
Understanding Socio-Technical Aspects
of Software Security Patch Management

Nishadi Nesara Munasinghe
Centre for Research on Engineering Software Technologies (CREST)

Faculty of Science, Engineering and Technology
The University of Adelaide

Principal Supervisor: Professor Muhammad Ali Babar
Co-Supervisors: Dr Asangi Jayatilaka and Dr Mansooreh Zahedi

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

March 30, 2023

iii

Contents

List of Figures ix

List of Tables xi

Abstract xiii

Declaration of Authorship xv

Acknowledgements xvii

Dedication xix

1 Introduction 1
1.1 Research Objectives and Questions . 2
1.2 Thesis Overview and Contributions . 3
1.3 Publications . 7
1.4 Thesis Organisation . 7

2 Research Design 9
2.1 Systematic Literature Review . 9
2.2 Longitudinal Field Study . 9

2.2.1 Field Study Context . 10
2.2.2 Longitudinal Case Study . 10

Data Collection . 11
Data Analysis . 13
Member Checking . 16

2.2.3 Grounded Theory . 17
Data Collection . 18
Data Analysis . 19

3 A Systematic Literature Review on Software Security Patch Man-
agement 21
3.1 Introduction . 22
3.2 Background and Related Work . 23

3.2.1 Overview of the Software Security Patch Management Process . 23
3.2.2 Other Reviews Related to Security Patch Management 24

3.3 Research Methodology . 25
3.3.1 Research Questions . 26
3.3.2 Search Strategy . 27
3.3.3 Study Selection . 28
3.3.4 Assessing the Publication Quality 29
3.3.5 Data Extraction . 29
3.3.6 Data Analysis and Synthesis . 29
3.3.7 Overview of Selected Primary Studies 30

iv

Demographic Data . 30
Studies Distribution in the Security Patch Management Process 30
Research Type . 31

3.4 Socio-technical Challenges in Security Patch Management . . 31
3.4.1 Common Challenges . 34
3.4.2 Patch Information Retrieval Related Challenges 35
3.4.3 Vulnerability Scanning, Assessment and Prioritisation Related

Challenges . 35
3.4.4 Patch Testing Related Challenges 36
3.4.5 Patch Deployment Related Challenges 36
3.4.6 Post-deployment Patch Verification Related Challenges 36

3.5 Approaches and Tools Proposed to Facilitate Security Patch Management 37
3.5.1 Patch Information Retrieval Related Solutions 38
3.5.2 Vulnerability Scanning, Assessment and Prioritisation Related

Solutions . 38
3.5.3 Patch Testing Related Solutions 39
3.5.4 Patch Deployment Related Solutions 39
3.5.5 Post-deployment Patch Verification Related Solutions 39

3.6 Practices Proposed to Successfully Implement Security Patch Manage-
ment . 40
3.6.1 Common Practices . 42
3.6.2 Patch Information Retrieval Related Practices 42
3.6.3 Vulnerability Scanning, Assessment and Prioritisation Related

Practices . 42
3.6.4 Patch Testing Related Practices 42
3.6.5 Patch Deployment Related Practices 43
3.6.6 Post-deployment Patch Verification Related Practices 43

3.7 Evaluation of the Reported Solutions in Security Patch Man-
agement . 43
3.7.1 Types of Evaluation Used to Assess the Proposed Solutions . . 44
3.7.2 The Level of Rigour and Industrial Relevance of the Reported

Solutions . 45
3.8 Discussion . 45

3.8.1 Need for More Investigation on the Less Explored Security Patch
Management Phases . 46

3.8.2 Need for Evidence-Based Research on Socio-technical Aspects
in Security Patch Management Delays 47

3.8.3 Human-AI Collaboration for Securing Software Systems 47
3.8.4 Standardisation of Heterogeneous Tools 48
3.8.5 Real-world, Rigorous Evaluations 48
3.8.6 Contextual Factor . 48

3.9 Threats to Validity . 49
3.9.1 Internal Validity . 49
3.9.2 External Validity . 49
3.9.3 Construct Validity . 49
3.9.4 Conclusion Validity . 50

3.10 Chapter Summary . 50

v

4 Why, How and Where of Delays in Security Patch Management 53
4.1 Introduction . 54
4.2 Related Work . 55
4.3 Research Method . 57
4.4 Findings . 57

4.4.1 Why, How, and Where do Delays Occur in Security Patch Man-
agement? . 58
Technology-Related Reasons. 59
People-Related Reasons. 62
Organisation-Related Reasons. 64

4.4.2 Mitigation Strategies for Delays in Security Patch Management 65
Strategies Relating to the Overall Patch Management

Process. 66
Strategies Relating to Patch Information Retrieval (P1). 67
Strategies Relating to Vulnerability Scanning, Assess-

ment and Prioritisation (P2). 67
Strategies Relating to Patch Testing (P3). 68
Strategies Relating to Patch Deployment (P4). 69
Strategies Relating to Post-Deployment Patch Verifica-

tion (P5). 70
4.4.3 Findings from Member Checking 71

4.5 Discussion . 71
4.5.1 Related Works . 73
4.5.2 Implications for Practitioners 74
4.5.3 Implications for Researchers . 75

4.6 Threats to Validity . 76
4.6.1 External Validity - Generalisability 76
4.6.2 Reliability . 76
4.6.3 Construct Validity . 76
4.6.4 Internal Validity . 76
4.6.5 Evaluative Validity . 77

4.7 Chapter Summary . 77

5 A Grounded Theory of the Role of Coordination in Security Patch
Management 79
5.1 Introduction . 80
5.2 Related Work . 81
5.3 Research Method . 81
5.4 Findings . 81

5.4.1 Causes - Socio-Technical Dependencies 82
Technical Dependencies . 82
Social Dependencies . 84

5.4.2 Constraints . 86
Legacy Software-Related Dependencies 86
Lack of Automation Support 87
Increased Patch Load . 88

5.4.3 Breakdowns . 88
Sudden Escalations to Patch Schedules 88
Delays in the Organisation Approvals 88
Lack of Dependency Awareness from Localised Work Distribution 89

5.4.4 Mechanisms . 89

vi

Early Investigation of Interdependencies 89
Collaborative Decision-Making 89
Continuous Measuring of Progression 90
Frequent Communication . 90
Load Balancing . 91
Centralised Vulnerability Risk Assessment 91

5.5 Discussion . 91
5.5.1 Comparing to Related Work . 91
5.5.2 Implications for Practitioners 92
5.5.3 Implications for Researchers . 92

5.6 Threats to Validity . 93
5.7 Chapter Summary . 94

6 Automation in Security Patch Management 95
6.1 Introduction . 96
6.2 Related Work . 97
6.3 Research Method . 98
6.4 Results . 99

6.4.1 As-Is State of Automation in Security Patch Management . . . 99
Patch Information Retrieval from Third-Party Vendors 99
Vulnerability Discovery through Scans 99
Vulnerability Risk Assessment and Prioritisation 99
Planning and Preparation for Patch Deployment 101
Testing Patches for Accuracy and Unintended Effects 102
Deploying Patches to Machines 102
Verifying the Success of Patch Deployment 102
Handling Post-Deployment Issues 103
Patch Defect Management . 103

6.4.2 Limitations of Current Automation 103
Limited Support for Dynamic Environment Conditions 104
Lack of Proper Support in Process Workflows 104
Lack of Accuracy of Output . 104
Lack of Scalability in Tool Design/Architecture 105
Service Disruptions During Patch Deployment 105
Lack of Usability . 105

6.4.3 Practitioners’ Needs for Enhanced Automation 106
Automation Support for Patch Information Management 106
Central Platform Integrating Vulnerability Scanning and Risk

