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ABSTRACT
With the rapid growth of malware attacks, more antivirus de-

velopers consider deploying machine learning technologies into
their productions. Researchers and developers published various
machine learning-based detectors with high precision on malware
detection in recent years. Although numerous machine learning-
based malware detectors are available, they face various machine
learning-targeted attacks, including evasion and adversarial attacks.
This project explores how and why adversarial examples evade mal-
ware detectors, then proposes a randomised chaining method to de-
fend against adversarial malware statically. This research is crucial
for working towards combating the pertinent malware cybercrime.

1 INTRODUCTION
Cybercrime is becoming more common in today’s virtual ecosys-

tem due to the global shift to digitising everything, such as the
digital contact tracing during the pandemic, the emerging of IoT
devices, and the tremendous spread of mobile applications [1–5].
Cybercriminals use sophisticatedly disguised malware to evade
detection from antivirus software while attacking systems and
networks. Recent research [6] has shown that the total malware
infection growth rate has significantly increased during the past
decade (2009 - 2018). In 2018, 812.67 million users were infected by
malware, while malware infections were 12.4 million in 2009. It indi-
cates that traditional rule-based malware detection products are far
not enough to defend rapidly growing malware attacks. Meanwhile,
machine learning technology has been adopted in commercial an-
tivirus products. For instance, two world-leading antivirus engines,
AVAST and Kaspersky, claimed that they leverage machine learning
detection technologies in their products [7, 8].

Machine learning has been a hot topic in the research of malware
detection. Researchers train a machine-learning model with a set of
malicious and benign samples, as a training set, and use another set
of samples, as a testing set, to validate the accuracy of the machine-
learning model identifying malware from the testing set. However,
machine learning-based malware detection is not the ultimate an-
swer. The accuracy of state-of-the-art machine learning-based de-
tectors are significantly high, but they rely on existing samples
and are vulnerable against sophisticated adversarial examples [9?
–13]. Recent research shows that both machine learning-based and
rule-based malware detectors have weaknesses in malware detec-
tion [14]. By adopting explainable feature-space perturbation and

problem-space obfuscation, malware can effectively evade the de-
tection by machine learning-based and rule-based detectors, which
can be regarded as black-box.

This project will focus on 5 main goals, (i) research current
techniques for optimising adversarial examples; (ii) implement
techniques and compare effectiveness of each; (iii) explore how
to detect the optimised adversarial malware; (iv) propose a method
to develop next-generation antivirus software; and (v) conduct an
experiment to determine validity of the method. By the end of this
project we will have obtained an extensive understanding of adver-
sarial attacks and how next-generation antivirus detectors should
operate.

2 BACKGROUND AND RELATEDWORK
To better understand the weaknesses of detectors defending

malware, we conduct a background study on the state-of-the-art
adversarial sample generation and evasion attacks.
Functionality-preserving black-box optimization of adver-
sarialwindowsmalware. Demetrio et al., [15] implemented black
box machine learning techniques to optimise adversarial Windows
malware. The attack framework used to optimise the adversarial
samples was called GAMMA (Genetic Adversarial Machine learning
Malware Attack). It aimed to optimise the trade-off between pay-
load size and misclassification confidence. The paper showed these
attacks up against two static machine learning antivirus detectors
called MalConv, a convolutional neural network, and GBDT (Gra-
dient boosting decision trees), which used a fixed representation of
2,381 features.

They were able to show that malware detectors are vulnerable
to adversarial samples, even with only black-box query access. This
new technique was able to be more (i) query-efficient by injecting
specific content for evasion purposes and (ii) functionality preserv-
ing, where benign content, that will never be executed, is injected
at the end of the file, or in newly created sections. This attack frame-
work is ineffective against dynamic detectors since the functionality
of the malware, before and after optimisation, remains the same.

