a chart for N .

Conversely, suppose that for each point u ∈ M there exists a chart (ϕ, U) of M
with u ∈ U such that ξ maps U homeomorphically onto an open subset of N , and
ϕ ◦ ξ−1 : ξ(U) → X is a chart for N . Then ξ is continuous. Let χ : W → X and
ψ : V → X be charts for M and N respectively, such that W and ξ−1(V ) have nonempty
intersection, and let u be an arbitrary point in W ∩ ξ−1. Then there is a chart ϕ : U → X
such that ξ maps U homeomorphically onto an open subset of N and ϕ ◦ ξ−1 : ξ(U) → X
is a chart for N . Observe that in a neighborhood of χ(u), the function

ψ ◦ ξ ◦ χ−1 : χ(W ∩ ξ−1(V )) → ψ(ξ(W ) ∩ V )

agrees with (ϕ ◦ ξ ◦ ϕ−1) ◦ (ϕ ◦χ−1). As ϕ ◦χ−1 and ψ ◦ ξ ◦ ϕ−1 are coordinate changes for
M and N respectively, ϕ ◦ ξ ◦ χ−1 agrees in a neighbourhood of χ(u) with an element of
G. Thus ξ is a (G,X)-map.

The following theorem is a variation of Theorem 8.4.3 in Ratcliffe (2006).

Theorem 4.13. Let ϕ : U → X be a chart of a simply connected semi-Riemannian
(G,X)-manifold M . Then there is a unique (G,X)-map ϕ̂ :M → X extending the chart
ϕ, i.e. ϕ̂|U = ϕ.

Proof. First, we define ϕ̂ using continuation of curves. Fix a point u ∈ U , and let v be an
arbitrary point of M . M is simply connected, so there is a curve α : [a, b] → M from u
to v. The α̂ : [a, b] → X be the continuation of ϕ ◦ α1 along α. Let α̂(b) does not depend
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on the choice of α by Theorem 4.11, since M is simply connected. Hence, we may define
a function ϕ̂ : M → X by ϕ̂(v) = α̂(b). Now we will show that ϕ̂ is a (G,X)-map using
the fact that continuation of curves is independent of choices of path and charts. Let
ψ : V → X be a chart for M with V containing v such that ψ = ϕ if v ∈ U . Then there
is a partition

a = t0 < t1 . . . < tm = b

and a set of charts {ϕi : Ui → X}mi=1 for M such that ϕ1 = ϕ and Ui contains α([ti−1, ti])
for each i = 1, . . . ,m and ϕm = ψ. Let αi be the restriction of α to [ti−1, ti] and let gi be
the element of G that is equal to ϕi ◦ϕ−1

i+1 on the connected component of ϕi+1(Ui ∩Ui+1)
containing ϕi+1 ◦ α(ti). Then:

α̂ = (ϕ1 ◦ α)#(g1ϕ2 ◦ α2)# · · ·#(g1 · · · gm−1ϕm ◦ αm).

Let β : [c, d] → V be a curve from v to w and let g = g1 · · · gm−1. Then α̂β = α̂#gψ ◦ β.
Hence ϕ̂(w) = α̂β(c) = gψ(w). Therefore, ˆϕ(w) = gψ(w) for all w in V . Hence ϕ̂ maps
V homeomorphically onto the open subset gψ(V ) of X and ψ ◦ ϕ̂−1 : ϕ̂(V ) → X is the
restriction of g−1. Thus ϕ̂ is a (G,X)-map by Theorem 4.12 which extends ϕ to all of M .
Now we will show that ϕ̂ is unique, suppose that ξ : M → X is a (G,X)-map extending
ϕ. Without loss of generality, we may assume that the set of charts {ϕi : Ui →M}mi=1 for
M has the property that

ϕi ◦ ξ−1 : ξ(Ui) → X

is a chart for X by Theorem 4.12. Then ϕi ◦ ξ−1 extends to an element h−1
i of G. Hence

ξ(w) = hiϕi(W ) for all w ∈ Ui. As ξ(w) = ϕ(w) for all w ∈ U we have that h1ϕ = ϕ so
h1 = 1. We proceed by induction to show that if ξ|Ui

= ϕ|Ui
then ξ|Ui+1

= ϕ|Ui+1
. Suppose

that hi−1 = g1 · · · gi−2. Then for each w in Ui−1 we have:

ξ(w) = hi−1ϕi−1(w)

= g1 · · · gi−2ϕi−1(w) = ϕ̂(w).

Hence

hiϕi(w) = ξ(w) = ϕ̂(w) = g1 · · · gi−1ϕi(w)

for all w in Ui−1 ∩ Ui. Therefore, hi = g1 · · · gi−1. Hence by induction we have that

ξ(v) = hmϕm(v) = gϕm = ϕ̂(v).

Therefore, ξ = ϕ̂. Thus ϕ̂ is unique.

The following theorem is analogous to 8.4.4 in Ratcliffe (2006).
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Theorem 4.14. Let M be a simply connected semi-Riemannian (G,X)-manifold. If
ξ1, ξ2 :M → X are (G,X)-maps, then there is a unique element g of G such that ξ2 = gξ1.

Proof. Let ϕ : U → X be a chart for M such that ϕ ◦ ξ−1
i : ξi(U) → X is a chart

for i = 1, 2. Then by Theorem 4.13, there is an element gi of G extending the chart
ϕ ◦ ξ−1

i : ξi(U) → X. As giξi is a (G,X)-map extending ϕ for i = 1, 2, we have that

g1ξ1 = g2ξ2 by the uniqueness of ϕ̂. Let g = g−1
2 g1. Then ξ2 = gξ1. If h is an element of

G such that ξ2 = hξ1, then gξ1 = hξ2 so g = h by Proposition 2.7. Thus g is unique.

4.4 Developing and monodromy

Let M be a connected semi-Riemannian (G,X)-manifold and let π : M̃ → M be the
universal covering projection. We will induce a (G,X)-structure on M̃ . Let {ϕi : Ui → X}
be an (G,X)-atlas for M such that Ui is simply connected for each i. Then the set Ui is
evenly covered by π for each i. Let {Uij} be the set of sheets over Ui and let πij : Uij → Ui
be the restriction of π to Uij. Define ϕij : Uij → X by ϕij = ϕi ◦ πij. Then ϕij maps
Uij homeomorphically into ϕi(Ui) in X. Suppose Uij and Ukl overlap. Then Ui and Uk
overlap. Consider the function

ϕij ◦ ϕ−1
kl : ϕkl(Uij ∩ Ukl) → ϕij(Uij ∩ Ukl).

For x ∈ ϕkl(Uij ∩ Ukl):

ϕij ◦ ϕ−1
kl = ϕi ◦ πij ◦ π−1

kl ◦ ϕ−1
k (x) = ϕi ◦ ϕ−1

k (x).

Hence ϕij ◦ ϕ−1
kl is locally G. Therefore, {ϕij : Uij → X} is an (G,X)-atlas for M̃ . Then

M̃ is a (G,X)-manifold with the (G,X)-structure described by this atlas.
Observe that π maps the coordinate neighborhood Uij homeomorphically onto Ui and

ϕij ◦ π−1 : π(Uij) → X is the chart ϕi : Ui → X for M . Thus π is a (G,X)-map by
Theorem 4.12.

Definition 4.15 (Developing map). Let ϕ : U → X be a chart for M̃ . Then ϕ extends,
via developing, to a unique (G,X)-map D : M̃ → X by Theorem 4.13. The map

D : M̃ → X

is called the developing map for M determined by the chart ϕ.

By Theorem 4.13 any two developing maps for M̃ differ only by composition with an
element of G. Thus D is unique up to composition with an element of G.
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In particular, given a point x̃ ∈ M̃ , then there exists a unique path γ̃ (up to homotopy)
from x̃0 to x̃ for any point x̃0 in U , which we can define the continuation ϕ ◦ γ̃, so

D(x̃) = ϕ(γ̃(1)) = g1 · · · gnϕn(x̃).
This well defined as the continuation of paths is independent of choice of partitions and
the continuation two homotopic paths have an endpoint fixing homotopic continuation.
Since the same equation could be used to describe any ỹ in a neighbourhood of x̃, D is a
local diffeomorphism by construction.

Lemma 4.16 (p. 358 in Ratcliffe (2006)). . Let M be a (G,X)-manifold. A deck trans-
formation τ ∈ π1(M), τ : M̃ → M̃ is a (G,X)-map.

Proof. Let τ : M̃ → M̃ be a deck transformation and let ũ be an arbitrary point of M̃ .
Then there is an i such that π(ũ) ∈ Ui, hence there is a j such that ũ ∈ Uij. As τ permutes
the sheets over Ui, there is a k such that τ(Uij) = Uik. Observe that ϕij ◦τ−1 : τ(Uij) → X
is the chart ϕik : Uik → X. Therefore, τ is a (G,X)-map.

Choose a base point u of M and a base point ũ of M̃ such that π(ũ) = u. Let
α : [0, 1] → M be a loop based at u. Then α lifts to a unique curve α̃ in M̃ starting
at ũ. Let ṽ be the endpoint of α̃. Then there is a unique deck transformation τα such
that τα(ũ) = ṽ. τα depends only on the homotopy class of α in the fundamental group
π1(M,u) by Proposition 2.49. Let β : [0, 1] → M be another loop based at u. Then

α̃β = α̃#(τα ◦ β̃) and so ταβ = τα ◦ τβ.
Let D : M̃ → X be a developing map for M . As D ◦ τα : M̃ → X is a (G,X)-map,

there is a unique element gα of G such that Dτα = gaD. Define

h : π1(M,u) → G

[α] 7→ gα.

Then h is well defined, since gα depends only on the homotopy class of α. Observe that

D ◦ τα#β = D ◦ τα ◦ τβ = gαD ◦ τβ = gαgβD

hence,

h([α]#[β]) = h([α#β]) = gαgβ = h([α]) ◦ h([β]).
Thus h is a homomorphism.

Definition 4.17 (Monodromy). The homomorphism h : π1(M) → G is called the mon-
odromy (or (G,X)-holonomy) of M determined by the developing map D.

Note, if D′ : M̃ → X is another developing map for M , then there is a g ∈ G such
that D′ = gD, and therefore

D′ ◦ τα = gD ◦ τα = ggαD = ggαg
−1D′.

Hence the monodromy h′ of M determined by D′ differs from the monodromy of M
determined by D by conjugation by g.
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4.5 (G,X)-completeness

Definition 4.18 ((G,X)-Completeness). A (G,X)-manifold is said to be (G,X)-complete
if the developing map D : M̃ → X is a covering map.

