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Abstract

The goal of this research is to analytically optimise a Household Energy System

(HES), consisting of solar PV generation and energy storage, such that the house-

hold’s annual energy cost is minimised for a given capital investment. The house-

hold’s annual energy cost is shown to depend only on the amount of energy it is

supplied from the grid, called grid sourced energy (GSE). Note if it is assumed that

PV generation will first be used to supply the load, then it can be shown that any

excess energy the PV system would feed-into the grid is related to the grid sourced

energy (GSE).

The analytical solution for optimal HES size is derived from two equations: i) a

closed-form equation for the GSE in terms of storage capacity for a fixed PV rating,

and ii) an estimation equation of the sensitivity of the GSE to variations in PV

rating.

The relationship between GSE and storage capacity, for a fixed PV rating, is

found by identifying that the GSE is a piecewise-linear function of storage capacity,

under the given assumptions. A piecewise-linear function can be expressed, in closed

form, as a finite series where the series partial sums consists of both a constant term

and a variable term (storage capacity). For the relationship between the GSE and

storage capacity these constant terms are called the critical capacities and are found

using a technique developed in Chapter 2. This technique and the piecewise-linear

equation is validated against a conventional numerical approach and the two meth-

ods are shown to produce identical results. However the piecewise-linear equation

provides a faster computational solution compared to the conventional approach.

The critical capacities identified in Chapter 2 also provides analytical insight into

the trade-off between storage capacity and annual energy cost for a given PV rating.

There currently does not exist a closed-form equation between GSE and PV rat-

ing and hence no closed-form equation exists for the sensitivity of GSE to variation

in PV ratings. This sensitivity is important since it can be used to find the optimal

HES size for a given investment. However by using the GSE to storage capacity

equation and the critical capacities, an equation is constructed in Chapter 2 which

describes the GSE to PV rating relationship for a discrete set of PV ratings. By

using this constructed equation and the sensitivity of GSE to variations in PV rating

can be estimated for a given set of assumptions.

The GSE to storage capacity relationship and the sensitivity of the GSE to

v



vi Abstract

variations in PV rating can be combined to derived an equation which estimates the

optimal HES size, for a given investment. The estimation of the optimal HES size

is validated against the conventional search based solutions and it is shown that the

approximation provides a reasonably accurate but computationally faster solution.

The estimation equation can also provide useful insights into the sensitivity of the

optimal HES size to variations in the cost parameters.
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Glossary ix

Glossary

Benefit The reduction in the household’s annual electricity bill due to the use of PV

generation and/or energy storage. The sum of both: i) the cost saving from

GEO and ii) the income from GFI. Commonly normalised to the household’s

annual energy cost such that a benefit of 1 pu means the household has no net

cost for purchasing energy, noting there is still the capital cost of their HES

system.

CCA (Critical capacity analysis) This is the main proposed method in this

thesis. Critical capacities are identified from the net generation time series

and are used to determine the trade-off between storage capacity and GSE.

Critical capacities The combination of the load critical capacities and the gener-

ation critical capacities.

Generation critical capacities The storage capacities associated with breakpoints

on the GFI versus storage capacity curve.

GEO (Grid Energy Offset) The combination of energy sourced from the HES,

i.e. PV generated energy and stored energy, which is supplied to the load and

offsets the need for GSE (grid sourced energy).

GEOS The component of Grid Energy Offset from the stored energy. Note this

stored energy was generated by the PV system.

GEOPV The component of Grid Energy Offset directly from PV generation.

GFI (Grid feed-in) Energy which is sold to the grid at times when both: i) load

power is satisfied, and ii) storage is full.

GSE (Grid Sourced Energy) The portion of a household’s load energy which is

sourced from the power grid. In a HES the GSE refers to the remaining load

energy not supplied by GEO.

HES (Household energy system) This refers to the combination of PV gener-

ation and energy storage. The HES size refers to a given combination of: i)

peak PV power rating (kWp) and ii) energy storage capacity (kWh).

Household Annual Energy Cost The cost the household pays to purchase their

annual load energy from the grid.



x List of Symbols

Load critical capacities The storage capacities associated with breakpoints on

the GSE versus storage capacity curve.

MBI (Maximum Benefit per Investment) For a given capital investment there

is an optimal HES size resulting in the maximum reduction in the household

annual energy cost, i.e. the maximum benefit.

SoC The state of charge of storage. This state of charge refers to the amount of

energy remaining in the storage device. This can be expressed in kWh or as

a percentage of the nominal storage capacity. The nominal storage capacity

refers to when storage is full, when no more energy can be stored.

USE Unserved Energy refers to the percentage of annual load energy demand

which is not supplied during a given year. In the literature this is sometimes

called either Loss of Load Expectation (LOLE) or Expected Energy not Sup-

plied (EENS).

List of Symbols

Sign Description Unit

B[Eh,Ef ] The household benefit (annual “profit”) for the given

HES size, note Eh and Ef are in bold to represent that

they both functions of [Es, P ].

$

CE Price of storage capacity per kWh. $
kWh

CP Price of PV per kWp.
$

kWp

Ca A household’s annual energy cost. $

EL[Es, P ] The total load energy supplied by the critical capacities

larger than the given storage capacity Es.

kWh

EU [Es, P ] The total load energy supplied by the critical capacities

smaller than the given storage capacity Es.

kWh

Ef [Es, P ] GFI for storage capacity Es and PV rating P . kWh

Eg[Es, P ] GSE for storage capacity Es and PV rating P . kWh

Eg[Es, P0] The GSE (Eg) in terms of the given storage capacity

(Es) for a fixed PV rating P0. The Eg[Es, P0] curve

refers to the trade-off curve between GSE and storage

capacity for a fixed PV rating.

kWh

Eh[Es, P ] Total energy supplied to the load by the HES for storage

capacity Es and PV rating P .

kWh

En(t) The net generation energy time series i.e. difference be-

tween the generation and load time series.

kWh



List of Symbols xi

Sign Description Unit

Es Energy storage capacity (kWh) kWh

Eg0[P ] The GSE for a given HES size if the contribution of

storage capacity is ignored, also called GEOPV .

kWh

G(t) The generation power time series for a given location. kW

G1 The total annual energy generated per kWp of PV rat-

ing.

kWh

I[Es, P ] Capital investment into a HES for storage capacity Es

and PV rating P .

$

L The household’s annual load energy. kWh

L(t) The load power time series for a given household. kW

P PV rating. kWp

PVL The theoretical upper bound of PV rating which causes

the critical capacities to reach their minimum magni-

tudes and list length (number of critical capacities).

kWp

S(t) The current SoC time series considering the limits of

the storage device.

kWh

S ′(t) The current SoC time step ignoring the limits (ful-

l/empty) of the storage device.

kWh

C[P ] The list of critical capacities for PV rating P , sorted in

descending order.

kWh

λ The Lagrange multiplier.

cf Price of selling energy to the grid. Also called the grid

feed-in tariff.

$
kWh

cg Price of purchasing grid energy. Also called the grid

supply tariff.

$
kWh

cx The critical capacity at index (x) in the critical capacity

list, note this list is sorted in descending order.

kWh

n[Es, P ] A given index in the C[P ] list of critical capacities for

PV rating P where n is such that cn ≤ Es for the chosen

storage capacity Es.

nopt[P ] The index in the critical capacity list for PV rating P

where the critical capacity at this index is the optimal

storage capacity associated with maximum benefit for

a given PV rating or investment.
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2 Chapter 1. Introduction

1.1 Objective

The falling cost of PV systems [1] and battery storage [2,3] has made the combination

of PV generation and energy storage an affordable option to reduce a household’s

annual energy cost in exchange for a capital investment. A challenge is selecting the

optimal sizes of both the PV rating and storage capacity to minimise the annual

energy cost for a given capital investment and the focus of this research is to develop

analytical solutions for these optimal sizes.

The economic analysis presented is simple and does not consider: i) the return on

investment, ii) the net present value or iii) the levelised cost of energy. The optimal

annual energy cost refers to the smallest annual cost the household would pay for

their given energy demand for a given capital investment. Since a new method of

sizing storage is proposed the simple analysis provides a reference point to compare

this new method to existing methods.

1.2 Household Energy System (HES)

A household energy system (HES) describes the combination of PV generation and

energy storage which operates to reduce a household’s annual energy cost. The size

of the HES refers to a specific combination of PV rating (P ) and storage capacity

(Es) which defines its capital investment. The concept of a HES is illustrated in

Fig. 1.1a where it operates to supply the load and hence offset grid-energy require-

ments. Note the generation convention is used, hence positive power represents

generation and negative power represents load, and this convention will be used

throughout this thesis unless otherwise stated.

The capital investment I[Es, P ] of a HES described in (1.1) depends on the

combination of the PV cost and storage cost. The storage cost is given by the

storage capacity in kWh and the price (CE) per kWh. The PV cost is given by the

PV rating in kWp, which is the peak PV output under standard test conditions, and

the price (CP ) per kWp.

I[Es, P ] = Es × CE + P × CP (1.1)

The annual energy cost (Ca) of a HES, under the assumption of a single fixed

tariff for purchasing grid energy, is described by (1.2) where Ca depends on the

amount of energy purchased from the grid, Eg, called the grid sourced energy (GSE),

and the amount of energy sold to the grid, Ef , called grid feed-in (GFI). The fixed

grid supply and feed-in tariffs are respectively cg and cf . Note the symbols Eg and

Ef are both bold to represent that they are functions of the variables Es and P .

Ca[Eg,Ef ] = Eg[Es, P ]× cg − Ef [Es, P ]× cf (1.2)
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(a) (b)

(c)

Figure 1.1: Conceptual illustration of a household energy system (HES) and its
operation: a) the HES components, b) the energy flows within the HES and c) time
series of power flows using the chosen HES operating technique.

The GSE and the GFI both depend on the energy storage capacity Es and the

PV rating P and the focus of this research is to develop a closed-form equation for

Eg[Es] and Ef [Es] for a given P and to approximate the sensitivity of Eg[P ] and

Ef [P ] to variations in PV rating for a given Es. The development of the closed-form

equations depend on how the HES operates to supply the load. An example of the

HES and its operation is illustrated in Fig. 1.1b and Fig. 1.1c.

The energy flows within a HES is illustrated in Fig. 1.1b and are described by

the following:

1. GSE is purchased from the grid to supply the load that cannot be supplied by

either solar PV directly or from storage.

2. GFI is the excess PV generation that cannot be stored and consequently sold

to the grid.
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3. The component of grid energy offset directly from PV (GEOPV ) is the portion

of PV generation which directly supplies the load and offsets an equivalent

amount of GSE.

4. The component of grid energy offset from the stored energy (GEOS) is the

portion of PV generation which is stored and then supplied to the load at a

later time. The GEOS also offsets an equivalent amount of GSE.

The energy flows are shown by the shaded areas in the four power time series in

Fig. 1.1c. The four power time-series in Fig. 1.1c, in descending order, are: 1) the

load time series describing the power demand of the load, 2) the PV generation time

series describing the HES PV power generation, 3) the storage time series where pos-

itive power represents a flow of power into the storage and negative power represents

flows from storage, and 4) the grid power where a positive power represents a flow

from the grid (to load) and a negative power represents flows to the grid.

The two periods of positive PV generation, labeled period 1 and period 2, in the

illustrated time series can be used to describe the HES behaviour in Fig. 1.1c. Prior

to period 1, the storage is empty and there is no PV generation so load is supplied by

GSE, hence the grid power is positive. During period 1 the PV generation exceeds

the load and the excess energy is transferred to storage until storage is full. Any

remaining energy is then sold to the grid as GFI. Between period 1 and period 2,

with no PV generation then storage supplies the load until it is empty at which time

GSE supplies the load. During period 2, PV power does not exceed load power and

storage is empty. Hence GSE supplies the difference between PV power and the

required load. After period 2 the load is supplied by only GSE as there is no PV

generation and the storage is empty.

There is a fourth potential energy flow, not illustrated in Fig. 1.1b, which con-

nects the grid and storage allowing energy flow between these elements. However

this research does not consider this fourth flow as the assumption of a fixed energy

price means this energy flow does not assist in reducing the annual energy cost.

There are two key relationships between the energy flows in Fig. 1.1b which can

be derived since the fourth energy flow is ignored. These two relationships are as

follows:

1. The combination of GEOPV and GEOS describes the total amount of GEO

the HES provides (Eh), and the GEO is related to the GSE and the energy

consumed annually by the load (L) through (1.3a).

2. The GFI (Ef ) is related to the GEO and the annual amount of energy gener-

ated per kWp of PV (G1) through (1.3b), where EP [P ] is the annual solar PV

energy production.
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Eg[Es, P ] = L− Eh[Es, P ] (1.3a)

Ef [Es, P ] = EP [P ]− Eh[Es, P ] = EP [P ]− L+ Eg[Es, P ] (1.3b)

EP [P ] = G1 × P

There are many potential strategies for coordinating the energy flows in Fig. 1.1c.

For the analysis in this thesis the chosen strategy is that the HES will operate to

satisfy the load’s energy demand throughout the year and the energy will be supplied

from one of three sources, which in priority order are: i) the PV system if there is

sufficient solar irradiation for generation, ii) the storage device if there is sufficient

stored energy or iii) the grid-connection.

Fig. 1.1c demonstrates the priority order in period 1. The load is directly supplied

by PV energy in the form of GEOPV with any excess generation being used to first

charge storage until it is full and then any remaining energy is sold to the grid.

Between period 1 and period 2 there is no PV generation so load is first supplied

from the storage device until storage is empty and the grid supplies the remaining

load. In period 2 the PV generation supplies as much of the load as possible and

then the remaining load energy is supplied from the grid, since storage is empty

prior to this period.

The operation of a HES provides the household with a benefit, an amount of

income derived from the combination of selling energy to the grid and from offset-

ting the need to purchase grid energy. An optimal HES sized which minimize the

annual energy cost also describes the optimal HES size which maximises the benefit.

Hence the HES optimisation of finding the minimum annual energy cost for a given

investment is equivalent to finding the maximum benefit for a given investment.

The benefit (B) is described in (1.4) as the savings derived by avoiding grid energy

consumption (Eh × cg) and the income from selling energy to the grid (Ef × cf ).

B[Eh,Ef ] = Eh[Es, P ]× cg + Ef [Es, P ]× cf (1.4)

Note in B the symbols Eh and Ef are in bold representing that they are functions

of the variables Es and P . The remainder of the thesis will use this notation, when a

function’s terms is written in bold then that terms is itself a function of the variables

Es and P .

The remainder of this thesis will focus on the benefit as the resulting plots of

benefit to investment are simpler to understand since benefit is always positive,

while total annual energy cost can transition from positive to negative.
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1.3 Literature Review

The literature review shows how the HES, the focus of this thesis, fits within the

broader area of energy storage sizing. The three main aspects of energy storage sizing

are: i) the location of energy storage (Section 1.3.1), ii) the application or function

of energy storage (Section 1.3.2) and, iii) the technique used to select storage size

(Section 1.3.3). A summary of these aspects and examples of their content is seen

in Fig. 1.2.

Figure 1.2: A summary of the three main aspects of storage sizing and for each
aspect a number of examples are listed.

Tables 1.1 and 1.2 categorise literature relevant to these three topics prior to

their discussion. Firstly, Table 1.1 lists literature references relative to the location

and application of storage. Secondly, Table 1.2 categorise storage sizing techniques

depending on the cost function and optimisation method.

1.3.1 Energy Storage Location

Energy storage in power systems can be located at four distinct levels: i) generation,

ii) transmission, iii) distribution and, iv) load, as shown in Fig. 1.3. At each of these

levels there is the potential to install storage for one or more of the applications

discussed in Section 1.3.2.

Figure 1.3: A simplified overview of a power system, where energy storage may be
installed at different levels in the network. The load refers to consumer (e.g. a
household or a industry customer), who have a demand for energy and may have
embedded generation such as solar PV.

The generation level refers to main grid-connected generation and includes con-

ventional sources of generation (e.g. coal, gas) and the intermittent sources of gen-
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eration (e.g. large scale wind or solar etc). The goal of storage at this level is to

smooth the variation in renewable generation and allow generators to produce a

controllable output, e.g. by temporally shifting intermittent generation.

At the transmission and distribution levels, storage can be used to increase the

effective capacity of parts of the network. The transmission/distribution level stor-

age can provide a source of effective generation at a point in the network that can

be scheduled to reduce demand on upstream network elements, such as transform-

ers and transmission lines, that may otherwise be overloaded, thereby avoiding or

deferring upgrades to these elements, as seen in [4–6].

The load level consists of a power demand, and may also include a source of

embedded generation (e.g. PV generation for a HES) and/or a storage element.

The use of storage at this level can function as part of a HES which reduces the

household’s energy cost by temporally shifting intermittent generation. Other func-

tions at this level could include reducing the household’s peak power demand if their

energy retailer charges additional fees for peak consumption, such as in [7, 8].

1.3.2 Energy Storage Application

The four broad applications of energy storage are:

1. Peak demand reduction

2. Energy arbitrage through time shifting intermittent generation (the focus of

this thesis)

3. Ancillary services, including voltage control, frequency control and synthetic

inertia.

4. Backup power

Storage for peak demand reduction is located on the demand side of the network

element. Energy is stored when the demand is below a threshold and it supplies

energy when demand is above a threshold. The objective for this application depends

on where the storage is installed. At the transmission or distribution level, storage

can avoid or defer network upgrades by reducing peak demand on network elements,

such as in [4–6]. At the load level it can reduce peak demand charges, such as in [7,8].

Energy arbitrage involves time shifting intermittent generation. In the context of

a HES, the storage device is charged when output from the intermittent generation

source is high and it supplies energy when the output from the source is low. This

can also apply to larger scale intermittent generators (e.g. wind) seeking to smooth

out their net output, such as in [9]. The objective for this application is to leverage

the difference in energy cost at different times (energy arbitrage) to obtain a higher

value from the intermittent generation, since the output of an intermittent generator

may be high when energy cost is low and vice-versa.
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The ancillary services include providing voltage, frequency and synthetic inertia.

Voltage or frequency control involves installing additional control elements on the

storage device to allow it to provide this functionality, such as in [10]. For volt-

age control an automatic voltage regulator is fitted to the storage device to control

the reactive power output from the storage medium via its grid-connected power-

electronic converter so as to regulate the voltage at an appropriate point in the

network. This may be useful in distribution feeders with high levels of embedded

PV generation which are subject to voltage fluctuations due to variations in solar

irradiance. For frequency control an automatic frequency regulator, with an appro-

priate droop setting, is fitted to the storage device to control the (net) power output

from the storage device to assist in the control of system frequency. The behaviour

is similar to that of a governor fitted to a synchronous generator. Synthetic inertia

involves storage momentarily changing power output to prevent rapid changes in

frequency, such as in [11]. It is assumed that the suppliers of such ancillary services

will be remunerated for providing these services.

Storage for backup power maintains maximum charge and is discharged only

when energy cannot be sourced from the grid connection and is similar to an emer-

gency power supply. The objective for this application is to minimise both the

occurrence and duration power loss. This value of backup power providing by stor-

age has received little separate attention and is commonly considered alongside a

different application, such as in [12] where the reduction of wind spillage (time

shifting intermittent generation) is considered in combination with back-up energy.

Summary of the Literature Concerning the Location and Application of

Energy Storage

References to literature about storage location and its application are shown in

Table 1.1. Since there is significant overlap for the storage application at both

the transmission and distribution levels, these are combined into a single group in

Table 1.1. The column of “not specified” refers to studies where the location of

storage is either not specified or if the technique could be applied to any level of

storage.

Table 1.1: Literature references about energy storage application at different levels
in the network.

Application Generation Trans. &
Dist.

Load Not
specified

Peak demand
Reduction

[4–6] [7, 8]

Temporal shifting
intermittent
Generation

[12–21] [6] [7, 22–30] [31–35]

Ancillary services [9–12,36–38] [4]
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1.3.3 Storage Sizing Techniques and Objectives

Table 1.2 categorises literature on sizing techniques according to costing and opti-

misation methodologies.

Fig. 1.4 illustrates the storage sizing process and highlights the areas in which

this thesis contributes. The first row in the figure is a flow chart showing how

storage sizing starts with time-series data and through analysis results in a desired

solution. The second row depicts examples of commonly used figures in each stage

of the process. The last row provides examples for implementing each process.

Fig. 1.4 is best described in reverse, starting with the solution. The goal is to

specify storage size which satisfies a chosen objective under a range of assumptions on

how storage will operate. When storage is operated to shift intermittent generation,

such as in this thesis, the solution will involves a trade-off between storage capacity

and generation size. The desired objective can be either: i) to minimize cost such

as in [5, 6, 25, 26, 32], or ii) to achieve a desired technical characteristic such as

minimising peak power demand as in [4].
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Figure 1.4: Overview of literature topics. The first row depicts the storage sizing process. The second row depicts each step in this process using
a generic plot. The third row shows examples of how each process is implemented.
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To find this solution, an optimisation algorithm or technique is used to find the

optimal solution. The selection of the optimisation algorithm has been a significant

focus in the literature. Commonly a range of combined storage sizes and generation

sizes are considered. The optimal combination is found by examining the perfor-

mance of each combination based on a given set of criteria, this performance is

commonly to minimize the required grid sourced energy (GSE) such as in [4,13,22]

and also in this thesis. The performance of each storage and generation combination

is found by processing the time series data.

The processing of the time series data has received little attention in the liter-

ature. This commonly involves extracting the performance (GSE) for the selected

combination of generation size and storage size by processing the time-series data.

The common method seen in the literature involves iterative techniques where the

GSE of each storage/generation combination is found by simulating the state of

charge (SoC) of storage at each time step. The main focus of this thesis is to de-

velop an improved technique for processing this time-series data to extract the GSE

information. The goal is to simplify the optimization algorithm.

Finally the time-series data in Fig. 1.4 is derived from either historical data or

from a stochastic model.

Summary of Review

Table 1.2: Summary of the literature references about the objective functions and
optimisation techniques used in storage sizing studies

Optimisation Techniques
Objective function Math.

Optim.
MILP MILNLP MOLP Misc.

algorithm
Benefit maximisation [5, 6, 23,

25,26,32]
[10,19] [28] [8] [7]

Cost recovery [16] [33]
Levelised cost of en-
ergy

[17]

Net Present value [14,22,30,
31]

[27,29]

Function Specific [4, 15,24] [11,18,20,
34,35,37]

Table 1.2 categorises literature references according to the objective function

and optimisation method used to determine storage size. Note the references in this

table have used the iterative methods to process the time series data. This is the

simplest process to understand but has both: i) higher computational cost and, ii)

makes it difficult to obtain insight into the potential solution when compared to

the new methods developed in this thesis. There are techniques which do not use

iteration, such as [9,12,21,33,36,38] which use frequency response analysis in their
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storage sizing algorithm.

The following describes the columns (techniques) and rows (cost objective) seen

in Table 1.2.

The various techniques are:

1. Mathematical optimisation - these describe a broad range of techniques. How-

ever they all have a single optimisation objective, usually cost, and are subject

to a number of constraints. An example of this is seen in both eq. (1.4) and

in Chapter 4 by (4.2).

2. MILP (mixed-integer linear programming) - is a specific form of mathematical

optimization where both: i) some (or all) constraints are assumed to be integer

values and, ii) the other non-integer constraints and the sizing objective are

assumed to be linear. This technique may be used for representing the charging

or discharging state of storage using a binary number (an integer), such as

in [10]. Another case is given a mix of PV generation, storage and other

generating sources then the state of the other sources can be represented by a

binary number [19].

3. MILNLP (mixed-integer non-linear programming) - is the same as the above

with the exception that the objective function and constraints are assumed

to be non-linear. The reason why this technique may be employed instead of

MILP is when one of the constraints is no longer linear, for example in [28] the

cost of energy was assumed to be non-linear, where the tariff paid depended

on how much energy had previously been purchased from the grid.

4. MOLP (Multi-objective linear programming) - This is a form of mathematical

optimisation where there are, i) multiple optimisation objectives, and ii) the

objectives and constraints are assumed to be linear.

5. Misc. algorithm - This comprises a broad collection of algorithms that are

either novel or not commonly used in storage sizing. Examples of these tech-

niques include: i) particle swarm algorithm, ii) model predictive control, iii)

genetic algorithm, iv) artificial neural networks and, v) machine learning tech-

niques.

The various sizing objectives in Table 1.2 are:

1. Benefit maximisation - This describes the broad range of techniques which at-

tempt to maximise the income derived from the combination of the generation

source and storage while constrained by its capital cost. This analysis usually

considers optimising the annual benefit.

2. Cost recovery - The objective here is similar to the benefit maximisation how-

ever instead the amount of time until the system recovers its capital investment
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is minimised. This is either in the form of payback period, such as [16], or

other cost recovery factor, such as in [33].

3. Levelised cost of energy - The objective is to minimise the levelised cost of

energy which is the ratio of the lifetime cost to the total energy produced over

the lifetime. Note that storage cannot produce energy hence this levelised

cost of energy refers to the combination of both the generation source and of

storage.

4. Net Present value - This is an extension to benefit maximisation where the

income and cost for future years are converted to a present day value.

5. Function Specific - This row describes techniques which the solutions are not

optimal cost but rather are optimal for a given technical function. For example

in [11] the optimisation objective is to achieve a desired level of grid inertial

response by appropriately sizing storage.

The objective function employed in this thesis, in Chapter 4, is classified as

“Benefit maximisation using mathematical optimisation” (first row, first column in

Table 1.2). The literature shown in Table 1.2 iterate the demand time-series data

over a grid of generation and storage capacities. This thesis eliminates the need to

iterate through storage capacities. It is however still necessary to iterate over a set

of generation capacities. The advantage this provides is a greater understanding of

how the constraint of storage capacity affects the optimisation problem. Note that

while the objective function in Chapter 4 is specifically for the benefit maximisation,

the underlying process described in Chapter 2 (CCA) can be used for any of the

objective functions shown in Table 1.2.

1.3.4 List of publications

The concepts presented in Chapter 2 and Chapter 4 in this thesis have been presented

by the candidate and his advisers in the following publications:

1. B. J. Donnellan, W. L. Soong, and D. J. Vowles, ‘Critical Capacity Analy-

sis for Optimal Sizing of PV and Energy Storage for a Household’, in 2018

IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2018, pp.

5125–5132, doi: 10.1109/ECCE.2018.8557833.

Other publications produced during the development of this thesis are listed

below:

1. B.J. Donnellan, D.J. Vowles, and W.L. Soong, ‘A Review of Energy Storage

and its Application in Power System’, presented at the 2015 Australasian

Universities Power Engineering Conference (AUPEC), Sep. 2015.
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1.4 Contributions

This thesis contains three key contributions:

1. The recognition of the piece-wise linear (PWL) relationship between a house-

hold’s GSE and the storage capacity for a given PV rating.

