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Abstract 

Background 

The need for novel strategies to improve outcome prediction and the categorisation of 

unstructured medical data will increase as the demands on hospitals, associated with the 

increasing age and complexity of admitted patients, continues to rise. Stroke is a highly 

specialised field, in which key performance indicators and discharge planning have an 

important role. General medicine is a field that encompasses a wide variety of multisystem 

and undifferentiated illnesses. It is possible that machine learning, in particular deep learning, 

may be able to assist with the prediction of clinically significant outcomes both in areas with 

highly specialised assessment and treatment considerations (such as stroke), as well as fields 

with a diverse mix of medical conditions and comorbidities (such as general medicine). 

 

Method 

This thesis comprised of studies using machine learning to predict clinically significant 

outcomes in stroke and general medicine inpatients. Initially a systematic review was 

conducted to evaluate the existing literature regarding the prediction of one such clinically 

significant outcome, length of stay, in medical inpatients. Derivation and validation studies 

were conducted to develop models for stroke inpatients to aid with the prediction of 

discharge independence, survival to discharge, discharge destination and length of stay. 

Stroke key performance indicator-automated extraction and clinical coding categorisation 

were undertaken in studies employing techniques including natural language processing. 

Natural language processing was applied to general medicine free-text data in pilot, 

derivation, and validation studies in the prediction of outcomes including discharge timing. 
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Results 

The systematic review identified a particular lack of prospective validation studies for 

machine learning models developed to aid with length of stay prediction in medical 

inpatients. The stroke model derivation, prospective and external validation studies 

demonstrated the successful use of machine learning models in the prediction of outcomes 

relevant to discharge planning for stroke patients. For example, an area under the receiver 

operator curve (AUC) of 0.85 and 0.87 was achieved for the prediction of independence at 

the time of discharge in the prospective and external validation datasets respectively. The 

automated collection of stroke key performance indicators and the application of natural 

language processing to stroke clinical coding also demonstrated performance as high as an 

AUC of 0.95-1.00 in key performance indicator classification tasks. The general medicine 

pilot, derivation, prospective and external validation studies demonstrated the development 

and success of artificial neural networks in the prediction of discharge within the next 48 

hours (AUC 0.78 and 0.74 in the prospective and external validation datasets respectively). 

 

Conclusions 

Machine learning models (including deep learning) can successfully predict clinically 

significant outcomes in stroke and general medicine patients.  
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Chapter 1 - General Introduction 

 

Demands on hospitals are increasing and novel strategies to aid with prognostication 

and service planning are required 

The demands on hospitals are progressively increasing. For example, the Australian Institute 

of Health and Welfare has previously recorded that same day admissions increased at an 

average rate of 3.4% per year between 2014 and 2019 [1]. While the outbreak of COVID-19 

temporarily reduced the number of hospitalisations, COVID-19 related disruptions will 

compound the challenges already faced by healthcare systems in future [2]. Accordingly, 

strategies to help accurately record hospital activity (to enable effective future planning and 

funding) and improve hospital efficiency (such as through effective inpatient prognostication 

and discharge planning) will continue to become increasingly relevant. 

 

 The increasing demands on hospital systems are multifactorial and have the potential to 

worsen hospital performance [3]. In Western countries such as Australia, this increasing 

demand may be due in part to an aging population, with multiple complex comorbidities [4]. 

For example, in recent Australian Institute of Health and Welfare statistics individuals over 

the age of 65 have accounted for approximately half of total days admitted to hospital, 

despite comprising less than one fifth of the population [5]. The increasing prevalence of 

chronic conditions in Western societies contributes to this complexity and demand [6]. In the 

setting of this increasingly elderly and comorbid population, COVID-19 has also presented 

unique challenges with respect to hospital demand. The demands placed on the healthcare 

system by COVID-19 affect multiple domains, including capacity planning with respect to 

available inpatient beds and workforce planning [3]. The implementation of new treatment 

strategies, such as novel stroke treatments, also require infrastructure and workforce planning 
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that place additional demands on hospital resources. Collectively, these and other factors 

combine to explain why demands on hospital systems are increasing both in terms of the 

logistics of service provision as well as the associated fiscal burden, and highlight the 

importance of continuing to develop strategies to improve efficiency [3].   

 

In addition to increasing demand, the increasing complexity of elderly and comorbid patients 

presents new challenges with respect to medical decision making and, in particular, the 

application of evidence-based medicine [7]. Evidence-based medicine, the cornerstone of 

current medical practice, involves the application of evidence gained through empiric study 

to populations to which the findings are thought to be generalisable. However, the majority of 

such studies are conducted in carefully selected populations with specific inclusion and 

exclusion criteria. Such criteria frequently result in individuals with advanced age and 

multiple comorbidities being excluded from these studies [8]. The exclusion of these patients 

means that the generalisability of certain treatments and prognostic scores to this population 

may be questionable [9]. While prognostic scores have been developed for a myriad of 

conditions, modern prognostic strategies will need to be dynamic and account for the 

interplay between multiple complex comorbidities in a given individual.  

 

Accurate prognostication is important for patient counselling, medical decision making and 

service provision planning [10, 11]. The accurate prognostication of inpatient outcomes may 

facilitate the planning of aspects of hospital discharge [12]. Historically, prognostic scores 

typically comprised of multiple discrete data fields relating to an individual condition or a 

limited selection of comorbidities. One of the well-known prognostic scores, the Charlson 

Comorbidity Index, is comprised of 17-individual parameters [13]. A difficulty with such 

scores is that, by increasing the number of parameters to account for increased complexity, 
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the scores may become unwieldy and impractical to use due to the time required to calculate 

the scores. One strategy to mitigate this issue is to develop new prognostic systems that use 

unstructured data that is readily available in electronic medical records. An alternative or 

complementary strategy would be to develop novel approaches to automatically collect and 

process unstructured data into a structured format that could then be used to calculate existing 

prognostic scores.  

 

Automated data collection and processing has multiple medical applications, in addition to its 

possible use in prognostic scores, such as aiding with the monitoring of key performance 

indicators and the recording of casemix and hospital activity data. The monitoring of domain-

specific key performance indicators is a high priority in multiple medical specialties to ensure 

high-quality and standardised care across diverse facilities [14]. However, the recording of 

such key performance indicators requires significant time and resources in an already strained 

system. Similarly, the recording of casemix information and hospital activity data is required 

for service provision planning and the allocation of activity-based funding, but requires 

significant time investments by specifically trained clinical coders in the recording and 

categorising of unstructured medical data [15]. The development of automatic means for the 

collection and categorisation of unstructured medical data for these tasks may improve 

efficiency and accuracy, and thereby likely improve aspects of hospital care planning and 

provision.  

 

In a healthcare system with increasing demands and increasingly complex patients, novel 

strategies for the provision of accurate prognostic information and the collection and 

categorisation of unstructured medical data (such as for the monitoring of key performance 

indicators and activity levels) may enable improvements in efficiency and healthcare 
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outcomes. These methods should be developed to be applicable both to fields with highly 

specialised assessment and treatment considerations (such as stroke), as well as fields with a 

diverse mix of medical conditions and comorbidities (such as general medicine). 

 

Stroke is a specialised field in which key performance indicators and prognostication 

are important 

Stroke is a leading cause of death and disability both in Australia and globally [16]. In 2019-

2020 the Australian Bureau of Statistics described that cerebrovascular disease was the third 

most common cause of death in Australia [17]. However, stroke, in particular ischaemic 

stroke, also has time-critical interventions including thrombolysis and endovascular 

thrombectomy that may prevent significant disability and prove life-saving for appropriately 

selected patients [18]. Given that the efficacy of these interventions is highly time-dependent 

and may be associated with significant costs, this area highlights the importance of the 

accurate recording of key performance indicators and hospital activity levels. Despite these 

interventions (due to ineligibility or incomplete efficacy), for many individuals with stroke, 

rehabilitation remains a vital component of their recovery process [19]. Accurate 

prognostication to enable the selection of appropriate rehabilitation destinations is an 

important part of hospital resource planning that may facilitate a streamlined transition from 

acute to post-acute stroke care [20]. 

 

Key performance indicators in stroke may relate to acute stroke interventions (such as time 

from presentation to endovascular thrombectomy), prevention (such as the use of 

anticoagulants in atrial fibrillation) and rehabilitation (such as the time to be seen by a 

physiotherapist) [21]. The current Australian stroke key performance indicators are outlined 

in the Australian Commission on Safety and Quality in Health Care Acute Stroke Clinical 



 

 

16 

Care Standard and includes 17 unique indicators [22]. Previous studies have demonstrated 

that adherence to stroke key performance indicators is associated with reduced morbidity and 

mortality after stroke [23]. 

 

Previous prognostic scores for acute stroke have focussed on the prediction of outpatient 

outcomes, and rarely have been applied to the prediction of length of stay. Such prediction 

scores include Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score, the Dense 

Artery, mRS, Age, Glucose, Onset-to-Treatment, and NIHSS (DRAGON) score, and the 

Totaled Health Risks in Vascular Events Stroke (THRIVE) score [24-26]. As summarised in 

previous reviews, with the exception of the Stroke Subtype, OCSP, Age, and Pre-stroke mRS 

(SOAR) score, all of these prognostic models have been developed to predict outcomes at or 

beyond 3 months post-stroke, rather than inpatient outcomes [27]. The SOAR score was 

developed to predict inpatient mortality and length of stay, but had limited performance (area 

under the receiver operator curve 0.79 for mortality and 0.61 for length of stay <8 days) [28]. 

A receiver operator curve is a commonly used metric in model performance analysis [29]. 

 

General Medicine is a field that specialises in undifferentiated and multisystem 

illnesses 

General medicine, otherwise known as internal medicine, is a medical specialty that focusses 

on the care of individuals with undifferentiated illness or illnesses that affect multiple organ 

systems [30]. In addition to complex medical issues, general medicine may also provide care 

for individuals with complex social issues [31]. The role of a general medicine department 

may vary between centres. However, typically, general medicine comprises a large 

proportion of inpatient hospital admissions and the numbers of these admissions is increasing 

[32].  
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Discharge planning is the term used to describe the process by which multidisciplinary teams 

form plans around when a patient will leave hospital and which destination they will go to 

when they leave [33]. Effective discharge planning may reduce length of stay and 

readmissions, and accordingly has a vital role to play in improving bed flow and patient 

access to care [34]. This process is integral to general medicine due to both the medical and 

social complexity of the patients that are encountered and the potential for high patient 

numbers [35]. Part of the discharge planning process involves the generation of estimated 

discharge dates, which is the equivalent to an estimated length of stay, in advance of the time 

of discharge [36]. Estimated discharge date prediction is typically performed by a clinician 

and may be difficult to perform accurately. 

 

The use of prognostic scores to aid with length of stay prediction, and other aspects of 

inpatient outcomes relevant to discharge planning (such as discharge destination), may be 

beneficial for general medicine. Scores developed for use on all hospital inpatients can be 

applied to the general medicine population. However, possibly due to the heterogeneity of 

this patient population, few scores specific to general medicine patients are currently 

available. Furthermore, the scores applied to all patients typically predict outpatient 

outcomes, or the only inpatient outcomes predicted are those of mortality or intensive care 

unit admission, such as in early warning scores [37]. Given that discharge planning most 

often involves patients being discharged to community dispositions (i.e., not the intensive 

care unit or death), and that the prediction of the timing of such discharges would assist with 

workflow planning, the development of such scores may be beneficial. 
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Machine learning may be able to be applied to assist with prognostication for 

discharge planning 

Machine learning involves the use of computers to derive rules regarding data without 

human-defined feature selection [38]. Deep learning is a type of machine learning that 

involves the use of neural networks and their derivatives, such as convolutional neural 

networks [39]. Neural networks are a statistical model based on the structure of human 

neurons [40]. Machine learning, and in particular deep learning, has made significant 

advances in recent years with respect to the classification of medical information [41, 42]. It 

is likely that machine learning will have an increasing role in medicine, and may include a 

role in predicting inpatient outcomes relevant to discharge planning. 

 

Bayes’ theorem and Bayesian reasoning are important for both medical diagnosis and 

machine learning algorithms. Bayes’ theorem provide a means of calculating conditional 

probabilities [43]. In medicine, this concept is important as it enables the pre-test probability 

of a diagnosis or outcome to be factored into the interpretation of a positive or negative test, 

with the subsequent determination of a post-test probability [44]. In machine learning, Bayes’ 

theorem is also important in the probabilistic approach to modelling [45]. Accordingly, it can 

be seen this concept underpins the development and application of many medical machine 

learning models. 

 

Machine learning may be applied to multiple data types, and even incorporate disparate data 

types into a single model [46]. For example, machine learning models can analyse discrete 

data fields (such as age, gender and smoking status), human speech and text, and images. 

When machine learning is applied to human text or speech this application is referred to as 

natural language processing [47]. 
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One of the key components of analyses focussing on natural language processing is that of 

text mining. Text mining refers to the processing of text data so that it may be interpreted by 

subsequent statistical analyses, such as machine learning. Text mining in clinical medicine 

typically involves converting free-text notes and reports into structured data [48]. Text 

mining may employ a variety of strategies including named entity recognition, document 

clustering and word embeddings [49, 50].  

 

After text data has been processed and is in a usable format, machine learning models may 

then be applied. There are many types of machine learning methodology. Different types of 

machine learning algorithms may be better suited to some tasks than others. Machine 

learning may encompass standard statistical methods, such as the use of logistic regression to 

predict binary outcomes on the basis of multiple explanatory variables [51]. However, when 

logistic regression is applied in a machine learning setting, the focus is typically on obtaining 

an accurate prediction of an outcome, as opposed to defining the relationships between 

variables [39]. Another method that may be used to predict binary outcomes is that of a 

decision tree. Clinicians are often familiar with the concept of a decision tree in the form of 

clinical guideline flowcharts. In the instance of machine learning, a series of hierarchical 

rules are defined, by which data are then classified [52]. Decision tree-based algorithms are 

often effective for unbalanced datasets. Random forest algorithms apply a combination of 

decision trees and have been shown to outperform traditional regression in certain 

circumstances [53]. Artificial neural networks are statistical models that involve, typically, 

multiple layers of interconnected nodes with weights that can be adjusted through 

backpropagation and may be particularly effective with large datasets [40]. All of these types 

of model are typically applied to supervised machine learning tasks, in which both the input 
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and output labels are known and statistical associations can be made to predict the outcome in 

future cases in which the output is unknown [54].  

 

The previously discussed models can be used to produce predictions, for which a number of 

performance metrics can be calculated. There is ongoing discussion in the medical and 

machine learning communities as to which performance metrics are optimal [55, 56]. 

Although the performance metrics for a given task may vary based upon the nature of that 

task, as a general rule it is likely that presenting a combination of performance metrics 

provides greater clarity than presenting only one metric. In classification tasks (e.g., “dead” 

vs “alive”, or “discharged” vs “not discharged”), performance metrics may be separated into 

two categories: prevalence-independent and prevalence-dependent. Prevalence-independent 

metrics include area under the receiver operator curve, sensitivity and specificity. Prevalence-

dependent performance metrics include accuracy, positive predictive value and negative 

predictive value. In regression analyses, analyses in which the outcome to be predicted is a 

continuous (rather than categorical) variable, performance metrics may include mean 

absolute error, mean squared error, root mean squared error and R2 values. There are some 

performance metrics that will be more familiar to clinicians, and others that are more familiar 

to machine learning researchers. A demonstration of this point is that the same metric may be 

referred to by different names depending on the field of the publication. For example, in 

some instances positive predictive value will be referred to as “precision”, and sensitivity will 

be referred to as “recall” [57]. There are also performance metrics that are used in machine 

learning literature that may be unfamiliar or infrequently used in medical literature. For 

example, an average precision may be calculated based upon a precision-recall curve. 

Another example of a metric commonly used in machine learning literature but not frequently 

in medical literature is that of the F1 score, which is the harmonic mean of precision and 
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recall. Accordingly, the evaluation and presentation of a combination of these metrics is 

required in the development of machine learning models for clinical use. 

 

The development of a machine learning model for clinical use can be thought of as similar to 

the steps involved in the development of a clinical decision rule or risk stratification scale. 

These steps have previously been described by Stiell et al. [58]. The steps include a pilot 

study (assessing feasibility), a derivation study (in which models are developed), validation 

studies (in which model performance is evaluated on external and prospective datasets), and 

implementation studies (in which the effect of model use are evaluated) [59].  

 

However, even if a model has proved accurate in derivation and validation studies, if it does 

not predict outcomes and information that are clinically relevant, the model will be of limited 

value. For example, models that predict information that is already clear to a clinician or are 

extraneous to the diagnostic and therapeutic process may result in significant research 

resource expenditure without significant improvement to patient care. Accordingly, it is 

imperative that clinicians are involved in the development of medical machine learning 

models to ensure that they remain focussed on aiding with unaddressed questions that may 

improve patient care [60].   

 

Outline and aims of thesis 

The aim of this thesis is to develop and validate models for predicting clinically significant 

outcomes using machine learning methodologies, in particular deep learning, for patients 

admitted under Stroke and General Medicine units. Such clinically significant outcomes 

include timing of likely discharge and discharge destination. Key performance indicator data 

that was subsequently manually entered and clinical coding categorisation were also 
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predicted. The objective is to develop such models so that they could result in healthcare 

efficiency savings and improve care delivery in future. The methods are presented in each 

chapter. 

 

Specifically, this thesis aims to: 

a) Provide a systematic review that highlights the current gaps in the literature with 

respect to length of stay prediction with machine learning in medical inpatients 

(Chapter 2) 

b) Conduct a derivation study in which models are developed for the prediction of 

factors relevant to stroke discharge planning using discrete data fields (Chapter 3) 

c) Conduct a prospective and external validation of the stroke inpatient models to predict 

factors relevant to discharge planning with discrete data fields (Chapter 4) 

d) Investigate a variety of techniques, including natural language processing, to facilitate 

the automated collection of stroke key performance indicators from unstructured data 

(Chapter 5) 

e) Investigate the application of natural language processing to stroke clinical coding 

(Chapter 6) 

f) Investigate, in a general medicine population, the application of natural language 

processing to emergency department notes in order to predict length of stay (Chapter 

7) 

g) Conduct a derivation study in the general medicine population applying natural 

language processing to make recurrent daily predictions of discharge timing (Chapter 

8) 

h) Conduct the prospective and external validation of the general medicine recurrent 

length of stay prediction models (Chapter 9) 
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i) Provide an overall discussion, including future directions with respect to 

implementation studies (Chapter 10) 
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Abstract 

Background 

Length of stay (LOS) estimates are important for patients, doctors and hospital 

administrators. However, making accurate estimates of LOS can be difficult for medical 

patients.  

 

Aims 

This review was conducted with the aim of identifying and assessing previous studies on the 

application of machine learning to the prediction of total hospital inpatient LOS for medical 

patients. 

 

Methods 

A review of machine learning in the prediction of total hospital LOS for medical inpatients 

was conducted using the databases PubMed, EMBASE and Web of Science.  

 

Results 

Of the 673 publications returned by the initial search, 21 articles met inclusion criteria. Of 

these articles the most commonly represented medical specialty was cardiology. Studies were 

also identified that had specifically evaluated machine learning LOS prediction in patients 

with diabetes and tuberculosis. The performance of the machine learning models in the 

identified studies varied significantly depending on factors including differing input datasets 

and different LOS thresholds and outcome metrics. Common methodological shortcomings 

included a lack of reporting of patient demographics and lack of reporting of clinical details 

of included patients.  
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Conclusions 

The variable performance reported by the studies identified in this review supports the need 

for further research of the utility of machine learning in the prediction of total inpatient LOS 

in medical patients. Future studies should follow and report a more standardised methodology 

to better assess performance and to allow replication and validation. In particular, prospective 

validation studies and studies assessing the clinical impact of such machine learning models 

would be beneficial.  
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Manuscript 

Introduction 

The accurate prediction of length of stay (LOS) in hospitals can aid in bed-management and 

hospital staffing decisions.[1] However, LOS may be influenced by many factors, 

particularly in complex medical patients, and may be difficult to predict. Machine learning 

refers to the use of computers to discover patterns within data, without a human explicitly 

programming how to do so.[2] Given the assumption-free data-driven nature of machine 

learning it can be hypothesised that it may be able to assist in the accurate prediction of LOS 

for medical patients.  

 

Many medical applications of machine learning involve making individual patient 

predictions. If the predictions place individuals into categories (such as predicting LOS as 

either ≥7 days or < 7 days) then this is commonly referred to as a “classification task”. 

Conversely, if a continuous outcome (for example prediction of LOS as the actual number of 

days that a patient will be in hospital) is predicted, it is generally referred to as a “regression 

task”.[3] These types of study have different model performance metrics. Classification 

studies typically report a combination of prevalence-dependent performance metrics (such as 

accuracy, positive predictive value and negative predictive value) and prevalence-

independent performance metrics (such as area under the receiver operator curve, sensitivity 

and specificity). There is ongoing discussion as to which outcome metrics are ideally 

presented in different instances;[4, 5] however a combination of metrics provides the most 

comprehensive representation of model performance. Regression studies typically present 

performance metrics as mean absolute error, mean squared error, root mean squared error and 

R2. 
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Although there are a variety of conceptual frameworks, the development of a clinical 

machine learning application adopts a similar staged approach to the development of a 

clinical decision rule. For example, these stages typically involve a “derivation” study, an 

“external validation” study and then an “impact/implementation” study.[6, 7] In derivation 

studies for both classification and regression tasks, it is common for data from one population 

to be split into “training” and “testing” datasets. The training dataset is used for the 

development of the model. Performance is then assessed on the testing dataset (which is 

comprised of data from the same population that was separated for this purpose). By contrast, 

in an external validation study the performance of a previously derived model is assessed on 

a “testing” dataset comprised of out-of-sample data; that is, data from a different clinical 

setting.  

 

Awad et al. published a review regarding LOS prediction with ML in 2017.[8] However, this 

review focussed on explaining and summarising the methods of the reviewed studies, rather 

than critically appraising the studies. The critical appraisal of clinical machine learning 

research is an ongoing issue. While critical appraisal tools for predictive modelling derivation 

studies exist, such as the CHARMS checklist [9] and TRIPOD statement,[10] there are 

currently no critical appraisal tools with an explicit focus on machine learning. The TRIPOD-

ML statement is currently in development.[11] It should be noted that critical appraisal of 

impact/implementation studies will require a different type of critical appraisal from that 

required for derivation and external validation studies. In accordance with these different 

requirements, other tools such as CONSORT-AI and SPIRIT-AI are currently in 

development,[12] expanding the existing CONSORT and SPIRIT statements on trial design 

to specifically address issues with ML.  
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This review was conducted with the aim of identifying previously published articles 

investigating the application of machine learning to the prediction of total hospital inpatient 

LOS for medical patients, critically appraising their methodology and evaluating the stage of 

development and implementation of such models. 

 

Method 

This review was constructed according to the PRIMSA-P guidelines.[13] In September 2019 

the databases PubMed, EMBASE and Web of Science were searched from their inception for 

articles relating to machine learning and LOS prediction in medical patients. The search 

terms (searched for in “All Fields” ) were: (“Machine learning” OR “artificial intelligence” 

OR “deep learning” OR “predictive analytics”) AND (“length of stay” OR “estimated 

discharge date” OR “length of hospital stay”) (see Appendix 1 for individual database 

search strings). The reference lists of included articles were then searched for further articles 

that fulfilled inclusion criteria. 

 

Inclusion criteria were applied to the titles and abstracts of the articles returned by the search. 

If it could not be determined whether an article fulfilled the inclusion criteria, the article was 

retrieved in full text. 

 

For inclusion in the review a study was required to meet all of the following eligibility 

criteria:  

(1) Be published in English;  

(2) Be a primary research project (i.e. not a review or editorial);  

(3) Use machine learning for classification or regression (beyond that involved in 

regular medical statistical hypothesis testing) to predict LOS (see criteria 4); 
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(4) Predict total inpatient length of stay as an individual outcome and present 

performance metrics of this prediction relative to actual LOS (i.e. LOS prediction 

must be presented alone, and not solely as part of a composite endpoint). LOS 

prediction for specific services during admission (e.g. LOS of time in ICU, without 

total inpatient LOS), was not considered to fulfil this criterion; 

(5) Predict LOS for patients either specifically in an adult medical specialty, or for a 

group including patients from adult medical specialties (e.g. studies assessing all 

hospital inpatients were included, whereas studies specifically on surgical patients 

were excluded); 

(6) Be an article published in a peer-reviewed resource (abstracts from conferences 

and supplementary information were excluded); 

(7) Be available in full text to the authors conducting the review. 

 

Quality analysis was conducted using a critical appraisal framework adapted from the 

TRIPOD statement [10, 14] (see Appendix 2). Data extraction was performed for the 

components of the quality analysis, in addition to the key results of each study (namely the 

outcome metrics of the best performing model in each instance). Eligibility determination 

was performed in duplicate in instances of borderline eligibility, and otherwise performed by 

a single author. Quality analysis and data extraction were conducted in duplicate using a 

standardised form. Instances of disagreement were resolved by discussion.  

 

Results 

The initial search returned 673 publications. Following the review of titles and abstracts, 570 

publications were excluded (see Figure 1). One hundred and three articles were then 

reviewed in full text, and their reference lists searched for further relevant studies, resulting 
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in the inclusion of 21 articles in the review. Of these, ten examined specific medical patient 

populations (see Table 1) in the specialties of cardiology,[15-19] endocrinology (diabetes 

mellitus),[20] geriatrics,[21] infectious diseases (sepsis),[22] neurology (stroke) [23] and 

thoracic medicine (tuberculosis).[24] Eight studies included all inpatients at their respective 

centres, which encompassed medical patients [25-32] (see Table 2). Three studies included 

patients with acute kidney injury (AKI),[33] ICU admissions [34] and elective 

admissions,[35] and met inclusion criteria due to the likely involvement of medical patients.  