This paper was able to show how effective black-box optimisa-
tions can be against static detectors, it is likely that with a few more
papers, the adversarial malware may become near undetectable to
static antivirus detectors. This should lead the security industry to
start thinking about producing dynamic machine learning detectors
that are fast and efficient. An interesting area to proceed would be
to create countermeasures for dynamic malware detectors. One way
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could be to inject benign content into the malware that executes at
runtime to throw off the detectors.
Reinforcement learning attacks. Song et al., [16] implemented
black box machine learning techniques to optimise adversarial
Windows malware. The attack framework used was a multi-armed
bandit (MAB) which had three main focuses, (i) limit exploration
space by modelling the generation process as a stateless process,
(ii) reuse successful payloads in modelling and (iii) minimise the
changes on adversarial examples to correctly assign rewards. The
two main components used to achieve this was the binary rewriter
and the content minimiser. Essentially, the binary rewriter would
generate a set of evasive samples that have been made to barely
evade a target classifier. The content minimiser would then exper-
iment by removing macro actions, then also micro actions, that
would not effect the classification of the adversarial examples. This
allowed rewards to be more correctly assigned to the features that
impacted evasiveness.

This attack framework produced adversarial examples with high
functionality preservation rates (binary remained malicious) and
high functionality rates (binary would run 96% of the time). Re-
ducing the amount of failed attempts makes it more efficient to
produce adversarial malware. The minimisation step allowed for
more effective training of the model by first narrowing down the
various optimisations while keeping the binary classified as mali-
cious, then assigning rewards only to the necessary optimisations.
The transferability rate between machine learning malware classi-
fiers was considered “high” with a rating of 10% from MalConv to
EMBER and 23% from EMBER to MalConv. The transferability rate
between non-machine learning and machine learning detectors
was less than 5% for all cases. This means a new model should
be trained for each new antivirus detector. The attack framework
didn’t apply any optimisations that would evade against dynamic
detectors, authors considering this as out of scope.

This paper shows an efficient approach to training their model
which greatly improves the performance of their adversarial ex-
amples against static detectors. Perhaps more macro and micro
optimisations could be implemented in the attempt to increase per-
formance. Although evading dynamic detectors was not considered
in scope for this paper, perhaps a similar minimisation methodology
could be applied to dynamic optimisations in some way.
Explainability-guided evasion attacks. Wang et al., [14] evalu-
ate the weaknesses of malware detectors with explainability-guided
evasion attacks. They perform evasion attacks by generating adver-
sarial samples from Android (APK), Windows (WinPE) and Linux
(ELF) binaries. The adversarial sample generation methodologies in-
clude: (i) feature-space manipulation (FSM) by perturbing features
to make it appear more benign; and (ii) problem-space obfusca-
tion (PSO) by modifying the code to make it less obvious what it
is trying to achieve. The authors conduct FSM on three machine
learning models: support vector machines (SVM), lightGBM and a
simple-structured neural network. PSO leverages four obfuscation
techniques: control-flow graph alternation, dead-code insertion,
instruction substitution, and encryption.

The result shows that attacks are effective against both non-
learning and learning-based detectors. FSM and PSO are used to
enlarge the attack surface and allow attacks to be performed in a

black-box manner. The paper then demonstrates the attacks being
used with three different types of binaries. It also explains the
transferability of models, stating that the transferability of evasion
attacks depends on the overlaps of decisive features among different
learning-basedmodels. Problem space obfuscationwas less effective
in regards to WinPE and ELF binaries since only the encryption
strategy could be applied to them. Dynamic antivirus detectors are
still effective against the presented attack strategies.

The explainability-guided approach was useful for conveying
the strategies that were used in a way that is logical. The results
were displayed in an easy-to-follow manner with key takeaways
highlighted. It would be interesting to see this approach applied for
evasion attacks against dynamic detectors, answering what works,
does not work and why.
Automatically evading classifiers. Xu [17] proposes a generic
and automatic methodology to generate PDF malware variants and
evade the detection by malware classifiers. The methodology uses
genetic programming (GP) techniques, a type of evolutionary algo-
rithm, to generate evasive samples. It leverages prediction scores
made by machine learning classifiers and rough knowledge of fea-
tures used by the classifiers. In the experiment, the authors evalu-
ated two PDF malware classifiers: PDFrate [18] and Hidost [19].