2. The development of an analytical method which calculates the parameters

required to write the PWL function as a single closed-form equation between

GSE and storage capacity.

3. The derivation of an approximate optimal HES size which achieves the max-

imum benefit for a given capital investment using the closed-form equation

between GSE and storage capacity developed above.

1.4.1 Recognising the Piece-wise Linear Relationship

Previous work by [4,14,23] has presented plots of the GSE to storage capacity, shown

in Fig. 1.5, for a given PV rating but these works have not commented on the curve’s

features. These plots of GSE (or Unserved Energy (USE)) and storage capacity all

have a common shape. Note the USE of stand-alone HES is the counterpart of

the GSE of an grid-connected HES. Also the vertical axes in Fig. 1.5 have different

but equivalent terms to USE and hence GSE. These terms are: i) the loss of load

expectation (LOLE) and, ii) the expected energy not served EENS,) to describe the

USE.

The first contribution of this thesis is the recognition that GSE is a PWL function

of storage capacity and hence it contains two key features: i) linear segments where

the relationship between GSE and storage is defined by the slope of that linear

segment, and ii) breakpoints corresponding to values of energy storage where the

linear segments intersect and the slope changes. By calculating the energy storage

breakpoints and slopes of each linear segment it is possible to express the GSE and

storage relationship as a closed form equation.

Note this closed form equation between GSE and Storage capacity is applicable

to any form of non-controllable generation, e.g. PV or wind generation.

A canonical form for a single variable PWL function has been derived by [39,40]

which provides a closed form equation for a PWL function when both the breakpoints

and slopes of each linear segments are known.

1.4.2 Defining the Piece-wise Linear Relationship

The second contribution of this thesis is the development of the Critical Capac-

ity Analysis (CCA) method which identifies the energy storage breakpoints, called

Critical Capacities, of the GSE-Storage relationship and shows that the slope of the

linear segments varies by an integer amount at each critical capacity. The origin of
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Figure 1.5: Results from previous work presenting USE versus storage capacity
curves. These curve all appear to be piecewise linear however this has not been
identified in the respective studies. Sources: a) [14], b) [4], c) [15]
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the critical capacities is observed in a household’s annual net generation for a given

PV rating by plotting power versus energy time-series and noting the closed cycles

within this plot, discussed in Chapter 2, and these cycles represent the charging and

discharging of the storage. The critical capacities are found by modifying the rain-

flow algorithm which was originally developed for material fatigue analysis [41–43].

These critical capacities are sorted in ascending order and the linear segment be-

tween two critical capacities has a slope given by the index of the smaller critical

capacity. The closed-form equation developed using CCA is validated through a

case study where the GSE is found for a range of storage capacities and the closed-

form equation results are compared to the conventional simulation methods under

the same set of assumptions. Compared to the conventional simulation method

the CCA approach provides an improvement in computational speed and greater

analytical understanding of the relationship between GSE and storage capacity.

1.4.3 Approximate Optimal HES for Maximum Benefit per

Investment

By expressing the GSE-Storage function in a closed form for a given PV rating the

benefit of the HES is also expressed in a closed form in terms of storage capacity for

a given PV rating. For small values of storage capacity the GSE-Storage function

provides an approximation of the relationship between the change of benefit and

the PV rating. The third contribution of this thesis is to provide an approximate

optimal solution for the HES size which maximises the household benefit for a

given capital investment. This approximate solution uses the closed-form equation

between benefit and storage and the approximate equation between benefit and the

PV rating. The conventional approach used by [26,44–47] finds the optimal solution

by searching a number of HES sizes for the maximum benefit for each investment.

This thesis proposes an approximate optimal solution which estimates the index nopt

in the critical capacity list for a given PV rating which corresponds to the storage

capacity at which maximum benefit occurs for a given investment. The proposed

method derives an equation for nopt in terms of the cost/value of energy (cg and

cf ) and the capital costs (CE and CP ) which allows the sensitivity of the maximum

benefit to variations in these costs to be directly observed.

A case study is used to compare the approximate optimal solution to the exact

optimal solution obtained from the conventional search-based method used by [26,

44–47]. The case study compared the estimated and exact solutions for both the base

case and for variations in: i) the cost of energy, ii) the capital costs, iii) the load

data by considering a base case household and a number of different households,

and iv) the year of generation data. For the base-case household the estimated

method results was less than 1% different from the exact solution and the accuracy

was similar for the listed variations. An observation made is the existence of two
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key points in the optimal solution, point(A) which describes the PV rating at which

to begin investing in storage capacity to improve the benefit and point(B) which

describes the storage capacity beyond which further investment in storage does not

significantly improve the benefit. These two points are used to describe when the

household obtains the majority of their benefit from either offsetting their GSE or

from GFI. The advantage of the approximation method is its ability to provide a

fast estimate for the optimal HES size corresponding to maximum benefit for a given

investment. This may have applications for future work.

1.5 Thesis Structure

An overview of Chapters 1-4 and their connections is shown in Fig. 1.6.

The remainder of Chapter 1 discusses the assumptions made for the analysis in

this thesis and the case study data used to validate the proposed methods. Chap-

ter 2 will discuss the development of the Critical Capacity Analysis (CCA) method

used to derive the closed-form equation between GSE and storage capacity for a

given PV rating. Chapter 3 will discuss the key properties of the CCA method, its

benefits and will use the case study data to validate the CCA method by comparison

with the conventional simulation sizing technique. Chapter 4 derives the estimation

equation for the optimal HES size which provides the maximum benefit for a given

investment and will validate this estimation equation. Finally, Chapter 5 provides

the conclusions and identifies potential areas of further research.
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Figure 1.6: An overview of the various chapters and their connections.
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1.6 Assumptions

This research makes a number of assumptions on the HES operation and the eco-

nomics.

The assumptions on the economics and sizing of HES are:

1. The PV and Storage capital costs of the HES are linearly proportional to their

rating and the baseline values are shown in Table 1.3.

2. There is a fixed single tariff for buying grid energy and a fixed single tariff for

selling energy to the grid, and the baseline values of these tariffs are shown in

Table 1.3.

A sensitivity study of the cost in Table 1.3 is performed in Section 4.6.2

Table 1.3: Summary of the HES capital costs and grid tariffs.

Capital costs Grid Tariffs
Storage capacity (CE) 1000 $/kWh Grid supply tariff (cg) 0.35 $/kWh

PV (CP ) 1500 $/kWp Grid feed-in tariff (cf ) 0.06 $/kWh

The assumptions on the HES operation are:

1. The storage device has the following power limits: it is assumed storage can

supply the maximum household power demand and absorb the maximum PV

power output (See Section 3.1.1: Power limit).

2. The storage device is assumed to be full at the start of the time series. (See

Section 3.1.2: Initial SoC)

3. Transferring energy into and out of storage is 100% efficient. (See Section 3.1.3:

Efficiency)

4. No minimum or maximum state of charge limit of the storage device is con-

sidered, that is it can operate from 0% to 100% of its nominal capacity. (See

Section 3.1.4: SoC limits)

5. It is assumed that the battery capacity does not degrade over time due to

aging effects.

The full detail of these assumptions is discussed in Section 3.1.

1.7 Case Study Data

The CCA method and the estimation of optimal HES size are validated against the

conventional simulation technique using a number of different household’s load data

and a number of different years of generation data. The details of this data and the
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base case selected as the first case presented to illustrate the concepts and features

of the CCA and estimation method are outlined below.

The Household load time series were obtained from the “Smart grid smart

city” [48] trial of smart meters for households located in Sydney for the year 2013.

The generation data was derived from solar irradiation data from the Australian Bu-

reau of Meteorology one minute interval solar irradiation datasets [49] for the year

2005. Note the closest location with available irradiation data was Wagga Wagga

which is approximately 460 km away from the load data (Sydney) and hence there

may be differences between the weather in Wagga Wagga and the weather in Syd-

ney. The year of generation data and the year of load data are difference due to the

limited data available when this data was accessed. Hence any correlation between

weather and load data cannot be considered for this case study however this does

not have an impact on the CCA method or the proposed optimal HES sizing.

The solar irradiation data was processed using the PV model from the software

“SAM” [50] which converted the solar irradiation time series into a generation time

series for a 1 kWp PV system. The generation time series can then be scaled by

multiplying by the desired PV rating to obtain the generation data for that given

PV rating. The panel were assumed to be facing north and tilted (relative to ground

level) by the angle of latitude for Wagga Wagga of approximately 35.1 degrees. The

SAM software provided a default power loss of approximately 10% of PV output,

which was separated into approximately 4% for the inverted and approximately 6%

for the panels (for effects such as shading, soiling and connections). Hence for a 1

kWp panel the maximum output possible was 0.9 kWp.

1.7.1 Normalization

When discussing case study data, the HES size is normalized based on the load data:

1. The PV rating is normalised such that 1 pu corresponds to the PV kWp rating

such that the annual energy produced is equal to the annual average household

demand.

2. The storage capacity is normalized such that 1 pu corresponds to the daily

average energy consumed by the household which is the total annual energy

consumed divided by 365.

1.7.2 Base Case Household

The generation and load data for the base case household is shown in Fig. 1.7.

The generation time-series shown is for a 5.4 kWp or 1 pu PV system and with the

assumed 10% loss the maximum PV output is 4.86 kWp. The year of this data is 2005

and is taken from [48,49]. The household’s annual load is approximately 8.6 MWh,

hence 1 pu storage capacity would be 23.5 kWh, and the annual generation per kWp
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is approximately 1.6 MWh, hence the annual energy production of a 5.4 kWp PV

system would equal the annual load. This data has 30 minute time resolution and

hence for the year there is 17,520 points of data for both generation and load.

(a)

(b)

Figure 1.7: The generation and the load time series data for the base case household
which is in the southern hemisphere, (a) for one year, (b) for two weeks in winter.
The dotted (brown) curve shows the PV rating of 5.4 kWp and the dashed (green)
curve shows the maximum PV power output (including the 10% loss).

The trends of the generation data is shown by averaging for different seasons

of the year and the trends of load is shown by separating the average daily trend

between weekdays and weekends.

The base case household residents are generally not at home during the day on

weekdays and hence are likely to have higher activity on weekend, i.e. higher energy

demand. The daily variation of load in the weekends versus weekdays in Fig. 1.8

plots each day of the year on a single 24 hour period with the blue lines representing

the 365 individual days. The black line represents the annual average at each time

step and the red lines represents one standard deviation from this average. The

weekdays have a large peak in the morning around 7am, the load is mostly flat

during the middle of the day and then peaks again in the early evening when the
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(a)

(b)

Figure 1.8: Load data for every weekend and weekday overlaid onto a single day. a)
Weekdays, b) Weekends. A summary of the plot key parameters i shown in their
adjacent tables which highlights the difference between weekday load and weekend
load.

residents return home. The weekend behavior is somewhat different, with a smaller

morning peak with a larger variation in the mean during the midday period and a

peak in the afternoon. Power consumed during the period from early morning to

late afternoon is somewhat higher on weekends compared to weekdays.

The solar irradiation and hence generation data varies seasonally, e.g. there is

less sunlight in winter compared to summer. The daily variation of generation data

for the four seasons is considered in Fig. 1.9 where the blue, red and black lines have

the same meaning as in Fig. 1.8. The average lines and one standard deviation lines

vary rather significantly between seasons, for example in summer the average midday

peak is approximately 4 kW compared to the winter average peak of approximately 3

kW. Examining the standard deviation lines for each season reveals that both winter

and autumn have much higher variability in the data, i.e. each day can vary rather

significantly compared to the other days during these seasons, which is likely due

to the greater occurrence of cloudy days during these seasons. Thus in summer and

spring the PV output is likely to be fairly consistent between each given day while

during winter and autumn the PV output will vary rather significantly between each

day.
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Figure 1.9: Generation data for each season in the year overlaid onto a single day
for a 5.5kW PV rating, a) Summer, b)Autumn, c) Winter, d) Spring. A summary of
the key parameters are shown in the adjacent tables which highlights the difference
between each season’s solar generation.
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1.7.3 Household Cases

The annual load data for a number of different households from [48] is shown in

Fig. 1.10. These smoothed curves are a rolling 7 day average showing the general

trends of the various households’ load. H1 refers to the base case household and H2

to H6 refers to the other households whose characteristics are detailed in Table 1.4.

Fig. 1.10 demonstrates two key features: i) the similarities between households, and

ii) the unique nature of the household loads.

The similarities of the household load behaviour is observed during the summer

months, with the peaks and troughs for all household loads occurring at approxi-

mately the same times which suggests there is a common trend in the load for the

households, e.g. households may all be using air conditioning during similar times.

During spring there is also similarities of the peak/troughs of the household loads.

During winter and autumn there appears to be a lower coincidence of the house-

hold peaks/troughs, e.g. some households have a peak while other households have

troughs. The key outlier in Fig. 1.10 is household H3, which has significantly higher

winter load compared to the other households and hence it is expected will require

a larger HES system.

Figure 1.10: Daily generation and load data over a year for various households using
5.5 kW of PV and a rolling 7 day average

Fig. 1.11 lists the total annual load of each household and shows the load duration

curve for each household indicating that households H1, H4, H5 and H6 have similar

annual load and similar load behavior. Household H3 has the largest annual load

and the largest load for 50% of the load duration curve while household H2 has the

smallest annual load and has the lowest load duration curve.



1.7. Case Study Data 25

Table 1.4: Details on the household loads. Dashed entries are unknown

House-
hold

Avg.
Daily
Load

Gas
Heat-
ing

Gas
Hot-
water

Gas
Cook-
ing

Home
in day-
time

Air Con.
Type

Num. of
Occu-
pants

H1 23.5
kWh

No Yes Yes No Split
System

4

H2 14.0
kWh

Yes No Yes No Split
System

2

H3 34.1
kWh

No No No No Ducted 4

H4 20.6
kWh

Yes No No No Ducted 3

H5 18.9
kWh

- - - Yes Split
System

-

H6 9.8 kWh - - - Yes Split
System

-

Figure 1.11: Load Duration Curves for the 6 household cases are shown. This curve
is summarised in the adjacent table which shows the kW amount that the households
load exceeds for i) 10%, ii) 50% and iii) 90% of the year.

1.7.4 Generation Years

The 6 different years of solar irradiation are shown using the generation-duration

curves in Fig. 1.12. For the given location the annual generation G1 varies between

1.5-1.7 MWh/kWp and the overall generation duration curves are similar with the

2002 year having a slightly higher generation output. The base case year is chosen

as 2005.

1.7.5 Base Case: Net Generation

The net generation power time series (i.e. generation minus load) for the base case

with a PV rating of 1.1 pu is shown in Fig. 1.13 with positive power being exported

to the grid and negative power being imported from the grid. Integrating the net

generation power time series provides the net generation energy time series which is
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Figure 1.12: Generation Duration Curves for the 6 different years of solar irradiation

Figure 1.13: Net generation power time series over one year for the household H1
with PV rating 1.1 pu

shown in Fig. 1.14.

Note the net generation energy in Fig. 1.14 falls below zero during the 2nd and 8th

month however this has no impact on analysis since storage is assumed to initially

be full as discussed in Section 3.1.2 shown in Fig. 3.4.

1.7.6 Base Case: Power-Energy loops

Plotting the power versus energy for the net generation time series (Fig. 1.13 against

Fig. 1.14) reveals loops which are seen in Fig. 1.15. The significance of these loops

are discussed in Chapter 2. The difference in energy between the start and end of

the lower half of each loop represents an important storage capacity, called a critical

capacity. These lower-half loops are the foundation for the CCA method used to
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Figure 1.14: Net generation energy time series for the household H1 with PV rating
1.1 pu

(a)

(b)

Figure 1.15: Power-energy plot of the net generation time series for 1 pu PV rating
demonstrating a) the entire time series, b) a shorter section of time

analyse and select the optimal HES storage capacity. Fig. 1.15a shows the energy-

power plot for the entire time series to illustrate the complexity involved with these

loops. Fig. 1.15b shows a short segment of the energy-power curve to show the detail

of these loops.

The marked points in Fig. 1.15b demonstrates an example of a critical capacity

for the given PV rating, where the energy change between the start and end of the
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lower part this loop is about 9 kWh. Note these loops are traversed in a clockwise

direction.
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The purpose of a HES is to reduce a household’s annual energy cost and this

cost reduction is called the benefit. As described in Section 1.2, this benefit depends

on the total energy which the household buys (GSE) and sells (GFI) from/to the

grid and there is a relationship between the HES size and the GSE and GFI. This

chapter derives two important equations:

1. The relationship between GSE and storage capacity.

2. The relationship between the GSE and PV rating.

The first equation is a closed-form expression for the GSE in terms of storage

capacity (Eg[Es, P0]) for a given PV rating (P0). It is used in Chapter 4 to estimate

the MBI. The second equation describes the relationship between GSE and PV

rating (Eg[Es0, P ]) for a given storage capacity (Es0) and is composed of three key

terms. These key terms are used in Chapter 4 to estimate the MBI.

The HES benefit in (1.4) contains two key components, the cost saving by avoid-

ing grid energy consumption (Eh × cg) and the income from selling energy to the

grid (Ef × cf ). Section 1.2 discusses these terms in detail and highlights that Eh

and Ef are related to the GSE (Eg) through (1.3). Hence the benefit can be written

in terms of: i) a single function which varies with HES size Eg[Es, P ], ii) the PV

rating, and iii) a number of other constants which are discussed later. The reason

for writing the benefit in this way is that a closed-form equation for the GSE allows

a closed-form equation for the benefit to be derived. Note the bold symbols for Eh

and Ef are used to represent that these terms are a function of storage capacity and

PV rating.

B[Eh,Ef ] = Eh[Es, P ]× cg + Ef [Es, P ]× cf (1.4 repeated)

The benefit equation can be rewritten in (2.1) which contains the GSE Eg[Es, P ],

the PV rating P and the constants: L is the energy consumed annually by the load,

G1 is the annual amount of generated energy per kWp of PV, cg is the grid supply

tariff and, cf is the feed-in tariff.

B[Eg] = (L− Eg[Es,P])cg + (G1 × P − L+ Eg[Es,P])cf (2.1)

A special case of (2.1) is when there is no GSE (Eg = 0) which implies that the

annual load is supplied by only the HES hence:

B[Eg = 0] = L× cg + (G1 × P − L)cf

In this case the benefit’s two parts are: i) the cost savings (L× cg), and ii) the

income derived from selling energy into the grid ((G1×P −L)cf ). The cost saving is

equal to the cost of annual load since the HES supplies all the load’s energy demand

(i.e. no GSE). The amount of energy available to be sold to the grid, at the feed-in



2.1. Conventional Simulation Analysis 31

tariff rate of cf , is equal to the total annual generation (G1 × P ) less the annual

energy supplied to the load (L).

As mentioned above, a closed-form equation for GSE implies a closed form benefit

equation. The GSE can be written as a closed-form equation for a given PV rating

(P0) and variable storage capacity (Es) in the form of Eg[Es, P0]. This closed-form

GSE equation is derived from the canonical expression of a piece-wise linear (PWL)

function and recognising that the GSE and storage capacity (Eg[Es, P0]) curve have

PWL properties for a constant PV rating. The recognition that the Eg[Es, P0]

curve contains PWL characteristics is a contribution of this thesis as discussed in

Section 1.4.1.

(a) (b)

Figure 2.1: Overview of the conventional and proposed analysis method, a) the
conventional analysis (simulation), b) the proposed analysis (CCA) solved using
either a heuristic-based algorithm or rainflow-based algorithm

The conventional analysis in [4,13–15,22–24,51] numerically estimates the Eg[Es, P0]

curve as illustrated in Fig. 2.1a where for a given generation and load time series,

the energy flow of storage and hence the state of charge as a function of time is simu-

lated for a list of chosen storage capacities to find the GSE for each storage capacity.

The proposed analysis derives an equation for Eg[Es, P0] which is defined by a set

of constants, called the critical capacities (CC), and an algorithm is developed to

find these critical capacities as illustrated in Fig. 2.1b. This algorithm analyses the

generation and load time series using either: i) a heuristics rules-based method or

ii) an adaption of an existing algorithm primarily used for material fatigue analysis

called the rainflow algorithm [41].

2.1 Conventional Simulation Analysis

The conventional approach calculates the GSE for a set of storage capacities, illus-

trated by Fig 2.2c, by simulating the time series of the state of charge (SoC) for each

storage capacity in the set, illustrated by Fig. 2.2b. The SoC simulation uses the net

generation time series which is the difference between the PV generation-power time

series and the load-power time series illustrated in Fig. 2.2a. In the net generation

time series, negative values represent energy required to be supplied from either the
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Figure 2.2: Summary of the conventional analysis to find the trade-off curve: (a) net
generation-power time series, (b) simulating the SoC, (c) the GSE versus storage
capacity trade-off

grid or storage and positive values represent energy which is either stored or sold as

GFI.

The SoC simulation for a given storage capacity is described in [4, 13, 22, 52] by

the mathematical expressions in (2.2) to (2.5). The limits on stored energy used in

this expression has maximum Smax = Es, where Es is the selected storage capacity,

and minimum Smin = 0, i.e. the minimum stored energy is an empty storage. Note

the SoC, S(t) can be normalised by the storage capacity.

S ′(t) = S(t− 1) + (G(t)− L(t))∆t (2.2)

S(t) =


Smin, for S ′(t) ≤ Smin

S ′(t), for 0 ≤ S ′(t) ≤ Smax

Smax, for S ′(t) ≥ Smax

(2.3)

Eg(t) =

{
Smin − S ′(t), for S ′(t) ≤ Smin

0, for S ′(t) ≥ Smin

(2.4)

Ef (t) =

{
0, for S ′(t) ≤ Smax

S ′(t)− Smax, for S ′(t) ≥ Smax

(2.5)

The SoC is simulated using a time-stepping method where the current SoC is

updated based on the past SoC and the maximum/minimum storage limit. The term

S ′(t) in (2.2) is the SoC for the current time-step (t) without applying either the

maximum/minimum storage limits and is found by summing the energy previously

stored (S(t − 1)) at time (t − 1) with the energy transferred into storage ((G(t) −
L(t))∆t) for the current time-step (t). By applying the storage limits to this non-

limited SoC (S ′(t)) as in (2.3) the SoC time series is found. If the non-limited SoC

(S ′(t)) is negative then the storage device is empty at time (t) and hence GSE occurs

as shown in (2.4), note the annual GSE (Eg) is the sum of Eg(t) across a given year.
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If the non-limited SoC (S ′(t)) is greater than the device’s storage capacity then the

storage device is full and hence GFI occurs as shown in (2.5). The annual GFI (Ef )

is the sum of the Ef (t) across a given year.

The simulation process in Fig. 2.2b is repeated for the entire set of storage ca-

pacities and the Eg[Es, P0] curve is plotted for each combination of GSE and storage

capacity in Fig. 2.2c. For example in Fig. 2.2b the storage capacity C0 is simulated

to produce the GSE value of GSE0 and this combination is plotted in Fig. 2.2c.

The Eg[Es, P0] curve is generally linearly interpolated between each selected storage

capacity and hence significant errors can occur if a small set of storage capacities is

selected, leading to a trade-off between accuracy and computational time.

Note the conventional approach follows the assumptions discussed in Section 1.6

such that: i) storage is initially assumed full (S(0) = Smax), ii) the storage is assumed

to be lossless (100% efficient), and iii) the power limits of the HES are ignored.

2.2 Proposed Critical Capacity Analysis Funda-

mentals

The proposed CCA method assumes that the Eg[Es, P0] curve, for a given PV rating,

has the features of a piece-wise linear (PWL) function and hence a closed-form

solution can be derived using the canonical form of a PWL function. To summarise

the definition of a PWL function from [39, 40], a curve of a single variable is PWL

if it consists of both: i) a number of linear segments with various slopes, and ii) a

number of breakpoints which describe the points of intersection between two linear

segments and hence the points at which the slope changes. The CCA method shows

that the linear segments of the Eg[Es, P0] curve has a step change in slope of minus

one (in the chosen per unit system) at each breakpoint. These breakpoints are called

critical capacities as they characterize the Eg[Es, P0] curve as illustrated in Fig. 2.3.

Figure 2.3: The Eg[Es, P0] curve from [15], noting EESN is equivalent to GSE. The
markup shows the linear segments (black) and breakpoints/critical capacities (red).
The original image in [15] is copyright ©2010, IEEE.

A formal proof that the Eg[Es, P0] curve is a PWL function has not been devel-

oped however the PWL nature of the curve can be seen in the literature, for example
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in Fig. 2.3 a markup of the results from [15] are shown to contain linear segments.

Note the literature has not commented on this PWL nature. The CCA method and

its PWL-based equation is validated against the conventional simulation approach

in Chapter 3 and both methods produce the same output which confirms the PWL

nature of the Eg[Es, P0] curve.

2.2.1 Deriving the Eg[Es, P0] Equation in Canonical Piece-

wise Linear (PWL) Form

Equation (2.6) from [39,40], describes the canonical form of a one-dimensional PWL

function with (N + 1) linear segments with (N + 1) slopes (J0, J1, · · · , JN), and N

breakpoints/critical capacities (c1, c2, · · · , cN) as illustrated for the Eg[Es, P0] curve

in Fig. 2.4.

Eg[Es, P0] = a+ bEs +
N∑
i=1

∆Ji|ci − Es| (2.6)

where:

a = Eg(0)−
N∑
i=1

∆Ji|ci| b =
J0 + JN

2
∆Ji =

Ji − Ji−1

2

Note (2.6) does not consider which linear segment contains the given Es, i.e. the

terms in the equation does not need to be evaluated between Ci to Ci+1, this is

due to the nature of the equation which is discussed later in (2.8). Equation (2.6)

depends on P0 since the list of critical capacities are valid for the given P0.

Figure 2.4: Illustrating the breakdown of the Eg[Es, P0] curve into linear segments,
where each segment is labeled by their slope J0 to JN and the critical capacities are
labeled c1 to cN .

In Fig. 2.4 each linear segment is labeled in descending order, beginning at JN

and ending in J0, and similarly the critical capacities are labeled in descending order.

The GSE in (2.6) is simplified by the following:
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1. ∆Ji =
1
2
for all i as the change in slope is minus one at each critical capacity

(for the chosen per unit system).

2. b = −N
2
, since the linear segment J0 has zero slope and linear segment JN has

−N slope.

3. a = Eg(0)− 1
2

∑N
i=1 ci since all critical capacities are positive then |ci| = ci.

Eg(0) is the GSE required when no storage is installed at the given PV rating,

i.e. given a HES with only PV generation (no storage) Eg(0) describes the amount

of load remaining after subtracting the energy supplied by the PV system (GEOPV

in Fig. 1.1). However Eg(0) also describes, for a given PV rating, the amount of

load energy which must be supplied through the combination of GSE and the stored

energy (GEOS in Fig. 1.1), for example if GSE is zero then storage supplies all of

the remaining annual load and hence GEOS equals Eg(0).

