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Abstract
The stochastic fluid-fluid model (SFFM) is a Markov process {(X

t
, Y

t
,�

t
), t ≥ 0} , where 

{�
t
, t ≥ 0} is a continuous-time Markov chain, the first fluid, {X

t
, t ≥ 0} , is a classical sto-

chastic fluid process driven by {�
t
, t ≥ 0} , and the second fluid, {Y

t
, t ≥ 0} , is driven by 

the pair {(X
t
,�

t
), t ≥ 0} . Operator-analytic expressions for the stationary distribution of the 

SFFM, in terms of the infinitesimal generator of the process {(X
t
,�

t
), t ≥ 0} , are known. 

However, these operator-analytic expressions do not lend themselves to direct computation. 
In this paper the discontinuous Galerkin (DG) method is used to construct approximations 
to these operators, in the form of finite dimensional matrices, to enable computation. The 
DG approximations are used to construct approximations to the stationary distribution of 
the SFFM, and results are verified by simulation. The numerics demonstrate that the DG 
scheme can have a superior rate of convergence compared to other methods.

Keywords  Stochastic fluid-fluid processes · Stationary distribution · Discontinuous 
Galerkin method

1  Introduction

An unbounded stochastic fluid process {(X̂t,�t), t ≥ 0} is a Markov process where the phase 
{�t} is a continuous-time Markov chain on a finite state space S , and the fluid {X̂t} varies 
linearly at rate c

�t
 . A subset of Markov additive processes, stochastic fluids have been well-

analysed in the past two decades. There have been recent generalisations of stochastic fluid 

Code: https://​github.​com/​angus-​lewis/​SFFM

 *	 Angus Lewis 
	 angus.lewis@adelaide.edu.au

1	 School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
2	 Faculty of Science, Engineering, and Technology, The University of Tasmania, Tasmania, 

Australia
3	 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany

Published online: 23 May 2022

Methodology and Computing in Applied Probability (2022) 24:2823–2864

/

http://orcid.org/0000-0002-6785-3097
http://crossmark.crossref.org/dialog/?doi=10.1007/s11009-022-09945-2&domain=pdf
https://github.com/angus-lewis/SFFM


1 3

processes to a higher dimension: Miyazawa and Zwart (2012) analysed discrete-time mul-
tidimensional Markov additive processes, and Bean and O’Reilly (2014) studied the so-
called stochastic fluid-fluid model. The latter is the focus of this paper.

An unbounded stochastic fluid-fluid model (SFFM) is a Markov process 
{(X̂t, Ŷt,�t), t ≥ 0}, where the phase {�t} is a continuous-time Markov chain on a finite 
state space S ; {X̂t} is the first fluid, which varies linearly at rate c

�t

and Ŷt is the second fluid, which varies at rate r
�t
(X̂t):

Regulated boundaries may also be included for both fluids. To distinguish between 
unbounded and bounded processes, we use the notations X̂t and Ŷt to denote unbounded 
processes, and Xt and Yt to denote fluid levels with a regulated lower boundary at 0.

As classic fluid processes, {(X̂t,�t), t ≥ 0} , or bounded analogues, are used exten- 
sively in many areas, such as insurance and environmental modelling, it is clear that sto-
chastic fluid-fluid models have an even wider range of applicability.

An example of application for an SFFM is the modelling of growth and bleaching of 
coral reefs, as described in (Bean and O’Reilly 2014). In this process, we can model the 
density of symbiotic zooxanthellae at time t by Xt , with the positive rates ci correspond-
ing to the growth of the zooxanthellae, the negative rates to the bleaching. The density, Xt , 
determines the net rate at which the coral stores the lipids produced by the zooxanthellae. 
The amount of stored lipids is modelled by Yt , and the coral dies when the stored lipids run 
out, that is, Yt = 0.

Some specifications of stochastic fluid-fluid models have already been analysed; Bean 
and O’Reilly (2013) and the to-date unpublished work of Bean et al. (Matrix-Analytic Meth-
ods for the analysis of Stochastic Fluid-Fluid Models, 2020) study cases where {Xt} and 
{Yt} are independent, given {�t} , and  Latouche et al. (2013) and O’Reilly and Scheinhardt 
(2017) study cases where {Yt} depends on whether {Xt} is above, or below, some specific 
threshold. Here, we derive approximations to the theoretical operators in (Bean and O’Reilly 
2014), which covers a much wider class of models than the specific ones already studied, 
therefore this work applies to a much larger class of models.

While the analyses in (Bean and O’Reilly 2014; Miyazawa and Zwart 2012) are mark-
edly different, both papers drew inspiration from Neuts’ matrix-analytic approach (Neuts 
1981; Latouche and Ramaswami 1999) to obtain the limiting behaviour of these processes, 
working with operators on function spaces instead of matrices. Thus, their closed-form 
expressions for the limiting distributions ([Theorem 2] Bean and O’Reilly (2014), [Theo-
rem 4.1] Miyazawa and Zwart (2012)) are given in terms of operators acting on measures, 
which are not immediately amenable to numerical computations for real-life applications. 
Only in the simplest cases can the solutions to these operator equations be readily evaluated 
and, beyond the simplest cases, approximations are needed. One way to numerically handle 
operators on function spaces is to construct approximations of the operators. To this end, 
there exist numerical procedures such as finite difference, finite volume, finite element and 
discontinuous Galerkin (DG) methods (Cockburn 1999; Hesthaven and Warburton 2007). 
In the context of approximating fluid queues, Bean and O’Reilly (2013) derive an approxi-
mation to the process {(Xt,�t})} which is a continuous-time Markov chain (specifically, a 

X̂t ∶= X̂0 +
∫

t

0

c
�s
ds;

Ŷt ∶= Ŷ0 +
∫

t

0

r
�s
(X̂s) ds.
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quasi-birth-and-death process). It turns out that the finite-volume method with an upwind 
flux, the DG method with a single (constant) basis function in each cell and an upwind 
flux, and the Markov chain approximation of Bean and O’Reilly (2013) are all equivalent.

In our application to SFFMs, the operators we wish to approximate are acting on a func-
tion space of probability densities and therefore our approximation method must respect 
certain properties of probability densities, such as conservation of probability. This is the 
case in the DG method (Cockburn 1999).

In this paper, the DG method is used to approximate the operators appearing in (Bean 
and O’Reilly 2014), and ultimately, the joint stationary distribution of an SFFM. We 
numerically illustrate the effectiveness of the methodology using an on-off bandwidth-
sharing system of two processors (Latouche et al. 2013). In this example, inputs into the 
processors, {Xt} and {Yt} , are turned on and off by a Markov chain, {�t} ; the combined 
output capacity is fixed and allocated according to the workload of the first, high-priority, 
processor {Xt} . Latouche et  al. (2013) evaluate the marginal limiting distribution of the 
first processor {Xt} , and provides bounds for the marginal limiting distribution of the work-
load of the second processor {Yt} . We verify our DG approximations by comparing them 
against Monte Carlo simulations, against analytical results obtained, and against our intui-
tive understanding of the system dynamics. In all considered cases, we find the approxima-
tions to be accurate. Further, the numerics also demonstrate a superior rate of convergence 
over the method of Bean and O’Reilly (2013) whereby the first fluid is approximated by a 
continuous-time Markov chain.

The paper is organised as follows. In Sect. 2, we give relevant background to present the 
joint stationary distribution of a stochastic fluid-fluid model. We construct, in Sect. 3, a dis-
continuous Galerkin scheme to approximate the infinitesimal generator of a stochastic fluid 
process. Sect. 4 uses this approximation to the infinitesimal generator to construct approxi-
mations of the first-return operator, and stationary distribution, of an SFFM. Numerical 
experiments are reported in Sect. 5. In Appendix 1 we provide a proof that our DG approx-
imations conserve probability. Lastly, since the paper is notationally heavy, we apply the 
DG method to a small toy example in Appendix 2.

2 � Preliminaries

Consider a stochastic fluid-fluid model {(Xt, Yt,�t), t ≥ 0} . We assume that Xt, Yt ∈ [0,∞) 
and that there is a regulated boundary at level 0 for both buffers:

for i ∈ S = {1, ...,NS} . Let T be the irreducible generator for the finite-state Markov 
chain {�t} . We denote by C ∶= diag(ci)i∈S the diagonal fluid-rate matrix for {Xt} , and 
R(x) ∶= diag(ri(x))i∈S the diagonal fluid-rate matrix of functions for {Yt}.

Remark 2.1  For future reference we require some notation regarding the elements of the 
model introduced above. We use the notation u = (uh)h∈H to denote a row-vector, u , 
defined by its elements, uh , indexed by h ∈ H , where H is some countable index set. Simi-
larly, u = (uh)h∈H , is a row-vector defined by a collection of row-vectors uh . The notation 

d

dt
Xt ∶= max{0, ci} if Xt = 0 and �t = i,

d

dt
Yt ∶= max{0, ri(x)} if Yt = 0, Xt = x and �t = i,
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um = (uh)h∈Hm
 refers to the vector containing the subset of elements corresponding to 

Hm ⊆ H . When the index set is empty, the resulting vector um is a vector of dimension 0. 
In cases when the elements have two indices, we order the elements of the vector according 
to the first index, then the second; i.e. u = (uh

g
)g∈G,h∈H = ((uh

g
)g∈G)h∈H . Here we use the 

convention that for a vector u = (u)h∈H where the elements u do not depend on the index h 
and H is some index set, then we repeat u h-times; i.e. u = (u)h∈H = (u,… , u)

⏟⏞⏟⏞⏟

h− times

 . The nota-

tion U = [ugh]g∈G,h∈H is used to denote a matrix defined by its elements, or sub-blocks, ugh.

Let S− = {i ∈ S ∣ c
i
< 0}, S+ = {i ∈ S ∣ c

i
> 0}, S0 = {i ∈ S ∣ c

i
= 0}, S∇ = {i ∈ S ∣

c
i
≤ 0}, SΔ = {i ∈ S ∣ c

i
≥ 0} . Define matrices Cm ∶= diag(ci)i∈Sm

 , m ∈ {+,−, 0,∇,Δ} , 
and define the sub-matrices of transition rates Tmn = [Tij]i∈Sm,j∈Sn

 , m, n ∈ {+,−, 0,∇,Δ}.
For the remainder of this section, we summarise the findings of (Bean and O’Reilly 

2014) on the joint stationary distribution of {(Xt, Yt,�t), t ≥ 0} . For each Markovian 
state i ∈ S , we partition the state space of Xt , [0,∞) , according to the rates of change 
ri(⋅) for the second fluid {Yt} : [0,∞) ∶= F +

i
∪ F −

i
∪ F 0

i
, where

For all i ∈ S , the functions ri(⋅) are assumed to be sufficiently well-behaved that Fm
i

 , 
m ∈ {+,−, 0} , is a finite union of intervals and isolated points.

We assume that the process {(Xt, Yt,�t), t ≥ 0} is positive recurrent, in order to guar-
antee the existence of the joint stationary density. Define stationary operators

where A ⊂ [0,∞).
Then let (y) = ( i(y))i∈S be a vector containing the joint stationary density operators 

and � = (�i)i∈S a vector containing the joint stationary mass operators.
The determination of  (y) involves two important matrices of operators, � and . The  

operator � is the infinitesimal generator of the process {(Xt,�t)} . The operator  is such 
that �  (A) is the conditional probability of {Yt} returning to level zero and doing so  
when Xt ∈ A , given that the initial distribution is �.

2.1 � Matrix � of Operators

Since {(Xt,�t), t ≥ 0} is a Markov process, the evolution of probability can be described 
by a semigroup. Let M(S ×ℝ+) be the set of integrable complex-valued Borel measures 
on the Borel �-algebra BS×ℝ+

 . For � ∈ M(S ×ℝ+) , we can write � = (�i)i∈S . The meas-
ures �i(⋅) represent an initial distribution, �i(⋅) = ℙ(X0 ∈ ⋅,�0 = i) . Let 
{𝕍 (t)}t≥0, 𝕍 (t) ∶ M(S ×ℝ+) ↦ M(S ×ℝ+) be the semigroup describing the evolution 
of probability for {(Xt,�t), t ≥ 0} structured as a matrix of operators, 

[
� (t)

]
ij
= � ij(t) 

where,

(1)
F +

i
∶= {u ∈ F ∶ ri(u) > 0}, F −

i
∶= {u ∈ F ∶ ri(u) < 0}, F 0

i
∶= {u ∈ F ∶ ri(u) = 0}.

(2)

(3)𝕡i(A) ∶= lim
t→∞

ℙ[Xt ∈ A, Yt = 0,�t = i],
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Intuitively, the operator � (t) maps an initial measure � on (X0,�0) to the measure 
ℙ(Xt ∈ A,�t = j) =∶ �j(t)(A) . The matrix of operators � ∶= [�ij]i,j∈S is the infinitesimal 
generator of the semigroup {� (t)} defined by

with domain the set of measures for which this limit exists. Specifically, the domain of � is 
the set of measures, � = (�i)i∈S , for which each �i admits an absolutely continuous density 
on (0,∞) , and can have a point mass at 0 if i ∈ S∇ ; call this set of measures M0 . That is, 
the measures �i, i ∈ S, with (�i)i∈S ∈ M0 are absolutely continuous on (0,∞) and may 
have point masses at 0 if i ∈ S∇ . The measure �i cannot have a point mass at 0 if i ∉ S∇ . In 
the sequel we write vi(x), x > 0 , as the density of �i and qi as the point mass of �i at x = 0 
(if such a point mass exists).