If X is simply connected this is equivalent to D being a diffeomorphism.

Proposition 4.19. Let M be a locally isometric (G,X)-manifold. If X is geodesically
complete and M is (G,X)-complete then M is geodesically complete.

Proof. SinceD is a (G,X)-map of a locally isometric (G,X)-manifold it is a local isometry
by Lemma 4.8. If M is (G,X)-complete then D is a covering map so by Corollary 2.57
M̃ is complete if and only if X is complete. X is complete so M̃ is complete. So by
Corollary 2.57 M is complete.

As X is a homogeneous semi-Riemannian manifold it is not necessarily complete al-
though there are many conditions that ensure completeness. If X is a Riemannian ho-
mogeneous manifold then it is complete (See O’Neill (1983) 9.37). If X is a compact
homogeneous semi-Riemannian manifold then Marsden (1973) proved it is complete. The
case we are most concerned with is when X is a symmetric space, which is complete by
Lemma 3.3. The following section discusses how locally symmetric spaces can be equipped
with a (G,X)-structure for a symmetric space X.

4.6 Locally symmetric spaces as (G,X)-manifolds

Proposition 4.20. If (M, g) is a locally symmetric semi-Riemannian manifold, locally
isometric to a simply connected symmetric space X. Then it can be given a locally iso-
metric (G,X)-structure.

Proof. Equip (M, g) with the maximal complete atlas containing {(U, ϕ)} where ϕ is a lo-
cal isometry fromM → X. Evidently these charts coverM and the ϕ are diffeomorphisms
onto their images, so it remains to show that the transition functions are locally-G. Given
two charts (Ui, ϕi) and (Uj, ϕj) with non-empty intersection we can define the map:

ϕjϕ
−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj).

Which is a local isometry from one neighbourhood of X to another. Fix some x ∈
ϕi(Ui∩Uj) and let L = d(ϕjϕ

−1
i )x. As ϕj and ϕ

−1
i are local isometries, d(ϕj)q and d(ϕ

−1
i )p

are linear isometries and hence dLp = d(ϕj)ϕ−1
i (p)d(ϕ

−1
i ) is a linear isometry and thus

preserves curvature. Since X is simply connected it follows from Theorem 3.10 that there
is a unique covering map ϕ̂ such that for dϕ̂x = L. Since ϕ̂ is a global isometry, ϕ̂ ∈ G.
By Proposition 2.7, ϕ̂|ϕi(Ui)∩Uj

= ϕjϕ
−1
i . So the transition functions are locally-G.
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Corollary 4.21. If M is a manifold that is locally isometric to a manifold X with a
(G = Iso(X), X) structure, then the developing map D : M̃ → X is a local isometry.

Proof. Let p̃ be a point of M̃ . Then π(p̃) = p ∈ M has some neighbourhood V of
M and local isometry ϕ : V → ϕ(V ). By the construction of the (G,X) structure in
Proposition 4.20, (V, ϕ) is a (G,X)-chart of M . Since π is a semi-Riemannian covering
map, there is a neighbourhood U of p̃ such that π|U is a local isometry. Then π|−1

U (π(U)∩
V ) is a neighbourhood of p̃ such that ψ := ϕπ|U is a local isometry. From the construction
of the (G,X) structure of a universal cover (in the definition of the developing map) we
see that (π|−1

U (π(U) ∩ V ), ψ) is a chart of M̃ . We can then construct the developing map
determined by ψ, D1, such that for any other developing map D = gD1 for some g ∈ G.
So D is a local isometry.



Chapter 5

Completeness of compact Lorentzian
locally symmetric spaces

This chapter contains three sections. The first section uses the more general result of
Theorem 2 in Leistner & Schliebner (2016), which shows that compact pp-waves are
geodesically complete, to prove that locally symmetric compact manifolds which are lo-
cally isometric to the product of Cahen-Wallach space and flat Riemannian space are
geodesically complete. This is achieved by slightly extending the methods used in the
proof of Corollary 2 in Leistner & Schliebner (2016). The second section is concerned
with Klingler (1996). In particular, we aim to present Proposition 1 of Klingler (1996) in
a manner which each assumption and step as clear as possible, with an outline of the other
results in the paper given in order to provide motivation and context for the proposition.
This is in the hope of working towards an extension of both the proposition and the paper
as a whole. The chapter concludes with a section discussing and some attempts to extend
the methods in Klingler (1996).

5.1 Products of flat space and Cahen-Wallach Space

The geodesic completeness of compact locally Cahen-Wallach manifolds was shown in
Leistner & Schliebner (2016) as a corollary to a more general theorem.

Definition 5.1. A Lorentzian manifold (M, g) is called pp-wave if it admits a global
parallel null vector field V ∈ Γ(TM), i.e. V ̸= 0, g(V, V ) = 0 and ∇V = 0, and if its
curvature tensor R satisfies

R(U,W ) = 0, for all U,W ∈ V ⊥.

Theorem 5.2 (Leistner & Schliebner ‘16 Theorem 2). Every compact pp-wave (M,g) is
geodesically complete.

67
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It was then shown that compact locally symmetric Lorentzian manifolds which are
locally isometric to Cahen-Wallach space have a time-orientable cover that is a compact
pp-wave and are hence complete. By Corollary 2.57 we see that the original manifolds
are complete also.
We follow a similar method to show compact locally symmetric Lorentzian manifolds that
are locally isometric to the product Cahen-Wallach space with Rn are covered by compact
pp-waves and are hence complete.

Let (M, g) be locally isometric to the product manifold (CW (S1), g1) × (Rm, g2),
then for each point p of M there exists some neighbourhood U of p and coordinates
x+, x−, x1, . . . , xn+m where x1, . . . , xm correspond to the standard coordinates on Rm and
x+, x−, xm+1, xm+n correspond to the standard coordinates on CW (S1) as described in
Definition 3.36. We will call this choice of coordinates the standard coordinates for a
manifold which is locally isometric to the product of Cahen-Wallach space and flat Rie-
mannian space.

We can additionally define the (n+m)× (n+m)-dimensional matrix S as such

S =

[
0 0
0 S1

]
.

Then S be a symmetric n×n symmetric matrix of rank n−m. Since Rm is in the kernel
of S it is immediate that the metric

g := 2dx+dx− + x⃗⊤Sx⃗(dx+)2 + δµνdx
µdxν

is equal to the product metric (g1, g2). for x+, x− ∈ R, x⃗ ∈ Rn+m, µ, ν = 1, . . . , n + m.
This has metric matrix

[gij] =

0 0̃ 1
0̃ In 0̃
1 0̃ x̃⊥Sx̃

.
This formulation is useful as is the same as the definition of a Cahen-Wallach space

except without the condition requiring S to have non-zero determinant. So the calcu-
lations in Section 3.4 describe the Christoffel symbols and components of the curvature
tensor, with Sµν = 0 for any µ, ν = 1, . . . , n.

Before we prove Theorem 5.6, we first require the following lemmas and a definition.

Definition 5.3. Let E be a sub-bundle of TM . We say that E is a parallel sub-bundle
of TM if for all vector fields X and sections Y ∈ Γ(B) the vector field ∇XY is a section
of E .

Now we define the bundle B to be the kernel of the curvature endomorphism. i.e.

B := {Z ∈ TM | R(X, Y )Z = 0 ∀X, Y ∈ TM}.
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Lemma 5.4. Let (M, g) be a manifold which is locally isometric to the product of Cahen-
Wallach space CWn+2(S1) and Euclidean space Rm. Then the bundle B is parallel.

Proof. Let p be an arbitrary point of M , then we can equip some neighbourhood U of p
with standard coordinates x+, x−, xi. First, we will show that

B|U = span{∂−, ∂1, . . . , ∂m}.

First, recall the Christoffel symbols from Definition 3.36:

Γ−
µ+ = Γ−

+µ = xνSµν ,

Γµ++ = −xνSµν .

So:

∇X∂− = X iΓji−∂j

= 0, where i, j = +,−, 1, . . . ,m+ n,

∇X∂µ = X iΓjiξ∂j = X ixνSξν∂−

= 0, for ξ = 1, . . . ,m.

Since these vector fields are parallel, they are contained in the kernel of the curvature
endomorphism, i.e. B|U ⊃ span{∂−, ∂ξ | ξ = 1, . . . ,m}. Now consider some arbitrary
X ∈ B, we can write

X = a∂+ + b∂− + cξ∂ξ + fκ∂κ

for ξ = 1, . . . ,m and κ = m+ 1, . . . , n. Then

0 = R(U, V )X = R(U, V )(a∂+ + b∂− + cξ∂ξ + fκ∂κ)

= R(U, V )(a∂+) +R(U, V )(fκ∂κ).

Since this holds for arbitrary U, V take U = ∂µ and V = ∂+. So we have

0 = aR(∂µ, ∂+)∂+ + fκR(∂µ, ∂+)∂κ.

Now recalling the non-zero components of the Riemann curvature tensor calculated in
Definition 3.36

Rµ+ν
− = R++ν

µ = Sµν .

We have that

0 = aSµν∂ν − fκSµκ∂−.
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Since ∂ν and ∂κ are linearly independent and Sµκ is non degenerate (as κ = m+1 . . . , n+m)
it follows that a = 0 and fκ = 0. So B|U = span{∂−, ∂ξ | ξ = 1, . . . ,m}.

Since there is a basis of sections of B|U that is parallel it follows that the bundle B|U
is parallel too. Since the point p was arbitrarily chosen it follows that the full bundle B
is parallel.

Lemma 5.5. The elements of O(1, n+1) that stabilise a null line R·e− in a basis e−, e
i, e+

such that are of the form

B =

a X −a−1

2
XX⊤

0 A −a−1AX⊤

0 0 a−1

with A ∈ O(n), X ∈ Rn, a ∈ R∗.

Proof. Let B ∈ O(1, n) fix R∂−, then we can write B as such.

B =

a X b
0 A U
0 V d

 .

Additionally consider the matrix

g =

0 0 1
0 I 0
1 0 0

 .

It is a fact that B ∈ O(1, n+ 1) if and only if B⊤gB = g i.e.

 0 aV ad
aV ⊤ X⊤V + A⊤A+ V ⊤U dX⊤ + A⊤U + bV ⊤

ad bV + U⊤A+ dX 2bd+ U2

 =

0 0 1
0 I 0
1 0 0

 .

