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ABSTRACT 

Conceptual hydrological models that predict streamflow at daily time steps are widely used 

in water forecasting, water resources planning and operations. Typically, these models are 

calibrated using daily observed streamflow data. However, in several important practical 

applications, including the prediction of inflows into large dams, only monthly streamflow 

estimates are often available for model calibration. Development of robust approaches for 

calibrating daily rainfall-runoff models to monthly streamflow data is hence of major 

practical interest. This study assess the calibration of a daily hydrological model (GR4J) to 

monthly streamflow data and compares the resulting performance to the performance 

attained after calibration to daily streamflow data. Multiple performance metrics are used: 

fit of the daily and monthly flow duration curve, daily and monthly pattern metrics, and long-

term bias. The analysis is carried for 508 Australian catchments and two evaluation periods. 

It is found that monthly calibration performs similar or better than daily calibration in a 

majority of sites and periods in terms of bias and fit of the daily flow duration curve. 

However, performance of monthly calibration is worse than daily calibration for daily 

pattern metrics such as Nash-Sutcliffe efficiency in a majority of sites and periods. This 

performance loss can be reduced significantly by using regionalised values for the flow-

timing parameter of GR4J. Similar results are obtained for other pattern metrics. Overall, 

our findings suggest that monthly calibration of rainfall-runoff models to daily-

rainfall/monthly-streamflow is a viable alternative to daily calibration when no daily 

streamflow data are available. 



 

 

INTRODUCTION 

Conceptual hydrological models that predict streamflow at daily time steps are widely used in water 

forecasting, water resources planning and operations (Pagano et al., 2010). In order to make 

predictions at a given catchment, these models require calibration to observed data (streamflow time 

series and climate inputs). Typically, the calibration data has the same temporal resolution (time step) 

as the intended model predictions. However, observed data are not always available with such 

resolution due to the prohibitive cost of data acquisition or limited historical records. For example, in 

many situations of operational interest, streamflow predictions are required at a daily time step (for 

given climate forcings), but observed streamflow data is available at the monthly time step only. 

Notable examples where daily streamflow predictions are needed despite streamflow calibration data 

being monthly include the calibration of basin scale models (Welsh et al., 2013), where a daily time 

step model is used to simulate catchment processes, including inflows, dam operations and water 

management rules (Steinfeld et al., 2015). In some locations available daily streamflow records might 

be of limited quality, compromising the model performance at those locations. In other locations daily 

streamflow data may not be available altogether, with only monthly data being available, e.g. from 

digitised paper archives (Fry, 2014). Note that these data resolution limitations are less pronounced 

for climate data such as rainfall, which can be obtained from global datasets, e.g. satellite rainfall. 

A key practical application motivating this work is the operation of large dams. Dam inflows are 

typically estimated from (known) dam outflow and water levels by methods such as inverse pool 

routing (e.g., D'Oria et al., 2012). These methods are generally stable at a monthly time step, but can 

become unstable at shorter time steps (e.g. daily-weekly) due to uncertainty in water level data and 

the storage/volume relationship (Deng et al., 2015). 

Relatively few studies have evaluated the daily performance of the same model calibrated at monthly 

vs daily time steps. For example, Sudheer et al. (2007) and Adla et al. (2019) reported that monthly 

calibration performed worse than daily for simulating both daily and monthly flows, producing 

unrealistic daily simulations. However, their conclusions are based on results from two catchments 

and a single hydrological model (SWAT) and objective function (Nash-Sutcliffe efficiency). Broader 

studies using "mismatched" time steps produced more encouraging conclusions. For example, Wang 

et al. (2011) compared the monthly WAPABA model (monthly climate inputs and calibrated to 

monthly streamflow) against two daily models (AWBM and SIMHYD) over 331 catchments in 

Australia. They concluded that the monthly model achieved similar performance to the daily models 

in terms of monthly correlation, Nash-Sutcliffe efficiency, and long-term bias. However, no 

evaluation of the underlying daily-step performance was undertaken.  