By analyzing the efficacy of mutation traces and variants on the
classifiers, the authors found that the proposed methodology had
a significantly high evasion rate when attacking both classifiers.
In cross-evasion effects evaluation, generated variants still have
a significant evasion rate against different classifiers. Although
malware variants generated by the proposed methodology shows
a significant evasion rate on two PDF malware classifiers, we are
concerned about the capability on other datasets, e.g., Windows
binaries. Another concern is that the high cross-evasion rate is
based on limited classifiers that have overfitting issues. The authors
should evaluate more detectors to evaluate the effectiveness and
genericity of their methodology.

Leveraging GP techniques to generate malware variants seems
evasive on PDFrate and Hidost. However, we should note that it
is computationally expensive. The authors continuously executed
their methodology for approximately one week for PDFrate and
two days for Hidost to find effective mutation traces and generate
variants. Therefore, purely using GP does not satisfy the require-
ment of large-scale empirical study and defends the fast evolution
of malware.

3 METHODOLOGY
In this section we introduce the methodology of our research. We

start from the existing malware adversarial generating technologies,
comparing the effectiveness of each approach, then exploring how
to detect adversarial malware, and proposing a novel method to
develop next-generation antivirus engine.

3.1 Research current techniques for generating
adversarial malware

MAB-Malware. Song et al., [16] produced this framework that
trains a reinforcement learning model. It consists of two main
modules, the binary rewriter and the action minimiser. It iterates
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over the binary rewriter and action minimiser modules until an
evasive sample is generated or it exceeds the total number of max
attempts. The main improvements over other frameworks is that it
(i) models the generation as a stateless process, (ii) reuses successful
payloads and (iii) minimises changes to correctly assign rewards.

The binary rewriter uses Thompson sampling which operates
by maximising some expected reward with respect to some some
randomly drawn belief to select an action sequence. It then rewrites
it to gain variants, and if a variant then evades the target detector,
it is sent on to the action minimiser. The two types of actions that
can be applied are macro and micro, where micro is only injecting
1 byte, whereas macro is more than that. A machine has a set of
actions assigned to it and follows a beta distribution specific to
a tuple denoted by 𝛼 and 𝛽 . For each sample generated from the
machine, for each action used, when evasive, 𝛼 is increased by 1,
else 𝛽 is increased by 1. After a few trials 𝛼 and 𝛽 become large
and the uncertainty decreases. Because of this, machines with low
values are used for exploration and machines with high average
rewards are selected for exploitation.

The action minimiser iteratively removes actions then tests eva-
siveness of the adversarial sample. It starts by removing macro
actions while keeping the sample classified as benign, then micro
actions while also keeping it classified as benign. Rewards are finally
applied to the actions that were required for a benign classification.
This process is able to produced a minimised evasive sample.
GAMMA. Demetrio et al., [15] produced another black box attack
framework that relies upon a set of functionality preserving ma-
nipulations that inject content into the malicious program without
altering its execution traces. Content is extracted from benign sam-
ples rather than being randomly generated. It is formulated as a
constrained optimisation problem that minimises both probability
to evade detection and size of injected content. The goal being to
inject the minimum amount of content to become evasive while
maintaining the files malicious properties. The main components
of GAMMA are (i) payload generation, (ii) payload injection and
(iii) evaluation.

The solution algorithm is a genetic algorithm which iterates over
three steps, selection, cross-over and mutation. In the selection
phase, the objective function is used to evaluate candidates and
choose a sample of the best candidates. The cross-over phase takes
the best candidates and randomly mixes around values with other
candidates in the selection. Finally, the mutation phase further
randomises candidate vectors by changing elements of each input
vector at random with a low probability. The newly generated
candidate vectors get unioned with the initial vectors then the cycle
repeats, starting from the selection step. The amount of iterations
has a predefined upper bound. After it is reached, the candidate
which has the lowest objective function value is returned.