Hence we are able to immediately conclude that V = 0, d = a−1 and therefore A⊤A =
I. Then A⊤U = −a−1X⊤ so U = −a−1UX⊤. Finally, we have that 2bd = −U2 =
d2(UX⊤)⊤UX⊤ = d2XX⊤ so b = a−1

2
XX⊤. So we have that

B =

a X −a−1

2
XXT

0 A −a−1AX⊤

0 0 a−1

with A ∈ O(n), X ∈ Rn, a ∈ R∗.
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We denote by R∗ the subgroup generated by fixing A = Idn and X = 0. Similarly Rn

is the subgroup generated by fixing A = Idn and a = 1.
Now notice B⊤gB = g if and only if gB⊤g = g−1B⊤g = B−1. If we require that B
stabilises the null line as above, we get:

B−1 =

a−1 (−a−1AX⊤)⊤ −a−1

2
XX⊤

0 AT X⊤

0 0 a

 .

We write this group as

StabO(1,n+1)(R·−) = Rn ⋊ (R∗ ×O(n)).

Theorem 5.6 (Completeness of compact Manifolds which are locally isometric to the
product Cahen-Wallach Space and Euclidean space). Let (M, g) be a compact manifold
which is locally isometric to the product of Cahen-Wallach space and Euclidean space.
Then the time orientable cover of (M, g) is a pp-wave and hence complete. In particular,
it therefore follows that (M, g) itself is complete.

Proof. We prove this by proving that the double cover of (M, g) admits a parallel null
vector field. We achieve this by showing that the holonomy group of (M, g) at an arbitrary
point p ∈M admits a null vector field on which the holonomy group acts as Z2. Let p ∈M ,
then there are local coordinates with that the symmetric matrix S has Sξν = Sνξ = 0 for
ξ = 1, . . . , n and ν = 1, . . . , n +m. As before, define the bundle B to the kernel of the
curvature endomorphism.

B|p := {v ∈ TpM : R(x, y)v = 0 ∀x, y ∈ TpM}.

By Lemma 5.4, B is parallel. Since B is parallel, it is invariant under parallel transport.
Therefore, B⊥ is also invariant under parallel transport. Next notice:

g(∂−, ∂−) = 0,

g(∂−, ∂ξ) = 0 ξ = 1, . . . ,m,

g(∂ξ, ∂ξ) = 1 ξ = 1, . . . ,m.

So we can define a global null line bundle that is invariant under parallel transport:

L := B ∩ B⊥.

At each point p there exists standard coordinates so that we have

L|p = R∂−.

As L is invariant under parallel transport, it is invariant under holonomy, and thus by
Lemma 5.5 we can write each element of the holonomy group at the point p, written h as
such:
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h =

a X −a−1

2
XXT

0 A −a−1AXT

0 0 a−1

 with A ∈ O(n+m), X ∈ Rn+m, a ∈ R∗

Additionally, sinceM is locally isometric to a globally symmetric space, by Theorem 3.59
it is locally symmetric, i.e. ∇R = 0. Therefore, R is invariant under parallel transport
(and thus also holonomy) so h ·R = R. Therefore, we calculate at p ∈M :

Sµν∂− = R(∂µ, ∂+)∂ν

= (h ·R)(∂µ, ∂+)∂ν by R = h ·R
= h(R(h−1∂µ, h

−1∂+)h
−1∂ν).

Since R is a (3, 1) tensor, we notice which component transforms covariantly and which
transform contravariantly by considering h as a change of basis. From the previous section
we can calculate:

h−1∂µ = (XηA
µ
η)∂− + (Aµν )∂ν ,

h−1∂+ = (
−a−1

2
XX⊤)∂− +X⊤ν∂ν + a∂+.

Hence:

Sµν∂− = R(∂µ, ∂+)∂ν

= h(R((XηA
µ
η∂− + Aµν∂ν), (

−a−1

2
XX⊤∂− +X⊤ν∂ν + a∂+))(XηA

γ
η∂− + Aγν∂ν)).

By the multi-linearity of R, we check the non-zero components and the above equation
simplifies to:

Sµν∂− = h(AµηaA
ν
γSηγ∂−)

= a2AµηA
ν
γSηγ∂−.

at a point p. Next notice that the matrix A⊤SA has entries [A⊤SA]µν = AηµSγηA
γ
ν , so by

the above equation we see S = a2A⊤SA. So by taking the trace on each side:

tr(S) = tr(a2A⊤SA) = tr(a2SA⊤A) = tr(a2S) = a2tr(S).

Hence a2 = 1 and a = ±1. So therefore the holonomy group acts on the fibres of B
by ±1. So the time-orientable cover of (M, g) is a compact manifold admitting a global
parallel null vector field, so it is a compact pp-wave, which is complete, and hence (M, g)
is complete also, by Theorem 2 of Leistner & Schliebner (2016).
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5.2 Geodesic completeness of compact spaces of con-

stant curvature

The geodesic completeness of compact flat Lorentzian manifolds was proved in Carrière
(1989) by considering them as geometric manifolds. This approach was extended in
Klingler (1996) in order to prove the completeness of compact Lorentzian manifolds with
constant curvature. In this section we discuss discompacity and geodesic segments, two
concepts which are which are required to understand Klingler (1996). The remainder
of this chapter will provide a presentation of the proof in Klingler (1996). We conclude
by discussing some attempts at extending the methods to Cahen-Wallach spaces and
manifolds which are locally isometric to the product of a constant curvature Lorentzian
manifolds and a constant curvature Riemannian manifold.

5.2.1 Discompacity

The key idea in Carrière (1989) was that of discompacity, a measure of how non-compact
a group is. This concept is also vital to Klingler’s extension of the results in Carrière
(1989), we will define discompacity and calculate the discompacity of some important
isotropy groups.
Throughout the rest of this chapter, we will often discuss Euclidean spaces, written E,
which can of course be equipped with the standard Euclidean inner product, but addition-
ally can be equipped with a semi-Euclidean inner product as described in Section 3.2.2.
We will be considering both products in the following results, but will specify which one
we are considering at a given time.

Definition 5.7. Given E with the standard Euclidean metric, and a sequence of closed
subsets Fi ⊂ E. We say that the sequence Fi converges if for all closed Euclidean balls B
of E such that Fi ∩ B is non-empty, the sequence of compact sets Fi ∩ B converge, with
the Hausdorff metric, to a compact subset of E.

In particular, a sequence of ellipsoids will converge to a (possibly degenerate) ellipsoid,
which we will call C, so the dimension of C is well defined. The set of ellipsoids in E is
written E .

Definition 5.8 (Discompacity of a sequence of ellipsoids). If a sequence of ellipsoids
ϵi ∈ E converges, in the sense defined above, to some compact subset C of Bn then we
say that the discompacity of the sequence ϵi is the co-dimension of C. We write this as
disc(ϵi).

Notice that disc(ϵi) is equal to the number of principal axes whose lengths tend towards
0. Suppose that disc(ϵi) = r, i.e. the compact set C has co-dimension r, then we can
write E = Rn−r × Rr where C ⊂ Rn−r × {0}. Therefore it follows from the fact that
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ϵi converges in the Hausdorff distance to C that the lengths of the r principal axes of
each ϵi contained in Rr must approach 0. Furthermore, the minimum length of the n− r
principal axes of each ϵi contained in Rn−r must not approach 0, since C is of maximum
dimension in Rn−r and ϵi converges to C.

Definition 5.9 (Discompacity of a set of ellipsoids). Let A ⊂ E . The discompacity of A
is the maximum discompacity of any sequence in A that converges in Bn.

Notice that any set of ellipsoids without a convergent, non-constant subsequence will
always have discompacity 0. This can lead to some counter-intuitive examples. For
example if we consider the a set of shrinking ellipsoids which are being translated to
infinity, then they will have discompacity 0, in spite of the fact that all of the principal axes
tend towards length 0. The fact that this is counter-intuitive provides some motivation
as to why discompacity will only be defined for linear groups.

Definition 5.10 (Discompacity of a group). Let G be a subgroup of GL(E). Given
ϵ ∈ E and A(ϵ) = G · ϵ (the orbit of ϵ under the action of G). The number disc(A(ϵ)) is
independent of ϵ ∈ E , so we define disc(G) to be this number.

Lemma 5.11. Let G be a compact group then disc(G) = 0.

Proof. Suppose otherwise, so there exists a sequence Ai such that AiB
n converges to an

ellipsoid of codimension 1 or greater. Since G is compact there exists a limit A ∈ G such
that A(Bn) has co-dimension 1 or greater. Then A has non-trivial kernel and is therefore
not invertible, a contradiction.

Since discompacity of a compact group is equal to zero, discompacity is some kind of
measure of how non-compact a group is. The fact that the O(1, n− 1) has discompacity
equal to 1 is vital to the proof in Carrière (1989). In the constant curvature case Klingler
notices that Iso(Hn

1 ) = O(2, n − 1) has discompacity 2, and extends the original result
by showing that the discompacity of the isotropy subgroup is what really matters in the
proof, not the full isometry group. It is convenient that in all three cases, the isotropy
subgroups are the same with Isop(X) = O(1, n − 1). The following lemma essentially
follows from the fact that the discompacity of O(1, n− 1) is 1.

Lemma 5.12 (Lemma 2 in Klingler (1996)). Let g be an element of O(1, n− 1) and let
Bn be a unit Euclidean ball of E. Then gBn is an ellipsoid whose principal axes have
lengths et, e−t, 1, . . . , 1 for some t ≥ 0.

Proof. Let Bn be a unit Euclidean ball of E. We write the element

at =

cosh t sinh t 0
sinh t cosh t 0
0 0 I
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of O(1, n − 1). Now let A+ = {at : t ∈ R+}. We have the Cartan decomposition
O(1, n − 1) = O(n − 1)A+O(n − 1). Let g be an element of O(1, n − 1), g = k1atk2 is
its decomposition. Since O(n− 1) preserves the semi-Euclidean metric, gB is an ellipsoid
whose principal axes have lengths et, e−t, 1, . . . , 1 for some t ≥ 0, and thus the result is
deduced.

Corollary 5.13. Let gi be a sequence in O(1, n− 1) such that the sequence of ellipsoids
giB

n converges towards some limit ϵ ⊂ E. Then ϵ has co-dimension of either 0 or 1. When
ϵ has co-dimension 1, it is contained in a co-null hyperplane of E, i.e. a hyperplane of E
that is the orthogonal (with respect to the semi-Euclidean inner product) complement of a
null vector of E.

Proof. Since O(1, n− 1) preserves the Lorentzian inner product on E, it follows that two
principal axes whose Euclidean lengths may change under action of O(1, n − 1) are null
vectors, and therefore we can immediately deduce the result.