Eg(0) is found using the GSE at each critical capacity starting with zero GSE

at c1 and iterating up to find the GSE which occurs at zero storage capacity, such

that:

Eg(c1) = 0

Eg(c2)− Eg(c1)

c2 − c1
= −1 =⇒ Eg(c2) = c1 − c2

Eg(c3)− Eg(c2)

c3 − c2
= −2 =⇒ Eg(c3) = c1 + c2 − 2c3

Eg(c4)− Eg(c3)

c4 − c3
= −3 =⇒ Eg(c4) = c1 + c2 + c3 − 3c4

...

Eg(cN) =

(
N−1∑
i=1

ci

)
− (N − 1)cN

hence:

Eg(0)− Eg(cN)

0− cN
= −N =⇒ Eg(0) = NcN +

((
N−1∑
i=1

ci

)
− (N − 1)cN

)

Eg(0) =

(
N−1∑
i=1

ci

)
+ cN

Eg(0) =
N∑
i=1

ci (2.7)

Equation (2.7) reveals that Eg(0) is described by only the critical capacities for a

given PV rating, which highlights the importance of critical capacities. By com-

bining the equation for Eg(0) with the piecewise-linear function for GSE in (2.6) a
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closed-form equation for the GSE is derived for a fixed PV rating (P0) as follows:

Eg(Es, P0) = a+ bEs +
N∑
i=1

∆Ji|ci − Es|

Eg(Es, P0) =

(
N∑
i=1

ci −
1

2

N∑
i=1

ci

)
− N

2
Es +

1

2

N∑
i=1

|ci − Es|

Eg(Es, P0) =
N∑
i=1

1

2

(
(ci − Es) + |ci − Es|

)
(2.8)

The key component of (2.8) is the sum term 1
2
((ci−Es)+ |ci−Es|), which reveals

that the GSE is a linear combination of the critical capacities. For a given storage

capacity Ex all critical capacities less than Ex (ci < Ex) do not contribute to the

GSE as their sum term is zero and hence these critical capacities are said to be

“inactive”. All critical capacities greater than Ex (ci > Ex) contributes (ci −Ex) to

the GSE and these critical capacities are said to be “active”. The concept of active

and inactive critical capacities is significant when discussing how to find critical

capacities since active critical capacities indicate there are times within the year

when a given storage capacity is unable to supply load and hence when GSE occurs.

An alternative expression for the GSE is derived by considering a variable index

(n) where (ci − Es) > 0 for all critical capacities up to the index (cn) hence:

Eg(Es, P0) =
n∑

i=1

(ci − Es) for n such that c1 ≥ · · · ≥ cn ≥ Es (2.9)

The outcome of (2.8) is a closed-form expression for the GSE in terms of storage

capacity, for a specified PV rating, using only the list of critical capacities (C =

{c1, · · · , cN}) and the CCA method provides an algorithm to find these critical

capacities.

Note that critical capacities can share a common magnitude, for example ca =

ca+1, and the resulting GSE for storage capacities less than the shared capacity (ca)

will have a slope of 2, or to describe this generally, if M storage capacities share

a magnitude then the slope would change by M . For example consider in Fig. 2.4

if c2 was shifted left until it equaled c3 then the segment of the curve labeled with

J2 would have zero length and the curve would change from a slope of minus one

to a slope of minus three at c3. The GSE equation remains valid in this example

as the GSE at c2 equals the GSE at c3 and the derivation of Eg(0) would remain

unchanged.

2.2.2 Finding Critical Capacities

Critical capacities define the Eg[Es, P0] curve for a household at a given PV rat-

ing as observed in (2.8) and hence as illustrated by Fig. 2.5, critical capacities
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are an attribute of a household with a given combination of: i) load time series,

and ii) PV generation time series (for a given PV rating). Consider a household’s

net generation-power time series (Pn(t)) illustrated in Fig. 2.5a and the integral of

Pn(t) which describes the net generated-energy time series (En(t)) as illustrated by

Fig. 2.5b.

The power time series plotted against the energy time series in Fig. 2.5c reveals

loops resulting from the combination of: i) the availability of PV energy which could

be stored (positive net power) describing the loop’s upper-half (such as between

t2 and t3), and ii) the requirement of load when no PV generation is available

(negative net power) describing the loop’s lower-half (such as between t1 and t2).

The difference in the energy between the start and end of the loop’s lower-half

describes a critical capacity within that loop, as shown by the marked values c1 to

c3 in Fig. 2.5c. These critical capacities are found by applying either a series of rules

or applying the rainflow algorithm on the net generated-energy time series En(t).

The Eg[Es, P0] curve is plotted in Fig. 2.5d using the identified critical capacities

and the GSE equation (2.8).

Figure 2.5: Summary of the proposed CCA method used to define the Eg[Es, P0]
curve. (a) net generation-power time series, (b) net generated-energy time series,
(c) net generation-power versus net generated-energy, (d) the GSE versus storage
capacity trade-off

The rules-based approach was developed by extending an existing technique of

water-reservoir sizing in [53], as reservoir sizing shares many similarities to energy

storage sizing. The reservoir sizing technique can find the majority of the critical

capacities however some are missed, and these missing critical capacities can be

found by defining and applying a set of rules to the output of the reservoir sizing

technique. Applying these rules to the case study data identified all the critical
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capacities however there is no proof that the existing set of developed rules will

identify all the critical capacities for any arbitrary time series. For example there

may exist special case rules which have not been identified from the case studies in

this thesis. Hence an alternative method to identify critical capacities was developed

using the rainflow algorithm which is a more generalised approach.

The purpose of the original rainflow algorithm was to identify mechanical stress

cycles for fatigue analysis [41, 42] and it is also used for battery life analysis [54,

55]. The application of the rainflow algorithm to identify critical capacities was

discovered in the development of the rules-based method when attempting to overlay

a series of vectors representing the critical capacities on top of a plot of the net

generation, similar to the arrows labeled c1 to c3 in Fig. 2.5b. The resulting overlaid

plot had similar characteristics to the storage lifetime plots produced by the rainflow

algorithm. The rainflow algorithm identifies cycles within the data, such as the loops

in the power-energy plot seen in Fig 2.5c, and hence the rainflow algorithm identifies

critical capacities within the net generated-energy time series (En).

Applying the original rainflow algorithm to the net generated-energy time se-

ries, En(t) in Fig. 2.5b, would combine both the lower-halves and upper-halves of

the loops in Fig. 2.5c to form a single cycle and hence the rainflow algorithm must

be modified to distinguish between these lower (associated with the load critical

capacities) and upper halves of the loops (associated with the generation critical

capacities). Typically the load critical capacities and the generation critical capac-

ities result in the same list of values and hence the term critical capacities is used.

Generation critical capacities are only significant when storage is not assumed to

initially be full and hence the GFI cannot be expressed in terms of GSE by (1.3b).

2.3 Illustrating the Critical Capacities in aWorked

Example

Section 2.2 has highlighted the mathematical definitions for critical capacities and

how they can be used to define the relationship of GSE to storage capacity. The

following provides two example power time-series which can provides a step-by-step

discussion to demonstrate:

1. How plotting power against energy (P-E plot) demonstrates the critical ca-

pacities as the difference in energy between two points in the plot.

2. The GSE is PWL with breakpoints (critical capacities) where the slope changes

by -1.

These examples have assumed the power time-series is a square wave however

the conclusions drawn from the P-E curve and the resulting GSE to storage charac-

teristics do not depend on the shape. Rather these conclusions and characteristics
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depend only on the energy consumed in each “discharge” cycle (when the net power

is negative) and are irrespective of the form of p(t) during the cycle.

These examples do not describe how the critical capacities are found but rather

they are used to provide an intuitive understand of how critical capacities relate to

both the time-series and to the GSE.

2.3.1 Worked Example 1

The first worked example considers a simple power time series in Fig. 2.6 with one

period of negative net power, between points A and B, and one period of positive

net power between points B and C. When the net power time series is negative, the

period of time which it remains negative is called a discharge cycle and when the net

power is positive it is called a charge cycle. The naming of charge/discharge cycles

are based on whether energy is available to charge or discharge a potential storage

capacity (irrespective of its state of charge). In Fig. 2.6 the zero crossing and end

points of the curve are labeled with letters for easy referencing in the Energy and

P-E plots.

Figure 2.6: The power and energy time-series for Example 1. In the power time
series, positive energy represents a charge cycle and negative energy represents a
discharge cycle. The energy time-series is the integral of the power time-series with
an initial energy E(0) has a value of E0

The net generated-energy time-series in Fig. 2.6 is the integral of the power time-

series and the initial energy value (the constant of integration, E(0)) is set to an

arbitrary value of E0. Note the difference in energy between point A and point B is

labeled as C1 which is a critical capacity and is a key feature of this curve.

By plotting the power against the energy the resulting power-energy (P-E) plot

is shown in Fig. 2.7. By traversing from point A to point B (a discharge cycle)

requires the load to be supplied with C1 units of energy. Traversing the curve from

point B to point C shows that there is excess generation of C1 units of energy which

occurs since in this example the curve is symmetric (e.g. energy between A and B
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Figure 2.7: Combining the power and energy plots for Example 1 to form the P-E
plot. The curve begins at A with initial energy E0 and traverses clockwise as shown
by the arrows. The critical capacity C1 is the energy between A and B.

Figure 2.8: The power-energy plot if the initial energy E(0) is equated to a battery
capacity (ES) of: a) E0, and b) C1. The energy between A and B now represents
discharging storage and the energy between B and C represents charging the battery.

equals energy between B and C).

If a storage capacity is selected to be equal to the initial energy E0, e.g. Es = E0,

then the power energy curve provides information on the charging/discharging state

of the battery. For example in Fig. 2.8a the storage discharges energy equal to C1

between point A and point B and charges energy equal to C1 between point B and

point C. This charging and discharging behavior continues even when the storage

capacity is reduced to Es = C1 which is shown in Fig. 2.8b.

When the storage capacity is selected below C1, the resulting P-E plot in Fig. 2.9

demonstrates that storage is only able to supply a portion of the energy between A

and B. The storage can supply its capacity E1 to the load and the remaining load

(energy Ex) must be supplied by GSE. Between points A and B the load requires

energy equal to C1 and since the storage has supplied an energy of E1 then the GSE

Ex = C1 −E1. Note since storage can only absorb energy of E1 then between point

B and C there is a point α where storage is full. The energy between B and α is

used to charge the storage to full and the energy between α to C is exported to the

grid.

If the storage capacity is decreased further from what is shown in Fig. 2.9 it

is equivalent to shifting the power axis to the right and observing that the energy

between A and B which is in the negative region of the energy axis is the GSE. The
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Figure 2.9: The power-energy plot if initial energy/storage capacity is equal to E1

which is smaller than C1. The key result is GSE Ex occurs between A and B and
GFI occur between α and C.

Figure 2.10: The resulting GSE to storage plot for Example 1. As observed in
Fig. 2.9 the GSE is linearly related to storage

results from Fig. 2.9 can be generalized for any storage capacity Es which is smaller

than C1. In this case the resulting GSE is Eg(Es) = C1 − Es, and this is plotted in

Fig. 2.10.

Note the initial energy E(0) does not influence the critical capacities (e.g. C1)

and it only influences the resulting GSE if the first discharge cycle is negative, see

Section 1.6 for details on how the initial storage capacity affects GSE.

2.3.2 Worked Example 2

The second worked example considers extending the time-series to consider two

discharge cycles (A to B, C to D) and two charge cycles (B to C and D to E).

The power time-series is shown in Fig. 2.11a and the energy time-series is shown

in Fig. 2.11b. The energy time series in this example has two key points, C1 the

energy between A to B and C2 the energy between C to D. The energy time series
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also assumes an initial arbitrary energy amount E(0) = E0.

Figure 2.11: The power and energy time-series for Example 2. The energy plot has
two critical capacities: i) C1 the energy between A and B and ii) C2 the energy
between C and D.

Figure 2.12: The P-E plot for example 2. The curve begins at A with initial energy
E0 and traverses clockwise as shown by the arrows. There are two critical capacities
and their locations are also shown. Point α represents the position between C and
D that would correspond to a full storage capacity, for storage capacity Es = E0.

The P-E plot for example 2 is Fig. 2.12 when the initial energy E(0) is the

value E0. There are two critical capacities identified: i) C1 between points A and

B, and ii) C2 between points C and D. This example is examined for two different

storage capacities (Es): a) between C1 and C2 in Fig. 2.13a, and b) less than C2 in

Fig 2.13b. The reason for considering these two storage capacities will be explained

later in Fig 2.14. The power-energy plots in Fig. 2.13 are discussed in Table 2.1.

The Eg[Es, P0] relationship in Fig. 2.14 highlights that there are two segments

described by Fig. 2.13: i) segment A when storage is sized between C1 and C2,

and ii) Segment B when storage is sized less than C2. As shown in Fig. 2.13a and

discussed in Table 2.1 when Es is between C1 and C2 then the relationship between

Eg and Es has a slope of 1:1. When Es is less than C2 then the relationship between

Eg and Es has a slope of 2:1.
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(a) (b)

Figure 2.13: The power-energy plot for example two if storage capacity is: a) be-
tween C1 and C2, and b) less than C2.

Table 2.1: Discussing the power-energy plots in Fig. 2.13 by examining the energy
at each point, A to E, which highlights the relationship between grid sourced energy
and storage

Fig. 2.13a,
C1 < Es < C2

Starting at point A, where storage is full, storage discharges until
point β where storage is empty since Es < C1. Since storage is
empty then grid energy (Ex1) must be imported to supply the load,
note Ex1 is the load energy between points β and B. Storage then
charges between points B and α where it is then fully charged.
Between points α and C the generated energy is sold to the grid.
Storage discharges between points C and D, note there is no GSE
since storage is: i) fully charged prior to point C, and ii) storage
capacity Es is larger than the energy between points C and D (i.e.
is larger than C2). Finally storage charges between points D and
E. In this case the grid sourced energy Eg is the difference between
C1 and Es and the relationship between Eg and Es is 1:1.

Fig. 2.13b
Es < C2 < C1

The behavior of storage prior to point C is the same as above.
However for this case, between points C and D there is an additional
point β2 where storage will become empty since Es < C2. This
results in two instances where GSE occurs: i) between points A
and B (the first critical capacity), and ii) between points C and D
(the second critical capacity). In this case the grid sourced energy
is the difference between both: i) C1 and Es, and ii) C2 and Es.
Hence the relationship between Eg and Es is 2:1, e.g. increasing Es

by 1 kWh causes Eg to increase by 2 kWh.
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Figure 2.14: The GSE to storage capacity (Eg[Es, P0]) relationship for Example 2.

2.4 Techniques to Identify Critical Capacities

2.4.1 Rules-Based Identification

Fundamental Concept

The rules-based approach is based on water reservoir sizing techniques due to sim-

ilarities between water reservoirs and energy storage shown by the comparison of

terms in Table 2.2. For example water flow is equivalent to power and water volume

is equivalent to energy.

Table 2.2: Equivalency between water storage terms and energy storage terms

Water Storage Energy Storage
Symbol Description Symbol Description

Q Water flow rate into
reservoir

G Power generation for a
given PV rating

D Water flow rate out of
reservoir

L Load power for a given
household

Q−D Net flow rate G− L Net generation power∑
(Q−D) Net cumulative volume

∫
(G− L)dt Net generated energy

Two common reservoir sizing techniques in [53] are the: i) Rippl method in

Fig. 2.15(a) and ii) Sequent peak algorithm in Fig. 2.15(b). These two techniques

find only the largest storage requirement (i.e. the largest critical capacity) and have

not been developed to consider the trade-off between the reservoir size (storage

capacity) and the amount of unsatisfied water demand (GSE).
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Figure 2.15: Example of a) Rippl method and b) Sequent peak analysis. Adapted
from [53]. Q is analogous to generation, D is analogous to load and, the Cj values
represent critical capacities

The Rippl method identifies the largest critical capacity through the following

algorithm:

1. Beginning at the end of the net generated-energy time-series, identify the local

minimum, mi.

2. A horizontal line is drawn beginning at point mi, moving backwards in time

and ends when the line intersects the curve which occurs at point xi.

3. The difference of energy between the horizontal line and the largest local max-

ima within the period between mi and xi describes a critical capacity Ci.

4. The next local minimum occurring earlier in time than point xi is considered,

i.e. mii.

5. Repeat steps 2 to 4 for the new local minimum until the beginning of the time

series is reached.

6. The largest critical capacity is then the largest of {Ci, · · · , Civ}

The sequent peak algorithm in Fig. 2.15(b) operates similarly to the Rippl

method except it begins at the start of the time series, identifies local maxima and

each critical capacity is between the horizontal line (from step 2) and the smallest

local minima within the period (from step 3).

In step 2, the start (mi) and end time (xi) of each horizontal line describes

a period of time, called a zero net flow (energy) period, where the total inflow

(generated energy) equals the total outflow (load’s energy demand) and hence if

generation is shifted (through sufficiently sized storage) to coincide with times of

load then no supplementary supply (GSE) is required.
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The Rippl method identifies a subset of the critical capacities and the missing

critical capacities are shown by the four green circles in Fig. 2.15(a). The remaining

critical capacities are identified by applying a series of rules to the periods of zero

net energy identified by the Rippl method.

Rules Summary

The following summarises the rules developed to identify the critical capacities

missed by the Rippl method and the development of these rules are detailed in

Appendix A. To illustrate the rules an ideal net generation-power time series is con-

structed in Fig. 2.16a where positive net power represents power flows into either

storage or to the grid and negative net power represents power flows to the load

from either storage or the grid.

(a)

(b)

Figure 2.16: The constructed time series which demonstrates the rules developed
to identify critical capacities: a) net generation power time series, b) net generated
energy time series

Note the scale of both the power and energy time series in Fig. 2.16 have been

selected to exaggerate the features of a typical net generation curve to more easily
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observe the rules. The range of power values (-20 kW to 25 kW) is not representative

of a typical household usage which would be significantly smaller and the time frame

of the constructed time series is shorter than the more typical time frame where the

net generation changes from positive to negative across multiple hours as opposed

to one hour in the example. However the features of this constructed time series are

similar to the features observed in the case study time series.

The net generated-energy time series is shown in Fig. 2.16b and the Rippl method

identifies six periods of net zero-energy. A period of net zero-energy occurs when for

a given period the total energy generated at an earlier time equals the total energy

consumed and hence the load in a period of net zero-energy can be supplied by

shifting only the energy generated during that period. For example supplying the

load within Period 4 does not require any of the energy generated within Period 3.

Since each of these periods have net zero-energy then, for a given storage capacity,

the GSE within a given period is independent of all other periods and hence the

total GSE is the sum of the GSE occurring within each period. Each period of

net zero-energy contains at least one critical capacity and, as will be explained in

Section 3.2, the number of critical capacities within a period is related to the number

of times the net generation-power becomes negative.

Conceptually the rules used in the rules-based method are based on the discharg-

ing and charging behavior of storage and how this behavior causes GSE to occur.

Hence there are two major rules which are used to identify critical capacities:

Rule (1): The discharging rule which is associated with the GSE that would occur

when all of the stored energy has been consumed during a time of negative

net generation and,

Rule (2): the charging rule which is associated with the GSE that would occur

when the storage device is full during a time of positive net generation and

hence some of the generated energy cannot be shifted to the load at a later

time.

When applying the rules to a given net zero-energy period, at least one criti-

cal capacity will be found however the period may also contain additional critical

capacities and hence depending on the features of the given period it may be sepa-

rated into a smaller sub-period which is a subdivision of the original period. There

are a number of sub-rules for these two major rules and which rule/sub-rule is ap-

plied depends on the time-series, i.e. the rules/sub-rules apply when a period (or

sub-period) contains a specific set of features.

The application of the rules and the time series features which are used to indicate

which rule should be used are seen in Fig. 2.17 which also demonstrates: i) the

critical capacities’ locations and ii) the sub-periods created by each rule. Note only

Rule 1b.1, Rule 1b.2 and Rule 2b create sub-periods and the rules must be applied

to these sub-periods to find additional critical capacities. In Fig. 2.17, row (1) is the
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base case for the emptying rule (Rule 1a) and row (4) is the base case for the filling

rule (Rule 2a). Algorithm 3 in Appendix A details the development of the rules.

Applying the rules in Fig. 2.17 to the constructed time series in Fig. 2.16 identifies

the critical capacities shown in Table 2.3 where NG is the hourly net generated

energy and CC are the critical capacities in kWh. The critical capacities are colour

coded by shading based on whether they are identified via rule 1 (blue) or by rule 2

(green). This colour coding is important since it highlights the start and end point of

the critical capacity (called the critical capacity duration) which is discussed later in

Section 3.2. Table 2.3 is used to compare the results of the rules-based method and

the rainflow method to confirm that both methods find the same critical capacity

magnitudes and corresponding periods.

Table 2.3: The critical capacity magnitudes and time-step locations for each period
in the time series from Fig. 2.16. The critical capacities identified by Rule 1 have
blue shading and those identified by Rule 2 have green shading.

Time (hr) 1 2 3 4 5 6 7 8 9 10
Period No. Period 1 Period 2 Period 3
NG (kW) 20 -10 20 -6 7 -12 17 -9 8 -15

CC (kWh)
10 12 16

6 8

Time (hr) 11 12 13 14 15 16 17 18 19 20 21 22
Period No. Period 4 Period 5
NG (kW) 25 -13 12 -11 7 -10 18 -12 7 -6 8 -14

CC (kWh)
15 17
12 9

7 6

Time (hr) 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Period No. Period 6
NG (kW) 9 -5 16 -15 8 -5 6 -10 11 -3 2 -3 8 -18

CC (kWh)

19
5 9

5 15
4

2

The critical capacities from Table 2.3 are sorted in descending order and listed

in Table 2.4. The critical capacities in this list are labeled as C1 to C18 and the

GSE at each critical capacity is found using (2.9). This table is then used to plot

the Eg[Es, P0] curve as shown later in Fig. 2.21.
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Figure 2.17: The various rules are illustrated using different time series, highlighting
the location of each load critical capacity and where each sub-period is created. The
full details on how these rules operate is in Appendix A.
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Table 2.4: The critical capacities from Table 2.3 sorted in descending order and
labeled C1 to C18. The GSE for a storage capacity sized at each critical capacity is
also listed (Eg[Ci] where Ci refers to the labeled critical capacity).

Label C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Crit. Cap. (kWh) 19 17 16 15 15 12 12 10 9 9 8
Eg[Ci] (kWh) 0 2 4 7 7 22 22 36 44 44 54

Label C12 C13 C14 C15 C16 C17 C18

Crit. Cap. (kWh) 7 6 6 5 5 4 2
Eg[Ci] (kWh) 65 77 77 91 91 107 141
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2.4.2 Rainflow-Based Identification

The rainflow algorithm identifies all critical capacities with greater confidence than

the rules-based approach since the rainflow algorithm is an established algorithm

in the field of material fatigue analysis while the proposed rules were developed

based on experience and observation of a limited set of net generation time series.

Throughout the development of the rules-based method, exceptions to the develop-

ing rule-set would occur which required the creation of additional rules. Thus it is

unclear if the proposed rule-set is sufficiently general to handle all time-series.

The output of the original rainflow algorithm is a list of values which contains a

combination of critical capacities and other non-critical capacity values and hence

the algorithm is modified to only provide the critical capacities.

A step-by-step guide to performing the rainflow algorithm, described by [43], is

shown in Fig. 2.18 and an implementation of the algorithm, modified to provide

only critical capacities, is presented in Appendix B. The rainflow algorithm begins

by identifying the peaks/troughs or local maxima/minima of the net generation-

energy time series which are marked by the red dots in Fig. 2.18a. The energy time

series is then rotated clockwise 90 degrees and it is imagined that a raindrop is

placed on the left-hand side of each peak which then falls along the curve (forward

in time). The raindrop’s path ends when any of the three following conditions are

met:

End Condition 1: The raindrop has reached the end of the time series.

End Condition 2: The raindrop is opposite a future peak which has greater energy

than the energy at the raindrop’s starting time.

End Condition 3: The raindrop has reached the path of an earlier raindrop, i.e. a

raindrop starting at an earlier time.

The CCA method proposes that each raindrop represents a critical capacity

with a magnitude described by the difference between the energy at the start of the

raindrop’s path and the energy at the point where the raindrop last leaves the curve

before the end of the raindrop’s path.

The time series in Fig. 2.18a contains 3 peaks which occur at: i) time t1, ii) time

t3 and iii) time t5. The critical capacities in this time series are found by placing a

raindrop on the left-hand side of each of these peaks.

Beginning with Fig. 2.18b, the raindrop at the first peak starts at time t1 and

falls along the time series. The raindrop falls until it reaches the time marked t3

where the raindrop’s path ends since the energy peak at time t3 is greater than

the energy peak at time t1 and this demonstrates the second end condition. The

critical capacity labeled C2 is found by taking the difference between the energy
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Figure 2.18: Rainflow algorithm operations, a) Example net generated-energy time
series with peaks/troughs identified, b) demonstrating end condition 2, c) demon-
strating end condition 1, d) demonstrating end condition 3.
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value at time t1 and the energy value at time t2, since time t2 is the instant before

the raindrop “falls off the curve”.

The second peak’s raindrop in Fig. 2.18c starts at the time t3 and travels along

the curve until time t4 where it falls off the curve. Note that the energy at time t5

is less than the energy at time t3 hence this is not an end condition. The raindrop

continues to fall until it lands on the curve at time tx and travels along the curve until

time t6. At time t6 the raindrop is at the end of the time series and this demonstrates

the first end condition. The critical capacity labeled C1 is the difference between

the energy at time t3 and the energy at time t6.

The final peak’s raindrop in Fig. 2.18d starts at time t5 and travels along the

curve until time tx where it reaches the path of an earlier raindrop and this demon-

strates end condition 3. The critical capacity labeled C3 is the difference between

the energy at time t5 and the energy at time tx.

Note that the critical capacities were numbered in decreasing order of size. In

practice, all critical capacities are found first and then are sorted afterwards.

The standard rainflow algorithm would repeat the above process by placing a

raindrop on the right-hand side of each trough and the difference in the energy values

found for these trough raindrops are added to the list obtained for the peaks. The

list of values found by the trough raindrops are called generation critical capacities

and the list of values found by the peak raindrops are called load critical capacities.

Typically the list of both generation critical capacities and load critical capacities

only differ by at most two values depending on whether storage is initially assumed

full or empty. As storage is assumed full initially, the generation critical capacities

list contains one additional value compared to the load critical capacities list however

this value occurs at a significantly large storage capacity where GSE is zero and

hence typically does not influence the maximum benefit analysis. As mentioned in

Section 2.2.2 typically only load critical capacities are necessary to be found.

The analogy of raindrops falling along the curve is useful to explain the general

principles of the rainflow algorithm however the typical implementation of the al-

gorithm, such as [56], processes the time series without considering whether a given

raindrop begins at a peak or at a trough. Hence the algorithm in [56] can be modi-

fied to find only the raindrops starting at peaks and hence identify the (load) critical

capacities for a given time series.