Assessment . 106
Automated Preparation for Patch Deployment 106
Automation Support to Articulate Patch Scheduling 107
Automated Patch Deployment With Better User Control 107
Automated Patch Deployment Verification And Recovery . . . 107
Improved Configuration Management Database With an Overview

of System Interdependencies 108
6.4.4 Role of Human in Process Automation 108

Gain Control Over Uncertain and Dynamic Environment Con-
ditions . 108

Contextual Awareness-Based Decision-Making 109
Handle Legacy Systems In Place. 110
Adapt to the Organisational Needs and Culture 110

vii

6.5 Discussion . 110
6.5.1 An Integrated Platform Offering Support Across All Process

Phases . 112
6.5.2 Human-Machine Collaboration for Patch Management 112

Human-Centred AI Explanations to Assist Contextual Decision-
Making . 113

Decision Support for Patch Scheduling 113
6.6 Threats to Validity . 114

6.6.1 External Validity . 114
6.6.2 Construct Validity . 114
6.6.3 Internal Validity . 114
6.6.4 Reliability . 114

6.7 Chapter Summary . 114

7 Conclusions and Future Work 117
7.1 Summary of Findings and Contributions 118

7.1.1 A Systematisation of Knowledge of Security Patch Management 118
7.1.2 An Evidence-Based Understanding of the Reasons and Mitiga-

tion Strategies for Security Patching Delays 118
7.1.3 A Grounded Theory of the Role of Coordination in Security

Patch Management . 119
7.1.4 An Empirical Understanding of Automation in Security Patch

Management . 119
7.2 Opportunities for Future Research . 120

7.2.1 Replicating the Study . 120
7.2.2 Technological Support for Dependency Management 121
7.2.3 Decision Support for Security Patch Management 121
7.2.4 Studying the Influencing Factors and Impact of External Stake-

holders on Patching Delays . 122

A Codebook for the Reasons for Security Patching Delays 123

B Codebook for the Mitigation Strategies for Security Patching Delays127

C The Interview Guide 131

D The Observation Protocol for the Grounded Theory Study 135

E Selected Primary Studies in the Literature Review 137

F Data Extraction Form in the Literature Review 143

G Approved Ethics Application 145

References 148

ix

List of Figures

1.1 Overview of the thesis. 3

2.1 An overview of the organisational setup present in the studied context. 12
2.2 An extract from Team T1’s Patching Tracker on 19.05.2021. 12
2.3 Application of Straussian grounded theory data analysis procedure:

Open coding through Axial coding to Selective coding. 16
2.4 Emergence of the category Limitations of current automation from the

underlying codes and concepts. 17
2.5 Application of Glaser’s data analysis procedure resulting in the devel-

opment of the category Technical dependencies during Selective Coding. 20

3.1 Focus of the study. 24
3.2 An overview of the research methodology. 26
3.3 Distribution of studies over years and types of venues. 30
3.4 Distribution of studies over the security patch management process. . . 31
3.5 Mapping of the research types and solution types with the security

patch management process. 32
3.6 Mapping of the evaluation types based on the solution type and security

patch management phase (symbol size based on the number of papers
per solution type). 44

3.7 A mapping of challenges onto solutions. 46

4.1 An overview of the vulnerability timeline showing a delay in security
patch management. 55

4.2 High-level overview of the reasons and strategies for delays in security
patch management emerged from a Grounded Theory analysis. 57

4.3 Reasons for delays in security patch management. 58
4.4 Distribution of the reasons for delays in security patch management

based on the frequency analysis. 59
4.5 An overview of how the delays are distributed over the patch manage-

ment process and the average duration of the delays in each process
phase. 60

4.6 Strategies for delays in security patch management. 65

5.1 A grounded theory of the role of coordination in security patch man-
agement described in four dimensions. 82

5.2 The stakeholder dependencies present in the studied context. 84

6.1 Summary of the as-is state of automation in security patch management.100

xi

List of Tables

1.1 An overview of the research questions and the research methods 4

2.1 Demographics of case organisations . 11
2.2 Participant demographics . 14
2.3 Definition of standard time frames in the studied case 15
2.4 Summary of the data collection . 18

3.1 Comparison of contributions between our study and the existing related
reviews/surveys. 25

3.2 Research questions of the SLR and their motivations 27
3.3 Inclusion and exclusion criteria. 28
3.4 Assessment of the quality of publications. 29
3.5 Socio-technical challenges in security patch management. 32
3.6 A classification of solution areas and the associated capabilities of the

reported approaches and tools. 37
3.7 Practices proposed for successful implementation of security patch man-

agement. 40
3.8 The scheme for classification of the evaluation types. 43

6.1 Classification of limitations of current automation 111

D.1 Observation protocol . 136

E.1 Selected primary studies in the SLR. 137

F.1 Data extraction form used in the SLR. 143

xiii

The University of Adelaide

Abstract

Understanding Socio-Technical Aspects of Software Security Patch
Management

by Nishadi Nesara Munasinghe

Several security attacks that resulted in catastrophic outcomes including system
downtime, data breaches, financial losses, reputational damage, and in some cases,
loss of life, can be traced back to a delay in applying a security patch. The most effec-
tive remediation of this problem is to apply security patches on time to the identified
vulnerabilities through a process called software security patch management. Despite
the criticality of timely software security patch management, it is one of the most
challenging endeavours due to the inherent technical and socio-technical interdepen-
dencies involved in the process. While there have been significant research efforts on
the technical aspects of security patch management, little is known about the socio-
technical aspects of patch management that may cause delays in applying security
patches. It is an important limitation as the software security patch management
process is inherently a socio-technical endeavour where human, organisational and
technological interactions are tightly coupled.

This thesis aims to fill this gap by contributing to the body of knowledge providing
an in-depth evidence-based understanding of the socio-technical aspects of software
security patch management. We first systematise the current state of research on
socio-technical aspects of software security patch management to identify the chal-
lenges, solutions, best practices, and open research challenges. Based on a longitudinal
field study involving patch meeting observations, artefacts analysis, semi-structured
interviews and discussions with practitioners from 10 teams between three organi-
sations in the healthcare domain, we then conduct in-depth empirical investigations
to identify, understand and address the role and impact of socio-technical aspects
on software security patch management delays in practice. The empirical findings
contribute to (1) providing an evidence-based understanding of the reasons and mit-
igation strategies for delays in software security patch management; (2) presenting a
grounded theory of the role of coordination in software security patch management
explaining how (in)effective coordination contributes to a majority of the delays in
the process; and (3) providing an understanding of the role of automation in soft-
ware security patch management detailing insights into the as-is state of automation
in practice, the limitations of current automation, how automation support can be
enhanced to effectively meet practitioners’ needs and the role of the human in an
automated process, and proposing a set of recommendations to guide future tool de-
velopment to address the identified limitations and needs, and reduce patching delays.
The evidence-based knowledge and insights reported in this thesis will provide a use-
ful resource and guideline for practitioners and researchers to identify, understand
and address the socio-technical concerns leading to delays in software security patch
management.

xv

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made in
the text. In addition, I certify that no part of this work will, in the future, be used in
a submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

Nishadi Nesara Munasinghe

March 2023

xvii

Acknowledgements

“If I have seen further, it is by
standing on the shoulders of giants"

Sir Isaac Newton

First, I express my sincere gratitude to my supervisors Professor M. Ali Babar,
Dr Asangi Jayatilaka and Dr Mansooreh Zahedi for their amazing support, guidance
and encouragement throughout my PhD. My heartfelt thanks to Ali, my principal
supervisor, for taking me under his wing to conduct my PhD research and guiding
me to be an independent researcher. I am extremely indebted to him for constantly
guiding me, providing me with excellent collaboration and networking opportunities,
challenging me to reach heights that I didn’t imagine possible, encouraging me, and
most of all, for having continued faith in me.

I am deeply grateful to my co-supervisors Asangi and Mansooreh for being excel-
lent mentors to me, always being by my side through ups and downs, motivating me
to be my best version and appreciating my improvements, even the slightest ones. I
owe many thanks to their constructive feedback, insightful advice and endless support
throughout, without which the completion of this thesis would not have been possible.

I am immensely thankful to our industry collaborators, without whose help, this
research would not have been accomplished. A special thanks to Eddy and Neil for
their incredible support throughout our collaboration. Thank you for allowing us a
window into your organisation, and providing us with an opportunity to participate in
the patch meetings. My sincere thanks to all participants and organisations involved
in this research who generously shared their time, knowledge and experiences with us.

My warmest thanks to my colleagues, the current and former members of the
Centre for Research on Engineering Software Technologies (CREST) at the University
of Adelaide for their encouragement and support. Special thanks to Chadni Islam,
Triet Le, Roshan Rajapakse, Faheem Ullah and Bushra Sabir for their helpful feedback
and thoughtful commentary on the early drafts of my papers and presentations.