Example 5.14 (The discompacity of holonomy of Cahen-Wallach space). From the proof
of Theorem 5.6, we have that an element h of the holonomy group of a pp-wave can be
written as

h =

a X −a−1

2
XXT

0 A −a−1AXT

0 0 a−1

 with A ∈ O(n), X ∈ Rn, a ∈ R∗.

We will call the group of all linear transformations of the form above G. Since the
discompacity of a subgroup is bounded above by the discompacity of any group containing
it, we can calculate an upper bound of the discompacity of pp-waves by calculating the
discompacity of G. So h maps a point

p =

uy
v

 7→

au−Xy − a−1

2
XXTv

Ay − a−1AXTv
a−1v

.

In particular, we know that for each element of the holonomy for a Cahen-Wallach
space that a = ±1, so the holonomy group of Cahen-Wallach space will be contained in
a group consisting of elements of the form

h =

±1 X ±1
2
XXT

0 A ±AXT

0 0 ±1

,

Since A ∈ O(n), action by A will preserve principal axes, as will the action of ±1. So
without loss of generality we can consider the subgroup of the holonomy where A = I
and a = 1, which maps a points:
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p =

uy
v

 7→

u−Xy − 1
2
XXTv

y −Xv
v

.

Then if we take a sequence X = −ny1 we see that the two dimensional vector space
spanned by v and y1 + nv converges towards the one dimensional span of v as n gets
larger. Hence disc(Hol(CW )) ≥ 1, but since we know that Hol(CW ) ⊂ O(1, n + 1)
which has discompacity 1, it follows that disc(Hol(CW )) = 1.

5.2.2 Geodesic stars in M̃

Let M be a (G,X)-manifold. Let x̃ be a point of its universal cover M̃ . Then we write
x = D(x̃) ∈ X, where D is the developing map of Definition 4.15. We will first discuss
some local properties of the development map D. Since D is a local isometry, it maps
geodesics to geodesics and so, one may want to consider how D acts on the geodesic star
of a point. This is a good choice of neighbourhoods, except for the fact that two points
of X may be connected by more than one geodesic, which makes the identification of a
geodesic star with its image under D more complicated. To simplify the identification we
will define segments in X and M .

Let γ : I → X be a geodesic, we will call the image γ(I) a geodesic arc of X. A
geodesic arc is said to be closed if it is the image of a geodesic restricted to some closed
interval.

Definition 5.15. If two distinct points p, q of X are joined by a unique geodesic, we will
call the geodesic arc with endpoints p and q the segment from p to q, written [p, q]. For
each point p of X we define the constant arc written [p, p].

Notice that when K = ±1 we have that two antipodal points are connected by in-
finitely many geodesics and hence are not connected by a segment.

Example 5.16. Suppose that X is one of the Lorentzian constant curvature symmetric
spaces. Then we have that:

• When K = 0 any two points are joined by a unique geodesic, so a segment of X
will be a closed line segment.

• When K ̸= 0 Corollary 3.32 shows that two antipodal points are connected by more
than one geodesic and so a segment of X will be a closed geodesic arc that does not
contain any antipodal points.

Two points x, y ∈ X are then joined by at most one segment, written [x, y] if it exists.
If such a segment exists we say that x is segmentally connected to y, this relation is
evidently symmetric.
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Definition 5.17. Given some point x ∈ X, we define the starlike neighbourhood of x,
denoted Xx, to be the set of all points which are segmentally connected to x, i.e.

Xx := {y ∈ X | [x, y] exists}.

Example 5.18. Let X be a Lorentzian symmetric space with constant curvature. Then
we have that:

• For K = 0, i.e. X = Rn
1 , Xx = X as Rn

1 is geodesically connected.

• For K = ±1, i.e. X = Sn1 and X = Hn
1 , Xx = {y ∈ X | K⟨x, y⟩ > 1} by

Proposition 3.31 and Lemma 3.25.

It is evident that the star Xx is open in X.
Now we define analogous notions in M̃ .

Definition 5.19. A closed geodesic arc of M̃ is a segment of M̃ if its image under D is
a segment of X.

If two points x̃, ỹ ∈ M̃ are connected by a unique segment, it is written [x̃, ỹ]. This
relation is symmetric and it open since D is a local diffeomorphism. As before we say
that x̃ is segmentally connected to ỹ if there exists a segment between them.

Lemma 5.20. Two points x̃, ỹ ∈ M̃ are connected by at most one segment.

Proof. Suppose we have two geodesics γ̃ and η̃ with γ̃(0) = η̃(0) = x̃ and γ̃(1) = η̃(1) = ỹ.
Then D(γ̃) = D(η̃) = [x, y] by the uniqueness of segments in X. Since D is a local
diffeomorphism there is a neighbourhood U of x̃ such that U ≃ D(U). In particular, D
is injective so γ̃([0, 1]) ∩ U = η̃([0, 1]) ∩ U . Since γ̃ and η̃ are equal on an open subset it
follows from Lemma 2.16 that γ̃ = η̃.

Definition 5.21. Given a point x̃ ∈ M̃ , define the starlike neighbourhood of x̃, written
M̃x̃, to be the set of points ỹ ∈ M̃ that are segmentally connected to x̃. i.e.

M̃x̃ := {ỹ ∈ M̃ | [x̃, ỹ] exists}.

Since the relation of being segmentally connected in M̃ is open, the star M̃x̃ is open
in M̃ .

Notice that by construction D(M̃x̃) is contained in Xx.

Lemma 5.22 (Lemma 1 in Klingler (1996)). The function D restricted to M̃x̃ is injective.

Proof. Take two points ỹ and z̃ of M̃x̃ with the same image under D. Therefore, by the
uniqueness of segments between two points, the segments [x̃, ỹ] and [x̃, z̃] have the same
image in X. As they have the same origin and since D is a local diffeomorphism, they
coincide. So z̃ = ỹ.



78 Chapter 5. Completeness of compact Lorentzian locally symmetric spaces

Since D is a local diffeomorphism and hence an open map, D(M̃x̃) is an open set of
X contained in Xx

To show that D : M̃ → X is a covering map, one would like to first show that D
maps a starlike neighbourhood M̃x̃ in M̃ to the corresponding starlike neighbourhood Xx

in X. We will show a weaker result, Proposition 5.28, the proof of which is considerable
and will be split into multiple lemmas.

Definition 5.23. A subset C of X (or M) is convex is any two of its points are always
connected by a segment contained in C.

Definition 5.24. Let C1 and C2 be subsets of X such that C1 ⊂ C2. We say that C1 is
convex relative to C2 if any segment in C2 that joins two points of C1 is also a segment of
C1.

We will show that for each point x̃ ∈ M̃ , the set D(M̃x̃) is convex relative to the star
Xx. The key to this result is the discompacity of the isotropy subgroup of X.

5.2.3 Properties of X

In addition to discompacity, the proof of Proposition 1 in Klingler (1996) utilises certain
properties of the model space X. We will first list these properties and then show that the
constant curvature spaces satisfies each one. We are unsure if there are other Lorentzian
symmetric spaces which satisfy these properties. Proposition 1 in Klingler (1996) states
that the image of a star M̃x̃ under D is convex relative to the star Xx. It is proved by
contradiction, by supposing that there exists points a point x̃ such that there are two
points ỹ, z̃ ∈ M̃x̃ such that the segment [y, z] exists but the segment D([ỹ, x̃]) does not.

This proof uses that the manifold M with model space X satisfy the following prop-
erties:

1. M is a compact locally symmetric manifold which is locally isometric to the symmet-
ric space X. In particular, we equip M with the locally isometric (G,X)-structure
described in Proposition 4.20.

2. The isotropy group of X has discompacity less than or equal to 1.

3. X is isometrically embedded into some semi-Euclidean space E such that the ⟨·, ·⟩
(non-positive definite) inner product on E induces the metric on X. Furthermore,
we require that the isometry group G = Iso(X) is a subgroup of the linear isometries
of E.

4. Let x be a point in X and let y, z be arbitrary points in the star Xx then, there exists
a two dimensional submanifold S of X which contains a convex subset C containing
the points x, y and z. Additionally, since S is a 2-dimensional submanifold of X,
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which in turn is embedded into E, the tangent space TpS at a point p is identified
with a 2-dimensional affine subspace, written ApS = TpS + p which is canonically
identified with a 2-dimensional affine subspace of E.

5. There exist a projection ϕ from a neighbourhood of X in E to X that satisfies the
following properties:

• ϕ is a G-equivariant projection onto X.

• If γ is a geodesic of E such that γ(0) ∈ X, then there exists some ε > 0 such
that ϕ ◦ γ(−ε, ε) is equal to the image of a geodesic in X.

• Let p be a point of S then ϕ, is a local diffeomorphism between a neighbourhood
U of p in ApS := TpS+p and a neighbourhood V of p in S. It has local inverses
for a neighbourhood of each point written ψp.

Now let (M, g) be a compact Lorentzian manifold with constant sectional curvature
K. We will show that all the properties listed above are satisfied.

1. Since M has constant curvature, it is evidently locally symmetric and by Theo-
rem 3.59 M is locally isometric to a simply connected symmetric space X.

• If K < 0 then X is the universal cover of anti-de Sitter space.

• If K = 0 then X is Minkowski space.

• If K > 0 then X is de Sitter space.

Since geodesic completeness is preserved by homotheties, we can consider the cases
K = −1, 0, 1. Then by Proposition 4.20, M can be given a (G = Iso(X), X)-
structure. Recalling the isometry groups calculated in Chapter 3 we have that:

• If K = −1 then (G,X) = (O(2, n− 1), Hn
−1).

• If K = 0 then (G,X) = (O(1, n− 1)⋉Rn,Rn
1 ).

• If K = 1 then (G,X) = (O(1, n), Sn1 ).

2. The isotropy group in each case is O(1, n−1) by Lemma 3.22 and Proposition 3.34.
O(1, n− 1) has discompacity 1.

3. For X = Rn
1 we immediately have that E = Rn

1 . For X = Sn1 E = Rn+1
1 and for

X = Hn
1 , E = Rn+1

2 as they are defined in Section 3.3 as hyperquadrics of these
semi-Euclidean spaces.

4. In the constant curvature case, we can construct a surface S as such

• When X = Rn
1 , S is the affine plane of E containing x, y, z.
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• When X = Sn1 and X = Hn
1 the surface S is defined to be the intersection

X ∩ span{x, y, z}.

Then we can construct a convex subset of S containing x, y, z. In particular, we
construct a geodesic triangle which we will call Txyz.