In general, calibration to data at an aggregated scale can be expected to lose timing information, 

impacting on model parameters associated with quick flow processes (e.g., Kavetski et al., 2011). Of 

interest here are studies where inference of quick flow parameters was improved through parameter 

regionalisation; e.g., see Rojas-Serna et al. (2016) and Pool et al., (2019), however those studies 

focused solely on the daily scale. Another pertinent study is Bennett et al. (2016), where an hourly 

model was calibrated to daily data, as such also representing calibration to aggregated data. 

The recent work by Lerat et al. (2020) investigated the impact of daily versus monthly calibration of a 

daily rainfall-runoff model (GR4J) on streamflow predictive performance and parameter estimates 

over a large sample of catchments, using a wide range of performance metrics computed at monthly 

and daily time steps. In this paper, we focus on daily scale performance, which is of most relevance to 

the practical applications listed earlier, and provide a simplified set of recommendations. 

This study has the following aims: 

● Compare daily streamflow predictions obtained from monthly calibration of a daily-step model 

(practical setup faced by dam managers) to daily predictions obtained from a daily calibration of the 

same daily-step model ("idealised" setup). 

● Use a parameter regionalisation strategy to mitigate the reduced information about flow timing. 

The study uses the hydrological model GR4J, which is commonly employed in streamflow prediction 

applications in Australia and worldwide (Perrin et al., 2003; Woldemeskel et al., 2018). 



 

 

THEORY 

General Model Setup 

Consider a hydrological model H that simulates daily streamflow on day t as a function of forcing 

data up to day t, X1:t, parameters θ  and initial conditions S0, 

     1: 0( ; , )ttQ Hθ θ X S         (1) 

This daily model can be calibrated at the daily or monthly scale, as described next. 

Daily Calibration 

In daily-scale calibration, parameters are estimated using an objective function F, formulated in terms 

of daily flows, 

  
opt obsargmin ( , )F θ

θ

θ Q Q          (2) 

where 
obs

Q  are the time series of observed daily streamflow and 
θ

Q  are the corresponding time 

series of daily flow computed using equation (1). 

Monthly Calibration 

In monthly-scale calibration, parameters are estimated using a "monthly scale" objective function F, 

formulated in terms of monthly flows 

  
opt obsargmin ( , )F θ

θ

θ q q          (3) 

where 
obs

q  are the time series of observed monthly streamflow and 
θ

q  are the corresponding time 

series of monthly streamflow computed by aggregating daily flows computed using equation (1). Note 

that in order to undertake the comparisons within this study, the monthly observed streamflow is 

obtained by aggregating observed daily streamflow, though in practical applications of interest here 

monthly time series will be available directly (and indeed daily time series will not be available). 

Objective Function and Optimisation 

In this work the objective function F in both equations (2) and equation (3) is the sum of squared 

errors (SSE), which can be computed for either daily or monthly time series. 

The sum-of-squared errors function (SSE) has the form 

   
2

obs obs( , ) ( ) ( )F z z θ θ
y y y y         (4) 

where z denotes the Box-Cox transform, here used with power parameter 0.2   following 

recommendations of McInerney et al. (2017). 

  ( ) ( 1) /z y y             (5) 

The use of the Box-Cox transformation in the objective function tends to stabilise the errors with 

respect to the streamflow magnitude. 

The optimisation of the SSE is carried out using the downhill simplex method combined with an 

initial seeding scheme designed according to available prior knowledge of hydrological model 

parameters. This approach improves the global convergence of the optimisation (Lerat, 2018; Lerat el 

al., 2020). 

It is emphasised that in this work the only difference between a daily calibration (using equation (2)) 

and monthly calibration (using equation (3)) is the time aggregation of the streamflow data. All other 

elements of the schemes are identical, including the daily climate inputs X, the model daily simulation 

time step, the mathematical form of the objective function F, and the optimisation algorithm. 



 

 

Combination of Calibration and Regionalisation 

Previous work has indicated that calibration of a daily model to monthly streamflow data results in 

poor identifiability of parameters associated with quick flow processes (Kavetski et al., 2011). Hence, 

these parameters are estimated using a regionalisation model, in order to benefit from additional 

conditioning information. More specifically, the regionalisation model is constructed by applying 

kriging to quick flow parameter values estimated in nearby catchments with available daily 

streamflow data (Merz and Blöschl, 2004). The regionalisation approach is detailed in Appendix A of 

Lerat el al. (2020).  