To use the operators {� (t)} and � to analyse the fluid-fluid model, Bean and O’Reilly 
(2014) explicitly track when (Xt,�t) ∈ (Fm

i
, i) for i ∈ S, m ∈ {+,−, 0} by partitioning the 

operators � (t) and � into �
mn

ij
 and �

mn

ij
 , for i, j ∈ S, m, n ∈ {+,−, 0} , where

and �i
||E is the restriction of �i to E . Similarly, for �

mn

ij
, i, j ∈ S, m, n ∈ {+,−, 0}.

We claim that numerical schemes are needed to approximate the analytic operator 
equations introduced in Bean and O’Reilly (2014). The DG scheme we choose to use 
here works by first partitioning the state space of the fluid level, {Xt} , into a collection of 
intervals, Dk = [xk, xk+1] then, on each interval, the operator � is projected onto a basis 
of polynomials. So, to help elucidate the connection between the operators {� (t)} , � and 
their DG approximation counterparts, we take a slightly different approach to partitioning 
these operators than that taken in Bean and O’Reilly (2014). Rather than partition accord-
ing to the sets Fm

i
, i ∈ S, m ∈ {+,−, 0} , we use the same partition as that in the construc-

tion of the DG scheme. By doing so, we can directly correspond elements of the parti-
tioned operators to their approximation counterparts. Since the partition used to construct 
the DG scheme is finer, then we can always reconstruct the partition in terms of the sets 
Fm

i
, i ∈ S, m ∈ {+,−, 0}.
Let us first partition the space [0,∞) into D∇ = {0} , and non-trivial intervals 

Dk = [xk, xk+1] ⧵ {0}, with x1 = 0, xk < xk+1, k = 1, 2, ... . The symbol ∇ is used to refer to 
sets and quantities which are relevant to boundary at x = 0 . For � ∈ M0(S ×ℝ+) we write 
� = (�k

i
)i∈S,k∈{∇,1,2,...}, where �k

i
(⋅) = �i(⋅ ∩Dk), k = ∇, 1, 2,… . We also have densities, 

vk
i
(x), x > 0 , associated with each measure, �k

i
 . For i, j ∈ S, k,� ∈ {∇, 1, 2,…} define the 

operators

and the matrices of operators � k�(t) ∶=
[
� k�
ij
(t)
]
i,j∈S

, k,� ∈ {∇, 1, 2,…} and write

�i𝕍 ij(t)(A) =
∫x∈[0,∞)

d�i(x)ℙ(Xt ∈ A,�t = j ∣ X0 = x,�0 = i).

� =
d

dt
� (t)

||||t=0,

�i
||Fm

i

𝕍
mn

ij
(t)(A) ∶=

∫x∈[0,∞)

d�i
||Fm

i

(x)ℙ(Xt ∈ A ∩ F n
j
,�t = j ∣ X0 = x,�0 = i),

�
k
i
𝕍 k�
ij
(t)(A) ∶=

∫x∈Dk

d�k
i
(x)ℙ(Xt ∈ A ∩D� ,�t = j ∣ X0 = x,�0 = i),
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Now define � =
d

dt
� (t)

|||t=0 as the infinitesimal generator of {� (t)} , resulting in the 
tridiagonal matrix of operators

where the blocks �k� ∶=
[
�k�
ij
(t)
]
i,j∈S

, k,� ∈ {∇, 1, 2,…} . The tridiagonal structure 

arises since, for |k − �| ≥ 2 (where we take ∇ = 0 if it appears in the differences) it is 
impossible for {Xt} to move from Dk to D� in an infinitesimal amount of time.

Remark 2.2  We use a blackboard bold font with an overline above the character (e.g. � 
and � (t) ) to represent theoretical operators derived in (Bean and O’Reilly 2014) which 
are constructed using the partition in Eq. (1). The operators denoted with an overline play 
a minor role in the introductory sections of this paper, but do not appear again. We use a 
blackboard font sans overline (e.g. � (t) and � ) to represent the same operators but which 
are constructed with the finer partition defined by Dk, k = ∇, 1, 2,… . We use the letters 
i, j ∈ S to represent states of the phase process, letters m, n,∈ {+,−, 0} to refer to the par-
tition in terms of the sets in Eq. (1), and the letters k,� ∈ {∇, 1, 2, ...} to refer to the finer 
partition into sets {Dk}k . With a slight abuse of notation, whenever we use the dummy var-
iables k,� without qualification we imply k,� ∈ {∇, 1, 2,…} , the dummy variables m, n 
without qualification imply m, n ∈ {+,−, 0} and the dummy variables i, j without quali-
fication imply i, j ∈ S . E.g. �k�

ij
 means �k�

ij
, i, j ∈ S, k,� ∈ {∇, 1, 2,…} and �mn

ij
 means 

�mn
ij
, i, j ∈ S,m, n ∈ {+,−, 0}.

By an appropriate choice of the intervals {Dk}, k ∈ {∇, 1, 2,… , } , the partition 
used in (Bean and O’Reilly 2014) can be recovered. Intuitively, we must ensure that 
each of the boundaries of Fm

i
, i ∈ S, m ∈ {+,−, 0} , align with a boundary of a cell 

Dk = [xk, xk+1] ⧵ {0} . Then, each set Fm
i
, i ∈ S, m ∈ {+,−, 0} , can be written as a union 

of cells, Dk, k = ∇, 1, 2,… , sans a collection of points which have measure zero for all 
measures in M0 , and this collection of points is inconsequential for the purposes of the 
approximations presented here.

Formally, to recover the partition used in (Bean and O’Reilly 2014) we choose the inter-
vals Dk such that l(Dk ∩ Fm

i
) ∈ {l(Dk), 0} for all i ∈ S, m ∈ {+,−, 0}, k ∈ {∇, 1, 2,…} , 

for all measures l ∈ M0 . That is, we choose Dk such that it is contained (up to sets of meas-
ure 0 with respect to measures in M0 ) within Fm

i
 for some m ∈ {+,−, 0} and all i ∈ S . We 

assume such a partition for the rest of the paper. For i ∈ S, m ∈ {+,−, 0} , let 
Km

i
= {k ∈ {∇, 1, 2,…} ∣ l(Dk ∩ Fm

i
) = l(Dk), l ∈ M0} , so that 

⋃
k∈Km

i

Dk and Fm
i

 are equal 

up to a set of l-measure 0 for all l ∈ M0 . Define Km =
⋃
i∈S

Km
i
 , m ∈ {+,−, 0}.

� (t) =

⎡
⎢⎢⎢⎣

�∇,∇(t) �∇,1(t) �∇,2(t) …

� 1,∇(t) � 1,1(t) � 1,2(t) …

� 2,∇(t) � 2,1(t) � 2,2(t) …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎦
.

�(t) =

⎡⎢⎢⎢⎣

�∇,∇(t) �∇,1(t)

�1,∇(t) �1,1(t) �1,2(t)

�2,1(t) �2,2(t) ⋱

⋱ ⋱

⎤⎥⎥⎥⎦
,

2828 Methodology and Computing in Applied Probability (2022) 24:2823–2864



1 3

To recover the partition defined by (1) we bundle together the elements of � (t) which 
correspond to Fm

i
 and F n

j
 . That is, for m, n ∈ {+,−, 0} , define �mn

ij
(t) as the matrix of 

operators

Then, for i, j ∈ S, m, n ∈ {+,−, 0} , we can write �
mn

ij
(t) = 1|Km

i
|�mn

ij
(t)1 T

|Kn
j
| where 1|Km

i
| 

and 1|Kn
j
| are row-vectors of 1’s of length |Km

i
| and |Kn

j
| , respectively, and T denotes the 

transpose. The same construction can be achieved with �.
Let S +

k
= {i ∈ S ∣ ri(x) > 0, ∀x ∈ Dk} , S 0

k
= {i ∈ S ∣ ri(x) = 0, ∀x ∈ Dk} , S −

k
=

{i ∈ S ∣ r
i
(x) < 0, ∀x ∈ D

k
} and S ∙

k
= {i ∈ S ∣ ri(x) ≠ 0, ∀x ∈ Dk} for k ∈ {∇, 1,…} . For 

later reference, we need the following constructions. For k,� ∈ {∇, 1, 2, ...}

for i, j ∈ S

and for m, n ∈ {+,−, 0}

We persist with the partition Dk, k ∈ ∇, 1, 2,… throughout this paper, as this is consist-
ent with the partition used in the DG method, and note that for all the operators defined 
with this partition, the partitioning used in (Bean and O’Reilly 2014) can always be recov-
ered by the above construction.

We can write �k
i
�k�
ij
(A) in kernel form as 

∫x∈Dk ,y∈A

d�k
i
(x)�k�

ij
(x, dy) . It is known that

on the interior of Dk (Karandikar and Kulkarni 1995). Intuitively, vk
i
(y)Tij dy represents the 

instantaneous rate of transition from phase i to j in the infinitesimal interval dy , vk
i
(y)Tii dy 

represents no such transition occurring, and −ci
d

dy
vk
i
(y) dy represents the drift across the 

interval dy when the phase is i.

�mn
ij

(t) =
[
� k�
ij
(t)
]
k∈Km

i
,�∈Kn

j

.

(4)�k� =
[
�k�
ij

]
i,j∈S

,

(5)�ij =
[
�k�
ij

]
k,�∈{∇,1,2,…}

,

(6)�mn =

[[
�k�
ij

]
i∈Sm

k
,j∈Sn

�

]

k∈Km,�∈Kn

,

(7)�kn =

[[
�k�
ij

]
i∈Sm

k
,j∈Sn

�

]

�∈Kn

for k ∈ {∇, 1, 2, ...},

(8)�m� =

[[
�k�
ij

]
i∈Sm

k
,j∈Sn

�

]

k∈Km

for � ∈ {∇, 1, 2, ...}.

�
k
i
�kk
ij
( dy) ∶=

�x∈Dk

d�k
i
(x)�kk

ij
(x, dy) =

{
vk
i
(y)Tij dy, i ≠ j,

vk
i
(y)Tii dy − ci

d

dy
vk
i
(y) dy, i = j,
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Translating the results of Bean and O’Reilly (2014) to use the partition {Dk} we may 
state that, for all i, j ∈ S , k ∈ {1, 2,…},

where � is the indicator function. Intuitively, the first term represents the instantaneous rate 
of the stochastic transitions of the phase process {�t} , the second term represents the flux 
out of the right-hand edge of Dk which occurs when ci > 0 only, and the last term repre-
sents the flux out of the left-hand edge of Dk which occurs when ci < 0 only.

The results of Bean and O’Reilly (2014) also imply that,

Intuitively, the first equation represents the flux from Dk to Dk+1 across the shared 
boundary at xk+1 which occurs when ci > 0 only. The second expression represents the flux 
from Dk to Dk−1 across the shared boundary at xk which occurs when ci < 0 only.

Bean and O’Reilly (2014) also state that, at the boundary x = 0 , for states i ∈ S with 
ci ≤ 0 such that a point mass at 0 is possible, we have

where 0+ is the right limit at 0 . Otherwise �k
i
�k�
ij

= 0, for |k − �| ≥ 2, i, j ∈ S or |k − �|
= 1, i, j ∈ S, i ≠ j , where we take ∇ = 0 if it appears in the differences, capturing the facts 
that the process {Xt} is continuous and that drift across boundaries occurs only when {�t} 
remains in the same phase.

Note that we have not presented � in its full detail here and refer the reader to (Bean and 
O’Reilly 2014) for the details. The main goal here is to show how � is used to construct 
the stationary distribution of the SFFM and to illustrate the link between the operator � and 
the DG approximation of the same object. As we shall see later, these expressions closely 
resemble the DG approximations to the same quantities.

2.2 � Matrix �(s) of Operators

Let b(t) ∶= ∫
t

0

|||r�z
(Xz)

||| dz be the total unregulated amount of fluid that has flowed into or 
out of the second buffer {Yt} during [0, t], and let 𝜔(y) ∶= inf{t > 0 ∶ b(t) = y} be the first 
time this accumulated in-out amount hits level y. Note that at the stopping time �(y) it must 
be that (X

�(y),��(y)) ∈ (Fm
i
, i) for some i ∈ S and m ∈ {+,−} , i.e. m ≠ 0 . We define the 

operators �k�
ij
(y, s) ∶ M0(Dk ∩ Fm

i
) ↦ M0(D� ∩ Fn

j
) , for k ∈ K+

i
∪K−

i
 , � ∈ K+

j
∪K−

j
 , and 

i ∈ S∙
k
, j ∈ S∙

k
 , by

𝜇
k
i
�kk
ij
(Dk) =

∫x∈Dk

vk
i
(x)Tij dx − civ

k
i
(xk+1)�(ci>0,i=j) + civ

k
i
(xk)�(ci<0,i=j),

𝜇
k
i
�
k,k+1

ii
(Dk+1) = civ

k
i
(xk+1)�(ci>0), for all i ∈ S, k ∈ {1, 2, ...},

𝜇
k
i
�
k,k−1

ii
(Dk−1) = −civ

k
i
(xk)�(ci<0), for all i ∈ S, k ∈ {2, 3, ...}.

𝜇
∇
i
�
∇,∇

ii
= 𝜇

∇
i
({0})Tii,

𝜇
∇
i
�
∇,∇

ij
= 𝜇

∇
i
({0})Tij, j ∈ S, cj ≤ 0,

𝜇
∇
i
�
∇,1

ij
= 𝜇

∇
i
({0})Tij, j ∈ S, cj > 0,

𝜇
1
i
�
1,∇

ii
= −civ

1
i
(0+), j ∈ S, cj < 0,
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Then, construct the matrix of operators

The matrix of operators �(s) is the infinitesimal generator of the semigroup {�(y, s)}y≥0 
defined by

whenever this limit exists.
Recalling the constructions in Eqs. (4)-(8) and using Lemma  4 of (Bean and 

O’Reilly 2014) gives the following expression for �(s).

