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Abstract
One of the most challenging aspects of multivariate geostatistics is dealing with
complex relationships between variables. Geostatistical co-simulation and spatial
decorrelation methods, commonly used for modelling multiple variables, are ineffec-
tive in the presence of multivariate complexities. On the other hand, multi-Gaussian
transforms are designed to deal with complex multivariate relationships, such as non-
linearity, heteroscedasticity and geological constraints. These methods transform the
variables into independent multi-Gaussian factors that can be individually simulated.
This study compares the performance of the following multi-Gaussian transforms:
rotation based iterative Gaussianisation, projection pursuit multivariate transform and
flow transformation. Case studies with bivariate complexities are used to evaluate
and compare the realisations of the transformed values. For this purpose, commonly
used geostatistical validation metrics are applied, including multivariate normality
tests, reproduction of bivariate relationships, and histogram and variogram validation.
Based onmost of themetrics, all threemethods produced results of similar quality. The
most obvious difference is the execution speed for forward and back transformation,
for which flow transformation is much slower.
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1 Introduction

Geostatistical conditional simulation often requires the modelling of multiple cross-
correlated variables. For example, multivariate geostatistics is commonly applied to
model ore grades and other mineral deposit variables (Journel and Huijbregts 1978;
Wackernagel 2003). Among the Gaussian methods, there are three ways to perform
this task (Rossi and Deutsch 2014). The first is to use conditional co-simulation algo-
rithms such as sequential Gaussian co-simulation (Verly 1993) and turning bands
co-simulation (Emery 2008). The second approach is to use hierarchical co-simulation,
which enables full, collocated and multi-collocated co-kriging to be applied (Almeida
and Journel 1994). Finally, the third way is to transform variables into uncorrelated
factors and simulate them individually.

Direct and hierarchical co-simulations use a linear model of co-regionalisation
(LMC) (Journel and Huijbregts 1978) or a Markov model (Journel 1999) to account
for cross-correlations between variables. However, inference of cross-variograms can
be challenging, whereas transformation to independent factors significantly sim-
plifies multivariate modelling. For example, principal component analysis (PCA)
and independent component analysis (ICA) have been applied in geostatistics to
transform cross-correlated variables into independent orthogonal factors (Davis and
Greenes 1983; Tercan and Sohrabian 2013). However, the validity of extending
PCA and ICA decorrelation to non-zero lag distances is an assumption. Alterna-
tively, minimum/maximum autocorrelation factors (MAF) performs a double spectral
decomposition at lag zero and a single non-zero lag to achieve spatial decorrelation
(Desbarats andDimitrakopoulos 2000). Other spatial decorrelationmethods applied in
geostatistics are uniformly weighted exhaustive diagonalisation with Gauss iterations
and rotational joint diagonalisation (Mueller and Ferreira 2012; Mueller et al. 2020).

Geostatistical co-simulation is also limited by the multi-Gaussianity assumption,
which is often unrealistic as there may be complex multivariate relationships (Bar-
nett et al. 2014). LMC cannot include these complexities in a covariance matrix,
and linear transformations (e.g., PCA, ICA and MAF) are only applicable to linear
relationships. This motivated Leuangthong and Deutsch (2003) to apply stepwise con-
ditional transformation (SCT) in the geostatistical framework to deal with multivariate
complexities, such as non-linearity, heteroscedasticity and inequality constraints. In
geostatistics, SCT was the earliest application of a multi-Gaussian transform (MGT).
The idea behindMGT approaches is to simply transform variables into standardmulti-
variate Gaussian distributions with zero correlation. SCT removes the complexities by
transforming the original variables into multi-Gaussian factors. However, SCT cannot
handle high-dimensional datasets and it requires extensive data cleaning and the order
of the variables to be predefined (Rossi and Deutsch 2014). Recently, de Figueiredo
et al. (2021) proposed a direct multivariate simulation based on SCT and demonstrated
its applicability to a six-dimensional dataset with non-linear relationships.

Two of the most popular MGT methods in geostatistics are the projection pursuit
multivariate transform (PPMT) (Barnett et al. 2014, 2016) and flow transformation,
also known as flow anamorphosis (FA) (van den Boogaart et al. 2017). PPMT searches
for the direction that has themaximum projection index (Friedman 1987) and applies a
normal score transformation in that direction. It is an iterative algorithm that transforms

123



Mathematical Geosciences (2023) 55:713–734 715

the data along projections based on the departure from Gaussianity. PPMT can be
applied to a higher number of variables than SCT, it canworkwith smaller datasets and
does not need the order of variables to be predefined (Barnett et al. 2014). On the other
hand, FA continuously deforms the original distribution into multi-Gaussian space
using Lagrangian mechanics (van den Boogaart et al. 2017). Furthermore, its affine
equivariance makes FA suitable for compositional data analysis (Tolosana-Delgado
et al. 2019), in which it can be paired with various log-ratio transforms (Pawlowsky-
Glahn et al. 2015).