When regionalisation is used, the model parameter vector is split into two partitions, c r( , )θ θ θ , 

where cθ  is the subset of parameters estimated by calibration and rθ   is the subset of parameters 

estimated by regionalisation. The subset rθ  of hydrological model parameters is taken as the subset of 

parameters know a priori to control the timing of the hydrograph. For common models, including the 

GR4J model used in this study, such parameters are well known (see latter section).  

To avoid artificial skill being introduced, parameter regionalisation is implemented using a leave-one-

out approach, where regionalised parameters are estimated using a kriging model calibrated to all 

catchments except the target catchment. Consequently, a separate kriging model is developed for each 

catchment and for each calibration period. 

Note that the kriging-based regionalisation approach used in this study does not take into account 

catchment descriptors. A simple alternative using linear regression against catchment descriptors was 

also tested, but did not provide better performance (results not reported). 

CASE STUDY DESCRIPTION 

Case Study Catchments 

The empirical case study employs 508 catchments in Australia, with locations shown in Figure 1; see 

Lerat et al. (2020) for detailed characteristics. Daily rainfall time series were extracted from the 

Bureau of Meteorology AWAP archive (Jones et al., 2009). Daily time series of potential 

evapotranspiration were estimated using the Penman equation (1948) within the Bureau of 

Meteorology landscape model AWRA (Frost et al., 2018). Daily streamflow data were extracted from 

the Water Data Online service (Bureau of Meteorology, 2019). As such, the catchment dataset covers 

all main Australian climate regions, lending robustness to the study conclusions. A wide range of 

hydro-climate regimes is included, with (daily) rainfall skewness in the range 2.4-16.4, catchment 

aridity index (ratio of mean annual rainfall and mean annual potential evapotranspiration) in the range 

0.09-2.57, and runoff coefficient in the range 0.01-0.92. 

Three representative catchments with distinct hydroclimatic characteristics are selected to illustrate 

the findings of this study in more detail: Macalister River at Glencairn in Victoria (catchment 

225219), Dumaresq River at Farnbro in Queensland (catchment 416310) and Scott River at Brennans 

Ford in Western Australia (catchment 609002); see Lerat et al. (2020) for details. 

Hydrological Model 

The conceptual rainfall-runoff model GR4J is used in equation (1) to simulate daily catchment-scale 

streamflow time series from rainfall and PET inputs (Perrin et al., 2003). GR4J has a parsimonious 

model structure with four parameters to represent interception, infiltration and percolation, and is 

routinely used in research and operations in Australia and worldwide (e.g., Woldemeskel et al., 2018). 

The GR4J parameter 4  is known to control the timing of the hydrograph. Therefore the 

regionalisation procedure described in the earlier section was applied to this parameter. 

Calibration Schemes 

Three calibration schemes are considered: daily, monthly and monthly with regionalised GR4J 

parameter  θ4 (denoted "monthly-θ4"). 

 



 

 

Performance Metrics for Daily Streamflow Predictions 

Five performance metrics computed from daily streamflow predictions are used. See Lerat et al. 

(2020) for a broader study that also includes an assessment of monthly streamflow predictions.  

Bias in long-term average streamflow is computed as 

  

obs
obs mean

Bias( , ) 1
mean

 θ

θ

q
q q

q
        (6) 

where mean y denotes the mean of vector y. 

Flow duration curve (FDC) error, expressed as the mean absolute relative error as follows: 

  
obs

FDC obs
1

1 percentile( , )
( , ) 1

percentile( , )

PN

k

kP k

p
e

N p

 
θ

θ q
q q

q
      (7) 

where percentile( , )py  is the p'th percentile of series y, 1p  and 2p  are the lowest and highest 

percentile considered, PN  is the number of percentile interpolation points, and 

1 2 1( )( 1) / ( 1)k pp p p p k N      is the linearly interpolated percentile. In this work 50PN  . 