 

Models used in the located studies included support vector machines, artificial neural 

networks, Bayesian networks, decision tree algorithms, random forest algorithms and logistic 

regression models. Recurrent neural networks and convolutional neural networks were 

infrequently employed. The models were typically employed on data collected within the first 

12-48 hours of admission to make LOS predictions. However, there were also instances that 

used new data that became available throughout the course of the admission to make 

recurrent LOS predictions.[24] The majority of studies used combinations of demographic 

(e.g. age and gender), administrative (e.g. insurance status and whether admitted on 

weekend), clinical (e.g. vital signs, and comorbidities), laboratory (e.g. creatinine, 

haemoglobin, and bicarbonate) and treatment (e.g. prescribed medications) data to predict 

LOS. Types of data that were less frequently used to aid in LOS prediction included imaging 

data (e.g. radiology) and natural language data (e.g. from patient notes).  

 

Many of the studies lacked a detailed description of study design elements according to the 

criteria in the employed critical appraisal framework. In particular, a number of studies did 

not provide clear inclusion criteria for the patients in the study (5/21), demographic details 

for the included patients (12/21), or details regarding the frequency of medical 
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conditions/comorbidities for the included patients (13/21). Studies infrequently defined a 

primary objective or reported the number of patients screened for inclusion (9/21).  

 

Specifically assessing the machine learning methodology, studies often did not specify their 

approach to handling missing data (11/21), and were often unclear in their description of the 

training/testing methodology employed. Seven studies appeared to use the same dataset for 

testing their models as they did for model development, without specifying that hold-out test 

data was employed (for example, using k-fold cross-validation over the entire dataset to 

derive performance metrics, without specifying the use of hold-out test data in each fold). 

There were also multiple studies that did not provide the proportion or distribution of the 

LOS in the test set being evaluated. 

 

All but one of the identified studies used retrospective datasets,[21] and none of the identified 

studies prospectively externally validated previously derived models in new datasets. Further, 

none of the identified studies evaluated the impact of the real-world implementation of their 

LOS prediction models. 

 

Studies focussing on medical specialty patients  

Cardiology was the most frequently studied medical specialty. Of the five studies in this area, 

two focussed on multiple-cause cardiology admissions,[15, 16] one study focussed on 

patients with heart failure,[17] one focussed on patients with coronary artery disease,[19] and 

one focussed on patients with unstable angina.[18] One of the most clearly written of these 

studies examined all-cause cardiology admission LOS prediction with a variety of models in 

16,414 admissions from a hospital in Saudi Arabia.[16] This study employed a classification 

approach (< 3 days, 3-5 days and >5 days) and with a random forest model found an area 
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under the receiver operator curve (AUC) of 0.94, sensitivity 80% and accuracy 80%. 

Strengths of this study are that it included the proportions of the different classes of LOS in 

the study population, as well as demographic and medical details of the included patients. 

However, the study did not explain how it managed missing data and did not adequately 

describe the cross-validation procedure employed for model selection and assessment.  

 

Of the other studies examining areas of interest to individual medical specialties, the 

strongest was a study of 993 geriatric patients.[21] Aspects of this study that made it of high 

quality included the definition of inclusion criteria (admission following visit to Emergency 

Department and age >80 years), prospective data collection, provision of 

demographic/medical details of included patients, and presenting details regarding the 

proportion of different outcome classes in the training and test sets (LOS ≥13 days accounted 

for 21.6% of training set, and LOS ≥13 days 24.9% in test set). This study also presented a 

range of prevalence-dependent performance metrics (accuracy 87.4%, PPV 87.1%, NPV 

87.5%) and prevalence-independent performance metrics (AUC 0.905, specificity 96.6%, 

sensitivity 62.7%), as well as raw true/false positive/negative results, enabling the calculation 

of other metrics if required.[21]  

 

The study by Huang et al. predicting LOS for patients with tuberculosis was also notable, 

given it used a different method for LOS prediction as compared to the other included 

studies.[24] While most other studies used data from a defined period at the start of an 

admission to predict LOS (typically 12-48 hours), this study used ongoing data collection 

throughout a hospital admission to recurrently generate new LOS estimates. Although this 

study had a small sample size (n = 284), it demonstrated ongoing improvement in LOS 

prediction throughout the course of the hospital stay as more data became available. 
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Studies encompassing all inpatient admissions, including medical patients 

Seven studies examined the prediction of total inpatient LOS in all patients admitted to given 

centres, including medical patients. Three studies examined all inpatient admissions, 

including medical patients, that met a clinical criterion, namely ICU admission, AKI or 

elective admission.[33-35] Of these studies, the highest quality in terms of reporting was 

conducted by Rajkomar et al. This study used retrospective datasets from two hospitals in the 

USA in all ≥24 hours inpatient admissions in ≥18 year-old patients (n = 216,221) to derive 

classification models predicting LOS ≥7 days or < 7 days.[31] This study was notable 

because of inclusion of patient demographics/medical information, as well as clear 

descriptions of the machine learning methodologies employed, and details on the proportions 

of the LOS classes in different datasets (LOS ≥7 days 22.3%-24.2%). This study found an 

AUC of 0.85-0.86 in this LOS classification.[31]  

 

Three other studies also assessed models predicting all inpatient LOS as a classification task 

[27-29]. These studies reported accuracies of 78.5%,[27] 63.2% - 65.3% [28] and 97.3%.[29] 

Studies that evaluated LOS as a regression task reported mean absolute errors including 

0.224,[26] 2.19 [30] and 4.68.[29] However, it is difficult to compare results among the 

identified studies for a variety of reasons. These reasons include that different studies 

employed different classification thresholds (e.g. predicting ≥ 30 days vs < 30 days or 

predicting ≥7 days vs < 7 days), approached LOS prediction as a regression task or 

classification task variably, presented different outcome metrics and had differing datasets 

(see Table 2). 
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Discussion 

The use of machine learning to predict total in-hospital LOS for medical patients has been 

assessed by several studies with variable methodologies and results. The wide range of model 

performances reported when similar models are applied to similar tasks likely reflects 

differences in methodology, or in patient population characteristics, between studies that have 

often not been described in sufficient detail. Common methodological issues include a lack of 

patient demographic/clinical information, failure to define a primary objective and failure to 

report the number of patients screened prior to inclusion. No studies performing prospective 

external validation or assessment of the implementation of machine learning models for LOS 

prediction were identified. 

 

Aspects of ML methodology that could be improved frequently related to the use of and 

reporting regarding test datasets. Multiple studies appeared to use the same dataset for testing 

their models as they did for model development, without specifying that hold-out test data 

was employed. While cross-validation may be used as a means of reducing sampling error, 

this method can lead to overfitting if applied improperly. It must be specified that model 

selection and model evaluation processes involve different data, even within folds.[36] The 

proportion or distribution of the variable being predicted (LOS) should be reported in test 

datasets, in addition to training datasets, as this information may be important when 

interpreting performance metrics. 

 

The frequent methodological shortcomings identified in the included studies may at least in 

part reflect a difference in writing styles and target audiences between computer science 

researchers and medical researchers. In articles focussing on the development of new 

methods to apply to LOS prediction, there were generally fewer details regarding patients. In 
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studies focussed more on the application of machine learning methods to new patient groups, 

more detail on patient factors was typically included. We believe that, regardless of the field 

of the target audience, it is necessary to provide patient demographic and disease prevalence 

details to be able to evaluate how to generalise the findings of a study to the patient 

population at another centre and to compare performance between studies.  

 

The implications for future ML research in this area relate to standards of reporting and 

methods of analysis. ML studies reporting on the prediction of clinical outcomes (such as 

LOS) are required to present clear inclusion criteria and relevant clinical and demographic 

details of included patients, in order to enable clinicians at other centres to evaluate the 

possible external generalisability of the findings presented in the research. The proportion 

and distribution of outcomes of interest are required to be presented for test datasets in order 

to enable the interpretation of certain performance metrics. Future ML research in LOS may 

be able to utilise data types not frequently investigated in the identified studies, such as 

imaging data and natural language data. The generation of recurrent LOS predictions, using 

additional data accumulated throughout the admission, as opposed to data from only the first 

12-48 hours, may also be an area to investigate to improve performance. 

 

In terms of current clinical practice, this review has shown that ML medical inpatient LOS 

prediction is a promising area, but that further research is required to support the use of such 

models. Currently there are no published studies reporting on prospective external validation 

of models to predict LOS in this cohort of patients. Similarly, no studies were identified that 

have implemented such models and demonstrated a benefit to patient or healthcare-system-

oriented outcomes.  
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Limitations 

The exclusion of non-English articles is a limitation of this review. It is a limitation that some 

studies had their eligibility for inclusion in the review determined by a single author. 

Publication bias may have influenced the results of the review. As discussed previously, it is 

difficult to compare the performance of models between studies, due to the differences in 

study design, outcome metrics and patient populations. 

 

Conclusion 

The variable performance reported by the studies identified in this review supports the need 

for further research on the utility of ML in the prediction of total inpatient LOS in medical 

patients. In particular prospective external validation and implementation studies are 

required. Clinical machine learning external validation studies should aim to include clear 

definitions of which data are used for model development and testing, and the 

proportion/distribution of the outcome of interest in the testing set. Future research in this 

area should take note of the shortcomings identified in the studies performed to date. In 

particular, subsequent studies should include relevant clinical details to enable the assessment 

of generalisability of findings to other patient cohorts.  
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Table 1: Studies predicting length of stay of medical inpatients from individual specialties  

Citation 

Specialty 

Retrospective 

vs 

prospective 

Eligibility 

criteria 

Sample 

size Models used 

LOS proportion 

or distribution 

Regression 

or 

classification 

outcome 

If LOS 

classification, 

what were the 

thresholds Model performance 

Critical Appraisal 

Tsai et al. 

2016 Cardiology Retrospective 

Coronary 

atherosclerosis, 

heart failure or 

acute myocardial 

infarction 2377 

Logistic regression and 

artificial neural network 

Graph presents 

LOS distribution Both 2 day tolerance 

Accuracy AMI/CHF: 

63.7%-65.7%. CAS: 

88.3%-89.7%. AMI/CHF: 

MAE 3.87-3.97. CAS: 

1.03-1.07. AMI/CHF: 

MRE 0.73-0.77. CAS 

MRE: 0.44-0.47 

Clearly specified train/test split. 

Uncertain approach to missing 

data.  

Daghistani 

et al. 2019 Cardiology Retrospective 

All adult 

cardiology 

admissions. 16414 

Random forest, artificial 

neural network, support 

vector machine and 

Baysian network. 

< 3 days = 5063. 

3-5 days = 5490. 

>5 days = 5861. Classification 

< 3 days, 3-5 

days and >5 

days. 

Accuracy 80%. PPV 80%. 

Sensitivity 80%. AUC 

0.94. RMSE 0.31. F score 

80%. 

Clearly described LOS 

proportions. No ethics 

statement included.  

Turgeman et 

al. 2017 

Cardiology - 

CCF Retrospective 

All patients with 

admissions who 

had been 

diagnosed with 

CHF (although 

admission could 

be any cause) 20321 Regression tree (Cubist) 

Mean LOS 6.24, 

Median 4, 

standard deviation 

8.475. Regression NA MAE 1. R2 0.79. 

Few details on patient medical 

conditions. Clearly described 

approach to missing data. 
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Hachesu et 

al. 2013 

Cardiology - 

IHD Retrospective 

All had coronary 

artery disease 2064 

ANN, SVM and decision 

tree 

LOS 0-5 days 

35.8%, 6-9 

24.9%, and ≥10 

39.3% Classification 

LOS 0-5 days, 

6-9 days, and 

≥10 days 

96.4% accuracy. 97.3% 

sensitivity. 98.1% 

specificity. 

Included patient demographic 

and comorbidity details. No 

ethics statement included. 

Huang et al. 

2016 

Cardiology - 

Unstable 

angina Retrospective 

All unstable 

angina admissions 3492 

Multiple models including 

treatment pattern models 

and multi-label k-nearest 

neighbours 

Describes LOS 

typically being 

between 2-3 

weeks Classification 

LOS ≤7 days, 

8-14 days, 14-

28 days, >28 

days Accuracy 0.849 

Included patient demographic 

and comorbidity details. 

Uncertain how many 

individuals were screened for 

inclusion.  

Mortona et 

al. 2014 Endocrinology Retrospective Not specified. 10000 

Multiple models including 

random forest and 

multiple linear regression Uncertain Classification 

LOS <3 days or 

≥3 days 

Accuracy 0.68 (+/- 0.01). 

AUC 0.76 +/- 0.01. 

Uncertain proportion/ 

distribution of LOS. Reported 

prevalence dependent and 

independent performance. 

Launay et al. 

2015 Geriatrics Prospective Age ≥80 years 993 

Artificial neural network 

(multi-layer perceptrons) 

LOS ≥13 21.6% 

in training set, 

and 24.9% in test 

set Classification 

LOS ≥13 days 

or < 13 days 

Accuracy 87.4. AUC 90.5. 

Specificity 96.6%. 

Sensitivity 62.7%. PPV 

87.1. NPV87.5 

Clearly described LOS 

proportions in train/test sets. 

Clearly described train/test 

split. 

Tsoukalas et 

al. 2015 ICU - Sepsis Retrospective 

≥18 years of age, 

ICU admission, 

meeting ≥2 SIRS 

criteria 1492 Support vector machine 

Mean LOS 17.0 

(standard 

deviation 36.7 

days) Classification 

4, 8 and 12 

days. 

Accuracy 0.69-0.82. AUC 

0.69-0.73. 

Reported prevalence dependent 

and independent performance. 

Discussion of improved 

outcomes is unclear.  

Al Taleb et 

al. 2017 

Neurology - 

Stroke Uncertain Not specified. 716 

Decision tree algorithm 

and Bayesian network Uncertain Classification 

LOS 0-2 days, 

3-7 days, 8-16 

Accuracy 81.29%. AUC 

0.936. Sensitivity 0.813. 

Specificity 0.896. 

Uncertain proportion/ 

distribution of LOS. Uncertain 

inclusion criteria. 



 

 

50 

days and >16 

days 

Huang et al. 

2013 

Respiratory 

infections Retrospective 

Admissions with a 

primary diagnosis 

ICD code 

consistent with 

tuberculosis 284 Temporal similarity model Mean LOS 13.6 Regression NA 

RMSE variable depending 

on how many days of data 

into the admission the 

patient was (from 

approximately 8-1.75). 

Distinctive approach of making 

repeated predictions of LOS 

during admission. 

Comparatively small sample 

size. 
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Table 2: Studies predicting length of stay of groups of inpatients that included medical patients 

Citation Specialty 

Retrospective 

vs 

prospective 

Eligibility 

criteria 

Sample 

size Models used 

LOS 

proportion or 

distribution 

Regression or 

classification 

outcome 

If LOS 

classification, 

what were the 

thresholds Model performance 

Critical appraisal 

Steele & 

Thompson 

2019 

All elective 

admissions. Retrospective Not specified. 242024 

Multiple models including 

Naïve Bayes and k-nearest 

neighbours Uncertain Classification 

≥8 days or <8 

days 

AUC 0.904. 

Specificity 0.92. 

AUCPR: 0.933. FN 

rate: 0.331. 

Large sample size. Few details on 

patient medical conditions. 

Sotoodeh 

& Ho 

2019 

All ICU 

admissions Retrospective Existing dataset. 4000 Hidden Markov Model Uncertain Regression NA RMSE 228.12 

Clearly described method for 

management of missing data. No ethics 

statement. 

Stojanovic 

et al. 2017 

All 

inpatient 

admissions. Retrospective Not specified. 100,000 disease+procedures2vec 

Total dataset 

mean LOS 3.71 

- 5.94 Regression NA R2 0.0766 - 0.4356 

Diverse patient population. Limited 

discussion.  

Caetano et 

al. 2015 

All 

inpatient 

admissions. Retrospective Not specified. 26,431 Random forest Uncertain Regression NA 

R2 0.813, MAE 

0.224, RMSE 0.469 

Uncertain LOS distribution. Specified 

approach to missing data. 

Livieris et 

al. 2018 

All 

inpatient 

admissions. Retrospective 

Limited to > 65 

year-olds 2,702 

Two-level classifier using 

random forest and k-nearest 

neighbours 

Majority of 

cases were 1-

day stays, 

followed by ≥5 

day stays. Classification 

1, 2, 3, 4, or ≥5 

days Accuracy 78.5% 

Clearly presented confusion matrix. Few 

details on patient medical conditions.  
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Livieris et 

al. 2018b 

All 

inpatient 

admissions. Retrospective 

Limited to > 65 

year-olds 4,403 

A variety of semi-supervised 

learning models were used 

including naieve Bayes and 

multi-layer perceptron Uncertain Classification 1-2, 3-6, >6 days 

Accuracy 63.23% - 

65.30% 

Few details on patient medical 

conditions. Uncertain approach to 

missing data. 

Baek et al. 

2018 

All 

inpatient 

admissions. Retrospective All admissions. 45,546 

Regression and random forest 

models 

Mean LOS 7.0 

(IQR 2 - 8) Both 

≥30 days or < 30 

days 

Accuracy 0.9732. 

MAE 4.68 

Clearly described number of individuals 

screened for inclusion. Clearly 

described approach to missing data. 

Cui et al. 

2018 

All 

inpatient 

admissions. Retrospective 

All admission 

except rare 

diagnoses. 750000 

Multiple models including 

random forest, decision tree 

and neural network Uncertain Regression NA 

R2 0.554. RMSE 

3.10. MAE 2.19. 

Large sample size. Few details on 

patient medical conditions. 

Liu et al. 

2010 

All 

inpatient 

admissions. Retrospective 

≥15 years old and 

not hospitalised 

for childbirth 155474 Logistic regression 

Mean LOS 4.5 

days +/- 7.7 Regression NA 

R2 0.146. MSE/1000 

29.0. 

Discussed exclusion of individuals with 

incomplete data. Included demographic 

details of patients. 

Rajkomar 

et al. 2018 

All 

inpatients. Retrospective 

≥18 years of age 

and ≥24 hour 

hospital 

admission 216221 Recurrent neural networks 

22.3%-24.2% 

long-stays in 

different 

datasets Classification 

≥7 days or <7 

days AUC 0.85-0.86. 

Included patient demographic and 

medical characteristics. Clearly 

described train/test methodology. 

Saly et al. 

2017 

Medicine - 

All patients 

in a trial 

with AKI. Retrospective 

Patients enrolled 

in AKI trial. 

Eligibility criteria 

as per AKI trial. 2,241 

Random forest and logistic 

regression 

Median LOS for 

whole cohort 

was 10.2 (6.0-

17.2) days. Regression NA R2 0.2 (0.14 - 026) 

Included details on patient medical 

conditions. Discussed number of 

individuals screened for inclusion. 
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Appendix 1 – Individual Database Search Strings 

 

PubMed:  

("Machine learning"[All Fields] OR "artificial intelligence"[All Fields] OR "deep 

learning"[All Fields] OR "predictive analytics"[All Fields]) AND ("length of 

stay"[All Fields] OR "estimated discharge date"[All Fields] OR "length of hospital 

stay"[All Fields]) 

 

EMBASE:  

('machine learning'/exp OR 'machine learning' OR 'artificial intelligence'/exp OR 

'artificial intelligence' OR 'deep learning'/exp OR 'deep learning' OR 'predictive 

analytics') AND ('length of stay'/exp OR 'length of stay' OR 'estimated discharge date' 

OR 'length of hospital stay') 

 

Web of Science: 

ALL FIELDS:(("Machine learning" OR "artificial intelligence" OR "deep learning" 

OR "predictive analytics") AND ("length of stay" OR "estimated discharge date" OR 

"length of hospital stay"))  

Timespan: All years.  Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-

SSH, ESCI, CCR-EXPANDED, IC. 
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Appendix 2 – Critical Appraisal Framework 

 

Prior to implementing the framework, address the following question: Is this a 

machine learning pilot/derivation/validation study aiming to predict a medical 

outcome? If yes, continue. If it is an implementation study, different critical appraisal 

methods will be required. 

  

The following questions answered as either Yes/No/Unsure. Significant additions as 

compared to the TRIPOD framework are italicised. 

 

 

• Title: 

o Does the title describe the area/results of the study?  

• Abstract: 

o Does the abstract provide a summary of the aims, method and results 

of the study? 

• Introduction: 

o Is the clinical relevance of the prediction of the target outcome 

explained?  

o Are the aims of the study stated?  

o Is a primary outcome (and secondary outcomes) defined? (e.g. AUC vs 

accuracy for desired outcome/output) 

• Method: 

o Source of data: 

§ Is the source of the data identified? 
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§ Are the dates from which the data was collected identified?  

§ Is it stated whether this data was prospectively/retrospectively 

collected? 

§ If a validation study, is it stated that this data was collected 

separately from the data that was used to derive/develop the 

model initially? 

o Participants: 

§ Are the eligibility criteria described? 

o Outcome (Outputs): 

§ Is it described which outcome is being predicted? 

§ Is it described how this outcome/output label was 

assessed/attributed? 

§ Is the outcome/output label assessed/attributed in an objective 

and verifiable fashion? 

o Predictors (Inputs): 

§ Is a complete list of the inputs used for the model provided?  

§ If relevant, are there explanations of how these inputs were 

assessed? 

o Sample size: 

§ Was the sample size of the training and test set adequate for the 

purposes of the study?  

o Missing data: 

§ Is it explained how missing data was dealt with?  

o Machine learning analysis: 
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§ Is it stated which programs were used? (e.g. specify 

TensorFlow, Pytorch etc. ideally with version numbers) 

§ Is the preprocessing of the data described? 

§ If a train/test split was conducted, is it explicitly stated that this 

was performed only once? 

§ Is the type and architecture of the models used in the study 

described? (in method or in results sections) 

§ Is it described how training data was used to develop and 

refine the models? (e.g. K-fold cross-validation)  

§ Is it described which data the model was applied to in order to 

produce the primary outcome? (i.e. what was the test set?)  

§ If cut-off points were applied, is it described how these were 

selected? 

§ Is it explicitly stated that performance analysis on the test set 

was performed only once? 

o Comparators 

§ If a comparator group was used, is the level of training of the 

members of the comparator group described?  

§ If a comparator group was used, are the conditions under 

which the comparator group were performing described? 

§ If a comparator score was used, is it described how the 

comparator score was calculated? 

o Statistical analysis: 

§ Are the statistical methods for the calculation of outcome 

metrics described? (e.g. method for calculating AUC, method 
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for calculating confidence intervals, method for calculating 

statistical significance tests) 

o Ethics: 

§ Is a statement regarding approval from local institutional 

review boards included? (with a reference number) 

• Results: 

o Participants 

§ Are the demographic details of the patient population 

provided? (i.e. such that readers may determine whether results 

may be generalisable to their patient population) 

§ Are medical details of the patient population provided? (i.e. if 

all inpatients are included, provide information about the 

medical backgrounds and presenting complaints experienced 

by these patients) 

§ Is it described how many patients were included in the study, as 

compared to how many were screened for inclusion? 

§ Is adequate information presented, such that it is possible to 

determine the proportion/distribution of different classes/output 

results within the total dataset? 

o Model training 

§ Is adequate information presented, such that it is possible to 

determine the proportion/distribution of different classes/output 

results within the training set? 

o Model performance 
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§ Is adequate information presented, such that it is possible to 

determine the proportion/distribution of different classes/output 

results within the test set? 

§ Is a confusion matrix presented? 

§ Are prevalence-dependent outcome metrics presented? (e.g. 

positive predictive value, negative predictive value, accuracy) 

§ Are prevalence-independent outcome metrics presented? (e.g. 

AUC-ROC, sensitivity, specificity) 

§ If cut-offs were employed, are these cut-off scores provided? 

 

• Discussion: 

o Is the discussion appropriate to the stage of development of the model? 

Does it discuss the model in the context of other studies and previous 

applications of this model? 

o Are the limitations of the study acknowledged? 

o Are reasonable suggestions for future research made? 

• Conflicts of interest/funding: 

o Is there a statement regarding conflicts of interest/funding? 
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Abstract 

Post-stroke discharge planning may be aided by accurate early prognostication.  

Machine learning may be able to assist with such prognostication. The study’s 

primary aim was to evaluate the performance of machine learning models using 

admission data to predict the likely length of stay (LOS) for patients admitted with 

stroke. Secondary aims included the prediction of discharge modified Rankin Scale 

(mRS), in-hospital mortality, and discharge destination. In this study a retrospective 

dataset was used to develop and test a variety of machine learning models. The 

patients included in the study were all stroke admissions (both ischaemic stroke and 

intracerebral haemorrhage) at a single tertiary hospital between December 2016 to 

September 2019. The machine learning models developed and tested (75%/25% 

train/test split) included logistic regression, random forests, decision trees and 

artificial neural networks. The study included 2840 patients. In LOS prediction the 

highest area under the receiver operator curve (AUC) was achieved on the unseen test 

dataset by an artificial neural network at 0.67. Higher AUC were achieved using 

logistic regression models in the prediction of discharge functional independence 

(mRS ≤2) (AUC 0.90) and in the prediction of in-hospital mortality (AUC 0.90). 

Logistic regression was also the best performing model for predicting home vs non-

home discharge destination (AUC 0.81). This study indicates that machine learning 

may aid in the prognostication of factors relevant to post-stroke discharge planning. 

Further prospective and external validation is required, as well as assessment of the 

impact of subsequent implementation. 
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Manuscript 

Introduction 

Accurate prognostication may aid post-stroke discharge planning [1]. However, 

accurately predicting likely outcomes for patients may be difficult, particularly early 

post-admission. Following admission, patient progress is typically noted over the 

course of several days, with physiotherapist and occupational therapist input, prior to 

forming discharge plans [2]. It is possible that machine learning may aid accurate 

prediction of post-stroke length of stay (LOS), disability, and discharge disposition 

based upon data available at admission. These predictions may aid in expediting 

discharge planning and facilitate improved patient care in a cost-effective manner. 

 

Machine learning has previously been applied to small retrospective datasets to 

prognosticate stroke and assist discharge planning with variable success. The largest 

machine learning LOS prediction study used departmental data from 716 stroke 

inpatients and found an accuracy of 81.3% [3]. However, this study was limited by 

the inability to determine the distribution of LOS in their population. Several posters 

and abstracts have also presented results looking at stroke prognostication with 

machine learning in small patient groups (n = 66 and n = 158) with some promising 

results [4, 5]. Factors that have previously been shown to be associated with longer 

stroke LOS and/or greater disability include age, National Institute of Health Stroke 

Scale (NIHSS), heart failure and chronic kidney disease [6]. Another study has used 

machine learning to predict follow-up functional outcomes with an area under the 

receiver operator curve (AUC) of 0.888 for modified Rankin Scale prediction at 2-3 

months following acute stroke [7]. 
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The primary aim of this study was to evaluate the performance of machine learning 

models using time of admission data to predict (A) the likely LOS for patients 

admitted with stroke. Secondary aims included the prediction of (B) discharge 

modified Rankin Scale (mRS), (C) in-hospital mortality, and (D) discharge 

destination.  

