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Abstract

Entity resolution (ER) identifies and links records that belong to the same real-world enti-
ties, where an entity refer to any real-world object. It is a primary task in data integration.
Accurate and efficient ER substantially impacts various commercial, security, and scien-
tific applications. Often, there are no unique identifiers for entities in datasets/databases
that would make the ER task easy. Therefore record matching depends on entity identi-
fying attributes and approximate matching techniques. The issues of efficiently handling
large-scale data remain an open research problem with the increasing volumes and veloci-
ties in modern data collections. Fast, scalable, real-time and approximate entity matching
techniques that provide high-quality results are highly demanding. This thesis proposes
solutions to address the challenges of lack of test datasets and the demand for fast indexing
algorithms in large-scale ER.

The shortage of large-scale, real-world datasets with ground truth is a primary concern
in developing and testing new ER algorithms. Usually, for many datasets, there is no
information on the ground truth or ‘gold standard’ data that specifies if two records
correspond to the same entity or not. Moreover, obtaining test data for ER algorithms
that use personal identifying keys (e.g., names, addresses) is difficult due to privacy and
confidentiality issues. Towards this challenge, we proposed a numerical simulation model
that produces realistic large-scale data to test new methods when suitable public datasets
are unavailable. One of the important findings of this work is the approximation of vectors
that represent entity identification keys and their relationships, e.g., dissimilarities and
errors.

Indexing techniques reduce the search space and execution time in the ER process.
Based on the ideas of the approximate vectors of entity identification keys, we proposed a
fast indexing technique (Em-K indexing) suitable for real-time, approximate entity match-
ing in large-scale ER. Our Em-K indexing method provides a quick and accurate block
of candidate matches for a querying record by searching an existing reference database.
All our solutions are metric-based. We transform metric or non-metric spaces to a lower-
dimensional Euclidean space, known as configuration space, using multidimensional scal-
ing (MDS). This thesis discusses how to modify MDS algorithms to solve various ER
problems efficiently. We proposed highly efficient and scalable approximation methods
that extend the MDS algorithm for large-scale datasets.
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xx Abstract

We empirically demonstrate the improvements of our proposed approaches on several
datasets with various parameter settings. The outcomes show that our methods can
generate large-scale testing data, perform fast real-time and approximate entity matching,
and effectively scale up the mapping capacity of MDS.



Chapter 1

Introduction

1.1 Research Problem

Data is increasingly becoming voluminous, varied and valuable with advances in science
and technology and the rapid digital transformation of global industries. A key issue
is how to store, process, analyse, interpret, and consume an overwhelming amount of
data to make better decisions. Data integration plays a vital role in data analysis and
mining projects by combining data from different sources into meaningful information.
Entity resolution (ER), a core step in data integration, detects records across multiple
datasets that correspond to the same real-world entity [4, 5]. It has also been known
as the object identity problem, record linkage, the merge/purge problem, deduplication,
duplicate record detection, and data matching.

ER has been widely used in commercial and government applications and also in
academic and statistical research. Therefore, ER appears as a problem across a range
of applications, e.g., medical or epidemiological research, crime detection and national
security, tax and other fraud detection, education research, bibliographic database con-
struction, e-commerce applications, and customer relationship management [1].

An entity can be a person, place, product, organisation or any real-world object with a
unique identity that distinguishes it from all other entities of the same type. ER applies to
various data types, from structured relational databases to unstructured entities extracted
from free text [1, 6]. Many of these data contain records of individual entities, e.g.,
patients, customers and travellers. In this thesis, we consider structured data described
by a well-defined schema that resides in relational databases or CSV files.

The problem of combining two or more separately recorded measures that belong
to a particular individual dates back to the early 1950s [7]. Despite extensive research
studies over several decades, ER remains a challenging problem in practice, especially for
applications in large-scale data.

This thesis is aimed at improving state of art in ER for large-scale datasets. It mainly
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addresses the problems with the scarcity of test data and the demand for fast indexing
algorithms. One of the major problems that impede the development of large-scale ER
algorithms is the shortage of testing data.

Therefore, our goal was to develop a numerical simulation model that generates large
synthesis datasets for large-scale testing of ER techniques. Indexing or blocking techniques
reduce the search space and execution time in ER. However, many existing techniques
are not suitable for applications requiring online capabilities, especially those that involve
big, fast, or streaming data. We aimed at developing fast indexing algorithms suitable
for real-time and approximate entity matching in large-scale ER.

1.2 Motivation

This section discusses the challenges in large-scale ER that motivate the work presented
in this thesis.

• Approximate matching

Often, there are no unique identifiers for entities that would make record matching
easy in ER databases/datasets. Therefore, entity record matching relies on the com-
mon entity attributes across databases that may serve as quasi-identifiers [8]. For
instance, quasi-identifiers of a database that contains personal information include
name, address, and date of birth.

Exact matching between those attribute values is often not possible due to various
data quality issues, e.g., unexpected errors (such as typos, phonetic errors), vari-
ous customs (the use of abbreviations), and unavoidable changes over time (such
as addresses and family names for women after marriage). As a result, many ER
approaches apply approximate matching techniques when identifying different de-
scriptions of a real-world entity.

Approximate matching techniques use pairwise comparisons between record at-
tributes to identify similar records. Pairwise comparisons in ER constitute an in-
herently quadratic task. Naive ER algorithms have a quadratic running time, which
is computationally prohibitive for large-scale data collections.

• Lack of testing data

Massive amounts of data collected by government and business organisations are
about people and their surroundings. Hence, most application-specific data (e.g.,
medical, employment, and customer records) are stored together with personal infor-
mation (e.g., name, address, gender, age). Linking entity records based on personal
information occurs in various ER application domains, including health informatics,
national security, fraud and crime detection, online shopping, social sciences [1].
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Quasi-identifiers such as gender and postcode can be easy to obtain. However,
privacy and confidentiality are great concerns when more sensitive quasi-identifiers,
e.g., names and addresses, are used in data analysis. Hence, sharing this information
between organisations or making them publicly available is often impossible. Even
if we have access to these sorts of data, there are other challenges as well. For
instance, the ground truth or gold stand that specifies the matching status of records
in datasets is not available [1]. Therefore, suitable public datasets, especially those
containing personal information for linking, are restricted in this area and usually
small in size.

Artificially simulated test data is the alternate solution for testing many ER algo-
rithms. Testing data provide a gold standard by labelling duplicate data in a dataset
while resembling the required real-life properties as well as possible. However, many
existing solutions that generate test data struggle to generate realistic data (e.g.,
real-world errors) and only generate small datasets [9]. This creates a fundamental
problem of ER research: the lack of large-scale, real-world datasets to test new ER
algorithms.

• Large volumes of data

ER process becomes quadratically more complex and time-consuming with large-
scale data volumes. The asymptotic time complexities of most traditional ER algo-
rithms are O(N2) (given N records) and require a significant amount of processing
capability for each comparison. Hence, large-scale ER solutions are needed when
scaling to hundreds of millions of entity references.

Despite the long development history of ER in research, some algorithms are still
in use today that are inefficient for large scale data. For instance, the Fellegi-
Sunter model [4] proposed in 1969 implements pairwise logic, where each attribute
of a record is potentially compared with every other to determine similar records.
Therefore, the resources required for applying this model to large-scale data exceeds
the capabilities of modern supercomputers [10]. For instance, consider an ER task
that identifies all matching records in two datasets containing 100 million records
each. The pairwise distances calculated among the two datasets are 108×108, which
is prohibitive.

Indexing or blocking plays a major role in scaling ER solutions to large-scale data.
Indexing addresses the problems of inefficiencies that occur due to the excessive
number of pairwise comparisons. However, many existing indexing techniques still
have quadratic time complexity and are inefficient to deal with very large-scale data.

• High velocity data

In addition to the volume, modern data brings many other challenges to ER research,
e.g., semi-structured data, high-velocity streams and complex similarity metrics. Ve-
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locity refers to the rate of data generated at high speed, and high-velocity streams
require real-time ER solutions [2]. Real-time ER demands higher efficiency com-
pared to traditional online solutions. Entities provided as queries may arrive in
high-velocity streams to resolve against a known entity collection [6]. Some of these
applications may also require incremental strategies to update linkage results when
data updates arrive [11]. Hence, query-based or streaming data execution strategies
needs to be implemented in real-time ER solutions.

• Query matching

Many applications require real-time ER where query records must be matched to
a database of known entities, with many organisations moving online [12, 13]. For
instance, consider the real-world application on the real-time matching of personal
information from consumer credit applications given in [1]. Similarly, other exam-
ples can be found in online financial or shopping transactions, telecommunication
records, or data from the multitude of increasingly online sensors (internet of things).

These applications process large-scale data that arrive on high-velocity streams,
and ER solutions must provide prompt responses. Queries that require prompt
responses against existing datasets have applications in various domains, e.g., online
government services, credit applications, and law enforcement [1].

Traditional ER solutions often process databases offline in batch mode, and no
further action is required once a pair of matches are determined. Hence, these
techniques are not suitable for applications that require real-time query matching,
especially if they are processing large-scale or streaming data.

Usually, the databases involved in query matching are large-scale; hence sequential
querying for entity matching to provide prompt responses is difficult. Scalability
is an issue for real-time settings in the ER process and requires suitable tools and
techniques to improve efficiency. Hence, fast indexing methods that provide approx-
imate and real-time entity query matching is needed.

In the following, we introduce novel approaches that address the above challenges for
large-scale data. We have explored several statistical and machine learning tools and
techniques to provide solutions.

1.3 Summary of Our Approach

Our approach to large-scale ER goes beyond those presented in the literature in the
following ways to address the challenges presented in the previous section. The proposed
solutions focus on large-scale ER that perform matching or linking based on personal
information, e.g., names and addresses.
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Many ER datasets represent entity records using a set of attributes, e.g., names,
addresses, and gender. When linking or matching the entity records, the distances or dis-
similarities between attribute values are the main property of interest. Similar attribute
values have small distances, whereas different attribute values have large distances. Fol-
lowing this phenomenon, we were interested in looking at the relationship between entity
records mathematically.

We were particularly interested in name matching in ER since names are the most im-
portant quasi-identifier in many datasets, e.g., health records, census data, police reports,
tweets, bibliography collections, Linkedin and Facebook posts, and customer reviews [14].
Therefore names are heavily used in entity matching. Since many ER datasets consist
of strings, e.g., names, addresses, and occupations, studies of name strings can be easily
used to interpret relationships between other string attributes.

We assume names as objects reside in a complicated high-dimensional space and call
this the namespace. Similar names are closer together in this space, while different names
are further apart. We can easily explain the mathematical relationships between names
if we move the namespace to a metric space. Hence, we reduce the complexity of the
namespace by approximating the distance between names in a metric space; accordingly,
representing names as vectors. The distances between vectors approximate the distances
or dissimilarities measured in the namespace.

The approximate vector representation of names is the key fundamental concept of
the ideas, tools and techniques proposed in this thesis. In particular, the key application
outputs are,

• The ability to synthesis large-scale test data.
• The ability to apply efficient searching (e.g., Kd-trees) for approximate entity record
matching.

The concept of name approximation in a metric space also leads to specific research
problems to solve.

1. How can we construct vector representations and increase the accuracy of the name
approximation?

- We mainly used multidimensional scaling (MDS) algorithms (a standard em-
bedding technique) to explore the name approximation in a metric space.

2. How can we develop tools that use these approximations more efficiently for large-
scale data?

- We used the concepts of landmarks, out-of-sample embedding and artificial
neural networks to propose efficient and scalable ER solutions based on metric
space for large-scale data.
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We used a range of other statistical and machine learning techniques to construct our
algorithms and tools (details are in Chapter 3). In the following section, we summarise
our contributions in this thesis.

1.3.1 Contributions

This thesis provides a detailed study of large-scale ER. It proposes novel solutions for
large-scale ER, addressing several gaps in ER research. The thesis mainly covers:

1. A simple, inexpensive, and fast synthetic data generation (Chapter 4):

As discussed in Chapter 4, many existing simulation tools in ER lack support for
generating large-scale data and have problems in complexity, scalability, and lim-
itations of resampling. In our work, we propose a simple, inexpensive, and fast
synthetic data generation tool. We avoid the detail-level simulation of entity names
using a simple vector representation that delivers simplicity and efficiency. The key
idea is to simulate vectors called name-like vectors that approximate the proper-
ties of names, particularly the distances between name strings. Hence, our model
generates name-like vectors and their errors using name dissimilarities of an actual
namespace. Using our model, we can produce realistic large-scale test data to de-
velop new methods when suitable public data is unavailable. We are the first to
propose such a numerical simulation model to generate data needed for large-scale
ER.

2. Em-K indexing for query matching in ER (Chapter 3 and Chapter 5):

As discussed in Chapter 5, ER solutions that support online capabilities are in
demand. Towards the challenges of real-time and approximate query matching,
we propose the Em-K indexing, a fast indexing method for query matching. The
method transforms a set of records into vectors in a metric space, precisely a lower-
dimensional Euclidean space. Then a k-nearest neighbour search is performed to
create blocks of similar records for querying entities in the Euclidean space using
a Kd-tree data structure. Our method can process a stream of queries against a
large-scale data set within a fixed period. By doing so, we obtain as many of the
matching records as possible where the processing time of a single query takes a
fixed sub-second time. The technique is robust to noisy data that contains errors
and allows fast approximate query matching.

Several metric space-based ER solutions are used in the literature mainly to link a
fixed set of entity records [15, 16]. While non of them address indexing or query
matching, our method stands out as a solution that simultaneously addresses large-
scale, real-time and approximate query matching.
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3. Out-of-sample embedding techniques (Chapter 3 and Chapter 6):

MDS configure a given high-dimensional data into a target dimension [17]. We
mainly use least-squares multidimensional scaling (LSMDS) to embed non-metric
or metric spaces into a configuration space (described in Chapter 3). For instance,
we apply LSMDS when approximating dissimilarities between entity names in a Eu-
clidean space. MDS techniques, including LSMDS, do not offer an explicit function
that maps new data into the configuration space without extensively reconstructing
the entire configuration from the augment dataset. This is known as the out-of-
sample embedding (OSE) problem, which limits the capabilities of LSMDS.

To address this shortcoming, we propose two OSE approaches; an optimisation
method that minimises a cost function to map a new point and an artificial neural
network that learns exiting embeddings to predict the mapping of a new point.
We used them to improve the efficiency of the Em-K indexing. Both techniques
process data very fast with a minor trade-off in the approximation and improve the
scalability of the standard LSMDS. However, the results suggested that the neural
network model is faster. While existing solutions only consider Euclidean data,
our methods can handle both metric and non-metric data as inputs and scale to
large-scale MDS problems.

1.3.2 Publications

1. Major contributions:

(a) S. Herath, M. Roughan and G. Glonek, Generating name-like vectors for testing
large-scale entity resolution, in IEEE Access, vol. 9, pp. 145288-145300, 2021,
doi: 10.1109/ACCESS.2021.3122451. Corresponds to Chapter 4 of this thesis.

(b) S. Herath, M. Roughan and G. Glonek, Em-K indexing for approximate query
matching in large-scale ER, (Submitted to a data mining journal and the
preprint available at: arXiv, 2111.04070). Corresponds to Chapter 5 of this
thesis.

(c) S. Herath, M. Roughan and G. Glonek, High performance out-of-sample em-
bedding techniques for multidimensional scaling, (Submitted to a data mining
journal and the preprint available at: arXiv, 2111.04067). Corresponds to
Chapter 6 of this thesis.

2. Minor contributions:

(a) S. Herath, M. Roughan and G. Glonek, Landmarks-based blocking method For
Large-scale Entity Resolution, 2020 IEEE 7th International Conference on Data
Science and Advanced Analytics (DSAA), 2020, pp. 773-774,
doi: 10.1109/DSAA49011.2020.00110. Correspond to Chapter 5 of this thesis.
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1.4 Thesis Outline

The rest of this thesis is organised as follows: Chapter 2 discusses ER preliminaries. It
covers background material that contributes to understanding the basic concepts and
techniques of ER; it emphasises large-scale ER. Chapter 3 provides the mathematical
foundation that is necessary for describing our methodologies. It presents the main ER
concepts relevant to our work and the statistical and machine learning tools and tech-
niques used in our contributions with their formal definitions. Chapter 4 introduces the
name approximation using vectors. It proposes a simple, inexpensive, and fast synthetic
data simulation tool to generate vectors that approximate the properties of an actual
namespace. In Chapter 5, we investigate the query matching problem in ER to propose a
fast indexing method suitable for approximate and real-time query matching. As a solu-
tion, we propose the Em-K indexing technique for query matching to provide a quick and
accurate block of candidate matches for a querying record. This chapter also introduces
an OSE technique for LSMDS using an optimisation approach. Chapter 6 investigates the
OSE problem to propose another solution based on an artificial neural network model that
speeds up the calculations. It also compares the two OSE techniques. Finally, Chapter 7
concludes the thesis and provides directions for future work.



1.5. Notation and Terminology 9

1.5 Notation and Terminology

Table 1.1 provides a list of general notations and terminology used throughout this thesis.
We will introduce other notations specific to individual chapters at the beginning of those
relevant chapters.

Table 1.1: Summary of the main notations frequently used in the thesis.

R Set of objects in a metric or non-metric space
n Number of objects in the set R
X Coordinates of R objects in a configuration space
∆ Dissimilarity matrix of R objects
D Distance matrix of X points in a configuration space
δ Dissimilarity or distances between R objects
d The Euclidean distances between X coordinates
K Dimension of a multidimensional scaling configuration
E Collection of Entities
Q Stream of queries
Bs Set of blocks generated by an indexing method
Ls Set of landmarks selected from R objects
σraw Stress (error) of a multidimensional scaling configuration
σ Normalised σraw

y Out-of-sample object
ei An entity in E
rj Entity record that represent ei

ER Entity resolution
MDS Multidimensional scaling
LSMDS Least-squares multidimensional scaling
MVN Multivariate normality
DR Dimension reduction
OSE Out-of-sample embedding
LV Levenshtein distances
k-NNs k nearest neighbours
ANN Artificial neural network
Name-like vectors Vector approximation of names proposed in Chapter 4
Em-K indexing The indexing method proposed in Chapter 5
ML Machine learning
DL Deep learning
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Chapter 2

Background

In this chapter, we present the background materials that contribute to understanding
basic concepts and techniques of ER. We provide an overview and application areas of
ER in Section 2.1 and 2.2. Then we explain the challenges in ER tasks in Section 2.4 and
different steps in the ER process in Section 2.5. Finally, Section 2.7 elaborates on the
large-scale ER problem and a comprehensive overview of the state-of-the-art techniques
for scalable ER.

2.1 Entity Resolution

Entity resolution (ER) is the process of identifying and linking a group of records from
the same real-world entity in multiple databases/datasets [18, 1]. The benefits of linking
medical and vital statistical records were acknowledged even before computers became
broadly available. Linking records using computers started in the early 50s with New-
combe [7] proposing the automation of ER. Fellegi and Sunter [4] described a framework
for probabilistic ER in their seminal paper in 1969, and many practical applications fol-
lowed this framework.

Medical and statistical organisations started applying ER techniques extensively for
both academic and industrial purposes [19, 20]. For instance, advanced probabilistic ER
methods have been utilised in injury epidemiology and also in applications of linking
medical, police, and traffic data [21].

2.1.1 Entity Resolution Definitions

ER has been widely used in academic and statistical research since research data often
come from a variety of data sources with different formats. Depending on the field,
ER is known by many names. The term record linkage is used in many statistical and
health domain [19, 20, 22], whereas the database community refers to the merge/purge
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problem or object reconciliation [23]. The term deduplication appears in both database
and business contexts [24, 5]. Deduplication often refers to identifying matching entities
within a single database or a dataset. ER is also known as record matching, data matching,
duplicate detection, or entity resolution in computer science [1, 25]. We use the term entity
resolution for the rest of this thesis.

Various researchers in different disciplines have adapted one or more above definitions.
Early on, Newcombe et al. [7] used the term record linkage to indicate the combination
of two or more separately recorded pieces that belong to a particular individual or family.
Whereas, in recent definitions, ER refer to the task of identifying and matching records
that refers to the same real-world entity across several databases or simply the task of
identifying different entity profiles that describe the same real-world object [1].

2.2 Applications of Entity Resolution

ER solutions are used in many database applications when identifying duplicates, cleans-
ing data, or improving data quality. The following is a list of some example application
areas that use ER as a crucial component to improving their services:

• Medical/epidemiological research

Medical and epidemiological research often combines demographics, hospital admis-
sions, emergency medical services data with genealogies (for hereditary disease),
hospital laboratory data. These data are often about patients where patient identi-
fiers are unavailable. Hence, multiple quasi-identifiers (e.g., name, initials, date of
birth, and gender) are used to identify records that refer to the same individuals.
Combining data on a patient provides a detailed picture of that person’s health,
providing information for population-level studies.

The interest lies in the linked data rather than the information (e.g., quasi-identifiers)
used to link them in many medical applications. Linked data are crucial to under-
standing correlations and trends among different factors that affect disease spread-
ing, medical treatments, drug developments, health services, and many more [26, 27].
Some of this information can be used as alternatives to setting up clinical trials or
prospective cohort studies [22]. Linked data are also beneficial when conducting lon-
gitudinal studies to evaluate treatment outcomes and drug-disease associations [21].
Hence, a significant amount of research explores suitable ER techniques for linking
data [22].

• Health services and surveillance

Health services link records between multiple sources for various purposes. Many
health services constantly monitor information about patients, treatments, clinical
records, and emergency services to evaluate health care services, improve existing
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data infrastructure, and develop health policies [28]. Hence, linking records in dif-
ferent data sources plays a vital role in understanding the relationships and patterns
of the data.

Health surveillance is critical for preventing and controlling disease and injury [21].
Such systems require linking several data sources collected on an ongoing basis, such
as administrative data, ambulance dispatch data, and clinical data.

Australia became a pioneer in health data matching with the establishment of the
health services research linked database program in Western Australia in 1995 [29].
This program has developed and maintained a linkage system that connects data
on health events across all individuals in Western Australia, providing data for
various projects and research. Later on, New South Wales (NSW) and Australian
Capital Territory (ACT) data linkage units and some other countries, including the
UK, Canada, United States, have conducted similar programs [30]. The Centre for
Health Record Linkage (CHeReL) was established in 2006 in New South Wales and
Australian Capital Territory [31]. Similar to Western Australia, CHeReL makes
linked administrative and routinely collected health data available to researchers
and the government.

• Crime and fraud detection

ER has applications amongst national security agencies, law enforcement, taxation,
and criminal investigations to identify individuals who have committed fraud or
other crimes [1, 25]. For instance, law enforcement and intelligence agencies of-
ten combine data in criminal justice databases, separate jurisdictions, watch lists,
prison and police records, and travel documents. Tax returns, bank records, stock
market and real-estate transaction data are usually combined to detect tax and
other fraud [32]. ER solutions are applicable to improve the quality of the data
and to enhance the performance of data mining and statistical tools used in fraud
detection [32, 33].

Identity deception is a major challenge in such situations where someone inten-
tionally conceals their original identity by impersonating another individual’s iden-
tity or using forged identity documents [33, 34]. Having multiple identities, either
fraudulent or legitimate, can easily mislead intelligence and law enforcement in-
vestigators [35, 36]. Identity deception can cause massive financial losses, fatali-
ties and property damages. The 9/11 commission report describes how terrorists
fraudulently acquire travel documents using photo-substitute passports and empty
baptismal certificates to hide their identities. Hence, early detection of identity de-
ception is important to identify potential terrorists, prevent acts, and protect people
from identity theft [37]. Identity resolution is a special type of ER specialised in
identity management. Similar to ER, it determines whether a single identity is the
same when described differently [36].
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Applications of ER techniques are found in eCommerce applications and customer
relationship management (CRM). They employ ER for tracking particular customers and
managing their interests, conducting marketing activities, deduplicating lists of customers
to reduce the cost of advertising, and collaborating with businesses [1].

National statistical agencies collect and link data relating to population, economy,
health, education, culture, or politics and provide statistics to governments to improve
decision making [38]. Linking census data provides a platform of data for different stud-
ies. The US Census Bureau is one of the pioneers in adapting matching techniques and
conducting ER research [38, 39]. At present, many such bureaus, e.g., the Australian
Bureau of Statistic (ABS), apply ER techniques to improve their services, surveys, and
data quality.

ER has also been used to link academic citations of papers to papers themselves and
to identify documents on the same topic or written by the same author [40]. A web
of knowledge can be created to compile the bibliometric measures of paper influence
(where the entities are publications) by using appropriate ER solutions [41]. While such
databases allow many users to access research papers, they also provide other services,
e.g., impact analysis, notifications of new publications, new citations and similar topic
recommendations [1].

ER has been rigorously used to improve data quality, enrich existing data sources, facil-
itate data mining, and create single information systems known as data warehouses [1, 42].
In many of the integrating projects, ER techniques are significant in standardising and
cleaning data to address data quality issues such as inconsistencies, duplicates and er-
rors that could lead to misleading and incorrect information [43, 44]. ER is also criti-
cal when creating systems that facilitate information sharing across entity-centric, inter-
organisational data stores. Different domains such as health care, law enforcement, public
education, and the military collect and store information on a common set of entities.
Building a single information system is an efficient way of exchanging information among
those organisations [45].

2.3 Entity Resolution Software

ER solutions and related products are in demand in commercial settings, often as stand-
alone applications or specialises in particular kinds of applications. These are mainly
aimed at deduplication or linking business-related databases that are usually embedded
in much larger databases or data warehousing software systems [46]. However, many
commercial products on ER or data matching do not publish technical details of their
solutions, and only white papers are available.

While there are many open-source data matching systems and various commercial
ER software systems available, only a few studies found that has comparatively evalu-
ated these systems. Köpcke et al. [47] have provided a survey that evaluates eleven data
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matching systems. Campbell et al. [48] compared two public domain record linkage soft-
ware known as Link plus and Link king and showed that the use of any of these software
depends upon the available resources. Ferrante and Boyd [49] proposed a methodology
to evaluate ER software packages and systems with a benchmark for linkage quality in
different operational environments.

FEBRL (free extensible biomedical record linkage) is one of the most popular ER
systems that includes a collection of functions applicable for data cleaning, deduplication
and record linkage [50]. The well-known R record linkage package [51] and TAILOR [52],
a toolbox for record linkage are described in [1]. Magellan is a recently developed new EM
system by Konda et al. [53]. While most work on EM focus on developing data matching
algorithms, Magellan offers tools and support to the entire EM pipeline (e.g., debugging,
sampling), not just the matching and blocking steps. The Magellan repository of ER
datasets is also available online1.

A recent list of freely available software prototypes of ER systems is given in [46].
Some of them are Anonlink 2, AtyImo [54], FEMRL [55], and PRIMAT [56], which are
available as open-source software tools. For more details, refer to the references therein.

2.4 Challenges of Entity Resolution

The main task of ER solutions is to identify and match all records that refer to the same
entity within or across multiple databases. This task is challenging for several reasons,
and we have discussed those that motivate our work in Chapter 1.

2.4.1 Lack of keys and data quality

The simplest ER case in a data set would be to have keys that uniquely identify the entities
available for matching. Some example keys are social security number, driver’s license
number and tax file number for a person entity. In such a case, identifying records that
belong to the same entity can be done using efficient search algorithms with a complexity
of O(N logN) given the dataset size N . If the datasets are structured databases, database
joins using efficient SQL queries would quickly solve the problem. There are some possible
departures from this simplest, ideal scenario,

(a) Keys do not identify an entity uniquely, e.g., two separate entities sharing identical
keys

(b) Keys have errors, e.g., a single entity may have different keys.
(c) Both (a) and (b)

1https://sites.google.com/site/anhaidgroup/useful-stuff/data
2https://clkhash.readthedocs.io/en/stable/

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://clkhash.readthedocs.io/en/stable/


16 Chapter 2. Background

Therefore, we must be certain about the accuracy, completeness, robustness and con-
sistency of these identifiers [1]. Otherwise, these departures could lead to wrongly matched
records.