A case study of the Gol-e-Gohar iron deposit by Hosseini and Asghari (2019) sug-
gests that the combination of log-ratio+FA+MAFproduces fewer artefacts during back
transformations and provides better reproduction of compositional constraints than the
combination of PPMT+MAF. In the case study, the additive log-ratio transformation
was chained only with FA because of its affine equivariance. However, Manchuk
et al. (2017) successfully chained PPMT with an isometric log-ratio transformation
(Egozcue et al. 2003) to reproduce the sum constraint. Similarly, additive and frac-
tion ratios (i.e., not logarithmic) have been used on PPMT factors to reproduce sum
and fractional constraints, also known as inequality constraints (Bassani et al. 2018).
Nevertheless, it is also essential to chain these methods with MAF or any other spatial
decorrelation to ensure that factors are independent at non-zero lags. For example,
the combination of PPMT+MAF shows significantly better variogram reproduction
compared to the transformation by PPMT or by MAF (Erten and Deutsch 2021).

This study compared the performance of PPMT, FA and a relatively new method
to geostatistics, rotation based iterative Gaussianisation (RBIG) (Laparra et al. 2011).
RBIG is similar to PPMT, but it rotates the data using either PCA or ICA and applies
the normal score transformation after each rotation. The following sections provide
more details on selected methods together with a comprehensive comparison based
on different metrics. The comparison is based on three bivariate case studies from
undisclosed mining deposits with strong multivariate complexities. The results were
carefully assessed using different statistical and qualitative metrics.

2 Materials andMethods

2.1 Case Studies with Multivariate Complexities

This paper applies selected methods to three bivariate case studies with complex
relationships (Fig. 1). These are confidential mining datasets and are, therefore, undis-
closed. Case A consists of 6074 drill hole samples for which there is an inequality
constraint between total and soluble copper grades. The average horizontal spacing
between samples is 123m with a composite length of 2m. This type of multivariate
complexity occurs when one variable is a fraction of another variable, and there have
been attempts to model this relationship (Hosseini and Asghari 2015; Bassani et al.
2018; Abildin et al. 2019). Inequality constraints can also occur in iron ore deposits
between iron and elements such as silica and aluminium oxide when there is a linear
inequality between variables (Madani and Abulkhair 2020; Abulkhair and Madani
2021).
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Fig. 1 Cross plots of three bivariate case studies with an inequality constraint (case A), non-linearity (case
B) and heteroscedasticity (case C). Number of samples, Pearson ρ and Spearman ρS correlation coefficients
are shown in text boxes

For case B, there is a non-linearity between 9,990 iron and magnesium oxide
samples. In this case, the sample points are irregularly spaced with an average of
4.2m for horizontal and 2.4m for vertical spacing. Non-linearities are not rare in drill
hole datasets, and several geostatistical case studies have focussed on modelling such
datasets (Leuangthong and Deutsch 2003; Barnett et al. 2014, 2016; de Figueiredo
et al. 2021; Erten and Deutsch 2021).

Finally, the case C data come from an underground mine with an average of 14.5m
spacing and a composite length of 2m. It is a bivariate dataset with 33,021 samples
of titanium and zirconium with a heteroscedastic relationship between them. Het-
eroscedasticity is similar to a linear relationship, expressed by a non-constant variance
of one variable across the range of values of another. Heteroscedastic relationships has
been reported in many multivariate geostatistical studies (Barnett et al. 2014, 2016;
de Figueiredo et al. 2021; Erten and Deutsch 2021). However, case C demonstrates a
more obvious heteroscedastic relationship with a moderately high correlation.

As all three cases areminingdatasets prone to sampling irregularities, duplicates and
outliers, they underwent careful data cleaning. In addition, cell declustering (Deutsch
and Journel 1992) was applied for cases A and B. Cells of 85m × 85m × 85m were
chosen for case A and 18m × 18m × 18m for case B after evaluating the effect of
different cell sizes. As a result, mean and standard deviation values decreased after
declustering for both cases. Cell declusteringwas not performed for case C because the
sum of weights was not equal to the number of samples. Table 1 shows the descriptive
statistics for all three case studies. As multivariate complexities are involved, both
Spearman and Pearson correlation coefficients are reported.

2.2 Multivariate Transformation

2.2.1 Rotation Based Iterative Gaussianisation

RBIG is an iterative algorithm that applies marginal Gaussianisation followed by an
orthonormal rotation. Although Laparra et al. (2011) demonstrated that any orthonor-
mal rotation, even a simple random rotation matrix, could be used in RBIG, PCA and
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Table 1 Descriptive statistics of three bivariate datasets

Parameter Case A Case B Case B

CuT (%) CuS (%) Fe (%) MgO (%) Ti (ppm) Zr (ppm)

Mean 0.42 0.12 29.01 8.86 2928.88 128.75

Standard deviation 0.64 0.39 16.10 10.60 2357.84 64.01

Pearson correlation 0.71 −0.86 0.68

Spearman correlation 0.77 −0.90 0.86

ICA are more suitable. The choice of a rotation matrix is important and is usually
based on multiple factors. PCA provides a suboptimal convergence rate compared
to ICA and requires more iterations. However, convergence in ICA takes more time,
especially in higher dimensional cases. In this study, we used RBIG with both PCA
(RBIGP) and ICA (RBIGI) rotations for comparison. For RBIGP, the original MAT-
LAB code from Laparra et al. (2011) was implemented with histogram equalisation
for marginal Gaussianisation. For RBIGI, a Python implementation was used with
a normal score transformation for marginal Gaussianisation together with fast ICA
(Hyvarinen 1999) from the Scikit-learn library (Pedregosa et al. 2011) for rotation.