3.2 Implement techniques and compare
effectiveness of each

Testing MAB framework. Two tests were ran using the MAB
Malware framework. The first was a collection of 1000 malware
samples obtained from the default docker image available at the

MAB-Malware GitHub repository1, which was optimised against
an EMBER detector. The second was a collection of 2448 malware
samples obtained from the University of Adelaide for research
purposes, which was optimised against a MalConv Detector.

The first test had a runtime of approximately 4 hours, whereas
the second was approximately 6 hours and both produced 810
minimised evasive samples before completing. The transferability
from the first evasive samples to a current EMBER model was
47%, whereas the second evasive samples to an EMBER model was
28%. The final machines show that overlay append was the most
successful action for producing evasive adversarial samples against
EMBER and MalConv.
Testing GAMMA framework. GAMMA tests required both be-
nign andmalicious files to produce adversarial samples. A collection
of 2448 malware samples obtained from the University of Adelaide
and 1182 benign samples from files found in theWindows operating
system were gathered for the tests. All attacks were ran against a
pre-trained MalConv model then the transferability was further
analysed by running it against an EMBER model.

All attacks were supplied the 1112 benign files, the independent
variable being the amount of malicious files. The first attack used 1
malicious file, had a 16 second run time andwas not evasive to either
detector. The second and third attacks both used 10 malicious files,
had an average of 2 minute run time and was both able to evade
the MalConv detector. However, both adversarial samples were
unable to evade EMBER. The final test used 50 malicious samples,
had a run time of 10 minutes and was able to evade MalConv. The
adversarial sample was unable to evade EMBER, however, it was
given a more benign rating of 0.75 compared to the previous lowest
being 0.9.
Compare the frameworks. MAB and GAMMA are both frame-
works that optimise malware against antivirus detectors by using
black-box attacks. The output for MAB is significantly more de-
tailed than GAMMA which allows larger tests to be ran because
even if it fails, there is plenty of information to understand what
the program was doing. MAB was also more reliable when it came
to producing working malicious binaries. For these reasons, the
MAB framework will be used later when exploring ideas on how
to defend against adversarial attacks.

3.3 Explore how to detect adversarial malware
As discussed previously, the transferability of adversarial mal-

ware is currently low between different antivirus detectors. Findings
from Song et al., [16] support these findings and also highlight how
transferability is generally higher between detectors that consider
similar features as important. Exploiting this common weakness in
adversarial malware attacks could prove an effective way to also
defend against them.

Since transferability is low, perhaps chaining together multi-
ple detectors that focus on different aspects for detecting malware
could make a system that is more difficult to perform adversarial
attacks against. In this case, chaining would involve starting with a
fixed set of detectors then have them scan a file until one of them
returns a malicious rating. The file is considered benign only if

1https://github.com/weisong-ucr/MAB-malware
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all detectors rate it so. Ideally, the detectors should be uniquely
effective in at least a single way to maximise detection rate. Some
weaknesses/limitations of this chaining method include a slower
runtime, the assumption that all detectors are effective in some
way and increased chance of false positives. However, the biggest
weakness of this method is that it does not guarantee that adver-
sarial attacks can not just be targeted against the chain as a whole.
With enough computations, it is likely evasive adversarial samples
will eventually be produced. As long as the attacker can predict
the software defending the machine at the time of the attack, it is
unlikely to formulate an effective static defence.

3.4 Propose a method to develop
next-generation antivirus software

If an attacker can predict the software protecting a system, then
a successful adversarial attack is theoretically possible. Improving
upon the previously mention chaining method, a randomised chain-
ing method would make the antivirus software in the chain near
impossible to predict. For this system, a large collection of malware
detectors is optimal. When a new scan queue is created, a defined
amount of detectors will be randomly selected from the collection.
The selected detectors would then classify the queued files using
the previously mention chaining method.