However, the matching process usually relies upon common attributes across the
databases in the absence of unique identifiers, which is the general case in many ER
problems. For instance, a database that contains details about people can include quasi-
identifiers such as name, address, and date of birth. A key can be created for each record
using one or a combination of such identifiers. However, the quality of that information
can be low for various reasons such as incorrect, incomplete or outdated details.

Quasi-identifiers such as names are prone to errors, e.g., typographical, spelling,
phonetic and optical character recognition errors. These errors can occur due to var-
ious reasons. Scanning handwritten texts, entering manually type data and recording
through telephone conversations are some situations where the erroneous entries would be
recorded. Missing and outdated data are also problematic when matching entity records
based on these attributes [1].

Hence, detecting distinct entities across datasets or within datasets is challenging, and
it influences the quality and accuracy of the matching results. We will discuss the data
quality issues in ER datasets in detail in Subsection 2.5.1.

2.4.2 Scalability to large datasets

Due to the lack of unique identifiers and various data quality issues, record matching
between multiple data sources requires pairwise comparisons between all records. The
number of records to be matched increases quadratically with the size of the datasets.
Hence, pairwise comparisons are computationally prohibitive for large-scale data. Com-
parisons between records require the usage of approximate comparison functions that can
handle the data quality issues in records [38]. However, such functions are computationally
expensive, where the complexity might depend on the length of the comparing attribute
values [1]. Usually, indexing techniques are used to address the scalability challenges in
ER, and we will discuss this in Subsection 2.5.2 and Section 2.7 in detail.

2.4.3 Privacy and confidentiality

Privacy and confidentially challenges have become a viable concern due to the increasing
size of the data in the ER as well as computational and operational challenges [57]. Linked
data may have the potential of revealing sensitive or private information since personal
information involves in the matching process. Some databases contain highly sensitive in-
formation about individuals in fields such as healthcare, finance, and defence [58]. In such
contexts, the matching process and the linked data should not reveal sensitive informa-
tion such as personal data, detailed information about individuals, confidential business
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data, or financial details. For an overview, see the book by Christen [46], a dedicated and
comprehensive source on linking sensitive data.

The taxonomy provided by Vatsalan et al. [25] characterise privacy-preserving ER
techniques along different dimensions. The recent survey published by Divanis et al. [59]
has provided an overview of the large body of research literature in privacy-preserving ER.
The authors discussed the existing privacy-preserving ER techniques (their advantages
and limitations) by dividing them into four generations with an extensive survey of the
latest methods in the last generation. Since privacy preserving ER is beyond the scope
of this thesis, we would like to refer the interested readers to [25, 46, 59].

2.5 The Entity Resolution Process

ER is often known as a process consisting of multiple steps, where some steps directly
address the ER challenges. They can also be a chain of the subtasks or subproblems
that make up the ER task. In this section, we discuss the main steps of the ER task,
comparing different techniques developed to address the subtasks in each step.

While there is no generally agreed-upon list of definite steps in the ER task, we define
a high-level reference model describing the entity resolution process in four distinct steps.
Figure 2.1 depicts this reference model of the traditional ER process referencing the
processes and figures in [1, 60, 61].

Cleaned and standardised data is critical for improving the quality and accuracy of
any data integration task. The first step, data preprocessing, brings different formats and
structures of data into the same structure and format. The second step, indexing, reduces
the number of comparisons in the matching process. The aim is to avoid comparing non-
matching records by grouping similar records. However, if two similar records fall into
different groups, they would not be identified as matches in the subsequent steps. The
pairs determined by the indexing is known as candidate pairs. The third step, compares
the candidate pairs in detail using a variety of similarity functions, where the comparisons
can be used to determine either exact or approximate matches. In the classification step,
the compared records are classified into matches, non-matches, or possible matches. The
following sections describe each of these steps in detail.

2.5.1 Data Cleaning

Low quality, real-world data collected from different data sources is a challenge in data
mining projects, information systems and database applications [43]. A variety of data
quality issues such as incompleteness, incompatible formats, errors, and temporal incon-
sistency are found in real-world data [62]. Many independently managed databases can
vary in structure, semantics, and underlying assumptions about the data. Hence, a pre-
processing step is needed to prepare the data sources into consistent formats that fit
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Figure 2.1: Illustration of the reference model for a traditional ER process and its four
steps [1, 2]. Different techniques used in each step is summarised next to each primary
step. Potential matches require clerical manual review to decide if a pair of records is a
match or non-match.

downstream tasks.

Data quality dimensions assess the quality of the data, and popular dimensions in the
ER context are accuracy, consistency, and completeness [1, 63]. Accuracy measures the
extent that the data are correct, reliable, and free of error [1]. Consistency measures the
degree that the several data are consistent and can be combined without a problem [44].
Completeness is the extent to which data are of sufficient depth, breadth, and scope for
the task at hand without missing values [43, 63].
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The significance of high-quality data and their effect on the final results of the ER
solutions is discussed in previous research [5, 64]. Therefore, data preprocessing is nec-
essary to improve the quality of the data by making them comparable and more usable.
The following are a few standard data preprocessing techniques commonly used to clean
and standardise data in ER.

• Standardisation: The standardisation process converts attribute values stored in
different formats in input data sources to a uniform representation [65]. Typical
steps involve removing excess punctuation, lower casing all letters, normalising val-
ues, removing abbreviates and unwanted characters, correcting misspellings, and
using similar formats to store dates and addresses [66]. For instance, removing the
abbreviation of all occurrences of the term “St” in an address column to “Street”
would make the two addresses “20 Main Street” and “20 Main St.” identical strings.
The standardisation steps are usually applied by using hard-coded rules or lookup
tables [1].

• Parsing: Parsing locates, identifies, and isolates individual data elements coming
from the standardisation step to sub-components [5]. For instance, addresses are
divisible into three attribute values: Street Name, City, and State. The comparisons
of individual components allow easier comparisons between records than the lengthy,
complex strings of data. Since parsing facilitates accuracy checks, the values of
specific fields can be corrected using dictionaries and lookup tables [43].

• Transformation: The parsed attribute values are then passed to the data transfor-
mation step. General transformation steps include the conversion of a data element
from one data type to another, renaming of a field, decoding encoded attribute val-
ues to original values, range checking, and dependency checking [5]. Range checking
examines data fields to ensure they are within the expected range, e.g., a numeric
or date range. Dependency checking compares the values of different data fields to
make sure they are without conflict. For instance, a city name and a postcode must
be consistent, or otherwise, it will become a data entry error that requires correction
in one of the attribute values [60, 66].

2.5.2 Indexing

A typical matching process between two datasets would require comparing each record
in one dataset with all the records in the other dataset. Usually, most comparisons are
non-matches. For instance, consider two entity databases A and B with sizes (number of
records) NA and NB that are to be linked. To match and classify pairs among the two
databases in a naive ER approach, the number of comparisons required is the product
of the size of the two databases (NA × NB). Hence, the computational effort increases
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quadratically when the size of the datasets grow and often leads to a performance bot-
tleneck in matching systems [67]. Therefore, ER processes employ indexing techniques to
determine which entities are worth comparing by grouping similar records together. It is
a crucial part of ER for efficiency and scalability [68, 69].

A recent survey [68] has defined two categories of existing indexing techniques: blocking-
based and filtering-based. Blocking based techniques aim to find entity record pairs that
are likely to match [70] whereas filtering techniques aim to discard pairs that are guar-
anteed to be non-matches. Blocking groups likely match pairs into common blocks using
a blocking schema based on one or a combination of attribute values (e.g., surname and
first name combination). Filtering computes a set of potential candidates performing
similarity joins on a given attribute collection using a specific similarity measure and a
corresponding threshold [68]. While blocking and filtering shares the same goal, they
perform under different settings and assumptions. We cover more details on indexing
techniques in Section 2.7 and also in Chapter 5.

2.5.3 Comparisons

When the number of candidate pairs is reduced sufficiently, we can compare the records in
detail within each group or block. While the indexing step uses one or a combination of a
few attribute values, the comparison step utilises several attribute values (e.g., first name,
surname, date of birth, and address) [25]. These comparisons are usually performed using
a range of similarity functions. The pairwise comparison produces a similarity vector that
consists of one or more numerical values that indicate the similarity of two records.

The agreement between two attribute values can be either an exact or an approximate
match. A variety of exact and approximate similarity functions are available to determine
whether a given two attribute values are the same or not.

• Exact string comparisons

The outcome of an exact comparison is usually a binary value of 0 or 1 that indicates
whether the attribute values are the same or not. Generally, an exact agreement is
represented by a similarity of 1, and disagreement is represented by a similarity of 0.
Exact comparisons work well in clean datasets that do not have any typographical
or other errors, which is highly unlikely in the real world.

There are two variations of exact string comparison functions. The first variation
only considers the end or beginning of two strings for exact comparisons. These
are usually known as truncate comparison functions. The second variation first
encodes the two strings using a phonetic encoding function [1]. These functions
encode strings with similar sounds (e.g., how a name is pronounced) to replace the
original strings with the same code. Phonetic encoding functions are applicable for
indexing as well. These are applied to encode blocking or sorting key values to
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bring similar-sounding string values into the same block. The entity records with
similar-sounding blocking keys will then be compared in detail within the blocks.

– Phonetic encoding: Phonetic encoding techniques provide string indexing by
sound using a letter sequence of a string and pronunciation rules to convert
(encode) them into index or key [71]. Two strings are considered close to one
another if they have a similar sound when encoded. For instance, one of the
oldest phonetic algorithms, Soundex [72], calculates the same encode “S530”
for such words as “Smith”, “Smithe”, and “Smyth”, as they sound identical.
Phonetic encoding is more efficient as a blocking or indexing technique in ER.
The variations of the initial Soundex [72] such as Phonex and Phonix [14], and
Double-Metaphone [73] and NYSIIS [14, 71] are popular phonetic encoding
techniques used in ER solutions.

Exact matching between records is impossible in many real-world ER scenarios due
to data quality issues, such as typographical errors and variations. Hence many
ER solutions adopt approximate comparison functions. Approximate functions de-
veloped for different data types, including strings, numerical, date and time, are
discussed in [1, 65, 74]. However, approximate comparison functions are com-
putationally expensive, where the complexity might depend on the length of the
comparing attribute values [1]. Since many comparisons in ER are between strings
of characters, we discuss some popular techniques for approximate string comparison
in more detail.

• Approximate string comparisons

Approximate comparison measures the similarity or closeness between two attribute
values. Hence the similarity is usually expressed as a normalised numerical value
between 0 and 1 [25]. A similarity of 1 indicates identical values, whereas 0 indicates
two values that are entirely different. Unlike the exact comparison, the similarity
between two attributes can also take any value between 0 and 1. Approximate
comparison can be performed using a similarity function or a dissimilarity function,
where similarity = constant - dissimilarity . If a dissimilarity function d(s, t) has
the following properties, it is also called a metric or distance function [75, 76]. A
function that satisfies the first two conditions is usually considered a dissimilarity
function.

– Non-negativity d(s, t) ≥ 0.

– Identity d(s, t) = 0 only when s = t.

– Symmetry d(s, t) = d(t, s).

– Triangle inequality d(s, u) ≤ d(s, t) + d(t, u).
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However, as pointed out in [75], many dissimilarity functions do not have all these
properties. As further described in [1], many dissimilarity functions used in string
comparing applications or data matching do not fulfil the requirements of the dis-
tance function. For instance, the Jaro-Winkler distance does not hold the properties
of symmetry or triangular inequality. Some dissimilarity functions like q-grams do
not obey the identity property, while some dissimilarity functions are not necessarily
symmetric, e.g., weighted versions of Levenshtein distance [75]. However, there is
no strict requirement for dissimilarity measures to be distances in ER context.

A formal definition for approximate string matching is given in [74]. Edit distances
formulate the principal approach of approximate string matching [77, 78].

– Edit distances: Edit distance measures the minimum cost of transforming one
string (S1) into another string (S2) [63]. Several variations of the edit distance
are Levenshtein (LV) distance, Damerau-Levenshtein distance, Bag distance,
Smith-Waterman, and Longest Common Subsequence [14, 74, 79]. The popular
LV distance measures the minimum number of character insertions, deletions,
and replacements necessary to transform S1 into S2. For instance, converting
“james” to “jane” requires two edit operations: insert ‘s’ and replace ‘m’ with
‘n’, and LV (S1, S2) = 2.

Edit distance utilises the strings as a whole without splitting them into seg-
ments or tokens and therefore has quadratic complexity. It does not perform
well when segments of a string differ or in the presence of abbreviations, e.g.,
comparison between “james white” and “zara james white”. However, some
other string dissimilarity measures split strings into segments or tokens before
comparing them, and the following overview some of them.

– Q-gram distances: The q-gram distance is derived by listing the q-gram oc-
currences of the two strings and counting the number of non-shared q-grams
between them [75, 80]. The q-grams of a string obtains by sliding a window
of q characters over the string. For an example the bi-grams (q = 2) for the
strings “ james” and “jane” are [‘ja’,‘am’,‘me’,‘es’] and [‘ja’,‘an’,‘ne’] respec-
tively. The two strings only share the common bi-gram ‘ja’. Several variations
of the q-gram similarity function can be derived using a coefficient method such
as the Jaccard coefficient, Dice coefficient, and the Overlap coefficient [14]. For
instance, the Jaccard coefficient is obtained by counting the number of com-
mon q-grams and dividing it by the total number of unique q-grams in the two
strings. The Jaccard distance is obtained by 1-Jaccard coefficient, and for the
above example with bigrams, it is 1− 1/6 = 0.83.

– Jaro and Winkler string comparison

Jaro distance uses the string lengths, number of common characters, and trans-
positions (swapping of two adjacent characters) to calculate the distance be-
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tween two strings [81]. The underlying property is that two common characters
in two strings should be equal, and their positions should not differ by more
than half of the length of the shorter string.

The Jaro-Winkler method is an improvement to the primary Jaro method,
which includes an extra penalty for character mismatches in the first four char-
acters [65]. Winkler has further stated that few errors occur at the beginning of
a string, and the error rates by character position increase monotonically when
the position moves to the right. Yancey [79] and Christen [14] have discussed
and compared several variations of the Jaro-Winkler method.

Developing approximate comparison functions is a major research area in computer sci-
ence, especially those that deal with typographical errors and variations [25]. Compar-
isons of such functions can be found in [14, 63, 65, 74, 82]. Besides ER, approximate
string matching has numerous applications in bioinformatics, computational biology, text
searching, text retrieval, and signal processing [83].

2.5.4 Classification

The outcome of the comparison step is a set of similarity vectors generated for each
candidate record pair based on all of the compared attributes. These vectors are then
used to classify record pairs as matches, non-matches, and potential matches based on the
decision model used for the classification [84]. Potential matches are those pairs where the
criteria are insufficient to make a conclusive match or non-match decision [4, 85]. These
pairs often refer to a manual clerical review for which human oversight is needed [86].
There are several categories of classification techniques in the ER literature, and we will
discuss some popular techniques among them: threshold-based, probabilistic, rule-based,
and machine learning-based [25].

• Threshold-based classification: These techniques classify record pairs based on an
overall similarity value that sums up all the values in a comparison vector. Assuming
n attributes, a single overall similarity of a comparison vector given by Sv =

∑n
i=1 si,

where si is a single value in the comparison vector, for each candidate pair. Then the
total similarity Sv is used to classify record pairs based on one or more thresholds.
For two threshold case, upper-bound (u) and lower-bound (l) can classify pairs into
matches (Sv ≥ u), non-matches (Sv ≤ l), and potential matches (l < Sv < u).

However, this technique does not consider the discriminating power (how informa-
tive the attributes are) of the matching attribute and treat them all evenly [87]. For
instance, while the maternal name might be more critical than the maternal mu-
nicipality when identifying a child, threshold-based techniques treat both attributes
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similarly. This problem is usually overcome by introducing weights for individual
attributes according to their importance or discriminative power.

• Probabilistic classification: Fellegi and Sunter introduced the theoretical foundation
of probabilistic classification in 1969 [4]. It evaluates the discriminatory power of
each identifier and the likelihood of two records being a true match based on the
agreement or disagreement on various identifiers. Each pair of records receives a
matching weight where higher weight values indicate a greater likelihood for the
underlying pair to be a true match [88]. Each attribute contributes to the match
weight depending on its discriminative power. For instance, an agreement of sur-
name would offer more support to a match than a gender agreement.

Moreover, an attribute with a high frequency in a dataset is less informative than
some attribute values that are not frequent. Thus the weights should be adjusted
to be smaller for more frequent attribute values [1]. For example, two records
with the surnames, “White” should receive less matching weight than two records
that share the surname “Roughan”. The likelihood of two random records having
the surname value “White” is much higher than having the surname “Roughan”,
assuming “Roughan” is a rare surname compared to “White”.

• Rule-based: Rule-based techniques apply a set of rules to classify candidate record
pairs into matches and non-matches [89, 63]. We can apply a set of rules to the simi-
larity values of the comparison vectors. Rules consist of individual tests on particular
similarity values on the corresponding fields that are then combined with conjunc-
tions (logical AND), disjunctions (logical OR), and negations (logical NOT) [1, 90].
The quality of the rule-based methods highly depends on the skills of domain experts
and their ability to define a good set of rules [90]. Therefore, generating rules is a
time-consuming process and often demands manual effort [25]. Alternatively, some
studies have used machine learning techniques to generate rules by learning them
from training data that consist of candidate record pairs and their actual matching
status. However, assessing the accuracy of rules is impossible if the actual matching
status (match or non-match) of candidate pairs is unavailable. Examples of rule-
based classifiers that perform ER effectively by generating rules from the properties
of entities are found in [90, 91, 92].

• Machine learning-based: Machine learning (ML) classifications fall into two cate-
gories: supervised and unsupervised techniques. Supervised ML approaches require
training data with known class labels for matches and non-matches to train a deci-
sion model. Then the model can be used to classify the unlabelled pairs of records.
Decision trees and support vector machines are two popular supervised learning
classifiers applied in the ER process [52, 93, 94]. However, training data is often not
available in ER applications and sometimes requires expensive and time-consuming
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manual preparation [93]. This issue is usually overcome by using unsupervised
learning classifiers since they do not require training data. Clustering is one such
technique that groups similar record pairs based on their comparison vectors. The
clustering should perform in such a way that each cluster consist of records belonging
to one entity [52, 95].

Alternatively, active learning approaches only requires a small amount of training
data at the beginning. Then the model is developed interactively by asking an
experienced user for further training examples to improve the classification [96].
Modern ER applications apply the concepts of deep learning to develop efficient
and effective supervised and active learning classifiers [61, 97].

Other than these four categories, there are collective, group, and graph-based clas-
sifiers. The collective classifier uses both attribute and relational information for deter-
mining the underlying domain entities [98]. Graph-based classifiers use graph data that
represent relationships between entities and their attributes [99]. Group classifiers have
been applied to the entities expressed as groups of relational records instead of the indi-
vidual relational records. These techniques are known for achieving high linkage quality.
However, they are not scalable for large-scale data due to quadratic or higher computa-
tional complexity [25].

2.5.5 Evaluation

Once the ER process is complete, we can evaluate the record pairs classified through the
classification to measure the performance of the matching process. It is a difficult task
since ground truth data about truly matching records are absent for many datasets. The
ER solutions applied in each of the above steps are usually assessed for effectiveness and
efficiency.

Classification techniques could produce pairs classified as possible matches that still
need to review by a manual clerical process. This is a manual classification technique
where each pair is visually assessed to make a manual decision. The manual clerical
review of possible matches is a difficult process and impossible with large-scale data.
Refer to [1, 100] for more details.

The quality of the matching results determines the effectiveness of the ER techniques.
Ground truth data sets with known true-matching and non-matching record pairs are
required to assess the quality of the matching data. A classified record pair can belong to
any of the four categories below, assuming that the ground truth data with the true-match
status is available.

• False Positives (FP): Candidate record pairs classified as matches while they are not
actual matches.
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• False Negatives (FN): Candidate record pairs classified as non-matches while they
actually match.

• True Positives (TP): Correct classification of true matching pairs as matches.

• True Negatives (TN): Correct classification of non-matching pairs as non-matches.

Various quality measures can be defined using the above categories in matching results.
Popular quality measures are precision and recall among the existing quality measures [67,
99] and we define them in the following. Assume |TP | is the number of true positives,
|FP | is the number of false positives and |FN | is the number of false negatives.

Precision =
|TP |

|TP |+ |FP |
.

Recall =
|TP |

|TP |+ |FN |
.

The efficiency and scalability of the ER techniques are also crucial to measure how the
method accommodates large-scale data. The scalability and efficiency issues are usually
addressed in the indexing step. The reduction ratio and the pair completeness are the two
main complexity measures used to evaluate the efficiency and the accuracy of the indexing
techniques [67] (defined in Chapter 5). A detailed discussion on evaluation measures is
provided in each chapter according to their relevance in our work.

2.6 ER Tasks

For many of the given applications, we distinguish three cases of ER depending on the
input and its characteristics [6].

1. Dirty ER: takes as input a single set of records that contains duplicates and produces
a set of equivalence clusters of distinct entities. It is also known as deduplication in
many database applications.

2. Clean–Clean ER: takes two duplicate-free but overlapping sets of records. The goal
is to identify matching records that belong to a single entity.

3. Multi-source ER: takes more than two sets of overlapping records as inputs. Apply
deduplication to the union of all collections or use a sequence of pairwise ER tasks
given the individual data sets are duplicate free.
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Christophides et al. [6] has presented a taxonomy of various ER settings and ap-
proaches based on their key characteristics. Most existing ER techniques are solutions for
offline batch processing of static databases.

However, many organizations manage streaming data. Streaming data is commonly
related to dynamic data sources (e.g., from web systems, social media or sensors), whose
data processing is continuous [101]. Large-scale data may arrive in high-velocity streams
or as queries against a known entity collection [6]. Such application requires online ER
approaches that provide prompt responses. Therefore, static, offline ER solutions are not
adequate to process as many entities as needed to resolve queries in real-time. We discuss
real-time ER requirements in more detail below.

Real-time ER is a query-based data matching process where a stream of query records
should resolve against records in one or more existing data set(s) in a sub-second time [102].
It is also called the query matching problem in ER. Relatively few ER studies consider
real-time query matching [103, 104, 12].

Similarly, some applications require adding new entities incrementally to existing clean
and evolving data repositories, such as a data warehouse [6]. This is known as incremental
ER that adds entities without repeating the entire ER process to the previously matched
data [11]. Incremental ER is usually combined with streaming data to process (i.e.,
match) entities as they appear. Some ER approaches that deal with streaming data,
e.g., Kun et al. [105] do not consider incremental processing and discard queries after
answering them [106].

The steps of ER discussed in Section 2.5 apply to static databases and static ER
techniques. Depending on the application and the task of ER, these steps may need to
be adjusted. Since indexing is one of the crucial steps that affect the efficiency of any
ER technique, fast and approximate indexing techniques are essential for real-time ER.
Real-time or query matching ER applications is one instance that shows the importance
of large-scale ER. Next, we provide an overview of large-scale ER and existing solutions
that address scaling issues and big data problems in data matching.

2.7 Large-scale Entity Resolution

Data integration becomes complex with big data characteristics, e.g., velocity, variety and
volume [6]. Hence, the demand for scalable ER techniques has increased tremendously
to facilitate the integration of large-scale data collections. In recent years, the rise of
the Web and cloud-based applications has led to several extensions of techniques and
algorithms for ER [77]. The data for these applications come from different domains with
a semi-structured format that exists on a very large scale. These properties of data bring
new challenges to ER and consequently require new techniques or algorithms as solutions.

Large-scale data are usually handled by applying indexing techniques to reduce the
search space of ER. Even though indexing alleviates the problem, sequential processing
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of an ER task may not be feasible with massive volumes of data. Many of the existing
indexing solutions are designed for ER between two data sources. Even though pairwise
matching is the foundation of many ER solutions, such binary mapping approaches do not
scale to many data sources [107]. However, ER is an ideal problem to be solved in parallel
on cloud infrastructures since it is a costly process [108]. Big data applications that
employ parallel ER approaches to address the performance and scalability requirements
are found in [109, 110].

2.7.1 Indexing for Large-scale ER

Indexing is a crucial step that scales ER solutions. However, traditional indexing tech-
niques are usually inadequate to support large-scale ER. The underlying principle of these
techniques is to group similar-seemingly records into blocks and use a pairwise comparator
to explore the blocks exhaustively [111]. They often operate by defining a set of key fields
from the data to determine which records will be in which blocks. Many of these methods
are schema-aware indexing methods designed for structured data (databases), assuming
that the input entity profiles adhere to a known schema. Hence these techniques are not
applicable for heterogeneous and loosely structured data such as Web Data [68].

The main blocking techniques that operate on structured data are traditional block-
ing [4], sorted neighbourhood [23], q-gram [69], suffix array [112], StringMap [16], canopy
clustering [113] and MFIblocks [114]. A survey presented by Christen [69] has discussed
six primary indexing techniques that provide information on their scalability to large
datasets and the performance for data with different characteristics. The experimental
results have shown that the q-gram based methods are the slowest, while traditional block-
ing and the array-based sorted neighbourhood approaches are the fastest overall. Many
of these methods depend on the selection of a suitable blocking key. ML based solutions
are one approach to select the best blocking key [115].

ER has gained significant importance with the increasing heterogeneity in data. De-
veloping indexing techniques for semi-structured, heterogeneous data (e.g., Web data
collections) holds new challenges compared to databases. These are known as schema-
agnostics indexing techniques that extract blocks from the attribute values without any
assumption on schema knowledge [68]. The primary technique is token blocking which
assumes that duplicates share at least one common token (attribute values) [116]. The
method uses a transformation function to extract all tokens from all attribute values of
every entity to create blocks for distinct tokens. For more details on schema-aware and
schema-agnostics blocking methods, refer to [68].

2.7.2 Other Techniques for Large-scale ER

Parallel ER methods exploit the processing power of multiple cores to minimize the re-
sponse time of ER to improve scalability. It is a technique that complements indexing
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techniques to reduce the time needed to match records among databases. Many of the
existing approaches use the MapReduce framework, which supports the parallel match-
ing of entities [108, 110]. ER process contains separate, independent operations such as
indexing, comparisons, etc., making it a perfect candidate for intra-step parallelism. A
recent survey [77] provides an overview of several modern parallel ER approaches.

The MapReduce framework is often used to scale indexing methods to massive entity
collections. Both schema-aware and schema-agnostic indexing methods can be adapted
to MapReduce using one or more jobs for parallelising [6, 68]. Meta-blocking exploits the
MapReduce framework to develop scalable algorithms for ER based on Web Data [117].
Similar efforts are applied using the tool Dedoop to structured data. Dedoop supports
multi-pass blocking techniques such as the standard blocking and sorted neighbourhood,
grouping entities according to multiple blocking keys [118]. Refer to the recent survey [68]
for existing work in indexing and filtering techniques that use parallelisation techniques.

Data partitioning and load balancing are crucial aspects in parallel ER that signif-
icantly influence parallel programs [77]. Achieving a good load balance is difficult for
applications when the distributions of data to processors depend on actual values that
are skewed or irregular [119], which is often the case for ER applications [1]. The proces-
sors with a heavier load will dominate the runtime and decrease the response time if the
workload is not assigned evenly. Hence some processors have to wait for other processors
to start the next computation phase [77].