The steps in RBIG are as follows:

1. First marginal Gaussianisation

Y(0) = �(0)(Z), (1)

where �(0)(Z) is a normal score transformation for RBIGI or histogram equalisa-
tion for RBIGP applied to each dimension of the original data Z before the first
iteration.

2. ICA or PCA rotation expressed by an orthonormal rotation matrix R(i) at each
iteration i

YRot
(i+1) = R(i)Y

Gaus
(i) . (2)

3. Marginal Gaussianisation of rotated variables at each iteration i

YGaus
(i+1) = �(i)(Y

Rot
(i+1)). (3)

4. Repeat steps 2 and 3 for a predefined number of iterations.

In this study, the algorithm runs for a fixed number of iterationswithout any stopping
criteria. In addition,RBIG saves rotationmatrices andGaussian tables at each iteration,
including the first marginal Gaussianisation. Finally, the back transformation to the
original state is performed in reverse order of the data saved at each iteration.
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2.2.2 Projection Pursuit Multivariate Transform

PPMT methodology is based on iteratively searching for interesting projections fol-
lowed by normal score transformation along those projections (Barnett et al. 2014,
2016). An interesting projection is one that has a maximum departure from Gaussian-
ity based on the projection index developed by Friedman (1987). The input parameters
for the original algorithm are a maximum number of iterations and stopping criteria.
The algorithm terminates after reaching the targeted projection index percentile based
on the bootstrapping algorithm or after a set number of iterations (Barnett et al. 2014).
A detailed description and visualization of PPMT and its stopping criteria can be found
in Barnett et al. (2016).

Similar to RBIG, PPMT runs for a fixed number of iterations in this study. The
purpose of doing so is to check themultivariate normality of the transformedRBIG and
PPMT factors after the same number of iterations. PPMT records rotationmatrices and
Gaussian tables at each step, which are used during the back transformation following
the above steps in reverse order. We used a Python implementation of PPMT based
on the original Fortran code from Barnett et al. (2014).

2.2.3 Flow Transformation

The FA methodology differs from that of RBIG and PPMT, which are based on
orthonormal rotations and marginal Gaussianisations. FA continuously deforms the
original kernel density function into standard multi-Gaussian space using Lagrangian
mechanics (van den Boogaart et al. 2017). The two main input parameters that char-
acterise this deformation are the starting σ0 and the final σ1 spreads of the kernel that
control the smoothing. This means that σ0 controls how strongly FA deforms the ker-
nels, for which a smaller value results inmoreGaussian factors. In contrast, σ1 controls
the ranges of the produced factors, and it is recommended that σ1 = σ0 + 1 so that
the marginal distributions of the transformed data have standard deviations close to 1
(Talebi et al. 2019). For the details of the methodology of the FA algorithm, readers
are referred to the original literature (van den Boogaart et al. 2017; Tolosana-Delgado
and Mueller 2021).

In this study, the “gmGeostats” CRAN package (Tolosana-Delgado and Mueller
2021)wasused forFAand the transformationwas chained twice to achievemultivariate
normality.

2.2.4 Chained Multi-Gaussian Transform and Spatial Decorrelation

MGTmethods, similar to PCA and ICA linear transforms, can only guarantee a decor-
relation at lag zero. A practical solution to ensure spatial decorrelation is to chain those
methods withMAF (Desbarats andDimitrakopoulos 2000). The original geostatistical
application of MAF uses PCA twice, once on a covariance matrix at lag 0 and once
on a single non-zero lag of the cross-variogram function. However, as RBIG, PPMT
or FA already produce independent factors, only the second MAF is used. Chained
MGT and MAF comprise the following steps:
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1. Transform the original data Z into independent standard multi-Gaussian variables
Y MG .

2. Calculate a sphering matrix S−1/2 for multi-Gaussian factors:

S−1/2 = Q�−1/2QT , (4)

where Q is an eigenvector matrix and � is the corresponding diagonal matrix.
3. Compute an eigenvector matrix Qh from the spectral decomposition of the cross-

variogram matrix at lag h.
4. Multiply the multi-Gaussian factors by the sphering and eigenvector matrices

YMAF = S−1/2QhY
MG . (5)

The resulting factors will also be spatially independent. Back transformation is
performed by using transposed sphering and eigenvector matrices. A combination
of MAF with MGT has been applied in various geostatistical case studies (Hosseini
and Asghari 2019; Erten and Deutsch 2021; Tolosana-Delgado and Mueller 2021).
However, MAF is applied on a single non-zero lag distance, so its spatial decorrelation
is not perfect at all lags.