The FDC fit metric is similar to the FDC diagnostic metric used by Yilmaz et al. (2008), but is 

restricted to a portion of the curve. We apply this metric to three ranges of percentiles: 0% to 10% 

(i.e. 1 0p   and 2 10p  ) to quantify FDC fit in low flows, 30% to 70% (i.e. 1 30p   and 2 70p  ) 

for medium flows, and 90% to 100% (i.e. 1 90p   and 2 100p  ) for high flows. 

Pattern matching: Spearman rank correlation is used to compare the hydrograph patterns, 

  

obs obs

obs 1

obs obs

(rank rank )(rank rank )

spear( , )
sdev rank sdev rank

T

t t t t

t

q q q q


 




 θ θ

θ
q q

q q
     (8) 

where 
obsrank tq  and rank tqθ  are the, respectively, ranks of the observed and simulated streamflow 

values at day t, and T is the total number of (daily) time steps. 

Timing of daily peaks: the "error in timing" metric introduced by Ficchì et al. (2016) is used, 

  
obs obs

timing
[ 5, 5]1

1
( , ) argmax

A

a a

N

a t
t t taA

e t q
N   

 θ
q q        (9) 

where AN  is the number of years simulated, at  is the day at which the observed peak flows of water 

year a  takes place. The simulated peak time is identified within a window of 5 days before and after 

at  to minimise the risk of selecting a peak from another flood event. The water year (rather than 

calendar year), is used, with start and end dates defined, respectively, as 5 months before and 5 

months after the maximum mean inter-annual monthly flow. This definition avoids splitting a flood 

event across two years. 

Overall accuracy: the Nash-Sutcliffe efficiency (NSE) is used 

  

obs
obs

obs

var( )
( , ) 1

var( )
F


 

θ
θ q q

q q
q

        (10) 

The metrics described above can be categorised into three groups: long-term bias, FDC fit metrics and 

pattern metrics. 



 

 

 

Figure 1. Locations of the 508 case study catchments and the 3 selected catchments. The red 

dots indicate the catchment outlets. Figure adapted from Lerat et al. (2020). 

 

Cross-validation 

A temporal split-sample validation procedure is implemented, with available data split into two 

periods: 1975-1992 and 1992-2015. Calibration is performed on each period. The model is then run 

on the other period to compute performance metrics. This procedure yields two sets of validation 

periods – and hence two validation metrics – for each catchment. 

Performance Differences 

A monthly calibration scheme (e.g., monthly calibration) is assessed by considering the proportion of 

sites and periods where its performance metrics is classified as "worse", "similar" or "better" in 

comparison to daily calibration. These proportions are computed over the 508 catchments and 2 

validation periods, i.e., over a total of 1016 sites/periods combinations.  Metric values are considered 

“similar” if they differ by less than a "practical significance" threshold Δ. The choice of Δ is 

subjective and context-specific. In this work we set it to 0.05 for all metrics, based on previous 

experience of the authors. 

RESULTS 

Figure 2 shows the proportion of sites/periods where the performance of monthly calibration is, 

respectively, "worse than", "similar to", and "better than" daily calibration. Two monthly calibration 

configurations are shown: (1) “Monthly”, where all parameters are calibrated (no regionalisation), and 

(2) “Monthly-θ4”, where GR4J parameter θ4 is regionalised as described in a preceding section. Note 

that all performance metrics are computed from daily streamflow simulations. 

Monthly vs Daily Calibration 

Monthly calibration with no parameter regionalisation (labelled "monthly" in Figure 2) performs 

similarly or better than daily calibration for daily FDC fit metrics in a majority of sites and periods. 

Figure 2a, 2b and 2c reveals that monthly calibration performance is similar to daily in 24%, 40% and 

36% of sites/periods for low, medium and high flow FDC fit, respectively. Moreover, monthly 

calibration outperforms daily calibration in 36%, 20% and 39% of sites/periods, for the same metrics 

respectively. Overall, monthly calibration achieves similar or better FDC fit than daily calibration in 



 

 

60-75% of the sites/periods. A more detailed analysis (Lerat et al., 2020) confirms these findings: 

nearly all summary statistics of FDC fit on low and high flows are lower (i.e. better) for monthly 

calibration compared to daily. All statistics on medium flows are higher (i.e. worse) for monthly 

compared to daily calibration, but the difference remains below 0.06 percentage points except for the 

maximum value (Lerat et al., 2020). 