Holistic ER is a technique that matches entities from many sources instead of pairwise
matching between one or two sources. It is a clustering-based technique that holistically
determines clusters such that all matching entities from any source are combined to a single
cluster [107]. These clusters facilitate the integration of data without individual links to
each other data source [120]. Clustering the entities across all sources can be performed
with much less effort than determining the quadratic number of pairwise matching [107].
For more details on holistic ER, refer to [109, 110].

2.8 Summary

In this chapter, we presented an overview of the ER process, its definitions, the impor-
tance of ER in various applications, and challenges. We also described the steps of the
ER process, different ER forms and a brief overview of large-scale ER and current solu-
tions. As the literature suggested, practical applications of ER have trade-offs in matching
accuracy vs qualities and matching quality vs scalability.

A plethora of articles have been published on ER solutions over a decade of research.
However, large-scale ER is still an emerging research area with the growing demand in
integrating large data volumes in many data mining and analytic projects. While there are
several ongoing research activities in large-scale ER, several factors make it difficult, e.g.,
poor data quality, lack of training data, scalability, real-time data processing. Therefore
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matching speed, scalability to very large databases, and real-time matching capabilities
of ER techniques that provide high-quality results are high in demand. While there is
generous room for improvement in this area, we mainly focus on the following challenges
in our thesis.

• Efficient test data generation: The lack of large test data collections and publicly
available benchmark data sets is a primary concern when developing new algorithms
and comparing existing ER algorithms and methods. While researchers use their
own data sets for testing, only a few small test data sets are open-source. Hence
simulation of large-scale data for testing ER algorithm remains open to research.

• Scalability and speed of computation: With the growth of large-scale data, ER
solutions demand computational efforts and larger storage and memory resources.
With many databases moving to online and real-time record matching systems from
static databases, the existing indexing techniques become less efficient or not appli-
cable. Hence, novel efficient indexing techniques that facilitate fast and scalable ER
remains a challenging problem in practice.



Chapter 3

Mathematical Foundation

In this chapter, we present the main concepts and notions of entity resolution (ER)
relevant to our work and the tools and techniques we used. This chapter also provides the
mathematical foundation required for the solutions described in this thesis. Further, the
relevant definitions of the individual tasks described in Chapter 4, 5, and 6 are provided.
First, we summarise the terminology and the notation used in this chapter in Table 3.1.

Table 3.1: Summary of the main notations used in this chapter.

R Set of objects in a metric or non-metric space
n Number of objects in set R
δ Dissimilarity or distance between two R objects
X Coordinates of R objects in configuration space
d The Euclidean distance between two X coordinates
ϕ Mapping from a one space to another
∆ Dissimilarity matrix of R objects
D Distance matrix in Euclidean space of X points
K Dimension of a multidimensional scaling configuration
σraw Stress (error) of a multidimensional scaling configuration
σ Normalised σraw

y Out-of-sample object
E Set of entities (entity collection)
ei The ith entity in E
rj Entity record that represent ei

31
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3.1 Entity Resolution

An entity can be a person, place, product, organisation or any object with a unique
identity that distinguishes it from all other entities of the same type. A collection of
name-value pairs that describe a particular entity is known as an entity profile. A pair of
similar entity profiles are called duplicates. A database representation of an entity profile
is usually referred to as a record.

Let the letters T, V , and I denote the infinite sets of names, values and identifiers
respectively. The definitions of relevant concepts here follow those in [6, 68].

Definition 1 An entity profile (or simply, a record), denoted by rj = ⟨id, Aid⟩, is a tuple
consisting of a unique identifier id ∈ I, and a list of attributes Aid = [(t1, v1), · · · , (tx, vx)]
of name-value pairs that describes a real-world object, where each attribute ak ∈ Aid is
a tuple ⟨tk, vk⟩ given tk ∈ T ; vk ∈ V ,∀k ∈ [1, x]. A set of entity profiles is called entity
collection, denoted by E.

Definition 2 (Entity Resolution): Given two records ri, rj is a match, if they refer to
the same unique real-world object. We denote this as ri ≡ rj. The goal of ER is to link
different records that describe the same entity within an entity collection or across entity
collections.

Following the above definitions, we distinguish between the following two tasks of ER.
The definitions follow those in [6, 68]. Refer to Chapter 2, Section 2.6 for other forms of
ER tasks.

Problem statement 1 (Dirty ER): Given an entity collection E that contains entities
e1, e2, ..., en, find all the records rj that represent each entity ei ∈ E.

Problem statement 2 (Clean-Clean ER): Given two duplicate free entity collection E1

and E2 that contains entities e1, e2, ..., en, find all the records rj that represent each entity
ei ∈ E1, E2.

Matching records are determined by pairwise comparisons between records in entity
collections. Hence, a similarity score is calculated by applying one or more similarity
functions over the corresponding attributes of pair of records. We have discussed various
similarity functions in Chapter 2, Subsection 2.5.3.

Definition 3 (Record comparison): Given a pair of records (ri, rj) and a set of attributes
Aid that describe them, similarities s1, ..., sx between attribute values are determined by
applying a set of similarity functions simk(ri.vk, rj.vk), with 1 ≤ k ≤ x, to measure
similarity of values in the attribute ak. Here, ri.vk and rj.vk are the kth attribute values
of the records ri and rj. The total similarity between the records is given by the similarity
score Sv =

∑x
i=1 si.
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Definition 3 provides a simplified definition for record comparison. However, the
weighted summation of similarities is the common approach in ER. Hence, different at-
tribute values will be given different weights according to their importance or discrimina-
tive power. The weighted sum is calculated by multiplying the similarity value and the
given weighted value per attribute before summing it up to the final similarity score [1, 88].

A brute-force approach to finding all duplicates in E requires a pairwise comparison
of all entity records in E. In practice, this is infeasible when the number, |E|, of entity
records in E is large due to the inherent quadratic complexity of the comparison process.

To support large-scale ER, there is a need for a crucial first step known as indexing (or
blocking). The idea is to group entity records in E into blocks such that the comparison
of records across different blocks is not necessary. Hence, reducing the number of pairwise
comparisons.

Let Bs denote the set of blocks generated by a indexing algorithm for a given E, and
bi ∈ Bs be a block in Bs for i ∈ [1,m], where m is the number of blocks in Bs. Let |Bs|
be the total number of record comparisons in Bs: |Bs| =

∑m
i=1 |bi|. We formally define

the indexing problem as follows.

Problem statement 3 (Indexing): Given an entity collection E, generate a set Bs of
entity records groupings such that similar records are grouped within the same block and
the |Bs| is minimal.

3.2 The Embedding Problem

This section presents a brief introduction to the embedding problem and the MDS algo-
rithms.

Embedding is a technique for capturing the critical structure of a high-dimensional
space in a low dimensional space. It has applications in many fields, including mathe-
matics and various branches of computer science. The embedding we use in this thesis
is that of inferring coordinates from distances. Significant speed-ups can be obtained by
embedding objects into another space that allows efficient distance functions such as the
Lp norm for applications with a computationally expensive distance function [121].

Many standard embedding methods map a metric space to a coordinate space, i.e.,
vector space. However, embedding a non-metric space into a coordinate space is also
possible with modern dimensional reduction (DR) techniques. This thesis focuses on
both metric and non-metric spaces since not all dissimilarity functions used in ER data
comparisons are necessarily distance functions. Hence, the embedding can be started with
dissimilarities (non-metric space) or distances (metric space). We define the embedding
problem as follows.

Embedding of a metric or non-metric space (R, δ) into a coordinate space (X, d) is a
mapping ϕ : R → X. In this work, (R, δ) will always be a finite space (i.e., R is a finite
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set) and (X, d) will always be a Euclidean space. This embedding process usually distorts
the original distances between objects when embedding objects in a metric space. This
distortion is usually measured using a loss function known as stress. More details are
given in Subsection 3.2.1.

Problem statement 4 (The embedding problem): For a given metric or non-metric
space, find a ϕ that minimises the distance distortion, stress, or a similar error metric
between (R, δ) and (X, d).

The most commonly used technique for embedding a set of distances (or dissimilarities)
into a coordinate space is multidimensional scaling (MDS) [122]. We use MDS as an
embedding technique rather than a DR technique since our input data are mostly distances
or dissimilarities.

We focus on MDS in this work because MDS can be used to analyse data defined only
by a dissimilarity matrix. This does not even have to be strictly a distance metric, nor
does the original space need to be Euclidean. Hence, MDS applies to many data and has
applications across many disciplines, including clinical psychology, sociology, marketing,
ecology, and biology [123].

3.2.1 Multidimensional Scaling

It appears that the use of MDS in ER applications or research has not been addressed
before. However, metric space-based ER applications are found in the literature [15, 16].
We will discuss these in Chapter 5. One of the main reasons MDS has not been considered
for ER research is that the algorithm is quadratic, hence prohibitive for large-scale data.
Since ER has quadratic complexity, it is hard to obtain any speed up in the computations
or scaled solutions for large-scale data by applying MDS. In this thesis, we show how
MDS algorithms can be modified to provide efficient solutions to various ER problems,
including scaling. We will discuss those in future chapters. In this section, we define MDS
and discuss its several variations and applications.

Overview

MDS initially evolved as a model for certain psychological phenomena and, later, gained
popularity as a general-purpose data-analytic tool [124, 125]. It has been known as the
problem of finding a configuration whose distance fits best with the given dissimilari-
ties [126], where configuration is N -points in a K-dimensional Euclidean space.

Typically, MDS takes proximity data or high-dimensional data and reduce the data
into a more interpretable form, often though not always in two or three dimensions [127].
For instance, the outcome of MDS might be a map in two dimensions that conveys spatial
relationships among input objects. This map needs to preserve the original proximities
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such that similar items are close and dissimilar items are further apart [124]. Hence,
the general MDS algorithm can be thought of as a non-linear optimisation problem for
mapping from the original proximity information to the target space.

An MDS algorithm takes the input of N points as a N × N matrix ∆, a distance
or affinity matrix. An entry in the ith row and jth column of ∆ is the dissimilarity δij,
between object i and object j, where δii = 0, and δij > 0, i ̸= j. Then it attempts to
construct a configuration of N data points x1, ..., xN in K dimensions, such that if dij
denotes the Euclidean distance between xi and xj , then D is similar to ∆ [128].

MDS maps high dimensional data (the original space) into low-dimensional metric
space (the configuration space). The rationale for performing such a mapping is that dis-
tances in a configuration space approximate the distances between objects in the original
space, where searching the configuration space become less expensive.

The configuration space is a vector space where the elements consist of real-valued
coordinates (vectors). It is a special and a more restricted version of a metric space.
The vector space holds additional properties that can be exploited in index structure
designs [121]. A vector can be uniquely located in this space, and distance computations
become efficient. Minkowski metrics based on Lp norms, ∥ x ∥p = (

∑
|xi|p)1/p, with p ⩾ 1

are popular in vector spaces. We used the most common Minkowski metric Euclidean
distance dE(p = 2) in our calculations. Moreover, due to the availability of operations
such as vector addition and subtraction, new vectors can be constructed from previous
vectors equally easily [121].

Different variations of MDS has been proposed in the literature [123, 125]. For an
overview of MDS, see [17, 123]. Next, we discuss the two metric-MDS approaches used
in this work.

Classical Multidimensional Scaling

Classical multidimensional scaling (CMDS) is the simplest form of MDS, which uses
an algebraic method to reconstruct a lower-dimensional map [129]. It is also known
as a spectral method since the configuration is obtained using a set of eigenvalues and
eigenvectors. CMDS is very similar to principal coordinates analysis (PCA), but it uses
a distance matrix rather than a correlation matrix as the input [76]. For more details on
CMDS refer to [76, 129].

For a given input dissimilarity matrix ∆, the coordinate matrix X in K dimensions is
obtained by applying the following steps of the algorithm Algorithm 1.

CMDS requires the computation of a full input matrix (∆) which is impossible with
large-scale data. Several methods have been discussed in the literature to approximate the
matrix ∆, using only a subset of its data to reduce the space and time complexities [130].

The input data to CMDS can be any measurement of dissimilarities between objects.
Interpreting the results of the CMDS algorithm is much easier if the input data are
Euclidean distances. Otherwise, careful analysis of the output eigenvalues of the algorithm
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Algorithm 1 Classical multidimensional scaling algorithm

Input: Dataset N , ∆
1: Compute the squared dissimilarity matrix ∆2.

2: Compute J by applying double centring to ∆2: J = −1

2
H∆2H.

# H = I − 1

N
eeT and e is a column vector of all 1’s.

3: Calculate the eigendecomposition of J = V ∧1/2 V T .
4: Calculate the K dimensional coordinate matrix X by X = ∧1/2+ V T

+ .
# V+ is the first K eigenvectors of V and ∧+ is the first K eigenvalues of ∧.

5: return X.

is required when deciding the dimension of the output data. However, most of our input
data is not Euclidean. For instance, string dissimilarities between names are not always
distances, i.e., metrics. We will discuss the non-Euclidean nature of our data, e.g., name
string dissimilarities, in detail in Chapter 4. However, least-squares multidimensional
scaling (LSMDS) is appeared to be robust against non-Euclidean data compared to CMDS
in our experiments, and we further elaborate on this in the next section.

Least-squares Multidimensional Scaling

Another method for MDS is least-squares multidimensional scaling (LSMDS) [129], which
minimises the raw stress of a configuration. LSMDS allows the introduction of weights
and missing values, unlike the eigendecomposition approach in CMDS.

We observed that CMDS results were less accurate in approximating non-Euclidean
or non-metric data during our experiments. Since many ER applications use non-metric
dissimilarity measures, we will be using the LSMDS algorithm throughout the thesis.

The input to LSMDS is a dissimilarity matrix ∆ = [δij], where δij is the distance be-
tween the indices of two data points i and j in a high-dimensional space. For a given
dissimilarity matrix ∆, a configuration matrix X = [x1, x2, .., xN ], where xi ∈ RK is con-
structed by minimising the raw stress,

σraw(X) =
n∑

i,j=1

(
dij(X)− δij

)2

. (3.1)

The Euclidean distance between the ith and jth points in the configuration space is
given by dij. One can use squared distances or a normalised raw stress criterion as well.
We prefer the normalised stress (σ) in our experiments since it is popular and theoretically
justified [131].

The normalised stress σ is obtained by
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σ =
√
σraw(X)/δ2ij. (3.2)

The configuration matrix X in K dimensions is obtained for approximating ∆ by
applying the following steps of the algorithm Algorithm 2.

We implemented LSMDS by applying iterative gradient descent on the stress function
( See Algorithm 2). Some MDS applications have used other implementations for LSMDS
based on the SMACOF (stress majorization of a complicated function) algorithm. For
MDS, majorization was introduced by De Leeuw [132].

We compared the stochastic gradient-descent (SGD) algorithm and the SMACOF
algorithm in terms of stress and computational time. More details are given in Chapter 4,
Subsection 4.3.1. We found SMACOF is comparatively slow for our data. Hence, we use
SGD-based LSMDS for the rest of the experiments.

Algorithm 2 Least-squares multidimensional scaling algorithm.

Input: Dataset N , ∆
1: Randomly initialise Y [0]

2: X ← Y [0]

3: t← 0
4: ϵ← small positive number
5: MAX IT ← maximum iteration
6: Compute σ(Y [0]) using Equation 3.2
7: Set σ[0] = σ(Y [0])
8: while t ≤MAX IT do
9: t = t+ 1

10: Update: Y [t] = Y [t−1] − η∇σ[t−1]

# η is the learning rate and ∇σ[t−1] is the gradient of σ in iteration t− 1.
11: Compute σ[t] = σ(Y [t])
12: X ← Y [t]

13: if σ[t−1] − σ[t] < ϵ then
14: break;
15: end if
16: end while
17: return X.

In general, MDS algorithms require extensive preprocessing and usually are compu-
tationally expensive, thus not appropriate for large scale applications. The two main
drawbacks are,

• MDS requires O(N2) time, where N is the number of items. Thus, it is impractical
for large datasets.
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• In an out-of-sample setting or a query-by-example setting, a new item has to be
mapped to a point in the existing configuration. Given the MDS algorithm is
O(N2), an incremental algorithm to search/add a new item in the database would
be at least O(N). Hence a new item search (or add) in an existing configuration
would be similar to sequential scanning of a database.

3.2.2 Out-of-sample Embedding

Once a dataset has been transformed, it is common to need to incorporate new data. This
is known as the out-of-sample embedding (OSE) problem.

Many DR or embedding techniques such as MDS do not offer an explicit OSE func-
tion. Hence, mapping new data into an existing configuration space without extensively
reconstructing the entire configuration from the augment dataset is difficult. Running the
MDS algorithm from the beginning using all the data (old data and new data) is not a
suitable approach for large-scale multidimensional datasets.

In the context of metric-MDS, we found several out-of-sample extensions. The classic
reference in the field is Trosset and Priebe [133] for CMDS. Bae et al. [131] proposed a
similar approach that uses general MDS results to find embeddings approximating to the
distances. The proposed method is an interpolation approach to the LSMDS that extends
the SMACOF implementation. Following similar ideas of [131] and [133], we proposed
an OSE method for LSMDS. We use the general LSMDS results rather than the inner
products of the dissimilarity matrix for the least square approximation as in [131].

The method uses the SGD algorithm for numerical optimisation to minimise the fol-
lowing objective function. However, note that this optimisation is subtly different from
that of the original LSMDS (3.1). Hence the OSE of a new object y is obtained by
minimising,

σ̂(y) =
n∑

i=1

(
∥xi − ŷ∥2 − δiy

)2
, (3.3)

where y is the new object and ŷ is its position in the configuration space. The δiy represent
the dissimilarities between point i and the new object y. The Euclidean distance between
the ith point and y in the configuration space is given by ∥xi − ŷ∥2. We seek to find a
position of y that minimises σ̂(y).

We will discuss the application of OSE methods in ER applications in detail in Chap-
ter 5 and Chapter 6. We also used an artificial neural network (ANN) to solve the OSE
problem as a regression problem. Our OSE solutions based on the optimisation approach
and ANN are described and compared in detail in Chapter 6.
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Landmarks

One way to improve the speed of MDS mapping is to consider only a fraction of the
input data initially. Hence, the first step is to apply MDS only on a subset of all input
points. In the second step, the remaining data can be added to the existing configuration
as out-of-sample points. The initially selected subset of input data is usually known as
landmarks. Landmarks or anchors have been used with OSE extensions to scale MDS
and other embedding techniques [134, 135].

Several landmark-based MDS algorithms extend CMDS. Silva et al. [134] proposed
the Landmark MDS (L-MDS) algorithm to address the inefficiencies that occur when
processing large data sets. The first step of L-MDS is to apply CMDS only to the landmark
points, embedding them in a lower-dimensional space. Then each remaining point is
embedded independently from each other using a fixed linear transformation given the
distances to the landmarks [130].

Although L-MDS improves scalability, it is sensitive to noise or outliers than the orig-
inal CMDS. In contrast, the Landmark MDS ensemble method [136] combines individual
L-MDS solutions that operate on different input partitions. It has shown improved accu-
racy with similar scaling abilities to L-MDS for large datasets. Similar ideas of landmarks
are discussed by Bae et al. [131] to extend the LSMDS using a subset of pre-configured
MDS results to develop an interpolation technique.

There are several other scalable MDS algorithms worth mentioning here. The FastMap
algorithm is an MDS approach that determines one coordinate at a time by examining a
constant number of rows of the input distance matrix of the existing data points [137].
MetricMap [138] has developed as an improvement to FastMap. The algorithm first
calculates the pairwise distances among a selected set of objects and uses these distances
to establish the target space. Then it maps all remaining objects in the dataset to points
in the existing target space [138]. A comparison of L-MDS, FastMap and MetricMap is
given in [139].

The selection of the best landmarks remains an open research problem. Landmark
selection may depend on the MDS algorithm, nature of the input data and application
area. Some of the landmarks selection methods found in the literature are as follows:

• Random selection : Randomly selects landmark points from the input dataset. This
works well in practice [130], especially with large-scale data, since the computations
are quick and cheap.

• Farthest point sampling (FPS) is a standard method of selecting sources starting
with an initial random point. Then it iteratively picks the farthest point from the
already selected sources [140]. However, FPS accesses the entire distance matrix
between all the available data points rather than a selected set of rows. Therefore,
it is more computationally expensive than random selection.
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• Hierarchical clustering: We consider the agglomerative method for landmark selec-
tion among the two main types of hierarchical clustering. It considers each point
as a single-element cluster at the beginning. Then the clusters are combined to
create new clusters (based on the distances from one to another) until all points are
included in a final single cluster. The results create a dendrogram, and the cut to
the dendrogram controls the number of clusters obtained. Then randomly chosen
points are selected from each of those clusters as landmarks. Hence the number
of landmarks depends on the number of chosen clusters. However, this method is
computationally expensive due to the extensive number of distance calculations.

As noted, the choice of landmark points may seem like a clustering problem. How-
ever, clustering algorithms such as hierarchical clustering require subsequent calculations
of distances between data samples and subclusters in each computationally expensive
step. Hence we have used hierarchical clustering only for comparison purposes in our
experiments. We recommend using random selection for quick approximations. However,
FPS has the advantage of being controllable when reproducible results are desired.

We combine the ideas of landmarks and OSE to address the drawbacks in MDS (dis-
cussed in Subsection 3.2.1). Our applications use these techniques to propose an indexing
technique for fast, real-time and approximate query matching in Chapter 5.

3.3 Similarity Search

Similarity searching refers to searching for database elements similar to a given query
element [121, 141, 142, 143]. It is a fundamental task in computer science that appears
in various fields such as information retrieval, data mining, pattern recognition, compu-
tational geometry, and databases [121, 142]. Exact searching is not as useful in many
applications due to data quality issues. Proximity concepts (similarity, dissimilarity) are
typically much more productive for searching [121]. We use similar ideas to ‘similarity
search’ in vector spaces to develop ER solutions appropriate for large-scale entity match-
ing. Here, we present the methods and techniques of similarity searching that are utilised
to design our algorithms.

Problem statement 5 (Similarity searching): Given a finite database S ⊆ U , which
is a subset of the universe U of objects that can be preprocessed, finds all similar elements
in S for a given new object from the universe (a query q), where q ∈ U .

There are two general types of similarity queries [141, 144]; both using a distance function
d defined on U .

• k-nearest neighbour (k-NN) queries: The query retrieves the k closest elements
to q in S. If the collection to be searched consists of fewer than k objects, the query
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returns the whole database. If the set of the k nearest neighbours of q are Sq, then
formally, Sq can be defined as follows:

kNN(q) = Sq ⊆ S, |Sq| = k ∧ ∀x ∈ Sq, y ∈ S − Sq : d(q, x) ≤ d(q, y).

• Range queries: The query retrieves all objects within distance r to q. When the
search radius r, is zero, the range query R(q, 0) is called an exact match. Formally,
the query response is defined as :

R(q, r) = x ∈ S, d(x, q) ≤ r.

3.3.1 Nearest-Neighbour Search

Nearest neighbour retrieval is an essential operation in a wide variety of real systems such
as classification [145] and analysis of biological sequences [146]. It is also a well-established
technique in pattern recognition, memory-based reasoning, and vector quantisation [121,
147]. Efficient and scalable indexing methods that can facilitate accurate and efficient
nearest neighbour (NN) search are required for large-scale databases [143].

An index is a data structure that reduces the number of distance evaluations needed
at query time. An efficient indexing method would iteratively prune subsets of potential
answers to a query by partitioning the data set [148]. We can apply several k-NN search
methods for indexing arbitrary metric spaces; for more details, refer to the surveys [141,
142]. Distance-based indexing methods use distance computations to build the index.
Once the index is created, these can often perform similarity queries with a significantly
lower number of distance computations than a sequential scan of the entire dataset [141].

Tree-based indexing structures for metric spaces include R-tree and its variants [149],
Kd-trees [150], VP-trees [147], and M-trees [121, 151]. The decision of which indexing
structure to apply depends on several factors, including query type, data type, complexity
and the application.

In addition to the popular tree-based indexing methods, one can also use a hashing
based algorithm such as locality sensitive hashing (LSH) to identify approximate nearest
neighbours. LSH maps high-dimensional data into lower dimensions using random hash
functions. The idea is to map similar data points in the original space into the same hash
bucket in the lower dimensional space [60, 152]. The applications of LSH as an indexing
algorithm in ER is found in [153, 154]. However, applying LSH for nearest neighbour
search is orthogonal to the methods proposed in this thesis since we apply MDS for
embedding high dimensional data. Hence, we focus on tree-based indexing structures for
k-NN search.

Among the tree-based indexing, we choose Kd-trees for the k-NN search. It is consid-
ered one of the best data structures for indexing multidimensional spaces and is designed
for efficient k-NN search [15].
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3.3.2 Kd-trees

A Kd-tree is a multidimensional binary search tree introduced by Bentley in 1975 [155],
generalising the standard one-dimensional binary search tree. Later on, the optimised
Kd-tree proposed by Friedman and Bentley [150] emerged as a valuable tool in Euclidean
spaces of moderate dimensions.

Over the years, further improvements for high dimensional settings [156], distribution
adaptation [157], and incremental searches [158] were proposed for Kd-trees.

The storage and the construction time of Kd-trees ofN nodes areO(N) andO(N logN),
respectively [150].

Multidimensional binary search trees, or Kd-trees, allow a wide variety of searches,
including exact-match, partial-match, and range queries [155]. Additionally, Kd-trees can
also be used as a sorting algorithm. Enhanced with many of the improvements described
in [159] (allowing approximation errors, incremental distance calculations, and priority
search), the Kd-tree is a data structure well suited to k-NN searching on most data sets.

(a)
(b)

Figure 3.1: (a) The Kd-tree of the points (2,3) (2,7) (4,8) (5,4) (6,2), (7,3). The root
node is (5,4) since it is the median along the x-axis. It splits the whole plane into left
and right parts. Then the left and right subtrees split along hyperplanes based on the
medians along the y-axis. The process continues until all the points are used to build the
tree. (b) Shows how the Kd-tree splits up the x, y plane geometrically. Here, the black
node is the root node, nodes one level down are blue, and nodes two levels deep are red.
The star indicates a query point. The shaded area shows the candidate hypersphere that
may contain closer points to the query than the current guess.

Kd-trees organise K-dimensional vectors of numeric data. Each internal node of the
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tree represents a branching decision in terms of a single attribute’s value, called a split
value [160]. These internal nodes generate a splitting hyperplane that divides the space
into subspaces using this split value, usually the median value along the splitting di-
mension. We will use the median when constructing the Kd-tree for the data in our
experiments.

Figure 3.1 shows an example Kd-tree and how it splits up theX, Y plane geometrically.
For the given dataset, all data with values less than or equal to the median along that
dimension (points left to the hyperplane) are incorporated into that node’s left subtree.
All data with values larger than the median along that dimension (points right to the
hyperplane) are incorporated into the right subtree. Each leaf is a collection of data
items [15, 160].

The NN search algorithm aims to find a node in the tree closest to a given input vector.
This search is efficient with an O(logN) complexity, where N is the size of the Kd-tree,
i.e., the number of nodes in the tree. For k-NN search, the complexity is O(k logN). The
NN search uses tree properties to quickly eliminate large portions of the search space [15].
Figure 3.1-(b) illustrates the process of finding the nearest neighbour to a query point in
the Kd-tree shown in Figure 3.1-(a).

The star indicates the query point, and the current guess is connected with the dashed
line. The circle is the candidate hypersphere, which lies entirely on the left side of the
splitting hyperplane running vertically through the tree’s root. Any point in the right
subtree cannot be nearest to the current estimate. However, the left subtree still needs
to be investigated since the hypersphere intersects with a few hyperplanes on the left side
of the tree’s root.