 

Materials and methods 

Input and outcome data collection 

Data were obtained from the existing stroke databases of a single tertiary hospital for 

all stroke admissions (both ischaemic stroke and intracerebral haemorrhage) between 

December 2016 to September 2019. Data were entered by stroke nurses or medical 

staff from patient notes and discharge summaries. Input data included: age, initial 

NIHSS, living alone status, estimated glomerular filtration rate, temperature, blood 

glucose level, blood pressure, pre-stroke mRS, sex, ethnicity, arrival method, ability 

to walk on arrival, result of swallow screening, receival of reperfusion therapy, 

socioeconomic status, and comorbidities including prior stroke, ischaemic heart 

disease, heart failure arrythmias, and active cancers. Postcode was utilised to estimate 

socioeconomic status using Australian Bureau of Statistics data [8]. 

 

Data pre-processing 

Cases with missing data for any of the desired outcomes (Aims A-D) were excluded 

from analysis. Missing input data was replaced with median imputation. Prior to 

analysis, numerical data were standardised through feature scaling. Outcome data 

were dichotomised as follows: LOS >8 days vs ≤8 days (based on mean LOS of 8 

days), mRS >2 or ≤2 (functional dependency or independence), discharge destination 
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home vs non-home, and in-hospital mortality vs survival to hospital discharge. Data 

were randomly split into training and testing sets (75%/25%). This split was 

performed once. 

 

Machine learning analysis 

Machine learning analysis was conducted using open source Python libraries 

including TensorFlow (version 2.0) and SciKit-Learn (version 0.21.3).  

 

Initially, univariate logistic regression was employed on the training set using all 

available input data to predict the dichotomised LOS outcome. The regression 

coefficients were ranked to estimate feature importance, and the six most important 

variables were selected for further experiments. Classification experiments were first 

employed on the training dataset using 5-fold cross-validation to develop and refine 

models. Logistic regression, random forest, decision tree and artificial neural network 

models were employed (see Supplementary Information 1 for additional information 

regarding the nature of these models). Similar methodology, with respect to the 

number of variables and machine learning models utilised, have been applied 

successfully in previous stroke prognostication machine learning studies and clinical 

decision rules [7, 9]. Using the results from this training data, model parameters were 

tuned, and architectures modified (see Supplementary Information 2). Following 

model development, the performance of each model was assessed on the previously 

unseen test dataset.  
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Statistical analysis 

The AUC and average precision-recall scores were calculated with SciKit-Learn. As 

the models produce numeric predictions ranging from 0 to 1, we used Youden’s index 

(determined during cross-validation on the training data) as a cut-off score for each 

model to produce the binary predictions [10]. High sensitivity and specificity (>90%) 

cut-off scores were calculated, and their performance evaluated, for the models with 

the highest AUC for each outcome.  

 

Ethical Approval 

The project received approval from the institutional Ethics Committee. Formal 

consent was not required for this type of study. 

 

Results 

Patient characteristics 

We screened 2,922 patients for study inclusion, excluding those with missing 

outcome data (2,840 included). The mean age was 74.0 (SD 14.3 years), 1,259 were 

female (44.3%), median estimated pre-stroke mRS was 0 (IQR 0-1), and median 

admission NIHSS was 6 (IQR 3-15, range 0-42). The number of patients with 

ischaemic strokes was 2407 (84.8%) and 433 (15.2%) had haemorrhagic strokes. The 

median LOS was 4 (IQR 2 – 9, mean 8.1 days, SD 20.8 days, LOS ≤8 days in 2,124 

individuals – 74.8%) and median discharge mRS was 3 (IQR 1-4, discharge mRS ≤2 

in 1,381 individuals – 48.6%). In-hospital mortality was 15.9% (453 patients). A 

further 758 patients were discharged home (26.7%); remaining patients were 

discharged to non-home destinations, including rehabilitation and residential aged 
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care facilities. Median imputation was required to replace 127 individual missing 

input datapoints. 

 

Logistic regression feature selection 

Initially logistic regression analysis was conducted using all available inputs (see 

Method – Input and outcome data collection). Factors most predictive of a length of 

stay >8 days were: ability to walk at time of admission, result of initial swallowing 

screening, pre-stroke mRS, age at time of admission, NIHSS at time of admission and 

socioeconomic status. 

 

Classification experiments 

The artificial neural network achieved the highest AUC in LOS dichotomised 

outcome prediction at 0.67 (see Table 1) (training set performance AUC 0.67 +/- SD 

0.03). This performance was followed by the logistic regression model and random 

forest model with AUC of 0.66 and 0.64 respectively. 

 

Significantly greater AUC were achieved in the prediction of discharge mRS. In this 

task, the highest AUC was achieved by the logistic regression model (AUC 0.90) 

(training set performance AUC 0.90 +/- SD 0.013) and artificial neural network (AUC 

0.90). In the prediction of in-hospital mortality the best performing models were the 

logistic regression model (AUC 0.90) (training set performance AUC 0.90 +/- SD 

0.022) and the artificial neural network (AUC 0.85). Logistic regression and artificial 

neural networks were more accurate in predicting home vs non-home discharge 

destination (both AUC 0.81) (logistic regression training set performance AUC 0.79 
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+/- SD 0.013) than random forest and decision tree models, which achieved lower 

AUC (accuracy 0.77 and 0.64 respectively). 

 

When high sensitivity and specificity cut-offs were applied, different levels of 

performance were demonstrated (see Table 2). Of note, the prediction of discharge 

mRS was able to maintain a sensitivity of 0.72, while providing specificity of 0.90. 

 

Discussion 

This study has shown that, using data available at the time of admission, machine 

learning may aid in predicting aspects of stroke patient prognosis relevant to 

discharge planning. In particular, logistic regression and artificial neural networks 

were able to successfully predict discharge mRS, in-hospital mortality and discharge 

to home. However, accurate prediction of LOS proved challenging.  

 

The models in this study have comparable performance to other stroke 

prognostication scores such as ASTRAL, DRAGON, FSV, iSCORE, PLAN and 

THRIVE. These scales, which have been reviewed previously [11], have been shown 

to have a range of AUC from 0.71 to 0.89 for predicting a variety of functional and 

mortality outcomes at 3-12 months post-stroke. The only scale derived primarily for 

predicting similar inpatient outcomes to those in this study, the SOAR and modified-

SOAR scores, has been shown to have 0.79 AUC for predicting inpatient mortality 

and 0.61 AUC for predicting LOS < 8 days [12]. 

 

The most likely explanation as to why LOS was unable to be more effectively 

predicted in this study is that factors significantly affecting LOS were not represented 
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in the available input data. Such factors may include the insurance status of the 

patients (public vs private), recurrent inpatient stroke or stroke progression (e.g. 

haematoma expansion), weekend/out-of-hours admissions [13], and the bed-state at 

the time of admission (i.e. system overcrowding and access block). Although 

admission NIHSS accurately measures stroke severity, imaging data (ASPECTS and 

ischaemic core calculation) and successful reperfusion may enhance outcome 

prediction [14]. Further, in addition to baseline data, data collected throughout the 

admission, with landmark analysis [15], may refine the original prediction [16]. 

 

A limitation of this study is that it was conducted at a single centre. It should be noted 

that in the test set for the in-hospital mortality classification task 83% of patients 

survived. Still, it can be seen that the logistic regression model was not simply 

predicting the most common class, since it achieved sensitivity of 0.81, specificity of 

0.86 and average precision-recall score of 0.98. The inclusion of additional 

information such as ‘out-of-hours’ admission, baseline neuroimaging, insurance status 

and a measure of healthcare system bed-state may have improved model performance. 

 

Our study supports the need for further research in this area. Future studies should 

aim to improve existing models, and prospectively validate such models. 

Implementation studies are also required to demonstrate benefits in patient or 

healthcare-system oriented outcomes with model deployment.  
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Table 1: Results of classification experiments predicting stroke outcomes with data available at the time of admission 

Outcome Model AUC TP FN TN FP Sensitivity Specificity PPV NPV F1 Score PR average score Accuracy 

LOS 

Artificial neural 

network 0.67 305 219 132 54 0.58 0.71 0.85 0.38 0.69 0.84 0.62 

Decision tree 0.56 394 130 69 117 0.75 0.37 0.77 0.35 0.76 0.76 0.65 

Logistic regression 0.66 336 188 116 70 0.64 0.62 0.83 0.38 0.72 0.83 0.64 

Random Forest 0.64 225 299 148 38 0.43 0.80 0.86 0.33 0.57 0.84 0.53 

Discharge 

mRS 

Artificial neural 

network 0.9 291 55 305 59 0.84 0.84 0.83 0.85 0.84 0.88 0.84 

Decision tree 0.75 250 96 281 83 0.72 0.77 0.75 0.75 0.74 0.68 0.75 

Logistic regression 0.90 291 55 305 59 0.84 0.84 0.83 0.85 0.84 0.88 0.84 

Random Forest 0.88 299 47 284 80 0.86 0.78 0.79 0.86 0.82 0.87 0.82 

In-hospital 

mortality 

Artificial neural 

network 0.85 509 83 78 40 0.86 0.66 0.93 0.48 0.89 0.97 0.83 

Decision tree 0.66 540 52 48 70 0.91 0.41 0.89 0.48 0.90 0.88 0.83 

Logistic regression 0.90 477 115 102 16 0.81 0.86 0.97 0.47 0.88 0.98 0.82 
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Random Forest 0.88 480 112 97 21 0.81 0.82 0.96 0.46 0.88 0.97 0.81 

Discharge 

destination 

Artificial neural 

network 0.81 148 44 382 136 0.77 0.74 0.52 0.90 0.62 0.56 0.75 

Decision tree 0.64 96 96 406 112 0.50 0.78 0.46 0.81 0.48 0.37 0.71 

Logistic regression 0.81 146 46 393 125 0.76 0.76 0.54 0.90 0.63 0.57 0.76 

Random Forest 0.77 169 23 290 228 0.88 0.56 0.43 0.93 0.57 0.53 0.65 
 

 

AUC = area under the receiver operator curve, TP = True positives, FN = false negatives, TN = true negatives, FP = false positives, PPV = positive predictive value, NPV = 

negative predictive value, PR = Precision-Recall, mRS = modified Rankin Scale, LOS = Length of stay 
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Table 2: Results of classification experiments applying high sensitivity/specificity cut-off scores to models developed to predict predict stroke 

outcomes  

Outcome Model and cut-off Sensitivity Specificity PPV NPV 

LOS Artificial neural network – high specificity 0.27 0.90 0.89 0.30 

Artificial neural network – high sensitivity 0.91 0.20 0.76 0.44 

Discharge mRS Logistic regression – high specificity 0.72 0.90 0.87 0.77 

Logistic regression – high sensitivity 0.90 0.72 0.75 0.88 

In-hospital mortality Logistic regression – high specificity 0.72 0.91 0.97 0.39 

Logistic regression – high sensitivity 0.90 0.65 0.93 0.57 

Discharge destination Logistic regression – high specificity 0.42 0.90 0.61 0.81 

Logistic regression – high sensitivity 0.90 0.49 0.39 0.93 

 

 

PPV = positive predictive value, NPV = negative predictive value, mRS = modified Rankin Scale, LOS = Length of stay 
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Supplementary Information 1 - Background information regarding machine 

learning models 

 

Machine learning encompasses a wide variety of techniques, which can be 

categorised broadly into three groups: supervised, semi-supervised and un-supervised. 

Supervised machine learning involves datasets where the “ground truth” is known for 

all input and output datapoints. For example, this study could be considered an 

example of supervised machine learning because the desired outcome (e.g. discharge 

destination or length of stay) was known for all individuals included in the study.  

 

When conducting supervised machine learning studies, there are a wide variety of 

models that may be used to predict the desired outcome. One way to categorise these 

models is as deep learning vs non-deep learning. Non-deep learning models include 

K-nearest neighbours, decision tree, Naïve Bayes and support vector machine 

algorithms. Deep learning refers to the use of machine learning models based upon 

artificial neural networks. The four types of models employed in the project were 

logistic regression, decision tree, random forest and artificial neural networks. 

 

Logistic regression is a statistical model that uses the logistic (sigmoid) function to 

predict the probability of an observation being associated with a given class. There 

are a variety of types of logistic regression, including binary, multinomial and ordinal 

logistic regression.  

 

Decision tree algorithms, when referring to classification trees, employ a method 

involving sequential divisions of data aiming to minimise entropy, that eventually 
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yields the division of a dataset into separate classes. These sequential divisions of data 

can be visualised as a “tree” or flowchart of decisions that outline the separate steps 

that were taken while dividing the data into separate classes. 

 

A random forest model employs multiple decision trees (see above), which are each 

developed on a random subset of data, to classify observations.  

 

Artificial neural networks use a sequence of layers of nodes that are interconnected 

with different weights, to predict the classification of a given observation. When 

training an artificial neural network, predictions are made, based upon the current 

values of the weights that join the nodes, and then a cost function is used to calculate 

an indicator of the amount of error in the predictions. This value is then used to 

update/refine the weights of the network (backpropagation) with the aim of 

minimising the cost function. The architecture of a network refers to the number of 

layers and numbers of nodes in the network, as well as other factors that may be 

modified such as the activation function of different nodes, and inclusion of layers 

with different functions (such as dropout layers). 
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Supplementary Information 2 - ANN architecture and hyperparameter tuning 

 

The architecture of the ANN that was used in the classification experiments had only 

2 fully connected layers. Following the input layer, there was a dense layer with 10 

nodes, then a second dense layer with 4 nodes. After this followed the output layer 

with 1 node. The loss function that was employed was binary cross-entropy. No 

dropout layers were used. 

 

Hyperparameters were tuned using a grid-search function. Hyperparameters that were 

tuned were batch size, number of epochs and learning rate. Ultimately the ANN that 

was used for the classification experiments on the test set used a batch size of 300, 

100 epochs and a learning rate of 0.01. 
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Abstract  

Machine learning may be able to help with predicting factors that aid in discharge 

planning for stroke patients. This study aims to validate previously derived models, 

on external and prospective datasets, for the prediction of discharge modified Rankin 

scale (mRS), discharge destination, survival to discharge and length of stay. Data 

were collected from consecutive patients admitted with ischaemic or haemorrhagic 

stroke at the Royal Adelaide Hospital from September 2019 to January 2020, and at 

the Lyell McEwin Hospital from January 2017 to January 2020. The previously 

derived models were then applied to these datasets with three pre-defined cut-off 

scores (high-sensitivity, Youden’s index, and high-specificity) to return indicators of 

performance including area under the receiver operator curve (AUC), sensitivity and 

specificity. The number of individuals included in the prospective and external 

datasets were 334 and 824 respectively. The models performed well on both the 

prospective and external datasets in the prediction of discharge mRS ≤2 (AUC 0.85 

and 0.87), discharge destination to home (AUC 0.76 and 0.78) and survival to 

discharge (AUC 0.91 and 0.92). Accurate prediction of length of stay with only 

admission data remains difficult (AUC 0.62 and 0.66). This study demonstrates 

successful prospective and external validation of machine learning models using six 

variables to predict information relevant to discharge planning for stroke patients. 

Further research is required to demonstrate patient or system benefits following 

implementation of these models. 
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Manuscript 

Introduction 

Discharge planning is an important part of inpatient stroke case evaluation, 

facilitating efficient and effective care, as well as accurate bed-state planning [1]. 

Machine learning may be able to help with predicting factors that aid with this task. In 

a previous study, machine learning models were derived that successfully predicted 

factors relevant to discharge planning [2]. However, prior to the implementation of 

any such algorithms, validation studies are required to confirm the performance 

observed in the derivation study. 

 

The development of machine learning algorithms for use in clinical medicine may be 

thought of as similar to the stages of development of clinical decision rules. These 

stages include a pilot study (to assess feasibility), a derivation study (to develop the 

model), external/prospective validation studies (to validate the performance of the 

model seen in the derivation study on data separate to the derivation dataset) and 

implementation studies (to demonstrate improvement in patient or system outcomes 

from use of the model) [3]. Currently there are many clinical machine learning pilot 

and derivation studies, but relatively few authors have conducted prospective/external 

validation or implementation studies of their models. 

 

The aim of this study was to evaluate the performance of previously derived machine 

learning models, for the prediction of stroke outcomes relevant to discharge planning, 

in a prospectively collected dataset and a separate dataset collected from an external 

centre. The outcomes for which this evaluation was conducted were discharge 

modified Rankin scale (mRS), discharge destination, survival to discharge and length 
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of stay (LOS). The primary outcome was the area under the receiver operator cure 

(AUC) for predicting discharge mRS. 

 

Materials and methods 

Participating centres 

The two South Australian hospitals involved in the project were the Royal Adelaide 

Hospital (Location 1) and the Lyell McEwin Hospital (Location 2). The Royal 

Adelaide Hospital is the sole Comprehensive Stroke Centre in Adelaide. The Lyell 

McEwin hospital is a northern Adelaide tertiary hospital, which is a Primary Stroke 

Centre without on-site neurosurgery or endovascular thrombectomy.  

 

Machine learning models 

The models were originally derived using data from the Royal Adelaide Hospital 

from between December 2016 to September 2019 (not including September) as 

described previously [2]. The models include logistic regression models for predicting 

discharge mRS, discharge destination, and survival to discharge; and an artificial 

neural network for prediction of LOS. There are six inputs required for the models, 

namely: age at time of admission, National Institutes of Health Stroke Scale (NIHSS) 

at time of admission, ability to walk at time of admission, result of initial swallowing 

screening, pre-stroke mRS and socioeconomic status (as estimated from postcode 

using Australian Bureau of Statistics data) [4]. In the prediction of each outcome, the 

individual variables were weighted differently. For example (noting the application of 

feature scaling), in the prediction of discharge destination, regression coefficients for 

the variables were age -0.22, NIHSS -0.58, socioeconomic status -0.02, pre-stroke 
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mRS ranged from 0.13 to -0.15, inability to walk at time of admission -0.28 and failed 

swallow screen -0.21. 

 

Data collection 

Two sets of data were collected for the validation of the machine learning models. 

Data from both sites included information on consecutive stroke admissions extracted 

by stroke nursing, medical and allied health staff from medical records using a 

standardised form. Data were collected for the prospective validation of the models at 

the Royal Adelaide Hospital (Location 1) between September 2019 to January 2020. 

Data for the external validation of the models were collected from the Lyell McEwin 

Hospital (Location 2) from between January 2017 to January 2020.  

 

Data pre-processing 

Individuals for which the outcome data was missing were excluded from analysis. 

The outcomes for prediction were discharge functional dependence (mRS >2) vs 

independence (≤2), home vs non-home discharge destination, survival to hospital 

discharge and LOS >8 days vs ≤8 days. Median imputation was used to replace 

missing input data. Feature scaling was applied. 

 

Statistical and performance analysis 

Validation cohort demographics were compared using unpaired t-tests and chi-

squared tests. The previously derived models were applied to the two datasets to 

generate performance metrics. Performance metrics included prevalence-independent 

(AUC, sensitivity and specificity) and prevalence-dependent metrics (positive 

predictive value, negative predictive value and accuracy), calculated as standard and 
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using SciKit-Learn (version 0.21.3). For each model, performance was evaluated with 

three previously defined cut-off scores (high-sensitivity, Youden’s index from the 

derivation study, and high-specificity).  

 

Performance of the model for validation was also specifically evaluated in a number 

of subgroups including individuals with intracerebral haemorrhage, large vessel 

occlusion, and those receiving thrombolysis and endovascular thrombectomy. To help 

evaluate the performance of the model for validation on these subgroups, new models 

were derived on the previous derivation dataset using data only from these subgroups, 

as described previously [2]. The performance of these subgroup models for prediction 

of the primary outcome was evaluated in the prospective and external validation 

datasets. 

 

Ethical Approval 

The project received approval from institutional Ethics Committees, with waiver of 

individual consent.  

 

Results 

Patient characteristics 

The number of individuals included at Location 1 was 334 (98.8 % of the total 338 

screened for inclusion) and, at Location 2, 824 (77.4% of the total 1065 screened for 

inclusion). At Location 1 there was a mean age 75.2 years (SD 13.1), 151 female 

individuals (45.2%), 82 discharged to home (24.6%), 285 survived to discharge 

(85.3%), mean LOS 6.4 days (SD 8.1), 163 individuals with mRS at discharge ≤2 

(48.8%), admission NIHSS median 5 (IQR 3-12), and 284 ischaemic strokes (85.0%). 



 

 

86 

86 

At Location 2 there was a mean age of 73.3 years (SD 13.6), 371 females (45.0%), 

294 discharged to home (35.7%), 747 survived to discharge (90.7%), LOS 7.4 days 

(SD 12.4), 354 individuals with mRS at discharge ≤2 (43.0%), admission NIHSS 

median 4 (IQR 2-8) and 709 ischaemic strokes (86.0%). There were several 

statistically significant differences between the included individuals from Location 1 

and Location 2, including a higher proportion of acute strokes (symptom noted to 

arrival time <24 hours 86.5% vs 68.1%, p <0.01) and a higher proportion with 

moderate-severe strokes (NIHSS ≥6 47.9% vs 36.4%, p <0.01). For additional details 

regarding characteristics of individuals, please see Table 1. 

 

Prospective validation – Location 1 

In the primary outcome of AUC for prediction of discharge mRS ≤ 2 a performance 

of 0.85 was achieved (see Table 2). Using the high-sensitivity cut-off, a sensitivity of 

0.91 was able to be attained while maintaining a specificity of 0.64. Conversely, with 

the high-specificity cut-off, a specificity of 0.82 was achieved with a sensitivity of 

0.69. When examining instances of misclassification following the application of the 

Youden’s index cut-off (74), it was found that 14.9% (11/74) of misclassified cases 

had intracerebral haemorrhage, 85.1% (63/74) had ischaemic stroke, 40.5% (30/74) 

had non-large vessel occlusion ischaemic stroke, 44.6% (33/74) had large vessel 

occlusion ischaemic stroke, 18.9% (14/74) received thrombolysis and 14.9% (11/74) 

received endovascular thrombectomy. In the prediction of home discharge destination 

and survival to discharge the models returned AUC of 0.76 and 0.91 respectively. The 

prediction of LOS was less accurate, with an AUC of 0.62.  
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When performance on subgroups was analysed, performance in the prediction of 

discharge mRS varied from AUC 0.76 (intracerebral haemorrhage) to 0.86 (ischaemic 

strokes with large vessel occlusion) (see Table 3). The intracerebral haemorrhage 

subgroup for the Location 1 cohort was relatively small, and the proportion of 

individuals that had a mRS ≤2 at the time of discharge was 15.7% (8/51). Subgroup 

models derived on data from patients with intracerebral haemorrhage (AUC 0.83), 

large vessel occlusion (AUC 0.85), thrombolysis (AUC 0.74), and endovascular 

thrombectomy (AUC 0.86) had reasonable performance when applied to the Location 

1 dataset. 

 

External validation – Location 2 

The performance on the external dataset was similar to that of the model performance 

on the prospective dataset. In the prediction of discharge mRS ≤ 2 the model achieved 

an AUC of 0.87 (see Table 2). Using high-sensitivity and high-specificity cut-offs, 

sensitivity of 0.89 (with specificity 0.68) and specificity of 0.88 (with sensitivity 0.60) 

were achieved. After the application of the Youden’s index cut-off, it was found that 

in the 177 cases that were misclassified by this model, 10.7% (19/177) had 

intracerebral haemorrhage, 89.3% (158/177) had ischaemic stroke, 68.9% (122/177) 

had non-large vessel occlusion ischaemic stroke, 20.3% (36/177) had large vessel 

occlusion ischaemic stroke, 13.6% (24/177) received thrombolysis and 4.5% (8/177) 

received endovascular thrombectomy. In this Location 2 cohort the percentage of 

individuals with intracerebral haemorrhage with a mRS ≤2 at the time of discharge 

was 31.9% (38/119). The AUC achieved for the prediction of discharge destination, 

survival to discharge and LOS were all similar or slightly higher on the external 
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validation dataset (AUC 0.78, 0.92 and 0.66 respectively) compared to the 

prospective validation dataset.  

 

In the analysis of performance in the prediction of mRS on subgroups, AUC varied 

from 0.85 (non-large vessel occlusion ischaemic strokes) through to 0.91 (large vessel 

occlusion ischaemic strokes). When the subgroup models were applied to the 

Location 2 dataset an AUC of 0.90 was returned for patients with intracerebral 

haemorrhage, 0.91 for large vessel occlusion, 0.84 for individuals who received 

thrombolysis and 0.89 for those who received endovascular thrombectomy.  

 

Discussion 

This study has demonstrated that the previously derived models [2] for the prediction 

of stroke outcomes to aid in discharge planning had similar performance on 

prospective and external validation datasets. These results included sound 

performance in the prediction of discharge mRS, discharge destination and survival to 

discharge. However, predicting LOS remains difficult. 

 

The consistent difficulty in predicting LOS with only admission data is felt likely to 

reflect the heterogeneity of a patient’s course following admission, for example, 

variation in reperfusion outcomes in ischaemic stroke. In areas outside of stroke, more 

accurate estimates of LOS have been achieved using recurrent predictions that take 

into account further information regarding a patient’s course collected on an ongoing 

basis throughout their admission [5, 6]. However, for such a model to be feasible with 

respect to possible future implementation, integration into an electronic health record 

would be required to automate the data collection required for such recurrent 
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predictions. Means of streamlining integration of machine learning models into 

electronic health records is likely to be a key area for future research and development 

in its own right, in addition to facilitating the development of models themselves and 

the deployment of such models [7, 8]. The utilisation of alternative cut-off values (for 

example, greater or less than a two-day stay) is another strategy that could be 

employed to improve the accuracy of LOS predictions. The use of alternative cut-off 

values could also be incorporated with the generation of recurrent predictions. 

 

The models in this study are focussed on discharge planning. Discharges are only one 

aspect of patient movement within a hospital that contribute to overall demand and 

patient flow [9]. Other aspects of patient movement that may be able to be predicted 

with machine learning include movement from the emergency department and 

transfer to the intensive care unit [9, 10]. 