I also acknowledge the CREST research lab, the University of Adelaide and the
Government of Australia for the financial support provided to pursue my doctoral
research and attend international conferences in the USA and Singapore to present
my research.

Finally, I extend my deepest gratitude to my family for their endless support and
encouragement throughout this journey. My heartfelt thanks to my best friend and
partner, Kanchana Munasinghe, for always being my pillar of strength and stress
reliever. Thank you for all your sacrifices, patience, advice, feedback and constant
support throughout these years, I do not know how I would have done it without
you. My sincere thanks to my parents, my brother and my in-laws for their constant
encouragement and support to navigate through the challenges and come this far.

This thesis would not have been possible without the overwhelming support of all
of you.

xix

Dedicated to my dear parents, thank you for all your efforts in supporting me
throughout my education.

Also, I am grateful to the people of Sri Lanka for providing the gift of free education,
which paved the path to this thesis.

1

Chapter 1

Introduction

Cyberattacks exploiting software vulnerabilities remain one of the most critical risks
facing modern corporate networks. Applying timely security patches to the identi-
fied vulnerabilities continues to be the most effective and widely recognised strategy
for protecting software systems against such cyberattacks [1, 2]. However, despite
the rapid releases of security patches addressing newly discovered vulnerabilities in
software products, a majority of cyberattacks in the wild have been a result of an ex-
ploitation of a known vulnerability for which a patch had already existed [3, 4, 5, 6].
More disturbing is that such failures in the prompt application of available security
patches have resulted in cyberattacks that have caused devastating consequences of
huge financial and reputation losses from breaches of confidentiality and integrity of
company data. For instance, the infamous Equifax case [7, 8] impacted 143 million
people. In some cases, cyberattacks have even led to human fatalities, caused by the
unavailability of critical software systems during an attack [9]. As such, cyberattacks
that particularly target software systems in mission-critical domains such as health-
care can be catastrophic [10, 11]. For example, a failure in the timely installation
of an available patch exploited by the WannaCry ransomware cryptoworm brought
down several critical systems of the National Health Services (NHS) in the UK in 2017
[12]. A systematic analysis of Hospital Episodes Statistics (HES) data revealed that
the cyberattack resulted in significant disruption across thousands of NHS hospitals,
including the need to revert to manual processes (e.g., reporting blood results and
paper notes), disruption to radiology services, 19,000 cancelled outpatient appoint-
ments, elective admissions, and day case procedures. Additionally, for five infected
acute trusts, emergency ambulances were diverted to other hospitals. The financial
impact was estimated to total £5.9 million for the NHS. [13, 14]. These outcomes
can be largely attributed to the inherent complex issues faced when applying software
security patches in organisational IT environments.

Software security patch management, hereafter called security patch management,
refers to the process of applying security patches to the identified vulnerabilities in the
software products and systems deployed in an organisation’s IT environment. A secu-
rity patch is an additional piece of code developed to address security vulnerabilities
identified in software [1]. Following the discovery of a new vulnerability, a candidate
security patch is developed and released by third-party vendors to prevent exploita-
tion by malicious entities. For example, the Meltdown [15] and Spectre [16] patches
released in 2018 by vendors such as Microsoft, Google, IBM and Apple were aimed at
fixing two critical vulnerabilities in modern processors allowing malicious programs
to gain unauthorised access to the software system. In security contexts, patch man-
agement represents a critical concern in achieving and maintaining the security of the
managed software systems. This is because applying a security patch is considered
the most effective mechanism to mitigate the identified vulnerabilities [17]. Similarly,

2 Chapter 1. Introduction

applying security patches with minimum delays is instrumental in significantly reduc-
ing the risks of cyberattacks that exploit software vulnerabilities [17]. To guide the
security patch management process, several guidelines such as the National Institute
of Standards and Technology (NIST)’s Special Publication (SP) 800-40 [17, 18, 19]
have been published over the years.

Despite the importance of timely security patch management, it remains one of
the most challenging processes facing modern organisations. The process consists
of identifying existing vulnerabilities in managed software systems, acquiring security
patches from software vendors, testing the patches for accuracy, installing patches, and
verifying installed software security patches [2, 17, 20, 21]. Performing these activi-
ties involves managing interdependencies between multiple stakeholders, and several
technical and socio-technical tasks and decisions that make security patch manage-
ment one of the most complex endeavours [2, 20, 22]. The need to apply a software
security patch as early as possible is further challenged by the rise and distribution of
an organisation’s attack surface, often leaving a large number of unpatched systems
vulnerable to attacks [23]. Recent industry statistics [23] reveal that an organisation’s
patching time for a critical vulnerability continues to increase with an average of 16
days, and medium and low severity vulnerabilities increase even further from 125 to
151 days. Such evidence reveals that modern organisations are struggling to meet the
requirements of “patch early and often" indicating serious concerns and the increased
importance of efforts to reduce delays in security patch management in practice.

1.1 Research Objectives and Questions

Despite the criticality of security patch management in the industry, this is still an
emerging area of rising interest in research that needs further attention. While many
studies have aimed at providing technical advancements to improve security patch
management tasks (e.g., an algorithm for optimising patching policy selection [24], an
automated approach for integrated patch testing, deployment and verification [25]),
the socio-technical aspects of security patch management have received relatively lim-
ited attention. Socio-technical aspects relate to the organisational process, policies,
skill and resource management and technical systems, and involve a complex interac-
tion between humans, machines and the environmental aspects of the context [26, 27].
The lack of attention to socio-technical aspects is an important limitation because the
security patch management process is inherently a socio-technical endeavour, where
human, environmental and technological interactions are tightly coupled, such that
the success of security patch management significantly depends on the effective col-
laboration of humans with the technical and organisational systems. Hence, an un-
derstanding of the socio-technical aspects is essential for identifying the prevailing
issues around patching delays and improving the effectiveness of the security patch
management process [2, 20].

Motivated by the increased awareness that there is a critical gap in the knowledge
of the socio-technical aspects of security patch management, the research presented in
this thesis aims to fill that gap by providing an evidence-based understanding of the
socio-technical aspects of security patch management. Specifically, this PhD thesis
focuses on empirically investigating the role and impact of socio-technical aspects
on security patch management delays. Based on the findings from the empirical
investigations, the thesis presents a taxonomy of root causes for patching delays,
practical strategies for reducing the delays in security patch management, a framework
for research and practice aimed at supporting the identification and remediation of

1.2. Thesis Overview and Contributions 3

the key reason for delays in security patching, and suggests recommendations for
improving automation support for reducing delays. The problem statement of this
thesis is presented as follows.

Problem statement: As security patch management is inherently a socio-
technical endeavour involving a complex interaction between humans, machines
and environmental aspects, a deep knowledge of the socio-technical aspects of
security patch management is needed to gain a complete understanding of how
human, organisational and technological factors in security patch management
lead to delays. An evidence-based understanding is important to identify and
understand the role and impact of socio-technical aspects on the delays in
security patch management, thereby addressing the root causes of delays with
solutions of high industrial relevance and practical utility.

Background

State of the art

Chapter 3
Literature Review
on Socio-technical

Aspects of
Software Security
Patch Management

Socio-technical aspects of software security patch management in practice

Reasons for delays and
mitigation strategies

Role of automation in
software security patch

management

Role of coordination in
software security patch

management

Chapter 4
Why, How and Where of

Delays in Security
Patch Management

Chapter 5
A Grounded Theory of

the Role of Coordination

Chapter 6
Automation in Security

Patch Management

Key Contributions

A systematisation of
knowledge of security

patch management

A taxonomy of the reasons
for delays in security patch
management and mitigation

strategies

An evidence-based
understanding of the role
of automation in security

patch management

A Grounded Theory of the
role of coordination in

security patch management

Grounded Theory Study
(Observations, Discussions)

Longitudinal Case Study
(Artefact Analysis, Observations, and Interviews)

Chapter 2
Longitudinal Field Study

Figure 1.1. Overview and scope of the thesis.

To achieve this overarching goal, we define three research questions (RQs) as il-
lustrated in Table 1.1. Further, Table 1.1 presents the sub-research questions for
each high-level RQs along with the research methods used to answer them and the
corresponding thesis chapter.