Lemma 2.1  For y ≥ 0 , s ∈ ℂ with Re(s) ≥ 0 , i, j ∈ S , k ∈ K+
i
∪K−

i
 , � ∈ K+

j
∪K−

j
,

where � is the identity operator, and ℝk ∶= diag(ℝk
i
)i∈S is a diagonal matrix of operators 

ℝk
i
 given by

Also, construct the matrices of operators

2.3 � Matrix (s) of Operators

We denote by (s) the matrix of operators with the same dimensions as �+− , record-
ing the Laplace-Stieltjes transforms of the time for {Yt} to return, for the first 
time, to the initial level of zero as introduced in (Bean and O’Reilly 2014) but 
constructed with respect to the finer partition {Dk} . Define the stopping time 
𝜃(y) ∶= inf{t > 0 ∶ Yt = y} to be the first time {Yt} hits level y, then each component 
k�
ij
(s) ∶ M0(Dk) ↦ M0(D�), i, j ∈ S, k ∈ K+

i
 and � ∈ K−

j
 , is given by

Bean and O’Reilly [Theorem 1] Bean and O’Reilly (2014) give the following result which 
characterises  (s).

�
k
i
�k�
ij
(y, s)(A) ∶=

∫x∈Dk

d�k
i
(x)�

[
e−s�(y)1

{
�
�(y) = j, X

�(y) ∈ A ∩D�

}
∣ �0 = i,X0 = x

]
.

�(y, s) ∶=
[
[�k�

ij
(y, s)]i∈S∙

k
,j∈S∙

�

]
k,�∈K+∪K−

.

�(s) =
d

dy
�(y, s)|y=0,

𝔻k�
ij
(s) = [ℝk(𝔹k� − s𝕀 + 𝔹k0(s𝕀 − 𝔹00)−1𝔹0�)]ij,

�
k
i
ℝk

i
(A) ∶=

∫x∈A∩Dk

1

ri(x)
d�k

i
(x), k ∈ K+

i
∪K−

i
.

�mn ∶=

[[
�k�

ij

]
i∈Sm

k
,j∈Sn

k

]

k∈Km,�∈Kn

.
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Theorem 2.1  For Re (s) ≥ 0 , (s) satisfies the equation:

Furthermore, if s is real then  (s) is the minimal nonnegative solution.

2.4 � Stationary Distribution

Let  :=  (0). We define �n ∶= inf{t ≥ �n−1 ∶ Yt = 0} , for n ≥ 2 , to be the sequence of 
hitting times to level 0 of Yt , with �1 ∶= �(0) . Consider a discrete-time Markov process 
{(X

�n
,�

�n
), n ≥ 1} , and for i ∈ S, k ∈ K−

i
 define the measures k

i
 as follows 

By (Bean and O’Reilly 2014), the vector 
of measures   satisfies the following set of equations

We reproduce Theorem 2 of (Bean and O’Reilly 2014) below, which gives the joint sta-
tionary distribution of {(Xt, Yt,�t)} . Recall that the joint stationary density operator  (y) 
= ( i(y))i∈S for {(Xt, Yt,�t)} and the joint stationary mass operator � = (�i)i∈S are defined 
by (2) and (3), respectively. We can partition  as follows

where

Similarly, we can write

where �k
i
(A) = �i(A ∩Dk).

Theorem 2.2  The density m(y) , for m ∈ {+,−, 0} and y > 0 , and the probability mass �m , 
for m ∈ {−, 0} , satisfy the following set of equations:

(9)

(10)

� =
[
�− �0

]
=
[(
�k
i

)
i∈S−

k
,k∈K−

(
�k
i

)
i∈S0

k
,k∈K0

]
,

2832 Methodology and Computing in Applied Probability (2022) 24:2823–2864



1 3

where � ∶= �++(0)+ �(−+)(0) and z is a normalising constant.

At this point we reiterate that Eqs. (11)-(14) are operator equations and are only ame-
nable to numerical evaluation in the simplest of cases. Sources of this intractability come 
from, for example, the need to find the inverse operator (−�00)−1 , and the need to find the 
solution, (s) , of the operator equation in Theorem 2.1. There is also the complexity of the 
partition of the operators defined by the sets Fm

i
, i ∈ S, m ∈ {+,−, 0} to consider. There-

fore, there is the need for approximation schemes such as the DG scheme we introduce next.

3 � Discontinuous Galerkin Approximation of a Stochastic Fluid Model: 
Approximating �

Discontinuous Galerkin (DG) methods can be used to approximate the solutions to sys-
tems of partial differential equations (PDEs). For a more thorough description of these 
methods see (Hesthaven and Warburton 2007). The domain of approximation is partitioned 
into intervals, referred to individually as cells and collectively as a mesh. On each cell, we 
have a finite element approximation, which constructs a finite-dimensional smooth Sobolev 
space using piecewise-polynomial basis functions, and then projects the partial differential 
equations onto this space. This projection leads to a new system of equations, referred to as 
the weak form of the original system of PDEs. Next, we must approximate the flux opera-
tor which moves probability from one cell to another, in a manner similar to the underly-
ing principle of a finite-volume approximation. This method conserves probability, and can 
handle discontinuities, such as jumps and point masses. Here we construct the DG approxi-
mation to the matrix of operators � which we use later to construct a DG approximation to 
�(s) then (s) , and ultimately the stationary distribution of an SFFM.

3.1 � The Partial Differential Equation

We start by introducing the PDE from which we will extract the approximation to the gen-
erator �.

(11)

(12)

(13)

(14)
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Let fi(x, t) be the joint density of {(Xt,�t)}:

which satisfies the system of partial differential equations

subject to suitable boundary conditions (Bean and O’Reilly 2014). In matrix form,

where f (x, t) =
(
fi(x, t)

)
i∈S

 . This system of PDEs is closely related to the generator � . For 
A ⊂ (0,∞) , and assuming �(t) admits a density,

That is, fi(x, t) is the density of �i(t) . Then �(t) satisfies the operator differential equation

on the interior of the space [0,∞) . Thus, by approximating the operator on the right-hand 
side of Eq. (15) we can approximate the infinitesimal operator � . The DG method does 
exactly this, by approximating the operator with a matrix.

3.2 � Cells, Test Functions, and Weak Formulation

To begin with, consider an unbounded first fluid level {X̂t, t ≥ 0} , X̂t ∈ (−∞,∞) . We 
will eventually truncate this space so that we have a finite dimensional approximation; 
however, this requires a discussion on boundary conditions which we save for later. Let 
Dk = [xk, xk+1], k ∈ ℤ partition the domain (−∞,∞) . We call the Dk cells.

On each cell Dk we choose Nk linearly independent functions {�k
r
}
Nk

r=1
 , compactly sup-

ported on Dk (i.e. �k
r
(x) = 0 for x ∉ Dk ) to form a basis for the space Wk , in which we for-

mulate the approximation. Here, as is standard in DG methods (Hesthaven and Warburton 
2007), we take {�k

r
}
Nk

r=1
 to be the space of polynomials of degree Nk − 1 . It is convenient 

in this work to take {�k
r
}
Nk

r=1
 as a basis of Lagrange interpolating polynomials defined by 

the Gauss-Lobatto quadrature points, since our approximations inherit nice properties from 
this (Hesthaven and Warburton 2007). However, the constructions presented here are gen-
eral, and any basis can be used. For the sake of illustration, the reader may think of {�k

r
}
Nk

r=1
 

as the Lagrange polynomials. On each cell Dk we approximate

fi(x, t) ∶=
𝜕

𝜕x
ℙ
[
Xt ≤ x,𝜑t = i

]
, x > 0, i ∈ S,

𝜕

𝜕t
fi(x, t) =

∑
j∈S

fj(x, t)Tji − ci
𝜕

𝜕x
fi(x, t), x > 0, i ∈ S

(15)
�

�t
f (x, t) = f (x, t)T −

�

�x
f (x, t)C,

�(t)(A) =
∫x∈A

f (x, t) dx.

d

dt
�(t)( dx) = �(t)�( dx) = f (x, t)T dx −

�

�x
f (x, t)C dx,

fi(x, t) ≈ uk
i
(x, t) =

Nk∑
r=1

ak
i,r
(t)�k

r
(x),
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where ak
i,r
(t) are yet-to-be-determined time-dependent coefficients. We refer to uk

i
 as the 

local approximation on Dk , while the global approximation is given by 
∑
k∈ℤ

uk
i
 on the whole 

domain. The whole approximation space is 
⨁
k∈ℤ

Wk.

Let Nk ∶=
{
1,… ,Nk

}
, k ∈ ℤ . For k ∈ ℤ, define local row-vectors

Note that we will always use the letter r to index the basis function within each cell.
The DG method proceeds by considering the weak-formulation of the PDE, which 

is constructed from the strong-form of the PDE, Eq. (15). In general, to construct the 
weak-form we need a set of test functions, say W  . Now, take the strong form of the PDE, 
multiply it by some test function �(x) ∈ W  , integrate with respect to x , and apply inte-
gration by parts to the derivative with respect to x , to get

for j ∈ S . It is common to choose W such that �(−∞) = �(∞) = 0 , in which case the last 
term on the right is zero. Requiring (16) to hold for every � ∈ W gives the weak-formula-
tion of the PDE. For a sufficiently rich set of test functions W the weak and strong forms of 
the PDE are equivalent. Solutions to (16) are known as weak solutions and generalise the 
concept of a solution of the PDE. For example, this may allow discontinuities with respect 
to x in the solution – something which is ill-defined for the strong form.

For the purpose of DG, we take the set of test functions to be W =
⨁
k∈ℤ

Wk , the same 

as the set of basis functions of our solution space. Proceeding as described above, the 
weak formulation is

since �k
r
 is compactly supported on Dk , for all j ∈ S, r ∈ Nk , k ∈ ℤ. Now, note that any 

function g(x) can be decomposed as g(x) = gW (x) + g⟂(x) where gW ∈ W and g⟂ ∈ W⟂ , 
and W⟂ is the orthogonal complement of W . Since g⟂ is orthogonal to W , 

∫x

g⟂(x)�k
r
(x) dx = 0 for r ∈ Nk, k ∈ ℤ . Also, note that d

dx
�
k
r
(x) ∈ W . Using this, we can 

write

which is equivalent to

�k(x) = (�k
r
(x))r∈Nk

, ak
i
(x) = (ak

i,r
(x))r∈Nk

, i ∈ S.

(16)∫x∈ℝ

�

�t
fj(x, t)�(x) dx =

∫x∈ℝ

∑
i∈S

fi(x, t)Tij�(x) dx +
∫x∈ℝ

fj(x, t)cj
d

dx
�(x) dx

− [ fj(x, t)cj�(x)]x=∞
x=−∞

,

∫x∈Dk

�

�t
fj(x, t)�

k
r
(x) dx =

∫x∈Dk

∑
i∈S

fi(x, t)Tij�
k
r
(x) dx +

∫x∈Dk

fj(x, t)cj
d

dx
�
k
r
(x) dx

− [ fj(x, t)cj�
k
r
(x)]

x=xk+1
x=xk

,

∫x∈Dk

�

�t

(
f W
j
(x, t) + f ⟂

j
(x, t)

)
�
k
r
(x) dx =

∫x∈Dk

∑
i∈S

(
f W
i
(x, t) + f ⟂

i
(x, t)

)
Tij�

k
r
(x) dx

+
∫x∈Dk

(
f W
j
(x, t) + f ⟂

j
(x, t)

)
cj

d

dx
�
k
r
(x) dx

− [ fj(x, t)cj�
k
r
(x)]

x=xk+1
x=xk

,
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Now, f W
j
(x, t) ∈ W  so, on Dk , it can be expressed as ak

j
(t)�k(x) T , which we now sub-

stitute into (17) and repeat this for all test functions �k
r
(x) , r = 1, ...,Nk , to get the follow-

ing system of equations,

3.3 � Mass, Stiffness, and Flux

For k ∈ ℤ , define local mass and stiffness matrices Mk and Gk by

We can write (18) as

It remains to approximate the flux, fj(x, t) at the cell edges xk, k ∈ ℤ , so that we may 
evaluate the terms [ fj(x, t)�k

r
(x)]

x=xk+1
x=xk

 , r = 1, ...,Nk, k ∈ ℤ . This is the key for DG – it joins 
the local approximations on each cell Dk , into a global approximation on the whole domain 
of approximation. The flux is the instantaneous rate (with respect to time) at which density 
moves across the boundaries xk, k ∈ ℤ . There are different choices for the flux, and we refer 
the reader to (Cockburn 1999; Hesthaven and Warburton 2007), and references therein, for 
some discussion of the topic. Here, we choose the upwind scheme, which, as we shall see, 
closely resembles the flux terms from the generator � . The approximate flux, also known as 
the numerical flux, is given by

at each x = xk, k ∈ ℤ . Intuitively, the upwind flux takes the value of the density immedi-
ately on the upwind side of each xk.

Denote by x− and x+ the left and right limits at x , respectively. Assume first cj > 0 , then

(17)

∫x∈Dk

�

�t
f W
j
(x, t)�k

r
(x) dx =

∫x∈Dk

∑
i∈S

f W
i
(x, t)Tij�

k
r
(x) dx +

∫x∈Dk

f W
j
(x, t)cj

d

dx
�
k
r
(x) dx

− [fj(x, t)cj�
k
r
(x)]

x=xk+1
x=xk

.