The rainflow algorithm is applied in Fig. 2.19 to the example time-series from

Fig. 2.16. In Section 2.4.1, the rules-based approach identified the critical capaci-

ties for the constructed time series shown in Fig. 2.16. Now applying the rainflow

algorithm to the same constructed time series is found to produce the same results

as the rules-based approach - which is seen by comparing the rainflow results in

Fig. 2.19 to the rules-based results in Table 2.3.

For example in Period 1 the rules-based approach found a load critical capacity

of 10kWh and the rainflow analysis also identifies the same 10kWh critical capacity.
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Figure 2.19: The energy time series used to discuss the rules-based approach
(Fig. 2.16b) examined using the rainflow raindrop analogy. The critical capacities
found in each period corresponds to the same capacities identified by the rules-based
method in Table 2.3.

In Period 3 the rules-based approach had found two critical capacities : i) 16kWh

occurring between the time-steps of hour 7 to hour 10 and ii) 8kWh occurring

between the time-step of hour 9 and hour 10, the rainflow method found the same

critical capacities within the same time-steps.

2.5 Relationship between Critical Capacities and

Storage Capacity

The CCA method is validated against the conventional approach using the con-

structed time series from Fig. 2.16. The validation of the CCA method using an

actual household’s data is provided in Chapter 3.

The GSE to storage capacity curve (Eg[Es, P0]) for the constructed data is shown

in Fig. 2.20a. The conventional approach selects a range of storage capacities. For

example this may be chosen between 0 kWh and 19 kWh with a step size of 1.3

kWh. Then the GSE, shown by the circles in Fig. 2.20a, is found by simulating

the state of charge (SoC) at each selected storage capacity. The range of Es in

the simulation was selected to provide a sufficient number of Eg and Es points to

capture the general shape of the curve. The CCA rainflow method finds the critical

capacities shown by the crosses in Fig. 2.20a and the GSE at each critical capacity

is found using the GSE equation (2.8) to produce the solid line in Fig. 2.20a. The

result shows that the CCA method produces the same Eg[Es, P0] results as the
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(a)

(b)

Figure 2.20: Validating the GSE and GFI equations for a given PV rating (P0) by
comparing the results of the conventional time-stepping simulation approach to the
CCA method using the example time series from Fig. 2.16. a) Eg[Es, P0] curve, and
b) Ef [Es, P0] curve

conventional simulation approach for this example.

The GFI is validated in Fig. 2.20b where the circles represent the simulated

points and the solid curve was found using the equation for GFI in terms of GSE in

(1.3b). It is shown that the CCA method produces the same Ef [Es, P0], where Ef

is feed-in energy, results as the conventional approach under the assumption that

storage is initially full.

Note Fig. 2.19 shows there is a repeated critical capacity of 15kWh seen in both

Period 4 and Period 6 and hence in Fig. 2.20 the slope for storage capacities less than

15kWh has the ratio of GSE (kWh) to storage capacity (kWh) of 1:5 as opposed to

1:4 which would occur if the critical capacity was not repeated.
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2.6 Relationship between Critical Capacity and

PV Rating

The CCA method provides a closed-form equation for the GSE in terms of storage

capacity for a specific combination of: i) load time series, and ii) generation time

series, for a given PV rating. While the CCA method can not find a closed-form

equation for GSE in terms of PV rating, the critical capacities from CCA can be

used to provide an estimate of the relationship between GSE and PV rating under

a given set of assumptions. To understand the estimate of the GSE to PV rating

relationship and the assumptions of this estimate, the impact of PV rating variation

on critical capacities is discussed in this section.

A change in PV rating causes the critical capacities to change such that there is:

i) a change in the number of critical capacities (Critical Capacity Property 1), and

ii) a change in the magnitude of each critical capacity (Critical Capacity Property

2). As the PV rating increases, the critical capacity magnitudes will approach their

minimum values and this defines an upper limit on the effect which PV rating can

have on critical capacities. To discuss the critical capacity variation with storage

capacity, first the critical capacity magnitude asymptotes due to increasing PV

rating is discussed and then the reason why critical capacities change due to PV

rating is discussed.

2.6.1 Minimum Critical Capacity Asymptotes for Increas-

ing PV Rating

Fig. 2.21 demonstrates a given constant load power time series and two generation

time series for different PV ratings, where PV rating 2 is larger than PV rating 1.

Plotting the net generation for both PV ratings shows that PV rating 2 has lower

GSE since it supplies the load shown by the shaded blue area in Fig. 2.21 and hence

the critical capacity magnitudes for this rating are smaller.

The critical capacity asymptote is then deduced by introducing a PV rating,

PVL, between PV rating 1 and PV rating 2 such that PV1 < PVL < PV2 as shown

Figure 2.21: Illustrating the effect of PV rating on GSE and the critical capacities
using a simplified example net generation-power time series.
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Figure 2.22: Illustrating the minimum critical capacity asymptote as PV ratings
increases, using the time series from Figure 2.21.

in Fig. 2.22. Then three periods are defined within the net generation power time

series labeled Ra, Rb and Rc where in the periods Ra and Rc the net generation can

be both positive and negative and in period Rb the net generation is always positive.

Note there exist two critical capacities in this example, one in period Ra and one in

period Rc.

The area between the curves and the time axis within period Rc is proportional

to its corresponding critical capacity (CRc) magnitude. As the PV rating increases

from PV1 towards PVL the magnitude of CRc decreases. For further increase in PV

ratings greater than the PVL, such as PV2, the magnitude of Rc does not change

from the magnitude recorded at PVL. Note in this simple case the value of PVL is

finite since the time series is discrete however in practical cases with smooth curves

then PVL would be infinite. Hence the critical capacity magnitudes will approach

their respective minimum values when the PV rating approaches infinity.

The impact of PV rating on the critical capacities and the Eg[Es, P0] curve is

observed in Fig. 2.23 which is produced using the case study data in Chapter 3.

Fig. 2.23 shows the region containing all valid Eg[Es, P0] curves for different PV

ratings where the GSE has an upper limit of 365 days where all load is supplied

by GSE, and a lower limit defined by the curve labeled PVL, the PV rating cor-

responding to minimum critical capacity magnitudes. As PV rating increases, the

Eg[Es, P0] curves moves from the 0 pu point in the top right-hand corner towards

the curve for PVL.

The assumption in Section 3.1.2 is that storage is initially full and hence there

is no unavoidable GSE which means the curves in Fig. 2.23 reach the x -axis for

sufficiently large values of storage. It is also assumed that the analysis begins at the

start of the year, 1st of January at midnight, which is also discussed in Section 3.1.2.

2.6.2 Effect of PV Rating on Critical Capacities

The variation in PV rating causes three changes in the critical capacities:

1. Increasing PV rating typically reduces the duration of each critical capacity
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Figure 2.23: Demonstrating the potential area for load critical capacities between
zero PV rating and the PVL PV rating. Beyond PVL the Eg[Es, P ] curve does not
change. Note since this curve uses the discrete case study data then PVL is not
infinite.

(duration refers to Critical Capacity Property 2).

2. Increasing PV rating generally reduces the magnitudes of each critical capacity

as illustrated by Fig. 2.21.

3. Increasing PV rating changes the number of critical capacities since changing

the PV rating changes the number of negative net generation periods (Critical

Capacity Property 1).

The first change is observed by examining the net generation energy time series

and plotting the time interval at which the critical capacities occurs, as shown in

Fig. 2.24 where the first five largest critical capacities are plotted for three PV ratings

of 0 pu, 1 pu and 2 pu. As a reminder, 1 pu PV rating means the PV panel will

produce the same annual energy as the load demand. Thus at the end of the year, a

PV rating of 0 pu has a negative net generation equal to a year’s worth of generation

and a PV rating of 2 pu would have an excess of a year’s worth of generation. In
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Fig. 2.24 the length of each of the boxes labeled C1 to C5 represents the time interval

of each critical capacity for their respective PV ratings (blue for 1 pu PV, red for 2

pu PV) and the height of the box represents their relative magnitude to each other.

In Fig. 2.24, consider comparing the first critical capacity for PV ratings of 1 pu

and 2 pu. The first critical capacity for a PV rating of 1 pu begins in late autumn

and continues until about halfway through spring while the first critical capacity for

a PV rating of 2 pu occurs over a much smaller interval of time during only winter.

A similar observation can be made for the time intervals of the other four critical

capacities. Note for the 0 pu PV case there is only one critical capacity.

The second change, reduction in the critical capacity magnitudes, is observed

in Fig. 2.25 by comparing the first ten critical capacities for the selected set of PV

ratings which includes the PVL from Fig. 2.23. As shown, by increasing the PV

rating the magnitude of each critical capacity reduces and by comparing PV ratings

0.5 pu to 4 pu it appears that the increase in PV rating reduces the extreme cases

such that the magnitudes of the first ten critical capacities are closer together.

The third change, the change in the critical capacity list length, is observed in

Fig. 2.26 which plots the critical capacity list length against the PV rating. For small

PV ratings, an increase in PV rating results in a rapid increase in list length until a

threshold is reached, in this example at about 0.25 pu, beyond which increases in PV

rating causes a reduction in the number of critical capacities. Further increasing PV

rating reduces the number of critical capacities until the PV rating PVL is reached

at which point the number of critical capacities no longer changes.

The reason why the critical capacity magnitudes and number of critical capaci-

ties change (second and third change) can be explained by examining how the net

generation power time series changes due to changes in PV rating. The two effects

are: i) Generation smothering, and ii) Generation splitting. These effects are named

based on their effect on the shape of the net-generation time series.

Net Generation Smothering

The smothering effect is shown in Fig. 2.27 for an example generation and load

time series where for small PV ratings the load is larger than the PV output during

the generating period (when PV generation is non-zero) and the load is said to

“smother” the generation since the net generation is always negative during the

generating period. As a result for small PV ratings there will only be one period of

negative net generation within the time series and hence there is only one critical

capacity. With the larger PV rating of PVL shown, then the net generation is always

zero during the generating period and hence the net generation is un-smothered.

For the un-smothered case the time series has two negative net generating periods,

one on either side of the generating period, which means the number of critical

capacities in this interval of time has increased. The elimination of the smothering



60 Chapter 2. Critical Capacity Analysis: Derivation

Figure 2.24: The net-generated energy for 0pu, 1pu and 2pu PV ratings demon-
strating the first change, the reduced duration of the critical capacities as PV rating
increase. The number (list length) of critical capacities is also shown in the legend.

Figure 2.25: The magnitudes of the ten largest critical capacities for a number of
PV ratings demonstrating the second change, a general reduction in critical capacity
magnitudes as PV rating increases. Note the magnitude has a log scale.

Figure 2.26: The relationship between PV rating and critical capacity list length
demonstrating the third change, the critical capacity list length changes as PV rating
increases. Note the dashed line shows the critical capacity list length for PVL.
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effect increases the number of critical capacities and reduces the magnitude of the

critical capacities and this is observed in Fig. 2.26 for PV ratings between 0 pu and

0.5 pu.

Net Generation Splitting

The splitting effect is shown in Fig. 2.28 for an example generation and load time

series. For small PV ratings the net generation during the generating period is

“split” into multiple periods of positive and negative net generation. There are four

negative net generating periods and hence four critical capacities.

When the PV rating is increased to PVL there is sufficient generation to supply all

load during the generating period and hence the net-generation is un-split resulting

in only two periods of negative net generation as seen in Fig. 2.28. The avoidance of

splitting of the net generation time-series reduces the number of critical capacities

which is seen in Fig. 2.26 for PV ratings above 0.5 pu. Avoiding splitting the net

generation also reduces the critical capacity magnitudes as the PV rating increases.

Combination of Generation Splitting and Smothering

The smothering and splitting effects can both occur during the same period of time.

For example when a generating period becomes un-smothered there is an increase in

the number of negative periods, until a given threshold PV rating is reached. With

further increases in PV rating the reduction in splitting then reduces the number of

negative periods, which is shown in Fig. 2.26. The result is that as the PV rating is

increased from a low small PV rating the un-smothering effect is initially dominant

and hence the overall number of critical capacity increases. For higher PV ratings

a further increase in PV rating tends to reduce splitting and hence the number of

critical capacity will tend to decrease as the PV rating approaches PVL.

While one effect may be dominant it is possible for both splitting and smothering

to occur simultaneously. For example in Fig. 2.26 at around 1.5 pu PV rating where

the splitting effect is dominant, there is also a slight increase in the critical capacity

list length which is a result of the un-smothering effect.

2.6.3 Constructing the GSE and PV Rating Equation

Currently no closed-form equation has been derived for the relationship between

the GSE and PV rating. However the GSE equation (2.9) can be modified and

decomposed into three key terms which can be used to analytically estimate the

optimal HES size in Chapter 4. The objective of this decomposition is to develop a

simple equation for GSE that is differentiable in terms of PV rating and is suitable

for the MBI estimation in Chapter 4.

Equation (2.9) from Section 2.2.1 has considered the GSE in terms of a vari-

able storage capacity (Es) with a fixed PV rating (P0). If this equation is instead
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Figure 2.27: Illustration of smothering effect. For the low PV ratings the net gen-
eration is smothered and for the large PV rating (PVL) the net generation is un-
smothered.

Figure 2.28: Illustration of splitting effect. For the low PV ratings the net generation
is split but for the large PV rating (PVL) the net generation is un-split
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written in terms of a variable PV rating (P ) and a fixed storage (Es0) then the

resulting equation is as shown in equation (2.10). Note that the critical capacity

list (C[P ] = {C1, · · · , CN}) depends on PV rating, P , and the number of critical

capacities n[Es0, P ] in (2.10) depends on both the PV rating and the chosen storage

capacity Es0.

Eg(Es, P0) =
n∑

i=1

(ci − Es) (2.9 Repeated)

Eg(Es0, P ) =

n[Es0,P ]∑
i=1

(ci[P ]− Es0)

Eg(Es0, P ) =

n[Es0,P ]∑
i=1

ci[P ]

−

n[Es0,P ]∑
i=1

Es0


Eg(Es0, P ) =

n[Es0,P ]∑
i=1

ci[P ]

− n[Es0, P ]× Es0 (2.10)

for n[Es0, P ] such that c1 ≥ · · · ≥ cn ≥ Es0 ≥ cn+1 ≥ · · · > cN

Consider that the first n critical capacities can be written as follows, note the

ci[P ] is written as simply ci since each part of the following has the same PV rating:

N [P ]∑
i=1

ci =

n[Es0,P ]∑
i=1

ci

+

 N [P ]∑
i=n[Es0,P ]+1

ci


n[Es0,P ]∑

i=1

ci =

N [P ]∑
i=1

ci

−

 N [P ]∑
i=n[Es0,P ]+1

ci


Let: Eg0[P ] = Eg[0, P ] =

N [P ]∑
i=1

ci

 and EL[P ] =

 N [P ]∑
i=n[Es0,P ]+1

ci


hence

n[Es0,P ]∑
i=1

ci = Eg0[P ]− EL[Es0, P ]

where Eg0[P ] is the GSE for the PV rating of P with zero storage capacity and

EL[Es0, P ] is the load energy supplied by all critical capacities smaller than the given

storage capacity. Note that Eg0[P ] depends on only the PV rating while EL[Es0, P ]

depends on both the PV rating and the given storage capacity Es0. EL[Es0, P ] is

the sum of the critical capacity magnitudes smaller than Es.

Hence the GSE in terms of PV rating from (2.10) can be written as:

Eg(Es0, P ) = Eg0[P ]− EL[Es0, P ]− n[Es0, P ]× Es0
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Eg(Es0, P ) = Eg0[P ]− (EL[Es0, P ] + EU [Es0, P ]) (2.11)

where:

Eg0[P ] =

N [P ]∑
i=1

ci[P ]

 , EU [Es1, P ] = n[Es1, P ]× Es1,

EL[Es1, P ] =

 N [P ]∑
i=n[Es1,P ]+1

ci[P ]


where EU [Es0, P ] is the load energy supplied by the n critical capacities which are

larger than the given storage capacity, i.e. for these critical capacities the given

storage capacity would supply Es0 of energy per critical capacity. The physical

meaning of EU and EL is as followed:

1. EU is the total energy that storage supplies to the load each time it is fully

discharged and,

2. EL is the total energy that storage supplies to the load each time it is partially

discharged.

The critical capacities can be used to determine how many times storage is fully

discharge and the amount of energy storage supplied when it is partially discharged.

If storage is greater than a critical capacity, then it is partially discharged and hence

supplies energy equal to the critical capacity’s magnitude to the load (which forms

EL). If storage is less than a given critical capacity, then it represents a full discharge

and hence storage fully supplies its capacity to the load (which forms EU).

Both the full and partial discharge cases of storage is shown in an example in

Fig. 2.29 for two critical capacities and two fixed storage capacities. Fig. 2.29a

presents the example with two critical capacities, C1 = 10 kWh and C2 = 5 kWh,

and a fixed storage capacity of 8 kWh. The shaded blue area represents energy in

storage and the unshaded area (white) represents energy consumed. This storage

capacity is placed next to each critical capacity in Fig. 2.29b which demonstrates

how much energy the given storage capacity will provide to the load for each critical

capacity.

To summarise the two cases:

1. For Es0 = 8 kWh (Fig. 2.29b): for C1, storage is fully discharged and provides

8 kWh of energy to the load. For C2, storage is partially discharged and

provides 5 kWh. In this case EU = 8 kWh and EL = 5 kWh.

2. For Es0 = 4 kWh (Fig. 2.29c): for C1, storage is fully discharged and provides

4 kWh of energy to the load. For C2, storage is also fully discharged and

provides 4 kWh to the load. Thus the energy storage provides is EU = 8 kWh.

Hence there are two key terms in (2.11) which are:
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Figure 2.29: An example to illustrate the definitions of EL and EU :’ a) The example
of two critical capacities, C1 > C2 and a storage capacity of 8 kWh, b) the energy
flows when storage is 8 kWh, c) the energy flows when storage is reduced to 4 kWh.
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1. Eg0[P ] is the GSE with no storage capacity for PV rating P . This is equivalent

to the annual load minus the PV’s grid energy offset (GEO), i.e. the portion

of PV generation directly supplied to the load which offsets GSE. This term

depends on only the PV rating.

2. (EL[Es0, P ] + EU [Es0, P ]) is the amount of annual load supplied by storage.

This is also known as the GEO of storage. This term depends on both the PV

rating and the storage capacity Es0.

An example of (2.11) is shown in Fig. 2.30 using the baseline case study data

for a number of different storage capacities. Note the GSE is found for each storage

capacity curve using (2.11) for a range of PV ratings. Note that it is assumed that

the storage device is initially full which means for the case with 50 days of storage

capacity there are 50 days of GSE which can be supplied without any PV generation.

Figure 2.30: An example of GSE to PV rating curves for the case study where each
curve demonstrates a given storage capacity

The storage capacity curves in Fig. 2.30 are considered for small (< 0.25 pu) and

large PV ratings (> 0.25 pu). For small PV ratings and small storage capacities

(< 1 day) the GSE curve is approximately equal to the curve for no storage capacity

Eg0[P ] shown in blue. For larger PV ratings the curves of various storage capacities

are approximately a shifted version of the zero storage curve, for example Fig. 2.30

shows that the GSE difference between 0.2 days of storage and no storage at both

1 pu PV rating and 2 pu PV rating is approximately equal.

The disadvantages of (2.11) is that the critical capacities must be found for a

range of PV ratings, however the advantages are that:

1. The GSE equation is separated into two terms, where: i) one which depends

only the PV rating, and ii) one which depends on both the PV rating and the

storage capacity.
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2. By separating these terms, it is simpler to define an equation which estimates

the sensitivity of GSE with respect to variation in PV rating, which is essential

for estimating the optimal HES size in Chapter 4.

It is assumed in Chapter 4 that the sensitivity of GSE to PV rating is dominated

by the Eg0 term and is not greatly impacted by the amount of energy provided by

storage (EL+EU). This assumption is used since finding the sensitivity of (EL+EU)

with respect to PV rating is difficult to derive since both terms depend on n which

is difficult to obtain in a closed form. Hence for a discrete set of PV ratings, the

sensitivity of GSE to PV rating depends only on the list of critical capacities for

those PV ratings, assuming the difference between those PV ratings is small.
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In this chapter the following aspects of the critical capacity analysis (CCA)

method are discussed:

1. The assumptions made by CCA and their effect on the GSE to storage capacity

(Eg[Es, P0]) curves.

2. The key properties of the CCA which provide analytical insight.

3. The advantages of CCA over the conventional (simulation) method.

Finally this chapter validates the CCA method using a case study. This case

study compares the CCA method to the conventional (simulation) method by com-

paring their respective: i) GSE to storage capacity (Eg[Es, P0]) curves, and ii) GSE

to PV rating (Eg[Es0, P ]) curves. This comparison shows a strong agreement be-

tween the curves obtained by CCA and through the simulation method. Hence the

CCA method will be used in Chapter 4 to derive an estimation of the household’s

maximum benefit for a given investment.

3.1 Assumptions of CCA

The list of assumptions in Section 1.6 is discussed in detail in the following.

3.1.1 Assumed storage power limits

The consequence of the power limit assumption is illustrated in Fig. 3.1(a) where

the ideal (no limit) transfer of power into and out of storage is shown in red and

the power limited transfer is shown in purple. The limited power transfer cannot

be above or below the storage power limits described by +Plim (charge) and -Plim

(discharge). Note the generation convention is used.

Figure 3.1: Demonstrating the issues with the power limit assumptions: a) example
power time transfer to/from storage (net generation), b) State of charge of storage
capacity

The differences between the power limited case and the no limit case is the

energy areas labeled A1 and A2 in Fig. 3.1(a). For the power limited case the energy

contained within these areas cannot be transferred into and out of storage and hence

there is a fixed amount of GFI (A1) and GSE (A2) which would occur regardless of
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the energy storage capacity. These fixed amounts of GFI and GSE do not occur for

the ideal transfer case where power limits are ignored and hence the proposed CCA

method would underestimate both the GSE and the GFI.

Fig. 3.1(b) shows the state of charge for the ideal transfer and the limited transfer.

At the time t1 the limited transfer curve is A1 energy units below the ideal transfer

curve, meaning A1 energy units were not transferred into storage and hence there

is a GFI of A1. Similarly at time t2 the limited transfer curve would transfer A2

energy units less than the ideal transfer amount and hence there is a GSE of A2 due

to the limited storage discharge rate.

Figure 3.2: Potential solution to include power limits in CCA

While not implemented in this thesis, a potential solution to modifying the CCA

to include power limits is presented in Fig. 3.2. The net generation time series is

separated into two time series where one of the time series would be used to find

any GSE and GFI due to storage power limits and the second time series would

contain the critical capacities for a power limited storage device. The separation

is shown in Fig. 3.2 where (a) shows the time series considering only power values

above the limit and (b) shows the separate time series used for CCA for a power

limited storage device.

3.1.2 Initial SoC

If the HES storage device is assumed to be initially full then there is an additional

source of energy being added into the HES analysis. To highlight the effect of

the initial SoC assumption two extremes are considered: i) storage is initially full,

and ii) storage is initially empty. The difference between these two extremes is

demonstrated in Fig. 3.3.
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The time series shown in Fig. 3.3(a) shows that if the net power time series is

initially negative, e.g. the time series starts at midnight at the start of the year, then

there is a fixed amount of energy labeled A1 which is supplied by either storage or

GSE depending on whether the storage is initially full or empty respectively.

Figure 3.3: Demonstrating the assumption of initial SoC: a) the example net gen-
eration time series, b) storage is initially full, c) storage is initially empty

If storage is initially full, shown in Fig. 3.3b, then storage can supply the initial

energy A1 however the storage device will become full when generation occurs be-

tween times t1 and t2 and hence GFI occurs. If storage is initially empty, shown in

Fig. 3.3c, then the initial energy amount A1 must be supplied by GSE and there is

no GFI between t1 and t2.

The effect of initial SoC can vary depending on the rating of storage capacity but

can have an impact on the accuracy of the GSE and GFI curves and hence on the

optimal HES size. For small storage capacities the initial SoC has minimal impact

on the overall GSE and GFI relationship to storage capacity however for larger

storage capacities, e.g. capacities required for off-grid application, the initial SoC

Figure 3.4: Demonstrating the effect of full and empty initial SoC on the GSE and
GFI to storage capacity trade off: a) GSE trade off, b) GFI trade off.
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significantly affects the resulting GSE and GFI curves. When storage is assumed to

be initially full there is a storage capacity which ensures zero GSE and the GFI curve

has a fixed amount of GFI for large storage capacities as shown in Fig. 3.4. When

storage is assumed to be initially empty there is a fixed amount of GSE which must

supply the first negative time interval and the GFI has a storage capacity which

results in zero GFI shown in Fig. 3.4.

3.1.3 Assumed Efficiency of Storage Device

The proposed CCA method assumes that the transfer of energy into and out of stor-

age has no loss which reduces the accuracy of the GSE and GFI to storage capacity

trade off curves. The illustration in Fig. 3.5 highlights the issue by comparing a

100% efficient storage device to a 80% efficient storage device. The 80% efficient

device has energy lost during the discharge period between i) t0 and t1 and ii) t2

and t3, resulting in GSE during these periods while the 100% efficient case has no

GSE.

Figure 3.5: The difference between storage time-series due to storage devices with
100% and 80% efficient storage devices. The device with 80% efficiency incurs
additional GSE.

The effect of non-ideal efficiency on the optimization of the HES is to add some

errors to the GSE and GFI which is found using the CCA method. The effect of

losses is sensitive to the number of charging and discharging periods within the year.

3.1.4 State of Charge Limits

This thesis assumes the SoC will vary as needed to supply the given load between

0% and 100%. There are cases where it is desired to limit the SoC between a given

maximum and minimum value. For example for a HES to provide backup power the

SoC must be limited to a minimum value to ensure sufficient reserves are available

to supply the household for a given number of hours.

The effect of SoC limits on the optimization of the HES is that the GSE would

be inaccurate if a minimum or maximum SoC is required.
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3.2 Key Properties of Critical Capacities

The methods used to identify critical capacities has revealed two important proper-

ties of critical capacities. There are:

1. The critical capacity list length N which describes the number of critical ca-

pacities for a given time-series. For example a time-series will have N critical

capacities listed as C = {c1, c2, · · · , cN}.

2. A given critical capacity has both a magnitude and a time duration.

The first property of the critical capacity list length N can be described by the

following:

Critical Capacity Property 1: Number of Critical Capacities

For a given PV rating (P0), there is a list of critical capacities which describes

the Eg[Es, P0] curve for a given load time-series. This list contains as many

entries as the number of troughs (local minima) in the energy time series and

hence is equal to the number of times the net generation-power time series

becomes negative. The length of this list is called the number of critical

capacities for a given PV rating.