1.2 Thesis Overview and Contributions

This section provides a summary of how the research objectives and questions re-
ported in Section 1.1 and Table 1.1 are addressed across four chapters. An overview
of the thesis is presented in Figure 1.1. While I, the author of this thesis, am solely
responsible for the research done in this thesis, most of the work was conducted in
collaboration with my PhD supervisors. Hence, the pronoun “we” is used in this thesis
to reflect the collaborative research efforts. For places that need explicit distinctions

4 Chapter 1. Introduction

Table 1.1. An overview of the research questions and the research
methods

High-level Research
Question

Sub-Research Questions Research
Method

Chapter

RQ1: What is the state
of the art in software secu-
rity patch management re-
search?

RQ1.1: What socio-technical challenges
have been reported in software security
patch management?

Systematic
Literature
Review

Chapter 3

RQ1.2: What types of solutions have been
proposed?

RQ1.2.1: What approaches and tools have
been proposed to facilitate software security
patch management?
RQ1.2.2: What practices have been re-
ported to successfully implement the soft-
ware security patch management process?

RQ1.3: How have the solutions been as-
sessed?
RQ1.3.1: What types of evaluation have
been used to assess the proposed solutions?
RQ1.3.2: What is the level of rigour and in-
dustrial relevance of the reported solutions?

RQ2: What are the rea-
sons for delays in software
security patch management
and how can they be miti-
gated?

RQ2.1: Why, how, and where do delays oc-
cur in software security patch management?

Longitudinal
Case Study

Chapter 4

RQ2.2: How can the delays be mitigated?

RQ3: What is the role of
coordination in software se-
curity patch management?

Grounded
Theory

Chapter 5

RQ4: What is the role of
automation in software se-
curity patch management?

RQ4.1: What is the as-is state of au-
tomation in software security patch manage-
ment?

Longitudinal
Case Study

Chapter 6

RQ4.2: What are the limitations of current
automation?

RQ4.3: How automation in software secu-
rity patch management can be enhanced to
support practitioners?

RQ4.4: What is the role of the human
in software security patch management au-
tomation?

1.2. Thesis Overview and Contributions 5

of the roles of the researchers involved, for example, when describing the tasks of each
researcher in the data analysis process, the present author refers to the author of
the thesis and other researchers are used to refer to others in the research team.

Chapter 3: Systematic Literature Review
Chapter 3 provides a background on the topic of socio-technical aspects of security

patch management. In response to RQ1, we conduct a comprehensive review of the
state of the art of security patch management to devise a taxonomy of the existing
socio-technical challenges, and solution approaches, tools, and practices in security
patch management. For the solutions, we analyse their level of rigour and industrial
relevance, paving the way to identify the gaps for future research. Specifically, the
review provides an organised evidential body of knowledge on the topic and provides
a foundation to support the main focus of the thesis and the findings reported in
Chapters 4, 5 and 6. Additionally, the review serves as a guideline for researchers
and practitioners to gain a thorough knowledge of the domain and identify gaps and
opportunities for improvement.

Chapter 4: Why, How and Where of Delays in Security Patch Management
While several disastrous security attacks over the years can be attributed to delays

in applying an available security patch, there is not much empirically known about
the reasons for such delays. To address this critical gap (RQ2), Chapter 4 investigates
why, how and where delays happen in security patch management in practice, and
how the delays can be mitigated. Based on a longitudinal case study involving anal-
ysis of artefacts collected from 132 delayed patching tasks and observations of patch
meetings, this chapter answers RQ2 by identifying and categorising the reasons that
cause delays in security patch management. Further, we quantitatively analyse the
identified set of reasons to uncover the most prominent causes of delays and identify
where the majority of delays occur in the patch management process. Additionally,
we present a set of practical strategies to mitigate the delays. To the best of our
knowledge, we are the first to delve deeper into understanding the reasons for delays
in security patching and mitigation strategies in practice. Such findings provide useful
insights for researchers and practitioners to identify the root causes of patching delays,
and mitigation points and strategies for reducing such delays.

Chapter 5: A Grounded Theory of the Role of Coordination in Security
Patch Management

Chapter 4 discovers that the most prominent cause of delays is associated with
coordination delays in the security patch management process. Chapter 5 addresses
this problem detailed in RQ3 by providing a Grounded Theory, i.e., a framework
of the role of coordination in security patch management. Based on a longitudinal
Grounded Theory study of 51 observations of patch meetings in the same context as
the longitudinal case study conducted in Chapter 4, the theory explains the causes
that define the need for coordination among interdependencies in the security patch
management process, constraints that can negatively impact effective coordination of
such interdependencies, breakdowns resulting from ineffective coordination of causes
and constraints, and mechanisms for ensuring effective coordination in the process.
Practitioners can adapt the theory to avoid coordination delays and failures and in-
crease confidence in their security patching decisions. Additionally, the provided un-
derstanding based on empirical evidence provides useful insights for researchers to
develop solutions to address the practical concerns in coordination in the process.

6 Chapter 1. Introduction

Chapter 6: Automation in Security Patch Management
Other notable causes of delays in security patch management revealed by Chap-

ter 4 are attributed to the limitations of current patch management tools and the
need for human intervention in the process. While researchers and practitioners have
paid significant attention to devising and integrating automation support in different
activities of the security patch management process, there has been relatively little
effort committed to gaining an in-depth understanding of how automation is used in
practice and its constraints in meeting practitioners’ needs and wants. This chapter
finds answers to these questions reported in RQ4 by providing a holistic understand-
ing of the role of automation in security patch management. The findings provide
insights grounded in empirical evidence into the current status of automation in prac-
tice, the limitations of existing automation, how automation support can be improved
to effectively meet practitioners’ needs and the role of the human in security patch
management automation. We also propose a set of recommendations that can guide
future efforts aimed at developing automation support for effectively meeting the cur-
rent gaps and needs, and reducing delays in security patch management.

The key contributions of this thesis from these four chapters are summarised as
follows.

1. A systematised evidential body of knowledge of the socio-technical
aspects of security patch management establishing a solid background
knowledge on the topic (Chapter 3):
(i) A taxonomy of the socio-technical challenges in security patch management.
(ii) A classification of the existing solution approaches, tools, and practices to
address the socio-technical challenges and a detailed analysis of the mapping of
the challenges to the available solutions.
(iii) A detailed analysis of the solutions’ rigour and industrial relevance.

2. An evidence-based understanding of why, how, and where of delays in
practical security patch management and mitigation strategies (Chap-
ter 4):
(i) Identification of the reasons for delays when applying security patches in
practice and their distribution over the security patch management process.
(ii) An understanding of the most important causes for delays with rationales.
(iii) A set of practical strategies for reducing the delays in security patch man-
agement.

3. A grounded theory of the role of coordination in security patch man-
agement (Chapter 5):
(i) A theoretical model explaining how (in)effective coordination (which is the
main cause of delay according to Chapter 4) impacts the security patch manage-
ment process across four interrelated dimensions: Causes, Constraints, Break-
downs, and Mechanisms.

4. An evidence-based understanding of the role of automation in secu-
rity patch management (Chapter 6):
(i) Insights into the as-is state of automation in real-world security patch man-
agement.
(ii) Identification of the limitations of the current automation in practice.
(iii) An analysis of how automation support can be enhanced to effectively meet
practitioners’ needs.

1.3. Publications 7

(iv) Understanding the role of the human in process automation.
(v) A set of recommendations for guiding future efforts aimed at developing
human-automation collaborative solutions for addressing the current limitations
in timely security patch management.

1.3 Publications

All core chapters of this thesis have been published during my PhD candidature. The
list of publications in correspondence to each chapter is presented below. It is impor-
tant to highlight that my surname recorded in the subsequent publications refers to
my name before marriage.