 

Although the models have shown good external validity in this study, it is 

acknowledged that aspects of discharge planning may be centre-dependent. Such 

facility-specific factors may include bed availability at rehabilitation centres, 

rehabilitation in the home capacity, weekend staffing and insurance frameworks. 

Even so, the use of a given model across different centres may facilitate comparative 

audits.  

 

There may be diverse centres in significantly different healthcare systems where the 

models perform less effectively. If this were demonstrated to be the case, it may be 

hypothesised that the use of local data for the six variables used in this study may 

enable the development of centre-specific algorithms. In comparison to more complex 
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models, for which all required input data may not be available, the models in this 

study make this task, and comparative audits, feasible. Even with relatively simple 

models, a significant number of individuals may require exclusion due to incomplete 

outcome data, as was the case for Location 2, which is a limitation of this study. It 

should be noted that when Australian Bureau of Statistics socioeconomic data is 

updated in future this change would require the step that derives this value from 

postcode to be performed with the updated data [4]. However, the model itself would 

not require change. In addition to developing centre-specific models with local data, 

other strategies to improve model performance could include using additional input 

data (such as system related information with respect to bed-state or computed 

tomography perfusion and angiography imaging), using input data collected 

throughout the admission (as opposed to only at the time of admission) and 

developing models that target specific subgroups of stroke patients.  

 

This study has demonstrated external and prospective validation of the previously 

derived models. Further external validation at interstate or international centres may 

be beneficial. Before use in clinical practice, a further study demonstrating 

improvement in patient or system outcomes following implementation of the models 

is required.  
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Table 1: Comparison of cohort demographics in prospective and external validation datasets 

Characteristic Location 1 (prospective validation) 

(n = 334) 

Location 2 (external validation) 

(n = 824) 

Statistical significance (p 

value) 

Mean age (standard deviation) 75.2 (13.1) 73.3 (13.6) 0.029 

Number female (%) 150 (44.9%) 369 (44.8%) 0.98 

Number with moderate-severe strokes 

(NIHSS ≥6) (%) 

160 (47.9%) 300 (36.4%) <0.01 

Number acute strokes (symptom-noted to 

door time <24 hours) (%) 

289 (86.5%) 561 (68.1%) <0.01 

Number with ischaemic stroke (%) (vs 

opposed to intracerebral haemorrhage) 

283 (84.7%) 705 (85.6%) 0.79 

Number with large vessel occlusion (%) 149 (44.6%) 185 (22.5%) <0.01 

Number received thrombolysis (%) 38 (11.4%) 70 (8.5%) 0.16 

Number received endovascular 

thrombectomy (%) 

54 (16.2%) 30 (3.6%) <0.01 

Number with hypertension (%) 221 (66.2%) 594 (72.1%) 0.05 
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Number with diabetes mellitus (%) 69 (20.7%) 247 (30.0%) <0.01 

Number with ischaemic heart disease (%) 51 (15.3%) 187 (22.7%) <0.01 

Number with active smoking (%) 42 (12.6%) 142 (17.2%) 0.06 

 

NIHSS = National Institutes of Health Stroke Scale. 
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Table 2: Results of prospective and external validation of previously derived stroke discharge planning machine learning models 

Outcome AUC PR score Cut-off employed TP FN TN FP Sensitivity Specificity PPV NPV F1 Score Accuracy 

Location 1 (prospective validation) 

Discharge 

mRS ≤2 

  

  

0.85 

  

  

0.83 

  

  

High-specificity 113 50 140 31 0.69 0.82 0.78 0.74 0.74 0.76 

Youden's index 130 33 130 41 0.80 0.76 0.76 0.80 0.78 0.78 

High-sensitivity 148 15 110 61 0.91 0.64 0.71 0.88 0.80 0.77 

Discharge 

destination 

was to 

home  

  

0.76 

  

  

0.46 

  

  

High-specificity 18 64 230 22 0.22 0.91 0.45 0.78 0.30 0.74 

Youden's index 57 25 177 75 0.70 0.70 0.43 0.88 0.53 0.70 

High-sensitivity 76 6 109 143 0.93 0.43 0.35 0.95 0.50 0.55 

Survival to 

discharge 

  

  

0.91 

  

  

0.98 

  

  

High-specificity 215 69 45 5 0.76 0.90 0.98 0.39 0.85 0.78 

Youden's index 239 45 42 8 0.84 0.84 0.97 0.48 0.90 0.84 

High-sensitivity 254 30 36 14 0.89 0.72 0.95 0.55 0.92 0.87 
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LOS ≤8 

days 

  

  

0.62 

  

  

0.85 

  

  

High-specificity 51 206 67 10 0.20 0.87 0.84 0.25 0.32 0.35 

Youden's index 144 113 51 26 0.56 0.66 0.85 0.31 0.67 0.58 

High-sensitivity 222 35 12 65 0.86 0.16 0.77 0.26 0.82 0.70 

Location 2 (external validation) 

Discharge 

mRS ≤2 

  

  

0.87 

  

  

0.88 

  

  

High-specificity 280 190 310 44 0.60 0.88 0.86 0.62 0.71 0.72 

Youden's index 358 112 290 64 0.76 0.82 0.85 0.72 0.80 0.79 

High-sensitivity 420 50 239 115 0.89 0.68 0.79 0.83 0.84 0.80 

Discharge 

destination 

was to 

home 

  

0.78 

  

  

0.63 

  

  

High-specificity 56 238 503 27 0.19 0.95 0.67 0.68 0.30 0.68 

Youden's index 177 117 412 118 0.60 0.78 0.60 0.78 0.60 0.71 

High-sensitivity 270 24 239 291 0.92 0.45 0.48 0.91 0.63 0.62 

Survival to 

discharge 

  

0.92 

  

  

0.99 

  

  

High-specificity 518 229 73 4 0.69 0.95 0.99 0.24 0.82 0.72 

Youden's index 607 140 68 9 0.81 0.88 0.99 0.33 0.89 0.82 

High-sensitivity 667 80 60 17 0.89 0.78 0.98 0.43 0.93 0.88 
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LOS ≤8 

days 

  

  

0.66 

  

  

0.81 

  

  

High-specificity 108 483 212 21 0.18 0.91 0.84 0.31 0.30 0.39 

Youden's index 343 248 157 76 0.58 0.67 0.82 0.39 0.68 0.61 

High-sensitivity 530 61 49 184 0.90 0.21 0.74 0.45 0.81 0.70 
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Table 3: Sub-group analyses demonstrating model performance in the prediction of dichotomised discharge modified Rankin scale (≤2) using 

Youden’s index cut-off score 

Subgroup Location 1 (prospective) AUC Location 1 (prospective) PR Location 2 (external) AUC Location 2 (external) PR 

Intracerebral haemorrhage 0.76 0.36 0.90 0.84 

Ischaemic – all 0.85 0.85 0.87 0.88 

Ischaemic – non-LVO 0.82 0.86 0.85 0.89 

Ischaemic – LVO 0.86 0.82 0.91 0.87 

Ischaemic - Thrombolysis 0.73 0.70 0.86 0.86 

Ischaemic – Endovascular 

thrombectomy 

0.85 0.80 0.87 0.75 

 

AUC = area under the receiver operator curve, PR = Precision-Recall, LVO = large vessel occlusion



 

 

99 

99 

Chapter 5 - Automated Information Extraction from Free-Text 

Medical Documents for Stroke Key Performance Indicators: A 

Pilot Study, Internal Medicine Journal 

 

Citation 

Bacchi S, Gluck S, Koblar S, Jannes J & Kleinig T 2021, ‘Automated Information 

Extraction from Free-Text Medical Documents for Stroke Key Performance 

Indicators: A Pilot Study, Internal Medicine Journal, 

https://doi.org/10.1111/imj.15678  

 

  



 

 

100 

100 

Statement of Authorship 

Title of Paper Automated Information Extraction from Free-Text Medical 

Documents for Stroke Key Performance Indicators: A Pilot 

Study 

Publication status 

 

▣ Published                    

□ Accepted for Publication 

□ Submitted for Publication  

□ Unpublished and Unsubmitted work written in manuscript 

style 

Publication details Bacchi S, Gluck S, Koblar S, Jannes J & Kleinig T 2021, 

‘Automated Information Extraction from Free-Text Medical 

Documents for Stroke Key Performance Indicators: A Pilot 

Study, Internal Medicine Journal, 

https://doi.org/10.1111/imj.15678 

 

Principal Author 

Name of Principal Author 

(Candidate) 

Dr Stephen Bacchi 

Contribution to the Paper Developed concept for project, designed methodology, gained relevant ethics and 

institutional approvals, performed data collection, performed data analysis, wrote report, 

submitted article and responded to reviewer comments. 

Overall percentage (%) 80% 

Certification:  This paper reports on original research I conducted during the period of my Higher Degree 

by Research candidature and is not subject to any obligations or contractual agreements with 

a third party that would constrain its inclusion in this thesis. I am the primary author of this 

paper. 

Signature Date 8/1/2022 

 

Co-Author Contributions 

By signing the Statement of Authorship, each author certifies that:  

i. the candidate’s stated contribution to the publication is accurate (as detailed above);  

ii. permission is granted for the candidate in include the publication in the thesis; and  

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.  



 

 

101 

101 

Name of Co-Author Dr Sam Gluck 

Contribution to the Paper Critical appraisal of manuscript for important intellectual content. 

Signature Date 8/1/2022 

 

Name of Co-Author Prof Jim Jannes 

Contribution to the Paper Critical appraisal of manuscript for important intellectual content. 

Signature Date 31/1/2022 

 

Name of Co-Author Prof Timothy Kleinig 

Contribution to the Paper Critical appraisal of manuscript for important intellectual content. 

Signature Date 30/1/2022 

 

Name of Co-Author Prof Simon Koblar 

Contribution to the Paper Critical appraisal of manuscript for important intellectual content. 

Signature Date 9/3/2022 

 

  



 

 

102 

102 

Abstract 

Automated information extraction may be able to assist with the collection of stroke 

key performance indicators (KPIs). The feasibility of using natural language 

processing for classification-based KPI and datetime field extraction was assessed. 

Using free-text discharge summaries, random forest models achieved high levels of 

performance in classification tasks (AUC 0.95-1.00). The datetime field extraction 

method was successful in 29/43 (67.4%) cases. Further studies are indicated. 
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Manuscript  

Introduction 

In stroke, the adherence to selected key performance indicators (KPIs) is associated 

with lower risk of disability and death.[1] The “Acute Stroke Clinical Care Standard” 

produced by the Australian Commission on Safety and Quality in Health Care 

outlines seven quality statements with associated KPIs for Australian stroke 

centers.[2] The routine measurement and recording of these KPIs can be time 

consuming. Automated information extraction with natural language processing[3] 

may be able to assist with the recording of these KPIs. 

 

This pilot study aims to assess the feasibility of using natural language processing to 

automatically extract information regarding the Australian national KPIs from free-

text stroke discharge summaries. It included (1) classification tasks, with the primary 

outcome of the area under the receiver operator curve (AUC) for the identification of 

whether an individual had received thrombolysis on-site, and (2) the extraction of 

datetime information. 

 

Method 

Data collection 

Consecutive individuals admitted to the Royal Adelaide Hospital Stroke Unit in the 

eight months following 1/1/2020, with a discharge summary in the current electronic 

health record (integration in February-March 2020), were included in the study. The 

free-text synopses of these discharge summaries, which were written starting from 

standardised free-text templates, were collected for analysis. Data regarding KPIs was 

collected from existing departmental databases. This KPI data had been entered by 



 

 

104 

104 

medical and nursing staff and provided the gold-standard for comparison. Individuals 

with missing outcome data were excluded from analysis for that individual outcome. 

 

Selection of KPIs 

Five binary datapoints were selected that would be required to calculate KPIs from 

the “Acute Stroke Clinical Care Standard”. These datapoints included: the type of 

stroke (ischaemic vs intracerebral haemorrhage), whether an individual had atrial 

fibrillation/flutter, and whether they received thrombolysis on-site, endovascular 

thrombectomy, and/or an anticoagulant on discharge (irrespective of reason 

indication, or who had a documented contraindication). These datapoints were 

selected such that the datasets would not be so unbalanced as to prevent meaningful 

interpretation of the results.  

 

Classification tasks 

Initially, negation detection (see Supplementary Information 1 for Glossary) was 

applied to the free-text discharge summaries. Subsequently punctuation and 

stopwords were removed. Prior to use in classification experiments, count 

vectorisation was used to transform the text. This process included the conversion of 

text into unigrams, bigrams and trigrams.  

 

Prior to classification experiments the dataset was split into training and testing 

datasets (train/test split 80%/20%). Models were developed on the training dataset 

using 5-fold cross-validation. These models included logistic regression, decision 

tree, random forest algorithms and artificial neural networks.  
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The best performing model was applied to the unseen test data for all five selected 

datapoints, and area under the receiver operator curve (AUC) calculated. The cut-off 

scores in the analysis of the test dataset to generate binary classifications were derived 

using Youden’s index on the training dataset. To demonstrate the proportion of cases 

in which the algorithm had a high level of certainty, two additional cut-off scores 

were employed for the primary outcome (identification of on-site thrombolysis): 

>99% positive predictive value (PPV), and >99% negative predictive value (NPV).  

 

Datetime extraction 

Datetime extraction was conducted only for on-site thrombolysis. Prior to extraction 

with regular expression operations, text from the discharge summary synopsis was 

made lower case and split into separate sentences. These sentences were searched for 

a pre-defined set of keywords (“thrombolysis”, “thrombolysed”, “tenecteplase” and 

“alteplase”). The first sentence in which one of these key terms appeared was 

searched for words with formatting similar to a date or time with regular expression 

operations. The earliest datetime located in this sentence was then extracted and 

compared to that which was previously recorded in the departmental database. 

Instances in which the automatically extracted and previously recorded datetimes 

differed by more than 5 minutes, or where no datetime could be extracted, were 

manually inspected to determine the likely reason for the discrepancy.  

 

Statistical analysis 

Pre-processing, classification experiments and statistical analysis were performed 

with open-source Python libraries including NLTK (including negation detection), 

SciKit Learn and Tensorflow.  
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Statement of ethics  

The Central Adelaide Local Health Network Research Ethics Committee granted 

approval for this project. 

 

Results 

Patient characteristics 

438 individuals were included in the study. This cohort included 375 (85.6%) 

individuals with ischaemic strokes and 63 (14.4%) with intracerebral haemorrhage. 

Atrial fibrillation or flutter was recorded in 130 (29.7%) individuals. 43 patients 

received thrombolysis on-site (9.8% of total stroke, 11.5% of ischaemic stroke), and 

103 (23.5% of total stroke, 27.5% of ischaemic stroke) received endovascular 

thrombectomy. The only outcome for which individuals were excluded due to missing 

outcome data was anticoagulation on discharge. The number of patients discharged 

with an anticoagulant or who had a documented contraindication was 169, with 176 

discharged without an anticoagulant, and 93 without specification with respect to 

anticoagulants (and were therefore not included in the analysis of this outcome). 

 

Classification tasks 

The best performing model on the training dataset was the random forest model with 

1,000 decision trees and employing the entropy criterion. When random forest models 

were applied to the test dataset, high levels of performance were achieved for 

identifying the type of stroke (AUC 1.00, accuracy 1.00), whether an individual 

received thrombolysis on-site (AUC 0.97, accuracy 0.93), whether an individual 

received endovascular thrombectomy (AUC 1.00, accuracy 1.00), and whether an 
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individual had atrial fibrillation/flutter (AUC 0.97, accuracy 0.91) (see Table 1). 

Slightly lower performance was returned for the identification of those on 

anticoagulation on discharge (AUC 0.95, accuracy 0.91). 

 

Examples in which the algorithm made a misclassification error regarding whether 

thrombolysis had been administered on-site included cases in which 3/6 underwent 

endovascular thrombectomy but did not receive thrombolysis, and 1/6 had a 

haemorrhagic stroke. 2/6 received thrombolysis, but at a different centre prior to 

transfer. In each of these cases the misclassification was a false positive with respect 

to whether thrombolysis had been administered on-site.  

 

When the two additional high-certainty cut-off scores were applied to the test dataset 

(n=88) for the primary outcome (the identification of on-site thrombolysis), 6/88 

(6.8%) individuals were above the high-PPV cut-off score (high-certainty positives). 

69/88 (78.4%) individuals were below the high-NPV cut-off score (high-certainty 

negatives). The number of individuals between the two cut-off scores was 13/88 

(14.8%). 

 

Datetime extraction 

Of the 43 cases that received thrombolysis on-site, the automated extraction method 

successfully retrieved the date and time in 23/43 (53.4%) cases. Of the remaining 

cases in which the automatically and human extracted date and time did not match, in 

10/43 (23.3%) cases the time was able to be successfully extracted, but not the date. 

In 6/43 (14.0%) instances the automated method provided a datetime that was closer 

to that reported in the discharge summary than that which had been recorded in the 
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database. Other cases, 4/43 (9.3%), included instances of thrombolysis with dates and 

times recorded in non-standard formats. 

 

Discussion  

This pilot study has provided evidence to support that accurate automated information 

extraction for stroke KPIs may be feasible from free-text discharge summaries. The 

performance seen in this study had some variability between data points. The use of 

high-certainty cut-off scores may facilitate automated information extraction, 

although human data extraction would still be required for indeterminant cases.  

 

The high levels of classification performance achieved for most data points in this 

study are perhaps not surprising given the information should be explicitly contained 

within the document being analysed. The lower performance in the identification of 

those with anticoagulation on discharge is likely due to this information not 

necessarily being explicitly included in the free-text portion of the discharge 

summary. This performance could be improved by using additional fields from the 

discharge summary (such as the discharge medication list, which is separate to the 

free-text synopsis used in this study) or additional document types (such as the 

discharge note written by the ward pharmacist). Ultimately, even if accuracy were 

persistently unacceptable in some tasks despite use of additional fields and note-types, 

automating some, but not all, data fields could still provide a degree of gain in 

efficiency. 

 

The methods investigated in this study may be useful for other tasks, beyond the 

recording of KPIs. For example, automated information extraction may be able to 
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help collect data for research registries, as registries collect data in addition to 

standard KPIs based on local priorities.[4] Automated information extraction may 

also be able to assist with the implementation of machine learning models. 

 

The usefulness and performance of natural language processing based upon medical 

free-text is inherently dependent on the comprehensiveness of that medical 

documentation. Performance may also be higher if there is more standardised means 

of recording data such as datetimes. Accordingly, performance may differ at different 

institutions. The unbalanced nature of the training and test datasets is a relevant 

consideration (for example 85.6% ischaemic stroke as compared to 14.4% with 

intracerebral haemorrhage), particularly when collecting information for KPIs. Where 

KPIs are met at a rate nearing 100% of individuals, it becomes difficult to assess the 

performance of machine learning algorithms, and may artificially make the 

performance appear higher than it would have been if the most prevalent category 

comprised a smaller proportion of the dataset. It is also possible that unrecognised 

errors may occur in the original manual recording of information in training and 

testing datasets, and that such errors may influence model development and 

performance evaluation. 

 

Future research in this area could aim to derive models from larger datasets and to 

validate these models on prospective and external datasets. Similar models could also 

be investigated in the automated information extraction of other stroke registry or 

research data (such as for use in other machine learning algorithms). The methods 

investigated in this study may also be applied to the automated information extraction 

of KPI and research data in other medical specialties. 



 

 

110 

110 

 

Conflicts of Interest: The authors declare they have no conflict of interest. 

 

Funding: No funds, grants, or other support was received. 

 

  



 

 

111 

111 

References 

1 Urimubenshi G, Langhorne P, Cadilhac DA, Kagwiza JN, Wu O. Association 

between patient outcomes and key performance indicators of stroke care quality: A 

systematic review and meta-analysis. Eur Stroke J. 2017; 2: 287-307. 

2 Australian Commission on Safety and Quality in Health Care. Acute Stroke 

Clinical Care Standard 2019. 

3 Locke S, Bashall A, Al-Adely S, Moore J, Wilson A, Kitchen GB. Natural 

language processing in medicine: A review. Trends in Anaesthesia and Critical Care. 

2021; 38: 4-9. 

4 Cadilhac DA, Kim J, Lannin NA, Kapral MK, Schwamm LH, Dennis MS, et 

al. National stroke registries for monitoring and improving the quality of hospital 

care: A systematic review. Int J Stroke. 2016; 11: 28-40. 

 

 

 

 



 

 

112 

112 

Table 1: Results of binary classification tasks in automated information extraction from free-text discharge summaries 

 

Content AUC PR score TP FN TN FP Sensitivity Specificity PPV NPV F1 Score Accuracy 

What type of stroke? 1.00 1.00 74 0 14 0 1.00 1.00 1.00 1.00 1.00 1.00 

Was endovascular 

therapy given? 1.00 1.00 21 0 67 0 1.00 1.00 1.00 1.00 1.00 1.00 

Was thrombolysis given 

on-site? 0.97 0.85 13 0 69 6 1.00 0.92 0.68 1.00 0.81 0.93 

Was atrial fibrillation or 

flutter present? 0.97 0.94 26 1 54 7 0.96 0.89 0.79 0.98 0.87 0.91 

Discharged on 

anticoagulant? 0.95 0.92 28 2 35 4 0.93 0.90 0.88 0.95 0.90 0.91 
 

 

AUC = area under the receiver operator curve, PR score = Precision-Recall score (See Supplementary Information 1 for definition), TP = True 

positives, FN = false negatives, TN = true negatives, FP = false positives, PPV = positive predictive value, NPV = negative predictive value. 

Please see Supplementary Information 1 for definition of F1 score. Values of TP, FN, TN and FP are provided as raw numbers. 
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Supplementary Information 1 – Glossary 

 

In the following definitions TP = true positive, FP = false positive, TN = true negative and 

FN = false negative. 

 

Artificial neural network – A type of machine learning algorithm based upon the structure of 

neurons. These structures are composed of nodes (each with multiple inputs, a bias and 

activation function) that are connected by weights. These networks are classically trained 

through back-propagation, whereby a cost function is calculated after a prediction is made 

and then that cost function is used to update the weights connecting the nodes, prior to the 

generation of another prediction (with the aim of minimising that cost function).   

 

Count vectorisation – A process through which a type of input is converted into a table of 

token (often word) frequency counts. For example, a passage of text may be converted into a 

table of counts of each of the individual words that appeared in that passage.  

 

Decision tree – A type of machine learning algorithm that involves the development of 

multiple rules to divide data into segments of increasingly smaller size. This process results 

in a series of rules, which when applied sequentially can be represented as a tree of sequential 

decision points. 

 

Entropy criterion – Entropy is a measure of the level of information impurity. The entropy 

criterion is a rule that can be applied when developing a decision tree algorithm, which means 

that splits in the decision tree will be selected so as to minimise information impurity and 

thereby optimise information gain. 
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F1 Score – An outcome metric, otherwise known as the F-score or F-measure, that is 

calculated as follows: F1-score = TP/(TP + 0.5(FP+FN)).  

 

Logistic regression – A logistic regression model is one that applies a logistic function so that 

inputs (often numerical) can be used to predict a categorical (often binary) outcome. This task 

is achieved by predicting the probability of an individual class. Examples of logistic 

regression may include binomial, multinomial and ordinal models. 

 

Negation detection – A process through which words following a negative term (such as “no” 

or “not”) are flagged as being distinct from the term should it not have followed such a 

negative term. For example, in the sentence “Since the patient had recently taken apixaban, 

they received endovascular thrombectomy, but not thrombolysis”, the word “thrombolysis” 

would be negated. One way in which a word may be flagged as negated is by adding a certain 

suffix so that it reads “thrombolysis_neg”. 

 

Precision-Recall score – Precision is calculated as: Precision = TP/(TP+FP). Recall is 

calculated as: Recall = TP/(TP+FN). In a binary test, as the cut-off score is varied, precision 

and recall will also change. By varying a cut-off score through a range of thresholds, a 

precision-recall curve can be created. A precision-recall score, or average precision score, 

summarises a precision-recall curve by calculating the weighted mean of the precisions at 

each of a range of cut-off scores. 

 

Python – A type of programming language, which can be used to write computer programs. 
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Random forest – A type of machine learning algorithm which utilises multiple decision trees.   

 

Regular expression – A regular expression is a sequence of code that describes a particular 

search pattern. Regular expressions are present in many programming languages. 

 

Stopwords – A collection of words which typically have grammatical purposes but add little 

in the way of substantive meaning to a sentence (such as “to”, “a”, and “the”). 

 

Unigrams – A sequence of one item. By extension, bigrams are sequences of two contiguous 

items and trigrams are sequences of three contiguous items. In the context of natural language 

processing examples of a unigram, bigram and trigram respectively may include “cerebral”, 

“cerebral artery” and “middle cerebral artery”. 

 

Youden's index – Otherwise known as Youden’s J statistic, Youden’s index is a statistic for a 

binary test that can be calculated as follows: Youden’s index = sensitivity + specificity – 1. 

By calculating this index for multiple possible cut-off scores, the cut-off score with the 

highest Youden’s index can be determined. 
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Abstract 

Clinical coding is an important task, which is required for accurate activity-based funding. 

Natural language processing may be able to assist with improving the efficiency and accuracy 

of clinical coding. The aims of this study were to explore the feasibility of using natural 

language processing for stroke hospital admissions, employed with open-source software 

libraries, to aid in the identification of potentially misclassified (1) category of Adjacent 

Diagnosis Related Groups (ADRG), (2) the International Statistical Classification of Diseases 

and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) 

diagnoses, and (3) Diagnosis Related Groups (DRG). Data was collected for consecutive 

individuals admitted to the Royal Adelaide Hospital Stroke Unit over a five-month period for 

misclassification identification analysis. 152 admissions were included in the study. Using 

free-text discharge summaries, a random forest classifier correctly identified two cases 

classified as B70 (“Stroke and Other Cerebrovascular Disorders”) that should be classified as 

B02 (having received endovascular thrombectomy). A regular expression-based analysis 

correctly identified 33 cases in which ataxia was present but was not coded. Two cases were 

identified that should have been classified as B70D, rather than B70A/B/C, based on transfer 

to another centre within five days of admission. A variety of techniques may be useful to help 

identify misclassifications in ADRG, ICD-10-AM and DRG codes. Such techniques can be 

implemented with open-source software libraries, and may have significant financial 

implications. Future studies may seek to apply open-source software libraries to the 

identification of misclassifications of all ICD-10-AM diagnoses in stroke patients. 
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Manuscript 

Introduction 

Accurate clinical coding is integral to the activity-based funding of hospitals in Australia and 

overseas. Factors that make this process challenging include high patient numbers, resource 

limitations and medical documentation that can, at times, lack in the specific details required 

for this clinical coding task [1, 2]. The application of natural language processing to this task 

in stroke may be beneficial. 