This property is demonstrated using the raindrop analogy in Fig. 2.19 which

contains both 18 raindrop paths shown by the arrows below the curve and 18 critical

capacities shown by the kWh listed below the arrow. For a given raindrop’s path

to exist there must be a peak which is followed by a trough otherwise the raindrop

does not travel along the curve. Hence the time series shown in Fig. 2.19 contains

18 troughs which equals the number of critical capacities in this time series. This

energy time-series was originally from the power time-series in Fig. 2.16a which can

be seen to have 18 periods of negative power.

Peaks in the energy time series occur when the net generation-power is ideally

positive which occurs during daylight hours when the PV system is generating and

troughs in the energy time series occur when the net generation-power is negative

which typically occurs at night when the PV system cannot generate. Hence a typical

year has ideally 365 critical capacities as the net generation-power is positive for 365

periods and is negative for 365 periods. However an actual year, such as in the case

study, may have more than this since the net generation-power time series may be

negative more than once per day, for example if there is high cloud cover during the

middle of a given day such that the PV output drops below the demand then there

would be an additional period of negative net generation occurring during that day.

The second property that a given critical capacity has both a magnitude and a

duration is described by the following:
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Critical Capacity Property 2: Magnitude and Duration

For a given PV rating (P0), there is a list of critical capacities which describes

the Eg[Es, P0] curve for a given load time-series.

For each critical capcity in this list, the magnitude of a given critical capacity

is simply the kWh capacity which describes its breakpoint on the Eg[Es, P0]

curve, as discussed in Section 2.2.1.

The duration of a given critical capacity refers to a time interval (of the power

or energy time-series) during across which the critical capacity is found, i.e.

in the rainflow analogy the start and end time of the raindrop defines this

interval.

The magnitude and duration property is demonstrated for the energy time-series

in Fig. 2.19 for the 18 raindrops (critical capacities) demonstrated by the arrows

below the curve. The magnitude is the kWh value next to each arrow. The duration

is represented by the start and end point of each arrow, noting each arrow ends at a

negative period. The duration is examined in detail for five of the critical capacities

in Fig 3.6 and these critical capacities are labeled CA to CE.

Figure 3.6: The rainflow raindrop analogy from Fig. 2.19, highlighting the duration
of 5 critical capacities labeled CA to CE which were arbitrarily chosen to demonstrate
their duration.

The critical capacity labeled CA has a magnitude of 10 kWh and its duration

starts at point A and ends at A′. Similarly the critical capacity labeled CB has a

magnitude of 12 kWh and a duration between points B and B′. A similar statement

can be made for the critical capacities labeled CD to CE. Note the rainflow algorithm

finds both the magnitude and the labeled time points (e.g. A and A′).
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The importance of the critical capacity duration is that it describes when the

GSE occurs. For example if storage is sized at 8 kWh then the GSE between the

critical capacities labeled CA to CE will be:

1. Between A and A′ there will be 10− 8 = 2 kWh of GSE.

2. Between B and B′ there is no GSE (as CB < 8 kWh).

3. Between C and C′ there will be 12− 8 = 4 kWh of GSE.

4. Between D and D′ there will be 16− 8 = 8 kWh of GSE.

5. Between E and E′ there will be no GSE (as CE < 8 kWh).

Thus the total GSE for a storage capacity of 8 kWh associated with these five

critical capacities is 14 kWh.

There are two key advantages of knowing a critical capacity’s duration. The

first, as seen above, is being able to determine where the GSE occurs across the

time series for any given storage capacity without needing to simulate the state of

charge.

The second advantages is based on understanding the magnitude of critical ca-

pacities. By listing critical capacities in order of descending magnitude then the du-

ration of each critical capacity will determine what period of the year caused a given

magnitude. While not conducted in this work, this could be used to provide insight

into whether time-factors such as seasonal generation variation or weekday/weekend

load variation have the largest impact on each critical capacity’s magnitude.

3.3 Advantages of CCA

CCA produces the same GSE to storage capacity (Eg[Es, P0]) curve as the con-

ventional simulation method; however, CCA has two advantages: i) a closed-form

equation for GSE in terms of storage capacity resulting in greater physical insights

and ii) improved computational speed.

The improved computational speed refers to the actual time (runtime) taken to

calculate either: i) the GSE and GFI for a number of HES sizes or ii) the required

HES size to achieve maximum benefit at a given investment. This aspect is more

important when simulations involving high-resolution generation and load data over

long periods of time needs to be analysed

3.3.1 Closed-form GSE Equation

The key benefit of the CCA method is the closed-form equations for both: i) GSE

in terms of storage capacity in (2.8) and ii) the decomposition of terms for the GSE
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to PV rating relationship in (2.11). These two equations are used to develop the

MBI estimation equation in Chapter 4.

The closed-form advantage of CCA over the simulation technique is illustrated

by Fig. 3.7 where a rectangular grid is drawn on the axes of PV rating and storage

capacity such that the grid intersections represent a given HES size. The simulation

approach simulates each HES size while the CCA method finds the critical capacities

for each PV rating and uses an equation to describe the GSE at any point along the

horizontal PV line.

Figure 3.7: A comparison between CCA and the simulation method for finding GSE
in the PV versus storage plane to demonstrate the advantage of CCA. Note the
above mentioned equation for the CCA method calculates the GSE for any storage
capacity at the given PV rating

3.3.2 Computational Speed

The CCA method is computationally faster than the simulation method when a

high accuracy Eg[Es, P0] curve is required; however, if the Eg at a single Es is

required then the simulation method is faster. The runtime of both methods can

be compared using their respective pseudocodes, where algorithm 1 describes the

simulation method and algorithm 2 describes the CCA method. Both algorithms

share a common set of input parameters which are: i) the number of time steps in

both the generation and load time-series data (T ), ii) the selected set of PV ratings

(P ) and iii) the selected range of storage capacities (B). These parameters have the

largest impact on the runtime of both methods.

The following examines both algorithms to compare their expected runtime. The

result will describe how the runtime is affected by the values of the inputs into the

algorithm (P , B, and T ). For example if the runtime is proportional to T this would

mean it is proportional to the number of time-steps. If the runtime is proportional

to BT then it is proportional to the product of: i) the number of storage capacities

(B), and ii) the number of time steps (T ).

The simulation method in Algorithm 1 has a three-level nested loop with loops

for each: i) PV rating, ii) storage capacity, and iii) time step. Hence the runtime of

the simulation method is expected to be proportional to PBT .
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Algorithm 1 Pseudocode for simulation method

Notation: T is the number of time points in the generation/load data. B is the
number of storage capacities simulated. P is the number of PV ratings simu-
lated.

1: for p = 1 to P do
2: for b = 1 to B do
3: for t = 1 to T do
4: Find the storage state at each time step t
5: Record any GSE and GFI
6: end for
7: end for
8: end for

Algorithm 2 Pseudocode for CCA approach.

Notation: T is the number of time steps in the generation/load time series. P
is the PV rating list length. B is the storage capacities list length. M is the
local min/max list length where M ≤ T . R is the residues list length where
R ≤ M ≤ T .

1: for p = 1 to P do
2: for t = 1 to T do
3: Find all of the M local minima/maxima.
4: end for
5: for m = 1 to M do
6: Identify the critical capacities based on the 3 point rainflow criteria.
7: Any points which do not fit the criteria are residues.
8: end for
9: for r = 1 to R do
10: Process residues to find remaining critical capacities.
11: end for
12: for b = 1 to B do
13: Apply the GSE equation (2.8) and GFI equation (1.3b) for each b capacity
14: end for
15: end for

The CCA method in algorithm 2 has a two-level nested loop where the first level

is a loop for each PV rating and the second level contains four individual loops: i)

a loop for each time step, ii) a loop for each local minima and maxima, iii) a loop

for each residue R, and iv) a loop for each storage capacity. Hence the runtime of

the CCA method is expected to be proportional to (PT + PM + PR+ PB). Note

the worst-case runtime condition for the CCA method occurs when both: i) the

number of local minima and maxima are equal to the number of time steps, and ii)

each local minima and maxima are also a residue. Hence the worst-case occus when

T = M = R and the runtime is proportional to (3PT + PB).

To summarise, the runtime derived from the algorithms of CCA and simulation

are:
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1. Simulation runtime is proportional to (PBT ) and

2. CCA runtime is proportional to (PB + 3PT ).

The runtime of both methods is proportional to the same PB component hence

as the number of PV ratings (P ) and storage capacities (B) increases, to much

greater values than the time-steps T , then both methods would have similar run-

times. However typically the number of PV ratings and the number of storage

capacities are much less than the number of time-steps.

Fig. 3.8 plots the actual runtime (in seconds) for both methods when they are

used to find the GSE and GFI for a square list of HES sizes (i.e. P = B = N). Using

the summary of the derived runtimes: i) the simulation runtime is proportional to

N2T and ii) CCA’s runtime is proportional to (N2 + 3NT ).

Figure 3.8: Estimating the time complexity of both the simulation method and CCA
method using an input of N HES sizes. Note both curves have similar runtime when
N approaches the case study’s time-step (T ) of half hourly annual data.

For small N (< 10), the result in Fig. 3.8 shows CCA is slower then simulation,

which matches the derived runtime since for small N (N2T < N2 + 3NT ). As

N increases it can be seen that CCA becomes much faster than simulation since

for large N , (N2T > N2 + 3NT ). As N approaches the number of time-steps T ,

shown by the vertical line in Fig. 3.8, the simulation and CCA method runtime both

increase at the same rate. This is observed in Fig. 3.8 where both the CCA and

simulation runtime appear to increase with a slope of N2. As previous mentioned,

the practical range of N is typically larger than 10 and smaller than the number

of time-steps T since a value of N in this range is usually sufficient to accurately

produce the Eg[Es, P0] curve and the MBI plot shown in Chapter 4.

Table 3.1 shows a breakdown of the runtime for both methods for five sets of PV

sizes (P ) and storage capacities (B). The table shows the CCA method is faster

when the GSE is required for more than 10 storage capacities which is common

when an accurate Eg[Es, P0] curve is required.
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Table 3.1: Runtime comparison for simulation and CCA to find the GSE and GFI
for a range of PV ratings (P ), a range of storage capacities (B) and number of time
steps in both the generation/load data (T )

Case P B T Simulation CCA Runtime ratio
(Sim:CCA)

(1) 1 1 8,760 0.49 ms 3.0 ms 0.17:1
(2) 1 10 8,760 4.7 ms 3.2 ms 1.47:1
(3) 1 100 8,760 46 ms 4 ms 11.5:1
(4) 100 100 8,760 4.5 s 0.42 s 10.7:1
(5) 100 100 87,600 60 s 4.6 s 13:1

The following compares the cases in Table 3.1 to highlight key differences in the

runtime of both methods.

When comparing case 1 to case 3:

1. The CCA method has minimal difference in runtime since once the critical

capacities have been identified for a given PV rating, the runtime only depends

on the number of storage capacities and using the GSE equation (2.8).

2. The simulation method has a linear increase in runtime relative to the increase

in storage capacity values, e.g. when the storage values increase 10 times then

the runtime increases 10 times.

Comparing case 4 to case 3:

1. For CCA, when 100 PV ratings are added (to case 3) then the runtime is

increased by approximately 100 times (from 4 ms to 400 ms).

2. For simulation when 100 PV rating are added (to case 3) then the runtime

increases by approximately 100 times (from 46 ms to 4.5 s)

For case 5 when the number of time steps is increased by 10, the runtime of both

methods also increases by approximately 10 times.

To summarise, the simulation method runtime in Table 3.1 is linearly related to

both: i) the range of PV ratings, and ii) the range of storage capacities. The CCA

method runtime is approximately constant for different ranges of storage capacities

and is linearly related to the range of PV ratings. Both methods are linearly related

to the number of time steps T .

3.4 Validation of CCA using a Case Study

The validation of CCA consists of comparing CCA to the simulation method using

their: i) GSE to storage capacity (Eg[Es, P0]) curves, and ii) GSE to PV rating

(Eg[Es0, P ]) curves.

The CCA method has derived two equations in Chapter 2 which are:
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1. A closed-form equation, (2.8), for a fixed PV rating (P0) which finds the GSE

(Eg) in terms of storage capacity (Es), defining the Eg[Es, P0] curve.

2. A decomposition of the GSE to storage relationship, (2.11), which finds, for

a fixed storage capacity (Es0), the GSE in terms of a discrete range of PV

ratings (P ), defining the Eg[Es0, P ] curve.

The CCA method uses these two equations to produce the Eg[Es, P0] and the

Eg[Es0, P ] curves and an equivalent set of curves can be produced using the simu-

lation method. The simulation method would produces these curves by simulating

the storage capacity state of charge for the sets of different PV ratings and storage

capacities.

Two sets of analysis, using the case study data from Section 1.7, is performed:

1. The base case Section 1.7.2 considers a given household (H1) and a given year

of solar irradiation (2005).

2. A set of sensitivity studies considering:

(a) The 5 households described in Section 1.7.3.

(b) The 5 years of solar irradiation data in Section 1.7.4.

For each of these cases the Eg[Es, P0] curve and the Eg[Es0, P ] curve show strong

agreement between simulation and CCA. Note it is not necessary to compare the

grid feed-in (GFI) since, as seen in equation (1.3b), if the GSE is known then the

GFI is known so the following section only provides curves of GSE.

3.4.1 Validation of GSE to Storage Equation for a Fixed PV

Rating

In Chapter 2, CCA defines the closed-form equation for the GSE (Eg) as a function

of storage capacity (Es) at a fixed PV rating (P0) as follows:

Eg[Es, P0] =
N∑
i=1

1

2

(
(ci − Es) + |ci − Es|

)
(2.8 Repeated)

where ci are the critical capacities at the fixed PV rating P0 for the given household.

This equation is validated for the base case household in Fig. 3.9a which shows

very close agreement between the CCA results (solid line) and the conventional

simulation approach (dots) for the six evenly spaced PV ratings between 0.5pu and

3pu.

The Eg[Es, P0] curve is affected by: i) the annual load time series (the house-

hold’s load data) and ii) the annual solar irradiation (used to calculate generation

data). Hence the results of the GSE equation are examined for different household
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load profiles and for different years of solar irradiation data. The GSE equation

is validated against the conventional method for the six different household load

profiles (H1 to H6), with a PV rating of 1 pu in Fig. 3.9b and for six different years

of generation data in Fig. 3.9c. These two figures demonstrate very close agreement

between the closed-form GSE equation and the conventional simulation approach

and shows the robustness of the GSE equation and CCA method.

3.4.2 Validation of the GSE to PV Rating Equation Decom-

position

As described in Chapter 2, the CCAmethod does not yield a closed-form relationship

between GSE and the PV rating for a fixed storage capacity (Eg[Es0, P ]). However

it does demonstrate that the GSE (Eg[Es0, P ]) for a discrete set of PV ratings and

fixed storage capacity can be calculated using the three separate terms in (2.11).

These three terms, described in Section 2.6.3, are: i) Eg0[P ] the GSE with no storage

capacity, ii)EL[Es0, P ] the energy that storage supplies to critical capacities less than

the fixed storage capacity Es0 and iii) EU [Es0, P ] the energy that storage supplies

to critical capacities greater than Es0.

Separating the GSE equation into these three terms are important in Chapter 4

since only Eg0 is necessary to estimate the sensitivity of GSE to variations in PV rat-

ings and hence derive an equation for the maximum benefit for a given investment.

The following will demonstrate that: i) each of these three terms are independent

from each other, ii) each term can be calculated using both the list of critical capac-

ities and the given storage capacity, and iii) the GSE calculated from these terms

matches the GSE found using the conventional simulation method.

As a reminder (2.11) is as follows:

Eg(Es0, P ) = Eg0[P ]− (EL[Es0, P ] + EU [Es0, P ]) (2.11 repeated)

where:

Eg0[P ] =

N [P ]∑
i=1

ci[P ]

 , EU [Es0, P ] = n[Es0, P ]× Es0

EL[Es0, P ] =

 N [P ]∑
i=n[Es0,P ]+1

ci[P ]


where ci[P ] is the list of critical capacities for PV rating P , Eg0 is the GSE at zero

storage capacity and the combination (EL+EU) describes the total energy supplied

by storage. Note the GSE at zero storage capacity (Eg0) describes the load energy

remaining after removing PV self-consumption, hence (2.11) describes the remaining

load energy less then the energy supplied by storage (EL + EU).

The separation of the GSE into the three terms is demonstrated in Fig. 3.10 for
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(a)

(b)

(c)

Figure 3.9: The Eg[Es, P0] curves using the closed-form equation (solid lines) com-
pared to conventional simulation (circles) for: a) base case for a range of PV ratings,
b) a selection of different household loads for a PV rating of 1 pu, c) a range of gen-
eration data years for a PV rating of 1 pu
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four fixed storage capacities: i) 0.2 days, ii) 0.6 days, iii) 1 day, iv) 50 days. The total

GSE is shown by the dashed line, the GSE at zero storage capacity (Eg0) is shown by

the solid line and the energy supplied by storage is shown by the two shaded regions

(EL and EU). Each term is calculated using their respective definition in (2.11)

while the total GSE shown is found using the conventional simulation approach.

Hence Fig. 3.10 demonstrates that the GSE can be accurately found from these

three terms.

Figure 3.10: Demonstrating the separation of (Eg[Es0, P ]) into the three terms:
i) Eg0[P ], ii)EL[Es0, P ] and iii)EU [Es0, P ]). The solid line representing the GSE
with zero storage capacity (Eg0) and the GSE curve represents the GSE with the
respective storage capacity of 0.2 days, 0.6 days, 1 day and 50 days. The two shaded
regions represent the energy supplied by storage EL and EU .

Note in Fig. 3.10 for larger than 1 pu PV rating the ratio between EU and

the EL is expected to be different for different storage capacities. For small storage

capacities the EU term should dominate as storage supplies a small amount of energy

to each critical capacity larger than itself. With approximately half a day of storage

the supplied stored energy is equally split between EU and EL since, for this case

study, the average critical capacity magnitude is approximately half a day. At large

storage capacities, the EL term should dominate as the majority of stored energy is

supplied to critical capacities smaller than the storage capacity. The 1 pu PV rating

is important here since this ensures there is sufficient annual generated energy to be

stored to supply the load.

Fig. 3.10 demonstrates that the GSE can be accurately found from the three

terms in (2.11) thus in Chapter 4 these three terms will be used to estimate the

MBI. The estimation in Chapter 4 shows that the sensitivity of GSE to variations

in PV ratings depends mainly on the first term Eg0 as the other two terms (EL and
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EU) do not vary significantly for PV ratings at which installing storage would be

considered sensible (1 pu PV rating or greater).



Chapter 4

Household Maximum Benefit for a

Given Investment

85
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This chapter provides a definition of the maximum benefit per investment (MBI)

and discusses two techniques used to find the household MBI. These two tech-

niques are: i) the numerical search method, and ii) the n-estimation method. The

n-estimation method derives an equation to estimate the MBI by using the two

equations (GSE to storage capacity in (2.8) and GSE to PV rating in (2.11)) from

Chapter 2. These equations are used to produce a simpler method to examine the

MBI’s sensitivity to changes in the household’s capital costs and grid tariffs. The

analysis presented in this chapter will consider a single-rate energy tariff which is

presently used for most households in South Australia. The household’s capital

costs and grid tariffs are summarised in the assumptions in Section 1.6, Table 1.3.

Note this chapter contains a number of functions with bold symbols, e.g. B[Eh,Ef ],

which represents when a function’s term is itself a function of the variables ES and

P .

4.1 Chapter Structure

This chapter is separated into three main parts:

1. The definition of the problem (Section 4.2 and Section 4.3)

2. The derivation of the n-estimation method (Section 4.5)

3. The validation of the n-estimation method (Section 4.6)

4.2 Definition of a Household’s Maximum Benefit

for a Given Investment (MBI)

A household’s annual benefit (B[Eh, Ef ]), described in Section 1.2, is derived by off-

setting grid supplied energy (GEO, Eh) purchased at the grid energy supply tariff

(cg) and by supplying energy to the grid (GFI, Ef ) at the feed-in tariff price (cf ).

The benefit equation is:

B
[
Eh[Es,P],Ef [Es,P]

]
= Eh[Es,P]× cg + Ef [Es,P]× cf (1.4 repeated)

where the GEO and the GFI depend on the HES capacity ([Es, P ]) in which the

storage capacity is Es and the PV rating is P . Note the benefit equation in this

form is a function of two multi-variable functions.

The benefit can be simplified in terms of only a single multi-variable function

by using the relationship between GEO, GFI and GSE (grid-sourced energy, Eg).

The benefit is simplified in terms of only the GSE in Section 1.2 as shown by (2.1)
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and is rearranged in equation (4.1) to highlight the dependence on both: i) the GSE

Eg[Es, P ] and ii) the PV rating P .

B
[
Eg[Es,P]

]
= (L− Eg[Es,P])cg + (G1 ×P− L+ Eg[Es,P])cf (2.1 repeated)

B
[
Eg[Es,P]

]
= P×G1cf − Eg[Es,P](cg − cf ) + L(cg − cf ) (4.1)

where L is the annual load (kWh) and G1 is the annual generation (kWh/kWpk).

Note with both zero storage capacity (Es = 0) and zero PV rating (P = 0) then the

all load within the year must be supplied from the grid (Eg = L) and (4.1) has zero

benefit B = 0.

The capital investment is I[Es, P ] for a HES with storage capacity Es and PV

rating P which is defined by equation (1.1) and hence for each HES size there is:

i) a single PV rating, ii) a single storage capacity, iii) a calculated investment value

and iv) a calculated benefit. Note CP refers to the price per kWp of PV and CE

refers to the price per kWh of storage.

I[Es, P ] = P × CP + Es × CE (1.1 repeated)

A range of HES sizes can share a common benefit as shown in the example case

in Fig. 4.1a where contours of constant benefit are plotted on the axes of PV rating

and storage capacity. These contours are plotted using CCA by finding the GSE,

hence benefit, at each critical capacity for each PV rating. Note in Fig.4.1, both the

benefit and investment are normalised to the household’s annual energy cost when

no HES is installed, i.e. [Es = 0, P = 0] which has annual cost L× cg.

(a) (b)

Figure 4.1: Contours of benefit and investment on the axes of PV rating and storage
capacity, a) contours of constant benefit, b) contours of constant investment

An example of two HES sizes is shown in Fig. 4.1a which share a common

benefit of 1 pu are: i) point A with Es = 0.5 days, P = 1.8 pu, and ii) point B

with Es = 2 days, P = 1.25 pu. Note that a benefit of 1 pu means a zero annual

energy cost, which occurs when either all load is supplied by GEO or, more generally,

that the income from GFI equals the cost of purchasing GSE. The energy storage
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is normalised against the average daily energy consumption and the PV rating is

normalised against the rating required to supply annual energy equivalent to the

household’s annual energy consumption.

For a given investment (Ix), shown by the lines in Fig. 4.1b, there is a range

of HES sizes that satisfy equation (1.1), for example an investment of 10 pu can

purchase the HES sizes marked by the two points: i) C with Es = 1 day, P = 0.8 pu,

or ii) D with Es = 0.5 days, P = 2.3 pu. Note to achieve off-grid operation, the case

study household requires a high investment of about 31 pu (that is 31 times the

baseline annual energy cost) and would achieve only 1 pu benefit since energy could

not be sold to the grid in this situation. This emphasises that off-grid operation

is generally uneconomical at the current price of capital (PV and storage). The

off-grid contour is found by finding the largest critical capacities for a range of PV

ratings since storage capacity with size equal to the largest critical capacity has no

annual GSE.

If the contours of benefit are overlaid with the contours of investment, as shown

in Fig. 4.2, then it can be seen that for any given investment there exists a maximum

benefit which can be obtained, called the maximum benefit per investment (MBI).

The MBI in Fig 4.2 was found using the search method described in Section 4.4.

The MBI occurs when the investment line is a tangent to a given benefit contour

or alternatively the tangent of a benefit contour is coincident with the investment

line. For example in Fig. 4.2 for 5 pu capital investment the MBI is at point (A)

and the investment line is a tangent to the benefit contour of 0.7 pu. Similarly when

the investment is 8.66 pu the MBI is at point (B) such that the investment line is

tangent to the benefit contour of 1 pu at this point. For these two capital investment

amounts, moving away from the marked points (A) and (B) along their respective

investment lines results in decreasing benefit.

Figure 4.2: Demonstrating the optimal HES sizes which define the maximum benefit
per investment (MBI) trajectory, shown as the black dashed line
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Two simplifying assumptions made in the MBI analysis are: i) the cost of PV

rating and storage capacity is linearly proportional to their respective rating/capac-

ity, and ii) units are available in any desired rating/capacity. In practice the capital

cost per unit rating/capacity is generally lower for larger units and the options of

size for commercial units are typically in discrete increments, e.g. a supplier may sell

a 1 kW and 2 kW PV system but may not sell a 1.2 kW PV system. These assump-

tions would affect the MBI by changing the shape of the investment contours and

hence would reduce the accuracy of the proposed MBI estimation method. However

the goal of this chapter is to provide a fast and simple method to estimate the MBI

which also provides an intuitive understanding of the MBI’s sensitivities and thus

these assumptions are considered acceptable for the initial MBI estimation.

4.3 The MBI Expressed as an Optimsation Prob-

lem

Finding the maximum benefit per investment (MBI) can be formulated as an opti-

mization problem where the maximum benefit is found by searching all of the HES

sizes which share a given investment (I0). Formally this can be written as:

maximise
Es,P

B
[
Eg[Es, P ]

]
subject to I[Es, P ] = I0

(4.2)

where B[Eg[Es, P ]] is described by the benefit equation in (4.1) and I[Es, P ] is

described by the investment in (1.1).

Finding the MBI is a concave problem1 which is easier to solve compared to non-

concave problems. The MBI is shown to be a concave problem by considering either:

i) the benefit against storage capacity (Fig. 4.3a) with constant investment contours

and ii) the benefit against PV (Fig. 4.3b) with constant investment contours. For

the two plots in Fig. 4.3 the maximum benefit at each investment contour is shown

by the points marked (A) to (E). To provide a common point of reference for the

two plots in Fig. 4.3 consider the benefit for installing only PV and no storage,

i.e. the y-axis from Fig. 4.2. In Fig. 4.3a the benefit for only PV is shown by a

vertical line along the y-axis. Traveling from the y-axis along a given investment

contour causes the PV rating to decrease while the storage capacity increases such

that the investment is constant. In Fig. 4.3b the benefit of investing in only PV is

shown by the dashed line labeled “No storage” and traveling from this line along an

investment contour line towards the origin also causes an increase in storage capacity

and corresponding decrease in PV rating such that the investment is constant.