The NN search starts by descending from the root node recursively to a leaf node and
saving it as the nearest point. Then the algorithm unwinds the recursion of the tree,
searching back up the tree to find whether each intermediate node is better than the
current estimate. In each update of the nearest point estimate, the algorithm checks if
the hypersphere around the current guess intersects a splitting hyperplane. If not, the
algorithm prunes the search of the other side of the hyperplane and walk back to the
next node. Otherwise, it walks down the other branch of the tree from the current node,
searching the nearest nodes following the same recursive process as before.

Similarly, for the k-NN search, the algorithm can be extended to maintain a list of
the k best points using a priority queue. For more details on Kd-trees and k-NN search
implementations, refer to [159].

Many tree-based indexing structures were initially proposed in the context of lower-
dimensional applications. In general, the performance of most tree-based index structures
degrades rapidly with more than 15 to 20 dimensions [161]. Similarly, Kd-trees generally
work well for low dimensional problems and suffer as dimension increases. However, many
optimisation methods are proposed to improve the efficiency of a KD tree for higher
dimensions [159]. We will discuss the suitable dimensions and the performance of Kd-tree
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in our application in Chapter 5.
We used the concepts of embedding entity records and similarity searching in config-

uration space (a vector space) to develop an indexing approach for fast query processing
in large-scale ER tasks. We formulate our indexing method to generate blocks that group
close-by objects using a Kd-tree and a k-NN search. We discuss the proposed indexing
method in detail in Chapter 5.

3.4 Summary

In this chapter, we formalised the concepts of ER that are relevant to our work. We
also presented the formal definitions of the individual tasks that correspond to the main
contributions of our thesis. MDS is used as an embedding technique to propose our metric-
based ER solutions. We will be using the definitions of LSMDS and OSE in the following
chapters. We used LSMDS to generate vectors that approximate name strings and their
properties in Chapter 4. The application of Kd-trees and k-NN search for developing
a fast indexing technique for real-time and approximate query matching is proposed in
Chapter 5.



Chapter 4

Generating Name-like Vectors for
Testing Large-scale ER

The demand for scalable ER techniques has increased tremendously to facilitate the in-
tegration of large-scale data collections. However, the shortage of training and ground
truth data impedes the development and testing of ER algorithms. Good public datasets,
especially those containing personal information, are restricted in this area and usually
small in size. In this chapter, we propose a simple, inexpensive, and fast synthetic data
generation tool.

4.1 Introduction

The development of large-scale ER techniques requires large-scale testing data. Devel-
oping novel algorithms that process, integrate, or analyze data with personal identifying
information in research is often difficult due to growing concerns over data privacy and
identity theft. These concerns prevent the publication of datasets that contain personal
information. Even if we are allowed to use such datasets for testing our algorithms, they
cannot be published for replication studies. We discussed the lack of data problem in
detail in Chapter 1 and Chapter 2.

There are several large-scale, real RDF (Resource Description Framework) Web datasets
that could be used as ER benchmarks [162]. However, only a few real datasets are available
for research that contain personal information; these are small in size [1, 163]. Even with
available real datasets, the correct status of two records matched across two databases
is unknown to many applications. The main reason is the lack of ground-truth or ‘gold
standard’ data that specifies whether a given two records correspond to the same entity
or not. Therefore, validating matched and linked results in the testing of newly devel-
oped ER algorithms is very difficult. Data simulation using similar characteristics of real
datasets is the alternative approach in the absence of suitable datasets.

45
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A good dataset suitable for ER tasks needs to ensure quality. The soundness of
the Gold standard, error diversity and the number of exact duplicates in a dataset are
important factors to define a good dataset in this context [9]. Similarly, according to
Panse et al. [9], a suitable test dataset has to ensure quality (able to provide meaningful
evaluation results), usability (able to customize), and reproducibility (able to reproduce
previous evaluation results) as well.

Our motivation is to mimic the characteristics of large-scale data containing personal
information that are useful in deduplication, fraud detection, cloud computing, and health
informatics in our simulation model to generate large-scale datasets [1]. We also aim to
ensure the desired properties of such data, e.g., quality, usability and reproducibility.

There are many advantages in using simulations as part of the development process,
where algorithms will ultimately be tested on real datasets [164]. A key benefit of sim-
ulated data is that they contain ground truth data critical to evaluating ER algorithms.
We can also control the properties such as size, linking rate, types of errors, and error
rates in data simulation. Moreover, simulated datasets can be published with their source
programs/tools, allowing others to adapt them in their application domains.

However, generating synthetic data is a nontrivial process since the data are expected
to have similar characteristics to real-world data, such as distributions of values, errors,
noise, and variations. Many researchers implement ad hoc methods/tools to simulate data.
These are often complex, application-specific data generators with limited capabilities to
generate large-scale data. Similarly, many of the existing personal data simulation tools
do not support large-scale data generation and have problems in complexity, scalability,
and limitations of resampling.

We propose a simple, inexpensive, and fast simulation model that captures and ap-
proximates the most relevant properties of one common identification key, specifically
names. String comparison functions measure the distance or the dissimilarity between
string attributes such as names in record matching. These values indicate how similar
attribute values are for the underlying pairs of records. The main property of interest
is the distance or the dissimilarity between attribute values when deciding whether two
entity records correspond to the same entity. Therefore, our model simulates the level of
detail required to construct the distance between identification keys. We use vectors of
numbers to represent names in a dataset, aiming at low-dimensional vectors. The model
outputs a set of vectors that can be used to evaluate the performance of big data solutions,
especially those that involve name matching. We will refer to these vectors as name-like
vectors for the rest of the chapter.

This chapter uses the concepts of name approximation in Euclidean space to propose
a simulation tool that generates name-like vectors. One of our significant contributions in
this thesis is the method of approximating vectors using dissimilarities between the actual
names. In Chapter 5, we discuss how we utilise the vector approximation of names to
develop metric-space base indexing techniques. The ideas and the data used in the name
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approximation are used to propose a solution for large-scale MDS in Chapter 6. We will
discuss more details in each relevant chapter.

Our method holds several attractive properties compared to traditional simulation
tools. These simulation tools resample from real databases or datasets that contain in-
formation about entities. Thus, the size of the existing databases limits the size of the
datasets a particular tool can generate effectively. A small list of names and addresses can
generate a large synthetic dataset of entities. However, the number of combinations of
names and addresses that can be used to generate unique entities is limited. In contrast,
our solution relies on a vector representation that defines records, where the capacity of
resampling from vector space is unlimited. We discussed some other attractive properties
of vectors useful in our ER solutions in detail in Chapter 3.

Error modelling is an essential and complex component of test data simulation in
ER since errors are inherent in real-world databases. The quality of entity identifying
information (quasi-identifiers) in real data can be low for reasons such as incorrect, in-
complete or outdated details that could lead attribute values to be erroneous. Generating
those errors in data simulation requires decisions such as types of errors (e.g., spelling
or phonetic errors) and the probabilities of introducing and positioning errors. However,
the most common types of errors considered in many simulation tools are typographical
errors. Our simulation model generates typographical errors of names using only one
parameter: the variance of errors in initially considered name-like vectors in the underly-
ing namespace. We introduce small typographical errors with small distances away from
name-like vectors, and the same could be applied to generate large errors to simplify the
error simulation process.

Record generation is often a complex and expensive process in traditional simulation
tools requiring user-defined probabilities, tuning several parameters, and other modifi-
cations to entity records. In contrast, our model generates entity names with a fixed
O(K) time per record, given that the dimension of a vector representation is K (which
is small). We can generate one million name-like vectors that represent records in less
than 2 minutes. The simplicity of our simulation model allows inexpensive and fast data
generation.

Many modern ER applications require matching or linking datasets that would contain
10 million or 100 million names. Consider, as a motivating example, linking medical
records spread across different health databases. A person can have many entries in those
databases over several years. Thousands of record comparisons may be needed to link
entries belonging to that person. For a country’s population, this may mean millions or
even billions of records. Our interest is in generating datasets of 10-100 million name-like
vectors.

One example where such datasets are needed in testing is when developing match-
ing or linking ER algorithms that use global information rather than simplistic pairwise
matching. In that context, we need to understand how the global distribution of names
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or other personal information and their errors impact the algorithm.

We developed our simulation model following data analysis of a namespace that con-
tains entity names collected from the actual environment. The main property of interest
is the dissimilarities or the distances between name strings. Hence, our model attempts
to simulate name-like vectors such that these vectors preserve the distance between the
names strings we measured in the real namespace. Towards this, we used a set of exist-
ing statistical methods and tools for the data analysis. Based on the results of the data
analysis, we develop our numerical simulation model that generates name-like vectors.

Three surname datasets are used as inputs for the experimental data analysis. The
results closely mirrored each other (details in Section 4.4).

The proposed numerical simulation model uses a normal distribution to generate name-
like vectors in a low-dimensional Euclidean space (6 to 8 dimensions).

The rest of the chapter discusses the methods, experimental analysis, and the resulting
contributions toward answering two key questions: (a) “Can we use vectors to approximate
the namespace?”, and (b) “How do we simulate name-like vectors including errors of a
namespace?”

4.2 Related Work

In this section, we survey a few relevant works that align with the focus of this chapter.

There are frequently used datasets in the ER literature: a health data set contain-
ing midwife data records [165], the North Carolina Voter database (NCVR) [166] and
CORA 1, a citation network. Besides, only a few ‘real’ datasets that contain personal
information are available for research. However, each of these has a limited size, problems
in resampling, and limited control over errors.

Arehart and Miller [163] developed a ground truth dataset that contains approximately
70,000 culturally diverse Roman names. The dataset includes personal names that were
drawn from different sources and manually incorporated name variations.

Significant, recent work on generating realistic test datasets for duplicate detection
is proposed by Panse et al. [9]. The authors offer a large-scale dataset of 120 million
records extracted from a historical voter register from NCVR for evaluating duplicate
detection algorithms. In addition to the test dataset, this work also provides an approach
to generate and store test data based on NCVR as well. As far as we are aware, this is
the first work on generating realistic test data for duplicate detection at this scale.

Several simulation tools have been developed in ER literature. These tools aim to
simulate realistic records and common errors. Hernandez [89] presented the first work
on data generation with duplicate records based on real-world error distributions. Berto-
lazzi et al. [167] addressed some limitations of Hernandez’s method, including missing

1https://relational.fit.cvut.cz/dataset/CORA
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values and various corruption functions.

Christen et al. [164] presented a tool known as Geco, that generates records with entity
attributes such as names, addresses, and dates of birth, which has been widely used in ER
research. However, it does not support large-scale data generation. Talburt et al. [168]
presented a tool for generating records that represent people’s residential occupancy his-
tories. Several previous works on simulation studies were proposed by Tromp et al. [169]
and Bachteler et al. [170]. These simulation tools are often application-specific, where
the researchers proposed various ad hoc methods that generate datasets with specific
characteristics.

Most of the above simulation tools contain two essential components. First, the data
are generated by repeatedly sampling from an existing dataset or database. This limits
the size and controllability of the data simulation. Second, these tools introduce errors
using models of standard errors, e.g., typographical, phonetic, and OCR (optical character
recognition) errors. The differences lie in the way they simulate records and errors using
different structural models.

The frequency and look-up tables used in the record linkage system, FEBRL [171],
have been regularly used by other simulation studies to generate records. Although this is
a broadly used open-source approach, it is not scalable enough to explore ER algorithms
that work with very large datasets.

Our work is motivated by the vector-based representation of words, which has a thriv-
ing history in the applications of information retrieval, computational semantics, and
natural language processing. The underlying property is that words with similar contex-
tual significance tend to have similar embeddings when mapped to a continuous vector
space [172]. Word2vec [173], in particular, has been used extensively in natural language
processing applications. However, it is less useful in proper-noun databases since names
do not have semantic relationships [174].

Several methods that embed a set of strings in a metric space have been used to explore
the problems in ER [16, 15]. These methods focus on matching similar records efficiently
using the properties of the metric space. However, to the best of our knowledge, none of
them addressed the data simulation using a metric space, particularly a vector space.

Several mapping algorithms, including StringMap [16], FastMap [137], SparseMap [15],
and MetricMap [138], are proposed for embedding a set of objects in a metric space.
While the goal is to find similar records by mapping them into a metric space, none of
these addresses string (e.g., names) approximation or data simulation approaches. These
mapping algorithms are used to propose different indexing techniques for ER, and we will
discuss them in Chapter 5, Section 5.2.

We choose multidimensional scaling (MDS) because of its ability to work with the
nonlinear and non-metric nature of our data and because it includes a distance preserva-
tion capability for large-scale data with a small amount of extra effort. We will discuss
more details on other mapping algorithms in Chapter 5.
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Table 4.1: Summary of the main notations used in this chapter.

N Input data points to a MDS algorithm
∆ Dissimilarity matrix for N
K Dimension of a multidimensional scaling configuration
N ×K Configuration space (MDS output)
X Coordinates of N points in configuration space
D Distance matrix for X in Euclidean space
σ Stress of a configuration, defined
x Mean of a multivariate dataset
Σ Covariance of a multivariate dataset (defined in (3.2))
Σs Covariance of name-like vectors
Σe Covariance of errors of name-like vectors

Σ
1/2
s Inverse matrix of Σs

Σp Pooled covariance estimate
γ1 Relative eigenvalue of the maximum covariance ratio analysis

4.3 Methodology

Our methodology is organised into three main sections. In each section, we answer the
questions defined in Section 4.1. In Table 4.1, we summarise the terminology and the
notation used in this chapter.

4.3.1 Converting Names to Multidimensional Vectors

We first aim to find a simple representation for names that allow quick simulations. In
name matching, the main property of interest is the similarities or dissimilarities of names.
We assume that names reside in a complicated high-dimensional space (the namespace)
where similar names are closer than dissimilar names. The first key question is: “Can we
use lower-dimensional vectors to approximate the namespace?” In other words, we seek
to approximate a high-dimensional space with a lower-dimensional Euclidean space.

We cast the problem as an embedding problem, which refers to constructing coordi-
nates from distances (see Section 3.2). In domains that use computationally expensive
distance functions, significant speed-ups can be obtained by embedding objects into a
coordinate space and applying an efficient distance function, such as the Lp norm [121].

MDS is a non-linear optimisation problem for finding the best mapping of ϕ [122].
Hence, we can project names into a lower-dimensional Euclidean space by approximating
their dissimilarities using MDS. Then the pairwise comparisons between names become
Euclidean distances between vectors.

As mentioned earlier (See Chapter 3, Subsection 3.2.1), CMDS and LSMDS are the
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two popular metrics based MDS approaches. CMDS works well with Euclidean data
inputs. The name dissimilarities we used in our work has a non-Euclidean nature, and
we found that LSMDS works well with such data as inputs.

We applied LSMDS to determine a simple vector representation in a lower dimension
for approximating characteristics of a namespace. This lower-dimensional Euclidean space
is a configuration space containing N data points in K dimensional space. In this chapter,
we call this an approximated namespace that contains name-like vectors.

To that end, we need to define an appropriate dimension K, in which distances are
maintained at a suitable level of accuracy. We used two approaches to discover a rea-
sonable lower dimension that fits our data. First, we analysed the rate of change of the
normalised stress σ against K-dimensions, where a lower σ value indicates a better ap-
proximation. Second, we used a Shepard diagram [3] to determine the goodness-of-fit of
LSMDS results. A Shepard diagram is a popular way of assessing the goodness of fit of
data reduction or embedding techniques such as MDS and t-SNE (t-distributed stochastic
neighbour embedding) [3]. It compares how far apart our data points are before and after
the transformation using a scatter plot. We present the results in Section 4.5.

Figure 4.1 explains the basic workflow that creates the foundation of the proposed
simulation model using an example of how textual similarities of strings relates to vector
similarities. For a given set of names, ∆ represents the dissimilarity matrix of Levenshtein
distances. By applying LSMDS, we project the name strings into a lower-dimensional
space such that D ≈ ∆. We choose the dimension K of the lower-dimensional space that
provides the best compromise for our data using the stress values.

In summary, our simulation model is designed based on data analysis of an actual
namespace that studies the relationship between names in a Euclidean space. Then the
model reconstructs these relationships, especially distances between the names to generate
large-scale name-like vectors. Next, we discuss the name-like vector simulation in detail.

4.3.2 Simulating name-like vectors

If we can approximate a namespace in a K dimensional Euclidean space, this leads us
to our second question, “How do we simulate name-like vectors using the approximated
namespace?” A simple approach is to determine the distribution of the approximated
lower-dimensional vectors and simulate vectors with similar characteristics.

We start by checking the normality of the name-like vectors since it is generally a
good starting point. The normal distribution makes simulation easy, requiring only two
parameters: mean and covariance. In our context, these parameter values are vectors
and matrices rather than single values due to the multivariate nature of the data. Hence,
we explore the multivariate characteristic of the real namespace and the approximated
name-like vectors in the Euclidean space.
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Figure 4.1: The basic workflow of our numerical simulation model. Names come from a
complicated high dimensional space, and we can represent them in a lower-dimensional
Euclidean space by applying LSMDS to name dissimilarities. For instance, ∆ represents
the dissimilarity matrix containing the Levenshtein distance between the given names.
By getting ∆ as the input, LSMDS project the names into a lower-dimensional space,
approximating their initial Levenshtein distances by Euclidean distances, i.e., ∆ ≈ D.
Then, the names become vectors in K dimensional space, where K must be chosen.

Multivariate Normal Characteristics

Many parametric multivariate statistical methods, such as linear discriminant analysis,
require the data to hold the multivariate normality (MVN) assumption. These methods
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produce more reliable results if the data are exactly or even approximately multivariate
normal.

Many analytical and graphical methods test the goodness-of-fit of a dataset to the
multivariate normal distribution. However, choosing which test in practice is difficult
since different approaches may give different conclusions about the MVN of a dataset.
Therefore, it is usually recommended to perform several tests while examining the results
produced by graphical methods [175, 176].

We applied Mardia’s skewness and kurtosis statistical tests to check the multivariate
normality of our data. Additionally, we used graphical approaches such as histograms,
density plots, and quantile-quantile plots (Q-Q plots) to visually assess the MVN charac-
teristics of the data [176]. Moreover, we applied a multivariate outlier detection method
based on the Mahalanobis distance. It demonstrates how far an individual data point is
from the centroid of all points for the underlying variables. An observation is considered
an outlier when the distance is great [177].

In addition to MVN, we applied univariate normality tests and plots to diagnose
any deviation from normality. Investigating the univariate normality of the underlying
variables builds a foundation for a complete understanding of MVN. In the univariate
setting, normality tests such as Kolmogorov-Smirnov (K-S) and Shapiro-Wilk are exten-
sively applied in practice [176]. Furthermore, we used histograms and Q-Q plots to assess
univariate normality visually.

Based on the MVN analysis, we found that the approximated name-like vectors in
the Euclidean space do not strictly follow a normal distribution. However, the departures
from normality were relatively minor. Hence, the normal distribution is acceptable as an
adequate approximation to simulate name-like vectors.

Parameter Selection and Simulation

Name-like vector simulation is a two-step procedure. The first step is estimating the
parameters (mean and variance) for the normal distribution that we would choose as our
simulation model. Since our data are multivariate, we calculated the sample covariance
matrix (Σ) [76]. All these parameters are estimated from an approximated namespace
that contains the name-like vectors.

The second step is the simulation of name-like vectors using the estimated parameters
of the normal distribution N(x,Σ), where x = 0. In this way, we can generate many
name-like vectors within seconds.

We evaluated the results of our simulator based on a comparison between different
namespaces. Those are the real namespace, the approximated namespace, and a simulated
namespace. Our interest is in the distributions of the distances in each namespace since it
is a key property in the namespace approximation. The comparison explains how well a
normal distribution can reproduce the distances between vectors mimicking the distances
in an actual namespace.
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The other characteristic of interest is the possible errors of an actual namespace.

4.3.3 Error Simulation in Name-like Vectors

A namespace can contain errors such as typographical, OCR, and phonetic errors. We
wish to include some of these errors in our simulated namespace. Consequently, we come to
the subquestion: “How do we model errors in a simulated namespace?” When simulating
real name strings, the typical process would be to build a complicated error generating
model. In contrast, we create errors of simulated name-like vectors by adding some noise
to the simulated namespace.

Errors are variations of original names. Distances between a name and its variants are
typically small compared to the distances between distinct names. Similarly, the typical
distance between a name-like vector and that containing an error should be small. In our
error model, we capture the variance of vectors that represent original names and their
errors. Then, we use it to simulate errors of name-like vectors with a small Euclidean
distance away from their initially simulated name-like vectors. Our prime interest is in
edit distance errors such as insertions, substitutions, deletions, and transpositions since
they are the most common errors in real datasets [178].

Similar to the name-like vector simulation, we started with the approximated names-
pace that contains name-like vectors. However, unlike the previous approximation, we
selected an actual namespace containing names with edit distance errors. Hence, the
original names and their errors are converted into name-like vectors in the Euclidean
space. In this way, we can detect the distribution of errors with respect to their initial
name-like vectors in the Euclidean space.

Maximal Ratio of Covariances

The maximal ratio of the covariance test is a useful way to report the differences between
two variance-covariance structures [179]. The value of the ratio quantifies the two covari-
ances. We compare the covariance of the two groups: approximated errors of name-like
vectors and name-like vectors.

Let Σs be the N ×N covariance matrix of name-like vectors and Σe be that of errors
of name-like vectors and assume both matrices are invertible. Given that Σ

−1/2
s is the

inverse square root matrix, the ratio can be written as a product of one covariance matrix
and the inverse of the other covariance matrix (Σ

−1/2
s ΣeΣ

−1/2
s ). Relative eigenanalysis or

relative principal component analysis determines the direction along which the ratio of
variances between two groups is a maximum [179]. This direction is the first eigenvector

of Σ
−1/2
s ΣeΣ

−1/2
s , also known as the first relative eigenvector of Σe with respect to Σs. The

eigenvalues of Σ
−1/2
s ΣeΣ

−1/2
s are called the relative eigenvalues of Σe with respect to Σs.

Thus, the first relative eigenvalue γ1 is equal to the maximal ratio of variances. Small γ1
values indicate that even in the worst-case scenario, the errors have small variances.
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If we can find a small γ1 for approximated name-like vectors and their errors, it implies
that we can add Gaussian noise to simulate random errors in a simulated namespace. How-
ever, our experimental results supported this expectation. We calculated the Gaussian
noise through a second normal distribution N(0,Σe), different from the initially estimated
normal distribution. We will discuss the results in the next section.

4.4 Experimental Results

We conducted a set of experiments on real datasets in order to evaluate the potential
benefits of the proposed solution. All algorithms are implemented in R and executed on
a desktop with Intel Core 5 Quad 2.3 GHz, 16 GB RAM, and MacOS Catalina.

4.4.1 The Data Sets

We used three datasets of surnames to explore namespaces and their properties, e.g.,
simple relationships such as the distributions of names and the dissimilarities between
name strings. In general, all datasets exhibit the same characteristics. For instance, they
follow a Zipf’s distribution [180].

1. Ancestry data: The first dataset is from Ancestry.com [181], which contains the 250k
most commonly occurring surnames. It is the largest unique surname repository we
found for this study.

2. FEBRL data: The second dataset is derived from the frequency files included in
the dataset generator program in FEBRL [171]. The frequency table contains 9000
unique surnames extracted from telephone directories in Australia.

3. US census data: The third data is from the US census [182] that contains all sur-
names occurring 100 or more times in the 2010 census. It includes 150,000 distinct
surnames.

4.4.2 Experimental Setup

This section presents the results of the ideas introduced in the previous section to real data,
particularly the results based on the first dataset. Since our data analysis observations
and the simulation results were similar across the three datasets, we will not discuss them
separately. In this chapter, we used 5000 randomly selected surnames for testing, which
allowed us to perform resampling to evaluate the results for consistency.

The outcome of the proposed simulation model does not depend on the individual
observations of the selected random sample. Hence the sample selection is flexible. Ini-
tially, we started with a distinct set of names, as we first attempted to simulate name-like
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vectors without errors. However, later on, the simulation of errors for name-like vectors
uses a dataset that contains real-world errors.

One can use a range of standard string distance measures to calculate the pairwise
dissimilarities between surnames. We used the STRINGDIST R package [75] to calculate
the dissimilarities between name strings. Initially, we considered five frequently used string
dissimilarity measures [82, 14]: Levenshtein distances (LV), longest common subsequent
(LCS), Jaccard dissimilarity, Q-grams, and Jaro-Winkler distances.

The first step of the data analysis is to choose a dimension K that fits our data,
where we would like to make K as small as possible. Hence, the following stress analysis
determines a K that produces the smallest and the best approximation that suits the
given data. Note that there is ambiguity in the definition of dissimilarity between names.
Hence, a certain degree of error can be tolerated, especially if it is small compared to the
differences between dissimilarity measures.

4.4.3 Stress Analysis

Figure 4.2 shows the stress-σ against dimension-K. The stress σ (defined by Equation 3.2)
tends towards a small but nonzero asymptote for most dissimilarities, reflecting the non-
Euclidean nature of the original data. The stress values of the LV and LCS distances are
overlaid, and it is hard to visualize them separately. The JW distances illustrated in the
inset of Figure 4.2 are different because JW tends to rate all dissimilar names as being
the same distance apart, leading to large nonlinearity in LSMDS. Hence, we argue that
the approximation of a namespace in the Euclidean space using LSMDS works for all but
the JW dissimilarities.

Ideally, we seek an elbow in the dimension vs stress plot. In practice, however, such
elbows are rarely visible. Since the σ is non-zero, we find a reasonably small K around
6-8 dimensions considering the best trade-off between them. We will test K=6 in what
follows.

However, when we have non-zero σ, we should keep in mind that the distances among
vectors are imperfect and distorted representations of the relationships given by our data.
The LMDS transformation does not need to have zero σ to be useful in our application
since we are willing to tolerate a certain degree of distortion. There are different standards
regarding the amount of σ to tolerate [122]. Our rule is that any σ value under 0.1 is
excellent, and anything over 0.2 is unacceptable.

4.4.4 Shepard Diagram Analysis

An accurate dimension reduction or embedding technique will produce a straight line that
goes through the origin in a Shepard diagram [3]. However, in practice, Shepard diagrams
rarely look straight due to information loss during data reduction.
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Figure 4.2: A) The trade-off between stress and the dimension for JaroWinkler (JW),
Jaccard coefficient, Longest common subsequence (LCS), Levenshtein (LV) and Qgrams
(q=2). B) The distribution of JW distances. Compared to the other distributions, JW
distances exhibits a spike where all the dissimilar surnames take one value.

Figure 4.3-(a) compares the Euclidean distances against the LV distances in K = 6.
There is a strong linear relationship between the two distance distributions. Hence, we
confirmed that LSMDS successfully approximated the LV distances between real names
into the Euclidean distances among the name-like vectors. Since the σ is not zero, there
are some errors in the approximation.

We looked at the distribution of those errors in the approximation in Figure 4.3-(b).
It shows the differences between the LV distances and the corresponding approximated
Euclidean distances of each point shown in Figure 4.3-(a). By looking at the histogram,
we can see that approximation errors are small, less than |0.5| for the majority.

We compared Shepard diagrams obtained for 8, 10, 15, and 20 dimensions using the
same dataset to see the performance of the distance approximation in higher dimensions.
The comparison confirmed that more dimensions do not significantly increase the linearity
of the LSMDS approximation. The variations around the line decrease, but the line does
not fit better. Considering the trade-off between the simplicity of the model and the
accuracy of the approximated distances, we selected the K=6 Euclidean space for our
simulation model.

We preferred LV distances for further analysis, as they are popular among string
distance metrics and perform well with the LSMDS approximation. However, the results
with other metrics (except JW) mirror those presented.
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(a) (b)

Figure 4.3: (a) The Shepard diagram [3] of the LV distances vs Euclidean distances in
K=6. There is a strong linear relationship between the two distance values as desired.
(b) The distribution of the approximation errors. The errors are the differences between
the LV distances and the approximated Euclidean distances of each point shown in (a).