• When X = Rn
1 , Txyz is the closed affine triangle of E with vertices x, y, z.

• When X = Sn1 and X = Hn
1 we define the triangle Txyz to be the intersection

of the closed half-cone with origin 0 and triangular section xyz, written Cxyz.

Txyz = Cxyz ∩X = {λx+ µy + ρz | λ, µ, ρ ≥ 0} ∩X.

5. In the constant curvature cases we define the map ϕ : E → X as such:

• If K = 0, ϕ is the identity map from E = X → X.

• If K = ±1 then ϕ is the projection onto X given by ϕ : x → Kx√
K⟨x,x⟩

defined

on a neighbourhood of X in E.

Lemma 5.25. S defined as above is a two dimensional totally geodesic submanifold, i.e.
if p ∈ S, v ∈ TpS then the geodesic γv(t) remains in S, and Txyz is convex.

Proof. When K = 0 this is immediately true. Consider K = ±1. Notice that S =
X ∩ span{x, y, z} is two-dimensional. As X is a hypersurface its intersection with a three
dimensional vector space is at least two dimensional. Now notice for each point ax+by+cz
in S we have that a2 + b2 + c2 = 1, so we have only two free variables and hence S must
be two dimensional. Now let γ be a geodesic with initial conditions γ(0) = p, γ̇(0) = v,
then by Remark 3.30, γ is contained in the plane spanned by p and v, which is contained
in span{x, y, z} by definition. So S is totally geodesic in X. Now we will show that Txyz
is convex. First, we show that any two points p, q of Txyz are connected by a geodesic.
By Proposition 3.31 we know that the geodesics of X are given by the intersections of
X with planes through the origin. Consider the plane P spanned by p and q, since Cxyz
is a half-cone with origin 0 we know that P must intersect Cxyz as a degenerate conic;
in two lines. In particular, we know that P must intersect two of the following planes
span{x, y}, span{x, z}, span{y, z} in these lines. Without loss of generality suppose it
intersects span{x, y} and span{x, z} in lines λ(ax + by) and µ(cx + dz) respectively for
some fixed a, b, c, d > 0 and variable µ, λ > 0. In particular, these lines are spacelike:

⟨ax+ by, ax+ by⟩ = a2 + b2 + 2ab⟨x, y⟩ > a2 + b2 − 2ab = (a− b)2 ≥ 0

since ⟨x, y⟩ > −1, as they are connected by a geodesic. We will re-scale the pairs (a, b)
and (c, d) such that the vectors ax+ by and cx+ dz have length 1.
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The intersection of plane P with X is diffeomorphic to either a circle, a hyperbola of
two branches of two parallel straight lines. Two points of P∩X are geodesically connected
if they lay on the same connected component. We will show that the points ax+ by and
cx+ dz are are on the same connected component of P ∩X and therefore p and q, which
are on the cone spanned by these two vectors, must be in the same component also.

First, notice that since x and y are geodesically connected ⟨x, y⟩ > −1 and hence

1 = ⟨ax+ by, ax+ by⟩a2 + b2 + 2ab⟨x, y⟩ > a2 + b2 − 2ab = (a− b)2.

So a− b > −1, and an equivalent argument shows that c− d > −1. Suppose that at least
one of the planes span{x, y}, span{x, z} or span{y, z} is not spacelike. Then at least one
of the following is true:

1. If span{x, y} is not spacelike, then 1 = ⟨x, y⟩2 ≤ 0, so ⟨x, y⟩ > 1 and so 1 =
⟨ax + by, ax + by⟩ = a2 + b2 + 2ab⟨x, y⟩ > a2 + b2 + 2ab = (a + b)2 and hence
a+ b > −1. So we can calculate

⟨ax+ by, cx+ dz⟩ = ac+ ad⟨x, z⟩+ bc⟨x, y⟩+ bd⟨y, z⟩
> ac− ad+ bc− bd = (a+ b)(c− d) > −1.

2. If span{x, z} is not spacelike then we have c + d > −1 by an equivalent argument
to the previous case, then we calculate:

⟨ax+ by, cx+ dz⟩ = ac+ ad⟨x, z⟩+ bc⟨x, y⟩+ bd⟨y, z⟩
> ac+ ad− bc− bd = (a− b)(c+ d) > −1.

3. If span{y, z} is not spacelike then:

⟨ax+ by, cx+ dz⟩ = ac+ ad⟨x, z⟩+ bc⟨x, y⟩+ bd⟨y, z⟩
> ac− ad− bc+ bd = (a− b)(c− d) > −1.

If span{x, y, z} is spacelike, then any planes through span{x, y, z} are spacelike and
thus p, q will always be connected.
So now suppose that span{x, y, z} is not spacelike but span{x, y}, span{y, z} and span{x, z}
are spacelike. We can therefore write y = αx + βe1 and z = γx + ηv where u, v are or-
thogonal to x and α2 + β2 = 1 = γ2 + η2, furthermore we choose u, v such that β, γ > 0.
Where ⟨x, y⟩ = α and ⟨x, z⟩ = γ.

Since span{x, y, z} = span{x, u, v} is not spacelike and x is orthogonal to u and v it
follows that span{u, v} is not spacelike as det(g) = 1 − ⟨u, v⟩2 < 0 and hence ⟨u, v⟩ ≥ 1
or ⟨u, v⟩ ≤ −1. We can assume that ⟨u, v⟩ ≥ 1 since if ⟨u, v⟩ ≤ −1 simply replace v with
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−v. Now we can write ax+ by = ãx+ b̃u and cx+dz = c̃x+ d̃v with ã2+ b̃2 = 1 = c̃2+ d̃2,
then:

⟨ãx+ b̃u, c̃x+ d̃v⟩ = ãc̃+ b̃d̃⟨u, v⟩ ≥ ãc̃+ b̃d̃ > −1,

because ã2 + b̃2 = 1 = c̃2 + d̃2.
Then ax+ by and cx+dz are connected by a geodesic because ⟨ax+ by, cx+dz⟩ > −1

and hence p and q are geodesically connected also.
Finally, any two points of Txyz are connected by a unique segment, this follows from

the fact that Txyz is geodesically connected and the half-cone {λx+µy+ ρz | λ, µ, ρ ≥ 0}
containing no antipodal points, by definition.

Lemma 5.26. ϕ has the following properties:

1. ϕ is a G-equivariant projection onto X.

2. If γ is a geodesic of E such that γ(0) ∈ X, then there exists some ε > 0 such that
ϕ ◦ γ(−ε, ε) is the image of a geodesic in X.

Proof. In the flat case ϕ is the identity so this is immediately true. Now consider the case
K = ±1.

1. Let x ∈ X and g ∈ G. Then

ϕ(gx) =
gx√

K⟨gx, gx⟩
=

gx√
K⟨x, x⟩

= gϕ(x).

2. Let x ∈ X, then a geodesic of E through x is of the form x+ tv. Then

⟨ϕ(x+ tp), ϕ(x+ tp)⟩ = ⟨ x+ tp√
K⟨x+ tp, x+ tp⟩

,
x+ tp√

K⟨x+ tp, x+ tp⟩
⟩

=
1

K
= K.

So ϕ(x + tp) ∈ X. Finally, ϕ(x + tp) is contained in the intersection of X and the plane
spanned by x and p so by the proof of Proposition 3.31, ϕ(x+ tv) is a geodesic of X.

Since X is a hypersurface of E we can describe the tangent space to a point of X as:

TpX = {w ∈ E | ⟨w, p⟩ = 0}.

Therefore, we can describe the tangent space of S as such:

TpS = p⊥ ∩ span{x, y, z}.

Since p ∈ span{x, y, z} we can write the affine plane:

ApS = TpS + p = {w | ⟨w − p, p⟩ = 0} ∩ span{x, y, z}.
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Lemma 5.27. Let p be a point of S then ϕ is a local diffeomorphism between a neigh-
bourhood U of p in ApS and a neighbourhood V of p in S.

Proof. For each p ∈ S define the map ψp : V → U, q 7→ q
K⟨q,p⟩ . Since both ψp : S → ApS

and ϕ : ApS → S are smooth, all that remains is to show ψp is the inverse of ϕ. First,
consider some point q ∈ S, then:

ϕ(ψp(q)) = ϕ(
q

K⟨q, p⟩
) =

q
K⟨q,p⟩√

K⟨ q
K⟨q,p⟩ ,

q
K⟨q,p⟩⟩

= q

since K⟨x, x⟩ = 1. Now consider some γ′(0) + p ∈ U . Recall that ⟨γ′(0), p⟩ = 0 then:

ψp(ϕ(γ
′(0) + p)) = ψp(

γ′(0) + p√
K⟨γ′(0) + p, γ′(0) + p⟩

)

= ψp(
γ′(0) + p√

K(⟨γ′(0), γ′(0)⟩+ 2⟨γ′(0), p⟩) + ⟨p, p⟩)
)

= ψp(
γ′(0) + p√

K(⟨γ′(0), γ′(0)⟩+K)
)

=

γ′(0)+p√
K(⟨γ′(0),γ′(0)⟩+K)

K⟨ γ′(0)+p√
K(⟨γ′(0),γ′(0)⟩+K)

, p⟩

=

γ′(0)+p√
K(⟨γ′(0),γ′(0)⟩+K)

K⟨ p√
K(⟨γ′(0),γ′(0)⟩+K)

, p⟩

= γ′(0) + p.

So ϕ has an inverse and is hence a diffeomorphism between U and V .

5.2.4 Relative convexity of D(M̃x̃)

We can now present a detailed proof of the central proposition in Klingler (1996).

Proposition 5.28. Let M be a compact locally symmetric Lorentzian manifold such that
the list of properties given in Section 5.2.3 is satisfied. Then for all points x̃ ∈ M̃ consider
the star M̃x̃ in M̃ . Its image under D, D(M̃x̃) is convex relative to the star Xx.

The proof of this proposition is quite long and involves the construction of multiple
objects and discussion of some of their properties. Therefore, the proof will be split into
a number of lemmas.

Suppose that D(M̃x̃) is not convex relative to the star Xx. Then there exists two
points ỹ, z̃ ∈ M̃x̃ such that their images y and z are segmentally connected in Xx but
[y, z] is not contained in D(M̃x̃).
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5.2.4.1 Working in the surface S

Here we assume Item 1 and Item 4 in Section 5.2.3, i.e. that M is compact locally
symmetric manifold equipped with a locally isometric (G,X)-structure and that for any
three points x, y and z where y and z are contained in the star Xx, there exists a two
dimensional submanifold S of X containing a convex subset C containing the points x, y
and z.