2.3 Metrics for Comparison

In this study, RBIGP, RBIGI, PPMT and FA were compared using six metrics: multi-
variate normality, spatial decorrelation, execution times, qualitative assessment of the
reproduction of multivariate distributions, and histogram and variogram validation.
Multivariate normality (MVN) can be evaluated using different multivariate normal-
ity tests from the MVN R package (Korkmaz et al. 2014). The MVN tests in this
package include Mardia’s measures of multivariate skewness and kurtosis (Mardia
1970), Royston’s techniques for assessing multivariate normality (Royston 1983), the
Henze–Zirkler invariant consistent tests for multivariate normality (Henze and Zirkler
1990) and Energy statistics (Székely and Rizzo 2013). Many studies in geostatistics
have used MVN tests to assess the performance of MGT e.g., van den Boogaart et al.
(2017), Tolosana-Delgado et al. (2019) and Tolosana-Delgado and Mueller (2021).
In this study, only Henze–Zirkler’s and Energy tests were used based on their con-
sistency and robustness, confirmed in some comparison and review articles (Joenssen
and Vogel 2014; Ebner and Henze 2020).

A common problem with MGT methods is that they cannot ensure spatial decorre-
lation. In a geostatistical context, spatial decorrelation is sometimes more crucial than
multivariate normality. It is, therefore, important to assess spatial decorrelation even
after applyingMAF. For this purpose, the quality of the spatial decorrelation was eval-
uated through experimental cross-variograms. In addition, a quantitative assessment
of spatial decorrelation was conducted using the relative deviation from diagonality
τ(h) together with the spatial diagonalisation efficiency κ(h) measures suggested by
Tercan (1999). The first measure compares the absolute sum of off-diagonal elements
in the factor variogram matrix to the corresponding diagonal elements. The second
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Fig. 2 Cross plots of multi-Gaussian transformation results for case A

one compares the sum of squares of off-diagonal elements in the factor variogram
matrix to the sum of squares of off-diagonal elements in the sample variogram matrix.
Perfect spatial decorrelation will result in zero for τ(h) and one for κ(h).

The execution time for both forward and inverse multi-Gaussian transformations is
another important factor. RBIGI, PPMT and FA were applied in a Jupyter Notebook
environment, where their CPU times could be recorded. FA in the gmGeostats R
package (Tolosana-Delgado and Mueller 2021) and the Python implementations of
RBIGI and PPMTwere used for the work reported in this paper. Although the original
Fortran program for PPMT is much faster, the Python code may provide a fairer
comparison of PPMT and RBIGI. For RBIGP, the original MATLAB code (Laparra
et al. 2011) was used, in which CPU time can also be measured.

Finally, reproduction of histograms and variograms are the most critical geostatis-
tical properties. Even though their reproduction can be assessed qualitatively, the root
mean square error (RMSE) was used to obtain a quantitative comparison of results.
For example, the RMSE between a hundred percentiles of original and simulated
cumulative distribution functions (CDFs) were calculated for histogram validation.
Similarly, RMSEmeasureswere calculated between experimental and simulated direct
and cross-variograms at multiple lag distances. Metrics such as these can be found
in other geostatistical studies (Mueller and Ferreira 2012; Erten and Deutsch 2021).
However, it is more difficult to provide quantitative comparisons of the reproduc-
tion of multivariate complexities, which is the primary objective of this study. For
this purpose, cross-plots between simulated variables were qualitatively assessed and
compared with the original plots from Fig. 1.

3 Results

3.1 Multi-Gaussian Transformation

RBIGP, RBIGI, PPMT and FA were applied to three case studies with multivariate
complexities. 150 iterations were used for RBIGP, RBIGI and PPMT. For FA, input
parameterswereσ0 = 0.1 andσ1 = 1.1 and thismethodwas chained twice to achieve a
standardmulti-Gaussian distribution. As a result, all transforms produced independent
multi-Gaussian factors for total and soluble copper grades in case A (Fig. 2). RBIGI
required 34s, while PPMT and FA required 24 and 18s, respectively.
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Fig. 3 Cross plots of multi-Gaussian transformation results for case B

Fig. 4 Cross plots of multi-Gaussian transformation results for case C

In case B, the non-linear relationship between iron and magnesium oxide was
transformed into a multi-Gaussian distribution by all three methods (Fig. 3). However,
because this case has 9,990 sample points, it took slightly more time to execute: 50 s
for RBIGI, 48 s for PPMT and 51s for FA.

Case Cwas more challenging to transform and Fig. 4 shows the transformed factors
from all three methods. Declustering weights were not used in this case because the
sum of the weights was not equal to the number of points. Furthermore, as case C
comprises 33,021 titanium and zirconium samples, it takes more time to transform.
For example, RBIGI and PPMT required 2min 46s and 2min 42s, respectively. On the
other hand, it took FA 9min 11s to transform the heteroscedasticity between variables
into independent factors with a multi-Gaussian distribution. In all three cases, RBIGP
completed the transformation in less than one second. The significant difference in time
between RBIGP and RBIGI can be explained by the different programming languages
and simpler marginal Gaussianisation.