(18)

∫x∈Dk

d

dt
a
k
j
(t)�k(x) T �k(x) dx =

∫x∈Dk

∑
i∈S

a
k
i
(t)�k(x) T Tij�

k(x) dx

+
∫x∈Dk

a
k
j
(t)�k(x) T cj

d

dx
�k(x) dx

− cj[fj(x, t)�
k(x)]

x=xk+1
x=xk

, k ∈ ℤ.

Mk ∶=
∫x∈Dk

�k(x) T �k(x) dx, Gk ∶=
∫x∈Dk

�k(x) T
d

dx
�k(x) dx.

(19)
d

dt
ak
j
(t)Mk =

∑
i∈S

ak
i
(t)MkTij + cja

k
j
(t)Gk − cj[fj(x, t)�

k(x)]
x=xk+1
x=xk

.

f ∗
j
(x, t) = sign(cj) lim

�→0+
uj(x − �cj, t),
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In matrix form,

where, for j ∈ S with cj > 0 , we define F
k,k

j
∶= −�k(x−

k+1
) T �k(xk+1), k ∈ ℤ and 

F
k−1,k

j
∶= �k−1(x−

k
) T �k(xk), k ∈ ℤ.

Now proceed similarly for cj < 0 to get the approximation

where, for j ∈ S with cj < 0 , we define Fk+1,k

j
∶= −�k+1(x+

k+1
) T �k(xk+1), k ∈ ℤ, and 

F
k,k

j
∶= �k(x+

k
) T �k(xk), k ∈ ℤ.

The matrices Fk−1,k

j
, F

k,k

j
, and Fk+1,k

j
 are the local flux matrices. For convenience, we 

also define the matrices Fk,k+1

j
= 0 for cj < 0 and Fk,k−1

j
= 0 for cj > 0 , k ∈ ℤ.

To write this out as a global system, define the row-vectors

and the block-diagonal matrix

where, for k ∈ ℤ,

−cj[fj(x, t)�
k
r
(x)]

x=xk+1
x=xk

≈ −cj[ f
∗
j
(x, t)�k

r
(x)]

x=xk+1
x=xk

= −cj f
∗
j
(xk+1, t)�

k
r
(xk+1) + cj f

∗
j
(xk, t)�

k
r
(xk)

= −cjuj(x
−
k+1

, t)�k
r
(xk+1) + cjuj(x

−
k
, t)�k

r
(xk)

= −cju
k
j
(x−

k+1
, t)�k

r
(xk+1) + cju

k−1
j

(x−
k
, t)�k

r
(xk)

= −cja
k
j
(t)�k(x−

k+1
) T �k

r
(xk+1) + cja

k−1
j

(t)�k−1(x−
k
) T �k

r
(xk).

−cj[ fj(x, t)�
k(x)]

x=xk+1
x=xk

≈ −cj[ f
∗
j
(x, t)�k(x)]

x=xk+1
x=xk

= −cja
k
j
(t)�k(x−

k+1
) T �k(xk+1) + cja

k−1
j

(t)�k−1(x−
k
) T �k(xk)

= cja
k
j
(t)Fk,k

j
+ cja

k−1
j

(t)Fk−1,k

j
,

−cj[ fj(x, t)�
k(x)]

x=xk+1
x=xk

≈ −cj[ f
∗
j
(x, t)�k(x)]

x=xk+1
x=xk

= −cja
k+1
j

(t)�k+1(x+
k+1

) T �k(xk+1) + cja
k
j
(t)�k(x+

k
) T �k(xk)

= cja
k+1
j

(t)Fk+1,k

j
+ cja

k
j
(t)Fk,k

j
,

ak(t) = (ak
i
(t))i∈S, a(t) = (ak(t))k∈ℤ,

�M =

⎡
⎢⎢⎣

⋱

INS
⊗Mk

⋱

⎤
⎥⎥⎦
, where NS = �S�,⊗ is the Kronecker product,

and the block-tridiagonal matrix ��

=

⎡⎢⎢⎣

⋱ ⋱ ⋱

��k,k−1 ��k,k ��k,k+1

⋱ ⋱ ⋱

⎤⎥⎥⎦
,
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The matrices �̃k� are defined by sub-blocks; denote these sub-blocks by �̃k�
ij

:

The global system of equations is

3.4 � Boundary conditions

To enable computation, this numerical approximation has to take place on a finite inter-
val, which means we must consider a bounded domain and specify boundary conditions. 
Recall from Sect. 2 that we wish to impose a regulated boundary at x = 0 . To apply the 
DG method, we must truncate the state space of the first fluid at some finite interval upper 
bound, [0, I] , for some I < ∞ , and specify the boundary behaviour at x = I  . Here we con-
sider I  to be a regulated boundary. Let us denote the doubly-bounded fluid level by Xt . 
Ultimately, we wish to approximate a fluid-fluid queue where the first fluid level, Xt , is 
bounded below at 0, only. Thus, the first step in the approximation scheme is to approxi-
mate Xt by Xt . The truncation of Xt to Xt will result in an artificial point mass at the upper 
bound, which we have to address properly. It is important to choose an I  sufficiently large 
to control the error induced by the artificial upper bound, however, with larger I  there 
comes increased computational burden. We shall further comment on this in Sect. 5, where 
we report our numerical experiments.

Let [0, I] be the domain of the approximation, where I < ∞ , and assume there is a regu-
lated boundary for {Xt} at x = I  . We partition the space [0, I] into D∇ = {0}, DΔ = {I}, 
and K non-trivial intervals, Dk = [xk, xk+1] ⧵ {{0} ∪ {I}}, xk < xk+1, k = 1, ...,K , 
x1 = 0, xK+1 = I  and define hk ∶= xk+1 − xk . The notation Δ refers to quantities and sets 
which are relevant to the boundary at I .

For states with ci ≤ 0 , there is the possibility of point mass accumulating at the bound-
ary at 0 . Denote these point masses by q∇,i(t) for i ∈ S∇ . For states with ci > 0 there is 

�̃kk =

⎡
⎢⎢⎢⎢⎢⎣

T11Mk + c1(F
kk
1
+ Gk) T12Mk T1NS

Mk

T21Mk

⋮ ⋱ ⋮

TNS−1,NS
Mk

TNS1
Mk TNS ,NS−1

Mk TNS,NS
Mk + cNS

(Fkk
NS

+ Gk)

⎤
⎥⎥⎥⎥⎥⎦

,

�̃k,k+1 =

⎡
⎢⎢⎣

c1F
k,k+1

1

⋱

cNS
F
k,k+1

NS

⎤
⎥⎥⎦
,

�̃k,k−1 =

⎡⎢⎢⎣

c1F
k,k−1

1

⋱

cNS
F
k,k−1

NS

⎤⎥⎥⎦
.

�̃kk
ij
=

{
TijMk + ci(F

kk
i
+ Gk) i = j,

TijMk i ≠ j,

�̃k�
ij

=

{
ciF

k�
i

i = j,

0 i ≠ j,
� ∈ {k − 1, k + 1}.

(20)
d

dt
a(t)M̃ = a(t)�̃.
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no possibility of a point mass at 0 . Similarly, for ci ≥ 0 there is the possibility of a point 
mass at I  . Denote these point masses by qΔ,i(t) , for i ∈ SΔ . For states with ci < 0 there is 
no possibility of a point mass at I  . Let q∇(t) = (q∇,i(t))i∈S∇

 and qΔ(t) = (qΔ,i(t))i∈SΔ
 and 

fm(x, t) = ( fi(x, t))i∈Sm
 , m ∈ {+,−, 0}.

Let us first consider the boundary at Xt = 0 . Bean and O’Reilly (2014) show the follow-
ing boundary conditions describe the evolution of probability/density of a stochastic fluid 
model with a regulated boundary at 0;

Equation (21) states that point mass moves between phases according to the sub-genera-
tor matrix T∇∇ , and that the flux of probability density into the point masses is −f∇(0, t)C∇ . 
Substituting the DG approximation for f∇(0, t) into Eq.  (21) gives, for j ∈ S∇,

Equation (22) describes the flux of probability mass to density upon a transition from a 
phase in S∇ to a phase in S+ . Thus, the flux into the left-hand edge of D1 in phase j ∈ S+ is, ∑
i∈S∇

q∇,i(t)Tij . Therefore, we can now evaluate

for j ∈ S+ . Thus, the DG approximation of the flux into point masses q∇,j(t) is 
−a1

j
(t)�1(0) T cj, j ∈ S− , the rate of transition of point mass within q∇(t) is T∇∇ , and the DG 

approximation of the transition of point mass to density is 
∑
i∈S∇

q∇,i(t)Tij�
1(0), j ∈ S+.

Similarly, for the boundary at Xt = I  the boundary conditions are

Using the same arguments as above,

for j ∈ SΔ . Thus, the DG approximation of the flux into the point mass qΔ,j(t) is 
aK
j
(t)�K(0) T cj , j ∈ S+ , the rate of transition of point mass within qΔ(t) is TΔΔ , and the DG 

approximation of the transition of point mass to density is 
∑
i∈SΔ

qΔ,i(t)Tij�
K(I) , j ∈ S−.

(21)
d

dt
q∇(t) = q∇(t)T∇∇ − f∇(0, t)C∇,

(22)q∇(t)T∇+ = f+(0, t)C+.

d

dt
q∇,j(t) =

∑
i∈S∇

q∇,i(t)Tij − a1
j
(t)�1(0) T cj.

−cj[ fj(x, t)�
1(x)]

x=x1
x=0

= −cj fj(x1, t)�
1(x1) + cj fj(0, t)�

1(0)

≈ −cj( f
∗
j
(x1, t)�

1(x1) +
∑
i∈S∇

q∇,i(t)Tij�
1(0)

= cja
1
j
(t)F1,1

j
+

∑
i∈S∇

q∇,i(t)Tij�
1(0),

d

dt
qΔ(t) = qΔ(t)TΔΔ + fΔ(I, t)CΔ,

qΔ(t)TΔ− = −f−(I, t)C−.

d

dt
qΔ,j(t) =

∑
i∈SΔ

qΔ,i(t)Tij + aK
j
(t)�K(I) T cj,

−cj[ fj(x, t)�
K(x)]x=I

x=xK
≈ cja

K
j
(t)FK,K

j
+

∑
i∈SΔ

qΔ,i(t)Tij�
K(I),
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To include this behaviour in the DG generator we truncate the doubly-infinite matrix �̃ 
at k = 1 and k = K , then append |S∇| rows and columns to the top and left, and |SΔ| rows 
and columns to the bottom and right. These represent the point masses q∇(t) and qΔ(t) , 
respectively. Given the discussion above, the truncated matrix is

where ��∇1 ∶= T∇+ ⊗ �1(0) , ��1∇ ∶= −diag(ci�(ci<0))i∈S ⊗ �1(0) T , ��ΔK ∶= TΔ− ⊗ �K(I) 
and ��K,Δ ∶= diag(ci�(ci>0))i∈S ⊗ �K(I) T , and ⊗ is the Kronecker product. Where we have 
used the same sub-block notation as we have for �̃.

After the addition of the boundary conditions, the system of ODEs (20) can now be 
written as

where �M =

⎡
⎢⎢⎢⎢⎢⎣

I�S∇�
INS

⊗M1

⋱

INS
⊗MK

I�SΔ�

⎤⎥⎥⎥⎥⎥⎦

 . Define B = �̂M̂−1 , with the sub-block 

as we used for �̃.
Regarding our notational convention, the matrices in fraktur fonts (e.g. � ) are interme-

diary constructions that are not directly referred to for the rest of the paper (but do appear 
again in the appendix). We use regular mathematics fonts to represent 

DG approximations to operators, i.e. B is a DG approximation to � and Ψ is an approxi-
mation to .

We prove the following result in Appendix 1.

Corollary 3.1  The approximate generator B conserves probability. That is, for all t ≥ 0,

3.5 � Putting It All Together

Recall that the ultimate goal for our DG approximation is to approximate the operator � . 
We have that Bk� is an approximation to �k� , k,� ∈ {∇, 1, ...,K,Δ}.

�̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T∇∇ �̃∇1

�̃1∇ �̃11 �̃12

�̃21 �̃22 �̃23

⋱ ⋱ ⋱

�̃K−1,K−2 �̃K−1,K−1 �̃K−1,K

�̃K,K−1 �̃K,K �̃K,Δ

�̃Δ,K TΔΔ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)
d

dt

[
q∇(t) a(t) qΔ(t)

]
=
[
q∇(t) a(t) qΔ(t)

]
�̂M̂−1,

∑
i∈S∇

q∇,i(t) +
∑
i∈SΔ

qΔ,i(t) +
∑
i∈S

∫x∈[0,I]

ui(x, t) dx

=
∑
i∈S∇

q∇,i(0) +
∑
i∈SΔ

qΔ,i(0) +
∑
i∈S

∫x∈[0,I]

ui(x, 0) dx.
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Given we have now truncated the space and added boundaries, let us define M0,I as 
the set of measures, �i , which admit an absolutely continuous density on (0, I) , may have a 
point mass at x = 0 if i ∈ S∇ , and another at x = I  if i ∈ SΔ . The set M0,I is the domain of 
the operator � truncated to the interval [0, I] with regulated boundaries at x = 0 and x = I  . 
Also, redefine Km

i
= {k ∈ {∇, 1, ...,K,Δ} ∣ l(Dk ∩ Fm

i
) = l(Dk)} for i ∈ S,m ∈ {+,−, 0} 

for all l ∈ M0,I.
Approximations Bmn

ij
 , Bij , and Bmn to �mn

ij
 , �ij , and �mn , i, j ∈ S, m, n ∈ {+,−, 0} , are 

constructed from the block-matrices Bk�
ij

 , i, j ∈ S , k,� ∈ {∇, 1,… ,K,Δ} , as

4 � Application to an SFFM

Given our approximation B to the generator � we now follow the recipe from (Bean and 
O’Reilly 2014), replacing the actual generator � with its approximation B , to construct 
approximations, � and p , to the stationary operators,  and �.