 

In acute public hospital admissions, activity-based funding allocation is functionally 

completed through a series of tiers of classification, which come under the heading of 

Australian Refined Diagnosis Related Groups (AR-DRG, version 10). Initially, a primary 

diagnosis/procedure determines the category of the Adjacent Diagnosis Related Groups 

(ADRG) that will be applied. For example, an ischaemic stroke which undergoes 

endovascular thrombectomy would be categorised as B02, whereas an ischaemic stroke that 

does not have this procedure would usually be categorised as a B70. Subsequently, additional 

diagnoses that were encountered during the admission (as outlined in the International 

Statistical Classification of Diseases and Related Health Problems, Tenth Revision, 

Australian Modification - ICD-10-AM) are attributed to a given admission. Examples of such 

ICD-10-AM diagnoses include “hemiplegia unspecified” and “dysarthria and anarthria”. 

Depending on the primary diagnosis/procedure, these ICD-10-AM diagnoses add variable 

levels of complexity (as quantified by the diagnosis complexity level - DCL) to ultimately 

provide an episode clinical complexity score (ECCS). The number of possible ECCS levels 

varies by ADRG, but typically involves up to three categories. It is this ECCS, in conjunction 

with the ADRG, that provides the ultimate Diagnosis Related Groups (DRG) 

subclassification. For example, within the B70 ADRG (“Stroke and Other Cerebrovascular 
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Disorders”), different ECCS distinguish the B70A DRG (“Stroke and Other Cerebrovascular 

Disorders, Major Complexity”) from B70B DRG (“Stroke and Other Cerebrovascular 

Disorders, Intermediate Complexity”) subclassification. This final DRG, in conjunction with 

factors such as length of stay, hospital acquired complications, avoidable hospital 

readmissions, in conjunction with the national efficient price, influence hospital activity-

based funding [3]. 

 

The level of interpretation that can be exercised by a clinical coder is limited. Accordingly, 

specific phrasing in medical documentation is important to aid with accurate clinical coding  

[1]. Demands on medical staff may, at times, limit the ability to include such specificity in 

documentation. Therefore, additional means by which to assist doctors and clinical coders to 

facilitate this process efficiently and accurately is an ongoing need. 

 

Natural language processing involves the application of computers to human text, and has 

previously been demonstrated to be successful in providing meaningful classifications of 

medical text [4]. Therefore, it seems feasible that natural language processing may assist with 

the classifications involved in clinical coding. Such methods have been investigated and 

shown promise in multiple areas [5], although such research specifically in stroke has been 

limited. Additionally, with the increasing availability of open-source software libraries, if 

such libraries prove useful in this task, it may increase the accessibility of these techniques to 

a broader group of healthcare institutions. 

 

The aims of this study were to explore the feasibility of using natural language processing, 

employed with open-source software libraries, to aid in the identification of potentially 

misclassified: (1) category of ADRG (primary diagnosis/procedure, namely B02 vs B70), (2) 
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ICD-10-AM diagnoses (the presence or absence of ataxia), and (3) DRG (that is not solely 

based upon ICD-10-AM diagnoses, namely B70D vs B70A/B/C), for a given stroke hospital 

admission. These aims were selected to encompass several different methods of analysis that 

could be employed. 

 

Materials and methods 

Data collection 

For misclassification identification analysis, data was collected on consecutive individuals 

admitted to the Royal Adelaide Hospital Stroke Unit between 1/9/2020 to 1/2/2021. Data was 

collected including ADRG classification, DRG classification, ICD-10-AM diagnoses, length 

of stay, discharge destination and free-text medical discharge summaries. This data was 

collected from existing institutional and departmental databases that are maintained by 

administrative and neurology staff. The clinical coding that had been applied to this dataset 

was manually reviewed by the investigators with individual case note reviews.  

 

Previously collected data from a non-overlapping period (1/1/2020 to 31/8/2020) were used 

in the development of classification strategies and models. It should be noted that version 10 

of the AR-DRG was implemented on 1/7/2020.  

 

Data pre-processing 

Free-text medical discharge summaries underwent several pre-processing steps prior to 

analysis. This included the application of negation detection, removal of capitalisation, and 

stopword removal. Stemming and lemmetization were not performed. Prior to use in random 

forest classifiers, text underwent count vectorization. All pre-processing and analyses were 

conducted with open-source Python libraries (namely NLTK and SciKit Learn) [6, 7]. 
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ADRG classification (B02 vs B70) – Random forest classifier 

The identification of potentially misclassified ADRGs was performed using a previously 

derived random forest classifier for the identification of whether endovascular thrombectomy 

had occurred [8]. This model was derived using the non-overlapping dataset from the stroke 

unit (individuals admitted in the first eight months of 2020). The classifier included 1,000 

decision trees and used the entropy criterion. This random forest classifier was applied to 

determine its classification accuracy. As an alternative approach, rather than employing an 

individual cut-off score, probabilities were generated that each given case should have been 

classified as B02. After the generation of these probabilities, cases previously classified as 

B70 that had been allocated the highest probability of truly having an ADRG of B02 

underwent a case-note review to determine their true ADRG. This process was repeated until 

the first previously-classified B70 case was confirmed to have an ADRG of B70 accurately 

allocated. 

 

ICD-10-AM classification (ataxia present or absent) – Regular expression-based analysis 

The ICD-10-AM diagnosis of “ataxia unclassified” (R270) was randomly selected using a 

random number generator as the ICD-10-AM diagnosis for analysis. Logistic regression was 

employed on cases from the non-overlapping dataset to identify terms with the most strongly 

associated coefficients associated with the R270 (and “ataxic gait” - R260) label. 

Subsequently, two partial terms “ataxi” and “coord” were employed in a regular expression-

based analysis whereby the presence of these terms (in a non-negated fashion) was 

considered to represent likely presence of ataxia.  
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DRG classification (B70D vs B70A/B/C) – Datetime and other existing fields 

Given that DRG B70A/B/C distinctions are based upon the allocation of ICD-10-AM 

diagnoses, the distinction between these categories was not further interrogated (see above 

regarding ICD-10-AM diagnosis analysis). The distinction between B70D and B70A/B/C is 

based upon a non-endovascular thrombectomy stroke being transferred to another centre and 

having a length of stay of less than five days [9]. Existing admission and discharge datetime 

fields were parsed and used to calculate length of stay. Discharge destination, as collected 

from existing departmental databases, was dichotomised to transfer vs non-transfer.  

 

Outcome analysis 

The primary outcome was number of misclassified B02 ADRG cases identified using natural 

language processing techniques. Performance metrics including accuracy, F1 score, 

sensitivity, specificity, positive predictive value and negative predictive value were calculated 

for the machine learning models for each of the aims. In aims (1) and (3) where ARDG or 

DRG classifications were found to be misclassified, the current national weighted activity 

unit (NWAU) calculator was used to produce an estimate of the potential financial difference 

such a misclassification may have for the health-system [10].  

 

Ethical approval 

This study received ethical approval from the Central Adelaide Local Health Network 

Research Ethics Committee. 
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Results 

Patient characteristics 

The total number of patients included in the misclassification analysis dataset, admitted 

between 1/9/2020 to 1/2/2021, was 152. In this group, the mean age of the patients was 74.6 

years-old (standard deviation 13.2 years, median 76.6 years-old, IQR 67.2 years – 84.2 

years). 74 patients were female (48.7 %). Regarding the original coding of the DRGs, B70C 

was the most common classification (46 cases), followed by B70B (44 cases), B70A (25 

cases), B70D (16 cases), B02B (10 cases), B02A (6 cases) and B02C (5 cases). The most 

frequently coded ICD-10-AM diagnoses were G819 hemiplegia unspecified (67), and R471 

dysarthria and anarthria (63). R270 ataxia unspecified was present in 19 cases and R260 

ataxic gait in 5 individuals. Following case note review: two B70 cases were reclassified as 

B02; there were 33 additional cases in which ataxia was identified and one in which ataxia 

had been labelled as present that was absent; and two cases (one B70B and one B70C) that 

were reclassified as B70D. 

 

ADRG classification (B02 vs B70) – Random forest classifier 

When the random forest classifier was applied, it was found to have an accuracy of 0.974 and 

F1 score of 0.905 (see Table 1). The two previously classified B70 cases allocated the highest 

probability of being B02 by the random forest classifier had both in fact undergone 

endovascular thrombectomy. The third highest probability previously classified B70 was 

correctly classified. Using the current NWAU calculator the estimated difference in price for 

the two identified cases was positive $18,369 and $15,668 respectively. 
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ICD-10-AM classification (ataxia present or absent) – Regular expression-based analysis 

The application of the regular expression-based analysis had an accuracy of 0.967 and F1 

score of 0.955 (see Table 1). 35 cases were identified by the regular expression analysis as 

likely having ataxia, but not having been coded as R270 or R260. On case note review, of 

these identified cases, 33 cases did in fact have ataxia (94.3%). The two cases in which the 

analysis incorrectly attributed ataxia included a case where ataxia appeared as a possible 

feature of the past medical history and a case in which the phrase “normal coordination” was 

used (that was not tagged by the negation detection methods employed). 

 

DRG classification (B70D vs B70A/B/C) – Datetime and other fields 

When this datetime and other field analysis was applied there was an accuracy of 1.0 and F1 

score of 1.0. Two cases were highlighted by the analysis as having been misclassified. These 

cases included one B70B and one B70C that were transferred to other centres in fewer than 

five days and accordingly would be classified as B70D. The estimated price difference for the 

two identified cases was negative $7,474 and $2,589. 

 

Discussion 

This study has demonstrated that a variety of techniques may be useful to help identify 

misclassifications in ADRG, ICD-10-AM and DRG codes. These techniques include machine 

learning classifiers, regular expression-based analyses and the use of existing data fields. 

Such techniques can be implemented with open-source software libraries in the stroke 

inpatient setting, and have significant financial implications. 

 

In this study, an estimate of probability from a random forest classifier was used to stratify 

B70 cases by likelihood of misclassification. An alternative approach would be to set a cut-



 

 

127 

127 

off score for a machine learning classifier such that it makes estimates of most likely 

category. In that case, instances in which the expected category and actual category do not 

align could then be examined.  

 

It should be noted that all medical-text analyses performed in this study were conducted using 

only the free-text medical discharge summary. The performance of such methods is 

inherently dependent on the quality and thoroughness of the documentation being analysed 

and accordingly may differ between sites. It is likely that the use of additional forms of 

documentation (such as ward round notes and prescribing records), may improve the 

performance of some misclassification analyses. 

 

The quality of the data entered in electronic health records may be a challenge for such 

computer-assisted strategies. Potential areas in which quality of data entry could be improved 

have previously been identified to include variability in diagnosis description, high quota 

expectations, staffing and budget restraints, and a lack of clear chart documentation [11-13]. 

Previous computer-assisted clinical coding studies have examined strategies including 

providing contextual information, negation detection and collaboration between coding 

supervisors, information technology coordinators and physicians to help improve the 

performance of computer-assisted clinical coding despite these limitations [5, 14-16]. 

 

As a pilot study this project has several limitations. This study was performed at a single 

centre. Additionally, English-language only medical text was analysed. It is possible that not 

all ADRG, ICD-10-AM, and DRG classifications will demonstrate the performance 

demonstrated for those selected in this study. Additionally, as new versions of the ADRG are 

produced, this may affect future performance. It is also worth noting the limitations of the 
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algorithms employed in this study given that random forest algorithms are relatively 

computationally taxing and have more limited interpretability than other algorithms (such as 

individual decision trees). 

 

Future research in this area may seek to employ similar techniques in other aspects of clinical 

coding in stroke. For example, such studies may seek to apply open-source software libraries 

to the identification of misclassifications of all ICD-10-AM diagnoses in stroke patients. If 

such models were successfully derived and validated, implementation studies would be 

warranted, examining whether their use could help improve clinical coding efficiency and 

accuracy.  
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Table 1: Results of the application of open-source software to stroke clinical coding 

Method of 

identification 

Clinical 

coding 

task 

True 

positive 

False 

negative 

True 

negative 

False 

positive 

Sensitivity 

(%) 

Specificity 

(%) 

Positive 

predictive 

value (%) 

Negative 

predictive 

value (%) 

F1 

Score 
Accuracy 

Random forest 

classifier 

ADRG: 

B02 vs 

B70 

19 4 129 0 82.6 100 100 97 0.905 0.974 

Regular 

expression-

based analysis 

ICD-10-

AM: 

Ataxia 

present or 

not 

53 3 94 2 94.6 97.9 96.4 96.9 0.955 0.967 

Datetime and 

other field 

analysis 

DRG: 

B70D vs 

B70A/B/C  

18 0 134 0 100 100 100 100 1 1 

 

 

ADRG = Adjacent Diagnosis Related Groups, IDC-10-AM = International Statistical Classification of Diseases and Related Health Problems, 

Tenth Revision, Australian Modification, DRG = Diagnosis Related Groups. 
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Abstract 

Length of stay (LOS) and discharge destination predictions are key parts of the discharge 

planning process for General Medical hospital inpatients. It is possible that machine learning, 

using natural language processing, may be able to assist with accurate LOS and discharge 

destination prediction for this patient group. Emergency Department triage and doctor notes 

were retrospectively collected on consecutive General Medical and Acute Medical Unit 

admissions to a single tertiary hospital from a two-month period in 2019. This data was used 

to assess the feasibility of predicting LOS and discharge destination using natural language 

processing and a variety of machine learning models. 313 patients were included in the study. 

The artificial neural network achieved the highest accuracy on the primary outcome of 

predicting whether a patient would remain in hospital for >2 days (accuracy 0.82, area under 

the received operator curve 0.75, sensitivity 0.47, specificity 0.97). When predicting LOS as 

an exact number of days, the artificial neural network achieved a mean absolute error of 2.9 

and a mean squared error of 16.8 on the test set. For the prediction of home as a discharge 

destination (vs any non-home alternative), all models performed similarly with an accuracy 

of approximately 0.74. This study supports the feasibility of using natural language 

processing to predict General Medical inpatient LOS and discharge destination. Further 

research is indicated with larger, more detailed, datasets from multiple centres to optimise 

and examine the accuracy that may be achieved with such predictions. 
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Manuscript 

Introduction 

Discharge planning is the process by which an individualized plan is made for a 

patient to leave hospital and receive ongoing support in the community, preventing 

readmission [1]. Effective discharge planning can reduce risk of readmission, improve patient 

satisfaction and reduce length of stay (LOS) [2]. Discharge planning may involve multiple 

components including input from allied health staff, discussions with community healthcare 

providers, estimating and communicating an estimated discharge date (EDD) and discharge 

destination. Accurate prediction of EDD, based on predicted LOS, contributes to better 

preparation and allocation of resources, improved patient safety and satisfaction, and reduced 

healthcare costs [3, 4].  

The generation of an EDD, based upon the predicted LOS, and nominating 

appropriate discharge destinations are important parts of the discharge planning process [5]. 

However, predicting EDD and discharge destination at the time of admission can be 

challenging, particularly when fewer senior medical staff are performing admitting roles. 

Numerous patient and hospital variables may influence LOS. Patient variables that have 

previously been found to influence LOS include age, ethnic group, marital status and source 

of referral [6, 7].  

It is possible that machine learning (ML), in particular deep learning (DL), may be 

able to enhance LOS prediction accuracy. ML encompasses a wide variety of algorithms, 

including logistic regression, random forest models, support vector machines and DL [8]. DL 

may be considered as a type of ML, which is characterized by the use of artificial neural 

networks. Such methods have previously been applied to general medicine patients in the 

prediction of outcomes such as in-hospital mortality [9]. ML has also previously been applied 

to LOS prediction in a surgical setting, particularly with regards to neurosurgical patients [10, 
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11]. When ML is applied to human language (either in a written or spoken format) this is 

referred to as natural language processing (NLP) [12]. Since some variables influencing LOS 

are likely described in free-text medical notes and would not be routinely entered in a discrete 

data field (e.g. administrative data fields) in an electronic health record [13], such as 

descriptive aspects of a patient’s clinical presentation, natural language processing may 

improve the accuracy of LOS estimates. The application of natural language processing, in 

conjunction with DL, to free-text data specifically in the General (Internal) Medicine patient 

population has not been examined previously.  

We therefore assessed the feasibility and initial accuracy of predicting the LOS (and 

thereby EDD) and discharge destination for a diverse array of General Medical patients using 

natural language processing.  

 

Materials and Methods 

Data collection and pre-processing 

Data was retrospectively collected on consecutive patients admitted to the Acute Medical 

Unit (AMU), or General Medical Unit of a tertiary hospital (The Royal Adelaide Hospital) 

over the course of a two-month period in 2019. Data in the form of free-text that would have 

been available at the time of admission to hospital were collected. This data included 

demographic details, the Emergency Department (ED) triage note, the note by the ED doctor, 

and initial investigation results, if recorded in the ED doctor note. Each patient’s record was 

reviewed to determine the LOS and discharge destination on separation. It should be noted 

that some patients would have come into hospital who were already from non-home 

destinations, such as residential care facilities. When discharged to a residential care facility, 

regardless of the patients’ pre-hospital living circumstances, this was considered a “non-

home” destination. All of the data collected that was used in the predictive models would 
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have been available within approximately 4 hours of the patient’s arrival to hospital, prior to 

transfer from the ED to an inpatient ward. 

 At the tertiary hospital at which the study was conducted the Acute Medical 

Unit (AMU) and General Medical Unit admit a wide variety of patients with pathological 

processes involving multiple organ systems. Patients who are expected to have a LOS that is 

less than or equal to two days are admitted to the AMU, with patients expected to have a 

longer LOS admitted to General Medical teams. The decision to admit to AMU lies with the 

on-call medical registrar. Similar short-stay medical units have been employed in other 

centres with a focus on managing patients with a brief predicted LOS [14]. 

Admission allocation to AMU or General Medicine provided a comparative human-

estimated LOS (≤2 days or >2 days). Allocation was a dichotomous decision made by the 

doctor at the time of admission. Human estimates for discharge destination or LOS as a 

continuous outcome were unavailable, as these are not currently routinely estimated or 

recorded on admission. 

Following collection, data were pre-processed prior to use in ML models. The type of 

pre-processing required differed according to the ML model that was to be applied. Initially, 

words were converted to word stems. For example, words including “improve”, “improves”, 

“improvement”, “improving” and “improved” would all have been shortened to the word 

stem “improv”. Prior to use with convolutional neural networks, free-text data were 

converted into arrays of sequences of numbers (tokenisation). In these arrays each number 

represented a unique word stem and the position of the word within the original free-text. All 

arrays were made an equal length through the addition of blank tokens to the end of shorter 

arrays (padding). Prior to use in other models (logistic regression and random forest) negation 

detection was applied. Negation detection involves the flagging of words following negating 

terms (for example in the phrase “not painful”, “painful” would be flagged as negated). Stop 



 

 

140 

140 

words (e.g. “the” and “is”) and non-letter characters (e.g. punctuation) were removed. 

Following this process free-text data were converted into arrays with frequency counts of 

each unique word stem.  

Data were then randomly split into a training dataset, and a hold-out test dataset. This 

split was performed once. The data were split 85%/15% between the training and testing 

datasets respectively. This proportion of train/test split was selected to maximise training data 

in the context of the relatively small sample size of a pilot study. 

 

Classification experiments 

The assessment of LOS using a dichotomous outcome (≤2 days or >2 days) and 

discharge destination by dichotomous outcome of home or non-home was examined using 

classification experiments. All ML models were developed using the training dataset. This 

development was conducted using 5-fold cross-validation. This model development process 

was conducted by starting with a simple model, with few layers and few nodes per layer. 

Sequential analyses were conducted, on each occasion adding further complexity, in the form 

of further layers and nodes per layer, until accuracy no longer improved, and the final model 

architecture was decided. Grid-search functions were also used to optimise ML model 

structures and hyperparameters. Once models were considered optimised on the training set 

(optimisation for accuracy), they were then tested on the hold-out test dataset. These methods 

are similar to those used in other medical ML studies, and have been described previously 

[15]. Youden’s index was used to calculate cut-off scores [16]. The predicted classifications 

based upon these cut-off scores were used to calculate classification metrics including 

sensitivity, specificity and accuracy. This process was conducted individually for four types 

of ML model: convolutional neural network, artificial neural network, logistic regression and 

random forest models. The primary outcome of the study is the accuracy of prediction for 
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LOS as a dichotomous outcome (less than or equal to two days, or greater than two days – as 

defined by the number of midnights spent in hospital, rather than a 48-hour cut-off). The 

accuracy of predictions for discharge destination as a dichotomous outcome (home vs non-

home) was a secondary outcome. 

Following the development and testing of the logistic regression model for assessing 

the dichotomous LOS outcome, word stems with the most strongly predictive coefficients 

were identified. 

 

Regression experiments 

The mean absolute error for predictions of LOS as a continuous outcome was 

assessed using regression experiments. For each of the DL models assessed (convolutional 

neural network and artificial neural network), development again occurred on the training set 

using 5-fold cross-validation and grid-search functions. Once models were considered 

optimised (for mean absolute error), they were then assessed on the hold-out test set. The 

mean absolute error (MAE) for predictions of LOS as a continuous outcome (number of 

days) was a secondary outcome of the study.  

 

DL model structures 

The optimised artificial neural network model structure that was applied in the regression and 

classification experiments was comprised of six fully-connected layers (see Figure 1). The 

number of nodes per layer were 512, 512, 256, 256, 256 and 32 respectively. The 

convolutional neural network model structure involved an embedding layer, a convolutional 

layer, a maximum pooling layer, and then five fully-connected layers (number of nodes 512, 

256, 128, 64, 32), interspersed by dropout layers (with a dropout rate of 0.1). 
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Statistical analysis 

Outcome metrics including accuracy, area under the receiver-operator curve (AUC) and mean 

absolute error were calculated using open source Python libraries (SciKit Learn). 

 

Statement of ethics  

Ethics approval was granted for this project by the Central Adelaide Local Health Network 

Research Ethics Committee (HREC/19/CALHN/209). A waiver of consent was acquired 

from the Ethics Committee. 

 

Results 

Patient characteristics 

All 313 patients who were screened for the study were included (i.e. none were excluded). 

The mean age was 70.4 (SD 19.2) years-of-age, and 54.8% were female. The average LOS 

was 6.8 [IQR 2-9] days. The number of patients who stayed for two days or fewer was 94 

(30.0%). The number of patients who were discharged home was 186 (59.4%).  

 

Primary Outcome 

Prediction of LOS - dichotomous outcome 

When predicting whether a patient would remain in hospital for >2 days, the artificial neural 

network achieved the highest accuracy and the highest AUC (accuracy 0.82, AUC 0.75, 

sensitivity 0.47, specificity 0.97, PPV 0.88, NPV 0.81, F1 score 0.61) (see Table 1). Logistic 

regression and the convolutional neural network achieved similar accuracies (0.8 and 0.78 

respectively) and AUC (0.68 and 0.66 respectively) (see Table 1). The random forest model 

achieved an accuracy of 0.72 and AUC 0.62. The accuracy achieved by the initial 

classification by the human medical registrar was 0.92 (see Table 1). 
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In the logistic regression model, the word stems that were found to be most predictive of 

staying in hospital >2 days included “last”, “per”, “fall”, “febril”, “home” and “ICU”. Word 

stems that were found to be most predictive of LOS ≤2 days included “state”, “15”, 

“improv”, “arriv”, “AMU” and “pain”.  

 

Secondary outcomes 

Prediction of LOS – continuous outcome 

The artificial neural network achieved a mean absolute error of 2.9 and a mean squared error 

of 16.8 on the test set. The convolutional neural network model had similar scores with a 

mean absolute error of 3.1 and mean squared error 18.8.  

 

Prediction of discharge destination 

For the prediction of home as a discharge destination (vs any non-home alternative), all 

models performed similarly. Logistic regression, artificial neural network, convolutional 

neural network and random forest models achieved accuracies of 0.76, 0.74, 0.72 and 0.72 

respectively (see Table 1). No medical registrar comparison was available for the prediction 

of discharge destination. 

 

Discussion  

The results of this study support the feasibility of using natural language processing DL to 

predict General Medical inpatient LOS and discharge destination, and indicate that further 

investigation is required. 

 These results support those of other studies that have shown that DL may have utility 

in predicting LOS and discharge destination. Surgical fields in which the method has been 
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trialled include neurosurgery [11, 17-19], orthopaedics [10, 20, 21] and general surgery [22]. 

There have been fewer studies predicting LOS or discharge destination in medical specialties, 

namely in the fields of cardiology [23, 24] and thoracic medicine [25]. The accuracies of 

these previous studies have varied based upon the selection of outcome metric, sample size 

and model complexity. Models with AUC as high as 0.94 have been reported for selected 

patient populations [23]. The majority of such studies employ structured data fields for input 

data, as has been performed in the prediction of LOS of patients with heart failure or diabetes 

[26, 27]. For example, a field may be present for each of age, gender, smoking status (Y/N) 

and the presence of type 2 diabetes (Y/N). The findings of the presented study are significant 

in that natural language processing was applied to non-structured free-text input data (rather 

than structured/discrete data fields), and encompassed patients with a wide variety of 

illnesses and presenting issues.  

 It is reasonable to hypothesise that the combination of discrete/structured data and 

free-text data may result in better performance than either input-type alone (given that the 

free-text data may include more information than that available in the routinely collected 

structured data). In future studies, incorporation of both types of data into an individual 

model could be investigated to see whether this approach may improve performance. An 

alternative or complementary strategy may be to employ natural language processing to 

automatically populate structured/discrete data fields, from free-text data. Further research 

investigating such combinations of structured and unstructured data is required. 