4.4.5 Multivariate Normal Analysis

We first evaluated the multivariate normality (MVN) of the approximated vectors in
Euclidean space. The combined test results of the multivariate skewness and kurtosis tests
failed to indicate the MVN of the name-like vectors. We used a Q-Q plot (see Figure 4.4)
to understand the failures of the tests. It depicts several large Mahalanobis distances
(outliers) that imply possible departures from the MVN distribution, particularly in the
upper tail. However, the body of the distribution mainly lies on the y = x line, suggesting
that a normal distribution is a reasonable model for most of the data.

To diagnose the reason for the deviation from MVN, one can perform univariate tests
on each variable distribution. In addition, checking univariate plots is also very useful.
However, Kolmogorov–Smirnov (K-S) and Shapiro–Wilk tests [176] rejected the normality
assumptions for each of the variables in the name-like vectors.

Figure 4.5 shows the histograms corresponding to the distribution of each variable
in the approximated name-like vectors. The relevant Q-Q plots showed similar results.
However, the histograms and Q-Q plots suggested that the normal distribution reasonably
well approximates variables 5 and 6. The other variables have slightly skewed distributions
where the body still follows a moderately normal distribution.

These results suggested that the problems with MVN seem to be relatively minor for
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Figure 4.4: The chi-square Q-Q plot for the distribution of the all 6-dimensional vectors.
There are some deviations from the straight line indicating the possible departures from
a multivariate normal distribution.

name-like numbers. Even though we can consider other general distribution models for
testing, it is unlikely to improve the distance approximation significantly. Therefore, we
concluded that the normal distribution is a sufficient approximation model for simulating
name-like vectors.

4.4.6 Name-like Vector Simulation

Given that the simulation model is based on the normal distribution N(x,Σ), we then
estimated the parameters mean (x) and the covariance (Σ). The unbiased estimator for
Σ is derived from the existing sample of approximated name-like vectors in the K=6
Euclidean space. The estimated x was close to zero. Hence, we kept x = 0.

The calculated covariance matrix has values very near zero on off-diagonals. We
tested for independence between each variable using a correlation test and Hoeffding’s D
statistics [183]. Both approaches verify that we can assume independence between the
K=6 variables.

One test for evaluating the simulator is to compare the distribution of distances created
by the simulation model to those of the original data. We generated 5000 simulated name-
like vectors using the estimated normal distribution. Then, we compared the distances
between simulated name-like vectors and the initial sample of 5000 surnames.

Figure 4.6 shows a Q-Q plot that compares distributions of LV distances between
surnames and Euclidean distances between simulated name-like vectors. The Q-Q plot
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Figure 4.5: Histograms of the approximated name-like vectors. The variables V5 and
V6 of the coordinates shows an approximately normal distribution while the others have
slightly skewed distributions.

exhibits a reasonable similarity between the distributions even if they do not precisely
fall along the y = x line. We can see the discrete nature of the LV distances and the
continuous Euclidean distances along with the points of the small vertical lines. There is
a distortion created through the approximation process, but apart from this, the simulated
vectors behave very similarly.

4.4.7 Error Simulation

We explored the nature of the errors in an actual namespace to simulate those in the Eu-
clidean space. First, we looked at the variance of errors once LSMDS approximated them
in a K=6 Euclidean space. Then, we compared the two types of vectors, approximated
name-like vectors and their errors in Euclidean space, using the ratios of covariances.

A random sample of 25 surnames was selected from the initial dataset of surnames,
and 100 variations of edit distance errors were generated for each of them. The errors
for the original surnames are generated using Geco [164]. Then, we applied LSMDS on
a total of 5000 surnames. The dataset includes 2500 distinct surnames along with 2500
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Figure 4.6: Q-Q plot comparing the distributions of LV distances of the real namespace
with the Euclidean distances of simulated vectors. Points along the straight line indicate
a similarity agreement between the two distributions.

errored names. We used these approximated name-like vectors to explain the variance of
the errors in the Euclidean space.

We examined the variance of erroneous vectors relative to their correct version. Fig-
ure 4.7 illustrates a comparison between the distribution of a whole sample of name-like
vectors (all the surnames and their errors) with a distribution of errors that belong to
a single name-like vector (errors of a single surname). We have only shown results from
one coordinate since the other coordinates exhibited similar results. The top histogram
represents the distribution of a single variable (X6: the 6th coordinate) in name-like vec-
tors and their errors. In contrast, the bottom histogram represents the distribution of the
same variable considering a single name-like vector and its errors. The small spread of the
histogram that contains only the error distribution implies that we can add appropriate
noise by adding a small relative variance to a name-like vector to simulate its errors in
the Euclidean space.

Finally, we investigated the variance-covariance matrices corresponding to each of the
erroneous surnames and their errors. These values were small compared to the variance-
covariance matrix of the whole sample, indicating that these small edit distance errors
are closer to their real surname values than other names. By applying the relative eigen-
value analysis to the variance-covariance matrices, we found the relevant eigenvalues and
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Figure 4.7: The top histogram shows the spread for a single coordinate (X6: the sixth
coordinate of a name-like vector) in the whole sample (all the surnames and their errors)
in K=6. The bottom row shows the spread of the same coordinate that considers a single
surname and its errors. The spread of errors is much smaller compared to the spread of
surnames and their errors as desired.

eigenvectors. The first eigenvalue γ1 refers to the maximal ratio of covariance between
the errors, and the name-like vectors took a value closer to 0.1. Therefore, even in the
worst-case scenario, the errors have a small variance compared to the name-like vectors
in the Euclidean space.

Hence, our model can simulate simple edit distance errors by adding Gaussian noise to
an existing Euclidean space. The noise is generated from a normal distribution N(0,Σe).
We calculated the unbiased estimator of the covariance matrix (Σe) using the pooled
covariance estimate Σ̂p [179]. Therefore, we can simulate errors of simulated name-like
vectors such that they preserve small distances to their initial name-like vectors.

4.4.8 Computational Complexity

In this section, we discuss the practical use of our simulator when developing big data ER
algorithms. These algorithms require large-scale test data and efficient pairwise calcula-
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tions for testing. We mainly focused on the computational time of generating large-scale
name-like vectors and pairwise comparisons between them to measure the performance.

Figure 4.8: The computational time to calculate pairwise distances between name-strings
and name-like vectors. Calculating the Euclidean distances is much faster than calculating
LV distances.

Pairwise comparisons between records are challenging when the majority of the entity
records contain strings. In contrast, name-like vector comparisons of a complete dataset
would only take much lower computational time. Figure 4.8 compares the computational
time of the pairwise comparisons between a dataset containing real surnames and a sim-
ulated set of name-like vectors. The surname comparisons are based on the LV distances,
whereas the name-like vector comparisons are measured using Euclidean distances. The
time grows quadratically for both methods, but our approach is nearly ten times faster.
This efficiency is beneficial for the rapid testing of algorithms that apply to large-scale
data.

We also measured the computational time to simulate datasets of different sizes. The
results showed that the time grew linearly, and it took less than a minute to generate one
billion name-like vectors.

4.4.9 Comparing Different Datasets

We used three datasets for the analysis. We tested all three of them as the input to our
model in the data analysis, and the results were substantially the same.

We also used these data to understand the universality of the results. Figure 4.9
compares the distributions of pairwise LV distances of the random samples of 5000 sur-
names for each dataset and the distribution of pairwise Euclidean distances of a simulated
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Figure 4.9: The distributions of pairwise LV distances of three datasets that contain
unique surnames and the Euclidean distances of a simulated namespace. The plots are
quite similar in shape sharing similar statistical properties.

dataset of 5000 name-like vectors. These smoothed density plots have similar shapes and
values for standard deviations and means for the four distributions. According to the
results, we can produce a simulated distribution similar to the last one by using any of
the first three distributions. The only input to our simulation method is the pairwise
distances between a set of strings, which we used to estimate the parameters mean and
variance. These experiments show that we can adapt our simulator to work with any
sample dataset derived from a string space.

4.5 Discussion

We can synthesise large-scale datasets of name-like vectors using our simulation model,
but the model has limitations. To obtain the full benefit of the proposed simulator, we
still need to model other variables required for linking, such as addresses and gender.
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As a result, the dimensions of the vectors need to be extended accordingly to facilitate
complete records. However, numerical or categorical data such as age or gender are easier
to simulate.

Surnames (or names) follow a Zipf distribution [180], where few high-frequency names
account for most of the population with many low-frequency names. We can easily modify
our model to capture the frequencies of names in simulating name-like vectors by repeated
sampling. Additionally, the nature of the data allows an arbitrarily large number of
synthetic data points. For very large datasets, one can also increase the dimension of the
space to reduce the density in which it is populated. The volume of such a space grows
exponentially with the dimension.

Traditional simulation tools are often biased. For instance, existing entity identifica-
tion keys such as names are typically biased towards English, Welsh, Scottish and Irish for
many datasets. Resampling from these datasets to simulate records repeats those biases
in the names. We aimed to avoid this bias using a vector representation in our simulation
model.

The results discussed in this chapter based on the Ancestry.com [181] dataset also
include biased names towards Americans and Europeans. We realized that this could dis-
tort the results and include some bias in the simulation model. Hence, we constructed the
model using multiple datasets and compared the results for consistency. However, these
datasets also have some biased names, which is unavoidable in many publicly available
real datasets of names.

4.6 Summary

Our goal here was to generate synthetic data to develop and test ER algorithms appro-
priate for big data. We proposed a simple, inexpensive, and fast simulation model that
can generate name-like vectors, including simple errors. This chapter discussed how to
simulate simple vectors in a space that approximates the properties of names.

One of the significant contributions in this work is the name approximation using
vectors. We used MDS to transform a set of name strings into vectors that approximate
an actual namespace. This approximation shows that we can preserve the relationship,
such as dissimilarities between names in a Euclidean space. Since we can approximate
similar names closer and different names apart in this space, we used the concepts of name
approximation to construct our metric space-based ER algorithms. Further details will
be discussed in Chapter 5 and Chapter 6.
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Chapter 5

Em-K Indexing for Approximate
Query Matching in Large-scale ER

It is becoming increasingly important in real-world applications to develop ER solutions
that produce prompt responses for entity queries on large-scale databases. In this chap-
ter, we investigate the query matching problem in ER and propose an indexing method
suitable for approximate and efficient query matching. We aimed to develop an indexing
approach for a fast query process within a fixed time, returning as many as candidate
matches.

5.1 Introduction

Typical ER algorithms have a quadratic running time, which is computationally pro-
hibitive for large-scale data collections. Indexing techniques aim to reduce the potential
number of comparisons between non-matching record pairs [184]. Therefore, indexing-
based ER solutions run much faster than brute-force ER solutions [64].

However, most existing indexing methods still have quadratic time complexity and
are too slow to deal with very large-scale data collections [60, 68, 184, 185]. Also, some
non-scaling ER algorithms tend to generate a large number of blocks and a large number
of candidate records in each block for large-scale scenarios [184].

Traditional ER solutions often process databases offline in batch mode, and no further
action is required once a pair of matches are determined. However, many organisations
are moving online where they have to provide their services through prompt responses.
Hence, many newer, real-world scenarios require real-time query processing against large-
scale databases. Some of the applications demand entity query matching against large-
scale reference databases within a fixed time. We refer to this as the “query matching”
problem in ER. In such configurations, traditional ER solutions become less efficient or
unusable.

67
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In order to motivate the problem context and illustrate the usefulness of the approach
presented in this chapter, we provide the following real-world example. The application
is in criminal investigations, where law enforcement officers need to query a database to
identify potential suspects. Suspects usually lie to police investigators about their true
identities, e.g., names, birth dates, or addresses [33]. Hence, finding an exact match for
falsified data against the real identity recorded in a law enforcement computer system
is problematic. Detecting deceptive identities is a time-consuming activity that involves
large amounts of manual information processing in real-life scenarios [186]. Therefore
efficient ER solutions that support real-time and approximate query matching against
existing datasets can be invaluable.

Toward the challenge of real-time approximate query matching, we present an index-
ing technique that reduces the number of pairwise comparisons needed in the ER. The
proposed indexing method transforms a set of records into a set of vectors in a metric
space, specifically a lower-dimensional Euclidean space using MDS. These vectors have
two main attractive attributes in the context. First, comparisons between vectors in a
metric space are much cheaper than string comparisons. Second, these vectors support
efficient indexing data structures. We utilise these properties to propose an indexing ap-
proach that classifies similar vectors in a low-dimensional Euclidean space. We call our
method Em-K indexing, as our method operates by embedding data in a K-dimensional
space.

Exact query matching is easy against a reference database as we can search based on
lexicographical order using an efficient data structure, e.g., binary trees. However, exact
query matching is impossible with many real-world databases due to various data quality
issues, and approximate query matching is the common approach [187] (also discussed in
Chapter 2). Hence we focus on approximate matching. The proposed indexing method
addresses the problem of real-time and approximate query matching. We will be mainly
using the term “query matching” instead of “approximate query matching” in this chapter.

Our main objective is to develop a fast indexing method for query matching. We
want our method to be efficient for large-scale data and robust to errors in the data. The
proposed method searches for a block of records in the reference database as a set of
candidate-matches to the querying record. Hence we avoid comparing the query against
all the records in the referencing database. However, the search is done in the Euclidean
space using a Kd-tree data structure, where each record in the reference database and a
query record become a vector in this space.

Given the block size is B, we search for this number of nearest neighbours (NNs) for the
query point by traversing the Kd-tree nodes that store the reference database. The search
has a O(B logN) complexity, given N is the number of records in the reference database.
The method embeds query records in a pre-mapped Euclidean space to search against
the reference data points. We propose an out-of-sample embedding (OSE) technique that
uses a fraction of the original data (defined as landmarks in Subsection 3.2.2) for query
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record embedding. For L landmarks, the embedding requires O(L2) operations, and we
can choose L such that L≪ N . Then the query embedding is O(L).

In this chapter, we explore the use of metric space indexing for efficient and approxi-
mate query matching. In particular, our contributions are,

• We formulate the query matching and deduplication problems in ER to provide
metric space based solutions. First, we propose an indexing approach based on
landmarks as a motivating example to explore the basic building blocks needed for
query matching.

• We propose a landmarks based indexing technique for query matching to provide a
quick and accurate block of potential matches. Our method can process a stream
of queries against a large-scale data set within a fixed short time. By doing so, we
obtain as many of the matching records as possible where the processing time of a
single query takes a sub-second time. The technique is robust to noisy data that
contains errors and allow efficient approximate query matching.

5.2 Related Work

Indexing is a crucial component for improving the efficiency and the scalability of ER
solutions. A detailed discussion of indexing and some well-known existing indexing meth-
ods are given in Chapter 2. Here, we only survey a few closely related works since many
of the existing methods are orthogonal to the focus of this chapter.

Canopy clustering uses cheap comparison metrics to group similar records into over-
lapping canopies and creates blocks from records that share a common-canopy [113]. The
method depends on global threshold values, and that reduces its flexibility. It also uses
similarity measures such as TF-IDF and Cosine distance that can be computationally
expensive [184].

The work by Ramadan et al. [60] on real-time indexing for ER proposed three dynamic
indexing techniques and a blocking key learning algorithm suitable for real-time ER. The
proposed DySimII method uses a similarity-aware inverted index that updates whenever
a new query record arrives. The other two methods (DySNI and F-DySNI) use tree-based
indexing structures with sorted neighbourhood indexing that is tailored for real-time ER.
In our work, we are proposing mapping-based indexing techniques suitable for real-time
ER.

Mapping-based indexing methods map records to objects in a Euclidean space, pre-
serving the original distances between them. Jin et al. [16] proposed the StringMap
algorithm that maps records into a similarity preserving Euclidean space (with dimension
between 15-20). Similar pairs are determined by building an R-tree [149]. StringMap has
linear complexity, but it requires tuning several parameters. Moreover, the performance
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of such approaches tends to decrease with more than 20 dimensions. In contrast, our
method operates in much smaller dimensions.

The Double Embedding scheme [15] uses two-dimensions, K and K ′ for embedding
records such that K ′ < K. Similarity joins are performed in the metric space using a Kd-
tree and k-NN search to find candidate matches. The method is faster than the Stringmap
algorithm. However, it attempts to keep the embedding contractive by increasing the
distance computations and is not suitable for large-scale data.

Another metric space indexing technique utilised an M-tree to produce complete and
efficient ER results. The cost of the method and the quality of the results have remained
similar to existing indexing techniques [188]. However, it does not scale for large-scale
data since it has a single step that combines the indexing, comparison, and classification
steps.

Sehili et al. [189] has proposed a pivot-based indexing method for privacy-preserving
ER. This method uses bloom filters to encode entity records into bit-vectors and applies
metric space similarity measures for similarity search and ER. The authors have used the
M-tree indexing structure to organize the bit vectors in the metric space and facilitate a
fast similarity search. While the method is highly effective for privacy-preserving ER, the
running time of the method increases quadratically with the data size. The basic idea
behind this method and the proposed Em-K indexing is similar, e.g., match entity records
in a metric space. However, we use MDS to convert entity records into numerical vectors
instead of converting them to bit vectors. Moreover, we focus on query matching in ER
instead of privacy-preserving ER, which gives us more flexibility to choose any embedding
method that works with our data.

In summary, many existing mapping-based indexing techniques have two components.
The first is to map the records into a metric space. The second is to perform similarity
joins in the metric space using a tree-like indexing structure.

These methods were developed offline by applying a mapping technique to map all the
records into a multidimensional metric space. The spatial mapping of records acts as a
filtering step before the actual record matching. Hence, the focus is on matching similar
records without grouping them into blocks. However, none of them except the [189]
handles new records by reusing the properties of an existing multidimensional metric
space. Therefore, query matching is not achievable. In this chapter, similar ideas are
significantly extended to accommodate the benefits of the Euclidean space for efficient
query matching.

5.3 Problem Formulation

In this section, we formulate our problem using the concepts and the definitions presented
in the previous section. The proposed Em-K indexing method functions as a preprocessing
approach for a more detailed query matching ER. We use deduplication as a motivating
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example that explains the basic building blocks of the query matching problem. Thus we
defined the following two problems:

Query Matching: is the problem of finding similar records given two entity collections,
Er a reference database, and Q a stream of queries. The size of each dataset is denoted by
|Er| and |Q| respectively and we assume |Er| is fixed and |Q| → ∞. Let Q = q1, q2, .., q|Q|,
where each query qi in Q represents a record of an entity ej. A query record qi has the
same attribute schema as the records in Er. Hence for each query qi in Q, the records in
Er that belong to the same entity (ej) need to be found. In real-life problems, the query
rate might be very fast. There may or may not be a matching record for every qi ∈ Q
that belongs to the entity ej.

Definition 4 (Indexing for Query matching): For two datasets (one is a reference database
and the other is a stream of queries) with overlapping records, run the best algorithm for
a given amount of time to find the block of records containing as many matches as possi-
ble for the querying record. This is a pre-processing step to increase the efficiency of the
subsequent detailed query match.

We also consider the deduplication problem here, primarily as an explanatory model.

Deduplication: For a given entity collection E1, that contains entities e1, e2, ..., en, finds
all the records ri that represent each entity ei ∈ E1. We assume |E1|, is fixed.

Definition 5 (Indexing for deduplication): For a given entity collection containing du-
plicates, group similar records into blocks to reduce the number of comparisons needed in
subsequent detailed deduplication while missing as few matches as possible.

Traditional indexing techniques split the database into non-overlapping blocks, only
comparing the records within any block [68, 113, 184, 190, 191]. Blocks of similar pairs
are determined by building an indexing structure that takes a set of records as input and
classifies them according to some criteria. Usually, this criterion is based on matching
a blocking key consisting of a single or several attribute values of records [184]. Our
method uses blocking values to create blocks of records that transform blocking into a
k-NN search. We combine the spatial joins with block building to convert blocking values
to a similarity preserving Euclidean space. The result is overlapping blocks of records.

The proposed method requires mapping blocking values into multidimensional vectors.
Since many comparisons in ER are between strings of characters, we focus on entity
attributes that contain string values here. Unlike the similarity between string values,
the similarity between numerical values is easy to compute using Lp norms in a metric
space [64]. Hence, we used this property of the metric space to propose a scalable indexing
technique for query matching.

If we assume strings as elements of a complicated high-dimensional space, the distance
between two different strings is typically large. However, misspelled strings tend to be
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located near correctly spelled strings [192]. The embedding of a string database into a
metric space needs to preserve these two properties. Thus, coordinates for blocking values
are determined in a configuration space such that the associated Euclidean distances
approximate the dissimilarities between the original blocking values. Following the name
approximation proposed in Chapter 4, we use LSMDS for the embedding.

We can map a set of blocking values to a lower-dimensional configuration space by
applying LSMDS such that the distances between vectors preserve the dissimilarities
between them. This embedding leaves similar blocking values closer in the configuration
space allowing efficient, geometric-based indexing.

We propose an OSE technique for LSMDS to avoid the computational overhead of
applying LSMDS to large-scale data and to map new data. Refer to Chapter 3, Section 3.1
for more details. Hence, we are able:

1. To embed large-scale reference databases.

2. To embed previously unseen data to a pre-mapped configuration space.

We scale our OSE solution to accommodate large-scale data by only considering a
fraction of the existing configuration space, defined as landmarks. Refer to Chapter 3,
Subsection 3.2.2 for relevant definitions and details. We discuss the characteristics of a
good set of landmarks and landmark selection methods in Section 5.5 of this chapter.

Once the configuration space includes all the required data, we formulate our indexing
method to generate blocks that group close-by vectors in the configuration space. Search-
ing for similar points in configuration space is less expensive and quick since we can use
efficient data structures such as Kd-trees. We use Kd-trees and k-NN search to find similar
vectors in the configuration space (definitions are given in Chapter 3, Section 3.3).

An efficient and scalable indexing method can facilitate accurate and efficient k-NN
search that supports large-scale datasets. Here we are interested in finding the k nearest
neighbours (k-NNs) where k may be moderately large. Searching a Kd-tree for k-NNs is
O(k logN), which is the key to fast indexing.
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Table 5.1: Summary of the main notations used in this chapter.

N Input data points to a MDS algorithm
∆ Dissimilarity matrix of objects N
X Coordinate matrix of objects N in the configuration space
D Distance matrix for X in Euclidean space
δ Dissimilarity or distance measure that calculate the distance between objects N
d The Euclidean distance between coordinates X
K Output dimension of a MDS configuration
σ Stress of a MDS configuration
E Collection of Entities
Q Stream of queries
y Out-of-sample object
ŷ Mapping coordinates of the out-of-sample object y in the configuration space
L Number of landmarks in the set Ls

k Number of nearest neighbours in a k-nearest neighbour search
B The size of the block return by the Em-K indexing method

5.4 Methods of Em-K Indexing

We first summarise the terminology and the notation used in this chapter in Table 5.1.

5.4.1 Indexing for Deduplication

Deduplication refers to identifying matching records within a single database and has
many applications in database and business contexts. For instance, many businesses
maintain databases of customer information that are utilised for advertising purposes,
e.g., emailing flyers. Duplicate entries might arise because of errors in data entry or
address changes. Deduplication techniques are useful to remove duplicate entries and to
improve the quality of the collected information. Duplicate-free customer information
databases prevent emailing several copies of flyers to the same customer, which reduces
the cost of advertising, but there are many other benefits.

Indexing is a preprocessing step to avoid the need to perform detail-level comparisons
between O(N2) pairs of records. The proposed indexing method utilises the properties of
vectors and Kd-trees in a configuration space, specifically a Euclidean space. Hence we
will be using both terms synonymously in this chapter. The method has two main steps,

1. Embedding the blocking values: We select the blocking criteria based on the at-
tributes of the records in a dataset. For instance, given a set of records with entity
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identifying attributes such as first name, last name, date of birth, or postcode,
we may choose one or several values of them in our indexing method. We embed
the blocking values of a dataset/database into the configuration space by apply-
ing LSMDS. The embedding depends on the size of the dataset. We propose two
techniques:

(a) Complete LSMDS : For a given dataset of size N , apply LSMDS for the blocking
values of all the records.

(b) Landmark LSMDS : Apply complete LSMDS only to a fraction of the dataset
(the landmark records). Then the remaining records are embedded applying
OSE against the landmark points. We explained this approach in Chapter 3,
Subsection 3.2.2.

2. Nearest neighbour search: Searching for similar points is a two-step procedure.

(a) The first step is to build the Kd-tree in the configuration space using all the
points that represent the blocking values in this space.

(b) The second step is to create blocks of similar points by searching the k-NNs of
the Kd-tree nodes.

Since the Kd-tree construction uses all the available points in the configuration
space, each record becomes a node in the Kd-tree. Likewise, each node becomes
a query against the rest of the nodes in the k-NN search. Each node has a fixed
number of nearest neighbours (NNs) allocated for them as we keep the k-NN search
fixed for every querying node. Hence, each node in the tree becomes a small block
of records that contains its NNs as the members. The block sizes are uniform and
depend on the number of NNs allocated for a node.

Once all the blocks are determined by the indexing method, we return the pairs of
similar points in each block as potential matching records. Then, we retrieve the original
blocking values that correspond to these points and compare them to classify the pairs as
candidate matches or non-matches based on a pre-selected threshold.

A detailed level comparison among the other attribute values will be only required be-
tween the pairs that indexing identifies as candidate matches. Thus our indexing method
act as a filtering step that reduces the total number of detailed comparisons one has to
perform when identifying similar records in a dataset.

Complexity

We can quantify the complexity of the proposed indexing method. The method has
two components: a relatively slow step where the records (blocking values) are mapped
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to a configuration space, followed by a relatively fast step that creates blocks in the
configuration space.

Assume that we haveN records in the underlying database. Complete LSMDS requires
calculating the distance between all pairs of blocking values, hence, O(N2) operations for
the embedding. This complexity dominates the LSMDS calculations. However, for large
N , we can choose a set of landmarks L and apply LSMDS with a complexity of O(L2).
The embedding of the rest of the points has a linear complexity of O(ML) operations,
where M = N − L. Hence the overall complexity of landmark LSMDS is O(L2 +ML).

The second phase builds and searches the Kd-tree to create blocks of records. Building
the Kd-tree requires O(N logN) operations, and searching for k nearest neighbours for
N points requires O(Nk logN) operations, where the size of a block (B) is equal to k.
Hence the overall complexity of the indexing step is O((1 + k)N logN).

Since a complete LSMDS requires O(N2) operations, we recommend using the land-
mark LSMDS and as small as possible k to reduce the complexity of the proposed method.

5.4.2 Indexing for Query Matching

Query matching in this chapter refers to querying a stream of records against a reference
database to find records that refer to the same entity as the query (see Section 5.3). Query
processing should be quick and accurate for many ER solutions to increase their usability
in real-time applications. In some applications, a stream of queries might need to be
processed within a fixed time, collecting as many matches as possible. In such settings,
we have to trade accuracy against speed when detecting matching records. This section
presents a scalable indexing method for real-time, approximate query matching against a
large-scale database. The ideas presented in Subsection 5.4.1 serve as the basic building
blocks for the proposed method.

Following the clean-clean ER scenario, we consider a large-scale reference database Er

and a batch of streaming queries Q. Similar to the previous indexing method, we first
embed all the blocking values of the reference database in a Euclidean space. We use a set
of landmarks and the OSE of LSMDS to reduce the overhead of embedding the database
Er. The embedding is a two-step procedure: 1) apply LSMDS over the landmarks 2) then
map the rest of the blocking values using OSE of LSMDS based on the distances to these
landmarks. We then construct a Kd-tree using all the points in the configuration space,
where each data point becomes a node in the tree.