1 Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Zahedi and M. Ali Babar.
2021. Software security patch management - A systematic literature review of chal-
lenges, approaches, tools and practices. Information and Software Technology, 144
(2021), 106771. [CORE ranking: rank A, Impact factor (2022): 3.862, SJR rating:
Q1] (Chapter 3)

2 Nesara Dissanayake, Mansooreh Zahedi, Asangi Jayatilaka, and Muhammad
Ali Babar. 2022. Why, How and Where of Delays in Software Security Patch Man-
agement: An Empirical Investigation in the Healthcare Sector. In Proceedings of the
ACM on Human-Computer Interaction, 6(CSCW2), Article 362 (November 2022), 29
pages. [CORE ranking: rank A, Impact factor (2022): 4.57] (Chapter 4)

3 Nesara Dissanayake, Mansooreh Zahedi, Asangi Jayatilaka, and Muhammad
Ali Babar. 2021. A Grounded Theory of the Role of Coordination in Software Secu-
rity Patch Management. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA,
13 pages. [CORE ranking: rank A*, Acceptance rate: 24.5%] (Chapter 5)

4 Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Zahedi, and Muhammad
Ali Babar. 2022. An Empirical Study of Automation in Software Security Patch
Management. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, NewYork,
NY, USA, 13 pages. [CORE ranking: rank A*, Acceptance rate: 22%] (Chapter 6)

1.4 Thesis Organisation

The remainder of the thesis is organised as follows. Chapter 2 presents the research
methodologies used in this thesis. It provides a detailed description of the research
methods used for each RQ with the rationale behind the choices. Chapter 3 presents
a comprehensive literature review of socio-technical aspects of software security patch
management. Chapter 4 investigates why, how and where the delays occur when ap-
plying security patches in practice, and how the delays can be mitigated. Chapter 5
presents a Grounded Theory based framework of the role of coordination in secu-
rity patch management to address the most prominent cause of the delay identified in
Chapter 4. Chapter 6 reports an empirical study of automation in security patch man-
agement, another key factor contributing to delays in patching. Chapter 7 concludes
the thesis by providing suggestions for future work.

9

Chapter 2

Research Design

This chapter presents the research methodologies used in this thesis. It starts with a
brief description of the systematic literature review, followed by the longitudinal field
study involving the case study research method adopted for Chapters 4 and 6, and
the Grounded Theory research method used for Chapter 5.

2.1 Systematic Literature Review

Despite the critical importance and growing industrial interest in security patch man-
agement, we found a lack of resources for establishing a solid background on the
topic. Responding to this evident lack of attention in the industry and academia,
we used Systematic Literature Review (SLR) method to systematically review and
rigorously analyse the literature on security patch management. An SLR, one of the
most commonly used research methods in Evidence-based Software Engineering, aims
at consolidating the body of knowledge of a particular research question or topic by
identifying, evaluating and interpreting all available research through a well-structured
systematic process [28].

An SLR would largely benefit both researchers and practitioners to gain an in-
depth holistic overview of the state-of-the-art of security patch management as well as
support in transferring the research outcomes to industrial practice [28]. Further, the
results provide useful insights to identify the limitations of the existing solutions, and
gaps that need the attention of the research community. An SLR research methodol-
ogy involves three main phases: planning, conducting and reporting the review [29],
which we describe in detail in Chapter 3.

2.2 Longitudinal Field Study

As socio-technical aspects of security patch management are relatively less explored
and given the exploratory nature of research questions (RQs), we conducted a longitu-
dinal field study to find answers to RQs 2, 3 and 4. We chose the field study approach
as it allows us to understand what practitioners do in which context and why. With
access to the field over 2.7 years, we conducted a longitudinal study enabling us to
study the topic in depth. The field study was conducted following the guidelines of the
University of Adelaide’s Human Research Ethics Committee approval (Appendix G).
Based on the suitability of the RQ, we adopted two research methods in the context
of the field study, Case Study and Grounded Theory, which we describe in detail in
Subsections 2.2.2 and 2.2.3.

10 Chapter 2. Research Design

2.2.1 Field Study Context

Our field study included three case organisations (Org A, B and C) with 10 teams
in Australia. In selecting the case organisations, we used a combination of purposive
[30] and convenience [31] sampling to ensure that our data are representative of the
substantive area through which the findings emerge. We initially held an informal
meeting with the senior manager of security services in Org A to understand the com-
pany’s security patch management process and the organisational setup with Org B
and C, the security patch management service providing companies. It was confirmed
to us during this meeting that this case presented an excellent opportunity to study
security patch management in a large-scale organisation with a highly complex envi-
ronment and a large set of diverse stakeholders. Further, the meeting enabled us to
understand available data collection sources for our field study.

Org A is a large public health services agency responsible for maintaining the
IT systems in an Australian state government’s healthcare sector. In addition to
maintaining third-party vendors’ software systems, they also maintained some med-
ical software applications developed in-house. However, security patch management
of operating systems (OS) and associated third-party software applications were out-
sourced to Org B and Org C, which are IT services and consulting organisations. Org
B and Org C are sister companies of a large American multinational corporation, and
they were responsible for patching Org A’s 1500 servers representing the entire state’s
healthcare system. The non-security patches were handled by different teams in Org
A, which is not included in our scope. The field study revolves around the domain
of healthcare as the case organisations focus on security patch management in the
healthcare domain in the studied context.

The demographics of the studied teams in the case organisations are presented
in Table 2.1. Org A consisted of several teams each managing different modules,
for example, teams T1-3 represented the main modules in Org A while teams T5-
6 were central to all other in-house teams overseeing their respective modules. The
security patch management process was coordinated through bi-weekly patch meetings
between the three organisations, attended by key stakeholders representing each team
Table 2.1. Abiding by the human ethics guidelines, the details of the companies, teams
and participants have been kept confidential.

2.2.2 Longitudinal Case Study

Given the exploratory nature of RQs 2 and 4, we adopted a case study approach to ob-
tain an in-depth understanding of the reasons and mitigation strategies for real-world
security patching delays and the role of automation in security patch management.
The case study research method allows “the study of a contemporary phenomenon (the
“case") in depth and within its real-world context, especially when the boundaries be-
tween phenomenon and context are unclear" [32], such as the complex socio-technical
aspects involved in real-world security patch management. Our longitudinal case
study follows an exploratory, holistic and multiple-case study approach in which we
applied an ethnographic approach to the data collection and a Grounded Theory ap-
proach to the data analysis. We followed the guidelines for case study research by Yin
[32] and its alteration to software engineering research by Runeson and Höst [33] in
the case study design, conducting and reporting.

2.2. Longitudinal Field Study 11

Table 2.1. Demographics of case organisations

Company Team Team’s Domain Team
Size ∗∗

Roles

Org A T1 Electronic Medical Records
(EMR)

5 Application Owner, System Ad-
ministrator, Server Engineer,
Server Manager

T2 Digital Health Windows
(Win)

3 Server Engineer, System Adminis-
trator, Application Services Man-
ager

T3 Digital Health Non-
Windows (Non-Win)

2 Unix Specialist, Server Engineer,
System Administrator

T4 Clinical and Pathology
Services

1 Pathology Server Engineer

T5 Security 1 Security Advisor
T6 Change Management 1 Change Manager

Org B T1 Server (Technical) 7 Server Engineer, Senior Server
Engineer, Unix Engineer, Server
Manager, Client Delivery Manager

T2 Finance and Audit
(Non-technical)

1 Accounts Manager

Org C T1 Operations (Technical) 1 Account Run Lead
T2 Server (Technical) 1 Senior Server Engineer

∗ The team size and roles refer to the number and roles of team participants in the patch
meeting.

Data Collection

In our longitudinal case study approach, we collected data using various methods in-
cluding artefact analysis, interviews, and observations as shown in Figure 1.1. Our
data consist of artefacts of patch meeting minutes spanning over four years from
October 2016 to May 2021, observations of 66 patch meetings, and 17 in-depth inter-
views. Based on the need and suitability, we selected the appropriate data collection
technique for each research question. We first started the data collection with two
organisations (Org A and B) and included a third organisation (Org C) based on the
need as the research progressed.

Artefact Analysis: To understand why and how delays occur in practice (RQ2),
we collected longitudinal data from patch meeting minutes maintained by the case
organisations as the main artefact from patch meetings. This study included two
organisations (Org A and Org B) involving 21 participants from 8 teams, and the
demographics of the studied teams are illustrated in Table 2.1. Figure 2.1 shows the
organisational setup in the studied context.