The natural language processing method used in this study is similar to that described 

in other medical studies involving natural language processing [28]. In particular, the pre-

processing strategies employed are similar to those which have been described previously 

[29, 30]. The natural language processing method used in this study has been successfully 

applied to the classification of transient ischaemic attack-like presentations [31]. A 
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convolutional neural network was employed, rather than other structures such as a recurrent 

neural network, due to the results of previous studies involving the classification of medical 

free-text [31].  

In view of the limited sample size of this pilot study, the primary outcome used to 

assess the feasibility of the DL for this application was a dichotomised classification task 

(LOS ≤2 days or >2 days). This method of analysing LOS is similar to that which has been 

used in other studies [23]. Larger samples sizes would allow for greater accuracy in the 

prediction of a continuous primary outcome (i.e. actual estimate of number of days LOS). 

Similarly, discharge destination was assessed as a dichotomised classification task (home vs 

non-home), as opposed to a multiple class classification task (e.g. home vs residential care 

facility vs other hospital vs other healthcare facility vs death), to facilitate the assessment of 

feasibility in this pilot study. In future studies, the prediction of multiple class outcomes may 

improve the possible future utility of the developed models. 

The ≤2 days or >2 days LOS categories were selected since local admission criteria 

specify that patients with an expected stay ≤2 days are admitted to the AMU, and those with a 

longer expected stay are admitted to General Medicine. This decision is made by a senior 

medical registrar, and provided a convenient comparative human estimate of LOS. In this 

study the medical registrar estimated LOS had a high accuracy of 0.92. However, it is highly 

likely that the prophecy of a ≤2 day LOS indicated by allocation to the AMU is self-fulfilling, 

as the AMU has different staffing, resources and discharge expectations compared with a 

General Medical unit. 

This study had several additional limitations including a small sample size and being 

conducted at a single site. Further, given the pilot nature of the project, no statistical 

significance tests were conducted to determine if one model was superior to another. Pre-

hospital living circumstances are not routinely recorded and accordingly the number of 
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patients already living in residential care facilities at the time of admission is uncertain. It 

should also be noted that the investigation (laboratory and radiology) results that were 

included in the input data for the ML algorithm were limited to those that the Emergency 

Department doctors had typed in their notes. Therefore, not all investigation results available 

at the time of admission were included in the analysis. Our current models would have a 

discharge prediction after approximately 4 hours (Emergency Department LOS). However, it 

would be unlikely to be detrimental to discharge planning if prediction availability was at 24 

hours. Making a LOS prediction at 24 hours would substantially increase the available data 

for the models to use, which in turn may increase their accuracy. 

Further research in this area may seek to investigate the accuracy that can be achieved 

in LOS and discharge destination prediction using larger datasets and datasets from multiple 

centres. Future machine learning models will ideally be compared against a prospectively 

provided prediction of LOS and discharge destination by admitting staff, in a general medical 

model less likely to be contaminated by self-fulfilling aspects of clinical care, such as 

different staffing and discharge expectations. The addition of image data and structured field 

data to that of the free-text data may also be investigated as a means to improve the accuracy 

of predictions. Further studies may also seek to prospectively validate and then assess the 

effects of the implementation of such models on a healthcare system.   

 

Conclusion 

Based on data from this single centre pilot study it appears feasible to use natural language 

processing to predict hospital length of stay and discharge destination of general medical 

inpatients based on written data available at the time of hospital admission. Further larger, 

multicentre, studies are required to investigate the significance of these findings. 
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Table 1: Results for machine learning models applied to dichotomous classification tasks 

regarding length of stay and discharge destination 

 

 

AUC = Area under the curve, ANN = artificial neural networks, CNN = convolutional neural networks, LOS = 

Length of Stay, TP = True positive, FN = False negative, TN = True negative, FP = False positive, PPV = 

Positive predictive value, NPV = Negative predictive value. 

 

 

1 In the section regarding LOS as a dichotomous outcome, true positives indicate individuals 

who stayed for ≤2 days, and the specified prediction model correctly predicted that the 

individual would stay for ≤2 days. In the section regarding discharge destination prediction, 

Outcome Model AUC TP1 FN TN FP 

Sensitivity 

(Recall) Specificity 

PPV 

(Precision) NPV 

F1 

Score Accuracy 

 

Medical 

Registrar2 - 12 3 34 1 0.8 0.97 0.92 0.92 0.86 0.92 

LOS 

dichotomous 

outcome (≤2 

days vs >2 

days) 

ANN 0.75 7 8 34 1 0.47 0.97 0.88 0.81 0.61 0.82 

CNN 0.66 8 7 31 4 0.53 0.89 0.67 0.82 0.59 0.78 

Random 

Forest 0.62 7 8 29 6 0.47 0.83 0.54 0.78 0.50 0.72 

Logistic 

regression 0.68 6 9 34 1 0.40 0.97 0.86 0.79 0.55 0.80 

 

Discharge 

destination 

dichotomous 

outcome 

(home vs 

non-home) 

ANN 0.64 28 4 9 9 0.88 0.50 0.76 0.69 0.81 0.74 

CNN 0.64 26 6 10 8 0.81 0.56 0.76 0.63 0.79 0.72 

Random 

Forest 0.68 24 8 12 6 0.75 0.67 0.80 0.60 0.77 0.72 

Logistic 

regression 0.64 32 0 6 12 1.00 0.33 0.73 1.00 0.84 0.76 
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true positives indicate the number of individuals who were discharged to home, and that the 

specified prediction model correctly predicted would be discharged to home. 

 

2 The “Medial Registrar” row in this table indicates the classification performance of the 

admitting medical registrar for an individual patient. This human estimated LOS was able to 

be derived because local admission criteria specify that patients with an expected stay ≤2 

days are admitted to the Acute Medical Unit, and those with a longer expected stay are 

admitted to the General Medical Unit.  
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Figure 1: Diagram outlining the structure of the artificial neural network used in 

classification and regression experiments 
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Abstract 

The accurate prediction of likely discharges and estimates of length of stay (LOS) aid in 

effective hospital administration and help to prevent access block. Machine learning (ML) 

may be able to help with these tasks. For consecutive patients admitted under General 

Medicine at the Royal Adelaide Hospital over an 8-month period, daily ward round notes and 

relevant discrete data fields were collected from the electronic medical record. These data 

were then split into training and testing sets (seven-month/one-month train/test split) prior to 

use in ML analyses aiming to predict discharge within the next two days, discharge within the 

next seven days and an estimated date of discharge (EDD). Artificial neural networks and 

logistic regression were effective at predicting discharge within 48 hours of a given ward 

round note. These models achieved an area under the receiver operator curve (AUC) of 0.80 

and 0.78 respectively. Prediction of discharge within seven days of a given note was less 

accurate, with artificial neural network returning an AUC of 0.68 and logistic regression an 

AUC of 0.61. The generation of an exact EDD remains inaccurate. This study has shown that 

repeated estimates of LOS using daily ward round notes and mixed-data inputs are effective 

in the prediction of general medicine discharges in the next 48 hours. Further research may 

seek to prospectively and externally validate models for prediction of upcoming discharge, as 

well as combination human-ML approaches for generating EDDs. 
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Introduction 

Awareness of the timing of likely discharges, accurate estimates of length of stay (LOS) and 

estimated dates of discharge (EDD) may help to manage hospital bed-state and avoid access 

block. Often these estimates are generated by staff in daily meetings, and then fed through to 

bed-flow coordinators via electronic medical records, emails, or further meetings. 

Consequently, such estimates may be delayed, which may be a barrier to effective discharges 

[1]. Machine learning (ML) may be able to help with the prediction of upcoming discharges 

and LOS in real-time and in an automated fashion. 

 

Natural language processing applied to admission data has previously demonstrated moderate 

accuracy using artificial neural networks and logistic regression in the prediction of short 

general medicine LOS in a pilot study [2]. However, such one-off predictions at the time of 

admission will likely be limited in their ability to predict outcomes for patients once they 

have been admitted for several days. Research in other specialties has shown that repeated 

predictions of LOS, using new information gained during the hospital stay, can be used to 

refine LOS predictions throughout a hospital stay [3]. 

 

The aims of this study were to derive and assess the effectiveness of ML models using daily 

ward round notes to (A) predict the likelihood of discharge within the next two days (<48 

hours), (B) predict the likelihood of discharge within the next seven days, and (C) generate an 

actual EDD, in a repeated fashion (on an ongoing daily basis). 
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Materials and Methods 

Data collection and pre-processing 

Ward round notes for patients admitted under, and discharged from, General Medicine at the 

Royal Adelaide Hospital over an 8-month period from 1/1/2020 were extracted from 

electronic medical records. Age, length of stay and the day of the week a note was written 

were also collected. Instances with missing data were excluded. 

 

All text data underwent word stemming and removal of stopwords. Negation detection and 

count vectorisation was performed, with the formation of n-grams of 3 word stems in length. 

The maximum number of features was limited to 30,000. After pre-processing, data were 

split into training and testing sets based on date of admission (seven-month/one-month 

train/test split).  

 

Model development and classification experiments 

Logistic regression and artificial neural network models were developed on the training 

dataset using 5-fold cross-validation. In this process a basic model was employed first, for 

example an artificial neural network with few interconnected layers and nodes. Model 

complexity, in the form of additional layers and nodes, was increased in a progressive manner 

until the mean area under the receiver operator curve on the training set no longer improved. 

During this process different activation functions (including sigmoid and rectified linear unit 

activation functions) and hyperparameters were trialled. 

 

After model structures and hyperparameters were optimised on the training dataset, models 

had their performance assessed on the unseen test dataset. This method was employed for the 

prediction of the primary outcome (discharge within the next two days from the time when 
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the note was written) and the secondary outcome (discharge within the next seven days). The 

best performing model was then tested with high sensitivity and specificity cut-offs for the 

primary outcome.  

 

After logistic regression classification experiments predicting discharge within the next two 

days, n-grams most and least associated with discharge within two days of note writing were 

extracted to aid with interpretability. 

 

Regression experiments 

Artificial neural network models were used in regression experiments aiming to predict LOS 

as an actual number of days from the time of the ward round note, and therefore provide an 

exact EDD. Similar to the classification experiments, the models were developed on the 

training dataset, prior to performance assessment on the test dataset.  

 

Artificial neural network structure 

The artificial neural network was built to incorporate both discrete data fields (current LOS, 

age, and day of week), as well as the text data (mixed-input data types). The artificial neural 

network structure that was used comprised two separate artificial neural networks that were 

concatenated into a single model (see Figure 1 for a schematic of the artificial neural network 

and the “Results” section for details regarding the number of samples collected). One 

network that performed the text analysis had an input layer followed by seven fully connected 

layers (composed of 512, 256, 256, 256, 32, 10 and 4 nodes respectively). The second 

network had only one fully connected layer that was composed of four nodes. Following 

concatenation there was an additional fully connected layer with four nodes, prior to an 

output layer. Aside from the output layer, all layers employed rectified linear unit activation 



 

 

163 

163 

functions. The loss function was set as binary cross-entropy for classification experiments 

and mean absolute error for regression experiments. 

 

Statistical analysis 

Area under the receiver operator curve (AUC) was calculated using SciKit Learn. Other 

performance metrics, such as sensitivity, specificity and Youden’s index, were calculated as 

standard [4, 5]. 

 

Statement of ethics  

This project received approval from the relevant institutional ethics committee. 

 

Results 

Patient characteristics 

There were 26,217 individual ward round notes included in this study, out of a maximum 

possible 26,322 (105 - 0.39% - excluded due to incomplete data). These ward round notes 

were from a total of 4,033 separate admissions, including a total of 3,412 unique patients. 

The mean LOS was 5.9 days (SD 7.8, minimum 0, maximum 136 days), median was 4 (IQR 

2 – 7 days). 1,663 of the patients were female (48.7%) and the mean age was 67.8 years-old 

(SD 18.9). The number of ward round notes that were within two days of discharge was 

7,432 (28.3%). The number of ward round notes that were within seven days of discharge 

was 17,224 (65.7%). 

 

Repeated prediction of discharge in the next two days  

In the prediction of discharge within the next two days, the artificial neural network was the 

best performing model (AUC 0.80) (Table 1). The logistic regression model achieved an 
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AUC of 0.78. When Youden’s index was used as the cut-off score for the artificial neural 

network, sensitivity of 0.67, specificity of 0.79 and accuracy of 0.75 were achieved. The most 

common category in the test dataset was notes following which discharge did not occur 

within the next two days (64.9%). When a high sensitivity cut-off was employed, a high 

sensitivity (>0.95), was associated with a specificity of 0.27. With a high specificity cut-off 

(>0.95) sensitivity of 0.31 was returned. 

 

Word stems associated with discharge within the next two days had good face validity. For 

example, word stems and n-grams that were most associated with discharge within the next 

two days included ‘home today’, ‘discharg today’, ‘dc today’, ‘home tomorrow’ and ‘continu 

improv’. Similarly, word stems associated with not being discharged within the next two days 

had good face validity, with examples including ‘dc plan’, ‘care await’, ‘sunday’, ‘sacat’ (a 

widely used abbreviation for the South Australian Civil and Administrative Tribunal) and 

‘acut confus’.  

 

Repeated prediction of discharge in the next seven days 

The AUCs recorded in the prediction of discharge within the next seven days were lower. 

The artificial neural network achieved the highest AUC in prediction of discharge within the 

next seven days (0.68). Using Youden’s index as the cut-off score, the artificial neural 

network provided a sensitivity of 0.64, specificity of 0.65 and accuracy of 0.64. The logistic 

regression model recorded an AUC 0.61. The most common category in the test dataset was 

notes following which discharge did occur within the following seven days (76.3%). 
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Repeated prediction of estimated date of discharge using ward round note 

The artificial neural network achieved a mean absolute error of 3.9 days when predicting 

LOS from the time of the ward round note.  

 

Discussion  

This study has shown that, using mixed-data inputs available in daily ward round notes, ML 

can predict with reasonable performance which general medicine patients will leave within 

the next two days. Prediction of which patients will leave within seven days of the given note 

was somewhat effective. The generation of an accurate exact EDD remains inaccurate. 

 

Although the medical text in ward round notes may include specific references to the timing 

of an expected discharge (for example, “Discharge home tomorrow”), it is not always the 

case that discharge will occur on that expected or planned day. Examples of possible causes 

for unexpected delays include clinical deterioration requiring ongoing admission, changes in 

patient preferences (for example regarding discharge destination) and unexpected delays with 

respect to logistics (such as transport or bed availability at discharge destinations). However, 

these limitations of medical text are not specific to text and would also be present should 

expected discharge date be recorded by doctors in a different fashion (such as a date-time 

field). The use of deep learning natural language processing may enable an automated 

hospital-wide process of estimating likelihood of discharge within the next two days 

(similarly to how a date-time field may enable the automated hospital-wide collection of such 

data), with the additional benefit of making data-driven adjustments to discharge likelihood 

based upon documented characteristics of an individual’s given daily ward round review. 
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Given that medical text may only provide consistent insights into general medical LOS when 

discharge is likely to occur shortly after the documentation (e.g. within 48 hours), further 

inputs and strategies may be required to help predict LOS beyond this period. Additional 

inputs that could be sought include physiological parameters (such as vital signs, including 

when supplemental oxygen is not required), medications prescribed (such as when 

transitioned from intravenous to oral medications), pathology results (such as normalisation 

of a raised white cell count or creatine), radiology results (resolution of a pleural effusion or 

removal of nasogastric tubes for example) and nursing and allied health assessments (such as 

physiotherapy and occupational therapy notes). The incorporation of operation reports may 

also aid in LOS estimates, although the utility of such reports is likely to vary significantly 

between specialties and may be uncommon in general medicine. 

 

This study is limited in that it was conducted at a single centre. It is conceivable that different 

patterns of medical text entry (for example different abbreviations) at different locations may 

limit the generalisability of the models. All text used in this study was in English. It should be 

noted that due to the nature of length of stay there was a degree of imbalance in the training 

and test datasets with respect to the proportion of cases in each category (see “Results” and 

Table 1). The performance of the models in this study should be viewed in the context of 

these imbalances in the test datasets. 

 

In many instances utility of ML in medicine will be achieved through a synergistic approach 

with human decision making through the provision of additional information, rather than 

being a process conducted independently of human decision-making [6, 7]. The generation of 

EDDs may be one such area. Given the difficulty of producing accurate EDDs, studies may 

be considered in which the accuracy and timeliness of human-only EDD and human-with-ML 
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EDD may be compared. It is possible that ML may be able to provide a suggested timeframe 

for an EDD (e.g. between 2-7 days), and a clinician may then incorporate that information 

into their decision-making process when generating an EDD, thereby improving 

performance. 

 

Future research in this area should aim to externally and prospectively validate models, such 

as those that performed well in this study, on datasets from other centres. Similar research 

studies in other specialty areas may also be conducted. Implementation studies are required 

that show improved patient or healthcare system outcomes, prior to the use of such models in 

routine clinical practice. 

 

Conclusion 

ML using mixed-data inputs, including daily ward round notes, appears effective in 

predicting when a patient will be discharged within 48 hours of the note being written. 

Prospective and external validation of these models are required. The generation of accurate 

EDDs remains inaccurate, and investigation of combination human-ML methods may be 

beneficial.  
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Figure 1: Schematic diagram of artificial neural network structure 
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Table 1: Results for machine learning models applied to prediction of discharge from time of 

ward round note 

Model 

(Cut-off) AUC 

PR 

score TP FN TN FP Sensitivity Specificity PPV NPV 

F1 

Score Accuracy 

Discharge in next 2 days 

ANN 

(Youden's 

index) 0.80 0.72 958 465 2081 556 0.67 0.79 0.63 0.82 0.65 0.75 

ANN 

(High 

specificity) 0.80 0.72 447 976 2559 78 0.31 0.97 0.85 0.72 0.46 0.74 

ANN 

(High 

sensitivity) 0.80 0.72 1361 62 707 1930 0.96 0.27 0.41 0.92 0.58 0.51 

LR 

(Youden's 

index) 0.78 0.69 984 439 1907 730 0.69 0.72 0.57 0.81 0.63 0.71 

Discharge in next 7 days 

ANN 

(Youden's 

index) 0.68 0.86 1971 1128 621 340 0.64 0.65 0.85 0.36 0.73 0.64 

LR 

(Youden's 

index) 0.61 0.83 2002 1097 508 453 0.65 0.53 0.82 0.32 0.72 0.62 
 

 

 

AUC = Area under the receiver-operator curve, PR= precision-recall, ANN = Artificial 

neural networks, LR= Logistic regression, LOS = Length of Stay, TP = True positive, FN = 

False negative, TN = True negative, FP = False positive, PPV = Positive predictive value, 

NPV = Negative predictive value. 
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Abstract 

Machine learning, in particular deep learning, may be able to assist with the prediction of the 

length of stay and timing of discharge for individual patients. Artificial neural networks 

applied to medical text have previously shown promise in this area. In this study, a previously 

derived artificial neural network was applied to prospective and external validation datasets. 

In the prediction of discharge within the next two days, when the algorithm was applied to 

prospective and external datasets, the area under the receiver operator curve for this task were 

0.78 and 0.74 respectively. The performance in the prediction of discharge within the next 

seven days was more limited (area under the receiver operator curve 0.68 and 0.67). This 

study has shown that in prospective and external validation datasets the previously derived 

deep learning algorithms have demonstrated moderate performance in the prediction of which 

patients will be discharged within the next two days. Future studies may seek to further refine 

or evaluate the effect of the implementation of such algorithms.  
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Introduction 

Discharge planning, including the prediction of length of stay to produce an estimated date of 

discharge, may reduce length of stay and readmission [8]. In medical inpatients it can be 

difficult to accurately predict length of stay [9]. It is possible that machine learning, in 

particular deep learning, may be able to assist with the prediction of patients’ length of stay 

and timing of discharge. 

 

The steps in the development of a deep learning algorithm for use in clinical medicine may be 

considered analogous to those involved in the development of a clinical decision rule or risk 

stratification score. These steps include pilot, derivation, validation, implementation and post-

implementation studies [10, 11]. Previously, a pilot study demonstrated that medical officer 

documentation in the form of emergency department notes could feasibly be analysed by 

machine learning to provide an indicator of length of stay [2]. Subsequently, a derivation 

study was conducted in which an artificial neural network (ANN) demonstrated the best 

performance in the prediction of which patients would leave hospital within the next two days 

based upon the analysis of inputs, including the text of medical officer ward round notes [12]. 

 

The aims of this study were to evaluate the performance of the previously derived ANN when 

applied to (1) a prospectively collected validation dataset from the original center, and (2) an 

external validation dataset collected from another center. 
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Materials and Methods 

Data collection 

Data was collected from two hospitals for this study: location 1 (Royal Adelaide Hospital, 

Adelaide, Australia) for the prospective dataset, and location 2 (Queen Elizabeth Hospital, 

Adelaide, Australia) for the external validation dataset. Consecutive individuals admitted 

under General Medicine at location 1 in the four-month period following 1/9/2020 were 

included in the study. All individuals admitted to location 2 under General Medicine in the 

12-month period following 1/1/2020 were included. The daily ward round notes of included 

individuals were collected for analysis, along with discrete variables including age, current 

length of stay, and the day of the week the ward round note was written.  

 

Data pre-processing and deep learning models 

Ward round notes with incomplete input or outcome data were excluded. Text data was pre-

processed using the same method as that which was employed in the previous derivation 

study [12]. Briefly, negation detection was applied, punctuation removed, word stemming 

applied, stopwords removed, and n-grams of 1-3 word-stems in length were formed. Text was 

transformed with the count vectorizer that was fitted in the earlier study.  

 

The artificial neural network structures, weights and cut-off scores developed in the 

derivation study were employed in this study [12]. In the previous study, 5-fold cross-

validation was used to evaluate basic ANN and logistic regression models, and additional 

complexity (in the form of additional layers and nodes) was added progressively until model 

performance (as indicated by area under the receiver operator curve) no longer improved. The 

ANN was composed of two separate branches. The branch that received the discrete data had 

one input layer, followed by one fully connected layer with four nodes. The branch that 
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received text data had an input layer followed by seven fully connected layers with 512, 256, 

256, 256, 32, 10 and 4 nodes. These separate branches were merged and then followed by one 

fully connected layer and an output layer. 

 

Classification experiments 

The ANN and logistic regression models from the derivation study were applied to both the 

prospective dataset from location 1 and the external dataset from location 2. Youden’s index, 

high specificity and high sensitivity cut-off scores were applied for predictions regarding 

discharge within the next two days. For predictions regarding discharge within the next seven 

days, only Youden’s index was trialled. 

 

Hospital-wide day-by-day prediction example 

For the purposes of demonstration, high specificity and high sensitivity cut-off scores for the 

ANN, predicting discharge within the next two days, were applied on a day-by-day basis to 

all patients currently admitted on each given day at location 1. Using these two cut-off scores, 

a range for the predicted number of discharges within the next two days was generated. The 

number of individuals actually discharged within the next two-day period was calculated on a 

two-day rolling-basis.  

 

Statistical analysis 

The primary outcome was area under the receiver operator curve (AUC) for the prediction of 

discharge within the next two days on the prospective dataset. The AUC was calculated using 

the trapezoidal rule. Other performance characteristics including F1 score, sensitivity, 

specificity, positive predictive value and negative predictive value were also calculated. 

 



 

 

179 

179 

Statement of ethics  

Ethics approval was granted for this project by the Central Adelaide Local Health Network 

Research Ethics Committee. 

 

Results 

Patient characteristics 

The dataset from location 1 included 16,550 individual notes, out of 16,606 identified notes 

(56 excluded due to incomplete data, 0.34%). These notes included information from 2,264 

individuals and 2,612 separate hospital admissions. The average patient age was 71.4 

(standard deviation 18.0). The median length of stay was 9 days (interquartile range 5 – 17 

days) (see Table 1). 5,022 individual notes (30.3%) were within two days of discharge. 

 

For location 2, 19,894 notes met inclusion criteria, of which 19,766 were used in the analysis 

(128, 0.64% excluded due to incomplete data). These notes were from 2,777 individuals over 

the course of 3,712 distinct admissions. The average age for this cohort was 74.8 (standard 

deviation 17.0). For this group the median length of stay was 8 days (interquartile range 4 – 

15 days). 6,722 individual notes (34.0%) were within two days of discharge. 

 

Prediction of discharge within two days 

For location 1, an AUC of 0.78 was achieved in the prediction of discharge within the next 

two days (see Table 2). When the Youden’s index cut-off score was applied, this provided 

specificity for discharge within two days of 0.76, sensitivity of 0.67, positive predictive value 

of 0.55 and negative predictive value of 0.84. The high specificity cut-off score provided the 

highest accuracy of 0.75. The logistic regression model returned an AUC of 0.77. 
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When applied to the dataset from location 2, an AUC of 0.74 was achieved. With the 

application of the Youden’s index cut-off score, specificity of 0.77, sensitivity 0.60, positive 

predictive value 0.57 and negative predictive value 0.79 were returned. The high sensitivity 

cut-off score provided sensitivity 0.95, and specificity 0.16. The high specificity cut-off score 

provided specificity 0.98, and sensitivity 0.18. For location 2, the logistic regression model 

provided an AUC of 0.73. 

 

For aspects of analysis regarding interpretability, please refer to the previous study [12]. 

Briefly, word stems and n-grams most associated with a high (or low) likelihood of discharge 

in the next two days had good face validity. For example, references to certain symptoms 

(such as acute confusion) or particular aspects of discharge planning (such as tribunals) were 

associated with a lower likelihood of discharge in the next two days. 

 

Prediction of discharge within seven days 

The application of the ANN to the prediction of discharge within seven days of the given 

ward round note, returned an AUC of 0.68 for location 1 and 0.67 for location 2. With the 

application of Youden’s index cut-off score, accuracies of 0.56 and 0.54 were returned for 

location 1 and 2 respectively (noting that the proportion of individuals in the most common 

class in the dataset comprised 69% and 72% for this outcome in location 1 and 2). The 

logistic regression model provided AUC of 0.68 and 0.66 for locations 1 and 2 respectively. 