Visual inspection of kernel density estimates can assist in assessing the quality
of results. However, a better way to compare the results is to check for multivariate
normality. Table 2 shows the results fromMVN tests applied to the transformed factors.
For cases A and C, all three transforms produced multi-Gaussian distributions with
perfect p values according to the Henze–Zirkler and Energy tests. PPMT, however,
could not producemulti-Gaussian factors and failed bothMVN tests (i.e., with p values
of less than 0.05). RBIGI very slightly outperformed the other transforms based on
multi-Gaussianity, particularly in cases A and B. PPMT failed to produce an MVN
distribution in case B and showed slightly worse results in case A. On the other hand,
all three methods produced similar results for case C. It is also important to note that

123



722 Mathematical Geosciences (2023) 55:713–734

Table 2 Multivariate normality test results for three case studies

MVN test Case RBIGP RBIGI PPMT FA

Henze–Zirkler’s A 0.0932 (p = 1) 0.0205 (p = 1) 0.3023 (p = 1) 0.0237 (p = 1)

B 0.0621 (p = 1) 0.0226 (p = 1) 1.2135 (p < 0.05) 0.0270 (p = 1)

C 0.3951 (p = 1) 0.3362 (p = 1) 0.3319 (p = 1) 0.3198 (p = 1)

Energy A 0.0969 (p = 1) 0.0394 (p = 1) 0.2382 (p = 1) 0.0860 (p = 1)

B 0.0845 (p = 1) 0.0337 (p = 1) 1.2746 (p < 0.05) 0.0740 (p = 1)

C 0.2835 (p = 1) 0.2214 (p = 1) 0.2307 (p = 1) 0.2377 (p = 1)

Table 3 Computed MAF matrices for multi-Gaussian factors in the three case studies

Case Lag RBIGP RBIGI PPMT FA

A 75

[−0.90 −0.45
0.45 −0.90

] [ −0.86 0.53
− 0.53 −0.86

] [
0.24 −0.98
0.98 0.24

] [
0.23 −0.98
0.98 0.23

]

B 15

[−0.20 −0.99
0.99 −0.20

] [−0.34 −0.95
0.95 −0.34

] [ −0.79 0.64
− 0.64 −0.79

] [ −0.78 0.65
− 0.65 −0.78

]

C 15

[
0.47 −0.89
0.89 0.47

] [ −0.84 0.55
− 0.55 −0.84

] [−0.77 −0.66
0.66 −0.77

] [−0.78 −0.65
0.65 −0.78

]

the FA factors do not have a unit covariance matrix and have a standard deviation of
1.09 in all three cases.

3.2 Spatial Decorrelation

One of the limitations of the MGT approaches is that they can only assume spatial
decorrelation. MGT methods always guarantee the decorrelation of variables at lag
zero but not at further lags. Figure5 (left column) shows that the omni-directional
cross-variograms of theMGT factors deviate slightly fromzero in all three case studies.
A better spatial decorrelation was achieved by chaining RBIGP, RBIGI, PPMT and FA
withMAF. A 75m lag for case A and a 15m lag for cases B and Cwere selected for the
MAF transformation, and the resulting matrices are shown in Table 3. As a result, the
decorrelated factors for cases B and C are more spatially independent, whereas case A
did not show much improvement. Nevertheless, the resulting factors are significantly
more decorrelated than the normal score variograms.

Another way to assess spatial decorrelation is by checking the relative deviation
fromdiagonality τ(h) and spatial diagonalisation efficiency κ(h) introduced byTercan
(1999). Figure5 (middle and right columns) shows that chaining MGT with MAF
improves spatial decorrelation. Even though case A does not appear to be much better,
there is a clear decorrelation at lower lags up to 100m after applying MAF. It should
also be noted that MGT methods alone are not sufficient to ensure decorrelation in
case B. This is evident by τ(h) and κ(h) not being close to zero and one, respectively.
Such poor results can be explained by the normal score cross-variograms being very
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Fig. 5 Cross-variograms, relative deviation from diagonality τ(h) and spatial diagonalisation efficiency
κ(h) for case A (top row), case B (middle row) and case C (bottom row) before and after applying MAF

Table 4 Average relative deviation from diagonality τ(h) and spatial diagonalisation efficiency κ(h)

Method Case A Case B Case C

τ κ τ κ τ κ

RBIGP 0.0550 0.9939 0.0825 0.8755 0.0285 0.9967

RBIGI 0.0606 0.9924 0.1106 0.8046 0.0287 0.9963

PPMT 0.0394 0.9960 0.1595 0.6562 0.0275 0.9960

FA 0.0397 0.9940 0.1662 0.4299 0.0279 0.9942

RBIGP+MAF 0.0416 0.9956 0.0364 0.9780 0.0105 0.9998

RBIGI+MAF 0.0424 0.9952 0.0338 0.9852 0.0107 0.9998

PPMT+MAF 0.0418 0.9956 0.0363 0.9805 0.0103 0.9998

FA+MAF 0.0426 0.9933 0.0364 0.9668 0.0103 0.9997

close to the factor cross-variograms. The average τ(h) and κ(h) results are shown in
Table 4.