The MBI shown in Fig. 4.2 is a concave problem due to three key factors:

1An optimsation problem is concave when a concave function (benefit) is maximised over a
concave set (investment).
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(a) (b)

Figure 4.3: Contours of constant investment on the axes of: (a) benefit and storage
capacity, (b) benefit and PV rating. Both plots shows the benefit along each invest-
ment contour is concave

1. The assumption of a single-rate energy tariff (Section 1.6) means the benefit

is linearly related to the annual GSE scaled by the energy tariff.

2. The piecewise-linear (PWL) relationship between GSE and storage capacity

for a given PV rating shown by Eg[Es, P0] in (2.8).

3. The linear relationship between GSE and PV rating for a given storage capac-

ity shown by Eg[Es0, P ] in (2.11).

Since the benefit linearly changes with GSE and the GSE never decreases when

the PV rating and storage capacity increases, the benefit along a diagonal line in

Fig. 4.2 is concave. For different types of energy tariffs, such as energy costs which

depend on the time of use or if there is an additional charge depending on the

maximum demand, the problem may not be concave.

4.4 Comparing Methods to Solve the MBI Opti-

misation

Two methods of finding the MBI are:

1. The search-based method, which is simple to implement but computationally

expensive.

2. The proposed novel approach, called the n-estimation method, which uses

analytical techniques to provide an estimate for the MBI.

A summary comparing these two methods is shown in Fig. 4.4.

The search method in Fig. 4.4a begins by selecting a range of capital investment

values and then selecting a range of HES sizes along each investment line. For a

given capital investment the maximum benefit is found by comparing the benefit of

each HES size along that investment line, which is found using either the CCA or
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the simulation method. The accuracy of the results depends on both: i) the number

of investment lines, and ii) the number of HES sizes.

Note the search-based approach has many aspects which can be optimized, for

example if in Fig. 4.4a for a given investment if the benefit is found for an initial

storage capacity of zero then the maximum benefit can be found by slowly incre-

menting the storage capacity until the resulting benefit no longer increases. This is

an improvement since fewer storage capacities would be tested however the outcome

is still sensitive to both: i) the selected increment in storage capacity, and ii) the

tolerance of the benefit change, i.e. at what difference in benefit does the search

converge to the maximum benefit.

The proposed n-estimation method analytically solves the MBI as an optimisa-

tion problem and for the list of critical capacities for a given PV rating the method

derives an equation for the index (n) of the critical capacity which would result in

maximum benefit. Note the index (n) can be a non-integer as discussed in Sec-

tion 4.5.4 and the optimal solution is found using interpolation. By repeating this

approach for different PV ratings the MBI trajectory is found. The n-estimation

method is shown in Fig. 4.4b where firstly the list of critical capacities is found for

a range of PV ratings and then the n-index equation is used to find the index (and

hence optimal storage capacity) for each PV rating.

The derivation of the n-estimation equation and its validation is the focus of the

remainder of this chapter.
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Figure 4.4: An overview of the two methods for solving the optimisation problem. a) Search method, b) n-estimation method. Both methods
consist of three steps.
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4.5 Developing the n-Estimation Method

The n-estimation method analytically solves the MBI optimisation problem, which

is described in (4.2), by using the method of Lagrange multipliers. The Lagrange

method can be explained using the relationship between the benefit, a given invest-

ment and a given HES size. This relationship is shown in Fig. 4.5 by plotting a

number of constant benefit contours (B−1, B0, B1), a line of constant investment I0

and the given HES size (P0, Es0) which has capital investment of I0.

In Fig. 4.5 the line labeled I0 represents all possible combinations of HES sizes

which have a capital investment of I0. The benefit contours are labeled B−1, B0

and B1 in the order of increasing benefit, that is B−1 < B0 < B1. By comparing

the investment line I0 to each of the benefit contours it is shown that the maximum

benefit along I0 occurs when I0 is a tangent to the benefit contour of B0 which occurs

at the optimal HES size of [Es0, P0]. The observation that the maximum benefit

occurs when investment lines are tangents to benefit contours is a key component

to the Lagrange method.

Figure 4.5: Demonstrating the relationship between benefit, investment and a given
HES size. The benefit contours are B−1, B0 and B1, the investment is I0 and the
optimal HES size along I0 is the point [P0, Es0].

The Lagrange method states that the function being optimised (benefit) will be

maximum when both the function and the constraint (investment) share a tangent.

Two curves share a tangent at a given point if: i) at the given point the tangents

of both curves have the same slope, and ii) the tangents of both curves intersect at

that given point.

For the first condition, two curves have the same slope when their gradient vectors

differ by only a scalar and this scalar difference is called the Lagrange multiplier.

Hence when the benefit gradient vector is a scalar multiple of the investment gradient

vector then the two curves have the same slope.

For the second condition, it is trivial to determine the point at which the benefit’s

tangent and investment’s tangent intersect since the investment is a straight line and

the tangent of a straight line is itself. Hence the investment equation can be used

to determine if the two tangents intersect at a given point.
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To formally describe these two conditions, the MBI will occur at the point

[Es0, P0] for a given investment I0 when both the following conditions are satisfied:

1. ∇B[Es0, P0] = λ0∇I[Es0, P0] for the gradient of the benefit ∇B, the gradient

of the investment ∇I and the Lagrange multiplier (λ0).

2. I[Es0, P0] = I0, for the point [Es0, P0] in the gradient vector.

Figure 4.6: Illustration of the concept of Lagrange multipliers, where the gradient
of B is a scalar multiple of the gradient of I and the constraint I = I0

These two conditions are demonstrated in Fig. 4.6, where the gradient of the

benefit and the gradient of the investment are both right angles to, and point away

from their respective curves. Three cases are demonstrated in Fig. 4.6 where the

maximum benefit is required for investment I0: a) two points where the benefit and

investment intersect at the given HES size but their gradient vectors are in different

directions, b) two points where both gradient vectors are in the same direction but

the point at which this occurs is not on investment I0, and c) when both gradient

vectors are in the same direction at a point on the investment I0, hence the MBI

occurs at this point. Using these two conditions, the Lagrange method allows the

MBI optimization problem to be written as a set of linear equations which can be

solved analytically. Hence the MBI is expressed with the following set of equations,

where the maximum benefit for the investment (I0) will occur at the optimal HES

size of ([Es0, P0]) such that:

∇B[Es0, P0] = λ0∇I[Es0, P0] (4.3a) ∂B
∂Es

∣∣∣
P
[Es0, P0]

∂B
∂P

∣∣∣
Es

[Es0, P0]

 = λ0

 ∂I
∂Es

∣∣∣
P
[Es0, P0]

∂I
∂P

∣∣∣
Es

[Es0, P0]

 (4.3b)

I0 = P0 × CP + Es0 × CE (4.4)

where (4.3a) is expanded as (4.3b) such that:

1. ∂
∂Es

∣∣∣
P
[Es0, P0] represents the sensitivity (of benefit B or investment I) to varia-

tions in storage capacity (assuming constant PV rating, P ) and this sensitivity

is evaluated at the point [Es0, P0],
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2. ∂
∂P

∣∣∣
Es

[Es0, P0] represents the sensitivity (of benefit B or investment I) to varia-

tions in PV rating (assuming constant storage capacity, Es) and this sensitivity

is evaluated at the point [Es0, P0].

In (4.3) there are three equations, three unknowns variables (λ0 and [Es0, P0])

and one known variable (I0) and these equations are separated in (4.5).

∂B

∂Es

∣∣∣
P
[Es0, P0] = λ0

∂I

∂Es

∣∣∣
P
[Es0, P0] (4.5a)

∂B

∂P

∣∣∣
Es

[Es0, P0] = λ0
∂I

∂P

∣∣∣
Es

[Es0, P0] (4.5b)

I0 = P0 × CP + Es0 × CE (4.5c)

These equations can be simplified by eliminating the Lagrange multiplier λ0

using (4.5a) and (4.5b). Note the following sensitivities are evaluated at the point

[Es0, P0]:

λ0 =
∂B

∂Es

∣∣∣
P

1
∂I
∂Es

|P

λ0 =
∂B

∂P

∣∣∣
Es

1
∂I
∂P

|Es

∂B

∂Es

∣∣∣
P

1
∂I
∂Es

|P
=

∂B

∂P

∣∣∣
Es

1
∂I
∂P

|Es

(4.6)

The sensitivity of investment to variations in both storage capacity and PV in

(4.6) is found by using the investment equation (1.1) as shown in the following:

I[Es, P ] = P × CP + Es × CE (1.1 Repeated)

∂I

∂Es

∣∣∣
P
[Es0, P0] = CE (4.7a)

∂I

∂P

∣∣∣
Es

[Es0, P0] = CP (4.7b)

Hence the maximum benefit for a specified investment, I0 can found by solving

for the two unknowns (Es0, P0) in the two equations of (4.8).(
∂B

∂Es

∣∣∣
P
[Es0, P0]

)
1

CE

=

(
∂B

∂P

∣∣∣
Es

[Es0, P0]

)
1

CP

(4.8a)

I0 = P0 × CP + Es0 × CE (4.8b)

There is a choice in (4.8) between whether the investment I0 or the PV rating

P0 is the specified parameter since both have a unique solution for the maximum

benefit. Consider the MBI plot in Fig. 4.2 and note that a horizontal line (constant

PV) or a diagonal line (constant investment) both intersect with the MBI trajectory
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only once, which means either parameter has a unique solution to (4.8). Note that

vertical lines (constant storage) can intersect the MBI trajectory multiple times.

For example at zero storage capacity or around 0.5 pu storage capacity, and hence

storage capacity can not be used as the specified variable in (4.8).

The derivation of the n-estimation equation solves (4.8) analytically by assum-

ing that the PV rating P0 is specified and the optimal storage capacity (Es0) and

investment (I0) to be the unknown variables.

Terms used to derive the n-index equation

A brief description of all the parameters used in deriving the n-index equation is

provided in Table 4.1.

Table 4.1: List of parameters used in deriving the n-index equation

Cost Parameters Description
B Annual Benefit ($)
cg Grid supply tariff ($/kWh)
cf Grid feed-in tariff ($/kWh)
CE Cost of energy storage ($/kWh)
CP Cost of PV ($/kWp)

Energy Parameters
P PV rating (kWp)
Es Storage capacity (kWh)
Eg Annual grid supplied energy (GSE)

Household Parameters
G1 Annual generation (kWh) per kWp of

PV
L1 Annual load (kWh)

Eg0[P ] Annual GSE for a given HES size with
PV rating P and no storage.

Optimal Parameters
P0 The optimal PV rating for a given in-

vestment I0
Es0 The optimal storage capacity for a

given investment I0
I0 The given investment containing opti-

mal HES size [Es0, P0] at which maxi-
mum benefit occurs.

4.5.1 Sensitivity of Benefit to Variations in Storage Capac-

ity

The sensitivity of the benefit to variations in storage capacity in (4.9) is derived

from the simplified benefit equation in (4.1).

B
[
Eg[Es,P]

]
= P×G1cf − Eg[Es,P](cg − cf ) + L(cg − cf ) (4.1 Repeated)
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∂B

∂Es

∣∣∣
P
= −∂Eg

∂Es

∣∣∣
P
(cg − cf ) (4.9)

The sensitivity of benefit to variations in storage capacity is shown to be directly

related to the sensitivity of GSE to storage capacity and hence can be derived

from the closed-form equation between GSE and storage capacity. As shown in the

following section the result of this derivative is:

∂B

∂Es

∣∣∣
P
[Es0, P0] = n[P0](cg − cf )

where n[P0] is the nth critical capacity for the given (constant) PV rating P0.

Sensitivity of GSE to variations in storage capacity

The relationship between GSE and storage capacity is described by (2.8) for a

given storage capacity Es, constant PV rating Pc and the critical capacities C =

{c1, · · · , cN}.

Eg[Es, Pc] =
N∑
i=1

1

2

(
(ci − Es) + |ci − Es|

)
(2.8 Repeated)

However finding the sensitivity of (2.8) to variations in storage capacity is com-

plex due to its discontinuities. Hence the simplified version of the GSE equation in

(2.9) is used to find the sensitivity of GSE to storage capacity. This simplified equa-

tion only considers the first n critical capacities which are greater than the given

storage capacity, since these critical capacities are the only terms which contribute

to the GSE.

Eg[Es, Pc] =

n[Pc]∑
i=1

(ci − Es) for n such that c1 ≥ · · · ≥ cn ≥ Es (2.9 Repeated)

The sensitivity of GSE to variations in storage capacity is then:

∂Eg[Es, Pc]

∂Es

=

n[Pc]∑
i=1

∂

∂Es

(
ci − Es

)
∂Eg[Es, Pc]

∂Es

=

n[Pc]∑
i=1

(−1)

∂Eg[Es, Pc]

∂Es

= −n[Pc] (4.10)

where n is the slope of the GSE to storage capacity curve and also corresponds to an

index in the list of critical capacities. This is shown in Fig. 4.7 which plots the GSE

to storage capacity curve containing four critical capacities C = {C1, C2, C3, C4}
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such that C1 > C2 > C3 > C4 and the curve can be separated into three segments

where each segment starts at critical capacity Ck and ends at critical capacity Ck+1.

The slope of each segment is described by M = {M1,M2,M3} = {−1,−2,−3}
where Mk is the slope between critical capacities Ck and Ck+1.

Note in Fig. 4.7b the solid black circles shows that a given storage capacity value

belongs to a given segment and an empty circle shows that a value is not included

in the segment. For example the storage capacity at C2 is included in segment 1

and not in segment 2, hence ∂Eg

∂Es
= −1 at C2.

(a)

(b)

Figure 4.7: Demonstrating how the slope of the GSE to storage capacity depends on
the critical capacities: a) GSE to storage capacity, b) sensitivity of GSE to variations
in storage capacity

In Fig. 4.7a if the storage capacity is selected in segment 1 (e.g. n = 1) such

that C2 ≤ Es < C1 then the slope is -1, which is shown in Fig. 4.7b. If the storage

capacity is selected in segment 2 (e.g. n = 2) such that C3 ≤ Es < C2 then the slope

is -2. Similarly for a storage capacity within segment 3 (e.g. n = 3) the slope is -3.

This demonstrates the concept that the value of n in (4.10) defines both the slope

and the index in the list of critical capacities. This concept of n being an index in

the critical capacity list is a core concept to the n-estimation method. Note that n

may not be an integer and hence Section 4.5.4 discusses how to handle this case.

By substituting for the sensitivity of GSE to storage capacity in (4.10) into (4.9)

the sensitivity of benefit to variations in storage capacity is found as:
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∂B

∂Es

∣∣∣
P
= −∂Eg

∂Es

∣∣∣
P
(cg − cf )

∂B

∂Es

∣∣∣
P
= n[P ](cg − cf ) (4.11)

and evaluating this at the point [Es0, P0]:

∂B

∂Es

∣∣∣
P
[Es0, P0] = n[P0](cg − cf ) (4.12)

where n[P0] describes the nth critical capacity for the given PV rating P0.

4.5.2 Sensitivity of Benefit to Variations in PV Rating

The sensitivity of the benefit to variations in PV rating is derived in equation (4.13)

from the simplified benefit equation (4.1).

B
[
Eg[Es,P]

]
= P×G1cf − Eg[Es,P](cg − cf ) + L(cg − cf ) (4.1 Repeated)

∂B

∂P

∣∣∣
Es

= G1cf −
∂Eg

∂P

∣∣∣
Es

(cg − cf ) (4.13)

Hence the sensitivity of benefit to variations in PV rating depends on the sensi-

tivity of GSE to variations in PV rating.

A closed-form solution between GSE and PV rating has not been found however

Chapter 2 decomposes the GSE equation (2.9) into three key components which

define the relationship between GSE to PV rating for a range of PV ratings. The

decomposed equation, in (2.11), is used to derive an estimate for the sensitivity of

benefit to variations in PV rating for the assumptions described in the following

section. As shown in the following section the result of deriving the sensitivity of

benefit to variations in PV rating is:

∂B

∂P

∣∣∣
Es

[Es0, P0] ≈ G1cf −
∂Eg0

∂P

∣∣∣
Es=0

(cg − cf )

where:

Eg0 = Eg[0, P0] ≈

(
N∑
i=1

ci[P0]

)

Note the term Eg0 refers to the GSE with no storage capacity and while its

sensitivity to PV rating may appear to be a source of complexity for the estimation

method, this sensitivity is small. The value of Eg0 depends on only the list of critical

capacities for each PV rating and this list is required regardless of whether the search

or n-estimation method is used to find the MBI.
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The following describes how the sensitivity of GSE to PV rating is derived.

Sensitivity of GSE to variations in PV rating

In Chapter 2 the estimation of GSE for a given PV rating (P ) with a fixed storage

capacity (Es1) is described by (2.11) and hence the sensitivity of GSE to variations

in PV rating can be described by (4.14). Note that Eg0 is, for zero storage capacity,

the annual load remaining after removing the PV self-consumption, i.e. the portion

of generated energy consumed by the household, hence each PV rating has a different

Eg0 which is independent of storage capacity. A plot of Eg0 in terms of PV rating

for the base case is shown in Fig. 3.10 with the curve labeled no storage capacity.

Eg(Es1, P ) = Eg0[P ]− (EL[Es1, P ] + EU [Es1, P ]) (2.11 Repeated)

where:

Eg0[P ] =

N [P ]∑
i=1

ci[P ]

 , EU [Es1, P ] = n[Es1, P ]× Es1

EL[Es1, P ] =

 N [P ]∑
i=n[Es1,P ]+1

ci[P ]


Hence:

∂Eg

∂P

∣∣∣
Es

≈ ∂Eg0

∂P

∣∣∣
Es=0

(4.14)

Assuming, as justified below, that:

∂

∂P
|Es(EL[Es1, P ] + EU [Es1, P ]) ≈ 0 for small Es1 and for large PV ratings

In (4.14) there is an assumption that the sensitivity of the energy supplied by

storage (EL +EU) due to variations in PV ratings has minimal impact on the total

sensitivity of GSE to variations in PV rating. This assumption is valid when either

i) the storage capacity is small (less than 0.2 days), or ii) the PV rating is greater

than 1pu.

To justify the validity of this assumption, consider the definition of EL and EU in

(2.11) where it can be seen that their sensitivities to PV rating is approximately the

sensitivity of the critical capacities to variations in PV rating. In Section 2.6.2 it is

shown that the variations in the critical capacity magnitudes and the total number

of critical capacities is small when the PV rating becomes large. Hence for larger PV

ratings a small variation in critical capacities results in a small variation in (EL+EU)

hence their sensitivity, for large PV rating, is small. When storage capacity is small,

storage will only contribute a small amount of energy when compared to Eg0 hence
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(a)

(b)

Figure 4.8: Examples of (4.14), which plots: a) the sensitivity of GSE to PV rating
for various storage capacities, b) the sensitivity of the energy supplied by storage
(EL+EU) to variations in PV rating which is small for both small storage capacities
and at large PV ratings

the sensitivity of (EL + EU) to variations in PV rating is small for small storage

capacities.

The result of this analysis is that the sensitivity of GSE to variations in PV

rating in (4.14) is mostly due to the sensitivity of Eg0 to variations in PV rating.

This can be observed by plotting the sensitivity of GSE to variations in PV rating

for different storage capacities in Fig. 4.8a and the sensitivity of the energy supplied
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by storage (EL + EU) to variations in PV rating.

Fig. 4.8a shows that the sensitivity of GSE to variations in PV rating for different

storage capacities all have the same trend, i.e. the curve for zero storage could

be shifted horizontally to approximate the curves for the other storage capacities.

Fig. 4.8b shows that the energy (EL + EU) supplied by a given storage capacity

only has a major impact, relative to Eg0, when the PV rating is small (less than

1pu). However typically no storage or a small amount of storage is considered for

small PV ratings since for these ratings the majority of generated energy is used to

directly supply the load and there is insufficient excess to store. Note this assumes

typical energy usage behavior, since it may be advisable to install storage for low

PV ratings, in special cases, such as if the household has regular excess overnight

demand.

Hence it is assumed that:

1. Storage installation will usually begin at 1 pu PV rating since at this PV rating

annual generation and annual load are equal.

2. The sensitivity of GSE to PV rating curves for different storage capacities in

Fig 4.8 all converge towards the curve of no storage capacity. Hence if the

actual storage capacity is assumed to increase slowly as PV rating increases

then the sensitivity of GSE for the given storage capacity is approximately by

the sensitivity for no storage capacity.

Substituting the approximation in (4.14) into (4.13) yields the sensitivity of the

benefit to variations in PV rating depending on the sensitivity of Eg0 to PV rating

as follows:

∂B

∂P

∣∣∣
Es

= G1cf −
∂Eg

∂P

∣∣∣
Es

(cg − cf )

∂B

∂P

∣∣∣
Es

≈ G1cf −
∂Eg0

∂P

∣∣∣
Es=0

(cg − cf ) (4.15)

where:

Eg0 = Eg[0, P ] ≈

(
N∑
i=1

ci[P ]

)

which can be evaluated at the optimal point [Es0, P0]:

∂B

∂P

∣∣∣
Es

[Es0, P0] ≈ G1cf −
∂Eg0

∂P

∣∣∣
Es=0

[Es0, P0](cg − cf ) (4.16)

where:

Eg0 = Eg[0, P0] ≈

N [P0]∑
i=1

ci[P0]


Note that Eg0 only depends on the list of critical capacities for a given PV rating.
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4.5.3 Defining the n-index Equation and Optimal Storage

Capacity for a Given PV Rating

The following is a collation of the various equations used to find the maximum

benefit for a given investment:

B
[
Eg[Es,P]

]
= P ×G1cf − Eg[Es,P](cg − cf ) + L(cg − cf ) (4.1 Repeated)(

∂B

∂Es

∣∣∣
P
[Es0, P0]

)
1

CE

=

(
∂B

∂P

∣∣∣
Es

[Es0, P0]

)
1

CP

(4.8a Repeated)

I0 = P0 × CP + Es0 × CE (4.8b Repeated)

where:
∂B

∂Es

∣∣∣
P
[Es0, P0] = n[P0](cg − cf ) (4.12 Repeated)

∂B

∂P

∣∣∣
Es

[Es0, P0] ≈ G1cf −
∂Eg0

∂P

∣∣∣
Es

[Es0, P0](cg − cf ) (4.16 Repeated)

where for a given PV rating (P0) the optimal storage capacity (E0) is found by

solving (4.8a) which forms the optimal HES size [Es0, P0], and the investment (I0)

for this HES size is described by (4.8b). Then the maximum benefit B0, described

by (4.1), is found using the GSE at the optimal HES size. Hence the maximum

benefit B0 for the investment I0 is found and repeating this process for different

values of P0 defines the MBI for a range of investments.

Hence the first step in finding the MBI is to find the optimal storage capacity.

The optimal storage capacity can be found by substituting both (4.12) and (4.16)

into (4.8a) and then re-arranging for n[P0]. The term n[P0] discussed in Section 4.5.1

is both: i) the slope of the GSE to storage capacity curve for PV rating P0, and ii)

the nth index in the list of critical capacities for P0. The conditions on the index n

is discussed in Section 4.5.4. The critical capacity at the nth index is the optimal

storage capacity for P0 since the derivation in (4.8a) is for the maximum benefit and

hence this index is called the optimal n-index for P0, i.e. nopt[P0].

(
∂B

∂Es

∣∣∣
P
[Es0, P0]

)
1

CE

=

(
∂B

∂P

∣∣∣
Es

[Es0, P0]

)
1

CP

nopt[P0](cg − cf )
1

CE

=

(
G1cf −

∂Eg0

∂P

∣∣∣
Es=0

(
cg − cf )

)
1

CP

nopt[P0] =
CE

CP

S[P0]

(cg − cf )
(4.17)

where:

S[P0] =

(
G1 +

∂Eg0

∂P

∣∣∣
Es=0

)
cf −

(
∂Eg0

∂P

∣∣∣
Es=0

)
cg

The list of critical capacities is sorted in descending order and hence for example

if nopt is large then the optimal storage is likely small for that given PV rating.
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Table 4.2: Separation of (4.17) into its four parts and each parts effect on the optimal
storage capacity

nopt The optimal index in the critical capacity list for PV rating P0.
The higher the value of nopt the lower the value of optimal storage
capacity.

CE

CP
The cost ratio between the capital cost of storage capacity (CE) and
the capital cost of PV rating (CP ). The more expensive storage is
in relation to PV rating the lower the value of optimal storage
capacity.

Cg − Cf The difference between grid energy and feed-in tariff. As grid sup-
ply price increases with respect to the feed-in tariff the higher the
optimal value of storage capacity.

S[P0] The disincentive to store energy, as discussed below. The higher
the value of S[P0] the lower the value of optimal storage capacity.

Figure 4.9: The disincentive to store energy S[P0] versus PV rating. This determines
the value of nopt and hence defines the optimal storage capacity. Note the case study
data is used with the cost values in Table 1.3 hence 2.3 is the ratio between the two
curves.

Equation (4.17) can be separated into four parts and the effect which each part

has on the optimal storage capacity is discussed in Table 4.2.

The disincentive to store energy is the key component which defines how the

n-index, hence optimal storage capacities, varies for different PV ratings. The S[P ]

is plotted together with nopt in Fig. 4.9 for a range of PV ratings. Note Fig. 4.9 uses

the tariffs, cf and cg, from Section 1.6 and the sensitivity of GSE to PV rating from

Fig. 4.8.

Hence this disincentive to store energy is directly related to the shape of the n-

index versus PV rating curve and it is the only part of the n-index equation which
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varies with PV rating since the other two parts are constants.

Calculating optimal storage capacity from optimal index nopt

The n-index equation defines the optimal index nopt at which the optimal storage

capacity (Eopt) occurs for a given PV rating P0 and hence from the critical capacities

list of C[P0] = {C1, ..., CM} the optimal storage capacity is found as follows:

Eopt[P0] = Cnopt [P0]

Finding the optimal storage capacity is simple when nopt is an integer between

one and the critical capacity list length (M). However there are no constraints

on the values which nopt can take and hence there are three cases which must be

considered:

1. When nopt is not an integer

2. When nopt > M , i.e. is greater than the critical capacity list length (M)

3. When nopt ≤ 0

4.5.4 Three Cases of Optimal n-Index

The first case, where nopt is not an integer, is the most common case since the

parameters in the n-index equation (4.17) are typically not integers. A non-integer

nopt means that the optimal storage capacity would occur between two adjacent

critical capacities. For example consider, for a given PV rating, when nopt = 2.25,

C2 = 4 days and C3 = 2 days then the optimal storage capacity is 0.25 of the

difference between C2 and C3, hence the optimal storage capacity is Eopt ≈ 3.5 days.

In general, for non-integer values of nopt the optimal storage capacity occurs

between the critical capacity at ⌊nopt⌋ (the floor function) and the critical capacity

at ⌈nopt⌉ (the ceiling function) such that:

Eopt[P ] ≈ C⌊nopt⌋ − (nopt − ⌊nopt⌋)
(
C⌊nopt⌋ − C⌈nopt⌉

)
(4.18)

The second case occurs when the optimal storage index nopt is greater than the

critical capacity list length (M) and hence there is no value which can be indexed.