 

Hospital-wide day-by-day prediction example 

The actual number of discharges on a hospital-wide basis fell within the predicted range 

(derived from high sensitivity and high specificity cut-off scores applied to individual ward 

round notes) for 107/121 (88.4%) of the two-day periods included for location 1 (see Figure 
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1). Note that for each time-point (X axis) in Figure 1, there is an actual number of discharges 

and range for the number of discharges that was predicted (Y axis), and Figure 1 starts with a 

low number of actual and predicted discharges in the first instance. This is because at the 

commencement of the inclusion period, the majority of inpatients currently admitted had 

been admitted prior to the time at which they would meet the criteria for inclusion. 

 

Discussion  

This study has demonstrated stable performance of an ANN for the prediction of discharge 

within the next two days on prospective and external validation datasets (0.78 and 0.74). The 

AUC achieved on the test dataset in the derivation study was 0.80 [12]. The prediction of 

discharge within seven days also had stable, although limited, performance.  

 

Variable cut-off scores and aspects of patient population characteristics may influence model 

performance. It is seen as one of the potential benefits of models such as those in this study 

that there is the ability to develop and employ variable cut-off scores, which may improve 

potential usefulness for some applications (as demonstrated in the hospital-wide day-by-day 

prediction example). As for any other test, in a population with a different prevalence of the 

condition of interest (in this case patients who are discharged within the next two days), the 

model would have correspondingly different positive and negative predictive value as 

outlined by Bayes’ theorem [13]. 

 

The potential use cases for algorithms such as those employed in this study may be either at 

the level of the individual or the healthcare system. At an individual level, potential utility 

could include automatically highlighting those with a high probability of impending 

discharge to staff involved in organising discharge (such as ward pharmacists and staff 
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organising transport), and prompting closer examination of barriers to discharge in 

individuals who are planned for discharge, but are predicted to have a low probability of 

leaving. At a system level possible uses could include helping to automatically identify ward 

beds which may soon become available to assist with bed flow, and pre-emptively identifying 

periods during which hospital bed occupancy may be high due to a lack of discharges. At this 

stage, such possible applications are hypothetical, and improved outcomes need to be 

demonstrated in implementation studies. 

 

An additional consideration regarding the future utility of such models is the incorporation of 

human length of stay estimates. It may be hypothesised that human length of stay estimates in 

which the doctor was informed of the model’s prediction, or models that incorporate human 

length of stay estimates, may have better performance than either human or machine learning 

estimates alone. Such an approach would support the use of machine learning as an adjunct to 

improve, rather than replace, human decision making, as has been discussed previously in 

other areas of medicine [6]. In this study, the performance of the models was not able to be 

compared to human estimates. Future comparisons to and the incorporation of human length 

of stay estimates are warranted. 

 

Although the strengths of this study include the use of both prospective and external 

validation datasets, there are several limitations that should be acknowledged. For example, 

all of the text analysed in this study was in English. Both sites involved in the study are based 

within the same Local Healthcare Network, with a significant overlap in the junior and senior 

medical staff who are responsible for authoring the notes. Centre-wise comparisons of factors 

that may influence length of stay (such as availability of discharge facilities) were beyond the 

scope of the project. There is a degree of imbalance in the validation dataset classes included 
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in this study. For location 1 and location 2 respectively, 30.3% and 34.0% of notes had 

discharge occur within the next two days. This type of imbalance may be inherent when using 

length of stay as an outcome but should still be taken into account when evaluating model 

performance (see Table 2).  

 

Future strategies to improve the performance and potential utility of models could include the 

investigation of additional ANN topologies, such as recurrent neural networks and radial 

basis function networks [14]. For example, recurrent neural networks have demonstrated 

robust performance in the prediction of the development of in-hospital acute kidney injury 

[15]. The use of additional topologies could also facilitate and be investigated in the 

prediction of other important outcomes, such as hospital readmission [16]. 

 

Further research is warranted. Future studies may seek to develop similar models for medical 

documentation in languages other than English, or in other subspecialties. Using medical 

notes from the days prior to the date on which the prediction is made, including notes from 

nursing and allied health professionals and the addition of pathology, radiology and 

pharmacy data, may improve the accuracy of these models. Implementation studies are 

required to demonstrate improvement in patient or system outcomes prior to routine use of 

such algorithms. 

 

Conclusions 

In prospective and external validation datasets, previously derived deep learning algorithms 

analysing text from medical notes have demonstrated stable performance in the prediction of 

which patients will be discharged within the next two days. Future studies may seek to 

evaluate the effect of the implementation of such algorithms. 
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Figure 1: Demonstration of the use of high sensitivity and high specificity cut-off scores to 

generate a day-by-day predicted range for the absolute number of discharges in the next two 

days at a single centre over the study period. 
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Table 1: Patient characteristics in prospective and external validation datasets 

 

Characteristics Location 1 (prospective 

validation) 

Location 2 (external 

validation) 

Number of included notes 16,550 19,766 

Number of distinct 

admissions 

2,612 3,712 

Mean age (standard deviation) 71.4 years (18.0) 74.8 years (17.0) 

Median length of stay 

(interquartile range) 

9 days (5 - 17) 8 days (4 – 15) 
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Table 2: Performance of artificial neural networks in the prediction of length of stay in prospective and external datasets 

Outcome 

Model Cut-off AUC PR score TP FN TN FP Sensitivity Specificity PPV NPV 

F1 

Score Accuracy 

Location 1 (prospective validation) 

 

Artificial 

neural 

network 

 
 

High 

specificity 

0.78 

 
 

0.65 

 
 

1093 3929 11302 226 0.22 0.98 0.83 0.74 0.34 0.75 

Discharge 

next 2 days 

 

Youden's 

index 3384 1638 8728 2800 0.67 0.76 0.55 0.84 0.60 0.73 

 High 

sensitivity 4888 134 1596 9932 0.97 0.14 0.33 0.92 0.49 0.39 

Logistic 

regression 

Youden’s 

index 0.77 0.63 3309 1713 8538 2990 0.66 0.74 0.53 0.83 0.59 0.72 

 

Discharge 

next 7 days 

Artificial 

neural 

network 
 

Youden's 

index 0.68 0.84 5216 6234 4132 968 0.46 0.81 0.84 0.40 0.59 0.56 

Logistic 

regression 

Youden’s 

index 0.68 0.82 7868 3582 2844 2256 0.69 0.56 0.78 0.44 0.73 0.64 

Location 2 (external validation) 
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Artificial 

neural 

network 

 

  

High 

specificity 

0.74 

 
 

0.63 

 
 

1178 5544 12799 245 0.18 0.98 0.83 0.70 0.29 0.71 

Discharge 

next 2 days 

 

Youden's 

index 4011 2711 10015 3029 0.60 0.77 0.57 0.79 0.58 0.71 

 High 

sensitivity 6396 326 2074 10970 0.95 0.16 0.37 0.86 0.53 0.43 

Logistic 

regression 

Youden’s 

index 0.73 0.62 3966 2756 9945 3099 0.59 0.76 0.56 0.78 0.58 0.70 

 

Discharge 

next 7 days 

Artificial 

neural 

network 
 

Youden's 

index 0.67 0.84 6049 8162 4564 991 0.43 0.82 0.86 0.36 0.57 0.54 

Logistic 

regression 

Youden’s 

index 0.66 0.83 9008 5203 3314 2241 0.63 0.60 0.80 0.39 0.71 0.62 
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Chapter 10 - General Discussion and Future Perspectives 

 

This thesis has described the derivation and validation of machine learning models, in 

particular deep learning models, for the prediction of clinically significant outcomes in stroke 

and general medicine. The outcomes predicted include inpatient outcomes related to 

discharge planning, key performance indicator (KPI) data extraction and clinical coding 

categorisations. This research has contributed significantly to the existing literature for stroke 

and general medicine predictive analytics through the application of methods such as open-

source natural language processing and recurrent prediction generation. Strategies to improve 

the utility of these models may include leveraging variable cut-off scores, integration into 

electronic medical records, and combining model predictions with human predictions. Future 

research in this area seeking to implement these models to examine their effect on patient and 

system-oriented outcomes are warranted. 

 

Using predictive analytics for inpatient outcomes for discharge planning, KPIs and 

clinical coding is a significant contribution to the existing stroke literature 

Machine learning and related predictive analytics strategies have been employed previously 

in stroke [1]. A significant focus of these previous studies has been on prognostication 

through analysis of acute stroke imaging [2, 3]. However, this type of imaging analysis alone 

is unable to capture all aspects of a patient’s presentation that guides their management 

decisions [4]. In particular, analysis of imaging alone would not necessarily be able to capture 

an individual’s baseline functional status, exact neurological deficit and post-stroke 

functional deficit (e.g., with respect to swallowing and mobility, which may be affected by 
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comorbidities other than the stroke itself). Accordingly, predictive analytics methods for 

prognostication using clinical, demographic and comorbidity information are required [5].  

 

Previous prognostic scores using such characteristics have focussed on the prediction of 

outpatient outcomes (such as 3-month mortality) rather than inpatient outcomes (such as 

length of stay, independence at discharge and discharge destination) [6]. Chapter 2 of the 

thesis is a literature review examining the previous applications of machine learning in the 

prediction of medical (including stroke) inpatient length of stay. This review demonstrates 

that machine learning has rarely been applied to length of stay prediction in stroke (and 

general medicine), and that the existing studies typically lack prospective and external 

validation studies.  

 

Chapter 3 describes a derivation study for the development of machine learning models in the 

prediction of stroke inpatient outcomes to assist with discharge planning, using only data 

available at the time of admission. In this study of 2,840 patients the prediction of functional 

independence at the time of discharge, survival to discharge and discharge to home was 

successful using logistic regression models and artificial neural networks. The area under the 

receiver operator curve (AUC) for these outcomes were 0.90, 0.90 and 0.81 respectively. The 

prediction of length of stay ≤8 days had lower performance with an AUC of 0.67. The most 

likely explanation as to why length of stay was unable to be more effectively predicted is that 

factors significantly affecting length of stay were not represented in the input data. Such 

factors may include the insurance status of the patients, the bed-state at the time of admission 

(i.e. system overcrowding and access block), and progress throughout the hospital stay after 

the time of admission. The results for the prediction of these outcomes were similar in the 

prospective and external validation study described in Chapter 4. Namely, classification 
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performance was sound in the prediction of discharge independence (AUC 0.85 and 0.87), 

survival to discharge (AUC 0.91 and 0.92), and discharge destination (AUC 0.76 and 0.78) 

for both the prospective and external validation datasets respectively. The performance in 

prediction of length of stay ≤8 days remained limited (AUC 0.62 and 0.66). 

 

Collection of KPI data and correct classification with clinical coding are important for stroke 

medicine in multiple forms, including quality assurance, as well as guiding service provision 

planning and activity-based funding [7, 8]. In Chapter 5 a variety of techniques are employed 

to demonstrate that automated data extraction from medical free-text can be performed with 

predictive analytics. In particular, random forest models achieved a high level of 

classification performance in classification of type of stroke (AUC 1.00), whether an 

individual received thrombolysis on-site (AUC 0.97), whether an individual received 

endovascular thrombectomy (AUC 1.00), and whether an individual had atrial 

fibrillation/flutter (AUC 0.97). Natural language processing methods have been employed 

previously in the field of clinical coding [9]. However, the majority of this software is 

proprietary in nature. Chapter 6 describes the application of open-source software to the task 

of stroke clinical coding. The use of this open-source software was able to correctly identify 

instances in which the original clinical coding had misclassified Adjacent Diagnosis Related 

Groups, International Statistical Classification of Diseases and Related Health Problems 

classifications, and Diagnosis Related Groups. 

 

When a classifier achieves perfect classification performance (AUC 1.00 or accuracy 1.00) 

this result raises the possibility of overfitting. For example, the possibility of overfitting may 

be considered for the random forest in the detection of endovascular thrombectomy in 

Chapter 5. However, it should be noted that in Chapter 6 this same model was applied to a 
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non-overlapping dataset and achieved a classification accuracy of 0.974. The generalisability 

of the model to a separate dataset can be seen to make the possibility of overfitting less likely. 

 

In these studies, the models employed included logistic regression, decision tree, random 

forest and artificial neural network algorithms. These models were selected for a number of 

reasons. In particular, all outcomes for prediction in these studies were categorial and binary 

in nature. This aspect of the analysis lends itself to the use of logistic regression. There were 

instances of unbalanced datasets, particularly with respect to KPI data. Decision tree 

algorithms and random forest algorithms are known to perform comparatively well on 

unbalanced datasets. Deep learning has provided advances in machine learning classification 

performance in medicine, particularly in the analysis of large datasets. The presence of large 

datasets prompted the use of artificial neural networks in this context. In the initial stroke 

inpatient outcome prediction study (Chapter 3), all four types of models were evaluated. The 

best performing models, logistic regression and artificial neural networks, were then used 

again in the subsequent validation study (Chapter 4). Similarly, all four models were 

employed in the analysis of stroke KPIs (Chapter 5), with the best performing model, the 

random forest model, subsequently applied again in the analysis of stroke clinical coding data 

(Chapter 6). These models were developed using open-source Python libraries, namely 

TensorFlow, NLTK and SciKit-Learn [10-12]. These libraries were selected due to their 

open-source nature and widespread use in the machine learning community. The rationale for 

this choice is that, although the prospective and external validation studies were successful, 

for other centres the use of local data may enable the development of centre-specific 

algorithms. Accordingly, the use of open-source and widely available libraries would 

facilitate the development of centre-specific algorithms at other locations. 
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Recurrent prediction with mixed-data inputs is a novel method for predicting 

outcomes in the complex general medicine patient population 

General medicine comprises a wide array of patients with complex comorbidities and social 

issues [13]. Discharge planning is important for this group. Although attempts have been 

made to develop tools, few studies have applied machine learning, and in particular deep 

learning, specifically to this group [14]. Machine learning research that is applicable to the 

group has included all hospital inpatients; however, such studies are typically focussed on 

“early warning systems” that predict inpatient mortality or intensive care unit admission [15]. 

Chapter 2 outlines a literature review that examines the previous use of machine learning 

methodologies to predict medical inpatient length of stay. No identified studies specifically 

examined the general medicine population. 

 

In Chapters 7, 8 and 9 studies are conducted that pilot, derive and then validate machine 

learning models for the prediction of timing of discharge for general medicine inpatients, to 

assist with discharge planning. In the pilot study in Chapter 7 natural language processing, 

namely an artificial neural network, is applied to emergency department notes, and it is found 

that the models had moderate performance in the prediction of which patients would be 

discharged in ≤2 days or >2 days (AUC 0.75). In the prediction of an actual date of discharge, 

model performance was poor. Chapter 8 describes a derivation study that employs machine 

learning methods using both natural language processing and discrete data fields, to make 

daily predictions regarding an individual’s likelihood of discharge in the next 48 hours. This 

approach was successful, with the artificial neural network achieving an AUC of 0.80. The 

prediction of discharge within 7 days was less accurate (AUC 0.68). Finally, in Chapter 9, 

these models underwent prospective and external validation. In this prospective and external 
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validation study, the models again demonstrated potentially useful performance (AUC 0.78 

and 0.74) in the prediction of discharge within the next 48 hours. 

 

In these studies, it was found that certain words and word stems that explicitly made 

reference to discharge plans (such as “Discharge home tomorrow”) were often predictive of 

discharge within the next 48 hours. However, it should be noted that in clinical practice 

discharges do not always occur as planned. For hospital inpatients there are many possible 

reasons for unexpected delays of discharge including, but not limited to, clinical deterioration 

(for example, newly hospital-acquired complications that may necessitate ongoing 

admission), changes in patient preferences (for example, with respect to preferred discharge 

date or destination) and logistical issues (for example, delays in diagnostic testing, 

treatments, transport or changes in discharge destination bed availability). It is in the context 

of this unpredictability that the performance of the algorithms should be viewed.  

 

The level of classification performance on a given task that is considered highly accurate 

and/or useful depends on the task in question. In tasks that are straightforward, a significantly 

higher level of classification performance would be expected than in complex and nuanced 

tasks such as predicting the timing of discharge. It is possible that there will never be a means 

of predicting patient discharge 48 hours in advance with complete accuracy. Similarly, an 

acceptable or useful level of performance is dependent on the nature of the task. This 

threshold may depend on multiple factors, including the difficulty of predicting a given 

outcome and the consequences of misclassification. 

 

The models developed in the initial study in this area (Chapter 7) included logistic regression, 

random forest, artificial neural network and convolutional neural networks. These models 
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were selected on the basis of the results from previous analyses of medical free-text, in 

addition to the rationale outlined for their use in Chapters 3 and 5, as discussed above [16]. 

The best performing types of models from this initial study, were then used again in Chapters 

8 and 9. These studies also employed open-source Python libraries for machine learning 

analyses, namely TensorFlow, NLTK and SciKit-Learn [10-12]. The reason for this selection 

was to improve generalisability and facilitate future analogous studies by other researchers. 

These widely available resources could be used by others in combination with local data to 

develop centre-specific algorithms. Therefore, the use of open-source and widely available 

libraries may facilitate this future development of algorithms at other centres.  

 

Strategies to facilitate the potential utility of these models may include the use of 

variable cut-off scores, integration into electronic medical records and combination 

with human estimates 

There are a variety of strategies that may be employed to improve the potential utility of the 

models developed and validated in the research in this thesis. These strategies may include 

the use of variable cut-off scores, integration with electronic medical records, and combining 

machine learning and human predictions. Additionally, diverse centres may benefit from 

deriving similar models locally by applying the methods in this research to local data. 

 

Using variable cut-off scores, the classification models can produce predictions with varying 

levels of sensitivity and specificity. The use of these variable cut-off scores is possible 

because the output of the classification models in this thesis, prior to the application of a cut-

off score, may be viewed as the probability of a positive result [17, 18]. Selecting different 

cut-off scores can be used to alter the sensitivity and specificity of the model outputs [19]. 

For example, to provide a prediction with high specificity, a high cut-off score could be 



 

 

197 

197 

selected. This cut-off score would provide greater specificity at the cost of reduced 

sensitivity. By using multiple cut-off scores for the output of an individual model a range of 

predicted outcomes can be produced, as is demonstrated in the hospital-wide day-by-day 

example in Chapter 9.  

 

Additionally, rather than employing one or more cut-off scores, the model probability output 

could be used to rank individuals based on the likelihood of a positive result. For example, in 

the identification of potential misclassifications of clinical coding Diagnosis Related Groups 

(as in Chapter 6), instances of potential misclassification can be ranked based on the 

likelihood of a misclassification being present (rather than simply providing a binary outcome 

suggesting a misclassification is present or absent). Similarly, currently admitted patients 

could be ranked by their estimated probability of discharge within the next 48 hours (for 

example, if trying to identify those who may be most amenable to an intervention to facilitate 

earlier discharge). By employing this strategy an individual reviewing the outcome of the 

model may start with the instances in which the probability of the target result is highest. This 

technique may be useful when time or resources are limited.  

 

Integration with electronic medical records would improve the potential utility of the 

developed models. As discussed in Chapter 1, prognostic scores that require the entry of 

many discrete data fields may be cumbersome and limit adoption and utility. An advantage of 

the utilised natural language processing methodologies is that data can be collected and 

analysed on potentially all comorbidities from a single input: medical free-text. Even so, 

when predictive analytics are to be employed at a large scale, and in high-demand resource-

limited settings, streamlining the process by which data is entered and predictions presented 

would be beneficial. The ideal way to streamline this process would be through integration 
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with electronic medical records, which is an area of ongoing development [20, 21]. 

Depending on the developer software and user access for given electronic medical records, it 

would be feasible to automatically generate daily predictions of the likelihood of discharge in 

the next 48 hours and present these predictions, either individually or as compiled reports, 

without any human time investment after installation. Similarly, integration into the 

electronic medical record would facilitate the automatic collection of KPI data. In order for 

KPI data to be acted upon and influence patient care it is necessary for the data to be 

available in near-real-time. Automatic data collection for research purposes could likely be 

asynchronous in the majority of cases. However, electronic medical record integration for this 

purpose is still of significant importance to reduce the number of intermediary steps involved 

in the data collection process. 

 

It has been demonstrated that unnecessary alerts and time-consuming aspects of electronic 

medical record use may contribute to alert fatigue and burnout [22, 23]. These issues should 

be taken into consideration when considering how to optimise the potential utility of the 

models. The means by which healthcare professionals are notified of machine learning 

predictions should be constructed to minimise unnecessary alerts or burdensome mandatory 

electronic medical record fields. 

 

By combining machine learning and human predictions it is possible that performance may 

be greater than either approach in isolation. While many studies compare machine learning 

performance to human performance, such comparisons may have limited usefulness, 

particularly with respect to factors relevant to discharge planning. As in other fields, it is 

considered unlikely that machine learning will guide decisions regarding discharge 

independent of human decision-making in the near future and, instead, it is more likely that 
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machine learning may be employed in conjunction with clinician decision-making to help 

guide these processes [24]. It is possible that by implementing a hybrid approach, utilising 

machine learning-informed clinician decision-making, the utility of the models will be further 

improved. As described in Chapter 8, one possible example of how machine learning may be 

employed in conjunction with clinician decision-making would be for the model to suggest a 

timeframe for an estimated discharge date (e.g., between 2-7 days), and a clinician then be 

provided with the estimated range prior to selecting their chosen estimated discharge date. 

Such a synergistic approach may be hypothesised to improve the accuracy of estimated 

discharge date generation, completeness and timeliness.  

 

Although the prospective and external validation studies were successful, it is possible that 

machine learning models derived in this thesis may not generalise to some diverse centres. In 

the event that the models did not generalise to a diverse centre, the application of the methods 

in this research to local data may enable the development of centre-specific algorithms. For 

example, the same stroke admission variables could be collected for admissions at the diverse 

centre, and logistic regression models then be derived from local data to produce centre-

specific algorithms. Similarly, if a centre had a non-English primary written language, and 

translation strategies were unsuccessful, the same pre-processing and neural network 

structure could be applied to local non-English ward round notes to derive local models. In 

addition to employing the methods in this research, it is possible that the use of the 

algorithms from this research could facilitate the use of transfer learning (the process by 

which a pre-trained model from a different dataset can be retrained and applied to a new 

dataset, subsequently improving performance) to develop centre-specific algorithms at 

diverse centres. 
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Limitations of this research should be acknowledged 

The limitations of each individual study are discussed in its corresponding chapter. Common 

to all natural language processing studies was the fact that in this research all analyses were 

conducted on English text (Chapters 5, 6, 7, 8 and 9). In addition, external validation studies 

(Chapter 4 and Chapter 9), while at distinct external centres, were all conducted within South 

Australia. Accordingly, application of the model to datasets from more diverse centres may 

be beneficial. 

 

It should be noted that certain datasets in these studies were unbalanced. This issue is 

common in medical machine learning. KPI data may become particularly unbalanced when 

adherence to KPIs is strict. Strategies used to mitigate this issue included large datasets, the 

presentation of multiple performance metrics (rather than only accuracy) and the use of 

decision tree-based algorithms. If more unbalanced datasets are encountered in future 

analyses, for example for KPIs with adherence nearing 100%, additional methods that may be 

employed include resampling strategies and the generation of synthetic data. 

 

It has been demonstrated in previous studies and reviews that machine learning has the 

potential to perpetuate existing biases. There are multiple means by which algorithms can 

become biased, including composition of training datasets, data annotation, as well as the 

applications to which the models are applied [25]. In particular, imbalances in datasets with 

respect to country of origin or demographics, such as gender, may bias machine learning 

models [26, 27]. Strategies exist to reduce this potential for bias such as the use of diverse 

and representative datasets [28, 29]. The studies in this thesis included large representative 

datasets from the local population, which reduce the potential for bias in this setting. 

However, applied in other diverse settings for which the dataset is less representative, there 
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would be more potential for bias. As a component of implementation studies, ongoing post-

implementation monitoring for potential biases is important. Application of algorithms to 

other datasets may also highlight potential biases.  

 

Future research implementing models developed in these and similar studies is 

warranted 

Future research in this area may involve implementation studies employing the existing 

models, and further studies aiming to improve the performance of the previously derived 

models. Implementation studies should aim to examine patient and system-oriented outcomes 

[30]. These studies should also adhere to guidelines regarding artificial intelligence trials 

[31]. Approaches that may be examined to improve existing model performance include the 

use of novel neural network topologies and the use of additional input data (both individual 

data and system-based data).  

 

Implementation studies are required to demonstrate improvement in meaningful clinical 

outcomes with model deployment. Meaningful outcomes may include benefits in patient 

flow, workforce usage and cost-benefit analyses. There are now published guidelines for the 

development of artificial intelligence clinical trials [31, 32]. However, the design of these 

implementation studies will require careful consideration. Implementation studies using 

machine learning to aid with discharge planning will likely need to compare clinician with 

machine learning interventions against a comparator of clinicians without machine learning. 

Accordingly, trial design considerations with respect to possible blinding of clinicians may be 

difficult [33]. This difficulty with blinding highlights the importance of other trial design 

elements aimed to reduce bias (such as randomisation, as opposed to pseudo-randomisation). 

It is fundamental to such clinical trials that the pre-specified endpoints are clinically relevant. 
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Such clinically relevant endpoints may be significant at an individual level, or at a system-

level (such as reduction in length of stay). If the model deployment improves outcomes in 

stroke and general medicine patients, future research may seek to employ similar methods in 

other specialties. 

 

Implementation study outcomes will necessarily take into consideration the logistical 

components of hospital medical practice. Outcomes including total length of stay are 

important. However, additional outcomes, such as the proportion of discharge scripts and 

transport organised the day prior to discharge, may also be evaluated. These outcomes would 

be particularly meaningful if they alter the patients’ experience of the discharge process in a 

positive manner. Patient-reported outcomes may also be an important endpoint to evaluate in 

implementation studies. The evaluation of KPI adherence may be targeted as a potential 

outcome of implementation studies, particularly if the collection of KPI data can be 

automated and notifications sent if it appears likely that KPIs will not be met.  

 

Implementation studies in this area will need to consider the entire allied health team. 

Discharge planning is a multidisciplinary process. Machine learning predictions based on the 

ward round notes written by doctors may inform the practice of multiple team members, 

including nurses, pharmacists, and physiotherapists. Future studies may also apply machine 

learning to the notes written by these healthcare professionals to evaluate how the analysis of 

these notes may influence aspects of outcome prediction and discharge planning. 

 

The use of synthetic data may be one avenue to improve the performance of the models 

developed in these studies. The use of synthetic data could increase the sample size for rare 

and uncommon medical conditions, and therefore reduce the likelihood of misclassification 
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due to underrepresentation in the training datasets [34]. Synthetic data may be generated 

through multiple methods including data perturbation and generative adversarial networks 

[35].  