3.3 Geostatistical Conditional Simulation

Direct variograms were automatically fitted before conditionally simulating the decor-
related variables. Various automated and semi-automated variogram fitting algorithms
can be used for this purpose (Emery 2010; Desassis and Renard 2013) and are avail-
able in various commercial software packages. There was no significant directional
anisotropy for case A, and omni-directional variograms were modelled for the RBIG,
PPMT and FA factors (Fig. 6). The spatial variability is very similar among the three
transforms, which means that any differences between generated realisations will be
due mainly to the back-transformations.
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Fig. 6 Direct variograms of decorrelated factors of total (top row) and soluble (bottom row) copper grades
for case A. Experimental variograms are indicated with points and fitted theoretical variograms with solid
lines

γCuT RBIGP = 0.342Sph(15m) + 0.658Sph(82m)

γCuSRBIGP = 0.505Sph(15m) + 0.495Sph(267m)

γCuT RBIGI = 0.342Sph(15m) + 0.658Sph(82m)

γCuSRBIGI = 0.506Sph(15m) + 0.494Sph(265m)

γCuT PPMT = 0.347Sph(15m) + 0.653Sph(81m)

γCuSPPMT = 0.507Sph(15m) + 0.493Sph(269m)

γCuT FA = 0.340Sph(15m) + 0.660Sph(82m)

γCuSFA = 0.503Sph(15m) + 0.497Sph(268m) (6)

On the other hand, the data in case B showed significantly different variabilities in
horizontal and vertical directions. Experimental variograms of decorrelated iron and
magnesium oxide factors were automatically fitted as shown in Fig. 7. However, for
MAF to provide a decorrelation at all lags, spatial variability must be represented by a
two-structured LMC (Desbarats and Dimitrakopoulos 2000). In cases A and B, the co-
regionalisation models appear to be more complex and thus experimental variograms
could not be fitted to two nested structures. Nevertheless, chaining MAF and MGT
still demonstrates better results, even when two-structured LMC cannot be produced
(Hosseini and Asghari 2019; Erten and Deutsch 2021).

γFeRBIGP = 0.380Nug + 0.620Sph(20m, 75m)

γMgORBIGP
= 0.145Nug + 0.855Sph(33m, 222m)

γFeRBIGI = 0.370Nug + 0.630Sph(20m, 78m)

γMgORBIGI
= 0.140Nug + 0.860Sph(33m, 215m)

γFePPMT = 0.390Nug + 0.610Sph(21m, 81m)

γMgOPPMT
= 0.146Nug + 0.854Sph(34, 213m)
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Fig. 7 Direct variograms of decorrelated factors for iron (top row) and magnesium oxide (bottom row) for
case B. Experimental variograms are indicated by points and fitted theoretical variograms by solid lines
(blue: horizontal, and red: vertical)

γFeFA = 0.395Nug + 0.605Sph(21m, 79m)

γMgOFA
= 0.148Nug + 0.852Sph(34m, 220m) (7)

Finally, omni-directional experimental variograms were calculated for case C. Fig-
ure8 shows the variograms for the RBIG, PPMT and FA factors. Unlike the other two
cases, variograms in case C were fitted to two nested structures.

γTiRBIGP = 0.672Sph(15m) + 0.328Sph(275m)

γZrRBIGP = 0.530Sph(15m) + 0.470Sph(275m)

γTiRBIGI = 0.670Sph(15m) + 0.330Sph(274m)

γZrRBIGI = 0.531Sph(15m) + 0.469Sph(274m)

γTiPPMT = 0.665Sph(15m) + 0.335Sph(275m)

γZrPPMT = 0.534Sph(15m) + 0.466Sph(275m)

γTiFA = 0.668Sph(15m) + 0.332Sph(275m)

γZrFA = 0.534Sph(15m) + 0.466Sph(275m)

(8)

It is evident that the factors produced by each method have almost identical spa-
tial properties, which is true for all three cases. There were only minor differences
in the variogram parameters generated by automated fitting. Using these variogram
models, conditional turning bands simulation (Desassis and Renard 1973; Emery and
Lantuéjoul 2006)wasused togenerate 50 realisations. In each case, the producedmulti-
Gaussian factorsweremodelled using identical neighbourhoodparameters. Thus,most
of the differences between realisationswill be due to the variable transformation,which
ensures a fair comparison of the MGT methods.

For case A, simulations were run on a 61 × 115 × 38 block model with grid
dimension of 30m× 30m× 10m. A moving neighbourhood of 1000m × 1000m ×
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Fig. 8 Direct variograms of decorrelated factors of titanium (top row) and zirconium (bottom row) for case
C. Experimental variograms are indicated by points and the fitted theoretical variograms by solid lines

1000m with 8 octants and 8 points per octant was used for turning bands simulation.
The block model in case B consists of 64× 69× 39 grids with 3m× 3m× 2m size,
for which a 200m × 200m × 200m moving neighbourhood with 8 octants and 16
points per octant was used. Finally, realisations for case C were produced on a 65 ×
36× 54 block model with a 15m× 15m× 15m grid size. A 450m× 450m× 450m
moving neighbourhood was used with 8 octants and 40 points per octant.