In this case the resulting optimal storage capacity is zero since the last element in

the critical capacity list is a storage capacity of zero. A n-index greater than the

number of critical capacities suggests a negative optimal storage capacity. However

this is not possible. The optimal storage capacity in this case is zero.

The third case, nopt ≤ 0, typically occurs when cg < cf that is when selling

energy to the grid provides a greater benefit than storing that energy or supplying
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it to the load. Hence in this case, the maximum benefit would be only due to selling

all PV generation and hence when nopt ≤ 0 the optimal storage capacity is also zero.

4.5.5 Advantage of n-estimation method

The n-estimation method is an improvement on previous search-based methods in

both computational speed and in the analytical understanding of the factors affecting

the MBI. The improved computational speeds in finding the MBI is achieved since,

as shown in Fig. 4.4, the n-estimation method uses a closed-form equation to relate

GSE to storage capacity for a given PV rating.

The n-estimation method also provides a closed-form equation to estimate the

critical capacity list index corresponding to the MBI where the terms in this equation

are the cost parameters which is a key advantage of this method. This equation

means the sensitivity of the MBI to variations in the cost parameters can be easily

computed compared to the search method since calculating the new n-index, finding

the new storage and then finding the new benefit is much simpler when compared

to searching a new range of HES sizes and making multiple comparisons to find the

new MBI.

4.5.6 Summary of n-Estimation Derivation

This concludes the second part of this chapter which focused on deriving an esti-

mation equation for the optimal HES size for a given investment. The result of this

deriving is the development of the n-estimation equation (4.17) and the equation

for optimal storage capacity (4.18).

The process to find the optimal storage capacity for a given annual load and

annual solar irradiation time series is as follows:

Summary of n-estimation method

1. Select a range of PV ratings.

2. For each PV rating find the generation time series from the solar irra-

dation data.

3. Combine the above the generation time series for each PV rating with

the load data and hence find the list of critical capacities for each PV

rating.

4. Hence calculated S[P0] using the definition in (4.17) where Eg0 which is

calculated from the critical capacities.

5. Find the value of nopt using (4.17).

6. The optimal storage capacity is then found for the range of PV rating

using (4.18).

The final part of this chapter focuses on validating the n-estimation method
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using the case study data and performs a sensitivity study. Details of the sensitivity

study is provided in the following section.

4.6 Validating the n-Estimation Method

The n-estimation method is validated by comparing its estimated MBI to the search-

based method’s MBI. The same case study data from Chapter 3 is used for this

comparison. First the base case is used to demonstrate that both methods can

produce similar plots for: i) the optimal HES size, and ii) the investment to benefit

trade-off. Then three case studies are selected where each case differs from the

base case by considering: i) variations in the cost parameters (capital costs and

energy tariffs), ii) variation in the load data by considering the load of six different

households, and iii) variation in the year of generation data used. These three cases

are chosen since they each impact a different part of the n-estimation equation.

4.6.1 Estimating the Base Case MBI

The optimal HES size for the base case is found using both the search method and

the n-estimation method in Fig. 4.10. The n-estimation curve is shown to be a

close approximation to the search method curve demonstrating both methods have

similar optimal HES size, however note the runtime of the search method is an order

of magnitude higher than the estimation method, that is if n-estimation has runtime

of order N then the search method has runtime of order N2.

There are two key points in Fig. 4.10, labeled (A) and (B), which are important

to the MBI and can be found by both methods. The point labeled (A) is the PV

rating at which the household should begin investing in storage and it is observed

that for PV ratings below this point then the curves of both methods overlap.

The point labeled (B) refers to the HES size at which the household should stop

investing into storage and any further investment beyond this point should only

go towards increasing the PV rating. It is observed that beyond point (B) the n-

estimation method optimal HES sizes overlap with the search-based method optimal

sizes. These two points provides the household owner with two easy to understand

reference points about the optimal HES sizing under two given investment conditions

(when to start and stop storage investment) and the expected benefit/investment

at these points.

Between points A and B in Fig. 4.10 the estimated optimal HES sizes is less

accurate due to estimation of the sensitivity of GSE due to variations in PV rating.

For HES sizes smaller than at point A and larger than at point B, the estimated

sensitivity of GSE to variations in PV rating is close to their true values seen in

Fig. 4.8. For HES sizes between these points the estimated sensitivity of GSE to

variations in PV rating is larger than its true value and this causes a slightly higher
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Figure 4.10: Comparison between the optimal HES size determined by the search
and n-estimation methods, Note the optimal HES sizes are the combined PV rating
and storage capacity which results in the MBI. Each point on the optimal trajectory
correspond to an investment I = CP × P + CE × Es,.

incentive to invest in storage. Hence the n-estimation’s maximum benefit, for a

given investment, has an optimal HES size comprising a larger storage capacity

and a smaller PV rating when compared to the search method’s optimal HES size.

Hence the n-estimation method will be less accurate if the optimal HES size has a

significantly large optimal storage capacity since as shown in Fig. 4.8 the estimate for

the sensitivity of GSE to variation in PV rating is less accurate as storage capacity

becomes significantly large.

Finding the HES Size at Which to Start and Stop Storage Investment

Both the search method and the n-estimation method can find the PV rating at

which investment into storage should begin (point A) and the HES size when in-

vestment into further storage capacity is uneconomical (point B). However the n-

estimation method is much faster at identifying these points.

Consider the optimal n-index (nopt), which is the reference to the optimal storage

capacity in the list of critical capacities, plotted against a range of PV ratings shown

in Fig. 4.11 for the search method and the n-estimation method. The search method

does not directly find nopt however it does find the optimal storage capacity for a

given PV rating which, combined with a list of critical capacities for that PV rating,

can find an equivalent to nopt. Note the dashed line labeledM [P ] is the total number

of critical capacities for each PV rating and the critical capacity list is in descending

order, i.e. for a given PV rating the larger the value of nopt the smaller the optimal

storage capacity.

In Fig. 4.11, the investment into storage should begin (point A) when the index

nopt is less than the number of critical capacities (M [P ]), since the last element in

the list is zero storage capacity and any index larger than the list length represents
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Figure 4.11: Comparing nopt for both the search method and n-estimation method.
Point (A) is the PV rating required to begin considering storage investment and
Point (B) shows where the investment in storage should stop.

that no amount of storage capacity could improve the benefit. The investment into

storage should stop (point B) when the optimal index nopt is no longer influenced by

the PV rating, i.e. when an increase in PV rating causes no change in nopt. Finding

these two points is possible using the n-estimation method since the n-index equation

defines nopt in Fig. 4.11.

Comparing the maximum benefit and investment trade-off for both n-

estimation’s MBI and search-based MBI

The maximum benefit to investment trade-off is plotted in Fig. 4.12 for the n-

estimation and search-based methods, noting that both point (A) and point (B)

refers to the same points from Fig. 4.10. Both methods produce nearly overlapping

curves in Fig. 4.12 which suggest that the n-estimation method produces similar

values of benefit as the search method when used to find the MBI.

In Fig. 4.12 there are two dashed curves, labeled Bh and Bf , which represent

the slopes for two different parts of the MBI curve and these two slopes depend on

the energy tariffs. The curve labeled Bh describes the benefit to investment if both:

i) only PV is installed, and ii) if all generated energy is valued at the grid supply

cost of cg, i.e. if all generated energy could be supplied to the load. The curve Bh

has the same slope as the MBI’s curve for investment prior to point (A) and hence

for investment prior to this point the majority of the benefit is a result of offsetting

grid energy at the energy tariff price cg.

The curve labeled Bf is the benefit to investment relationship if both: i) only

PV is installed, and ii) if all generated energy is valued at the feed-in tariff of cf ,

i.e. if all generated energy is sold to the grid. The Bf curve has the same slope as

the MBI curve for investment greater than IB since beyond this point the majority

of the benefit is a result of GFI. Between the two points, (A) and (B), the benefit
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Figure 4.12: The benefit and investment trade-off curve for both the search method
and estimation method. Point (A) is when investment begins into storage and point
(B) is when investment in storage ends. Bh describes a slope at a rate cg and Bf

describes the slope at a rate cf .

is provided through the combination of the GEO and GFI.

Sensitivity of the MBI to variation in HES size

The sensitivity of the n-estimation method to variation in HES sizes is examined by

plotting in Fig. 4.14 for various contours representing a percentage of the optimal

maximum benefit ([99.95, 99, and 95%]). These percentages are represented by two

contours on each side of the optimal benefit. For instance in Fig 4.14 the investment

I0 has optimal benefit at the point labeled B0 and the two points labeled B0.95,

where I0 intersects the two 95% contours, represent HES sizes which have 95% of

the optimal benefit.

The reason for these two contours is highlighted in Fig 4.13 where for the given

investment I0 the maximum benefit B0 occurs with HES size [P0, Es0]. For the

investment I0 there are two HES sizes which can achieve 0.95% of this optimal

benefit which are: i) [P1, Es1], and ii) [P2, Es2].

Fig. 4.14 shows that the benefit in the base case is not that sensitive to small

errors in the MBI trajectory and that the n-estimation method’s MBI trajectory

produces better than 99.5% of the benefit of the optimal trajectory found by the

search method. The other percentage contours show the sensitivity of the MBI to

variations in the HES size, for example slightly over sizing the storage capacity for

a given investment has a smaller impact on the benefit compared to under sizing

storage. Note there are two contours for each percentage since the MBI has a convex

shape as illustrated in Fig. 4.5.

Comparing the n-estimation method to the searched method in Fig. 4.14 shows

the MBI for the estimated HES sizes are within 99.95% of the optimal benefit.
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Figure 4.13: For investment I0 there is one valid solution for optimal benefit B0 at
HES size [P0, Es0] and two valid solutions for 95% of B0, one at [P1, Es1] and the
other at [P2, Es2]. These two valid solution describes the two contours for each MBI
percentage in Fig. 4.14.

Figure 4.14: The accuracy of the n-estimation method is examined by considering
different percentages of the ideal MBI benefit in the PV-E plane.

4.6.2 Sensitivity of the n-estimation Method with Cost Pa-

rameter Variations

The n-index equation in (4.17) contains four cost parameters: i) PV capital CE per

kWp, ii) storage capital CP per kWh, iii) Grid supply tariff cg, and iv) Grid feed-in

tariff cg. The parameters are highlighted in blue in the following:

nopt[P0] =
CE

CP

S[P0]

(cg − cf )
(4.17 Repeated)

where:

S[P0] =

(
G1 +

∂Eg0

∂P

)
cf −

(
∂Eg0

∂P

)
cg

The n-index equation is further validated by comparing the optimal HES sizes

and the investment to benefit trade-off for both the search-based method and esti-
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mation method for each of the following list of cases where a given cost parameter

is changed from the base case:

Case 1: The base case

Case 2: When storage capital is 0.5CE

Case 3: When PV capital is 0.5CP

Case 4: When grid supply tariff is 2cg

Case 5: When grid feed-in is 2cf

Fig. 4.15 demonstrates a reasonable agreement between the optimal HES sizes

for the search MBI trajectory (solid) and the estimated MBI trajectory (dashed) for

each of the cases.

Both case 2 and case 4 has a larger optimal storage capacity than the base case

which can be explained using the n-index equation (4.17). The discuss of both cases

is as follows:

1. In Case 2 the storage capital cost CE is halved which results in a lower values

of nopt and hence a large value of optimal storage.

2. In Case 4 the GSE price cg is increased which results in a smaller nopt since

both: i) the disincentive to store energy S[P0] will become smaller when com-

pared to the base case, and ii) the difference between the energy tariffs (cg−cf )

will reduces the index nopt.

The benefit to investment plot for each case in Fig 4.16 shows agreement be-

tween the search method and n-estimation method which validates the n-estimation

method for variations in the cost parameters.

Finally the nopt index is examined for each cost parameter change which provides

insight into the two key points of: i) point (A), when to begin investing into storage,

and ii) point (B), when to stop investing into storage. In Fig. 4.17, rather than

showing the points for each case, the regions labeled A and B are used to provide

a general range of PV ratings and nopt at these points for all cases. Note for case

3 and case 5 the nopt is always greater than the total length of the critical capacity

list M [P ] hence no investment is made into storage in these cases. For the base case

and case 4 there is minimal change in point (A) however case 2 has a smaller PV

rating for point (A) since it has cheaper storage which means it invests into storage

at a lower PV rating to achieve maximum benefit. The region labeled B shows that

investment into storage should end at approximately the same PV rating for the

base case, case 2 and case 4.
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Figure 4.15: The n-estimation method’s optimal HES sizes (dashed line) closely
approximates the search sizes (solid line) for variations in the cost parameters. Note
case 3 and case 5 overlap and are located on the y-axis.

Figure 4.16: The benefit versus investment curve shows close agreement between
the n-estimation MBI (dotted line) and search MBI (solid line) for each of the given
cost cases. Note due to close agreement between methods their respective curves
overlap for each case.

Figure 4.17: For the changes in cost parameters the estimated nopt is plotted against
PV rating to demonstrate region A and region B. Note Case 3 and Case 5 does not
intersect with the dashed curve (number of critical capacities) and hence storage is
not economical for these cases.
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4.6.3 Sensitivity of the n-estimation Method with the Load

of Various Households

The n-index equation in (4.17) contains two components which depend on the house-

hold load: i) the sensitivity of GSE to variations in PV rating, and ii) the list of

critical capacities and hence the optimal storage capacity indexed by nopt. The

components are highlighted in blue in the following:

nopt[P0] =
CE

CP

S[P0]

(cg − cf )
(4.17 Repeated)

where:

S[P0] =

(
G1 +

∂Eg0

∂P

)
cf −

(
∂Eg0

∂P

)
cg

To validation the n-estimation method for various household loads, six house-

holds are selected and the search method’s MBI is compared to the n-estimation’s

MBI. The load duration curve of the six households, labeled H1 to H6, is shown

in Fig. 4.18 and each household’s total annual load is listed. Further detail on the

household daily load behavior is observed in Fig. 1.10. Note Household H3 has the

largest annual load and the largest load for 50% of the year while household H2 has

the smallest annual load and is the lowest curve in the load duration graphs.

In Fig. 4.19 the optimal HES size for the search method’s MBI (solid line) is

shown to agree with the estimation method’s MBI (dashed line) for each of the

different households. Note the PV rating and storage capacity of each household

has been normalized by that household’s annual load.

Comparing the maximum benefit to investment trade-off for each household in

Fig. 4.20 also shows a good agreement between the search method and n-estimation

method which verifies that the n-estimation method can provide an accurate MBI

trajectory for a range of households with different load profiles.

Figure 4.18: Load duration curves for the six household cases.
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Figure 4.19: For the six households, the optimal HES size for the estimated MBI
trajectory (dashed line) is a close approximation to the actual (search) MBI trajec-
tory (solid line).

Figure 4.20: Benefit versus investment for the six households, comparing the
searched MBI (solid line) and estimated MBI (dotted line).

4.6.4 Sensitivity of the n-estimation Method with Variation

in PV Generation

The n-index equation in (4.17) contains three components which depend on the

generation time series: i) the annual generation per kWp of PV (G1), ii) the list of

critical capacities and hence the optimal storage capacity indexed by nopt, and iii)

the sensitivity of GSE to variations in PV rating. The components are highlighted

in blue in the following:

nopt[P0] =
CE

CP

S[P0]

(cg − cf )
(4.17 Repeated)

where:

S[P0] =

(
G1 +

∂Eg0

∂P

)
cf −

(
∂Eg0

∂P

)
cg
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To validate the n-estimation method for various generation time series, six differ-

ent years of generation data is used in combination with the load from the base case.

A generation-duration curve for each of the six years of data is shown in Fig. 4.21

and the annual generation G1 is listed for each year. Overall the generation dura-

tion curves have a similar shape, similar annual generation and similar kW/kWp.

The only notable difference is that the 2002 year having a slightly higher amount of

generation.

For the different years of generation data, the optimal HES size for the search

method’s MBI and the n-estimation method’s MBI shows agreement in Fig. 4.22

and there is also agreement in the benefit to investment trade-off in Fig. 4.23 for

the various years of generation data.

Figure 4.21: Generation duration curves for the six different years of solar irradia-
tion.

Figure 4.22: For the six years of generation, the optimal HES size (dashed line) for
the estimated MBI trajectory is a close approximation to the actual (search) MBI
trajectory (solid line).
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Figure 4.23: Benefit versus investment for the six years of generation, comparing
the searched MBI (solid line) and estimated MBI (dotted line) which overlaps for
all cases.
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5.1 Conclusion

The goal of this thesis was to investigate the optimal sizing of a household energy

system (HES), which contains PV generation (P ) and energy storage (Es), to provide

the minimise the household’s annual energy bill (i.e. maximise the benefit) for a

given HES capital investment (maximum benefit for a given investment, MBI). The

conventional approach to finding the optimal HES size is to compare the benefit for

a number of HES sizes to find the maximum benefit however this provides minimal

insight into the sensitivity of the maximum benefit to variations in HES size. A new

method is proposed which analytically estimates the optimal HES size and provides

greater insight into the maximum benefit. The new method, which depends on

a number of simplifying assumptions, can be separated into two parts. The first

part is to determine how the HES size affects the energy flow within the HES. The

second part is to determine how the energy flows from the grid affects the maximum

benefit and hence, when combined with the first part, how the HES size affects the

maximum benefit.

A new method, called Critical Capacity Analysis (CCA), was developed in Chap-

ter 2 to understand how the HES size, specifically how the storage capacity, affects

the energy flows in the household. The HES size affects the grid energy required to

satisfy the household’s demand which is a major influence on the maximum benefit.

The foundation of CCA is the recognition in this thesis that there is a piece-wise

linear relationship between the storage capacity and the grid-sourced energy (hence

benefit). The canonical form of a piece-wise linear function can be used to derive

a closed-form relationship between storage capacity and grid-sourced energy. This

equation depends on two key properties of a piece-wise linear function which are: i)

its linear segments, and ii) its breakpoints. In a piecewise-linear plot the linear seg-

ments are lines of constant slope and the breakpoints are the points of intersection

between two linear segments, where the slope changes. The CCA method provides

an algorithm to find these breakpoints, which it calls critical capacities, for a given

generation and load time-series.

A key property of CCA is that the number of critical capacities is equal to the

number of time periods in the year when the net generation time series (difference

of generation and load) is negative, hence for a typical year there is expected to be

a minimum of 365 critical capacities due to the day/night cycle.

The CCA has computational benefits over the conventional method, where for

N ×N HES sizes the computation time using the CCA method is of approximately

order N while the conventional method is of order N2.

The key outcomes of the CCA method are two equations which are used to derive

an estimation of the maximum benefit for a given investment. These two equations

are:

1. The closed-form GSE equation for the grid-sourced energy in terms of storage
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capacity for a given PV rating.

2. The decomposition of the GSE equation which describes the relationship be-

tween grid-sourced energy and the PV rating for a given storage capacity.

In Chapter 4 the maximum benefit for a given investment (MBI) is formulated

as an optimisation problem where: i) the benefit is the function being maximised; ii)

the constraint is the investment, and iii) the HES size is the variable. The trajectory

of optimal HES size due to variations in capital investment (i.e. MBI trajectory)

is found using the conventional search-based approach. This is done by selecting a

number of HES sizes for a given capital investment, calculating the benefit at each

HES size and searching the resulting benefits for the maximum. This procedure

is repeated for a range of capital investments. An alternative approach, called the

n-index estimation, is developed to provide a faster means of estimating the MBI

trajectory using only the critical capacities for a range of PV ratings. The estimation

method allows rapid calculation of the sensitivity of the MBI and optimal HES size

to variations in the capital cost of PV and storage, and the grid energy and feed-in

tariffs.

5.2 Future Work

Two areas of future work are identified:

1. Improvement of CCA to allow time-of-use analysis.

2. Application of CCA to a large power system case, such as the South Australian

power system

5.2.1 CCA and Time of Use Analysis

In Chapter 4 the price of energy from the grid was assumed constant regardless of

the time of day, which is standard for most households in South Australia. In the

future ‘time of use” tariffs will be more common, whereby the price of energy may

change depending on time, typically defined by a peak time and an off-peak time.

Typically peak times are defined by high demand for energy e.g. during the early

evening, and the off-peak time is defined by low demand for energy. It is also possible

that the household may be charged an additional fee based on their maximum power

demand during specific times. These conditions add a higher degree of complexity

to the overall sizing problem, since the relation between the storage capacity and

the benefit obtained from storage (for a given PV rating) would vary depending on

the time, e.g. applying a storage capacity of 1 kWh during an off-peak time would

be of smaller benefit than during a peak time.
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If CCA is adapted to include time of use tariffs, it may be possible to provide

insight into how these tariffs affect the optimal HES size. The key feature of CCA

is to identify loops in the power-energy plane and the resulting time series which

occur would provide a means to include time of use information in the trade-off

curve between storage capacity and grid energy offset GEO .

5.2.2 CCA and the South Australian Power System

The key elements of a HES could be considered as a simplified representation of the

South Australian (SA) power system. The parallels between the devices installed

in the HES and their corresponding equivalence in the SA power system is seen in

Table 5.1. For example a household’s PV generation time series is equivalent to the

aggregation of all intermittent generation in the SA power system scenario. Note

for the HES that the usage of the grid connection is separated into providing a

sink for excess power (feed-in) and a source of power (grid sourced). In the power

system case there is a slight difference between energy supplied to/from the SA

power system as shown in Table 5.1.

Table 5.1: Comparison between HES and the SA power system

HES SA Power System
Energy storage Energy storage
PV system Intermittent generators (e.g. wind/PV

etc)
Grid Connection (energy from the grid) Fossil fueled generators and power sup-

plied from other states through inter-
connectors

Grid Connection (energy to the grid,
feed-in)

Power supplied to other states through
interconnectors

Note to find the maximum benefit and optimal HES sizing of the SA power

system would require CCA to be usable with time-varying tariffs as the price of

energy for the SA power system would depend on time. However, determining the

storage requirements for a given renewable generation capacity does not require

time-varying tariffs.

The analysis of the SA power system would examine the trade-off between: i)

the energy required from the combination of the conventional generation and the

interconnectors, and ii) the energy storage requirement. The use of CCA could

provide a faster means to evaluate a number of future grid scenarios where the

amount of intermittent generation increases and also provides insights to aid in

predicting the benefits that increased levels of storage would have on the system.
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The rules-based method was summarised in Section 2.4.1 using both an example

time series and a discussion on how each rule was applied to determine the Critical

Capacities in the provided example. The following will discuss how each rule identi-

fies the critical capacity and are validated by comparing the GSE at different storage

capacities using: i) the critical capacities found by the rule and ii) the simulation of

the state of charge (SoC) for each storage capacity.

The rules can be categorised into two main groups, rule 1 which identifies critical

capacities which originate from the need to supply future loads, and rule 2 which

identifies critical capacities which originate, only after applying rule 1, from the

need to transfer energy forward. The rules were developed from the notion that the

net generation time series required two passes to identify how it and storage can

cause GSE. The first pass examines how the load causes GSE and the second pass

examines how the generation causes GSE.

Note in the development of the rules-based method, the storage capacity is as-

sumed to start empty which is different from the assumptions listed in Section 1.6.

However this does not affect the development of the rules.

A full-page summary of the five rules is shown in Fig. 2.17 in Section 2.4.1.

A.1 Rules Development: Example time series

The example power and energy time series from Section 2.4.1 is shown in Fig. A.1.

The net generation power time series is integrated to produce the net generated

energy time series. In Section 2.4.1 the Rippl’s method was used to separate the net

generation energy time series into six segments shown in Fig. A.1b.

The first four periods are used to demonstrate the five rules; note Period four

demonstrates two rules which must exist together. The final two periods (five and

six)

A.2 Period One

The first rule (Rule 1a) is demonstrated using the first period, Fig. A.2a, from the

example net generation power time series.

The first period contains a single interval of positive net generation (20 kW) and

a single interval of negative net generation (10 kW). Since the net generation time

series assumes a constant power for each one hour interval, the power time series can

be expressed as a row matrix (called the power row matrix) of [20 -10] kW where

each element represents the average power in a given hour. This representation

allows the example to be discussed using simple operations on a row matrix rather

than using operations on the time-series.

The base rule (Rule 1a) states that for a period containing one positive and one

negative interval the critical capacity is the energy within the negative interval, for
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(a)

(b)

Figure A.1: (Fig. 2.16 Repeated) Example time series for the rules based approach,
a) net generation power time series, b) net generated energy time series

this example it is 10 kWh. This rule is validated using the SoC simulation for three

storage capacities (10 kWh, 9 kWh, 8kWh) in Fig. A.2b. Note the dotted line shows

where and the amount of GSE (negative energy) which would occur for the given

storage capacities.

When the storage capacity is equal to the critical capacity (10 kWh) then no

GSE occurs. For storage capacities below the critical capacity the GSE is shown by

the dotted lines where the GSE is the difference between the storage capacity and

the critical capacity. For example the 9 kWh storage capacity has 1 kWh of GSE

and the 8 kWh has 2 kWh of GSE. The source of the GSE for storage capacities

below 10 kWh is a result of storage being unable to store sufficient energy before

the load at time of one hr.

Rule 1a. For a simple period of only one negative interval, the critical ca-

pacity is the energy within the negative interval.
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(a)

(b)

Figure A.2: Example period 1

A.3 Period Two

The second period, represented by its power row matrix [20 -6 7 -12] kW, has two

negative intervals and two positive intervals where each interval is an element in

the row matrix. For periods containing two or more positive and negative intervals,

the critical capacities are found by integrating the net generation power from the

end of the period to the start of the period and this process is called the reverse

integral. This reverse integral can also be written as an energy row matrix similar

to the power row matrix. By starting the integral at the end of the time series this

reverse integral represents the deficit (negative reverse integral) or surplus (positive

reverse integral) in energy at a given time in the interval and the time at the end of

that period. A deficit at a given time in the reverse integral represents that energy

is required from earlier in the period to supply the load between the given time and

the end of the period. A surplus represents that there is sufficient energy between

a the given time and the end of the period such that no energy is required from an

earlier time to the supply the load.

The purpose of the reverse integral is to find the largest deficit which represents

the required storage capacity to ensure load within the period can be supplied by

storing the generated energy. The time of the largest deficit, called the negative-

critical time, is also significant since there may be a further critical capacities in both
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the time prior to and the after the time of largest deficit. Note for each period, the

total generated energy equals the total demanded load energy and hence when the

reverse integral reaches the start of the period there should be no deficit in energy

(e.g. the last element in the reverse integral should be positive).