For streaming queries, we process a single query record at a time. First, we embed the
blocking value of the query record in the existing configuration space. In general, OSE
would require calculating all the distances from the new query to the pre-mapped blocking
values in the original string space, which is not desirable with large-scale databases.
Hence, we only calculate the distances to the landmarks when mapping a new record.
The mapping position is determined by applying the OSE of LSMDS to the new query
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record. The process is similar to mapping the blocking values that are not landmarks in
the reference database. Figure 5.1 shows the steps of our Em-k indexing method.

Figure 5.1: The process of our Em-K indexing method. In the Kd-tree building phase, the
reference database is embedded into a configuration space by applying landmark LSMDS.
Once all the points are embedded, a Kd-tree is built using all the existing nodes. In the
query phase, each query needs to be embedded in the existing configuration space using
OSE. Then we search for k-nearest neighbours of a querying record in the Kd-tree. The
final output is a set of similar points to the query.

The only inputs we need for the mapping are the distances from a query to the pre-
selected landmark blocking values. Then we search for the k-NNs of the new point using
the existing Kd-tree structure of the reference database. A new block of points that
contains similar points for the query point will be determined. The block size B depends
on the k of the k-NN search. We retrieve the original blocking values for the block
of similar points and use a pre-selected threshold to filter out the potential matching
pairs. The records that contain these as blocking values are the matching records to the
querying record. A detailed level comparison between the candidate matching pairs may
be required after the initial step of indexing.

The algorithm needs to process a query within a fixed time, potentially sub-second.
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Since we are querying a stream of query records against a large-scale database, the pro-
cessing time of a single query is limited. The overall system performance can be improved
by trading accuracy against efficiency and scalability. We will fine-tune our method
to trade-off many comparisons against accuracy to offer a greater number of detections
within a fixed time. Hence, we select a set of optimal parameters that scale our data by
considering the trade-off between accuracy and scalability.

Complexity

We can quantify the complexity of different stages in the Em-K indexing for query match-
ing. Similar to the previous method, it contains two components: a relatively slow step
where a new query is mapped to an existing configuration space, followed by a relatively
fast step that creates a block of similar points which contains candidate matches for
the query. We assume below that the reference database has already been embedded
since this cost is amortised across many queries.

Suppose that we have N data points in our reference database. Typically it would
require O(N) operations to compare the existing records with a query point, which is not
feasible for larger N . We avoid this complexity by applying OSE of LSMDS using a set
of landmarks L, which requires only O(L) operations to embed a new data point. The
embedding is efficient if L is chosen such that L≪ N .

In the second phase, we search for k nearest neighbours for the query. Therefore, the
block size B is equal to k. It will cost O(k logN) operations to search the tree and O(k)
operations to compare a new query point within a block. The total cost of indexing for
a query is O(L + k logN). However, k ≪ L≪ N in large-scale applications. The cost
of the k-NN search is insignificant due to the efficient indexing structure of the Kd-tree.
Thus OSE step dominates the complexity of the proposed method.

The number of landmarks L will affect both the accuracy and scalability of this
method. We will discuss the selection of landmarks and results in the next section.

5.5 Experimental Validation

We evaluated the two proposed Em-K indexing methods under various settings (e.g.,
different dimensions, varying block sizes and datasets, and error rates).

Two main questions to study in the experiments are: (1) Are these proposed methods
robust over various settings? (2) Does Em-K indexing achieve high accuracy and good
scalability?

All algorithms are implemented in R and executed on a desktop with Intel Core 5
Quad 2.3GHz, 16GB RAM, and MacOS Big Sur.
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5.5.1 Set Up

Data Sets

We examined the performance of our methods over two synthetic datasets. They can
be manipulated to have significant variations in their size and characteristics (e.g., er-
ror rates). In this work, we used the Levenshtein (LV) distance (defined in Chapter 2,
Subsection 2.5.3) to measure the similarity at the attribute level of entities. We do not
use the name-like vectors approach described in Chapter 4 since we need to test realistic
embeddings. Instead, we use,

- Dataset-1: The first data set contains records with synthetically generated bi-
ographic information. Each record has a given name and a surname. They are
generated using the tool Geco [164]. We introduced duplicate records with errors
by slightly modifying the values of randomly selected entries. In record generation,
we assumed a record has only one duplicate with a maximum of two typographi-
cal errors (substitutions, deletions, insertions, and transpositions) in both attribute
values.

For the deduplication datasets, there is one duplicate for a particular record within
the dataset. Similarly, in query matching, each query has one duplicate within the
reference database, and the reference database is duplicate free.

- Dataset-2: The second dataset is the benchmark dataset presented in [193]. It is
based on personal records from the North Carolina voter registry and synthetically
generated duplicates (using Geco [164]). Each record has several attribute fields.
We cannot control the errors of the duplicate records in this dataset since it has been
formulated as a benchmark dataset. However, after careful analysis of the dataset,
we estimated that a duplicate record has a maximum of three edit distance errors
for this work. We have only considered the first name and the last name fields in
our experiments.

Similarly, we selected the deduplication data such that there is only one duplicate
for a particular record within the dataset. In the query matching, we choose the
queries to have only one duplicate within the reference database and the reference
database to be duplicate free.

In this chapter, we mainly used 5000 randomly selected entity records as the reference
database and flexible entity query sizes for testing from the above datasets, which allowed
us to perform resampling to evaluate the results for consistency. However, we show that
our methods are scalable to large-scale datasets.
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Matching Rates

We control the number of duplicates in our experiments in order to understand how well
the method works in different circumstances. We define two matching rates: Consider
the datasets E, Er and Q with sizes |E|, |Er| and |Q|,

1. Deduplication matching rate (DMR): the matching rate for deduplication is defined
to be the DMR(E) = Ed

|E| where Ed is the number of duplicate records in E.

2. Query matching rate (QMR): the matching rate for query matching of Q against a

reference database Er is defined to be the QMR =
MRQ

|Q| where MRQ is the number

of records in Er that has a matching record (duplicate) in Q.

We control the number of duplicates within and between datasets by changing the
DMR and QMR. We represent DMR and QMR as percentages in our experiments.

Performance Evaluation Metrics

We use two measures to quantify the efficiency and the quality of our indexing method
proposed for deduplication [194].

• Reduction Ratio (RR): Measures the relative reduction of the comparison space,
given by RR = 1 − Nb

|E|(|E|−1)
where Nb is the number of potential matching pairs

produced by an indexing algorithm. This quantifies how useful the indexing is at
reducing the search space for detailed comparisons.

• Pair Completeness (PC): This is given by PC = Nm

M
, where Nm denotes the detected

number of real matches by the indexing algorithm and M represents the number of
all real matches in E. This is a measure of how accurate the indexing is.

Both PC and RR are defined in the interval [0, 1], with higher values indicating higher
recall and efficiency, respectively. However, PC and RR have a trade-off: more compar-
isons (higher Nb) allow high PC but reduce the RR. Therefore, indexing techniques are
successful when they achieve a fair balance between PC and RR. However, choosing which
measure to weigh depends on the application and a user’s decision. If the application is
more concerned with the quality of the matching results, then we want to achieve a high
PC. Similarly, for applications more concerned with scalability, high RR is preferred.

We define two measures to evaluate the performance of our indexing method of query
matching. These are different from the standard measures of indexing defined above as
we combine indexing with query matching here. Hence, in this context, we are interested
in measuring the efficiency of the method in terms of time and speed of processing a query.



80 Chapter 5. Em-K Indexing for Approximate Query Matching in Large-scale ER

The Em-K indexing method returns a block of records that contains both true positive
(TP) and false positive (FP) matches per query as a final result. Hence the following
measures are used.

• Number of true positives per computational effort: Measures the number of true
matching records determined by the indexing method when processing queries within
a set period.

• Precision: Measures the accuracy of the query matching in terms of precision. The
precision P is denoted by P = |TP |

|TP |+|FP | , where |TP | is the number of true positives

and |FP | is the number of false positives.

All the CPU running times are measured in seconds and denoted by RT.

5.5.2 Choice of Parameters

Several factors may impact the performance of the proposed methods; some of them (e.g.,
dimension (K), block size (B), landmarks (L) ) are control parameters that we rely on to
fine-tune the performance, while others (e.g., dataset size or error rate) are parameters
determined by data sets.

In this section, We discuss the choices of the K, B, L parameters in our indexing
implementations (and their rationale). The robustness of the methods is measured with
respect to the varying sizes and matching rates of the data sets.

K: The dimension of the Euclidean space (K) plays an important role in the perfor-
mance of our indexing methods. We applied LSMDS to a sample of 5000 records selected
from Dataset-1. The dissimilarities between records are measured using LV distance. In
Figure 5.2, the first y-axis shows the stress (σ defined in Equation 3.2) decreases as K
increases.

A good value of K should differentiate similar objects from dissimilar ones by approx-
imating the original distances. If K is too small, we will have high-stress values where
dissimilar pairs will not fall far enough from each other. It could also place dissimilar
pairs closer and similar pairs further apart. Conversely, high K values will have low-
stress values. However, in terms of RT, higher dimensions increase the embedding time.
In Figure 5.2, the second y-axis represents embedding RT. It takes more than 30 minutes
to embed the dataset in 19 or 20 dimensions.

Considering the trade-off between the stress vs dimension and the embedding time vs
dimension, a reasonable value of σ is found around 6-8 dimensions. This is consistent with
the embedding name strings in the Euclidean space, as discussed in detail in Chapter 4.
We will use K = 7 here.

B: Block size is a dominating factor that directly affects the effectiveness and efficiency
of many indexing techniques. Large block sizes increase RT in the indexing step and have
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Figure 5.2: The trade-off between the dimension (K) vs stress (σ) and embedding time.
The first y-axis represents σ, while the second y-axis represents the embedding time.
The σ tends towards a small but non-zero asymptote when K increases. The running
time increases linearly when K increases. Higher dimensions allow lower σ values for the
embedding but increase the embedding time, for marginal benefit.

low RR and high PC values. In contrast, small block sizes lead to high RR values with
fewer comparisons within each block. However, this may result in low PC values due
to missing some matches. Blocks of similar points are determined by k-NN search in
Em-K indexing methods. Hence, B is equal to k (number of nearest neighbours). We will
consider the choice of B in detail in the following sections.

L: The number of landmarks (L) is another important factor in our indexing methods.
Landmarks are utilised for two different purposes in this work. First, we use landmarks
for embedding large-scale data into a Euclidean space when the standard LSMDS method
becomes inefficient. Second, we use landmarks to map the out-of-sample queries in the
existing configuration space. We discuss the role of landmarks in deduplication and their
impact on the proposed indexing method in the following sections.

In the following experiments we investigated how B and L impact our indexing algo-
rithms.

Varying Block Sizes (B)

To test the choice of B, we used sample datasets containing 5000 records each from the
two data sources. We set the DMR = 10% for the data selected from Dataset-1, which
means there are 500 duplicates within the selected 5000 records in the sample dataset.
Similarly, we used DMR = 7.5% for the second data sample selected from Dataset-2.
Hence within the 5000 records, 375 of them are duplicates.

We performed deduplication indexing on the two datasets. Figure 5.3 illustrates the
trade-off between PC and RR of our indexing method for different block sizes using the
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Dataset-1. In each instance, we changed B by varying k in the k-NN search. PC increases
with the increase of B. In contrast, RR decreases due to the increment in the number of
comparisons within each block of records.

Figure 5.3: The trade-off between the reduction ratio (RR) and pair completeness (PC)
in different dimensions. Ideally, RR=PC=1, hence we prefer methods whose results lie
as close to the top-right corner of the graph. The block sizes are 100, 90, 80, 70, 60, 50,
40, 30, 20. Large blocks achieve higher PC but lower RR. The three curves illustrate that
the higher the dimension, the better the results, up to the point of diminishing returns.

The results also indicate that dimensions around 7 are good at shifting the PC-RR
curve to the top-right corner delivering a good ratio between RR and PC. However, higher
dimensions also mean higher computational costs (e.g., high RT) for the embedding.
Based on Figure 5.2 and Figure 5.3, therefore, we conclude that using K = 7 and B =
{50, 60} gives the best compromise PC-RR ratio and RT overall for the given data set.
In subsequent experiments, we used K = 7.

In most comparisons, we observed similar results for both datasets and discussed
only the results of Dataset-1. However, we present one comparison that has comparably
different results here. Figure 5.4 compares the two datasets in a fixed dimension (K = 7),
varying B in each instance. Both data sets achieve similar RR values with different PC
values. PC values are comparatively low for Dataset-2 and are around 70% for most
occurrences.

Dataset 1 shows better results compared to Dataset-2 in Figure 5.4. This behaviour is
expected since the two datasets have different characteristics, e.g., different matching rates
and a different number of errors in each field. Furthermore, we used different pre-selected
thresholds (θm) when validating candidate matching pairs in the two datasets. These
thresholds are selected based on the errors in the two datasets. In Dataset-1, duplicates
have a maximum of two typographical errors and therefore θm = 2. For Dataset-2, we
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Figure 5.4: The trade-off between the reduction ratio (RR) and pair completeness (PC)
for two different datasets for complete Em-K indexing. The block sizes are 100, 90, 80,
70, 60, 50, 40, 30, 20. PC is very low for the second dataset while RR values are closer.

estimated that each duplicate record has a maximum of three typographical errors, and
we set θm = 3 therein.

The Effect of Landmarks

The following experiment investigated the effect of the two different embedding techniques
on the proposed indexing method. Performance is measured using the PC and RR curves.
First, we applied complete LSMDS similar to Figure 5.2, keeping theK = 7 fixed. Second,
we applied LSMDS only to a set of landmarks in the same dimension. The remaining
points are embedded using the OSE of LSMDS and the distances to landmarks. Blocksize
B is varied as before.

Figure 5.5 compares the trade-off between PC and RR for complete LSMDS and
landmark LSMDS (for different L). Each instance represents a different block size. PC
and RR change similarly to the previous experiment for different block sizes. However,
Figure 5.5 suggests that we can get similar results by choosing an approximate embedding
that uses landmarks instead of complete LSMDS. The use of landmarks decreases the
distance calculations, and we can avoid the inherent complexity and inefficiency of LSMDS
when processing large-scale data.

Using our indexing solution, we can solve deduplication applications in ER. The
method requires embedding records into a configuration space in order to apply the index-
ing technique. Since complete LSMDS is not suitable for large-scale data, we recommend
using the landmark LSMDS. We applied the farthest point sampling (FPS) [140] for re-
producible results in landmarks selection; however, random selection works well in prac-
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Figure 5.5: The trade-off between the reduction ratio (RR) and pair completeness (PC)
for complete Em-K indexing based on different embeddings.The results are based on a
complete LSMDS and landmark based LSMDS for different number of landmarks. The
block sizes are 100, 90, 80, 70, 60, 55, 50, 45, 40, 35, 30.

tice [130]. The optimal parameter setting for our data is K = 7, B = 50 and L = 1500.
We used the proposed indexing method of deduplication as a motivating example for the
next set of experiments.

5.5.3 Comparison with StringMap

The StringMap algorithm proposed by Li et al. [16] is one of the popular mapping-based in-
dexing techniques. It has been frequently used as the base method when developing other
mapping-based techniques in ER. Hence, we compare our method with the StringMap
algorithm as follows.

The underlying concept of LSMDS and StringMap is to map strings to a multidimen-
sional Euclidean space that preserves domain-specific similarity. Refer to Section 5.2 for
more details. First, we measured the accuracy of the embedding created by the above map-
ping techniques. We considered the complete LSMDS, Landmark LSMDS, and StringMap
in the comparison. The accuracy is measured in terms of stress.

We selected the same deduplication dataset of 5000 name strings and applied each of
the mapping techniques to embed them in different dimensions. We then calculated the
stress values for each setting. For Landmark LSMDS, we have chosen L = 1500 following
the previous experimental results.

Figure 5.6 shows the trade-off between stress vs dimension for three methods. Com-
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Figure 5.6: The trade-off between the dimension (K) vs stress (σ). The σ tends towards
a small but non-zero asymptote when K increases for all the methods. Complete LSMDS
and Landmark LSMDS (L = 1500) has a low stress value in each dimension compared to
StringMap method.

plete LSMDS has the lowest stress values, while StringMap has the highest stress values
in each dimension. Landmark LSMDS has slightly higher stress values than complete
LSMDS. This phenomenon is expected since we are only using 1500 landmarks for the
initial embedding. The rest of the strings are embedded using the distances to the land-
mark points in the configuration space. This further distorts the original distances than
the original LSMDS method. However, the results suggested that the LSMDS methods
provide more accurate embeddings than the StringMap method.

Next, we applied StringMap and Landmark LSMDS with deduplication to compare
the results. However, in the implementation of StringMap based indexing evaluated in
the experiments, the originally implemented R-tree data structure has been replaced with
a Kd-tree. First, we obtained two different embeddings for our Dataset-1 by applying
StringMap and Landmark LSMDS. We kept K = 7. Then we build KD-trees for both
embeddings to find matching entity records. Similar to the previous experiments, we
created blocks for each node in the trees to group similar records. Blocksize varies from 20
to 80. The optimal parameter settings for Landmark LSMDS suggested using a block size
around 50-60. Hence we explored the neighbourhood around these block sizes. Similarly,
we used L = 1500.

Figure 5.7 compares the trade-off between PC and RR for StringMap based indexing
and landmark LSMDS based indexing for the same deduplication task. Each instance
represents a different block size. PC and RR change similarly to the previous experiments
for different block sizes. Landmark LSMDS maintains a high level of PC between 1 and
0.96 for all instances. PC values for StringMap vary between 0.98 and 0.79. Small
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Figure 5.7: The trade-off between the reduction ratio (RR) and pair completeness (PC)
for Landmark LSMDS and StringMap based indexing methods. The block sizes are 80,
70, 60, 50 ,40 ,30, 20 and L = 1500. Landmark LSMDS has higher PC values compared
to StringMap based results.

block sizes reduces PC for both methods. However, PC decreases drastically with small
block sizes for the StringMap. Both methods have similar reduction ratio (RR) values
for each instance due to similar block sizes. Based on the results, we concluded that
the Landmark LSMDS provides a more accurate and efficient indexing solution than the
StringMap method for deduplication.

5.5.4 Indexing for Query Matching

In our experiments, we used a reference database with Er = 5000 records. The streaming
query dataset Q is flexible in size because we only consider streaming queries within a
period. Each query in Q has a duplicate record in the reference database, i.e., QMR = 1.
We made this assumption to keep the experiment more efficient instead of mimicking a
real-world ER problem. In a real-world scenario, each query may not have a matching
record within the reference database, or the same query may appear in the stream to
search against the reference database. However, the time required for searching is the
same when no match is present.

Similar to the previous method, several factors affect the performance of the proposed
indexing method for querying, e.g.,K,L,B. Since the embedding of the reference database
is the same as before, we keep K = 7. The block size is B is equal to k, the number of
nearest neighbours in k-NN search.

We used landmarks to support the out-of-sample embedding. The number of land-
marks, L, directly impacts the running time (RT) of the proposed method since each
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query needs to be embedded in the Euclidean space. The other costs that contribute to
RT are the distance calculations and k-NN search.

First, we embedded the reference database generated from Dataset-1 applying land-
mark LSMDS. We chose the landmarks based on the FPS. Then, we built a Kd-tree using
all the reference data points in the Euclidean space. Once the Kd-tree is built, we passed
queries to search the tree for k-NNs. Hence, each query in Q needs to be mapped in the
Euclidean space. We used the same set of landmarks among the reference data points to
map the query points. Distance calculations are required among a new query point and
the landmarks when applying the OSE of LSMDS. A block of similar points is determined
for a new query by searching k-NNs in the existing Kd-tree.

Our method process a single query at a time. In the following experiment, we processed
500 queries against the reference database. For each query, we measured the embedding
RT and the distance calculation RT separately. Then we calculated the mean values for
both categories, processing all the 500 queries. Figure 5.8 shows the comparison of the
mean RT of distance calculations and OSE for varying numbers of landmarks. Increasing
L linearly increases the embedding RT of a single query. The distance calculation RT also
increases linearly with L but is negligible compared to out-of-sample embedding RT.

Figure 5.8: The calculation times for distance calculations and out-of-sample embedding
for query matching. Both depend on the number of landmarks, but distance calculations
are much faster.

We also measured the cost of the k-NN search when creating a block of records for a
new query. This search can be done efficiently in the Euclidean space using the Kd-tree
and priority queues. It takes less than a millisecond, which is insignificant compared to
the total RT of the embedding process. Moreover, increasing k has a smaller impact due



88 Chapter 5. Em-K Indexing for Approximate Query Matching in Large-scale ER

to its efficient implementation with priority queues [159].

A scalable query matching method should be able to process as many queries as
possible within a period. In our indexing method, increasing L limits the number of
queries processed within a set period. On the other hand, small L tends to decrease the
accuracy of the embedding. As a result, a new query may be not mapped closer to its
duplicate, reducing the probability of grouping them as similar points. Hence an optimal
L is required to maintain the scalability without degrading the quality of the results.

We measured the scalability and the efficiency of our method using two quantitative
measures with respect to time: the number of true positive (|TP |) matches detected per
computational effort and the precision (P) per computational effort. Hence we processed
a stream of queries Q against a reference database Er within a given period, varying the
control parameters such as L and B in different instances. Then we calculated |TP | and
|FP | found by our method in each instance. The accuracy of the results is measured in
terms of precision. It measures the rate of TP against all the positive results (sum of |TP |
and |FP |) returned by the method within the given period. Subsequently, we determined
an optimal set of parameter values for our data that returns the highest TP matches and
precision within a fixed period.

In the following experiments, we used a reference database of Er = 5000 records and
the stream of query records Q = 500. We applied landmark LSMDS to embed the records
in Er to the configuration space in each experiment. Then the queries are processed
using the same set of landmarks. Hence, every instance of a different L has a disparate
embedding of the reference database, then used for query embedding and searching.

Figure 5.9 shows the comparison of the |TP | against varying the number of landmarks
and k-NNs. In each instance, we processed queries within a fixed period (60 seconds).
Increasing L decreases |TP | because more landmarks allow fewer queries to be processed.
This phenomenon is expected since a large L increases the running time of a single query
processing. With more landmarks, there is a higher probability of finding matches for
those queries due to the increasing accuracy of the embedding. In contrast, few land-
marks allow more queries to be processed within a period since the running time (RT) of
embedding a single query is small.

Figure 5.9 suggests that we only need 100 landmarks to detect the highest number of
TP matches for the given data. The method has processed all the 500 queries within a
minute, detecting 432 TP matches. The average time for processing a single query is 0.07
seconds.

Based on Figure 5.9, we conclude that setting k = 150 and L = 100 gives the best
trade-off between the quality of the results and the RT. This result is consistent with
existing real-time query matching techniques that process a query within a sub-second
time [195].

To validate the robustness of the method, we compared the results of two scenar-
ios. Hence, we selected two reference databases and two streams of queries derived from
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Figure 5.9: The trade-off between the number of true positives and the number of land-
marks for three different block sizes. Here the block size is equal to the number of k-NNs.
Many landmarks allow fewer queries to be processed, while many k-NNs allow more true
match detection.

Dataset-1 and Dataset-2 and applied the Em-K indexing (see Figure 5.10). Both reference
databases contained 5000 records. The two streams of queries are processed against the
two reference databases separately with similar parameter settings. The query matching
rate (QMR) is equal to 1 for both. Keeping the control parameters fixed at K = 7,
B = 150 and T = 60 seconds, we vary L to compare different results.

Figure 5.10-(a) compares the trade-off between the |TP | per computational effort, and
the number of landmarks. Increasing L decreases the |TP | for query matching in both
datasets similar to Figure 5.9. Few landmarks allow processing all the queries within 60
seconds, whereas many landmarks allow processing fewer queries. While both reference
databases are similar in size, the total queries processed are different in size. A total of 500
queries are processed against Dataset-1, and 375 queries are processed against Dataset-2
in the experiment. Hence, we observe fewer TP matches for Dataset-2 than Dataset-1 in
their highest performance. However, the curves illustrate similar trends for both datasets.

Based on the results produced by the previous experiment, Figure 5.10-(b) compares
the two datasets in terms of the precision (P) against varying L In each instance, the
queries are processed within T=60 seconds. Hence the P values are measured per com-
putational effort. Dataset-2 has lower P values compared to Dataset-1. This behaviour
is expected since we assume that the duplicate records in Dataset-2 contain a maximum
of three edit distance errors. The pre-selected thresholds (θm) are different for the two
datasets. However, we do not have the exact details of error rates for this benchmark
dataset. Hence, the method may allow more false positives in the final block of records
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retrieved for a given query, reducing the P.

(a) The trade-off between the number of TP and the number of landmarks
for two different datasets.

(b) The trade-off between the precision and the number landmarks for two
different datasets.

Figure 5.10: The two figures (a) and (b) compares the Dataset-1 and Dataset-2 in terms
of number of TP and precision varying the L The k-NNs are fixed to k = 150 and T = 60
seconds in each instance. The curves illustrate similar trends for similar parameter settings
in (a). However, in (c), Dataset-2 exhibits low precision compared to Dataset-1.

However, the overall results suggest that the proposed method is robust over differ-
ent datasets. The optimal parameter set that provides the best compromise for our data
is K = 7, B (or k)= 150 and L = 100, 300. We need a few landmarks to achieve the most
number of TP matches for a stream of queries within a period. Few landmarks make
the embedding efficient. As a result, a single query can be processed within less than a
second against a reference database to find matches. Hence our method scales well for
approximate query matching against a large-scale reference database for ER.
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5.6 Discussion

The Em-K indexing methods embed a set of strings in a metric space, particularly a
lower-dimensional Euclidean space. There is a trade-off between the dimension and the
accuracy of the embedding. Higher dimensions allow the embedding to be more accurate.
However, it does not scale well for large datasets. In our experiments, we only selected two
blocking variables for embedding and indexing. We can also use other blocking variables,
such as addresses and gender. As a result, the dimension of the Euclidean space needs to
extend accordingly to facilitate those.

The most costly part of the method is the amount of time to embed queries, which
increases linearly with the number of landmarks. However, this approach is easily paral-
lelisable since each query is processed separately. Depending on the application, we can
tune the parameters for a fast, less accurate query matching or a slow, more accurate
method.

Our method is designed to solve approximate query matching rather than exact query
matching. It means we expect the queries to contain errors in their attribute values.
We could easily perform an exact search based on lexicographical order considering the
query and the reference dataset using a data structure such as a binary tree to find exact
matches as a pre-filter for our method.

Our indexing method for query matching uses distance computations to embed the
reference database in the Euclidean space. This embedding is a slow process that requires
a minimum of O(L2) operations where L is the number of landmarks. We consider this
as the training phase, which only needs to be performed once. However, with the Kd-tree
built, we can perform similarity queries with significantly fewer distance computations
than a sequential scan of the entire dataset.

5.7 Summary

Indexing techniques reduce the pairwise comparisons in ER solutions. Many existing
mapping-based indexing techniques work in offline mode with fixed-size databases. Hence,
these techniques are not suitable for applications that require real-time query matching,
especially if it involves big, fast, or streaming data. Our method investigated the query
matching problem in ER by using spatial mapping of records into a multidimensional
Euclidean space. The use of vectors in the Euclidean space that represent records allowed
fast query matching with comparable accuracy. The proposed method proved fast running
time as well as scalability along with the data size.
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Chapter 6

High Performance Out-of-sample
Embedding Techniques for
Multidimensional Scaling

In previous chapters, we described MDS as an embedding technique for large-scale ER.
In Chapter 5, we proposed an out-of-sample embedding (OSE) technique based on an
optimisation that extends the LSMDS algorithm. In this chapter, we investigate the OSE
problem in detail to propose a machine-learning approach based on an artificial neural
network.

6.1 Introduction

Dissimilarities between entities are a significant component of ER, and MDS can analyse
any data that represent how similar (or dissimilar) objects or events are to one another. In
our previous chapters, we applied MDS algorithms to propose metric space-based solutions
for large-scale ER.