3.4 Analysis andValidation

The simulated realisations were back-transformed to the original scale. To do so,
MGT+MAF factors were first multiplied by the transposed MAF matrices (see Table
3), Then the RBIGP, RBIGI, PPMT and FA inverse transformations were applied to
the corresponding multi-Gaussian realisations. In case A, RBIGP and PPMT required
only 3 s to back-transform a single realisation and RBIGI required 22s, whereas FA
took 13min and 29s. A similar difference was observed in case B, where FA required
14min and 30s, RBIGI required 13s and both RBIGP and PPMT required 2 s to
back-transform one realisation. Case C is much larger than the other two, but RBIGP,
RBIGI and PPMT needed only 1, 7 and 3s, respectively. This is because their back-
transformation does not require the original data, only Gaussian tables and rotation
matrices at each iteration. However, as the original data are used in the FA back
transformation, it took 34min and 59s to back-transform a single realisation for case
C.

3.4.1 Reproduction of Bivariate Relationships

Figure9 (top) shows the cross plots of the back-transformed variables from a single
realisation of case A. The bivariate relationships of the simulated data are similar to
those of the original distribution. Although there are some artefacts above an inequality
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Fig. 9 Top: cross plots of back-transformed simulated grades from one realisation compared to the original
data in caseA. Bottom: box plots of Pearson ρ and Spearman ρS correlation coefficients from 50 realisations
of case A compared to the original values (solid blue lines)

Fig. 10 Top: cross plots of back-transformed simulated grades from one realisation compared to the original
data in case B. Bottom: box plots of Pearson ρ and Spearman ρS correlation coefficients from 50 realisations
of case B compared to the original values (solid blue lines)

constraint, this is not surprising given the skewed distributions of the copper grades.
In fact, even acceptance-rejection methods that reject and re-simulate values to be
within the bounds of inequality constraints do so at the cost of other statistical prop-
erties. For example, the acceptance-rejection approach performs well when marginal
distributions are moderately skewed (Madani and Abulkhair 2020), but poorly repro-
duces other properties when dealing with very skewed distributions (Abulkhair and
Madani 2021). Finally, reproduction of the Pearson and Spearman correlation coef-
ficients suggests that PPMT performed slightly better than the others, while RBIGI
underestimated the correlations (Fig. 9 bottom).

In case B, the back-transformed results show a non-linear bivariate relationship,
similar to the original data (Fig. 10). Moreover, the reproduction of correlation coef-
ficients is also almost identical.

Finally, the cross plots in Fig. 11 demonstrate that all the presented methods repro-
duced the heteroscedastic relationship between titanium and zirconium in case C. It
can also be observed in the reproduction of the Pearson and Spearman correlation
coefficients, where all three methods show similar results. However, despite similar
correlations, a visual inspection suggests that FA produces better results. RBIGI pro-
duced significant outliers in the top left and bottom right corners of its cross plots in
cases A and the top right corner in case C (Figs. 9, 11). On the other hand, RBIGP and
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Fig. 11 Top: cross plots of back-transformed simulated grades from one realisation compared to the original
data in case C. Bottom: box plots of Pearson ρ and Spearman ρS correlation coefficients from 50 realisations
of case B compared to the original values (solid blue lines)

Fig. 12 Histogram validation for case A (a), case B (b) and case C (c). The CDFs of the simulated grades
are shown as solid black lines and the solid red lines are the original functions

PPMT produced minor artefacts in all three cases, which was not observed in the FA
realisations.

3.4.2 Histogram and Variogram Validation

Histogram reproduction is another important part of geostatistical validation. His-
tograms of back-transformed variables of a single realization were well reproduced in
all three case studies (see Figs. 9, 10, 11). However, it is more appropriate to check all
realisations, which can be accomplished by CDF or Q-Q plots. Figure12 shows the
reproduction of the CDFs of the back-transformed realisations and the RMSE values
between percentiles of the realisations and the original distributions. In case A, the
skewness of the distributions makes it challenging to assess and compare, but RMSE
results suggest that RBIGP and FA performed slightly better than the others. Similarly,
RBIGP has the least RMSE for both variables in case C, but other methods performed
better in case B. Nevertheless, the difference in RMSE is insignificant, and the overall
results are similar.
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Fig. 13 Variogram validation for case A with direct variograms in the top and bottom rows and cross-
variograms in the middle row. Solid lines represent normal score variograms of simulated realisations and
experimental variograms are shown as points

Reproduction of spatial variability was checked on the normal scores (i.e., first
normal score transformation before iterations of RBIGP, RBIGI, PPMT and FA). The
reason for this is to avoid significant deviations due to the skewness of the original
variables. In addition, experimental normal score variograms were used as theoretical
variograms of normal scores were not modelled. Finally, RMSE between variogram
values for simulated and experimental variograms were calculated to provide a quan-
titative comparison of result.

Figure13 shows the variogramvalidation for caseA.As expected, direct variograms
arewell reproduced, and cross-variograms of the simulated realisations are also similar
to the original points. As was observed in the histogram validation, all three methods
show almost identical results from a visual standpoint. Nevertheless, it is difficult
to make a comparison based on RMSE results. RBIGP and FA have smaller RMSE
for total copper, but RBIGI shows better reproduction for soluble copper and cross-
variability. At the same time, RBIGI also has a higher RMSE for total copper.