As the main source of data collection, we gathered patch meeting minutes referred
to as the “patching tracker" by the studied teams. The patching tracker, a detailed
Excel spreadsheet, was used as a tracking tool between the collaborative parties to
document the status of the tasks, similar to centralised version control and issue track-
ing system. The three main teams of Org A (i.e., T1, T2, and T3) each maintained
separate patching trackers to document their patch management tasks (i.e., activities)
with details of the task number, subject, raised date, action required or taken, raised
by, owner, assigned to and the status (including Closed, In-progress, New, On-hold and
Monitor), as shown in Figure 2.2. Each tracker was updated regularly with the date

12 Chapter 2. Research Design

Patch
Meetings

Patching
Tracker

main artifact

EMR

Security

Win

Non-Win

Change
Management

Pathology

Server

Finance and Audit

Org A Org B

Figure 2.1. The organisational setup present in the studied context.

and action or decision taken when the task was discussed in detail at patch meetings.

Figure 2.2. A screenshot of an extract from the Patching Tracker -
19.05.2021.

Observations: Additionally, to supplement our understanding of the security
patch management process and activities, and to obtain a better understanding of the
documented tasks in the patching tracker, we observed 66 patch meetings from March
2020 - May 2021. The patch meetings provided a collaborative platform for the partic-
ipants to discuss and refine the patching process, plan monthly patch schedules, assess
the vulnerability remediation progress, resolve problems, and make decisions about
patch exemptions. The meetings were held every fortnight lasting approximately an
hour and a half. Due to COVID-19, the meetings were held online through Microsoft
Teams. In addition, the observations increased analytical validity and ensured trian-
gulation in our findings [32].

Interviews: To understand the role of automation in security patch manage-
ment in practice (RQ4), we extended the longitudinal case study by adding Org C
to the data collection using semi-structured interviews. We chose interviews as the
data collection method to gain a better understanding of real-world practices through
practitioners’ perspectives. Further, we chose semi-structured interviews over fully
structured interviews as they allow freedom to participants to voice their real con-
cerns rather than forcing them to a topic. We collected data through semi-structured
interviews with 17 practitioners from three organisations, Org A, B and C. In com-
parison to previous studies aimed at addressing RQs 2 and 3, the addition of Org C as
an additional data source in this study helped verify our existing findings in a broader
sample in the case.

2.2. Longitudinal Field Study 13

For participant recruitment, we requested the manager of Org A’s security team
to suggest potential interviewees engaged in security patch management in the case
organisations. Then, we sent email invitations to the nominated candidates. The
participant selection covered a diverse set of job roles in security patch management
to achieve a rounded perspective. A pre-interview questionnaire was emailed to the
participants to collect demographic information about them and their teams. The
demographics of the participants are presented in Table 2.2. The participants were
distributed across 10 teams in three organisations, and on average had 22 years of
experience in security patch management. The participant (PID) and organisation
identities have been omitted to preserve participant anonymity as per the human
ethics guidelines. The last three columns refer to the number, types of machines or
devices, and types of software components managed by the participants.

The interviews held in November-December 2021, lasted between 30 and 60 min-
utes and were conducted via Microsoft Teams because of Covid-19 restrictions. The
present author led all the interviews, while the other researchers participated in seven
interviews (researcher2 = 4 interviews and researcher3 = 3 interviews) along with
the present author for helping in asking the follow-up questions and increasing the
reliability of the interviewing process.

The interviews were focused on security patch management of operating systems
(OS) and third-party software applications in the context of healthcare. The open-
ended interview questions covered the following areas: (a) role and responsibilities in
security patch management; (b) the current status of automation tools used in the
process including features of the specific tools used and how they supported security
patch management tasks, and the activities not supported by automation; (c) the
challenges and limitations of the current automation tools; (d) role of humans in
security patch management automation and the reasons for human involvement, and
(e) the need for better automation support (i.e., the envisioned solutions and their
features).

All researchers jointly prepared the interview guide which was modified with mu-
tual agreement when appropriate during data collection to reduce the potential bias.
All interviews were recorded and transcribed for analysis by the present author. The
interviews were conducted in two phases in parallel with the data analysis. We con-
tinued with the data collection until the data analysis confirmed theoretical saturation
[34], for example, the last three interviews provided more examples for the emerged
findings but no new categories or insights emerged.

Data Analysis

In search of answers for RQ2: why and how delays happen in security patch man-
agement, and RQ4: what’s the role of automation in security patch management in
practice, we qualitatively analysed the data employing the Grounded Theory (GT)
[34, 35] data analysis procedures. Additionally, to identify how the delays and the
causes are distributed throughout the security patch management process in RQ2, we
quantitatively analysed the data using frequency analysis, a widely used technique for
producing descriptive statistics derived from the data.

For qualitative data analysis, we used Grounded Theory (GT) [34, 35] data analysis
technique as it aligned well with our case study goals of investigating a phenomenon in
a real-world context. We adopted the data analysis procedure in Strauss and Corbin’s
GT version (Straussian GT) [34] as it provides a well-structured and rigorous data
analysis approach guided by open-ended and practice-based RQs [34, 36]. The data
analysis procedure followed different types of coding: Open coding , Axial coding

14 Chapter 2. Research Design

Table 2.2. Participant demographics

PID Role Yrs
of
Exp

Org Domain TeamTeam
Size

No of
Machines

Machine
Type

Software Component
Type

P1 Lead Solution An-
alyst

20 Org A Healthcare T1 65 250 Server Applications ∗∗, EOL ∗+

P2 Team Lead 25 Org A Healthcare T2 17 3000 Server OS
P3 Infrastructure

Specialist
23 Org A Healthcare T2 17 3000 Server OS, Applications,

Drivers and Firmware
P4 Server Adminis-

trator
23 Org A Healthcare T2 17 3000 Server OS, Applications,

EOL
P5 Infrastructure

Server Engineer
17 Org A Healthcare T2 17 3000 Server OS

P6 Manager (Infras-
tructure Server)

25 Org A Healthcare T2 17 3000 Server OS

P7 Service Transition
Manager (EUC)

35 Org A Healthcare T3 3 35000 Client OS, Applications

P8 ICT Change Man-
ager

22 Org A Healthcare T4 3 38000 Server,
Client,
Network
devices

All Types

P9 Senior Manager
(Security Services)

20 Org A Healthcare T5 6 38000 Server,
Client

OS, Applications ∗∗,
EOL,
Drivers and Firmware

P10 Senior Security
Advisor

40 Org A Healthcare T5 6 38000 Server,
Client

OS, Applications ∗∗,
EOL,
Drivers and Firmware

P11 Manager (EMR) 19 Org A Healthcare T6 250 160 Server Applications
P12 Change Coordina-

tor (EMR)
19 Org A Healthcare T6 250 160 Server OS, Applications,

EOL
P13 Patching Lead 3.5 Org B IT T7 5 1800 Server OS, Applications
P14 Client Delivery

Manager
21 Org B IT T8 50 160 Server OS

P15 Account Delivery
Lead

20 Org B IT T8 50 2500 Server OS, Applications,
EOL

P16 Account Run Lead
(Operations)

14 Org C IT T9 130 38000 Client OS, Applications

P17 Senior Server En-
gineer

25 Org C IT T10 30 1500 Server OS

∗ Includes both third-party applications and custom in-house applications. + EOL = End-
Of-Life (Legacy) Software

2.2. Longitudinal Field Study 15

and Selective coding [34]. The present author conducted the data analysis and cre-
ated a codebook containing all the codes and memos. The codebook and raw data
(i.e., artefacts and observation and interview transcripts) were shared with all re-
searchers. The other researchers cross-checked all the codes, concepts, categories, and
core categories in the codebook against the raw data throughout the data analysis
process to reduce bias and increase the reliability of the findings [37]. The categories
and their relationships were thoroughly discussed in weekly meetings and finalised af-
ter several rounds of revisions among all researchers. Any disagreements were resolved
in weekly detailed discussions between all researchers throughout the process. The
use of analytical tools such as diagramming and memoing facilitated the data analysis
process. The raw data, codes, and memos were stored in NVivo [38], a qualitative
analysis tool.