 

The development and refinement of medical machine learning models, such as those 

described in this thesis, will be an ongoing iterative process. For example, future models may 

seek to utilise additional input data. This data may take the form of more data of the existing 

types used in this thesis (for example larger and more diverse datasets of ward round notes), 

as well as new types of data. New data that may be incorporated into models include 

individual data (such as laboratory test results and imaging results) as well as system data 

(such as the availability of beds at nearby rehabilitation centres). However, it should be noted 

that individual data (such as salient laboratory test results) are often typed or copied into ward 

round notes, and may therefore not necessarily add significantly to model performance. The 

use of additional model structures may also be investigated in this area in future. Over time, 

novel machine learning methods (such as additional artificial neural network topologies 

including recurrent and recursive neural networks) will continue to be developed [36]. 

Accompanying these novel machine learning methods, further pre-trained models (such as 

Bidirectional Encoder Representations from Transformers) will also become available that 

may be employed with transfer learning [37, 38]. Accordingly, further research in this area 

may seek to employ new data and methods, as they become available, to build upon the 

already successful models derived and validated in this thesis.  
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Appendix 

The following Appendix includes additional information to improve the interpretability of the 

natural language processing articles. 

 

Additional descriptive statistics for natural language processing datasets 

Descriptive statistics for chapters that involved free-text analysis are included below. The 

chapters that included free-text analyses were Chapter 5, Chapter 6, Chapter 7, Chapter 8 and 

Chapter 9.  

 

The included text in Chapter 5 had a median character length of 5129 and interquartile range 

4232.75 to 6236.25. The mean character length was 5327.76 and standard deviation for 

character length 1490.68. The median word length was 730.5 and the interquartile range for 

word length was 607.25 to 897.75. The mean word length was 766.28 and the standard 

deviation of word length was 221.53. The total number of unique word stems in the dataset 

was 32335.  

 

The included text in Chapter 6 had a median character length of 5472, and interquartile range 

4595 to 6440.25. The mean character length was 5635.07 and standard deviation for character 

length 1458.55. The median word length was 768.5 and the interquartile range for word 

length was 627.5 to 914.5. The mean word length was 784.4 and the standard deviation of 

word length was 115.01. The total number of unique words in the dataset was 17481.  

 

The included text in Chapter 7 had a median character length of 1711, and interquartile range 

1284 to 2198. The mean character length was 1793.65 and standard deviation for character 
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length 752.37. The median word length was 247 and the interquartile range for word length 

was 178 to 326. The mean word length was 269.42 and the standard deviation of word length 

was 171.91. The total number of unique words in the dataset was 21997.  

 

The included text in Chapter 8 had a median character length of 1339, and interquartile range 

926 to 1909. The mean character length was 1561.79 and standard deviation for character 

length 978.37. The median word length was 238 and the interquartile range for word length 

was 166 to 337. The mean word length was 272.94 and the standard deviation of word length 

was 157.99. The total number of unique words in the dataset was 161812.  

 

The included text in the prospective validation dataset for Chapter 9 had a median character 

length of 1237, and interquartile range 880 to 1759. The mean character length was 1490.11 

and standard deviation for character length 1013.34. The median word length was 167 and 

the interquartile range for word length was 115 to 244. The mean word length was 200.72 

and the standard deviation of word length was 134.26. The total number of unique words in 

the dataset was 296406.  

 

The included text in the external validation dataset for Chapter 9 had a median character 

length of 1292.5, and interquartile range 909 to 1824. The mean character length was 1454.28 

and standard deviation for character length 777.26. The median word length was 177 and the 

interquartile range for word length was 120 to 255. The mean word length was 201.3 and the 

standard deviation of word length was 116.22. The total number of unique words in the 

dataset was 348657.  
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Examples of misclassifications in free-text analyses 

The following examples are from Chapter 9. The first two examples are cases in which the 

model predicted discharge within the next 48 hours, but discharge did not occur in this 

timeframe. Examples 3 and 4 are cases in which the model predicted no discharge within the 

next 48 hours, but discharge did occur during this time period. 

 

Example 1 

General Medicine 

 

S 

Feels well today  

No issues 

Looks forward to leaving tomorrow  

 

O 

Hemodynamically stable + afebrile 

 

Imp/ Medically stable  

 

Plan 

1. Respite tomorrow 

2. Son would like to discuss lvl 4 package with SW - attempted 2x page  
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Example 2 

GEN MED WR  

 

# BACK PAIN 

 

S/ 

Feeling well 

Reports pain about 5-6 out of 10  

Noticed given ibuprofen once during midnight 

Nil use of PRN oxycodone in last 24hours 

Nil further vomiting since yesterday 

Concerns about mobility affected by back pain - worries that might not be able manage her 

pain at home 

Agrees trial of regular analgesia  

 

 

O/ 

RR 18 SpO2 97% on room air BP 154/71 HR 64 afebrile 

 

BNO D4 

 

Warm peripheries 

Cap refill <2s 

Pulse strong and regular 

Moist mucous membrane 
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Chest clear anterolaterally 

Bowel sounds present 

Abdomen soft non tender 

Calves soft non tender 

Nil peripheral oedema 

 

A/ 

Medically well and stable  

 

Plan: 

1. For regular ibuprofen  

2. Await OT to organise 4WW 

3. For regular aperients  

- ensure bowel opens this PM 

- microlax enema available PRN 

4. For re-discuss with SW re: MAC referral 
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Example 3 

Gen Med WR  

 

# Multilobar CAP - on IV ceftriaxone, completed course of azithromycoin 

# Asthma exacerbation secondary to CAP 

# AF.  

 

S/ 

Breathing feels unchanged today. TTE done today. 

Explained likelihood of slow recovery given multilobar CAP. 

 

Note event overnight - palpitations with chest pain that resolved with replacing O2 

 

O/ 

RR 23, SpO2 96% on 4L 

BP 100/65, HR 80 

T 36 

 

Warm well perfused. 

JVP elevated 

Chest -  bronchial breath sounds in L upper and midzone. R scattered screps. Nil wheeze 

Peripheral pitting oedema to mid shins bilaterally 

 

A/ 
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Tachypnoea and ongoing O2 requirement likely secondary to fluid overload and multilobar 

CAP (will be slow to improve) 

 

P/ 

1. Downgrade to PO amox/clav (7 days total Abx - last day Thu) 

2. Commence furosemide 20mg daily 

3. Chase TTE 

4. Cease prednisolone after tomorrow 

5. Encourage Mobility and  sitting of bed as able.  

6. Daily weight please.  

7. Physio review for chest and mobility please.  

8. May require period of respite on discharge to facilitate weaning O2 
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Example 4 

GEN MED WR 

 

# Chronic back pain with degenerative changes 

 

S/ 

reports eating and drinking well  

Pain well controlled with Targin  

Mobilising well  

Reporting Bowels not open day 3  

Happy to await Respite  

 

O/E 

Otherwise, patient is alert, appears well and sitting up on bed  

Obs within normal limits 

BNO D3 

 

MMM 

Chest clear  

Abdo SNT  

Calves SNT  

 

Impression: Back pain improving with analgesia  

 

P/ 
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1. Continue analgesia 

2. SW to continue discussion re: respite 

3. Encourage oral intake and sitting out of bed /mobilise as tolerated  

4. Regular lactulose and movicol charted to ensure bowel opening  

5. Consider enema tomorrow if bowels not open by tommorow 

 

 

  



 

 

217 

217 

Example of code 

# code_example 

# import libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import sklearn 

import scipy 

import re 

import nltk 

import tensorflow as tf 

import math 

import xlrd 

import xlwt 

from sfunctions import get_preprocessed, get_model_lr, get_training, get_testing 

 

# set params 

param_proportion_test = 0.25 

param_random_state = 10 

param_inputs_selected = "note_section_content" 

param_labels_selected = "2_day_stay" 

param_filepath = 'filepath' 

param_filename = 'filename' 

param_ngram_range_lower = 1 

param_ngram_range_upper = 3 
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param_max_features = 30000 

param_k_folds = 5 

param_stem = True 

param_negatedetect = True 

param_punctremov = True 

param_removstopw = True 

param_cutoff = 0.5 

 

# load data 

df = pd.read_csv(param_filepath + '\\' + param_filename) 

 

# preprocess data 

## encode outcome 

df["2_day_stay"] = df["los_total"].dt.days  

df["2_day_stay"] = df["2_day_stay"].mask(df["2_day_stay"] <= 1, 1)  

df["2_day_stay"] = df["2_day_stay"].mask(df["2_day_stay"] > 1, 0)  

df["7_day_stay"] = df["los_total"].dt.days 

df["7_day_stay"] = df["7_day_stay"].mask(df["7_day_stay"] <= 6, 1) 

df["7_day_stay"] = df["7_day_stay"].mask(df["7_day_stay"] > 6, 0) 

 

## preprocess text 

text_processed = get_preprocessed(df, param_inputs_selected, stem=param_stem,  

                                  negatedetect=param_negatedetect,  

                                  punctremov=param_punctremov,  

                                  removstopw=param_removstopw) 
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from sklearn.feature_extraction.text import CountVectorizer 

cv = CountVectorizer(max_features=param_max_features, 

ngram_range=(param_ngram_range_lower,param_ngram_range_upper)) 

X = cv.fit_transform(text_processed).toarray() 

Y = df[param_labels_selected]   

 

## train_test_split 

from sklearn.model_selection import train_test_split 

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=param_proportion_test, 

random_state=param_random_state) 

 

# model 

model = get_model_lr() 

 

# training set 

results_training = get_training(model, X_train, Y_train, kfolds=param_k_folds, 

cutoff=param_cutoff) 

 

# test set 

results_test = get_testing(model, X_train, Y_train, X_test, Y_test, cutoff=param_cutoff) 

 

# save results 

dfresultstest = pd.DataFrame(results_test) 

dfresultstest.to_excel('dfresutlstest.xlsx') 
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Examples of discharge summary templates 

Discharge summary male 

INTERIM PENDING CONSULTANT REVIEW 

 

Mr #### stroke occurred on ####/####/####. He lives #### and works as ####. He is ####-

hand dominant, mobilises #### and drives/does not drive. [Include other social history, ATSI 

status, residency status] His pre-stroke modified Rankin score was ####. 

 

Key risk factors were ####. Other relevant past medical history includes ####. 

 

Relevant pre-admission medications were: [e.g. antiplatelets, anticoagulants, incl. generic 

name, dose, frequency] 

#### 

#### 

#### 

The patient was #### adherent. 

 

His symptoms occurred while [at home/in hospital/elsewhere] at exactly/approximately 

####:#### on ####/####/####. 

OR 

He was last seen well [at home/in hospital/elsewhere] at exactly/approximately ####:#### 

on ####/####/#### and his symptoms were noted at ####:#### on ####/####/####. 

OR 

He was well when he went to bed [at home/in hospital/elsewhere] at exactly/approximately 

####:#### on ####/####/#### and his symptoms were noted on awakening at ####:#### on 
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####/####/####. 

 

His symptoms included #### [details of neurological deficit]. 

 

He presented to the RAH and a Code Stroke was #### activated. He was 

[alert/drowsy/obtunded/comatose]. His neurological deficits were #### and the NIHSS score 

was exactly/approximately ####. The patient could #### walk. He was in [cardiac rhythm] 

with a heart rate ####, blood pressure ####, temperature #### C and blood glucose level 

#### mmol/L. INR/other clotting assay was ####. 

[Include any additional relevant information regarding physical examination/symptoms at 

presentation here] 

 

A CT scan was performed at the RAH/FMC/LMH/other at ####:#### on ####/####/#### 

and demonstrated [insert key findings from CT scan; including any vessel occlusion sites; 

add information from CT perfusion if performed including DT3 lesion and CBF<30% core 

volume; include information regarding large vessel stenoses as relevant to stroke aetiology]. 

 

Intravenous thrombolysis was commenced at ####:#### on ####/####/#### with 

alteplase/tenecteplase [dose]. NIHSS immediately prior was #### or unchanged. 

OR 

Intravenous thrombolysis was not performed due to ####. 

 

He proceeded to endovascular thrombectomy at ####:#### under conscious sedation/general 

anaesthesia with [retrieval device type] with groin/carotid/wrist puncture at ####:####. 

NIHSS immediately prior was #### [or unchanged]. A retrievable clot was identified in the 
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####/not identified. Reperfusion was #### achieved at ####:#### with resultant TICI #### 

flow. [add additional information regarding failed attempts, access site change (to wrist or 

carotid), multiple passes, stenting, antiplatelet or intra-arterial agent administration, 

anatomical issues, embolization into new territories or other intra-operative complication] 

OR 

He was deemed unsuitable for endovascular thrombectomy due to ####. 

 

Reperfusion therapy was performed without complication. 

OR 

Reperfusion therapy was complicated by [e.g. sICH, other extracranial haemorrhage, 

angioedema; include time of onset, symptoms and subsequent management and outcome 

here.] 

 

Follow-up MRI/CT was performed on (####/####/####) and revealed ####. 24-hour NIHSS 

score [if TPA/EVT] was ####. 

 

[Insert any additional information relevant to admission and/or discharge and/or ongoing 

management] 

 

Stroke aetiology work up: 

- ECG (####/####/####): #### 

- Holter monitor/Cardiac telemetry (####/####/#### to (####/####/####): #### 

- Transthoracic echocardiogram (####/####/####): #### 

- Transoesophageal echocardiogram (####/####/####): #### 

- Carotid doppler ultrasound (####/####/####): #### 
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- Stroke related blood tests: 

  - HbA1c: ####% 

  - LDL ####, HDL ####, TGL #### 

- Other [DSA, LP etc] (####/####/####): #### 

 

Issues during his admission included: 

# #### 

[insert details DRPIMCO – diagnosis, risk factors, presenting symptoms, investigations, 

management, complications, outcome] 

 

# #### 

[insert details DRPIMCO – diagnosis, risk factors, presenting symptoms, investigations, 

management, complications, outcome] 

 

[Audit collects data on DVT/PE/pressure ulcers/UTI/pneumonia/non-reperfusion therapy 

sICH (if sICH, date and time)] 

 

His final diagnosis was a left/right/bilateral mild/moderate/severe ischaemic 

stroke/intracerebral haemorrhage [with or without intraventricular extension and 

hydrocephalus and estimated volume] affecting the #### cerebral artery territory/location 

due to ####. 

 

He was referred back to FMC/LMH/other at ####:#### on ####/####/#### for #### care 

with an mRS of #### and a NIHSS of ####. Neurological examination at the time of transfer 

showed ####. 
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OR 

He was discharged to home/[new] residential care/rehabilitation/other hospital/new 

residential care/relatives’ home/residential TCP on ####/####/#### with an mRS of #### 

and a NIHSS of ####. Neurological examination at the time of discharge showed ####. 

OR 

He (was managed with palliative care from ####/####/#### and) died at ####:#### on 

####/####/####. 

 

Management plan: 

1. #### [Medication changes and timing + reasons including addition of secondary stroke 

prevention measures] 

2. #### [Follow up tests] 

3. #### [Follow up appointments] 

4. #### [Driving status/recommendations] 

 

Thank you for your ongoing care. 

 

____________________________ 

 

Additional data for audit purposes: 

Stroke onset: 

- Location (#### postcode; home/RAH/other) 

 

Transfer/transport 

- Method of arrival: ambulance/walk-in/private car/hospital transfer/road retrieval/air 
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retrieval 

- Hospital transfer: Y/N (hospital name and reason for transfer = possible 

tPA/ICU/endovascular Rx/Stroke Unit Care/neurosurgery/tertiary diagnostic tests; admission 

to primary hospital at ####:#### on ####/####/####; IV tPA prior to transfer = Y/N (type, 

#### on ####/####/####; telemedicine = Y/N) 

- Ambulance arrival: SAAS (ID ####): time called ####:####, dispatched ####:####, arrived 

at patient ####:####, depart scene ####:####, arrive hospital ####:####; ambulance on 

bypass Y/N/unknown; ROSIER: Y/N (insert score) if >=1 ACT-FAST done? Y/N 

(positive/negative) 

- Non-SAAS acute arrival : ROSIER: Y/N (insert score) 

 

Pre-stroke risk factors and morbidity predictors: prior stroke (####/####/####, stroke 

subtype); prior TIA (####/####/####), obesity, hypertension, diabetes mellitus, 

dyslipidaemia, rheumatic heart disease, coronary heart disease, peripheral vascular disease, 

LVF/CHF, renal disease (eGFR ####), proteinuria, dialysis, Afib/flutter (prior to this stroke? 

Y/N; paroxysmal/permanent), active smoker, previous smoker, illicit drug use (details, incl. 

route), EtOH (#### standard drinks per day, binge pattern (>6 standard drinks), binge <24 

hours prior), AIDS, active malignancy (details, metastases), dementia, liver disease 

(mild/mod/severe), peptic ulcer disease, DM microvascular complications, COPD, 

connective tissue disease, INR #### and date if on warfarin prior to presentation 

 

Acute management data 

- Admission to Stroke Unit: Y/N 

- Antithrombotic commenced ####:#### on ####/####/#### 

- DVT prevention: LMWH/SCDs/therapeutic anticoagulation 
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Rehabilitation data 

- Physio assessment ####:#### on ####/####/#### (contraindicated/patient refused/not 

documented), 

  - Treatment commenced by mobilisation (sitting/standing/walking) ####:#### on 

####/####/#### (back to baseline/refused/comatose/palliated/no reason documented) 

  - A rehabilitation goal was #### documented 

- Risk factor modification advice: Y/N (cognitive impairment/impaired 

communication/refused/palliative care/other/unknown); 

- Carer assessment: Y/N (no carer/not discharged home/refused/complete recovery/not 

documented) 

   - Training Y/N (no carer/not discharged home/refused/complete recovery/not documented) 

- Swallow screen: Y/N (####:#### on ####/####/####; #### passed); medication prior to 

swallow screen: Y/N 

- Formal speech path assessment: Y/N (####:#### on ####/####/####) 

- Stroke Care Plan: Y/N (####:#### on ####/####/####) (not discharged home/refused/not 

documented) 
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Discharge summary female 

INTERIM PENDING CONSULTANT REVIEW 

 

Ms #### stroke occurred on ####/####/####. She lives #### and works as ####. She is ####-

hand dominant, mobilises #### and drives/does not drive. [Include other social history, ATSI 

status, residency status] Her pre-stroke modified Rankin score was ####. 

 

Key risk factors were ####. Other relevant past medical history includes ####. 

 

Relevant pre-admission medications were: 

#### 

#### 

#### 

The patient was #### adherent. 

 

Her symptoms occurred while [at home/in hospital/elsewhere] at exactly/approximately 

####:#### on ####/####/####. 

OR 

She was last seen well [at home/in hospital/elsewhere] at exactly/approximately ####:#### 

on ####/####/#### and her symptoms were noted at ####:#### on ####/####/####. 

OR 

She was well when she went to bed [at home/in hospital/elsewhere] at exactly/approximately 

####:#### on ####/####/#### and her symptoms were noted on awakening at ####:#### on 

####/####/####. 
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Her symptoms included #### [details of neurological deficit]. 

 

She presented to the RAH and a Code Stroke was #### activated. She was 

[alert/drowsy/obtunded/comatose]. Her neurological deficits were #### and the NIHSS score 

was exactly/approximately ####. The patient could #### walk. She was in [cardiac rhythm] 

with a heart rate ####, blood pressure ####, temperature #### C and blood glucose level 

#### mmol/L. INR/other clotting assay was ####. 

[Include any additional relevant information regarding physical examination/symptoms at 

presentation here] 

 

A CT scan was performed at the RAH/FMC/LMH/other at ####:#### on ####/####/#### 

and demonstrated [insert key findings from CT scan; including any vessel occlusion sites; 

add information from CT perfusion if performed including DT3 lesion and CBF<30% core 

volume; include information regarding large vessel stenoses as relevant to stroke aetiology]. 

 

Intravenous thrombolysis was commenced at ####:#### on ####/####/#### with 

alteplase/tenecteplase [dose]. NIHSS immediately prior was #### or unchanged. 

OR 

Intravenous thrombolysis was not performed due to ####. 

 

She proceeded to endovascular thrombectomy at ####:#### under conscious 

sedation/general anaesthesia with [retrieval device type] with groin/carotid/wrist puncture at 

####:####. NIHSS immediately prior was #### [or unchanged]. A retrievable clot was 

identified in the ####/not identified. Reperfusion was #### achieved at ####:#### with 

resultant TICI #### flow. [add additional information regarding failed attempts, access site 
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change (to wrist or carotid), multiple passes, stenting, antiplatelet or intra-arterial agent 

administration, anatomical issues, embolization into new territories or other intra-operative 

complication] 

OR 

She was deemed unsuitable for endovascular thrombectomy due to ####. 

 

Reperfusion therapy was performed without complication. 

OR 

Reperfusion therapy was complicated by [e.g. sICH, other extracranial haemorrhage, 

angioedema; include time of onset, symptoms and subsequent management and outcome 

here.] 

 

Follow-up MRI/CT was performed on (####/####/####) and revealed ####. 24-hour NIHSS 

score [if TPA/EVT] was ####. 

 

[Insert any additional information relevant to admission and/or discharge and/or ongoing 

management] 

 

Stroke aetiology work up: 

- ECG (####/####/####): #### 

- Holter monitor/Cardiac telemetry (####/####/#### to (####/####/####): #### 

- Transthoracic echocardiogram (####/####/####): #### 

- Transoesophageal echocardiogram (####/####/####): #### 

- Carotid doppler ultrasound (####/####/####): #### 

- Stroke related blood tests: 



 

 

230 

230 

  - HbA1c: ####% 

  - LDL ####, HDL ####, TGL #### 

- Other [DSA, LP etc] (####/####/####): #### 

 

Issues during his admission included: 

# #### 

[insert details DRPIMCO – diagnosis, risk factors, presenting symptoms, investigations, 

management, complications, outcome] 

 

# #### 

[insert details DRPIMCO – diagnosis, risk factors, presenting symptoms, investigations, 

management, complications, outcome] 

 

[Audit collects data on DVT/PE/pressure ulcers/UTI/pneumonia/non-reperfusion therapy 

sICH (if sICH, date and time)] 

 

Her final diagnosis was a left/right/bilateral mild/moderate/severe ischaemic 

stroke/intracerebral haemorrhage [with or without intraventricular extension and 

hydrocephalus and estimated volume] affecting the #### cerebral artery territory/location 

due to ####. 

 

She was referred back to FMC/LMH/other at ####:#### on ####/####/#### for #### care 

with an mRS of #### and a NIHSS of ####. Neurological examination at the time of transfer 

showed ####. 

OR 
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She was discharged to home/residential care/rehabilitation/other hospital/new residential 

care/relatives’ home/residential TCP on ####/####/#### with an mRS of #### and a NIHSS 

of ####. Neurological examination at the time of discharge showed ####. 

OR 

She [was managed with palliative care from ####/####/#### and] died at ####:#### on 

####/####/####. 

 

Management plan: 

1. #### [Medication changes and timing + reasons including addition of secondary stroke 

prevention measures] 

2. #### [Follow up tests] 

3. #### [Follow up appointments] 

4. #### [Driving status/recommendations] 

 

Thank you for your ongoing care. 

 

____________________________ 

 

Additional data for audit purposes: 

Stroke onset: 

- Location (#### postcode; home/RAH/other) 

 

Transfer/transport 

- Method of arrival: ambulance/walk-in/private car/hospital transfer/road retrieval/air 

retrieval 
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- Hospital transfer: Y/N (hospital name and reason for transfer = possible 

tPA/ICU/endovascular Rx/Stroke Unit Care/neurosurgery/tertiary diagnostic tests; admission 

to primary hospital at ####:#### on ####/####/####; IV tPA prior to transfer = Y/N (type, 

#### on ####/####/####; telemedicine = Y/N) 

- Ambulance arrival: SAAS (ID ####): time called ####:####, dispatched ####:####, arrived 

at patient ####:####, depart scene ####:####, arrive hospital ####:####; ambulance on 

bypass Y/N/unknown; ROSIER: Y/N (insert score) if >=1 ACT-FAST done? Y/N 

(positive/negative) 

- Non-SAAS acute arrival : ROSIER: Y/N (insert score) 

 

Pre-stroke risk factors and morbidity predictors: prior stroke (####/####/####, stroke 

subtype); prior TIA (####/####/####), obesity, hypertension, diabetes mellitus, 

dyslipidaemia, rheumatic heart disease, coronary heart disease, peripheral vascular disease, 

LVF/CHF, renal disease (eGFR ####), proteinuria, dialysis, Afib/flutter (prior to this stroke? 

Y/N; paroxysmal/permanent), active smoker, previous smoker, illicit drug use (details, incl. 

route), EtOH (#### standard drinks per day, binge pattern (>6 standard drinks), binge <24 

hours prior), AIDS, active malignancy (details, metastases), dementia, liver disease 

(mild/mod/severe), peptic ulcer disease, DM microvascular complications, COPD, 

connective tissue disease, INR #### and date if on warfarin prior to presentation 

 

Acute management data 

- Admission to Stroke Unit: Y/N 

- Antithrombotic commenced ####:#### on ####/####/#### 

- DVT prevention: LMWH/SCDs/therapeutic anticoagulation 
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Rehabilitation data 

- Physio assessment ####:#### on ####/####/#### (contraindicated/patient refused/not 

documented), 

  - Treatment commenced by mobilisation (sitting/standing/walking) ####:#### on 

####/####/#### (back to baseline/refused/comatose/palliated/no reason documented) 

  - A rehabilitation goal was #### documented 

- Risk factor modification advice: Y/N (cognitive impairment/impaired 

communication/refused/palliative care/other/unknown); 

- Carer assessment: Y/N (no carer/not discharged home/refused/complete recovery/not 

documented) 

   - Training Y/N (no carer/not discharged home/refused/complete recovery/not documented) 

- Swallow screen: Y/N (####:#### on ####/####/####; #### passed); medication prior to 

swallow screen: Y/N 

- Formal speech path assessment: Y/N (####:#### on ####/####/####) 

- Stroke Care Plan: Y/N (####:#### on ####/####/####) (not discharged home/refused/not 

documented) 

 

 

 

 

 

 

 

 

 