Lemma 5.29. Consider the segment [y, z] ̸⊂ D(M̃x̃) as described above. Then there exists
points yT1 ∈ [x, y] and zT1 ∈ [x, z] such that [yT1 , zT1 ] ̸⊂ D(M̃x̃) and [x, v) ⊂ D(M̃x̃) for
all points v ∈ [yT1 , zT1 ], i.e., without loss of generality, we can assume that for all points
v on the segment [y, z], the segment [x, v) is contained in the image D(M̃x̃).

Proof. Parameterise each point on the segment [x, y] by yt, t ∈ [0, 1], such that y0 = x
and y1 = y. We can parameterise the points of [x, z] by zt defined in the same manner.

Then define the interval

I := {T ∈ (0, 1] | [yt, zt] ⊂ D(M̃x̃) for all t ≤ T}.

Now notice that I is connected by definition and since D is an open map I is non-empty.
Now we will show that I is open in (0, 1]. Suppose that I is not open in (0, 1]. Then
by the previous two results I is a non-empty, connected subset of (0, 1], so I must be of
the form I = (0, T1] for some T1 < 1. So for any T2 ∈ (T1, 1] so that T1 < T2 we have
that [yT2 , zT2 ] is not contained in D(M̃x̃). Now parameterise the segment [yT1 , zT1 ] by ps,
with s ∈ [0, 1] and p0 = yT1 , p1 = zT1 , and since D(M̃x̃) is open, there exists open balls
Bs at each ps with some radius εs such that Bs ⊂ D(M̃x̃). Since [0, 1] is closed, the set of
radii εs must have a minimum value ε > 0, this contradicts the fact that [yT2 , zT2 ] is not
contained in D(M̃x̃) for T2 arbitrarily close to T1. Hence I is open.

So I must be of the form (0, T1) or (0, 1]. If it were the latter then [y1, z1] would be
contained in D(M̃x̃) which contradicts our original assumption. Now relabel y = yT1 and
z = zT1 .

Now we will show that for any point v ∈ [y, z] the segment [x, v] is contained in the
union of the segments [yt, zt] for t ∈ [0, 1].

In particular, since C is convex we know that the segment [x, v] is contained in S.
Furthermore, by the uniqueness of segments we have that [x, v]∩ [x, yt] = ∅ = [x, v]∩ [x, zt]
for all t ∈ (0, 1). If there was some point p in this intersection we would have that [x, p] is
contained in [x, v]∩[x, y] or [x, v]∩[x, z]. By the definition of v we have that v ∈ [x, v]∩[x, y]
and therefore by uniqueness of geodesics we would have that [x, y] ⊂ [x, v] but v ∈ [y, z]
so the segments [y, z] and [x, v] have non-empty intersection, so it would follow that
v ∈ [x, z] = [x, y] ∪ [y, z] contradicting the fact that v ̸∈ D(M̃x̃). This argument shows
that any two segments in C meet at either a unique point or their union is a segment.
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Then, since S is a surface it follows that [x, v] is either contained in
⋃
t∈[0,1][yt, zt] or

only intersects at the points x and v. Now we define the interval

J = {R ∈ (0, 1] | [x, vr] ⊂
⋃
t∈[0,r]

[yt, zt] for all vr ∈ [yr, zr] for all r ≤ R}.

J is connected by definition. J is non-empty because for sufficiently small T for any
point vT ∈ [yT , zT ], we know that the segment [x, vT ] must be contained in

⋃
t∈[0,T ][yt, zt]

because the exponential map is a local diffeomorphism. So J is an interval, we will now
show that J = (0, 1]. Suppose that J ̸= (0, 1]. If J is open there exists R0 = sup J
and some point vR0 on (yR0 , zR0) such that the segment (x, vR0) shares no points with⋃
t∈[0,R0]

[yt, zt]. However there also exists a sequence of points vr ∈ [yr, zr] converging

to vR0 such that the sequence of sets [x, vr] ⊂
⋃
t∈[0,R0]

[yt, zt], then since geodesics vary
continuously with respect to initial conditions and since S is a surface we have that
some segment [x, vs] must intersect either [x, y] or [x, z], a contradiction. If J is closed
with R1 = max J we can make an equivalent argument by taking a sequence of points
vr ∈ [yr, zr] for r ∈ (R1, 1) converging towards some vR1 ∈ [yR1 , zR1 ]. So J = (0, 1] and
hence each [x, v] ⊂

⋃
t∈[0,1][yt, zt].

Now fix a particular point v on the segment [y, z] such that v ̸∈ D(M̃x̃). Furthermore,
since D(M̃x̃) is open, we can choose a v such that the segment [y, v) ⊂ D(M̃x̃) i.e. v is
the first point along the segment [y, z] to leave D(M̃x̃). Then since [x, v] ⊂

⋃
t∈[0,1][yt, zt]

we have that [x, v) ⊂ D(M̃x̃).

Then by Lemma 5.29 the segment [x, v) is contained in D(M̃x̃) and we can choose a
sequence of points vk ∈ [x, v) such that vk converges to v as k goes to infinity. Furthermore,
since D|M̃x̃

is injective, we can define the sequence ṽk := D−1(vk) ∈ M̃x̃.

Lemma 5.30. Consider the sequence of points vl ∈ [x, v) defined above, then there exists
a subsequence ṽkl of ṽk and a sequence of distinct fundamental group elements ρkl ∈ π1(M)
with ρkl ̸= ρkj when l ̸= j, such that the sequence w̃kl := ρkl ṽkl converges to some point

w̃ ∈ M̃ .

Proof. First, consider the projection of ṽk toM , π(ṽk). SinceM is compact, the sequence
π(ṽk) must have a convergent subsequence π(ṽkl) that converges to some point ŵ in M .
Let w̃ be a lift of ŵ to M̃ . Since π is a local diffeomorphism, for sufficiently large kl, there
are points w̃kl in the fibres over π(ṽkl) such that w̃kl converges to w̃. As the fundamental
group π1(M) acts transitively on the fibres of M̃ , there exists some ρkl ∈ π1(M) such that
ρkl ṽkl = w̃kl .

Now we will ensure that the ρkl are distinct. If there are finitely many equal ρi = ρj,
we simply take a subsequence that does not contain any repeated terms. Now suppose
that there are finitely many distinct ρk. Then there exists the constant subsequence
ρkl = ρ. Then the sequence ṽkl converges to ρ−1w̃, and since D is continuous we have
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that D(ρ−1w̃) = v so ρ−1w̃ ̸∈ M̃x̃. Additionally, we have that D−1([x, v)) = [x̃, ρ−1w̃)
is contained in M̃x̃ and that [x̃, ρ−1w̃) is the image of some geodesic γ̃([0, b)) which is
mapped under D to the geodesic γ([0, b)). As C is convex this geodesic extends to the
point γ(b) = v. Since v is contained in the image of D, and D is a local isometry the
velocity vector r := (dD|v)−1(γ′(b)) ∈ Tρ−1w̃M̃ is well defined. Now let η̃ : (−ϵ, ϵ) → M̃
be the unique geodesic with initial conditions (w̃, r). Now notice that there is some non-
empty neighbourhood where the geodesics D(η̃(t)) and D(γ̃(t)) are equal and therefore
by Lemma 2.16 we have that η̃ is an extension of γ̃, which contradicts the fact that
ρ−1w̃ ̸∈ M̃x̃.

For simplicity of notation we will relabel the sequences vkl as vk. Define gk := h(ρ−1
k ) ∈

G where h is the monodromy homomorphism in Definition 4.17. As before, we write wk
for the image wk := D(w̃k) and w := D(w̃).

Lemma 5.31. The monodromy element gk maps wk to vk.

Proof.

gkwk = gkD(w̃k) = h(ρ−1
k )D(ρkṽk) = D(ρ−1

k ρkṽk) = D(ṽk) = vk.

Lemma 5.32. There exists a compact subset C ⊂ G and two sequences ck, bk in C and
an element g ∈ G such that

1. wk = c−1
k w.

2. vk = bkv.

3. v = gw.

Moreover, for each gk we can write gk = akokck where ak, ck are contained in compact
subsets and ok is contained in the isotropy group of the point w.

Proof. Recall that X is a homogeneous space and can be written as the quotient of G =
Iso(X) by Gp = Isop(X). In particular, we have that the projection map πp : G→ G/Gp

such that πp : g 7→ gp is an open map. Now let U be an open set in G containing the
identity I.

Then πw(U) is an open set in X containing I(w) = w. Additionally, since wk converges
towards w we have that for sufficiently large k, wk ∈ πw(U) i.e. there exists c

−1
k ∈ U such

that c−1
k w = wk. Similarly we have that πv(U) contains v and since vk converges to v, for

sufficiently large k we have bk ∈ U such that bkv = vk.
Now the closure Ū is a compact set in G containing appropriate c−1

k and bk for all but
finitely many k. Now define C to be the union of Ū with the finite set consisting g and
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the finitely many c−1
k and bk that were not contained in Ū . C is the union of a compact

set and a finite (and hence compact) set, so it is compact.
Now define ak := bkg. Then recall from Lemma 5.31 that gkwk = vk and calculate:

(a−1
k gkc

−1
k )w = (g−1b−1

k gkc
−1
k )w

= g−1b−1
k gkwk

= g−1b−1
k vk

= g−1v

= w.

So, (a−1
k gkc

−1
k ) is in the isotropy group of the point w and hence we can write gk = akokck

where ok is contained in the isotropy group of the point w.

5.2.4.2 Projecting onto S

One of the key techniques used to generalise Carriére’s proof of geodesic completeness for
compact flat Lorentzian manifolds to the case with compact constant curvature Lorentzian
manifolds was the introduction of a G = Iso(X)-equivariant projection from the ambient
Euclidean space E to X. We are now supposing that M satisfies all of the conditions in
Section 5.2.3 with the addition of item 3, item 5.

Now let B̃ be a compact neighbourhood of w̃ in M̃ such that

for all ρ ∈ π1(M) \ {Id}, ρB̃ ∩ B̃ = ∅. (5.1)

The existence of such a neighbourhood is ensured by the properness of the action of π1(M)
on M̃ .