For the qualitative data analysis in RQ2, i.e., to understand why and how delays
happen in security patch management, we analysed the data from artefacts and sup-
plementary observations at the task level as previous studies [39, 40] have shown that
most project delays are caused by delays in the smallest unit of work (i.e., task-level
delays). A task in this study refers to a single row recorded in the patching tracker.
Out of 268 tasks available in total, 232 tasks were closed. We only analysed closed
tasks since we needed the end dates to calculate delays. Figure 2.2 shows a screenshot
of an extract from the patching tracker. To define a delay according to the studied
context, the present author held a discussion with Org A’s Senior Security Advisor
about their policies to understand the defined time frames for any given task during
the monthly patch cycle practised in the studied context. Table 2.3 presents a sum-
mary of the standard time frames as expected in the organisation. Correspondingly,
we mapped the tasks to their relevant phase of the patch management process based
on two existing studies [2, 20].

Table 2.3. Definition of standard time frames in the studied case

Phase
ID

Patch management process
phase

Standard
time
frame

Note

P1 Patch Information Retrieval 2 days Needs to be completed within two
days of patch release

P2 Vulnerability Scanning, As-
sessment and Prioritisation

1 week Needs to be completed within the
first week of patch release

P3 Patch Testing 1 week Needs to be completed within the sec-
ond week of patch release

P4 Patch Deployment 2 weeks Needs to be completed within the
fourth week of patch release

P5 Post-Deployment
Patch Verification

1 month Any post-deployment issues must be
resolved by the next patch cycle

The preliminary analysis revealed 132 delayed tasks from a total of 232 closed
tasks that we analysed (56.9%). While there were 57 tasks (24.6%) not delayed, the
remaining tasks were excluded for several reasons such as duplicate tasks, lack of
information (e.g., no end date), and not being related to patch management specifi-
cally. To understand the causes of delays and remediation mechanisms, we analysed
in-depth the delays identified through preliminary analysis following Open , Axial
and Selective coding procedures [34], as shown in Figure 2.3.

We started with Open coding, whereby we analysed all columns row by row in

16 Chapter 2. Research Design

Key Points Concepts Sub-categories

Capacity
limitations

Organisation-
related Reasons

Raw data

Reasons for
delays

Open Coding Axial Coding

Categories

Unavailability of
task assignees
(work overload)

Resource
limitations

(human)

Codes

Performance
issues (server)

Infrastructure
limitations
(hardware)

Periodic patch
cycles (monthly
patch cycle)

Time
limitations

Technology-
related Reasons Strategies

applied

Delays in
security patch
management

Core category

Selective Coding

[L1TF spectre update] - Windows ID 41
16/5/19 - Task [T1] assigned to [P1-BT1]
for implementation.
14/6/19 - This task is on hold due to
resource being borrowed by the [T6] team

[Backup server patching] - EMR ID 49
24/1/20 - Backup server patching failed
due to patch load impacting servers before
reboot. Proposal sent to change window.

[Storage failover issues] - EMR ID 43
07/02 - Patching failed last night. Waiting
for next failure to log another case to
vendor. Next patch run due in late March.

People-related
Reasons

Figure 2.3. Emergence of the category Reasons for delays from the
underlying concept of Capacity limitations and codes in RQ2.

the spreadsheet to identify key points summarising the content. It was further encap-
sulated into codes containing short phrases. Constant comparison of emerged codes
between each team’s patching tracker, different teams’ patching trackers of a single
meeting, and different meetings resulted in concepts [34], a higher level of abstraction
of the codes. Similarly, we grouped sub-categories, and continuously comparing sub-
categories gave rise to categories, the next level of abstraction. Next, we performed
Axial coding in which we systematically linked the emerged categories to their sub-
categories based on the relationships between categories relating to their properties
(i.e., “characteristics of a category") and dimensions (i.e., “variations within prop-
erties") [34]. This process of axial coding was guided through activities involving
referring back and forth to memos, i.e., notes written during Open coding explaining
the codes and their relationships, drawing the inter-relationships in diagrams, and
refining them through frequent team meetings. The process continued until no new
properties, dimensions, or relationships emerged for each category, which indicated
theoretical saturation [34]. Finally, we applied Selective coding where we finalised
the categories and integrated them with the central or core category which represents
the most recurrent and central problem in the studied phenomenon, or simply which
explains “what this research is all about” [34], in this case, delays in security patch
management.

The same process continued for the data analysis of interviews in search of answers
for RQ4: the role of automation in security patch management, as shown in Figure 2.4.
The raw data obtained in this case study cannot be shared because of confidentiality
agreements with the industry collaborators, which happen to be in the health sector
where data sensitivity has extra layers of governance. However, we made our codebook
containing the codes, descriptions and examples of raw data for RQ2 available ((see
Appendix A and Appendix B). We have also made our interview guide containing the
pre-interview questionnaire and interview questions available in Appendix C).

Member Checking

We conducted a member checking [41] session to ensure the credibility, accuracy, va-
lidity, and transferability of our findings for RQ2. Member checking, a technique
of “taking ideas back to research participants for the confirmation" [42], provides an
opportunity to validate the findings with participants and resonance with their expe-
riences [43]. We presented the findings at a session held at Org A. The present author
and two other researchers attended the session in person while nine patch meeting
participants (six from Org A and three from Org B) and an executive director of Org

2.2. Longitudinal Field Study 17

Key Points Concepts CategoryCodesInterview data

Unable to perform
vulnerability assessment in

dynamic context

Unable to cater to sudden
patch schedule changes

Inability to capture dynamic
context factors

Lack of capacity to respond
to sudden business needs

Limited support for
dynamic environment

context

Limitations of
current

automation
Fail to execute multiple

reboots on multiple servers
simultaneously

Lack of ability to execute
simultaneous multi reboots

on multiple servers
Lack of scalability in

tool design or
architecture

Infrastructure performance
issues relating to parallel job

execution

Lack of infrastructure
capacity to run parallel

deployment jobs

Lack of ability to cater
to heterogeneous

environments

Lack of unified platform to
deploy patches to

heterogeneous environments
(OS, applications, etc.)

The problem with the tool is that it can't do multi
reboots with multiple servers. It's either all multi
reboots or none of them are multi reboots [P8]

The tool at times has failed to launch two new jobs
at once. We've had to stagger the jobs as there was
not enough IO shoot in a given window [P15]

The tool only has a finite number of products that it
can patch. It's not just the server and the OS, you
have got to patch literally thousands of others [P10]

Reshuffling windows and out-of-band patching to
respond to the customer’s immediate requests
are completely manual and is a nightmare [P1]

I receive the reports from security monthly and
then I compare that to the previous month to see
what's changed and what hasn't been applied [P4]

Figure 2.4. An example of the data analysis steps in RQ4 leading to
a category from raw data as evidence.

A were present physically. In addition, seven patch meeting participants (four from
Org A and three from Org B) attended the session virtually. The present author
presented the findings for 20 minutes followed by a detailed feedback discussion last-
ing for 40 minutes. For the member checking, we revisited findings for each sub-RQ
of RQ2 and asked questions including if they agree with the findings, which reasons
for delays they have encountered the most in their experience, any other reasons or
strategies they use that are not captured in the findings, and if they can relate the
findings with their experiences. The session was audio-recorded with permission and
transcribed for analysis by the present author. The feedback and comments from
member checking are presented in Section 4.4.3.

2.2.3 Grounded Theory

We used Grounded Theory (GT) [35, 44] research method for understanding the role
of coordination in security patch management (RQ3). Grounded Theory (GT) is a
rigorous qualitative research method that enables the systematic generation of theory
from data, relating to social interactions and behaviour in real-world settings [35, 45].
GT is a complete research method that includes data collection, analysis, theory
development, and reporting. However, given its rigour and well-structured approach,
GT can also be used as a data analysis approach rather than adopting the complete
research method leading to theory development, as we have used in Section 2.2.2 for
RQs 2 and 4. The choice of GT as our research method for RQ3 was based on two
reasons:

(a) The aim of our research, to understand the socio-technical aspects causing de-
lays in security patch management in practice, e.g., the role of coordination in
security patch management, suited well with GT as it allows the investigation
of people and interactions in a real-world phenomenon [45].

(b) GT is considered most relevant to research areas that have not been deeply
explored before [46], and research on the socio-technical aspects of security patch
management is limited in the literature.