It may be convenient to think of our approximations in terms of approximations of ker-
nels. Recall that the operators in (Bean and O’Reilly 2014) can be thought of in terms of 
kernels. That is, for some function g = (gi(x))i∈S , we can write

where �k�
ij
(x, dy) is the kernel of the operator �k�

ij
.

Let a∇(t) ∶= q∇(t) and aΔ(t) ∶= qΔ(t) , and define basis functions �∇(x) = �
∇
1
(x) = �(x) 

and �Δ(x) = �
Δ
1
(x) = �(x − I) , where � is the Dirac delta function, N∇ = NΔ = 1 , and 

N∇ = NΔ = {1} . Also define M̂∇ = I|S∇| and M̂Δ = I|SΔ| and row-vectors

To pose the approximation � in kernel form let ai�(x) T ∈ W, i ∈ S be the initial den-
sity of the process, and �(x)b T

i
∈ W, i ∈ S be a test function. Observe that, from our DG 

construction earlier and the definition of M̂,

Thus, we can think of

as an approximation to the kernel �ij(x, dy) . This concept can be extended to all the approx-
imations of operators considered in this work.

Bmn
ij

=
[
Bk�
ij

]
k∈Km

i
,�∈Kn

j

, i, j ∈ S, m, n ∈ {+,−, 0},

Bij =
[
Bk�
ij

]
k,�∈{∇,1,...,K,Δ}

, i, j ∈ S,

Bmn =

[[
Bk�
ij

]
i∈Sm

k
,j∈Sn

�

]

k∈Km,�∈Kn

, m, n ∈ {+,−, 0}.

��g T =
∑

k,�∈{∇,1,…,K,Δ}

∑
i,j∈S

∫x,y

d�i(x)�
k�
ij
(x, dy)gj(y),

�(x) = (�k(x))k∈{∇,1,...,K,Δ}, ai(t) = (ak
i
(t))k∈{∇,1,...,K,Δ}, i ∈ S.

∑
i,j∈S

∫x,y∈[0,I ]

ai�(x)
T �(x) dxM̂−1Bij�(y)

T �(y)bj dy =
∑
i,j∈S

aiBijM̂bj.

�(x)M̂−1Bij�(y)
T dy,
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4.1 � Approximating the Operator ℝ

Recall the operator ℝk from Lemma 2.1. Essentially, the operator ℝk takes an initial meas-
ure �k and multiplies each element by 1∕|ri(x)| on cells Dk where ri(x) ≠ 0 . In the context of 
DG the initial distribution is given by ai�(x) T ∈ W, i ∈ S . Thus, for k ∈ {∇, 1, ...,K,Δ} 
such that ri(x) ≠ 0 on Dk , we have

Decompose the right-hand side into a component which lies in W and another orthogo-
nal to W:

where �k
i
�k(x) T ∈ W , g⟂

i
∈ W⟂ . Now, multiply by test functions {�k

r
(x)}

Nk

r=1
 and integrate 

over [0, I]:

since gi(x)⟂ ∈ W⟂ . Define the matrix Mr
k
∶=

∫x∈[0,I ]

�k(x) T �k(x)

|ri(x)| dx , then ak
i
Mr

k
= �k

i
Mk, 

which implies �k
i
= ak

i
Mr

k
M−1

k
. Thus, we have the approximation

Since ak
i
 is arbitrary, we see that we approximate ℝk

i
 by Rk

i
= Mr

k
M−1

k
, and ℝk by 

Rk = diag(Rk
i
)i∈S∙

k
.

In practice, we implement a Gauss-Lobatto quadrature approximation to compute the 
elements of Mr

k
.

4.2 � Approximating the Operator D and the DG Riccati Equation

Recalling Lemma 2.1 and replacing the operators ℝk and ��m , by their approximations we 
have the following approximation to �mn(s)

ak
i
�k(x) T ℝk

i
=

ak
i
�k(x) T

|ri(x)| .

ak
i
�k(x) T

|ri(x)| = �k
i
�k(x) T + g⟂

i
(x),

ak
i ∫x∈[0,I ]

�k(x) T �k(x)

|ri(x)| dx = �k
i ∫x∈[0,I ]

�k(x) T �k(x) dx +
∫x∈[0,I ]

g⟂
i
(x)�k(x) dx

= �k
i ∫x∈[0,I ]

�k(x) T �k(x) dx = �k
i
Mk,

ak
i
�k(x) T ℝk

i
=

ak
i
�k(x) T

|ri(x)| ≈ ak
i
Mr

k
M−1

k
�k(x) T .

Dmn(s) =
[
Rm

(
Bmn − sI + Bm0

(
B00 − sI

)−1
B0n

)]
, m, n ∈ {+,−}.
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Let �k(x)M−1
k
Ψk�

ij
(s)��(y) T dy , i, j ∈ S, k ∈ K+

i
,� ∈ K−

j
 be a finite-dimensional 

approximation of the operator kernel k�
ij
(s)(x, dy) , where Ψk�

ij
(s) is a matrix of constants for  

a given s . Construct an approximation to (s)(x, dy) by

where �+(x) = (�k(x))i∈S+
k
,k∈K+ and �−(y) = (�k(y))i∈S−

k
,k∈K− are row-vectors, Ψ(s) is a 

matrix of constants for a given s with the same size as D+− , and M̂m, m ∈ {+,−, 0} is a 
block diagonal matrix M̂m = diag

((
Mk

)
i∈Sm

k

)
k∈Km

 , m ∈ {+,−, 0} . Now replace the theo-
retical kernels in Theorem 2.1 by their DG approximations to get

Multiplying on the left by �+(x) T and on the right by �−(y) , integrating over both x and 
y , then post-multiplying by M̂−1

−
 gives the following matrix Riccati equation

Thus, we may find Ψ(s) by solving Eq.  (24), using one of the methods in (Bean et al. 
2009). Here, we use the Newtons method.

Given the stochastic interpretation of (0) we know that (0)([0,∞)) = 1 for every vec-
tor of measures  such that ([0,∞)1 = 1 , when an SFFM is recurrent. It appears that this 
result carries over to the matrix Ψ(0) giving the property that 

∫y∈[0,I ]

Ψ(0)�−(y) T dy = 1 . 

However, we have only observed this numerically and have no proof of this property.

�+(x)M̂−1
+
Ψ(s)�−(y) T dy =

[[
�k(x)M−1

k
Ψk�

ij
(s)��(y) T dy

]
i∈S+

k
,j∈S−

�

]

k∈K+,�∈K−

,

�+(x)M̂−1
+
D+−(s)�−(y) T dy

+
∫z1,z2

�+(x)M̂−1
+
Ψ(s)�−(z1)

T �−(z1)M̂
−1
−
D−+(s)�+(z2)�

+(z2)M̂
−1
+
Ψ(s)�−(y) T dz1 dz2 dy

+
∫z1

�+(x)M̂−1
+
D++(s)�+(z1)

T �+(z1)M̂
−1
+
Ψ(s)�−(y) T dz1 dy

+
∫z1

�+(x)M̂−1
+
Ψ(s)�−(z1)

T �−(z1)M̂
−1
−
D−−(s)�−(y) T dz1 dy = 0.

(24)D+−(s) + Ψ(s)D−+(s)Ψ(s) + D++(s)Ψ(s) + Ψ(s)D−−(s) = 0.

Table 1   Notation for the approximation of the stationary operators of an SFFM. The first column contains 
the operators which we are approximating, the second column contains indices for which the operators are 
defined, the third column defines the notation we use for the coefficients of the approximation, and the last 
column defines how the coefficients and basis functions are used to approximate the operators

Exact operator Operator indices Approximation notation Approximations

k

i

i ∈ S−
k
, k ∈ K−

�k
i
∶= (�k

i,r
)r∈Nk

k

i
( dx) ≈ �k

i
�k(x) T dx,

�k
i

i ∈ S−
k
∪ S 0

k
,

k ∈
⋃

m∈{−,0}

K
m

  

p
k
i
∶= (pk

i,r
)r∈Nk

�k
i
( dx) ≈ p

k
i
�k(x) T dx

k
i
(y) i ∈ S,

k ∈ {∇, 1,… ,K,Δ}
�k
i
(y) ∶= (�k

i,r
(y))r∈Nk

k
i
(y)( dx) ≈ �k

i
(y)�k(x) T dx
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4.3 � Putting It All Together: Constructing an Approximation to the Stationary 
Distribution

We find an approximation to the stationary distribution by replacing the theoretical opera-
tors in Theorem 2.2 with their approximations. Table 1 defines the notation we use for the 
DG approximations to stationary operators.

With the notation in Table 1 define row-vectors

Proceeding similarly to the derivation of the Riccati Eq. (24), we can argue that the 
coefficients � are the solution to the matrix system

Essentially, we replace the theoretical operators in Eqs. (9) and (10) with their DG 
counterparts.

Similarly, the coefficients p are given by

where z is a normalising constant. The coefficients �(y) are given by

�k ∶= (�k
i
)i∈S−

k
, k ∈ K−

i
,

� ∶= (�k)k∈K− ,

pk,m ∶= (pk
i
)i∈Sm

k
, k ∈ Km, m ∈ {−, 0},

pm ∶= (pk,m)k∈Km , m ∈ {−, 0},

p ∶= (pm)m∈{−,0},

�k,m(y) ∶= (�k
i
(y))i∈Sm

k
, k ∈ {∇, 1,… ,K,Δ}, m ∈ {+,−, 0},

�m(y) ∶= (�k,m(y))k∈Km , m ∈ {+,−, 0},

�(y) ∶= (�m(y))m∈{+,−,0}.

[
� 0

](
−

[
B−− B−0

B0− B00

])−1[
B−+

B0+

]
Ψ(0) = �,

∫x∈[0,I ]

�

[
�−(x) T

�0(x) T

]
dx1 = 1.

(25)
[
p− p0

]
= z

[
� 0

](
−

[
B−− B−0

B0− B00

])−1

,

(26)�0(y) =
[
�+(y) �−(y)

] [ B+0

B−0

](
−B00

)−1
,

(27)
[
�+(y) �−(y)

]
=
[
p− p0

] [ B−+

B0+

] [
eKy eKyΨ(0)

] [ R+ 0

0 R−

]
,

(28)
∑
i∈S

∑
k∈{∇,1,...,K,Δ}

∫

∞

y=0 ∫x∈[0,I ]

�k
i
(y)�k(x) T dx dy

2844 Methodology and Computing in Applied Probability (2022) 24:2823–2864



1 3

where K ∶= D++(0) + Ψ(0)D(−+)(0) , and z is a normalising constant.
To assist the reader in understanding these constructions and the notation we provide an 

explicitly worked toy-example in Appendix 2.

5 � Numerical Experiments

To illustrate the validity of our discontinuous Galerkin approximation, we perform numeri-
cal experiments on a stochastic fluid-fluid model, in a three-pronged approach.

First, we run Monte Carlo simulations, in order to compare the simulated joint density 
of {(Xt,�t)} evaluated at the time {Yt} first returns to the initial level 0 against that which is 
obtained via the return-probability matrix Ψ(0) . This numerically verifies the accuracy of 
our proposed approximation for the operator matrix Ψ(0) . Second, we evaluate approxima-
tions to the limiting marginal joint density of {(Xt,�t)} by first approximating the limiting 
distribution of {(Xt, Yt,�t)}t≥0 and then integrating over Yt . We compare this against the 
analytical density. Third, we vary the parameters of the second fluid {Yt} to confirm that the 
approximating joint density for {(Xt,�t)} does not change, while the marginal limiting dis-
tribution for {Yt} does, both of which are consistent with our intuitive understanding of the 
chosen example. In all three procedures, we find the approximations to be accurate.

We also analyse different choices for the level of spatial discretisation and the degree 
of polynomial basis functions, with respect to the order of convergence in relevant error 
terms.

5.1 � An On‑Off Bandwidth‑Sharing Model

The following example is a modification of the example presented in (Latouche et  al. 
2013) where it was first analysed. The modification of the example is necessary since, in 
(Latouche et al. 2013), the model is level dependent; in particular, the rate of change for the 
process {Xt} at time t depends on whether Xt is above, or below, some threshold, x∗.

The modified example we consider here is as follows. Consider a stochastic fluid-fluid 
{(Xt, Yt,�t), t ≥ 0}, where {Xt} and {Yt} represent the workloads in Buffers 1 and 2 at time 
t ≥ 0 , respectively, both driven by the phase {�t}, which is a Markov chain on the state 
space S = {11, 10, 01, 00} . Both {Xt} and {Yt} have a regulated boundary at 0. Here, the 
state 11 indicates inputs to both buffers being on, the state 00 indicates both being off, the 
state 10 is when only the first input is on, and the state 01 is when only the second is on. 
The input of Buffer k is switched from on to off with rate �k , and from off to on with rate 
�k , for k = 1, 2 . Thus, the infinitesimal generator T for �t is given by

(29)+
∑
i∈S

∑
�∈{−,0}

∑
k∈K�

i

∫x∈[0,I ]

pk
i
�k(x) T dx = 1,

T =

⎡⎢⎢⎢⎣

−(�1 + �2) �2 �1 0

�2 − (�1 + �2) 0 �1

�1 0 − (�2 + �1) �2

0 �1 �2 − (�1 + �2)

⎤⎥⎥⎥⎦
.
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The net rates of change for Xt , denoted ci , are given by

and the net rates of change for Yt , denoted ri , are as follows

For our numerical experiments, we use the parameter choices given in (Latouche et al. 
2013):

While the true problem has an unbounded domain [0,∞) , the discontinuous Garlekin 
method requires the domain of approximation to be a finite interval. Here we choose an 
upper bound of I = 48 and approximate the process on [0, I ] with regulated boundaries at 
0 and I  . The effect of this truncation can be partly quantified by evaluating 
lim
t→∞

ℙ
[
Xt > I,𝜑t = i

]
 , i ∈ S . We observe that our approximations have an error of at least 

this amount.