Now choose some sufficiently small r > 0 such that

ϕ(B(w, 2r)) ⊂ D(B̃)

where B(w, r) is the closed Euclidean ball of E with centre w and radius r. For sufficiently
large k the euclidean distance between wk and w is bounded above by r and therefore
the ball Bk := B(wk, r) is contained in the ball B(w, 2r). In particular, ϕ(Bk) ⊂ D(B̃).
We define B̃k to be the cover of ϕ(Bk) in B̃ and then define C̃k := ρ−1

k B̃k where ρk are
elements of π1(M) as defined in Lemma 5.30. C̃k is a compact neighbourhood of ṽk and
by Lemma 5.31, D(C̃k) = ϕ(gkBk). Finally, the compact neighbourhoods Ck = D(C̃k)
are pairwise disjoint by the property described in Equation (5.1).

Finally, note that the gkBk are ellipsoids centred at vk as they are the image of a unit
ball under an orthonormal transformation gk. Additionally, by Lemma 5.32 we can write
gk = akokck and since ak and ck are contained in a compact set, the discompacity of the
sequence (gk)k is equal to the discompacity of the sequence (ok)k = Isow(X) ⊆ O(1, n−1).
So by Lemma 5.12 we have that gkBk is an ellipsoid such that all bar one of its principal
axes are bounded below by some constant r′ with 0 < r′ < r.
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Lemma 5.33. The intersection AvkS ∩ gkBk contains an affine segment of E with centre
vk and length 2r′. We will call this segment σk.

Proof. Consider the codimension 1 ellipsoid Dk centered at vk with principal axes equal
to the principal axes of gkBk whose lengths are bound below by r′. Then Dk ⊂ gkBk.
Now consider the intersection AvkS ∩Dk. The plane AvkS cuts through D at its centre,
the point vk, so AvkS ∩ gkBk must have dimension greater than or equal to 1. Since the
principal axes of Dk are bound below by r′ any line through the centre of Dk must have
length greater than or equal to 2r′.

We write δk := ϕ(σk) for the projection of σk onto X.

Lemma 5.34. The segment δk is contained in S and the intersections δk ∩ D(M̃x̃) are
disjoint.

Proof. Since σk ∈ AvkS and ϕ is a local diffeomorphism between neighbourhoods of AvkS
and S it is immediate that δk = ϕ(σk) ∈ S.

Now we will show that each δk ∩D(M̃x̃) are pairwise disjoint. This follows from the
fact that the compact sets C̃k are disjoint. First, notice

δk = ϕ(σk) ⊂ ϕ(AvkS ∩ gkBk) ⊂ ϕ(AvkS) ∩ ϕ(gkBk) = ϕ(AvkS) ∩D(C̃k),

and hence

δk ∩D(M̃x̃) ⊂ ϕ(AvkS) ∩D(C̃k) ∩D(M̃x̃) ⊂ D(C̃k ∩ M̃x̃).

Since D restricted to M̃x̃ is injective, we have that D(C̃k) ∩D(M̃x̃) are pairwise disjoint,
and hence (δk ∩D(M̃x̃)) ∩ (δl ∩D(M̃x̃)) = ∅ for k ̸= l.

Now we will write σk = vk + σ0
k where σ

0
k ∈ TvkS is an affine segment of E with centre

0 and length 2r′.
Since each σ0

k is contained in the compact set B(0, 2r), there exists a convergent
subsequence σ0

kl
which converges towards an affine segment of E with centre 0 and length

2r′. This is possible because each point on each affine segment σk is equal to some
{pkt | t ∈ [−r′, r′]} for and pk having Euclidean length 1. Then since the pk are contained
in the compact set B(0, 2r) the must exist a subsequence which converges to some point p,
which determines and affine segment as the image of pt. We will relabel this subsequence
σ0
k for ease of notation. For any given t, the point pkt ∈ σk converges towards pt ∈ σ.

Lemma 5.35. The sequence of segments σk converges towards the segment σ = v + σ0.
Furthermore, σ is contained in AvS.

Proof. Since vk converges to v and σ0
k converges to σ0 it follows from continuity that

σk = vk + σ0
k converges to v + σ0 = σ. Furthermore, since each σk is contained in the

vector space span{x, y, z} the limit σ must be contained in span{x, y, z} also, additionally
since each σk is tangent to S it follows from the continuity of the bilinear form ⟨·, ·⟩ that
σ is tangent to S therefore σ ⊂ TvS.
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The following lemma uses the fact that S is 2-dimensional.

Lemma 5.36. The intersection δ ∩ M̃x̃ is non-empty. In particular, we can choose a
point s ∈ δ ∩ M̃x̃ and a sequence of distinct points sk ∈ δk ∩ M̃x̃ which converge to s.

Proof. Recall the diffeomorphic neighbourhoods of the point v, U ⊂ AvS and V ⊂ S of

v. Now notice that the closure of D(M̃x̃), written D(M̃x̃), contains the segment [y, z] and

so D(M̃x̃) ∩ V contains [y, z] ∩ V . Also, the straight lines ψv([y, z] ∩ V ) and ψv(δ) = ρ
are contained in AvS and pass through the point v. Since S is two dimensional, AvS
is a plane and so ψv(δ) must intersect either the image of the interior ψv((D(M̃x̃)

◦) or
the image of the boundary ψv([y, z]) in a line. Furthermore, since the segment [y, v) is
contained in D(M̃x̃) it follows that ψv(δ) intersects ψv(D(M̃x̃)) in a line. So now choose
some point, besides v on ψv(D(M̃x̃)) ∩ ψv(δ), written v + t0p and call its image under ϕ
s. Additionally we can define points vk + t0pk ∈ σk and call sk := ϕ(vk + t0pk). As vk
converges to v and pk converges to p it follows from the continuity of ϕ that sk converges
to s. It remains to show that sk is contained in D(M̃x̃). Since s ∈ D(M̃x̃) it follows
from the openness of D(M̃x̃) that there are no subsequence of sk that are contained in its
complement D(M̃x̃)

C , as it is closed, therefore there are finitely many sk ∈ D(M̃x̃)
C . We

just take the subsequence without these points and relabel this sequence sk.
We write s̃ and s̃k in M̃x̃ for D−1(s) and D−1(sk) respectively. s̃k converges to s̃

because D is a local diffeomorphism on M̃x̃.

5.2.4.3 Proof of the proposition

Now we are able to prove Proposition 5.28; that the image of the star M̃x̃ under D, D(M̃x̃)
is convex relative to the star Xx.

Proof. Suppose this is not the case, then we are able to construct the objects described
in the previous lemmas in Section 5.2.4.1 and Section 5.2.4.2. In particular, we have the
convergent sequence s̃k in M̃ . Since sk is a point of the segment δk and δk is contained in
ϕ(gkBk) = D(C̃k) it follows that s̃k ∈ C̃k. Now recall the sequence of fundamental group
elements ρk from Lemma 5.30. Then ρksk ∈ ρkC̃k = ρkρ

−1
k B̃k = B̃k which is contained in

the compact neighbourhood B̃. Since B̃ is compact we can find a convergent subsequence
of ρksk which converges to some point m̃ ∈ B̃.

It follows from the properness of the action of π1(M) on M̃ that since s̃k converges
to s̃ and ρks̃k converges to m̃ then ρk must converge to some ρ ∈ π1(M). Therefore,
s̃ ∈ ρ−1B̃. Then by Equation (5.1)

(ρkρ
−1)B̃ ∩ B̃ = ∅

and therefore

ρ−1B̃ ∩ ρkB̃ = ∅
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and hence s̃k is not an element of ρ−1B̃. So ρ−1B̃ is a neighbourhood of s̃ which does not
contain any s̃k, which contradicts the fact that s̃k converges to s̃.

5.2.5 Rest of the proof

For completeness we will now proceed to present an outline of the rest of Klingler (1996)
before discussing some attempts to extend Proposition 5.28. Since these attempts are
focused on the key proposition above rather than the subsequent results the remaining
results will be presented with minimal details, so that the reader can have a more complete
understanding of the whole of Klingler (1996). Interested readers can look at Klingler
(1996) (in French) and Chapter 4 in Lundberg (2015), which contains a complete proof
(in English).

Corollary 5.37. Let ∂̃M̃x̃ be the boundary of the star M̃x̃ in M̃ , its image under D is
contained in the boundary X̄x\Xx.

Proof. Let ỹ be a point of ∂̃M̃x̃, and let B̃ỹ be a convex neighbourhood of ỹ. Evidently
the point y is in the closure of Xx. If y belongs to the star Xx, since Xx is open, we
can chose B̃ỹ with image included in Xx. Then B̃ỹ ∪ M̃x̃ ̸= ∅ and by Proposition 5.28,
D(M̃x̃) is convex relative to Xx. So by applying Lemma 3 of Klingler (1996), which is a
technical lemma that follows from Proposition 5.28, D restricted to M̃x̃ ∪ B̃ỹ is injective.
The segment [x, y] then lifts to a segment [x̃, ỹ] in M̃ , x̃ is segmentally connected to ỹ,
and hence ỹ ∈ M̃x̃ a contradiction. So y ∈ X̄\X.

Notice that Corollary 5.37 is an encouraging step towards proving thatM is complete:
it indicates that the boundary in M̃ of a star M̃x̃ is sent by D to the boundary of
the corresponding star Xx. However ∂̃M̃x̃ does not contain enough information on the
geometry of M̃x̃ for us to finish the proof. We still have to understand how the points of
M̃x̃ can go to infinity in M̃ while their images in X converge. To do this, you have to
work in a space larger than M̃ .

We define this larger space as such. Equip X with the complete Riemannian metric
g0 induced from the canonical Euclidean metric on E. Pullback g0 to M̃ via D, so D∗g0
is a Riemannian metric on M̃ , and finally take the metric space completion of M̃ with
respect to D∗g0, written M̂ . Since D is continuous, we can extend it to M̂ .

We can define segments in M̂ . Let α : [0, 1] → M̂ be a curve with α(0) = x̃ and
α(1) = ŷ, then if α([0, 1)) ⊂ M̃ and D(α([0, 1))) is a segment in X we say that α is a
segment in M̂ , written [x̃, ŷ]. With this definition we define the stars of M̂ as expected:

M̂x̃ := {ŷ ∈ M̂ | [x̃, ŷ] exists }.

It is then shown that each star M̂x̃ is the union of the star M̃x̃ and the boundary ∂̂M̃x̃ ∩
D−1(Xx) where ∂̂M̃x̃ = ∂M̃x̃∩(M̂ \M̃) is the boundary of M̃x̃ that is contained exclusively
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in M̂ . The boundary of M̃x̃ is written ∂̃M̃x̃ := ∂M̃x̃ ∩ M̃ . The proof of this requires
Proposition 5.28. Furthermore, it is shown that the set of stars M̂x̃ cover M̂ and in
particular, each star M̂x̃ is an open set in M̂ and D restricted to M̂x̃. So as before we
have that D : M̂ → X is locally injective. We now describe the boundary ∂̂M̃ .