On the other hand, monthly calibration performs worse in terms of daily pattern metrics: Figure 2d, 2e 

and 2f suggest that daily calibration reaches better performance than monthly in 51%, 56% and 69% 

of sites/periods for correlation, NSE and peak time error. 

Impact of Regionalised Parameters on Monthly Calibration Performance 

We now consider the benefits of parameter regionalization, by comparing monthly calibration coupled 

with parameter regionalisation (“monthly-θ4” in Figure 2) to the performance of daily calibration. 

Using regionalised estimates of θ4 improves daily pattern metrics of monthly calibration significantly: 

for daily correlation, Figure 2d shows that the proportion of sites/periods where monthly calibration is 

similar to, or better than daily calibration increases from 49% when no regionalisation is used to 65% 

with regionalised θ4. This proportion increases from 44 to 60% for NSE (Figure 2e), and from 31 to 

47% for peak time error (Figure 2f). 

Figure 2 also shows that using regionalised θ4 in the monthly calibration achieves similar performance 

to daily calibration for the other performance metrics, namely daily FDC fit and long-term bias. 

Hydrographs for Representative Catchments  

Figure 3 shows the daily observed and simulated streamflow in the three representative catchments. 

Hydrographs for the two largest floods are shown, using the period of 1995-2015 for validation, and 

the period of 1975-1992 for calibration. 

The hydrographs shown in Figure 3 highlight the advantages of using a regionalised estimate of θ4 to 

better reproduce flood peak timing when using a monthly calibration scheme. When all parameters are 

calibrated (“monthly” in Figure 3), the daily hydrographs obtained using the monthly calibration 

scheme are systematically lagged behind with respect to the (daily) observed hydrographs. In contrast, 

fixing parameter θ4 to regionalised values (“monthly-θ4” in Figure 3) greatly improves flood 

simulations, as can be seen in the majority of hydrographs. 

DISCUSSION 

How Does Monthly Calibration Compare to Daily Calibration? 

Previous research has indicated that, when a rainfall-runoff model that operates at one time scale is 

calibrated to streamflow data aggregated to a larger time scale, there is typically some loss of 

performance, especially in the timing of hydrographs (Adla et al., 2019). 

However, the results suggest that a carefully constructed monthly calibration can often (though not 

always) achieve comparable performance to daily calibration in terms of daily pattern metrics and 

potentially even better performance for FDC fit metrics, especially for high flows. Results in 

representative catchments in Figure 3 illustrate these findings using hydrographs. This finding is 

perhaps surprising because monthly calibration does not access the daily streamflow data – though the 

FDC contains no timing information and hence it can be reproduced by a monthly calibration scheme. 

The more comprehensive study by Lerat et al. (2020) suggests that a higher skew in daily rainfall may 

play a role when monthly calibration outperforms daily calibration. More specifically, daily 

calibration struggles to match hydrograph peaks in catchments with very intense rainfall events, 

where rainfall timing may be poorly measured. This constraint does not impact monthly calibration 

significantly due to the aggregated nature of the streamflow data used in the objective function. 

The performance improvements achieved by monthly calibration for certain metrics could also be 

interpreted by considering the changes in GR4J parameter values. Inspection of GR4J model 

parameters in Lerat et al. (2020) suggests that monthly calibration tends to yield smaller values of the 

two GR4J storage parameters θ1 and θ3. As a result GR4J responds faster to rainfall and generates 

higher peak flows, which in turn could lead to a better match of large observed flood peaks compared 

to a daily calibration scheme (where the storage parameter are estimated with larger values). 



 

 

 

Figure 2. Model performance following monthly vs daily calibration. Proportion of sites/periods 

where monthly calibration is respectively "worse than", "similar to", and "better than" daily 

calibration. Proportions are computed from 508 catchments and two validation periods (1016 

combinations). The labels "Monthly" and "Monthly-θ4" refer, respectively, to regular monthly 

calibration and to monthly calibration where the GR4J parameter θ4 is fixed a priori to a 

regionalised value (i.e. three parameters calibrated). The numbers within each bar indicate the 

performance proportions (for the three categories listed earlier) and add up to 100%. Figure 

adapted with modifications from Lerat et al. (2020). 