5.2 � Numerical Rxperiment for Ψ

Here we construct an approximation to Ψ using our DG methodology and compare 
the results to estimates obtained from Monte Carlo simulation which we treat as the 
ground truth. We choose the initial distribution of {(Xt, Yt,�t)} to be a point mass at 
(X0 = 5, Y0 = 0, �0 = 01) and zero elsewhere. Given the initial distribution and the 

(c11, c10, c01, c00) = (�1 − �1, �1 − �1, −�1, −�1),

(r11, r10, r01, r00) =

⎧
⎪⎪⎨⎪⎪⎩

(�2 − �, − �, �2 − �, − �) if Xt = 0,

(�2 − �2, − �2, �2 − �2, − �2) if Xt ∈ (0, x∗),

( �2, 0, �2, 0) if Xt ≥ x∗.

(30)�1 = 11, �1 = 1, �1 = 12.48, �1 = 1.6, � = 2.6,

(31)�2 = 22, �2 = 1, �2 = 16.25, �2 = 1.0, x∗ = 1.6.

Fig. 1   Approximations to the cumulative probabilities ℙ
[
X
�(0) ≤ x

k
,�

�(0) = i
]
 , i ∈ {00, 10} and 

x
k
= 0, 0.4, 0.8, ..., 2, obtained by Monte Carlo (red bars), DG with one basis function on each cell (black 

crosses) and DG with two basis functions on each cell (blue stars). For the Monte Carlo estimate we 
plot the 95% confidence interval. The cumulative probabilities, ℙ

[
X
�(0) ≤ x

k
,�

�(0) = i
]
 are constant for 

i ∈ {00, 10} and x
k
> 1.6 , and are zero for � ∈ {11, 01} , as it is impossible for �(0) to occur whilst the pro-

cess is in these phases; hence, we do not show them here
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model parameters defined above, we simulate 106 sample paths until the first return 
time �(0) and record (X

�(0),��(0)) . We then use the samples to estimate the probabilities 
ℙ
[
X
�(0) ≤ xk,��(0) = i

]
 , xk = 0, 0.4, 0.8, ..., 48, i ∈ S by finding the proportion of samples 

that lie in these sets. To account for Monte Carlo error we use the bootstrap ( 104 times) to 
estimate the 95% confidence interval for these estimates. In Fig. 1 the lower and upper red 
horizontal bars at each point represent these confidence intervals.

We then use the DG methodology with a constant cell width of hk = 0.4, k = 1, ..., 120, 
and Nk = 1 or Nk = 2 basis functions on each cell to estimate the same probabilities. 
Results are plotted in Fig. 1.

As shown in Fig. 1, the piecewise-constant DG approximation with one basis function 
on each cell provides a reasonable approximation, while the piecewise-linear DG approxi-
mation with two basis functions on each cell gives an approximation which is almost indis-
tinguishable from the Monte Carlo estimate.

5.3 � The Marginal Stationary Distribution of X

Since Buffer 1, {Xt} , is conditionally independent of Buffer 2, {Yt} , given {�t} , we can use 
results from the existing literature on stochastic fluid flows (da Silva Soares 2005) to obtain 
the marginal limiting density �(x) = (�i(x))i∈S of {Xt}:

On the other hand, using the methodology of Sect. 3, we can approximate the joint sta-
tionary operators

for i ∈ {11, 10, 01, 00} . Then, we marginalise over y to approximate the marginal stationary 
distribution �(x)

Let two vectors �1 and �2 denote respectively the piecewise-constant and piecewise-
linear DG approximations of � . We use a mesh with a constant cell width hk = 0.4 for the 
DG approximation. Figure 2 presents the analytical densities �i(x), i ∈ {11, 10, 01, 00} , the 
piecewise-constant DG approximation, and the piecewise-linear DG approximation.

The piecewise-linear approximation performs well and is almost indistinguishable from 
the analytic density, while the piecewise-constant approximation does not perform as well. 
The piecewise-constant approximation underestimates the point masses and the density at 
lower values of x , and redistributes this mass in the tails.

5.4 � Sensitivity to the Dynamics of {Y
t
}

To further confirm that the discontinuous Galerkin approximation Ψ(0) of the operator (0) 
accurately captures the dynamics of {Yt} , we vary the rate at which the input to this buffer 

�i(x) ∶=
�

�x
lim
t→∞

ℙ[Xt ≤ x,�t = i], i ∈ {11, 10, 01, 00}.

�i(y)(x) dx ≈
�

�y
lim
t→∞

ℙ[Xt ∈ A, Yt ≤ y,�t = i],

pi(x) dx ≈ lim
t→∞

ℙ[Xt ∈ A, Yt = 0,�t = i],

∫y∈[0,∞)

�i(y)(x) dy + pi(x) ≈ �i(x).
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switches off (denoted by �2 ). As we modify this rate, we expect to see a change in the dis-
tribution of probability between

p0 ∶= lim
t→∞

ℙ
[
Yt = 0

]
,

p+ ∶= ℙ
[
Yt > 0

]
.

Fig. 2   A plot of the analytic density functions, �
i
(x) , and the approximations to the density functions 

�
1

i
(x), �2

i
(x) , for i ∈ {11, 10, 01, 00} and x ∈ [0, 5] . The analytic density, �

i
(x) , is the solid red line with red 

crosses, �1

i
(x) the solid green lines and �2

i
(x) the solid blue line. The analytic density and DG approxima-

tion with linear basis functions are indistinguishable. The value of the point masses at X = 0 are repre-
sented by the height of the circles of the same colour as the corresponding density and have been jittered so 
that they do not lie on top of each other

Table 2   The probabilitiesp0
andp+while varying�2

�2 = 11, �2 = 1 �2 = 16, �2 = 1 �2 = 22, �2 = 1

p0 ≈0.0 ≈0.138 ≈0.275
p+ ≈1.0 ≈0.862 ≈0.725
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The net input rates for {Xt} , c11 = c10 and c01 = c00 , and the proportion of time that the 
phase process spends in the sets �t ∈ {11, 10} and �t ∈ {01, 00} remains unchanged as �2 
changes. Also, as �2 increases, the phase process spends proportionally more time in states 
{10, 00} than in states {11, 01} , and thus more time in phases with ri(x) ≤ 0 . Hence, as �2 
increases, we expect that Yt will spend more time at Yt = 0 , on average, yet the sum of the 
densities �11(x) + �10(x) and �01(x) + �00(x) should remain unchanged.

Regarding our approximations, we keep the mesh ( hk = 0.4 ) and basis functions 
( Nk = 2 ) fixed, and vary �2 and record the probabilities p0 and p+ , shown in Table  2. 
We also plot the densities �2

11
(x) + �

2
10
(x) and �2

01
(x) + �

2
00
(x) in Fig.  3. As �2 increases, 

the amount of probability in p0 increases, while the densities �2
11
(x) + �

2
10
(x) and 

�
2
01
(x) + �

2
00
(x) remain unchanged, as expected.

5.5 � Numerical Errors

It has been shown that operators such as � (defined in Sect. 2.1) under a DG approxima-
tion can have an error which converges at the order of O(hN+2

k
), where hk is the discretisa-

tion and N = Nk is the number of basis function on each cell (Hesthaven and Warburton 
2007). However, this result cannot be easily translated across to the operator Ψ. The DG 
approximation Ψ is constructed by taking the DG approximation, B , of the operators � , 
constructing an approximation, D , to � and then solving the Riccati Eq. (24) with D . We 
then use the approximation, Ψ , of  to derive an approximation for the limiting density � .  
With such a construction, it is not known how the error propagates through the process of 
solving the Riccati equation, and then through further calculations to determine � . Deter-
mining bounds for the approximation errors of Ψ and � , as functions of the discretisation 
and basis selection, is a topic for future research.

As a preliminary step in this direction, we empirically investigate how the approxima-
tion error of the marginal limiting density of the fluid {Xt}  (see Sect.  5.3) changes with 
respect to the choice of basis functions and the level of discretisation. Let [0, I] be the inter-
val on which we approximate the solution, then both the approximations and the analytical 

Fig. 3   Approximations to the density functions �11(x) + �10(x) (left) and �01 + �00 (right) on x ∈ [0, 8] for 
�2 = 11 (green with diamonds), �2 = 16 (blue with crosses) and �2 = 22 (red with plusses). The coloured 
circles at x = 0 on the right-hand plot represent the point masses and are coloured according to �2 = 11 
(green), �2 = 16 (blue) and �2 = 22 (red)
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solution belong to the space S × C−1([0, I]) , where C−1([0, I]) is the set of functions with 
countably many discontinuities. We compute the error of the approximation as

where uk
i
(x) , q∇,i and qΔ,i , represent the DG approximation to the marginal stationary den-

sity of {(Xt,�t)} , and the marginal stationary point masses at 0 and I  , respectively.
A log-log plot of the errors of the approximations versus cell width, h = hk , are shown 

in Fig. 4 for piecewise-constant ( Nk = 1 ), piecewise-linear ( Nk = 2 ), piecewise-quadratic 
( Nk = 3 ) and piecewise-cubic ( Nk = 4 ) polynomial bases. As log-mesh size decreases the 
log-error of the approximation decreases linearly. For Nk = 3 and h = 0.2 and for Nk = 4 
and h = 0.8 , a significant amount of the errors of the approximations are from other sources 
of error such as truncation. Recall that we truncated the problem to the interval [0, I] with 
I = 48 , from which we compute lim

t→∞
ℙ
[
Xt > 48

]
≈ 5.83 × 10−9 as the error due to trunca-

tion. Ignoring the approximations where the truncation error is significant, we use least-
squares to estimate the slopes of the lines for Nk = 1 , Nk = 2 and Nk = 3 to be 0.871, 2.90, 
and 4.82 , respectively.

∑
i∈S−

||||q∇,i − lim
t→∞

ℙ
[
Xt = 0,�t = i

]|||| +
∑
i∈S+

||qΔ,i||

+
∑
i∈S

K∑
k=1

|||||∫Dk

uk
i
(x) dx − lim

t→∞
ℙ
[
Xt ∈ Dk,�t = i

]|||||
,

Fig. 4   A log-log plot of errors of approximation for the marginal stationary distribution of {X
i
,�

t
} 

for different mesh sizes, h , and number of basis functions, N
k
 . The error due to truncation at I = 48 is 

≈ 5.83 × 10−9 contributes the majority of the error in the approximations with N
k
= 3 bases and a cell width 

of h = 0.2 and N
k
= 4 bases and a cell width of h = 0.8
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In Fig.  5 we plot log-error against Nk , the number of basis functions in each cell. 
This shows that log-error decreases linearly as the number of basis functions on 
each cell, Nk , increases. Using least-squares we estimate the slopes of the lines for 
h = 1.6, 0.8, 0.4, 0.2, 0.1 , and 0.05 to be −5.46, −6.07, −7.97, −8.38, −10.5 and −11.9 , 
respectively.

To help understand the trade-offs between error, computation time, memory and the 
overall size of the computational problem, we report, in Table 3, computation statistics 
for the data in Figs. 4-5. The size of the approximation scheme is quantified by the total 
number of basis functions required, denoted n

�
 . Computation time and memory require-

ments are approximately the same for a given problem size, n
�
 ; however, the error of 

the approximation is greatly reduced if a larger number of basis functions is used as 
opposed to a smaller cell width. For example, using a piecewise-constant approxima-
tion, Nk = 1 , with cell width h = 0.4 , then n

�
= 480 basis functions are required and the 

error of this approximation is ≈ 0.205 . Compare this to the piecewise-cubic approxima-
tion, Nk = 4 , with a cell width of h = 1.6 which also requires n

�
= 480 basis function, 

but achieves an error of ≈ 4.44 × 10−8 – an improvement of over 7 orders of magnitude 
for approximately the same computation effort as measured by run-time or memory.

The approximation scheme of Bean and O’Reilly (2013) is equivalent to the DG 
scheme introduce here when Nk = 1 . The width of the cell, h , corresponds to the param-
eter ‘ Δx ’ in Bean and O’Reilly (2013). Further, the finite-volume method with an 
upwind flux also results in an equivalent approximation. Thus, examining the first col-
umn of Table  3 we can observe the numerical performance of these related methods. 

Fig. 5   Log-errors of approximation for the marginal stationary distribution of {X
i
,�

t
} for different mesh 

sizes, h , and number of basis functions, N
k
 . The error due to truncation at I = 48 is ≈ 5.83 × 10−9 and con-

tributes the majority of the error in the approximations with N
k
= 3 bases and a cell width of h = 0.2 and 

N
k
= 4 bases and a cell width of h = 0.8
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Comparing the first column of Table 3 to the first row of Table 3 suggests that the DG 
scheme can converge much faster than these other schemes.

Unfortunately, larger scale analysis of the errors of approximation for Ψ is computation-
ally prohibitive since the ground truth must be evaluated via Monte Carlo simulation.