Many embedding techniques, including LSMDS, do not provide a fixed transformation
for the training data initially used to construct the configuration space. Hence, computing
the output transformation of new test data is not trivial. The problem of mapping
previously unseen data in an existing configuration is called the out-of-sample embedding
problem [133].

MDS is a popular embedding technique, but it can be inefficient for large-scale data.
Traditional MDS algorithms such as CMDS and LSMDS are computationally expensive.
We have discussed their drawbacks in Chapter 3, Subsection 3.2.1. The expense of calcu-
lation means that it is impractical to recompute the entire MDS every time new data is
added.

The provision of a fast OSE technique solves both problems (discussed in Chapter 3)

93
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in the LSMDS algorithm. Hence, we can easily add new points, making it possible to
build a larger embedding using a subset of landmark points. A high-performance OSE
technique extends the LSMDS algorithm to address two main concerns:

1. It helps scale the LSMDS algorithm for large-scale data.

2. It provides a means querying or adding out-of-sample data into an existing config-
uration space.

Our proposed OSE approach uses only a fraction of the existing configuration to map
new points. We call these “landmarks” and keep them fixed (defined in Chapter 3). The
mapping of a new object is found by minimising the errors in distances to landmarks.
Hence our primary solution is an optimisation approach that minimises a cost function
to solve the OSE problem. We introduced the OSE problem and our optimisation based
solution briefly in Chapter 3.

As discussed in Chapter 5, the number of landmarks (L) plays an essential role in the
optimisation based OSE method. It produces a quick and reasonable distance approxima-
tion for the out-of-sample data with a few landmarks. Increasing L improves the quality
of the distance approximation and provides a more accurate embedding. However, using
many landmarks is problematic because it increases the embedding RT. Hence, we further
investigate the OSE problem to provide an efficient ML based solution.

In this chapter, we propose an OSE technique based on an artificial neural network
(ANN) to address the deficiencies of the optimisation-based OSE method introduced in
Chapter 3, Subsection 3.2.2. The ANN is trained using the distances to the landmarks
from the input data and their relevant coordinate values in the existing configuration
space created by MDS. Out-of-sample data is then mapped into this space by the ANN.
The training may be slow, but once the ANN is trained, the OSE is fast, so the cost of
training is amortised over many OSEs. Thus, this approach is ideal for the query matching
problem.

Both approaches use landmarks to reduce the computational overhead of dissimilar-
ity calculations. However, the experimental results suggested that the ANN model is on
average 3.8× 103 times faster than the optimisation approach (with its optimal parame-
ter setting) for predicting a coordinate of a new data point, and both techniques exhibit
similar accuracy for our data. Thus the ANN model is the most efficient OSE technique
for large-scale LSMDS. We can perform very fast query matching against large-scale ref-
erence databases by combining the neural-network OSE solution with our Em-K indexing
(proposed in Chapter 5).

As discussed in Chapter 5, we can use the OSE technique to apply landmark LSMDS
as an alternative to complete LSMDS on a whole dataset. The procedure is, (1) select a
relatively small subset of landmarks from a large-scale dataset (2) apply LSMDS to the
selected landmarks (3) determine the coordinates of the remaining points by applying
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OSE. Hence, the major contribution here is the use of ANN to perform the OSE step
efficiently.

For a given large-scale data set consisting of N objects, we first apply LSMDS for a
selected subset of L≪ N landmarks, with a complexity of O(L2). These L data points are
embedded in a K dimensional space, and we call this a configuration space. We can map
the remaining M = N − L objects to the existing configuration applying the proposed
OSE approaches with only O(LM) computations. Therefore our approach dramatically
reduces the computational complexity.

Similarly, mapping a new object to the above configuration requires only the distances
between landmarks and the new object. When mapping a new object, the OSE approaches
use landmarks to reduce the complexity of O(N) computations to O(L). Moreover, in
the ANN, the computations required are much more efficient than the original LSMDS
optimisation.

In summary, our primary contributions are:

• We formally introduce the OSE problem for the LSMDS algorithm. We explain the
use of OSE solutions for handling large-scale input data in LSMDS.

• We propose an OSE technique for LSMDS using an optimisation approach.

• We propose an ANN model of OSE for LSMDS that finds the mapping of a new
object faster than the optimisation-based solution.

The combination makes LSMDS much more practical for large data or online streaming
data.

6.2 Related Work

The OSE problem has been actively researched in recent years to improve dimensional
reduction algorithms. Beningo et al. [196] provides a unified framework of OSE extensions
for different DR algorithms such as Local Linear Embedding (LLE), Isomap, Laplacian
Eigenmaps, MDS and Spectral Clustering. Many of these algorithms use eigendecom-
position to obtain a lower-dimensional embedding of the data on a non-linear manifold.
The proposed solutions use the Nyström sampling (a technique that speeds up kernel
method computations) to train a model for out-of-sample points without recomputing
eigenvectors. Hence, it is only applicable to CMDS. Furthermore, these non-parametric
OSE extensions have scalability limitations since the complexity linearly increases with
the size of the datasets.

In contrast, Trosset and Priebe [133] extended the underlying optimisation problem
to resolve the out-of-sample problem with eigenmaps constructed by CMDS. They solve
the optimisation problem numerically, considering the least-squares approximation of the
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pairwise inner products of the existing space. We use a similar concept to introduce
an embedding approach for LSMDS that directly approximates the dissimilarities with
distances rather than pairwise inner products.

Anderson and Robinson [197] have also proposed an approach for placing a new ob-
servation into a configuration space based on inter-point distances. The method uses
CMDS to produce a configuration space of the data and discriminant analysis to test
group differences. Both methods proposed by Trosset and Priebe [133], and Anderson
and Robinson [197] have produced identical results when embedding a single point to an
existing configuration. However, these methods calculate all the distances between a new
point and existing points in the original space for mapping it into the existing configu-
ration and are not suitable for large-scale MDS. In contrast, our method only calculates
distances to a fixed set of landmarks when mapping a new object in an existing space
created by LSMDS.

Gower [198] added a single observation to an existing configuration by adding a dimen-
sion, which alters the configuration space. In contrast, we are interested in embedding a
new object into an existing configuration without changing it because we aim to embed
many out-of-sample objects.

Bae et al. [131] proposed an interpolation approach similar to k-nearest neighbour
classification. The method, namely interpolation-MDS (I-MDS), extends the SMACOF
implementation of the LSMDS algorithm. In contrast, our methods extend the LSMDS
algorithm for its gradient descent based implementation. We follow a similar idea as
in [131]; however, there are significant differences between the two approaches.

• The I-MDS method works well with large-scale data, and the input data is usu-
ally Euclidean distances. In contrast, our solutions work well for large-scale MDS
applications that process non-Euclidean input data.

• I-MDS uses a subsample of the existing objects to find the mapping of the new
data. For each new object, it calculates the relevant nearest neighbours and maps
them in the existing space by solving an optimisation problem. There are two
notable limitations; firstly, the method depends on the nearest neighbours (NNs).
Thus, selecting many NNs for each new object reduces the efficiency. Secondly,
k-NN search only works for data in a metric space, e.g., input data are points
in a Euclidean space. Hence, I-MDS is not applicable to non-metric input data.
These limitations reduce the generalisability of the I-MDS algorithm. In contrast,
our methods can take non-metric dissimilarities as inputs when handling large-scale
LSMDS problems.

The OSE problem has appeared in various contexts. Some of them are bioinformatics
[131, 199], sensor networking [135], high performance computing [131] and image pro-
cessing [200]. For instance, in sensor networks, this problem occurs when one seeks to
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automatically map the sensors’ locations given the pairwise distances between them and
then infer the locations of new targets as they appear [201]. This problem also appears
in the Euclidean embedding of network distances [135]. The idea is to assign coordinates
to the node in the network such that the Euclidean distances approximate the network
delay. The initial configuration is obtained by applying CMDS to a fixed set of designated
nodes called ‘landmarks’. Then remaining node in the system measures the distances to
each landmark and perform nonlinear optimisation to compute their coordinates [202].

ANNs have been used in modelling manifold embedding due to their robust learning
framework in recent years. Jansen et al. [203] used modern deep learning to perform
OSE in graph embedding. Their experiments suggested that deep neural network models
outperform the Nyström methods. In [204], t-SNE was combined with deep feed-forward
networks to obtain a highly non-linear embedding function. Bunte et al. [205] formalised
well-known non-parametric DR techniques based on cost optimisation to define explicit
mapping functions that facilitate OSE extensions. ANNs and parameterised non-linear
functions are used in their formalisation process. These methods can handle large-scale
data since the mapping functions learn from a small random subset of the data. However,
the current settings of this process only work for Euclidean data.

By looking at the existing methods of OSE for MDS, we found three main limitations:

• Many of them only provide solutions for CMDS, not LSMDS and as a byproduct
focus on embedding Euclidean data.

• Most of these existing solutions do not address the large-scale MDS problems. In-
stead, the focus is on investigating the technical difficulty that arises by inserting a
small number of additional points into previously constructed configurations.

• All the methods are tested only on Euclidean data. Hence, the OSE methods for
non-metric MDS applications have not been studied well.

6.3 Methods

The proposed OSE techniques extend the capabilities of LSMDS for large-scale data.
These techniques enable querying/adding new points of previously unseen data in an
existing configuration. In this section, we formally introduce the OSE problem. Other
relevant definitions, key concepts on the LSMDS algorithm, embedding and landmarks
are given in Chapter 3. We first summarise the terminology and the notation used in this
chapter in Table 6.1.
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Table 6.1: Summary of the main notations used in this chapter.

N Input objects in a metric or non-metric space
∆N Dissimilarity matrix of objects N
X Coordinate matrix of objects N in the configuration space
δ Dissimilarity or distance measure between objects N
d The Euclidean distances between coordinates X
K Output dimension of a MDS configuration
σ Stress of a MDS configuration
y Out-of-sample object
ŷ Mapping coordinates of the out-of-sample object y in the configuration space
Ls Set of Landmarks selected from objects in a high dimensional space
L Number of landmarks in the set Ls

∆ Input training data matrix for the neural network
δi ith training input of the neural network
xi ith training label of the neural network
k Number of nearest neighbours in a k-nearest neighbour search
B The size of the block return by the Em-K indexing method

6.3.1 Out-of-sample Embedding Problem

The out-of-sample embedding (OSE) maps additional points to a previously constructed
configuration. Suppose we have a configuration of N points in a K-dimensional Euclidean
space obtained by applying LSMDS. Let y be an out-of-sample object, with measured
pairwise dissimilarities from each of the original N objects. The OSE problem is to
embed the new y object into the existing K-dimensional Euclidean space such that it
optimises some criteria.

Definition 6 Out-of-sample embedding: Finding the coordinates (location) of a new ob-
ject y, from a metric or non-metric space (N, δ) by mapping it to an existing configuration
space (X, d).

The main idea of our OSE approach is to use only a fraction of the input data that we
call landmarks. For more details on landmarks, refer to Chapter 3. The proposed OSE
approach extends the LSMDS algorithm to accommodate embedding of large-scale data
and query matching against an existing configuration space. When used with large-scale
data, the first step is to apply LSMDS only on landmarks. Then the remaining data can
be added to the existing configuration as out-of-sample points. Similarly, one can use
only a fraction of the existing data (landmarks) to query against a current configuration
where the query points are also out-of-sample data.
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We have briefly discussed our optimisation OSE technique in Chapter 3. We will
describe it in more detail next.

6.3.2 Optimisation Method for OSE

We proposed an optimisation approach similar to the stress minimisation of the LSMDS
algorithm to solve the OSE problem for LSMDS. However, we accomplish the OSE method
with a different objective function because the original LSMDS objective involves all N2

distances in the original set. In contrast, the OSE involves only the distances between a
new object and the landmarks.

The proposed method is implemented as follows. For a given dataset of N objects
in a metric or non-metric space with dissimilarities (∆N = [δij]), a configuration of X =
[x1, x2, .., xN ] points in a K-dimensional Euclidean space, where xi ∈ RK is constructed
by applying the LSMDS algorithm.

Then we choose a set of landmarks Ls = l1, ...lL, from the N objects and the corre-
sponding l̂1, ...l̂L points from the N pre-mapped points in the configuration space.

Finally, the mapping of the new point y to RK is calculated based on the pre-mapped
positions of Ls and the corresponding proximity information δliy. Finding a new mapping
position is considered a minimisation problem of stress similar to a standard LSMDS
problem with m points, where m = L + 1. However, only one point y is movable among
m points. Hence the OSE of a new object y is obtained by minimising the following
objective function,

σ̂(y) =
L∑
i=1

( ∥∥∥l̂i − ŷ
∥∥∥
2
− δliy

)2
. (6.1)

The δliy represent the original dissimilarity value between ith landmark point and the
new embedding point y in the original space. The Euclidean distance between ith landmark

and point y in the existing configuration space inK dimensions is given by
∥∥∥l̂i − ŷ

∥∥∥
2
. Thus

σ̂(y) is used to match the original dissimilarities of the object y to the landmarks into the
Euclidean distances in the configuration space.

We seek to find a position of ŷ that minimises σ̂(y). The proposed OSE algorithm
simplifies the complicated non-linear optimisation problem to a small non-linear optimisa-
tion problem, such that N points to L+1 points non-linear optimisation problem, where
L ≪ N . Note, however, that it still requires the solution of a quadratic optimisation
problem.

6.3.3 Neural Network Method for OSE

An ANN is a machine learning model that creates predictions based on existing data
(training data). These are inspired by the biological neural networks, which process
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information in the human brain using neurons [61]. ANNs can consist of several layers or
many layers (deep neural networks). They solve different types of problem areas, including
classification, regression, multi-output or multi-class problems.

First, we provide an overview of the ANNs in the following prior to our model expla-
nation.

Overview

(a)

(b)

Figure 6.1: (a) A neural network architecture with two hidden layers. It takes the input
vector δ1, δ2, .., δn and processes it through the hidden layers to produce the output x̂.
(b) Shows the input, output and functions of a single neuron. It calculates output of the
linear function

∑n
i=1 δiwi + b for all the inputs and then passes it through the activation

function f to get the output a.

An ANN consists of many simple processing elements, called neurons, each possibly
having a small amount of local memory. Figure 6.1-b shows the structure of a single
neuron. These are organised into a sequence of layers linked by weights. The basic
architecture of an ANN consists of:

• Input layer: loads the input data from external sources to feed them into the model.

• Hidden layers: intermediate layers that do all the computations and feature extrac-
tion from the input data.

• Output layer: takes input from preceding hidden layers and comes to a final predic-
tion based on the model’s learnings.
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The networks are learned by processing the inputs and comparing the resulting outputs
with the desired outcomes. The difference is then propagated to the network by adjusting
its weights to minimise the error. It is an iterative process, and the weights are continually
adjusted until the system converges to an optimum solution. Figure 6.1-(a) illustrates the
basic architecture of a simple neural network with four layers: the input layer, two hidden
layers and the output layer.

At an abstract level, an ANN is a function. Hence we can define the function
fθ : ∆y → ŷ parameterised by θ which takes the input δ ∈ RL and produce the output
ŷ ∈ RK [206].

Neural Network Model

We formulate the OSE problem as a regression problem. Regression refers to predictive
modelling problems that involve predicting a numeric value for a given input. Our task
requires predicting more than one numerical value, usually known as the multi-output
regression. Among the family of NN models, we choose the multilayer perceptron (MLP),
i.e., a multilayer, fully connected feed-forward network, to solve our out-of-sample regres-
sion problem. MLPs are general-purpose, flexible, nonlinear models that can approximate
virtually any function to any desired degree of accuracy given enough hidden neurons and
data.

As before, a configuration is obtained for N points in K dimensional space by applying
the standard LSMDS algorithm. Then we choose a set of landmarks Ls = l1, ...lL from
the N pre-mapped points.

Then the input data to the NN model is as follows.

• Input training data: The pairwise distances between the landmarks Ls and the N
points measured in the original space. Hence the input data is a matrix ∆LN ∈
RL×N .

The column vector of the ith sample in ∆LN has the form δi = [δil1 , δil2 , δil3 , .., δilL ] ∈
RL, where δilj is the distance between a landmarks and the ith point given i ∈
1, 2, ..., N and j ∈ 1, 2, ..., L.

• Output training labels: The corresponding coordinate representation of N points in
the K-dimensional Euclidean space. The output labels of the ith sample is xi ∈ RK .

• Input testing data: The pairwise distances between the landmarks and a new point
y measured in the original space. Similar to the training data, the input testing
data takes the form δy = [δyl1, δyl2 , δyl3 , ..., δylL ] ∈ RL. Testing data would usually
include labels; however, we do not have labels for the out-of-sample points.

Our MLP model is a by-now standard model with three hidden layers that use the
ReLU activation function [206, 207]. The size of the input layer is equal to the number
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of landmarks L, whereas the size of the output layer is K, representing the dimension of
the output data. The sizes of the hidden layers are estimates of the intrinsic dimension
of the previous layers.

In each learning step, the ANN is presented with an input column vector δi and the
label xi. We will fit the model using the mean absolute error (MAE) loss function and
the Adam version of stochastic gradient descent [206].

The MAE measures the average magnitude of absolute differences between N label
vectors X = x1, x2, .., xN and predicted vectors X̂ = x̂1, x̂2, ..., x̂N , with the corresponding
loss function; written as,

LossMAE(X, X̂) =
1

N

N∑
i=1

||xi − x̂i||, (6.2)

where, ||xi − x̂i|| is the Euclidean distance between the label vector and the predicted
vector of the ith sample of the input data.

Starting with initial random weights, MLP train the model to minimise the loss func-
tion by repeatedly updating these weights. The backpropagation algorithm is used in NN
models to feed the loss backwards from the output layer to the previous layers, updating
weights to decrease the loss.

A comprehensive introduction to these topics is outside the scope of this thesis. See
instead [208, 206] for a general introduction to deep learning, and [209], for backpropa-
gation.

The out-of-sample LSMDS steps for both methods described above are as follows; (1)
apply LSMDS on the training data, (2) choose landmarks from the training data, and (3)
apply any of the OSE techniques for the remaining data points based on the embedding
results of the training data. Algorithm 3 shows the steps of the OSE techniques when
used to embed large-scale data applications. We will discuss the results in Section 6.4.

6.4 Experimental Analysis

We evaluated the performance of the two methods under various settings. Two main
questions studied in these experiments are: (1) Are these proposed methods robust over
multiple settings? And (2) Do any of the methods outperform the others in terms of
scalability and accuracy?

All algorithms are implemented in R and executed on a desktop with an Intel Core 5
Quad 2.3GHz, 16GB RAM, and MacOS Big Sur. We use Keras API and Tensorflow as
its backend for developing our neural network model.
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Algorithm 3 Out-of-sample embedding algorithm.

Input: Dataset N , Method
1: Select L landmarks from N , randomly or using FPS.
2: Apply LSMDS to L (using Algorithm 2)
3: Select the remaining points M = N − L
4: Measure the distances to landmarks

# string distances are measured on LV distances
# OPT = optimisation approach and NN= neural network model

5: if Method==OPT then
6: for y in M do
7: Apply the optimisation method using (6.1)
8: predict the mapping position of y
9: end for

10: else if Method=NN then
11: Train the neural network
12: for y in M do
13: predict the mapping position of y
14: end for
15: end if
16: Return ŷ.

6.4.1 Data Sets

We examined the performance of our methods over synthetic datasets that contain entity
name strings. These data are generated using the Geco tool in FEBRL [164], where
we can manipulate the data generation to significantly vary the size and characteristics
(e.g., error rates) of the data. The Geco tool allows us to create unique entity names as
well as duplicate entries of entity names. Each entity has a given name and a surname.
We introduce duplicate entity names that contain errors by slightly modifying the values
of randomly selected entries. In data generation, we assume a single entity has only one
duplicate and a maximum of two typographical errors (substitutions, deletions, insertions,
and transpositions) in both of its attribute values. In this chapter, we mainly used 5000
randomly selected name strings and 500 name strings as out-of-sample points for testing,
which allowed us to perform resampling to evaluate the results for consistency. However,
we show that our methods are scalable to large-scale datasets.

In this work, we used the Levenshtein (LV) distance (defined in Chapter 2, Subsec-
tion 2.5.3) to measure the similarity between entity name strings.
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6.4.2 Performance Evaluation

We evaluate the results of the two OSE techniques based on an error metric Err(m),
similar to the stress defined by the equation (3.2) in Chapter 3. It measures the distortion
of the distances between new and existing points before and after the OSE transformation.
The point error, PErr(y) measures the distances between a new point and the existing
points before and after the OSE transformation. We defined them as follows;

The point error PErr(y) of embedding a new point is given by,

PErr(y) =
N∑
i=1

(δiy − ||xi − ŷ||)2, (6.3)

where the distance between the ith pre-mapped point and a new point y in the original
high dimensional space is given by δiy, and the Euclidean distance between the same
points in K dimensions is given by ||xi − ŷ||.

The error Err(m) of embedding m new data points in a K dimensional Euclidean
space with a pre-mapped N data points is given by,

Err(m) =

N,m∑
i,j=1

(δiyj − ||xi − ŷj||)2

δ2iyj
, (6.4)

where δij is the distance between the ith pre-mapped point and yj new point in the original
high dimensional space, and i ∈ 1, 2, ..., N and yj ∈ 1, 2, ...,m. The Euclidean distance
between the same points in K dimensions is given by ||xi − ŷj||.

The error Err(m) measures the embedding error of new points m with respect to the
N points in the existing configuration. We calculated Err(m) to compare the accuracy
of the two OSE methods. Additionally, we used scatter plots to compare the point error
values calculated for embedding each new point in m using either OSE method.

This approach measures the accuracy of the embedding; however, we also want to
understand its performance in ER query matching. To evaluate the performance of the two
OSE methods for ER, we used the two measures defined in Chapter 5, Subsection 5.5.1.
First, we use the number of true positives (|TP |) per computational effort to measure
the number of true matching records determined by the Em-K indexing when processing
queries within a fixed period. Second, we measure the precision (P) per computational
effort.

We also compared the efficiency of the methods using the computational time of
processing out-of-sample data. All the CPU running times are measured in seconds and
denoted by RT.
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6.4.3 Choice of Parameters

Several factors impact the performance of the proposed OSE methods; some of them (e.g.,
dimension (K) and landmarks (L) ) are control parameters that we rely on to fine-tune
the performance. The datasets determine the other important factors, such as dataset
size and duplicate rates.

In this section, We discuss the choices ofK, L parameters in our OSE implementations
(and their rationale). In detail, we applied LSMDS and the proposed OSE techniques to
a sample of data generated using Geco [164]. We chose 5000 name strings as the reference
data points to create the initial configuration and separate 500 names as out-of-sample
points. The reference data points and the out-of-sample points represent unique entities.

K: The dimension of the Euclidean space (K) plays an essential role in the performance
of the LSMDS algorithm. We have discussed good values of K appropriate for embedding
string data, such as entity names in previous chapters. Following the findings based on
the trade-off between stress vs dimension in Chapter 5 and Chapter 6, we set K = 7.

L: The number of landmarks is a dominating factor that directly affects the effective-
ness and efficiency of the proposed OSE techniques. Landmarks reduce the computational
overhead of distance calculations. Since only a fraction of the initial data is used to map
a new point to the configuration space, it also reduces the total running time of the OSE
process.

We applied two landmark selection methods: FPS and random selection (explained
in Chapter 3, Section 3.2). The following results are based on the FPS. The number of
landmarks to be used remain to investigate in what follows.

The use of a few landmarks only requires a few distance calculations. Hence, the
method becomes efficient for large-scale data processing. In contrast, fewer landmarks
might produce a less accurate approximation of the mapping positions for new data.
We have to consider this trade-off when choosing an adequate number of landmarks
appropriate for our data. The following experiments measure the effect of landmarks
on the performance of the proposed OSE techniques. The performance is measured based
on the accuracy of the distance approximation and the average RT of mapping a single
point using either of the methods.

Comparing the Total Error

First, we applied LSMDS to the selected 5000 strings of reference points. The dissimi-
larities between strings are measured using LV distance. Then the remaining 500 strings
(out-of-sample points) are mapped using the proposed OSE methods, only measuring the
distances to the landmarks. We measured the total error (Err(m)) generated by the out-
of-sample data mapping in the configuration space for different instances. We obtained
two sets of results (in terms of total error) for both OSE techniques by keeping the K = 7
fixed and varying L.



106Chapter 6. High Performance Out-of-sample Embedding Techniques for Multidimensional Scaling

Figure 6.2: A comparison between the proposed out-of-sample techniques: neural net-
work model and the optimisation method. The total error (Err(m) in Equation 6.4.2)
represents the distance distortion created through the mapping process when mapping
out-of-sample data from the high dimensional space to the Euclidean space. The Err(m)
decreases rapidly for the optimisation method. In contrast, the total error fluctuates in
small amounts for the neural network when the number of landmarks increases in each
instance.

Figure 6.2 compares the two OSE techniques; the NN model and the optimisation
method. We utilised the same set of landmarks when applying both methods in each
instance. Let Erro(m) and Errnn(m) be the total errors produced by the optimisation
method and the NN model, respectively.

The optimisation method reduces the Erro(m) drastically until the number of land-
marks is 1000. Then Erro(m) reduction gradually slows down. The Erro(m) approaches
a non zero asymptotic, and it depicts that the increasing number of landmarks increases
the accuracy of the OSE.

Small L tends to produce higher Erro(m) values in the optimisation method since
only a few distance calculations are used in the approximations. If L is set very high
(L = 2000), the Erro(m) decreases as we have more distances to approximate the mapping
of the new data points. However, having a large number of landmarks can increase the
processing time of the OSE. Thus L should be set neither too high nor too low, suggesting
landmarks between 1000 to 1500 gives a reasonable Erro(m) for the overall approximation
of the given data set when applied the optimisation approach.

In contrast, the NN model only shows a significant improvement when landmarks
increase from 100 to 300. After that, Errnn(m) does not significantly reduce with the
increasing number of landmarks used in the model training. The results suggested that
the neural network OSE method performs well with fewer L and sufficient training data.
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In contrast, the optimisation method requires more landmarks to achieve the same level
of accuracy as the NN model. While both methods perform similarly around 1100-1500
landmarks, the NN model works very efficiently around 100-300 landmarks with a slightly
reduced accuracy.

Comparing the Point Errors

Next, we looked at the error of distortion for each out-of-sample point separately. The
experiment settings are the same as before, and instead of the total error, we calculated the
distance approximation errors separately for each out-of-sample mapping. We applied the
OSE methods to map each new string to the existing configuration space and calculated
PErr(y) (Equation 6.4.2) for every single mapping. We obtained two sets of results
produced by the two methods. Figure 6.3 compares those point error values obtained for
the underlying out-of-sample data points. Here we have normalised the PErr(y) by δiyj
which is the sum of the dissimilarities between all the new points and the existing points
in the original space.

(a) L=100 (b) L=1500

Figure 6.3: The comparisons between the point errors of embedding out-of-sample data
using the neural network and the optimisation methods. The NN model is better for the
points below the y = x line, and optimisation is better for the points above the line. a)
The point errors produced by both OSE approaches with 100 landmarks. The NN model
produces small errors compared to the optimisation b) The point errors created by both
OSE approaches with 1500 landmarks. Both methods make similar errors with many
landmarks, and the magnitude of the point errors are much smaller.



108Chapter 6. High Performance Out-of-sample Embedding Techniques for Multidimensional Scaling

Ideally, we want point errors to be zero for each OSE point. However, they cannot
be zeros since our methods only approximate the distances between new points and land-
marks, excluding the distances between the remaining points and the new points in the
embedding calculations. On the other hand, no exact solution exists for our data since
the embeddings are invariant to position, and the methods only approximate the relative
distances. The point errors are calculated considering the distances from a new point
to all the existing points to measure the error of distance approximation produced by
the proposed OSE techniques. Hence, our methods tolerate a small amount of error in
mapping a new data point to provide a more efficient solution at the expense of slight
accuracy loss.