The main advantage of this method is that it removes the abil-
ity for an attacker to predict the antivirus software in use. It also
has the ability to draw from a collection so large that it would be
unreasonable for an attacker to attempt optimisations against all
detectors within, while still having the run time of chaining a small
number of detectors. The randomness aspect of this method allows
the average detection effectiveness to be reached with just a sample
of the total collection. In the next section an experiment will be
conducted to determine theoretical mean detection rate using dif-
ferent sample sizes. This method carries across limitations from the
chaining method since it never addressed them. These limitations
include a slow runtime, increased chance of false positives and the
assumption that each detector is effective in some way. This system
also requires a large amount detectors to maximise detection rate
and increase protection to adversarial attacks. For future work, it
may be possible to generate many detectors using different features
from a wide range of malware samples.

4 EXPERIMENT AND RESULT
In this section, we deploy the MAB-Malware source code 2 and

generate adversarial samples from two datasets. The first dataset
is obtained from the MAB-Malware project which contains 1000
malware samples. These samples are Windows Pocket Executive
binaries and optimized against Ember [20], a LightGBM model. The
second dataset is a collection of 2448 malware samples obtained
from the University of Adelaide for research purposes, which was
optimised against a MalConv Detector. Then we randomly choose
200 generated adversarial samples from the previous step.

The quality and validity of the dataset was not verified, instead
it is assumed that, through random selection and using a medium
sample size, it is likely that the data is adequate for this experiment.
Improving upon this is left as future work.
2https://github.com/weisong-ucr/MAB-malware

For the experiment, all 200 of the selected adversarial samples
were submitted to Virus Total which were then scanned by 67
antivirus detectors. The detection rate (malicious ratings / total
detectors) of each adversarial sample was then saved into a csv
file. A script was then used to graph the theoretical effectiveness of
the randomised chaining method. The script calculated the mean
average and standard deviation of the detection rates after using
different amounts of random detectors. Figure 1 shows the mean de-
tection rate against amount of random detection with the standard
deviation represented as a small line on each increment.

Figure 1: A highermean detection rate is obtainedwhen the amount
of random detectors increases. Vertical lines show standard devia-
tion at different points.

Figure 1 shows that as the amount of random detectors increase,
the detection rate of the randomised chainingmethod also increases.
The average detection rate approaches 100% as the amount of detec-
tors increase. With just 5 random detectors, there is a 95% chance
that an adversarial sample is detected with a standard deviation
of 4.8%. Using 10 random detectors, there is a 99.5% detection rate
with a standard deviation of 1%.

These results show that targeting the low transferability of ad-
versarial malware can be a viable strategy to statically defending
against it. However, figure 1 only shows the theoretical results of
if we were to build the system and run attacks against it using the
antivirus detectors found on Virus Total. In reality, results may vary
depending on the amount and quality of antivirus software in the
collection. All of the adversarial samples submitted to Virus Total to
collect raw data were generated by running an attack against both
MalConv and EMBER detectors separately. This does not produce a
good representation of attacking the system since neither of those
detectors are used as part of the Virus Total collection. However,
Virus Total includes a wide range on antivirus solutions which is
optimal for the randomised chaining method. Finally, it is important
to note that the MAB framework does not aim to be highly trans-
ferable between many antivirus systems, instead it would retrain
against any new system it encounters. Therefore, an adversarial
attack that focuses on high transferability could prove effective
against this system and significantly alter the experimental results.
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5 CONCLUSION
We discover that adversarial attacks produce malware with low

transferability between detectors. We then design a randomised
chaining method that could be effective at statically defending
against current adversarial attacks because of this weakness. It
operates by having a diverse collection of antivirus detectors where
subsets of a predetermined size will be randomly selected from. The
detectors in the subset will all scan a file and will classify that file
as malicious if any single detector deems it so. Our results show
that with a subset size of 10, there is a 99.5% chance of detecting an
adversarial sample with 1% standard deviation.
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