6 � Conclusions

We proposed the application of the discontinuous Galerkin method to approximate opera-
tors associated with stochastic fluid-queues and stochastic fluid-fluid models. Analysis of 
SFFMs using these operators requires us to partition the operators into regions correspond-
ing to when the second fluid level is increasing, decreasing or constant. The DG method 
is a natural candidate to approximate these operators due to the cell-based discretisation. 
By correctly utilising the discretisation of the state space, we used the DG method to 

Table 3   Computation statistics for DG approximations to the marginal stationary density of {Xt,�t} . n� is 
the total number of basis functions required for the approximation. Memory is the total memory (in mega-
bytes) allocated during the construction of the operators B , R , D , Ψ , and the approximation to the stationary 
density, � . The code was implemented in Julia using scientific libraries and was performed on a 2.3 Ghz 
Dual-Core Intel Core i5 processor with 16GB of RAM running macOS Catalina version 10.15.6

h Number of basis functions, Nk

1 2 3 4

1.6 error

time (sec)

memory (MB)

n
�

5.85 × 10−1

0.0276

5.81

120

4.58 × 10−3

0.0871

14.0

240

1.97 × 10−5

0.205

28.4

360

4.44 × 10−8

0.302

48.8

480

0.8 error

time (sec)

memory (MB)

n
�

3.61 × 10−1

0.113

15.6

240

6.79 × 10−4

0.315

47.9

480

6.98 × 10−7

0.646

103.0

720

5.83 × 10−9

1.3

181.0

960

0.4 error

time (sec)

memory (MB)

n
�

2.05 × 10−1

0.352

50.4

480

9.30 × 10−5

1.22

179.0

960

2.46 × 10−8

2.85

394.0

1440

-

0.2 error

time (sec)

memory (MB)

n
�

1.10 × 10−1

1.38

188.0

960

1.23 × 10−5

5.62

695.0

1920

5.83 × 10−9

13.9

1540.0

2880

-

0.1 error

time (sec)

memory (MB)

n
�

5.73 × 10−2

7.69

727.0

1920

1.58 × 10−6

31.4

2740.0

3840

- -

0.05 error

time (sec)

memory (MB)

n
�

2.92 × 10−2

43.6

2860.0

3840

2.03 × 10−7

230.0

10900.0

7680

- -
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approximate the infinitesimal generator of a stochastic fluid model {(Xt,�t)} , ensuring that 
the necessary partition can be recovered. Furthermore, DG methods are also appealing as 
they can maintain mass conservation, and high-order schemes can be constructed while 
maintaining the necessary spatial-discretisation.

Here, we have detailed how one constructs approximations to various operators which 
arise in the analysis of stochastic fluid-fluid models. We demonstrated this with an applica-
tion to approximate all the operators needed to construct the joint stationary distribution 
of a stochastic fluid-fluid models. The DG method also enabled us to obtain other per-
formance measures of stochastic fluid-fluid models that are also analytically presented by 
operators, such as Ψ.

The numerical results showed that DG approximations of the operator Ψ , as well as the 
stationary distribution of a SFFM, are accurate and effective. We also verified that the opera-
tors and their dynamics were captured accurately. Furthermore, in our example, we observed 
that adding more regularity in the basis functions was more effective in reducing the error 
of the approximation than decreasing cell width, for approximately the same computational 
effort. The numerical illustration also demonstrates that the DG scheme can converge rapidly 
compared to other methods.

Future work includes determining theoretical error bounds for approximations of the opera-
tor Ψ , as well as of the stationary distribution. Another interesting topic for future research is 
to determine conditions under which the approximation to the stationary distribution is a posi-
tive function. It may also be possible to extend the methods presented here to processes with a 
level-dependent first fluid, such as that in (Latouche et al. 2013).

Properties of B

Recall that the coefficients ak
i
(t) can be used to construct an approximate solution to a dif-

ferential equation at time t as uk
i
(x, t) = ak

i
(t)�k(x) T . For i ∈ S, k ∈ {∇, 1, ...,K,Δ}, r ∈ Nk , 

define �k
i,r
(t) ∶= ak

i,r
(t)

∫x∈Dk

�
k
r
(x) dx, and row-vectors �k

i
(t) = (�k

i,r
(t))r∈Nk

 . Motivated by 

the fact that we may be interested in approximations of the probabilities 
ℙ(X(t) ∈ Dk,�(t) = i) rather than the function uk

i
 itself, we can pose the problem equiva-

lently in terms of the integrals

Define

and matrices

ℙ
[
X(t) ∈ Dk,�(t) = i

]
≈ ak

i
(t)

∫x∈Dk

�k(x) T dx = �k
i
(t)1.

�k(t) = (�k
i
(t))i∈S, and �(t) = (�k(t)))k∈{∇,1,...,K,Δ},

Pk = diag

�
∫x∈Dk

𝜙
k
r
(x) dx

�

r∈Nk

, k ∈ {1, ...,K},

P =

⎡⎢⎢⎣

IN�S� ⊗ P1

⋱

IN�S� ⊗ PK

⎤⎥⎥⎦
.
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By choosing the basis {�k
r
}r∈Nk ,k∈{1,...,K}

 such that ∫
x∈Dk

�
k
r
(x) dx ≠ 0 for all r, k , then P is 

invertible. This is the case for the Lagrange polynomials, but not, for example, for the Leg-
endre polynomials. We can (loosely) interpret the new coefficients �k

i,r
(t) as representing 

the amount of probability captured by the basis function �k
r
(x) in phase i.

The differential Eq. (23) can be equivalently expressed as d
dt
�(t) = �(t)�, where

Let

Then

� =

⎡⎢⎢⎣

I�S∇�
P−1

I�SΔ�

⎤⎥⎥⎦
B

⎡⎢⎢⎣

I�S∇�
P

I�SΔ�

⎤⎥⎥⎦
.

�∇1 ∶= T∇+ ⊗

�
�1(0)M−1

1
P1

�
,

�1∇ ∶= −diag(ci�(ci<0))i∈S ⊗ P−1
1
�1(0) T ,

�ΔK ∶= TΔ− ⊗

�
�K(I)M−1

K
PK

�

�K,Δ ∶= diag(ci�(ci>0))i∈S ⊗ P−1
K
�K(I) T ,�kk

ij

��,�

��
∶=

�
TiiINk

+ ciP
−1
k
(Fkk

i
+ Gk)M

−1
k
Pk i = j,

TijINk
i ≠ j,

for k = 1,…K,

�k,k+1

ij
∶=

�
ciP

−1
k
F
k,k+1

i
M−1

k+1
Pk+1 i = j,

0Nk
i ≠ j,

for k = 1,…K − 1,

�k−1,k

ij
∶=

�
ciP

−1
k
F
k,k−1

i
M−1

k−1
Pk−1 i = j,

0Nk
i ≠ j,

, for k = 2,…K,

�kk =∶

⎡⎢⎢⎣

�kk
11

… �kk
1NS

⋮ ⋱ ⋮

�kk
NS1

… �kk
NS,NS

⎤⎥⎥⎦
, for k = 1,…K,

�k,k+1 =∶

⎡⎢⎢⎢⎣

�k,k+1

1,1
… �k,k+1

1,NS

⋮ ⋱ ⋮

�k,k+1

NS ,1
… �k,k+1

NS,NS

⎤⎥⎥⎥⎦
, for k = 1,…K − 1,

�k,k−1 =∶

⎡⎢⎢⎢⎣

�k,k−1

1,1
… �k,k−1

1,NS

⋮ ⋱ ⋮

�k,k−1

NS ,1
… �k,k−1

NS,NS

⎤⎥⎥⎥⎦
, for k = 2,…K.

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T∇∇ �∇1

�1∇ �11 �12

�21 �22 �23

⋱ ⋱ ⋱

�K−1,K−2 �K−1,K−1 �K−1,K

�K,K−1 �K,K �K,Δ

�Δ,K TΔΔ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Remark 7.1  One may recognise the structure of � as the structure of a quasi-birth-and-death 
process (QBD), with levels k = 1, ...,K . This raises the question of whether � is indeed a 
representation of the generator matrix of a QBD, or QBD-like process. In the case of a con-
stant basis function on each cell, i.e. Nk = 1 and �k

1
(x) ∝ 1 , k = 1, ...,K , then � is the genera-

tor of a QBD: it has zero row-sums, negative diagonal entries, and non-negative off-diagonal 
entries, the QBD-phase variable is {�t} and the level is k = ∇, 1, ...,K,Δ . In fact, if hk is the 
same for every k = 1, ...,K , then this is the same QBD discretisation of a stochastic fluid 
process analysed by Bean and O’Reilly (2013). However, for higher-degree polynomials � is 
not necessarily the generator of a QBD process. We conjecture that, using polynomial basis 
functions, then Nk = 1 and �k

1
(x) ∝ 1 , k = 1, ...,K is the only DG approximation which has 

an interpretation as a QBD-like process – not even as a QBD-RAP (Bean and Nielsen 2010).

In the following lemma, we use the following properties of the Lagrange interpolating poly-

nomials defined by the Gauss-Lobatto quadrature nodes. Property 1 
Nk∑
s=1

�
k
s
(x) =

{
1 x ∈ Dk,

0 x ∉ Dk.

For k ∈ {1, ...,K} , let ek
n
 be a row-vector of length Nk with a 1 in the n th position and 

zeros elsewhere. Property 2 At the cell edges, �k(xk) = ek
1
 and �k(xk+1) = ek

Nk
 , k = 1, ...,K.

Lemma 7.1  If {�k
r
(x)}r∈Nk

 , are chosen as the Lagrange interpolating polynomials on Dk , 
k ∈ {1,… ,K} , then the matrix � has zero row-sums.

Proof  Let 1 and 0 be column vectors of ones and zeros, respectively, with an appropriate 
length depending on the context. Using Property 1, observe that

hence M−1
k
Pk1 = 1 . Also

Mk1 =

(
Nk∑
s=1

∫x∈Dk

�
k
r
(x)�k

s
(x) dx

) T

r∈Nk

=

(
∫x∈Dk

�
k
r
(x)

Nk∑
s=1

�
k
s
(x) dx

) T

r∈Nk

=

(
∫x∈Dk

�
k
r
(x) dx

) T

r∈Nk

= Pk1,

Gk1 =

(
Nk∑
s=1

∫x∈Dk

�
k
r
(x)

d

dx
�
k
s
(x) dx

) T

r∈Nk

=

(
∫x∈Dk

�
k
r
(x)

d

dx

Nk∑
s=1

�
k
s
(x) dx

) T

r∈Nk

=

(
∫x∈Dk

�
k
r
(x)

d

dx
1 dx

) T

r∈Nk

= 0,
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where we have again used Property 1.
Consider first ci > 0 . Let b and d be arbitrary row-vectors of length Nk and Nk+1 , respec-

tively. By Property 2, for k = 1, ...,K − 1,

Therefore, for ci > 0 , we claim

The first sum is zero since T  is a generator of a continuous-time Markov chain. This 
leaves the other two terms, which, using our previous observations, we get

Similarly, for ci < 0 , and row-vectors b and d of length Nk and Nk−1 , respectively,

Therefore, for ci < 0 and k = 2, ...,K , using the same arguments as before we have

Fkk
i
b = −�k(xk+1)

T �k(xk+1)b

= −(ek
Nk
) T ek

Nk
b

= −bNk
(ek

Nk
) T ,

F
k,k+1

i
d = �k(xk+1)

T �k+1(xk+1)d

= (ek
Nk
) T ek+1

1
d

= d1(e
k
Nk
) T .

∑
j∈S

TijINk
1 + ciP

−1
k
(Fkk

i
+ Gk)M

−1
k
Pk1 + ciP

−1
k
F
k,k+1

i
M−1

k
Pk1 = 0.

ciP
−1
k
(Fkk

i
+ Gk)M

−1
k
Pk1 + ciP

−1
k
F
k,k+1

i
M−1

k+1
Pk+11

= ciP
−1
k
(Fkk

i
+ Gk)1 + ciP

−1
k
F
k,k+1

i
1

= ciP
−1
k
Fkk
i
1 + ciP

−1
k
Gk1 + ciP

−1
k
F
k,k+1

i
1

= ciP
−1
k
(−ek

Nk
) T + 0 + ciP

−1
k
(ek

Nk
) T

= 0.

Fkk
i
b = �k(xk)

T �k(xk)b

= (ek
1
) T ek

1
b

= b1(e
k
1
) T

F
k,k−1

i
d = −�k(xk)

T �k−1(xk)d

= −(ek
1
) T ek−1

Nk−1
d

= −dNk−1
(ek

1
) T .

∑
j∈S

TijINk
1 + ciP

−1
k
(Fkk

i
+ Gk)M

−1
k
Pk1 + ciP

−1
k
F
k,k−1

i
M−1

k
Pk1

= 0 + ciP
−1
k
(Fkk

i
+ Gk)M

−1
k
Pk1 + ciP

−1
k
F
k,k+1

i
M−1

k−1
Pk−11

= ciP
−1
k
(Fkk

i
+ Gk)1 + ciP

−1
k
F
k,k−1

i
1

= ciP
−1
k
Fkk
i
1 + ciP

−1
k
Gk1 + ciP

−1
k
F
k,k−1

i
1

= ciP
−1
k
(ek

1
) T + 0 + ciP

−1
k
(−ek

1
) T

= 0.
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For the lower boundary,

Also, for ci < 0,

For the upper boundary,

Also, for ci > 0,

Combining all of the above we have shown that the row sums of � are zero.

Corollary 7.1  The DG approximation to the generator B conserves probability. That is, for 
all t ≥ 0,

T∇∇1 +�∇1
1 = T∇∇1 +

[
T∇+ ⊗

(
�1(0)M−1

1
P1

)]

1.Swapping the order of summation and recalling

M−1
k
Pk1 = 1 then this is equal to T∇∇1 +

[
T∇+ ⊗

(
�1(0)M−1

1
P1

)
1
]
1

= T∇∇1 +
[
T∇+ ⊗ e

1
1
1
]
1

= T∇∇1 +
[
T∇+ ⊗ 1

]
1

= T∇∇1 + T∇+1

= 0.