Figure 6.3 describes how the point errors change with the number of landmarks when
the proposed OSE techniques are applied for new data points. We have measured the point
errors of mapping 500 out-of-sample entity name strings in a 7-dimensional Euclidean
space. The plots are drawn only for L = 100, 1500, showing significant improvements
with more landmarks.

Figure 6.3-(a) illustrates PErr(y) comparisons of the mapping based on L = 100
landmarks. All the point errors produced by the NN model are less than 0.5, whereas the
point errors produced by the optimisation method are less than 0.75. It depicts that the
NN model can approximate the mapping of a new point with few landmarks producing a
small error. In contrast, the optimisation method creates comparatively large point errors
in the mapping with few landmarks.

Figure 6.3-(b) illustrates PErr(y) comparisons of the mapping based on L = 1500
landmarks. Increasing the number of L has improved the accuracy of both methods. All
the point error values produced by the optimisation method are below 0.25. Similarly,
95% of the point error values produced by the NN model lies below 0.25. Hence, with a
sufficient amount of landmarks, we can improve the accuracy of both methods where the
optimisation method remains as good as the NN model.

Next, we looked at the PErr(y) distribution produced by both approaches. Figure 6.4
compares the point errors and their distributions of the two OSE methods. These figures
extend the PErr(y) values shown in Figure 6.3 to their distributions. When L = 100,
the error distribution of the neural network results shows a small spread indicating small
variance, whereas the optimisation results show a comparatively wider spread indicating
slightly higher variance. In contrast, both distributions have similar shapes and a smaller
spread indicating small variances when L increases to 1500. Nevertheless, using many
landmarks in the embedding can be inefficient for large-scale data. In the following
experiment, we explain the running time complexities of the proposed methods.

Comparing the Average Running Time

We evaluated the efficiency of the methods measuring the RT of mapping a new point
in the existing configuration space. The number of landmarks L directly impacts the
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(a) L=100 (b) L=1500

Figure 6.4: The comparisons between the point errors of mapping out-of-sample points
and their distributions. The neural network model and the optimisation method are ap-
plied to map out-of-sample points into a 7-dimensional Euclidean space. a) The point
errors and their distributions created by both out-of-sample approaches with 100 land-
marks. The point error distribution of the neural network results shows a small spread
indicating small variance, whereas the optimisation results show a comparatively wider
spread indicating high variance. b) The point errors and their distributions created by
both out-of-sample approaches with 1500 landmarks. Both distributions have similar
shapes and a smaller spread indicating small variances when the number of landmarks
increases to 1500.

running time (RT) of the proposed OSE methods since each new point is mapped to the
existing configuration space using landmarks. Both methods map a single out-of-sample
point at a time.

Figure 6.5 compares the average running time (RT) of mapping an out-of-sample point
in the configuration space for both methods, varying the numbers of landmarks. Increasing
L increases the average mapping time of a single point linearly in the optimisation method.
The average mapping time increases linearly with L for the neural network model, which
is not visible due to the scaling. When L = 100, the average RT of mapping an out-of-
sample point only takes 0.013 × 10−2, and with L = 2100 the average RT is 0.2 × 10−2

for the NN model.

The results show that the NN model is faster than the optimisation method regardless
of the number of landmarks used in the mapping. Both methods spend less RT around 100
landmarks and increase linearly with L. The total rates of change in RT with respect to
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Figure 6.5: A comparison of the average running time of mapping a single query in an
existing configuration space using the proposed out of sample methods: neural network
and optimisation. Each instance represents a different number of landmarks used in the
mapping. The running time increases linearly with the number of landmarks for both
methods, although only the optimisation method shows a significant increase in the RT
rate per landmark.

landmarks are 10% and 7.5×10−4% for the optimisation and NN models, respectively. The
RT grows gradually (small gradient) for the NN model and drastically (large gradient) for
the optimisation model. However, a small number of landmarks can reduce the accuracy
of both methods. This was a significant observation in our previous experiments, as
illustrated in Figure 6.2.

These results also support our earlier remarks on the neural network that emphasise
that the model can be very fast with a small cost of accuracy. We also discussed that both
methods have similar accuracy levels between 1000 to 1500 landmarks. However, the NN
model is on average 3.8× 103 faster than the optimisation method around L = 1000, 1500
(where the best performance of optimisation occurs). Hence, we can achieve high accuracy
and efficiency using the NN model with fewer resources than the optimisation method.
Finally, we conclude that the NN model is a highly accurate and efficient method and an
excellent substitution for the optimisation OSE method. With less than 1000 landmarks,
the NN model can map an out-of-sample point within 1.7 × 10−4 seconds for our data.
Hence, the average running time of mapping an out-of-sample point into an existing
configuration space takes less than a millisecond.
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6.5 Application in Query Matching

The out-of-sample embedding is an important component in the Em-K indexing method
proposed for query matching in ER, as it might be in other query matching approaches.
We have discussed how OSE of LSMDS can handle the embedding of large-scale reference
databases and map previously unseen data to existing configuration space. In the following
experiments, we compare the performance of the proposed OSE methods when applied
to the Em-K indexing methods.

The indexing method processes a single query at a time, applying OSE for mapping
it to a point in the configuration space. We used both OSE techniques to obtain two sets
of results for the query matching. We have discussed the choice of parameters L and K
for both methods in the previous section. Based on those parameters, we measured the
scalability and the accuracy of the Em-K indexing method in the following experiments.

Similar to the experiments explained in Chapter 5, Subsection 5.5.3, we used a ref-
erence database Er with 5000 entity records. The streaming set of 500 entity queries
is selected to match against Er. We assumed that each query has only one matching
record in Er, i.e., QMR = 1. The Em-K indexing method first embeds a query in the
configuration space that contains the pre-mapped reference database. Then it returns a
block of candidate matching points of the query by efficiently searching for k-NNs in the
configuration space.

First, we embed Er applying the complete LSMDS. We will be using OSE only for
query matching. Hence, the algorithm design differs slightly from the Em-K indexing
method in Chapter 5, Subsection 5.4.2. The difference is that we embedded a reference
database to the configuration space using landmark LSMDS in the previous work, whereas
we use complete LSMDS here. Hence, the embedding of the reference database is con-
sistent when comparing the proposed OSE techniques. However, in practice, for a very
large-scale reference database, we need to apply landmark LSMDS since the complete
LSMDS may become less efficient. Building the Kd-tree and the k-NN search for creating
blocks of similar records for querying entities is the same as in Subsection 5.5.3. We will
call the modified indexing method Mod-Em-K indexing.

We measured the scalability of the method based on the number of true positive (|TP |)
match detection per computational effort. The query stream is processed within a given
period based on the parameter selection (L and K) in Subsection 5.5.2. We used both
OSE methods to find matching records for queries utilising the existing configuration
space and the same set of selected landmarks.

Figure 6.6 compares the proposed OSE methods on the number of true positives de-
tected per computational effort. In each instance, we changed L to measure the scalability
and accuracy of the methods. We ran 500 queries against the reference dataset, limiting
the total query time to one minute (60 seconds). The Mod-Em-K indexing method search
for a block of matching records for each query using the k-NN search. Hence, we kept the
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Figure 6.6: A comparison between the proposed out-of-sample methods: neural network
and optimisation when applied with the Mod-Em-K indexing to solve the query matching
problem in ER. The comparison is on the number of true positives found by each method
per computational effort. We kept the parameters K = 7, T = 60 seconds and block size
(B)=150. Many landmarks allow fewer queries to process for the optimisation method,
whereas the neural network model process almost all queries regardless of the number of
landmarks.

number of nearest neighbours (k, also defined as the block size, B) fixed to 150 based on
our findings in previous experiments in Chapter 5, Subsection 5.5.3.

Figure 6.5 suggested that many landmarks significantly increase the embedding RT
of a single query in the optimisation method. Similarly, when we increase L, the number
of queries processed within a minute decreases. We call this the detected number of
queries which decreases from 500 (L = 100) to 63 (L = 1500) for the optimisation
method. However, increasing L increases the |TP | matches detected per computational
effort. Figure 6.6 shows that the optimisation method only finds 115 true positives for
all the detected 500 queries with 100 landmarks, whereas it finds 51 true positives for the
detected 63 queries with 1500 landmarks.

In contrast, the NN model maintains a high level of accuracy, increasing the |TP |
detected each time with respect to the increase of L. The model finds candidate matches
for all the queries within the given minute because of fast query processing (as shown in
Figure 6.5). When L is larger than 100, the NN model has detected more than 90% of
the true matches. Based on the results, we conclude that both methods achieve a high
level of accuracy, around 1000-1500 landmarks. However, the NN model outperforms the
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optimisation method allowing fast query processing.

Figure 6.7: A comparison of three different block sizes (B) used in Mod-Em-K indexing
based on the neural network OSE to find candidate matches for queries. We processed 500
queries against the reference data within a minute (T = 60 seconds), changing the number
of landmarks and the block sizes (number of nearest neighbours) in each instance. There
is a trade-off between the number of true positives and landmarks for different block sizes.
The number of true positives increases with the number of landmarks and the block sizes.

We also looked at the effect of changing B in the Mod-Em-K indexing performance
when applied with the NNmodel. This is similar to the experiment described in Chapter 5,
Figure 5.7 which uses the optimisation OSE technique in the Em-k indexing. We changed
B by changing k for each query. Figure 6.7 shows that increasing B increases the |TP |
found within the given period. Similar to the previous experiments, increasing L increases
the |TP | detected by the model. Based on Figure 6.6, we conclude that setting B = 150
and L = 1000, 1500 gives the best trade-off between the quality of the results and the
efficiency of the method for the given dataset.

The overall results suggested that the proposed NN model of the OSE improves the
accuracy and efficiency of the Em-K indexing. We only need a few landmarks to achieve
the most number of TP for a stream of queries within a set period. Unlike the optimisation
method, we do not need to sacrifice accuracy to gain more efficiency. Even though the NN
model training takes some time, the query processing is fast once the model is trained. As
a result, a single query can be processed within less than milliseconds against a reference
database to find candidate matches.
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6.6 Discussion

The NN model maps a new point into an existing configuration space within less than a
millisecond, achieving a good approximation for the actual distances.

In contrast, the optimisation method requires many landmarks to achieve the same
level of accuracy. Many landmarks are computationally expensive since they increase the
embedding RT. Hence, there is a trade-off between the accuracy and efficiency in the
optimisation approach, which depends on L. However, this method directly predicts the
mapping coordinates of a new object in an existing configuration space using distances
to the landmarks. In contrast, the NN model requires training to build the model, which
takes time. However, once the model has been trained, the OSE of new data is immediate.
Since our NN model is a simple MLP with three hidden layers, it only takes approximately
1.2 seconds to train the model for our data.

The optimisation method requires an initial guess (or a “starting point”) for the pre-
dicting value. The choice of a starting point determines how quickly the algorithm con-
verges to a solution. We choose a vector of all 0s as the initial guess of mapping a new
object in the configuration space in our experiments. Improving the initial guess is non-
trivial since the initial configuration of the configuration space provided by the LSMDS
is not invariant to orientation or position. Hence, one of the reasons for the optimisation
method to provide less accuracy can be the sensitivity of the algorithm to the initial guess.

We applied the complete LSMDS to embed a reference database in our experiments.
However, we can train an ANN using only a subset of the data for very large databases
and map the remaining points using landmarks. Hence, the NN model can speed up
large-scale data embedding using landmarks that scale the standard LSMDS algorithm.

6.7 Summary

In this work, we have proposed and tested two OSE methods that extend the LSMDS
algorithm to large-scale datasets. The proposed techniques are based on an optimisation
approach and an artificial neural network. Both methods proved fast running time and
scalability along with the data sizes. However, the NN model is faster than the optimisa-
tion method. Hence we can efficiently map new data points into an existing configuration
space created by LSMDS using the NN model. We have improved the performance of the
Em-K indexing method by applying the NN model for query mapping.

We combined the ideas of landmarks and OSE to address the scalable issues in LSMDS.
The basic idea is first to embed a subsample of the input data by applying LSMDS and
then map the remaining data as out-of-sample points. Hence, we can apply the NN model
to embed large-scale data sets into configuration space.
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Conclusions and Future Work

In this thesis, we have addressed several shortcomings in large-scale entity resolution (ER).
This chapter summarises our contributions and discusses directions for future research.

7.1 Summary

ER is a traditional problem with many applications that have been studied for years.
However, it remains an open research problem, especially for applications in large-scale
data. In this thesis, we introduced methodologies for tackling large-scale ER to address
the problems of the shortage of real-world test data and fast indexing algorithms. Our
approach improves the state-of-the-art ER techniques in several ways.

First, we proposed a numerical test-data synthesis tool that produces realistic large-
scale data to develop new methods when suitable public data is inaccessible. One of
the key findings of this work is the approximation of vectors that represent names and
their relationships, e.g., dissimilarities and similarities. In addition to the large-scale
data simulation, it enables efficient nearest neighbour searches for approximate record
matching using their vector representations. Based on this, we proposed a fast indexing
technique suitable for real-time and approximate entity matching in large-scale ER.

We used LSMDS as our primary embedding technique for mapping string-based entity
record values to a metric space, specifically a Euclidean space. However, LSMDS has some
deficiencies that impede the capabilities of our methods. To overcome the inefficiencies
in LSMDS and improve the efficiency of the proposed metric space-based solutions, we
proposed two out-of-sample embedding (OSE) techniques.

We thoroughly tested our techniques using extensive experimental and simulation
studies involving three synthetically generated and publicly available datasets. Their
outcomes validate that our methods achieve an excellent balance between accuracy and
efficiency under varying settings. In the following, we explain a few more detail about our
distributions.

115
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7.1.1 Summary of Our Contributions

The following contributions address the shortcomings identified in the existing large-scale
ER literature (as discussed in Chapter 2, Section 2.7).

• Numerical simulation tool: As mentioned, the lack of large-scale test data collections
and publicly available benchmark data sets is a primary concern in ER. We proposed
a simple, inexpensive, and fast simulation model that can generate name-like vectors,
including simple errors. Dissimilarities between entity identification keys are the
main property of interest in ER comparisons. Hence, Our model simulates at the
level of detail required to construct the distance between those keys.

The simulation tool generates name-like vectors and their errors mimicking name
dissimilarities of an actual namespace. These vectors can be used to evaluate the
performance of large-scale data solutions, especially those that involve name match-
ing. Our extensive experiments on simulating large datasets show that the proposed
method is efficient and scalable for generating large-scale name-like vectors.

In Chapter 4, we discussed how to simulate simple vectors in a space that approx-
imates the properties of names as one step towards being able to generate large
simulated datasets for large-scale testing of global matching techniques.

One of the significant contributions in this work is the name approximation using
vectors. We used LSMDS to transform a set of name strings into vectors that ap-
proximate an actual namespace. This approach shows that we can preserve relation-
ships, such as dissimilarities between names in Euclidean space, by approximating
them as vectors.

• Em-K indexing method: As discussed in Chapter 1, some real-time ER applications
demand entity query matching against large-scale reference databases with prompt
responses. Toward this challenge, we propose the Em-K indexing method that
provides a quick and accurate block of candidate matches in the reference databases
for a querying entity. In Chapter 5, we discussed the use of metric space indexing
for efficient large-scale query matching.

Following the concept of the name approximation, our indexing method transforms
a set of records into vectors in a metric space, in particular a Euclidean space.
These vectors support fast and approximate nearest neighbour search when used
with efficient data structures. We used k-NN search and Kd-trees to find similar
points for a querying point in the Euclidean space. The method finds a set of
potential matches for a query to narrow down the candidates for a detailed level
comparison. Hence, our method acts as a filtering method that reduces the number
of comparisons needed in a query matching problem.
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Our method can process a stream of queries against a large-scale data set within a
fixed time, returning as many of the matching records as possible. The method is
fast and robust for real-time and approximate query matching.

• Out-of-sample embedding techniques: LSMDS is a standard embedding technique
we used as the basis of our metric space based ER solutions. Using LSMDS, we
project entity records into a Euclidean space by approximating their dissimilarities
or distances. LSMDS does not have an explicit OSE function, and mapping new
data into an existing configuration is impossible without recalculating the entire
configuration from scratch. LSMDS is a better approach for a complex problem,
although it can be inefficient for large-scale data similar to other MDS techniques.

To address these drawbacks, we proposed an OSE approach that extend the LSMDS
algorithm utilising the embedding of only a subset of the given data. We present two
OSE methods: the first based on an optimisation approach and the second based on
a neural network model. We applied both methods to improve the efficiency of the
Em-K indexing method. The results suggested that the NN model is faster than the
optimisation approach. Further, we explained how to modify the LSMDS algorithm
to solve various ER problems efficiently using the proposed OSE methods. We
discussed our OSE methods and the improvements of the Em-K indexing in detail
in Chapter 6.

7.2 Future Directions

Next, we discuss several possible future works of the methodologies proposed in this thesis.

• Culturally diverse synthetic data: One of the main objectives of the name approx-
imation approach and the name-like vector simulator is removing cultural biases
from name data. We attempted to avoid this bias using approximate vectors to
represent names in our simulation model. However, obtaining unbiased data for
our analysis is difficult since many publicly available actual datasets of names are
biased towards American and European names. Hence, we expect to investigate
this problem in future work to extend the model construction based on culturally
diverse data and possibly artificially created unbiased datasets.

In our name approximation approach, the main property of interest is the dissim-
ilarities or the distances between names. One aspect of our name approximation
is to provide a universal representation for entity names by approximating them as
vectors. Hence, we are not bound to any culture or character set of the data we
used to test our algorithms. Accordingly, our algorithms are not limited to certain
types of data. However, as we discussed, testing this thoroughly is challenging due
to bias in available datasets.
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• Similarity measures for different character sets: We want to construct and test our
simulation model based on a diverse set of names that are not biased towards English
names with Roman characters, e.g., Chinese, Indian, or Arabic names. However,
there are extensive difficulties in Asian or Arabic names. For instance, the character
set differs for these datasets; hence many string dissimilarity measures become less
meaningful or have no meaning.

Many string comparison algorithms are alphabet-based, and they cannot naively
handle similarity measurements in non-Latin alphabets such as Indian or Arabic.
Moreover, Chinese characters do not perform as an alphabet as they are ideographs
(a written symbol representing the meaning directly) [210]. There is an inherent
problem of incorporating datasets that are not based on Latin characters in ER.
Hence, developing ER techniques for entity records based on non-Latin characters
is challenging due to the lack of suitable similarity measures. With appropriate
alphabet-based similarity measures for non-Latin entity names, we can extend our
name-like simulator to generate unbiased data.

• Global matching: We are interested in extending this work to solve the global
matching problem for large-scale datasets. The idea is to avoid comparisons of
unnecessary detail in the pairwise comparisons (global matching) and make the ER
process more scalable for big data. We are interested in extending this work to
solve the global matching problem for large-scale datasets. The idea is to avoid
comparisons of unnecessary detail in the pairwise comparisons (global matching)
and make the ER process more scalable for big data. We define global matching
as the problem of finding similar entity records from large-scale datasets without
performing all the detailed-level pairwise similarities. We would pick the matching
entities globally, like in holistic approaches [107]. Hence, the simulation of the
many details of identification keys is not required for test data when considering the
global matching problem. The proposed name-like vector simulation model is one
step towards being able to generate large simulated datasets for large-scale testing
of global matching techniques.

• Query matching against dynamic databases: Our Em-K indexing method queries
against a large-scale reference database, and we assumed that the reference database
is static. However, reference databases grow with time in real-world ER applications,
and the new entities need to be added incrementally. For example, some applications
would require the addition of records corresponding to queries with no matching
records in the reference database. To facilitate this, we need to extend the Kd-tree
accordingly without repeating the embedding process that creates the initial tree.
However, growing an existing Kd-tree can lead to the tree becoming unbalanced.
Therefore, we should explore alternative tree structures such as the R-tree, which
is robust against dynamic data. Then the current Em-K indexing can be extended
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to other ER problems, such as querying against a dynamic database, iterative ER,
and incremental ER.

• Improving matching quality for data sets with many errors: Real-world datasets
can include errors, missing values, or incomplete values. These errors and other
inconsistencies in data create many data quality issues that reduce the matching
quality in ER algorithms. In our experiments, we have only considered the data
with typographical errors. The results show that many typographical errors in the
data reduce the quality of the results produced by the Em-K indexing algorithm.
However, it remains to investigate how other data quality issues such as OCR er-
rors, phonetic errors, incomplete values, and values that changed over time (e.g.,
addresses) would affect the algorithm and the overall matching quality. It is also
important to explore how we can improve the quality of the query matching for
datasets with poor data quality.

• Non-name data: In this work, we focus on names, but matching can involve other
types of data, e.g., addresses, gender, date of birth, occupation. Accordingly, we
might need to increase the dimension, number of landmarks, etc., and modify other
settings of the proposed methods.

7.3 Closing Remarks

This thesis provides insights into the importance of ER and mainly focus on the problems
with large-scale ER. We proposed solutions to address the issues in the scarcity of test
data and the demand for fast indexing algorithms for large-scale ER. We believe that the
proposed techniques can be used in real-world scenarios where large-scale ER testing is
required.
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[192] A. Mazeika and M. Böhlen, “Cleansing databases of misspelled proper nouns,” in
CleanDB, Seoul, Korea, 09 2006.

[193] A. Saeedi, E. Peukert, and E. Rahm, “Comparative evaluation of distributed clus-
tering schemes for multi-source entity resolution,” in Advances in Databases and
Information Systems. Cham: Springer International Publishing, 2017, pp. 278–
293.

[194] P. Christen and K. Goiser, Quality and complexity measures for data linkage and
deduplication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 127–151.
[Online]. Available: https://doi.org/10.1007/978-3-540-44918-8 6

[195] H. Liang, Y. Wang, P. Christen, and R. Gayler, “Noise-tolerant approximate block-
ing for dynamic real-time entity resolution,” in Advances in Knowledge Discovery
and Data Mining, V. S. Tseng, T. B. Ho, Z.-H. Zhou, A. L. P. Chen, and H.-Y.
Kao, Eds. Cham: Springer International Publishing, 2014, pp. 449–460.

[196] Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet, “Out-
of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering,”
Advances in Neural Information Processing Systems, pp. 177–184, 2003.

[197] M. J. Anderson and J. Robinson, “Generalized discriminant analysis based on
distances,” Australian & New Zealand Journal of Statistics, vol. 45, no. 3, pp.
301–318, 2003. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/1467-842X.00285

[198] J. C. Gower, “Adding a point to vector diagrams in multivariate analysis,”
Biometrika, vol. 55, no. 3, pp. 582–585, 1968. [Online]. Available: http:
//www.jstor.org/stable/2334268

[199] Q. Dong and Z. Wu, “A linear-time algorithm for solving the molecular
distance geometry problem with exact inter-atomic distances,” Journal of Global
Optimization, vol. 22, no. 1, pp. 365–375, Jan 2002. [Online]. Available:
https://doi.org/10.1023/A:1013857218127

https://doi.org/10.1007/978-3-540-44918-8_6
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-842X.00285
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-842X.00285
http://www.jstor.org/stable/2334268
http://www.jstor.org/stable/2334268
https://doi.org/10.1023/A:1013857218127


Bibliography 139

[200] Y. Mito, M. A. M. Ismail, and T. Yamamoto, “Multidimensional scaling and inverse
distance weighting transform for image processing of hydrogeological structure in
rock mass,” Journal of Hydrology, vol. 411, no. 1, pp. 25 – 36, 2011. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0022169411006536

[201] Z. Wang, S. Zheng, Y. Ye, and S. Boyd, “Further relaxations of the semidefinite
programming approach to sensor network localization,” SIAM Journal on Optimiza-
tion, vol. 19, pp. 655–673, 06 2008.

[202] T. Ng and H. Zhang, “Predicting internet network distance with coordinates-based
approaches,” in Proceedings.Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 1, 2002, pp. 170–179 vol.1.

[203] A. Jansen, G. Sell, and V. Lyzinski, “Scalable out-of-sample extension of graph
embeddings using deep neural networks,” Pattern Recognition Letters, vol. 94, pp.
1 – 6, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S016786551730137X

[204] L. van der Maaten, “Learning a parametric embedding by preserving
local structure,” in Proceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, vol. 5. PMLR, 16–18 Apr 2009, pp. 384–391. [Online]. Available:
http://proceedings.mlr.press/v5/maaten09a.html

[205] K. Bunte, M. Biehl, and B. Hammer, “A general framework for dimensionality-
reducing data visualization mapping,” Neural computation, vol. 24, pp. 771–804, 12
2011.

[206] N. Ketkar, Feed forward neural networks. Berkeley, CA: Apress, 2017, pp. 17–33.

[207] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with tensorflow: A review,”
Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248, 2020.

[208] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[209] D. E. Rumelhart and R. J. Hinton, G. E. & Williams, “Learning representations by
back-propagating errors,” Nature (London), vol. 323, p. 533–536, 1986.

[210] S. Xu, M. Zheng, and X. Li, “String comparators for chinese-characters-based record
linkages,” IEEE Access, vol. 9, pp. 3735–3743, 2021.

http://www.sciencedirect.com/science/article/pii/S0022169411006536
http://www.sciencedirect.com/science/article/pii/S016786551730137X
http://www.sciencedirect.com/science/article/pii/S016786551730137X
http://proceedings.mlr.press/v5/maaten09a.html
http://www.deeplearningbook.org

	Signed Statement
	Acknowledgements
	Abstract
	Introduction 
	Research Problem
	Motivation
	Summary of Our Approach
	Contributions
	Publications

	Thesis Outline
	Notation and Terminology

	Background
	Entity Resolution
	Entity Resolution Definitions

	Applications of Entity Resolution
	Entity Resolution Software
	Challenges of Entity Resolution
	Lack of keys and data quality
	Scalability to large datasets
	Privacy and confidentiality

	The Entity Resolution Process
	Data Cleaning
	Indexing
	Comparisons
	Classification
	Evaluation

	ER Tasks
	Large-scale Entity Resolution
	Indexing for Large-scale ER
	Other Techniques for Large-scale ER

	Summary

	Mathematical Foundation
	Entity Resolution
	The Embedding Problem
	Multidimensional Scaling
	Out-of-sample Embedding

	Similarity Search
	Nearest-Neighbour Search
	Kd-trees

	Summary

	Generating Name-like Vectors for Testing Large-scale ER
	Introduction
	Related Work
	Methodology
	Converting Names to Multidimensional Vectors
	Simulating name-like vectors 
	Error Simulation in Name-like Vectors

	Experimental Results
	The Data Sets
	Experimental Setup
	Stress Analysis
	Shepard Diagram Analysis
	Multivariate Normal Analysis
	Name-like Vector Simulation
	Error Simulation
	Computational Complexity
	Comparing Different Datasets

	Discussion
	Summary

	Em-K Indexing for Approximate Query Matching in Large-scale ER
	Introduction
	Related Work
	Problem Formulation
	Methods of Em-K Indexing 
	Indexing for Deduplication
	Indexing for Query Matching

	Experimental Validation
	Set Up
	Choice of Parameters
	Comparison with StringMap
	Indexing for Query Matching

	Discussion
	Summary

	High Performance Out-of-sample Embedding Techniques for Multidimensional Scaling
	Introduction
	Related Work
	Methods
	Out-of-sample Embedding Problem
	Optimisation Method for OSE
	Neural Network Method for OSE

	Experimental Analysis
	Data Sets
	Performance Evaluation
	Choice of Parameters

	Application in Query Matching
	Discussion
	Summary

	Conclusions and Future Work
	Summary
	Summary of Our Contributions

	Future Directions
	Closing Remarks

	Bibliography