In case B, omni-horizontal and vertical variograms were used during the modelling
due to anisotropy between those directions. Figure14 shows the variogram validation
in both the vertical and horizontal directions.Visually, the results are identical for direct
and cross-variograms in both directions. However, based onRMSE,RBIGP performed
the best, followed closely by other methods. There is also an underestimation of the
magnesium oxide variogram for all three methods.

Finally, variogram reproduction is visually indistinguishable in case C (Fig. 15).
RBIGP has a smaller RMSE for direct variograms, but the difference with other
methods is insignificant. Overall, geostatistical validation metrics suggest that the
performance of all four methods is similar, especially in the reproduction of marginal
distributions and spatial variability. Moreover, without calculating RMSE, it is impos-
sible to tell the difference between RBIGP, RBIGI, PPMT and FA results.
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Fig. 14 Variogram validation for case B with direct variograms in the top and bottom rows and cross-
variograms in the middle. Solid lines represent normal score variograms of simulated realisations and
experimental variograms are shown as points (blue: horizontal, red: vertical)

Fig. 15 Variogram validation for case C with direct variograms in the top and bottom rows and cross-
variogram in the middle row. Solid lines represent normal score variograms of simulated realisations and
experimental variograms are shown as points

4 Discussion and Conclusions

This paper compares four MGT methods, PPMT, FA and two types of RBIG (i.e.,
RBIGP with PCA rotations and RBIGI with ICA rotations), using three case stud-
ies with complex multivariate relationships. All three cases were obtained from
undisclosed datasets, and each represents a particular bivariate complexity with
moderate-to-high correlation coefficients. CaseA is a bivariate datasetwith an inequal-
ity constraint between total and soluble copper grades, with 6,074 data points. It can
also be called a fractional constraint since the soluble copper grade is a fraction of
the total grade. Case B consists of 9990 iron and magnesium oxide samples with a
non-linear relationship between them. Finally, case C has 33,021 data points, with
clear heteroscedasticity between titanium and zirconium grades.
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The most apparent difference between MGT approaches in this study is the exe-
cution time for forward and back transformation. Although RBIGI, PPMT and FA
showed comparable times for forward transformation in cases A and B, FA took
almost thrice as much time as PPMT and RBIGI in case C. Furthermore, the differ-
ence in execution time is significantly higher during the back transformation. RBIGP,
RBIGI and PPMT do not need original data for the inverse transform because they
save all the rotation matrices and Gaussian tables at each iteration during the fitting of
transforms. Since FA requires the original data, the number of samples of the original
hard data significantly affects its execution time. For example, FA required around
14min to back-transform a single realization in cases A and B, while RBIGP, RBIGI
and PPMT required only seconds. Moreover, because case C is significantly larger
than the other two datasets, the time required by FA to back-transform one realisation
was about 35min. Due to a simpler and faster marginal Gaussianisation and more
optimised matrix operations in MATLAB, RBIGP was significantly faster than other
methods in forward transformation and similar to PPMT in inverse transformation.
For example, RBIGP needed less than one second to transform the original data in all
three cases.

Nevertheless, FA shows better reproduction of bivariate relationships, which was
also observed by other studies reported in the geostatistical literature. PPMT hasminor
artefacts generated during back-transformation. While RBIGI appears to have good
reproduction, it can produce significant outliers from the distribution but still within
the bounds of marginals. The reason for these outliers is the convergence issue of ICA
rotation, which can be unstable in some iterations. On the other hand, RBIGP does not
appear to have this problem, producing results of similar quality to PPMT. Despite the
minor differences, all three case studies showed that MGT methods effectively model
datasets withmultivariate complexities. Furthermore, all threemethods show identical
results in histogram and variogram validation. Even the RMSE between realisations
and the original data shows no significant differences in the RBIGP, RBIGI, PPMT and
FA results. Interestingly, the multivariate normality of the multi-Gaussian factors did
not significantly impact the results. For example, PPMT failedMVN tests in case B but
still produced realisations with a similar quality to those of other methods. However,
multivariate normality plays amuch bigger role in high-dimensional cases, particularly
when correlations between variables are weak. Nevertheless, spatial decorrelation is
much more important in geostatistical applications, and PPMT had similar spatial
diagonalisation results to those of the other three methods.

Overall, the four MGT approaches analysed in this paper produce similar results
in terms of multivariate normality, spatial decorrelation, reproduction of bivariate
relationships, histogram and variogram validation. The main difference is the time it
takes them to transform the original data and back-transformgeostatistical realisations.
It can be concluded that FA is not suitable for tasks requiring faster transformation,
particularlywhenworking on large datasets. For example, the recently developed rapid
resourcemodel updatingmethods require Gaussian transformation andmust be in near
real-time (Benndorf 2020). Geostatistical decorrelation methods, such as MAF and
FA, were applied to rapidly update multiple cross-correlated variables (Kumar et al.
2020; Prior et al. 2021). However, we believe that RBIG and PPMT are more suitable
for such tasks, especially when chained with spatial decorrelation. In future work, we
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will apply RBIG and PPMT in the rapid updating of multiple variables within iron
oxide copper-gold deposits.
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