−ciP
−1
1
�1(0) T + ciP

−1
1
(F1,1

i
+ Gk)M

−1
1
P11 = −ciP

−1
1
�1(0) T + ciP

−1
1
(F1,1

i
+ Gk)1

= −ciP
−1
1
�1(0) T + ciP

−1
1
F
1,1

i
1

= −ciP
−1
1
(e1

1
) T + ciP

−1
1
(e1

1
) T

= 0.

TΔΔ1 +�ΔK
1 = TΔΔ1 + [TΔ− ⊗ (�K(I )M−1

K
PK)]

1.Swapping the order of summation and recalling

M−1
k
Pk1 = 1 then this is equal to TΔΔ1 + [TΔ− ⊗ (�K(I )M−1

K
PK)1]1

= TΔΔ1 + [TΔ− ⊗ eK
NK
1]1

= TΔΔ1 + [TΔ− ⊗ eK
NK
]1

= TΔΔ1 + TΔ−1

= 0.

ciP
−1
K
�K(I) T + ciP

−1
K
(FK,K

i
+ GK)M

−1
K
PK1 = ciP

−1
K
�K(I) T + ciP

−1
K
(FK,K

i
+ GK)1

= ciP
−1
K
�K(I) T + ciP

−1
K
F
K,K

i
1

= ciP
−1
K
(eK

NK
) T + ciP

−1
K
(−eK

NK
) T

= 0.

∑
i∈S∇

q∇,i(t) +
∑
i∈SΔ

qΔ,i(t) +
∑
i∈S

∫x∈[0,I ]

ui(x, t) dx

=
∑
i∈S∇

q∇,i(0) +
∑
i∈SΔ

qΔ,i(0) +
∑
i∈S

∫x∈[0,I ]

ui(x, 0) dx.
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Proof  Let {�k
r
(x)}r∈Nk ,k∈{1,...,K}

, be a basis for span(�k
r
(x), r ∈ Nk, k ∈ {1, ...,K}) , 

where {�k
r
(x)}r∈Nk ,k∈{1,...,K}

 are the Lagrange polynomials. Also define �∇
1
(x) = �(x) and 

�
Δ
1
(x) = �(x − I) to capture the point masses at the boundaries. Let us use the same vector 

notation for the basis �k
r
(x) as we do for �k

r
(x) . For k ∈ {1, ...,K} , since {�k

r
(x)}r∈Nk

 and 
{�k

r
(x)}r∈Nk

 have the same span, then there is a matrix Vk such that � k(x) T = Vk�k(x) T . 
Trivially, this also holds for k = ∇,Δ.

Let

For a DG approximation, B , constructed from {�k
r
}r∈Nk ,k∈{∇,1,...,K,Δ}

 , it can be shown 
that B is similar to � with similarity matrix, VW , such that Bij = VW�ijW

−1V−1, i, j ∈ S . 
Therefore,

since 
∫x∈[0,I ]

�(x) T dx = W1 . The row sums of � are 0, hence

Let �ai(t) , i ∈ S denote the coefficients related to the DG approximation constructed 
with the basis {�k

r
}r∈Nk ,k∈{∇,1,...,K,Δ}

 (to distinguish them from a and � used above). The DE 
constructed by the DG method is

Integrating over x ∈ [0, I ] and summing over j ∈ S we get

Exchanging the order of operations gives

W =

⎡⎢⎢⎣

I�S∇�
P

I�SΔ�

⎤⎥⎥⎦
and V =

⎡
⎢⎢⎢⎢⎢⎣

I�S∇�
V1

⋱

VK

I�SΔ�

⎤
⎥⎥⎥⎥⎥⎦

.

∫x∈[0,I ]

Bij�(x) T dx = VW�ijW
−1V−1

∫x∈[0,I ]

V�(x) T dx

= VW�ijW
−1W1

= VW�ij1,

(32)∫x∈[0,I ]

∑
j∈S

Bij�(x) T dx = VW
∑
j∈S

�ij1

(33)= VW0

(34)= 0.

d

dt

(
�aj(t)

)
�(x) =

∑
i∈S

(
�ai(t)

)
Bij�(x).

∫x∈[0,I ]

∑
j∈S

d

dt

(
�aj(t)

)
�(x) dx =

∫x∈[0,I ]

∑
j∈S

∑
i∈S

(
�ai(t)

)
Bij�(x).

(35)
d

dt

∑
j∈S

(
�aj(t)

)
∫x∈[0,I ]

�(x) dx =
∑
i∈S

(
�ai(t)

)
∫x∈[0,I ]

∑
j∈S

Bij�(x) dx = 0,
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where the right-hand side is 0 due to Eq. (32). This holds for all t ≥ 0 . The left-hand side of 
(35) is the rate of change (with respect to time) of the total mass of the system. Since this 
is 0 for all t ≥ 0 , there is no change in the total mass of the system and thus probability is 
conserved.

A Toy Example

Here we include a small toy example to show how we construct a DG approximation 
and to help clarify the notation.

Consider a process {(Xt, Yt,�t)}t≥0 with two phases, �t ∈ S = {1, 2} and genera-
tor matrix T  . Let I = 1.8 , and partition into two intervals D1 = [0, 1] and D2 = [1, 1.8] , 
hence x1 = 0, x2 = 1, x3 = 1.8 . We choose a basis of Lagrange polynomials of order 1 to 
define our approximation space. That is,

The mesh and basis functions are shown in Fig. 6.
We can verify that the matrices M and G are given by

�
1
1
(x) = 1 − x, �

1
2
(x) = x, x ∈ D1,

�
2
1
(x) =

1.8 − x

0.8
, �

2
2
(x) =

x − 1

0.8
, x ∈ D2.

M =

⎡⎢⎢⎢⎣

1∕3 1∕6 0 0

1∕6 1∕3 0 0

0 0 4∕15 4∕30

0 0 4∕30 4∕15

⎤⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎣

−1∕2 1∕2 0 0

−1∕2 1∕2 0 0

0 0 − 1∕2 1∕2

0 0 − 1∕2 1∕2

⎤⎥⎥⎥⎦
.

Fig. 6   A mesh with nodes x1 = 0 , x2 = 1 and x3 = 1.8 and cells D1 = [0, 1] , D2 = [1, 1.8] . There are two 
basis functions on each cell. Point masses are located at x1 = 0 and x3 = 1.8
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The matrix P is given by

Let c1 = 1 and c2 = −2 . Then the flux matrices are given by

Suppose that r1(x) > 0 on D1 = F +
1

 and r1(x) < 0 on D2 ∪ {1} = F −
1

 , and further, that 
r2(x) < 0 on {0} ∪D1 = F −

2
 and r2(x) > 0 on D2 = F +

2
 . Specifically, let

Then, constructing B we get

We also have sub-matrices

P =

⎡⎢⎢⎢⎣

1∕2 0 0 0

0 1∕2 0 0

0 0 2∕5 0

0 0 0 2∕5

⎤⎥⎥⎥⎦
.

F1 =

⎡⎢⎢⎢⎣

0 0 0 0

0 − 1 1 0

0 0 0 0

0 0 0 − 1

⎤⎥⎥⎥⎦
, F2 =

⎡⎢⎢⎢⎣

−1 0 0 0

0 0 0 0

0 1 − 1 0

0 0 0 0

⎤⎥⎥⎥⎦
.

r1(x) =

�
1 x ∈ [0, 1],

−1 x ∈ [1, 1.8],
r2(x) =

⎧⎪⎨⎪⎩

−1 x = 0,

−2 x ∈ (0, 1],

1 x ∈ [1, 1.8].
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and B−+
11

= 03×2, B
++
12

= 02×2, B
−−
12

= 02×3, B
++
21

= 02×2, B
−−
21

= 03×3, B
−+
22

= 03×2, where 
0n×m denotes a n × m matrix of zeros. Furthermore,
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Since r1(x) and r2(x) are constant on each cell then R+ and R− take a particularly sim-
ple form. We have

The DG approximations Dmn(s), m, n ∈ {+,−} can now be constructed as

For a given value of s , we construct and solve the matrix Riccati equation,

for the matrix Ψ(s) using, for example, Newtons method (Bean et al. 2009). To obtain the 
stationary distribution we require Ψ(0).

Now, to find � , we solve the linear system in Eqs. (9)-(10). The result is a vector 
which we denote,

where �∇
2

 is an approximation to lim
n→∞

ℙ
[
X
�n
= 0,�

�n
= 2

]
 and �Δ

1
 is an approximation to the 

artificial point mass lim
n→∞

ℙ
[
X
�n
= 1.8,�

�n
= 1

]
 . For x ∈ D1 an approximation to the den-

sity of lim
n→∞

ℙ
[
X
�n
∈ dx,�

�n
= 2

]
 , is constructed as �1

2,1
�
1
1
(x) + �

1
2,2
�
1
2
(x) . For x ∈ D2 an 

approximation to the density of lim
n→∞

ℙ
[
X
�n
∈ dx,�

�n
= 1

]
 , is constructed as 

�
2
1,1
�
2
1
(x) + �

2
1,2
�
2
2
(x).

Next, given a value of y , we solve the system (25)-(29) to find p = p− and �(y).
For the point masses we have

where p∇
2
 is an approximation to lim

t→∞
ℙ
[
Xt = 0, Yt = 0,�t = 2

]
 and pΔ

1
 is an approximation 

to the artificial point mass lim
t→∞

ℙ
[
Xt = 1.8, Yt = 0,�t = 1

]
 . For x ∈ D1 , an approximation 

to the density of lim
t→∞

ℙ
[
Xt ∈ dx, Yt = 0,�t = 2

]
 , is constructed as p1

2,1
�
1
1
(x) + p1

2,2
�
1
2
(x) . 

For x ∈ D2 , an approximation to the density of lim
t→∞

ℙ
[
Xt ∈ dx, Yt = 0,�t = 1

]
 , is con-

structed as p2
1,1
�
2
1
(x) + p2

1,2
�
2
2
(x).

Similarly, for �−(y) , we have

Dmn(s) =

{
Rm(Bmm − sI) n = m,

RmBmn n ≠ m.

D+−(s) + Ψ(s)D−+(s)Ψ(s) + D++(s)Ψ(s) + Ψ(s)D−−(s) = 0,

� =
[
�
∇
2

�
1
2,1

�
1
2,2

�
2
1,1

�
2
1,2

�
Δ
1

]
,

p− =
[
p∇
2
p1
2,1

p1
2,2

p2
1,1

p2
1,2

pΔ
1

]
,

�−(y) =
[
�
∇
2
(y) �

1
2,1
(y) �

1
2,2
(y) �

2
1,1
(y) �

2
1,2
(y) �

Δ
1
(y)

]
,
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where �∇
2
(y) is an approximation to lim

t→∞
ℙ
[
Xt = 0, Yt ∈ dy,�t = 2

]
 and �Δ

1
(y) is an approx-

imation to the artificial point mass lim
t→∞

ℙ
[
Xt = 1.8, Yt ∈ dy,�t = 1

]
 . For x ∈ D1 an approx-

imation to the density of lim
t→∞

ℙ
[
Xt ∈ dx, Yt ∈ dy,�t = 2

]
 , is constructed as 

�
1
2,1
(y)�1

1
(x) + �

1
2,2
(y)�1

2
(x) . For x ∈ D2 an approximation to the density of 

lim
t→∞

ℙ
[
Xt ∈ dx, Yt ∈ dy,�t = 1

]
 , is constructed as �2

1,1
(y)�2

1
(x) + �

2
1,2
(y)�2

2
(x).

For �+(y) , we have

For x ∈ D1 an approximation to the joint density of lim
t→∞

ℙ
[
Xt ∈ dx, Yt ∈ dy,�t = 1

]
 is 

constructed as �1
1,1
(y)�1

1
(x) + �

1
1,2
(y)�1

2
(x) . For x ∈ D2 an approximation to the density of 

lim
t→∞

ℙ
[
Xt ∈ dx, Yt ∈ dy,�t = 2

]
 is constructed as �2

2,1
(y)�2

1
(x) + �

2
2,2
(y)�2

2
(x).

In summary, for i ∈ S , a global approximation of the joint stationary distribution is
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�+(y) =
[
�
1
1,1
(y) �

1
1,2
(y) �

2
2,1
(y) �

2
2,2
(y)

]
.

lim
t→∞

ℙ
[
Xt ∈ dx, Yt ∈ dy,𝜑t = i

]
≈

∑
r∈{1,2},k∈{1,2}

𝜋
k
i,r
(y)𝜙k

r
(x) dx dy, x ∈ (0, 1.8), y > 0,

lim
t→∞

ℙ
[
Xt ∈ dx, Yt = 0,𝜑t = i

]
≈

∑
r∈{1,2},k∈{1,2}

pk
i,r
𝜙
k
r
(x) dx, x ∈ (0, 1.8),

lim
t→∞

ℙ
[
Xt = 0, Yt ∈ dy,𝜑t = i

]
≈ 𝜋

∇
i
(y) dy, y > 0,

lim
t→∞

ℙ
[
Xt = 0, Yt = 0,𝜑t = i

]
≈ p∇

i
,

lim
t→∞

ℙ
[
Xt = 1.8, Yt ∈ dy,𝜑t = i

]
≈ 𝜋

Δ
i
(y) dy, y > 0,

lim
t→∞

ℙ
[
Xt = 1.8, Yt = 0,𝜑t = i

]
≈ pΔ

i
.
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