 

Mitigating Loss of Timing Information in Monthly Calibration 

The empirical results also lend credence to using regionalisation rather than calibration to estimate 

timing (quick flow) parameters such as θ4. This approach assumes that daily streamflow data are 

available at nearby catchments for a daily calibration to be implemented there. In the case of 

simulating dam inflows, this assumption appears reasonable as gauging stations are generally installed 

close to the dam site to support reservoir design and operation. The approach of estimating θ4 using 

regionalisation reduces timing errors significantly compared to the “standard” approach where all 

parameters are calibrated, without compromising other performance metrics. It is of course possible 

that regionalisation leads to inaccurate estimates of θ4 compared to daily calibration. However, our 

results suggest that these inaccuracies do not compromise monthly calibration performance. 

 



 

 

 

Figure 3. Streamflow time series for three representative catchments in the validation period 

1992-2015. Simulations corresponding to three calibration schemes are shown: daily, monthly 

and monthly with regionalised θ4 parameter (monthly-θ4). Figure adapted with modifications 

from Lerat et al. (2020). 

 

Limitations and Future Work 

Several follow up research directions will be pursued in future studies. 

First, it is of interest to verify if our findings regarding the value of monthly calibration for the 

parsimonious model GR4J hold for other rainfall-runoff models, particularly more complex models 

with a larger number of parameters, and for spatially resolved models. 

(a) (b) 

(c) (d) 

(e) (f) 



 

 

Second, it is of interest to better elucidate the reasons why monthly calibration can produce better 

daily performance metrics than daily calibration. Separating timing errors from amplitude errors (for 

example using the spectral methods proposed by Ehret et al., 2011, or Liu et al., 2011), and relating 

specific hydrograph features to specific parameters, could be pivotal to progress our understanding. 

Third, the investigations could be extended to probabilistic prediction (e.g. McInerney et al., 2018; 

and others), which can be expected to be easier at the monthly scale compared to the daily scale, due 

to reduced autocorrelation in the errors (Huard and Maillot, 2008, Evin et al., 2013). 

Fourth, further analysis is required to ensure that monthly calibration remains a valid alternative 

during extremely dry or wet periods, for example in the context of changing climate. 

Finally, the regionalisation methods could be enhanced with a better representation of local catchment 

characteristics and (potentially) a more sophisticated geostatistical model (Bárdossy and Li, 2008). 

CONCLUSIONS AND RECOMMENDATIONS 

The ability to successfully calibrate a daily rainfall-runoff model to monthly streamflow data with 

(relatively) little loss of performance – and indeed with some gains in performance – represents an 

important finding with benefits for many practical modelling applications. 

Empirical analysis over 508 Australian catchments and two evaluation periods indicated the following 

key conclusions: 

1. Daily rainfall-runoff models calibrated to monthly streamflow perform similarly or better than 

models calibrated to daily streamflow, except for metrics related to daily patterns 

Monthly calibration schemes reach comparable performance to daily calibrations for a wide range of 

metrics, such as the fit of daily flow duration curves in low, medium and high flows, with a majority 

of sites and periods reaching similar or better metric values. This finding is arguably surprising 

because monthly calibration does not access daily streamflow data. On the other hand, and arguably 

as expected, monthly calibration performs generally worse than daily calibration for metrics related to 

daily pattern of the hydrograph, such as NSE, correlation and peak time errors. 

2. Daily patterns of monthly calibrated models can be improved significantly by using regionalised 

values for timing parameters 

When using monthly calibration schemes, the timing of flood peaks and, more generally, daily 

patterns, are not reproduce accurately. This limitation can be alleviated by estimating the GR4J 

parameter controlling hydrograph timing using regionalisation from nearby catchments. 

Overall, the findings indicate that monthly calibration is a viable alternative to daily calibration when 

no daily flow data is available. Importantly, the findings hold over a large sample of Australian 

catchments. Future work on extending the findings to broader classes of models is recommended. 
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