The reverse integral for period two is represented by the energy row matrix [-12

-5 -11 9] kWh where reading this matrix left to right represents moving backwards

in time. The first element -12 kWh occurs during a negative interval and represents

12 kWh of deficit which must be stored from an earlier time to supply the load. The

second element of -5 kWh occurs during a positive interval and it is smaller than

first element however there is still a deficit of 5 kWh. The third element of -11 kWh

occurs during a negative interval (-6 kWh) and the 11 kWh of deficit results from:

i) the load during this interval (6 kWh) and ii) the deficit of 5 kWh from the second

element. Finally the last element of 9 kWh means that there is both i) sufficient

energy to supply the future load and ii) there is 9 kWh surplus energy within this

period, which is not needed to supply the load and can be sold to the grid.

Hence Rule 1b.1 finds the critical capacity by finding the largest deficit in the

reverse integral and so for period two the critical capacity is 12 kWh. The second

part of Rule 1b is to create a sub-period between the start of the time series and

the negative-critical time (not including the negative-critical time). For period two

the negative-critical time is at the 5 hr point in Fig. A.3a and hence the created

sub-period is [20 -6 7] kWh. Then Rule 1 is applied to this sub-period and since this

sub-period only contains one negative interval then Rule 1a identifies the critical

capacity of 6 kWh. Hence period two has two critical capacities; 12 kWh and 6

kWh

Rule 1b.1 is validated in Fig. A.3b which simulates the SoC for storage capacities

of: i) 1 kWh below the first and second critical capacities, ii) 1 kWh above the

second critical capacity, and iii) at each of the critical capacities. Note the first

critical capacity occurs between the times 5 to 6 and the second critical capacity

occurs between the times 3 to 4. These times refers to the interval over which GSE

would occur when storage is sized below a critical capacity e.g. if storage is sized

below 12 kWh then the first critical capacity loses load between time 5 and time 6.

For storage capacities between the first critical capacity (12 kWh) and the second

critical capacity (6 kWh) the GSE is linearly related to the difference between 12

kWh and the storage capacity, e.g. for the 11 kWh storage simulation there is GSE

of 1 kWh and for the 7 kWh storage simulation there is 5 kWh ofGSE.

Below the second critical capacity, the relationship of the GSE to storage capacity

changes as seen by the 5 kWh storage simulation where there is 8 kWh of GSE. This

GSE is comprised of 7 kWh from the first critical capacity (between hour 5 and hour

6) and 1 kWh from the second critical capacity (between hour 2 and hour 4). This

separation of GSE for 5 kWh of storage is marked in Fig. A.3b.
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(a)

(b)

Figure A.3: Example period two

Rule 1b.1 For periods containing more than one negative interval, energy may

need to be stored across multiple positive and negative intervals. Hence the

reverse integral (the integral beginning at the end of the period and moving

towards the start) is performed which represents the deficit/surplus of net

generated energy between a given time and the end of the period. A deficit

at a given time represents that energy is required from earlier in the period to

supply the load between that given time and the end of the period. The largest

deficit in the reverse integral is a critical capacity and the time of the deficit

is called the negative-critical time. Between the start of the period and the

negative-critical time (not including the negative-critical time), a sub-period

is formed which is then examined using Rule 1.

A.4 Period Three

In the discussion of Rule 1b.1, in period two the negative-critical time occurred at

the last load interval in the period and hence after the negative-critical time there is
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no positive/negative intervals. Period three presents a case where positive/negative

intervals occur after the negative-critical time which may contain further critical

capacities.

The third period has a power row matrix [17 -9 8 -15] kW and by following

Rule 1b.1 has a reverse integral of [-15 -7 -16 17] kWh. Hence the critical capacity

of 16 kWh is found and the negative-critical time occurs at the third index in the

reverse integral which corresponds to the second index in the power row matrix

(hour 7 to 8 in Fig. A.4a). From Rule 1b.1 the sub-period between the start of the

period and the negative-critical time would be the sub-period [17] which does not

contain a critical capacity. It can be shown by simulation (Fig. A.4b) there there

exists another critical capacity between the negative-critical time and the end of the

period.

Rule 1b.2 creates a sub-period between the negative-critical time (not including

the negative-critical time) and the end of the period. Rule 2a is then applied to

this sub-period which states that if a sub-period created by Rule 1b.2 contains only

one generation interval then the critical capacity in that sub-period is equal that

generation interval’s energy. For period three the sub-period created by Rule 1b.2

has a power row matrix of [8 -15] kW which contains only one positive interval with

energy 8 kWh and Rule 2a states this energy is a critical capacity. Hence period

three contains two critical capacities: 16 kWh and 8 kWh.

Rule 1b.2 and Rule 2a are validated using the storage SoC simulation in Fig. A.4b

which considers storage capacities of: i) 1 kWh below the first and second critical

capacity, ii) 1 kWh above the second critical capacity, and iii) at each of the critical

capacities. Note the first critical capacity occurs between times 6 to 10 and the

second critical capacity occurs between the times 8 to 10.

When storage is sized below the first critical capacity (16 kWh) but above the

second critical capacity then GSE occurs at the expected rate (1:1) between the

times of 6 to 10. When storage is sized at the second critical capacity of 8 kWh, the

first critical capacity has 1 kWh of GSE at times 8 and 7 kWh of GSE at time 10, for

a total 8 kWh of GSE. When storage is 7 kWh (below the second critical capacity)

then an additional 1 kWh of GSE occurs between times 8 to 10 such that the period

has 10 kWh of GSE. The separation of GSE between the critical capacities is: i)

the first critical capacity has 2 kWh of GSE at times 7 to 8 and 7 kWh of GSE at

times 9 to 10, and ii) the second critical capacity has 1 kWh of GSE at time 10.

Rule 1b.2 The reverse integral is performed as described in Rule 1b.1 and if

after the negative-critical time there are additional positive/negative intervals

of time then this rule creates a different sub-period. The sub-period is between

the negative-critical time and the end of the period and Rule 2 is then applied

to this sub-period.
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(a)

(b)

Figure A.4: Example period 3

Rule 2a For the sub-periods created by Rule 1b.2, if the sub-period contains

only one positive interval than the energy in that interval is a load critical

capacity.

A.5 Period Four

Since Rule 2a is the base case for the second rule there also exists a Rule 2b to

consider when the sub-period created by Rule 1b.2 contains more than one positive

interval. Period four is used to demonstrate this case by first applying the previously

discussed sets of rules.

Period four has a power row matrix of [25 -13 12 -11 7 -10] kW. Beginning with

Rule 1 the reverse integral is [-10 -3 -14 -2 -15 10] kWh with critical capacity of 15

kW. Applying Rule 1b.2 creates the sub-period of [12 -11 7 -10] kW which contains

multiple positive intervals (12 kW and 7 kW). The critical capacity within this sub-

period results from the inability to store sufficient energy across the multiple periods

of positive load which causes a critical capacity. There are two cases: i) the inability
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to transfer energy across the entire sub-period, e.g. [12 -11 7 -10] kW or ii) the

inability to transferring energy across the end of the period, e.g. [7 -10] kW.

Hence the forward integral is considered for the two cases: i) [12 1 8 -2] kWh

and ii) [7 -2] kWh. Rule 2b states the largest of these forward integrals is a critical

capacity, which occurs at a time called the positive-critical time. Hence for this

sub-period the critical capacity is 12 kWh and the critical time is the period 3 index

(or time 12 in Fig. A.5a). Rule 2b creates two sub-periods and applies Rule 2 to

them: i) between the critical time and the end of the current sub-period and ii)

between the start of the current sub-period and the critical time. Hence the new

sub-period is [7 -10] and which Rule 2a identifies has a critical capacity of 7 kWh.

To summarise, period four has critical capacities of 15 kWh, 12 kWh and 7 kWh.

(a)

(b)

Figure A.5: Example period 4

Rule 2b is validated using the storage SoC simulation for period four in Fig. A.5b

which considers storage capacities of: i) 1 kWh below the first and second critical

capacity, ii) 1 kWh above the second critical capacity, and iii) at each of the critical

capacities. The outcome is that Rule 2b identifies the critical capacity of 12 kWh

at time 12 hr and 7 kWh at time 14 hr. When storage is below 11 kWh (below the
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second critical capacity) it is seen that an additional 1 kWh of GSE occurs after time

12 hr, where an additional 1 kWh is added per kWh reduction in storage. Similarly

when storage is below 6 kWh (below the third critical capacity) an additional 1 kWh

of GSE occurs after time 14 hr.

Period four did not consider the second part of Rule 2b since the sub-period

in Period four had a positive-critical time at the start of the sub-period. When

the critical capacity is found via the forward integral, if then Rule 2b creates two

sub-periods, i) one mentioned previously between the positive-critical time and the

end of the current sub-period which is examined starting with Rule 2, and ii) the

second is between the beginning of the forward integral (which contained the critical

capacity) and the positive-critical time which is examined starting with Rule 1. An

example of the second sub-period created will be seen in Period five.

Rule 2b For the sub-periods created by Rule 1.b.2, when there are multiple

positive intervals in the sub-period, the forward integrals from each positive

interval of time to each future positive intervals of time is considered. The

forward integral with the largest energy defines a load critical capacity and

the time this occurs is called the positive-critical time. Two sub-periods are

created: i) the first is between the positive-critical time and the end of the

current sub-period which is examined starting with Rule 2, and ii) the second

is between the beginning of the forward integral (which contained the critical

capacity) and the positive-critical time which is examined starting with Rule

1.

A.6 Period Five

Period five can be represented by the power row matrix [18 -12 7 -6 8 -14] kW and

beginning with Rule 1 the reverse integral is [-14 -6 -12 -5 -17 1] kWh which contains

a critical capacity of 17 kWh with a sub-period of [7 -6 8 -14] kW. Applying Rule 2

to this sub-period, the forward integral is [7 1 9 -5] kWh which identifies a critical

capacity of 9 kWh. Following Rule 2b, a sub-period is created between the beginning

of the forward integral containing the critical capacity and the positive-critical time,

hence creating a sub-period of [7 -6] kW. Applying Rule 1 to this latest sub-period

reveals the final critical capacity of 6 kWh. To summarise the critical capacities are

17 kWh, 9 kWh and 6 kWh.

Fig. A.6b shows the storage SoC simulation for period five which considers stor-

age capacities of: i) 1 kWh below the first and second critical capacity, ii) 1 kWh

above the second critical capacity, and iii) at each of the critical capacities. The key

point here is that period five has demonstrated the second type of sub-period created

by Rule 2b, hence for 6 kWh below the third critical capacity then an additional 1

kWh of GSE should occur after time 13 hr. This is demonstrated in Fig. A.6b.
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(a)

(b)

Figure A.6: Example period 5

A.7 Period Six

Period six provides an example of all rules being implemented, it has the two base

case rules (Rule 1a and Rule 2a) and demonstrates both, i) the two sub-periods

created by combining both Rule 1b.1 and Rule 1b.2, and ii) the two sub-periods

created by both Rule 2b.

Period six has the power energy row matrix of [9 -5 16 -15 8 -5 6 -10 11 -3 2 -3

8 -18] kW. The rules are applied such that:

1. Beginning with Rule 1, the reverse integral is [-18 -10 -13 -11 -14 -3 -13 -7

-12 -4 -19 -3 -8 1] kWh with a critical capacity of 19 kWh and there are two

sub-periods which occur.

2. The first sub-period created by Rule 1b.1 is p1 =[9 -5] kW contains one positive

interval hence Rule 1a finds a critical capacity of 5 kWh

3. The second sub-period created by Rule 1b.2 is p2 =[8 -5 6 -10 11 -3 2 -3 8 -18]

kW which then applies Rule 2.
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4. The forward integral of the second sub-period, p2, is summarised in Table A.1

which using Rule 2a identifies the critical capacity of 15 kWh and creates two

additional sub-periods.

5. The additional sub-periods (from above) are labeled p3 =[11 -3 2 -3] kW, which

then applies Rule 1, and p4=[8 -5 6 -10] which then applies Rule 2.

6. The above sub-period p3 using Rule 1b has reverse integral [-3 -1 -4 11] kWh

which has critical capacity 4 kWh and then Rule 1b.1 creates the sub-period

[2 -3] and applies Rule 2 which identify a critical capacity of 2 kWh.

7. The remaining sub-period of p4 when applying Rule 2 has two forward integrals

of [8 3 9 -1] and [6 -10]. Hence by Rule 2b it has critical capacity of 9 kWh

and creates a sub-period of [8 -5] which applying Rule 1 has a critical capacity

of 5 kWh.

To summarise, the list of all critical capacities within this period is: [19 15 9

5 5 4 2] kWh. Note there is a repeated critical capacity of 5 kWh hence storage

capacities below 5 kWh will have additional GSE of twice the regular rate.

Fig. A.7b shows the storage SoC simulation for period five which considers stor-

age capacities of: i) 1 kWh below the first and second critical capacity, ii) 1 kWh

above the second critical capacity, and iii) at each of the critical capacities. The key

point here is that each rule has identified: i) where GSE will occur and ii) when GSE

will occur for a given storage capacity. To summarise for sizing storage capacities

less than each critical capacity, noting that sizing below each critical capacity adds

1 kWh of GSE per 1 kWh difference between the critical capacity and storage:

1. Below the first critical capacity (19 kWh) causes GSE between times 25 to 36

hrs.

2. Below the second critical capacity (15 kWh) causes GSE between times 30 to

36 hrs.

3. Below the third critical capacity (9 kWh) causes GSE between times 26 to 30

hours.

4. Below the fourth/fifth critical capacity (5kWh) causes two instances of GSE

the first between times 22 to 24 hr and the second between times 26 to 28 hr.

5. Below the sixth critical capacity (4 kWh) causes GSE between times 30 to 34

hrs.

6. Below the seventh critical capacity (2kWh) causes GSE between times 32 to

34 hrs.



140 Appendix A. Defining the Rules-based Approach to Identify Critical Capacities

(a)

(b)

Figure A.7: Example period 6

A.8 Algorithm of Rules

The algorithm 3 is pseudocode describing the rules-based method, highlighting

where the rules are applied.
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Table A.1: Demonstrating Rule 2.b for the given original sub-period, each column
represents a time step for the sub period and each row represents the forward integral
starting at a given time step.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Original 8 -5 6 -10 11 -3 2 -3 8 -18
t1 8 3 9 -1 10 7 9 6 14 -4
t3 6 -4 7 4 6 3 11 -7
t5 11 8 10 7 15 -3
t7 2 -1 7 -11
t9 8 -10
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Algorithm 3 Pseudo code for rules based load critical capacity identification

Notation: The input is the Time series (T ) with one or more alternating positive
negative periods and the output is the list of critical capacities (CC)

Function - Rule 1:
1: if T contains only 1 negative period then [Rule 1a - The BaseCase]
2: The Negative period is a CC
3: Return
4: else [Rule 1b]
5: Find the CC between last negative period and first negative period and

identify its beginning and end times [ta, tb]
6: if if [ta] occurs after the first negative period then [Rule 1b.1]
7: Create a sub-period between the start of the time series and the negative

time interval before ta
8: Call Rule 1 on the sub-period
9: end if
10: if There exists any positive time periods in the series between [ta, tb] then

[Rule 1b.2]
11: Create a sub-period between the first positive period after ta to tb
12: call Rule 2 on the sub-period
13: end if
14: end if

SubFunction-Rule 2:
15: if T contains 1 positive period then [Rule 2a - The BaseCase]
16: The Positive period is a CC
17: Return
18: else [Rule 2b]
19: Find the CC between the first positive period and last positive period and

identify its beginning and end times [tc, td]
20: if if [td] occurs before the end of the time series then
21: Create a sub-period between the first positive interval after td and the

last positive period in the time series
22: Call Rule 2 on the sub-period
23: end if
24: if There exists any negative time periods in the series between [tc, td] then
25: Create a sub-period between the first negative period after tc to td
26: Call Rule 1 on the sub-period
27: end if
28: end if
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The following is the matlab code used to perform the CCA analysis. There are

two major adaption to the code. The first is seen on lines 32 to 50 where cycles are

separated into load critical capacity and generation critical capacity. The second is

seen on lines 89 to 113 where the residues are separated into load critical capacity

and generation critical capacity.

1 function [LoadCC , LoadCC_Time , GenCC , GenCC_Time ,

AdditionalInjected , AdditionalInjectedInterval ,

CycleType ]= CCA_Matlab(NetGenPower)

2

3 %First seperate netgenpower into each positive/negative

sections , andrecord the time of each positive/negative

interval

4 [PeakTroughs , TimePT ]= AccumPeakTrough(NetGenPower);

5

6 %Determine the accumulated peak/trough data (to be

rainflow counted)

7 if(PeakTroughs (1) ~=0)

8 PeakTroughs =[0 PeakTroughs ];

9 TimePT =[0 0; TimePT ];

10 end

11 APT=cumsum(PeakTroughs);

12

13 s=nan(1,length(APT));

14

15 % Application of rainflow counting algorithm

16 n=0; NumLoadCC =0; NumGenCC =0; NumAI =0;

17

18 Init=nan(1,length(APT));

19

20 CT=Init; GenCC=Init; LoadCC=Init; GenCC_Time =[

Init Init]; LoadCC_Time =[Init Init];

21 AdditionalInjected=Init;

AdditionalInjectedInterval=Init;

22

23 CycleType=nan(2,length(APT));

24 for index =1: length(APT)

25 n=n+1; s(n)=APT(index); %Constructs the stack

list which the rainflow algorithm is applied

to.

26 CT(n)=index; %building the time list
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27 while((n>=3) && abs(s(n-1)-s(n-2)) <= abs(s(n)-s(n

-1)))

28 ampl=abs(s(n-1)-s(n-2));

29 if(n==3) %in Rainflow method this is called a

halfcycle

30 StartT=CT(1); EndT=CT(2);

31

32 if(s(n-1)-s(n-2) >0 && s(n)-s(n-1) <0) %

found a value on the right hand (Gen CC

) side of the rainflow plot

33 NumGenCC=NumGenCC +1;

34 GenCC(NumGenCC)=ampl; %half

35 CycleType(2,NumGenCC)=0.5;

36 GenCC_Time(NumGenCC ,:)=[ TimePT(StartT

,2) TimePT(EndT ,2)];

37 if s(n-2) <0

38 NumAI=NumAI +1;

39 AdditionalInjected(NumAI)=s(n-2);

40 AdditionalInjectedInterval(NumAI)

=TimePT(StartT ,2);

41 end

42

43 else % found a value on the left hand (

Load CC) side of the rainflow plot

44 NumLoadCC=NumLoadCC +1;

45 LoadCC(NumLoadCC)=ampl;

46 StartT=CT(n-2); EndT=CT(n-1);

47 LoadCC_Time(NumLoadCC ,:)=[ TimePT(StartT

,1) TimePT(EndT ,2)];

48 CycleType(1, NumLoadCC)=0.5;

49 end

50 s(1)=s(2); s(2)=s(3);n=2; %remove the

first point and move back 1 step

51 CT(1)=CT(2); CT(2)=CT(3);

52

53 else %This is a full cycle in the rainflow

method. These values exist on both the left

hand side and right hand side of rainflow

plot (Value is both a gen. & load CC)

54 StartT=CT(n-2); EndT=CT(n-1);

55 NumLoadCC=NumLoadCC +1;
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56 LoadCC(NumLoadCC)=ampl;

57 CycleType(1,NumLoadCC)=1;

58 NumGenCC=NumGenCC +1;

59 GenCC(NumGenCC)=ampl; %full

60 CycleType(2,NumGenCC)=1;

61

62 if(s(n-1)-s(n-2) >0) %transition Low to

High - correct time index

63 LoadCC_Time(NumLoadCC ,:)=[ TimePT(

StartT ,2) TimePT(EndT ,2)];

64 GenCC_Time(NumGenCC ,:)=[ TimePT(

StartT ,2) TimePT(EndT ,2)];

65 else % transition from high to low -

time index is fine.

66 LoadCC_Time(NumLoadCC ,:)=[

TimePT(StartT ,1) TimePT(

EndT ,2)];

67 GenCC_Time(NumGenCC ,:)=[ TimePT

(StartT ,1) TimePT(EndT ,2)];

68 end

69

70 s(n-2)=s(n);CT(n-2)=CT(n);n=n-2; %remove

the previous two points and move back

two steps

71 end

72 end

73 end

74

75 %sort the Generation CC values before the residues

are considered.

76 if APT (2) <0

77 NumGenCC=NumGenCC +1;

78

79 IndexFirstNeg =0;

80 for j=1: length(APT)

81 IndexFirstNeg=j;

82 if(APT(j) >0)

83 IndexFirstNeg=IndexFirstNeg -1; %step back

84 break;

85 end

86 end
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87 FirstNegative=min(APT (1: IndexFirstNeg));MFNTime=

min(APT(1: IndexFirstNeg))==(APT(1:

IndexFirstNeg));

88 GenCC(NumGenCC)=abs(FirstNegative); %First Time

89 MFNFirstTime=TimePT(MFNTime ',:);

90 GenCC_Time(NumGenCC ,:)=[ MFNFirstTime (1)

MFNFirstTime (2)];

91 CycleType(2,NumGenCC)=-1;

92 end

93

94 % Dealing with residues , positive to negative

residues are Load CC and neg ->pos are Gen CC

95 for index =1:n-1

96 ampl=s(index)-s(index +1);

97 StartT=CT(index); EndT=CT(index +1);

98 if(ampl >0) % left hand side of rainflow plot

99 NumLoadCC=NumLoadCC +1;

100 LoadCC(NumLoadCC)=ampl;

101 LoadCC_Time(NumLoadCC ,:)=[ TimePT(StartT ,1)

TimePT(EndT ,2)];

102 CycleType(1, NumLoadCC)=0;

103 else % Right hand side of rainflow plot

104 NumGenCC=NumGenCC +1;

105

106 GenCC(NumGenCC)=abs(ampl); %res

107 GenCC_Time(NumGenCC ,:)=[ TimePT(StartT ,1)

TimePT(EndT ,2)];

108 CycleType(2,NumGenCC)=0;

109 if s(index) <0

110 NumAI=NumAI +1;

111 AdditionalInjected(NumAI)=s(index);

112 AdditionalInjectedInterval(NumAI)=TimePT(

StartT ,1);

113 end

114 end

115 end

116

117 %Original values were the same length as the peak/

through vector. This reduces the output to only

the required size.
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118 LoadCC=LoadCC (1: NumLoadCC); LoadCC_Time=LoadCC_Time

(1: NumLoadCC ,:);

119 GenCC=GenCC (1: NumGenCC); GenCC_Time=GenCC_Time (1:

NumGenCC ,:);

120

121 AdditionalInjected=AdditionalInjected (1: NumAI);

AdditionalInjectedInterval=

AdditionalInjectedInterval (1: NumAI);

122

123 %sorting all outputs

124 [LoadCC , CCIndex_sort ]=sort(LoadCC ,'descend ');

125 LoadCC_Time=LoadCC_Time(CCIndex_sort ,:);

126 CycleType (1,1: NumLoadCC)=CycleType(1, CCIndex_sort);

127 CycleType=CycleType (:,1:max(NumLoadCC ,NumGenCC));

128 end

129

130 function [PeakTroughs , TimePT ]= AccumPeakTrough(

DataToSeperate)

131 % seperate data into each positive/negative sections ,

and record the time of each positive/negative

interval

132 Pos=DataToSeperate; Neg=DataToSeperate;

133 %Dealing with inital value ==0

134 if DataToSeperate (1)==0

135 if(DataToSeperate (2) >0) %if the first period

is positve so neg list should ignore

136 Pos(Pos <0)=nan; Neg(Neg >=0)=NaN;

137 else %First period negative so Pos list

should ignore

138 Pos(Pos <=0)=nan; Neg(Neg >0)=NaN;

139 end

140 else %Any other zero values are added to the neg?

141 Pos(Pos <=0)=nan; Neg(Neg >0)=NaN;

142 end

143

144 %seperating the positive and negative period

145 [PosPeriod , PosTime ]= SepNaN(Pos ,1);[NegPeriod ,

NegTime ]= SepNaN(Neg ,1);

146

147 %The group of positive and negatives can now be sumed

and constructed into [p n p n] ect similar for
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the time series [p p; n n; p p; n n]

148 PeakValue=cellfun (@sum ,PosPeriod)';TroughValue=

cellfun (@sum ,NegPeriod) ';

149

150 PeakTroughs=NaN(1,length(PeakValue)+length(

TroughValue));TimePT=NaN(length(PeakValue)+length(

TroughValue) ,2);

151

152 % Check if input data was troughs or peaks only

153 if isempty(PosTime)

154 PeakTroughs=TroughValue;

155 TimePT=NegTime;

156 elseif isempty(NegTime)

157 PeakTroughs=PeakValue;

158 TimePT=PosTime;

159 %Which comes first? peak or trough?

160 elseif PosTime (1,1)==1 %peak first than trough [p n p

n]

161 PeakTroughs (1:2: end)=PeakValue;PeakTroughs (2:2:

end)=TroughValue;

162 TimePT (1:2:end ,:)=PosTime;TimePT (2:2:end ,:)=

NegTime;

163 elseif NegTime (1,1)==1 %trough first than peak [n p n

p]

164 PeakTroughs (1:2: end)=TroughValue;PeakTroughs (2:2:

end)=PeakValue;

165 TimePT (1:2:end ,:)=NegTime;TimePT (2:2:end ,:)=

PosTime;

166 else

167 error('Could not determine if positive or

negative period is first ')

168 end

169

170 end

171

172 function [SepCell , TimeSeperated ]= SepNaN(A,option)

173 %configuring default options

174 if(nargin <2)

175 option =1;

176 end

177 if ~isnan(A(end))
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178 A=[A NaN];

179 end

180

181 idx2=find(isnan(A)); idx1 =[1 idx2 (1:end -1) +1]; n=

numel(idx1);

182 Sep=cell(n,1);p=1; TimeRecord=nan(n,2);

183

184 if(option ~=1)% including the nan 's

185 for k=1:n

186 ExtractedSec=A(idx1(k):idx2(k) -1);

187 if(~ isempty(ExtractedSec))

188 Sep{p}=( ExtractedSec);

189 Sep{p+1}= NaN;

190 TimeRecord(p,:)=[idx1(k) idx2(k) -1];

191 TimeRecord(p+1,:)=[idx2(k) idx2(k)];

192 p=p+2;

193 else

194 Sep{p}=NaN;

195 TimeRecord(p,:)=[idx1(k) idx2(k)];

196 p=p+1;

197 end

198 end

199 SepCell=Sep;

200 TimeSeperated=TimeRecord;

201

202 else %Removing the NaNs

203 for k=1:n

204 ExtractedSec=A(idx1(k):idx2(k) -1);

205 if(~ isempty(ExtractedSec))

206 Sep{p}=( ExtractedSec);

207 TimeRecord(p,:)=[idx1(k) idx2(k) -1];

208 p=p+1;

209 end

210 end

211 SepCell= Sep (1:p-1);

212 TimeRecord(p:end ,:) =[];

213 TimeSeperated=TimeRecord;

214 end

215 end
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