Definition 5.38. A subset of M̂ is called a totally geodesic co-null set if locally, its image
under D is identified a connected component of V ∩ X where V is a co-null hyperplane
of X.

Proposition 5.39. The boundary ∂̂M̃ is either a totally geodesic co-null set, or it is
empty.

This detour into M̂ is required for the proof of the final proposition in Klingler (1996):

Proposition 5.40. Suppose that M is not complete, then the image of M̃ under D is a
connected component Ω contained in X \H, where H is a co-null hyperplane of X.

Finally, one can prove that compact Lorentzian manifolds with constant sectional
curvature are complete. SupposeM is a compact n-dimensional Lorentzian manifold with
constant sectional curvature which is not complete. Then by Proposition 5.40, D(M̃) is
contained in an open set Ω with boundary being some co-null hyperplane H. In the flat
case this means that the holonomy group Γ leaves an affine hyperplane of Rn invariant,
which contradicts Theorem 2.8 [p. 644] in Goldman & Hirsch (1984). In the case K = ±1,
the argument follows as such:

• Let e be an orthogonal vector to H.

• Define the isometry subgroup that fixes Ω. G1 := {g ∈ G | gΩ = Ω} and an isotropy
subgroup of G1 that fixes a point in Ω, written H1. Then Ω = G1/H1.

• Define the G1-invariant vector field Y1 on Ω at any point y ∈ Ω by

Y1y :=
e

⟨e, y⟩
− y ∈ TyΩ = {Ry}⊥.

• Let ω1 be the Lorentzian volume form on Ω. It is also G1-invariant.

• The Lie derivative LY1ω1 is also G1-invariant and proportional to ω1, i.e. LY1ω1 =
λω1 for some λ ∈ R.

• By calculating the divergence of Y1 with respect to ω1 we see that LY1ω1 = −(n −
1)ω1. So λ = −(n− 1).

• Since Y1 and ω1 are G1-invariant they induce a vector field Y and a volume form ω
respectively on M .
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• SinceM has no boundary, we can apply Stokes theorem to the following and notice:∫
M

Lyω = λ

∫
M

ω = λ

∫
∂M

dω = 0.

Therefore, λ = 0, a contradiction so M must be complete.

5.2.6 Discussion of Klingler’s method

It is worth noting once again that the primary differences between the proofs in Klingler
(1996) and Carrière (1989) are the utilization of the projection ϕ, as when K = ±1, X
is a hypersurface of Euclidean space rather than X = E, and Lemma 5.32 which shows
us that we are concerned with the discompacity of the isotropy group. Carrière (1989)
considers the discompacity of the holonomy group. In constant curvature spaces we can
not consider the full isometry group because the isometry group of anti-de Sitter space,
Iso(Hn

1 ) = O(2, n − 1), has discompacity 2 while in the flat case the isometry group is
O(1, n− 1)× Rn

1 which is not linear.

As we would like to extend the methods in Klingler (1996) to arbitrary compact
Lorentzian locally symmetric spaces, we should first consider the cases which are most
similar to those already proved. Evidently, Klingler (1996) does not consider any decom-
posable cases, because even the product of two non-flat manifolds with the same constant
sectional curvature will no longer have constant sectional curvature as any tangent planes
not contained in the tangent space of a single factor will have sectional curvature of 0
by Corollary 2.62. More generally, the product of two non-flat manifolds will have non-
constant curvature.

If we would like to extend the results in Klingler (1996) to other cases, we should first
extend Proposition 5.28. It should be noted that if Proposition 5.28 can be extended to
some manifold M , we do not necessarily know that M is geodesically complete as the
later results in Klingler (1996) do not follow from Proposition 5.28 alone. In particular,
Proposition 5.40 may cause difficulties as its proof is rather involved with each constant
curvature case treated separately. This is not discussed in detail in this thesis because we
were unable to verify if any cases extend Proposition 5.28.

Recall the list of properties in Section 5.2.3:

1. M is a compact locally symmetric manifold which is locally isometric to the symmet-
ric space X. In particular, we equip M with the locally isometric (G,X)-structure
described in Proposition 4.20.

2. The isotropy group of X has discompacity less than or equal to 1.

3. X is isometrically embedded into some semi-Euclidean space E such that the ⟨·, ·⟩
(non-positive definite) inner product on E induces the metric on X. Furthermore,
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we require that the isometry group G = Iso(X) is a subgroup of the linear isometries
of E.

4. Let x be a point in X and let y, z be arbitrary points in the star Xx then, there exists
a two dimensional submanifold S of X which contains a convex subset C containing
the points x, y and z. Additionally, since S is a 2-dimensional submanifold of X,
which in turn is embedded into E, the tangent space at a point TpS is identified
with a 2-dimensional affine subspace, written ApS = TpS + p with is canonically
identified with a 2-dimensional affine subspace of E.

5. There exist a projection ϕ from a neighbourhood of X in E to X that satisfies the
following properties:

• ϕ is a G-equivariant projection onto X.

• If γ is a geodesic of E such that γ(0) ∈ X, then there exists some ε > 0 such
that ϕ ◦ γ(−ε, ε) is equal to the image of a geodesic in X.

• Let p be a point of S then ϕ, is a local diffeomorphism between a neighbourhood
U of p in ApS := TpS+p and a neighbourhood V of p in S. It has local inverses
for a neighbourhood of each point written ψp.

In Section 5.2.4 we showed that Proposition 5.28 holds for any (G,X)-manifold which
satisfied these properties.

In an attempt to extend find a space which satisfies these properties we considered
the simplest decomposable Lorentzian symmetric spaces, the product of a flat space and
a positively curved space (as Hn

1 is not simply connected it is slightly more complicated).
For this discussion we will explicitly consider the product of Minkowski space and the
sphere, Rn

1 ×Sm, however identical arguments hold for the product of de Sitter space and
flat Riemannian space, Sn1 × Rm.

There are a few things that indicate such an extension may be possible. Firstly we
have that Rn

1 ×Sm is a hypersurface of the Euclidean space E = Rn+m+1
1 and furthermore,

the isometry group Iso(Rn
1 × Sm) = Iso(Rn

1 ) × Iso(Sm) and in particular, the isotropy
subgroup is equal to Isop(Rn

1 ) × Isop(S
m) = O(1, n − 1) × O(m), which has discompac-

ity equal to 1 as O(m) is a compact group. Furthermore, it seems natural to define a
projection ϕ : E → X as such:

ϕ : E → X

(p1, p2) 7→ (p1,
p2
|p2|2

),

for p1 ∈ Rn
1 , p2 ∈ Sm, where |p2|2 is the Euclidean norm on Em+1 ⊃ Sm. Then πi ◦ ϕ

maps affine lines through X to pregeodesics in each Xi. For example, suppose that each
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vi has length 1, to simplify calculations, then:

ϕ(p1 + tv1, p2 + tv2) = (p1 + tv1,
p2 + tv2√
1 + t2

) := (α1(t), α2(t)).

Then α1(t) is a geodesic and α2(t) is a pregeodesic. If we reparameterise these curves

by f(t) =
√

1
cos2(t)

− 1 for t ≥ 0 we get that α2(f(t)) = cos(t)p2 + sin(t)v2, which is

a geodesic of Sm but α1(f(t)) = p1 + v1
√

1
cos2(t)

− 1, which is not parameterised as a

geodesic in Rn
1 . Therefore, we must either attempt to generalise the proof using only this

weaker assumption or try and find a different projection, both of these options appear to
require significant work.

More difficulties arise when trying to construct an appropriate generalisation to the
surface S containing the convex set C for the points x = (x1, x2), y = (y1, y2), z = (z1, z2).
One idea would be to take the affine plane P (x, y, z) and project it onto X via ϕ. Such an
approach be intuitive in order to ensure compatibility with ϕ. It follows from the property
that ϕ maps geodesics of E, which pass through a point of X to the image geodesics of X
that each point of X is geodesically connected to the points x, y and z, but in particular,
we do not have that any set C containing x, y, z is convex, as two points a, b on different
segments [x, y], [x, z] or [y, z] which are not x, y or z may not be geodesically connected.

A second approach may be to consider an appropriate Si in each factor manifold and
then take their product S := S1×S2 in the product space X1×X2. As in Klingler (1996),
we could choose S1 to be the plane in Rn

1 containing x1, y1 and z1, written P1(x1, y1, z1)
and in Sm we could choose S2 = Sm ∩ span{x2, y2, z2} analogously to the de Sitter case.
As each Si is a submanifold of Ei containing a convex set Ci ∋ xi, yi, zi it immediately
follows that S is submanifold of E = E1 × E2 containing the convex set C = C1 × C1.
Unfortunately, this approach immediately fails the to satisfy item 4, as it is 4-dimensional.
The fact that S is two dimensional is crucial in some arguments throughout the proof
such as Lemma 5.29 and Lemma 5.36. A variation of the proof may still work with S
having dimension 4, however this would take some work.

Alternatively, one may want to generalise the results of Klingler (1996) to work for
locally Cahen-Wallach spaces in order to have a unified proof of the geodesic completeness
of compact indecomposable locally symmetric Lorentzian manifolds. In order to achieve
such a proof a few difficulties must be overcome. Firstly, Klingler utilises isometric embed-
dings of the model spaces into ambient Euclidean space, in particular, these embeddings
have codimension 1 (or 0 in the flat case). For Cahen-Wallach space we are unaware of
any such global embedding, however (Blau et al. 2002, 9.2) describes a codimension 2
local isometric embedding of CWn+2(S) into Rn+4

2 . A particularly nice property of this
embedding is that it is described by the intersection of two quadrics. Besides the imme-
diate issues of only having a local embedding, the higher codimension of the embedding
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would require more care to be taken when constructing a surface S. An alternative ap-
proach may be to equip Cahen-Wallach space with a Euclidean inner product to define
ellipsoids, however this method would cause difficulties as the metric and inner product
will no longer be compatible.

Alternatively, instead of considering the isotropy group of Cahen-Wallach space, one
could consider the holonomy group, as in Carrière (1989), which by Example 5.14 has
discompacity 1. In order to such a method to work the relationship between the holon-
omy homomorphism π1(M) → Hol(M)/Hol0(M) and the monodromy homomorphism
π1(M) → G would have to be explored.

It would appear that any further attempts to generalise Klingler (1996) would require
significant effort in order to either construct an appropriate S and C or a modification to
the proof such that we no longer require the exact conditions imposed by Section 5.2.3.
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