We followed the Glaserian version of GT [44] since it offers more flexibility to
uncover the underlying concerns from the emergent data rather than limiting the
research angle with a defined research hypothesis upfront like in the Straussian GT
version. Following the guidelines, we started with an “area of interest" - socio-technical

18 Chapter 2. Research Design

concerns in security patch management delays. The guidelines by Stol et al. [36] were
followed for reporting the GT findings. 1

Data Collection

We collected data through observations and discussions with practitioners as shown in
Figure 1.1. We selected an ethnographic data collection method such as observation
as it aligned well with our goals of understanding how the role of coordination unfolds
in a real-world setting of security patch management [47]. Additionally, ethnographic
data collection approaches allow the researcher to gain a deep understanding of the
studied topic by engaging with and in the context of the participants for a long time
[47, 48].

We observed 51 patch meetings between Org A and Org B between March 2020
- January 2021. It should be noted that Org A and Org B refer to the same case
organisations described in Section 2.2.1 and patch meetings refer to the same meetings
reported in Section 2.2.2 (under Observations). The fortnightly patch meetings were
attended by 21 key stakeholders from 8 teams. These stakeholders represented diverse
roles centred on decision-making, planning, and executing security patching. Table 2.1
presents the investigated teams’ demographics. Regarding the teams’ distribution, all
teams of Org A (T1-6) were co-located while Org B teams (T1-2) were distributed
across two locations in Australia.

We held discussions immediately after the meetings with the senior security advisor
of Org A to clarify any doubts that emerged during the observations and gather
additional information. Table 2.4 presents a summary of the data collection. We also
gathered additional data by analysing artefacts such as meeting minutes and patch
mailing threads to supplement our understanding of the process, practices, and used
terminology.

Table 2.4. Summary of the data collection

No. of
meetings Duration No. of discussions

No. of hours

Meetings ∗∗ Discussions ∗+

51 9 months 11 30 hours 7 hours
∗ The average time of a patch meeting=30 minutes.
+ The average time of a post-patch meeting discussion=30-45 minutes.

The present author attended all 51 meetings that were held over the course of
9 months and conducted all 11 post-meeting discussions. All the meetings and dis-
cussions were audio-recorded with permission and shared with all researchers. We
adopted the protocol proposed by Spradley [49] to guide the data collection during
the meetings, which is available in Appendix D. The present author briefed other
researchers about the key aspects of the fortnightly meetings and the post-meeting
discussions regularly. The data collection and analysis were performed in iterative and
intertwined stages throughout. We continued with the data collection until the data
analysis confirmed theoretical saturation. The last few observations (M46-M51) pro-
vided more examples and evidence for the emerged findings during the analysis, but
no new concepts, categories, or insights emerged. All researchers mutually agreed that
this was a clear indication of the theoretical saturation [34] and that any additional
data collection would not add value to the findings.

1Grounded Theory (GT) is used to refer to the research method while grounded theory is used to
refer to the outcome/product of the research.

2.2. Longitudinal Field Study 19

Data Analysis

We followed Glaser’s data analysis procedure starting from Open coding through
Selective coding to Theoretical coding [36, 44, 50]. The data analysis was led by
the present author and supported by other researchers who took the role of valida-
tors at each stage throughout the iterative and intertwined rounds of data collection
and analysis. All data including transcripts, observation and discussion notes, other
artefacts (meeting minutes and patch mailing thread notes), codes, and memos were
saved in the NVivo [38] data analysis tool and shared with all researchers. The other
researchers cross-validated all the emergent codes, concepts, categories, and core cat-
egories. Any conflicts in the coding and coding procedures were resolved in weekly
detailed discussions between all researchers throughout the analysis phase involving
several rounds of revisions. Additionally, the emerged findings were further cross-
checked with one of the senior members of Org A’s security team.

Open coding started with thoroughly reviewing the transcripts and recording
key points containing summarised phrases [51]. It was further summarised into codes
of three-five words each, and any specific properties of the code were captured in
brackets, as shown in the example below.

Transcript: “The patching is delayed because this .NET security vulnerability was
reported in August after patching happened for the month. But, we also have another
problem as this is a different version of .NET from what is standing across the fleet.
This is .NET core, not .NET version 4.801."
Key Point: Need to identify and match Framework version dependencies
Code: Software application interdependencies (version)

Applying constant comparison on the codes that emerged within each observation,
between different observations, and post-meeting discussions, we grouped them to a
higher level of abstraction, i.e., concepts [35, 44]. Similarly, continuously comparing
concepts produced categories, a third-level of abstraction, and categories generated
core categories [44] at the end of the first round of coding. The core category repre-
sents the main problem or concern (core) in the studied phenomenon, which presents
the research question in the Glaserian GT version [45, 52]. Correspondingly, three po-
tential core categories emerged - “Legacy software systems", “Role of coordination",
and “Role of patch meetings". The percentage split of codes between the three core
categories was 18%, 51.3%, and 30.7% respectively. We selected “Role of coordination
in security patch management" as the core category because it met all the criteria de-
fined by Glaser [45] for selecting a category as the core. For example, the selected core
category was central to other categories and frequently occurred in the data; mean-
ingfully related to both other categories easily and took the longest to saturate. Our
decision to focus on the “role of coordination" from the initial general focus (i.e., area
of interest) of the “role of the socio-technical aspects in security patch management
delays" was informed by Glaser’s Grounded Theory guidelines [45].

After establishing the core category, we continued Selective coding [45] limited
to only those codes that were related to the selected core category. For example,
Figure 2.5 illustrates the emergence of the category of Technical dependencies that
relate to the Role of coordination in the second round of coding - Selective coding.
We continued to selectively code until no new insights or aspects emerged for each
category, which indicated theoretical saturation [35, 44].

As the final step of the analysis, we applied Theoretical coding [36, 44, 45, 53]
to establish conceptual relationships between categories, resulting in the development
of a theory. We used memos (memo sorting) [44, 45] to guide us to uncover the

20 Chapter 2. Research Design

Code Concept Category

The case with additional patches required
after IE patches were that the IE

installation looked to be corrupt and we
couldn’t update it to IE11 before the

updates happened.

What I need to know is the operating
system version, if it is 2008, then we

know there’s a problem. And if it is a later
version, then we have to find out why the

patches aren't getting installed.

We are still working through to install all
the patches to those 18 servers which had

issues. We found that one of them was
missing the ESU preparation package...

Operating System
(OS) version
dependencies

Software
application version

dependencies

Pre-requisites for
patch installation

Software-related
dependencies

Technical
dependencies

Raw data

Social
dependencies

Causes:
Socio-technical

interdependencies

Coordination
Role Dimensions

Selective coding limited to codes relevant to the role of coordination in security patch management Theoretical Coding

Figure 2.5. The emergence of category Socio-technical interdepen-
dencies from the underlying codes and concepts in RQ3.

links between the categories when developing the theory. At this point, we consulted
the literature, particularly Glaser’s ‘Theoretical Coding Families’ [45] to find if any
existing theoretical structure fits our current findings to visualise the theory. Glaser
argues using a coding family to present a grounded theory would help increase the
completeness and relevance of the emerging theory [45, 53]. As the findings (i.e., the
causes, constraints, breakdowns, and mechanisms) emerged from the data, we found
that the theoretical coding model “Dimension family" is the best fit to visualise the
relationships between the categories. The Dimension family is a theoretical structure
that enables the findings to be presented as dimensions or elements of a phenomenon
[45, 53], in this case, dimensions of the role of coordination in security patch man-
agement. Thus, the theory of the role of coordination in security patch management,
depicted in Figure 5.1, is described using: (a) Causes: socio-technical dependencies
that define the need for coordination; (b) Constraints: factors that hinder coor-
dination; (c) Breakdowns: scenarios of patching failures resulting from ineffective
coordination of the causes and constraints; and (d) Mechanisms: strategies devised
for supporting the coordination in security patch management.

21

Chapter 3

A Systematic Literature Review on
Software Security Patch
Management

Related publication: This chapter is based on our paper titled “Software
security patch management - A systematic literature review of challenges, ap-
proaches, tools and practices", published in the Information and Software Tech-
nology journal (CORE Ranking A) [54].

Security patch management purports to support the process of patching known
software security vulnerabilities. As mentioned in Chapter 1, patching security vul-
nerabilities in large and complex systems is a hugely challenging process that involves
multiple stakeholders making several interdependent technological and socio-technical
decisions. Given the increasing recognition of the importance of security patch man-
agement, it is important and timely to systematically review and synthesise the rel-
evant literature on this topic. This chapter aims to systematically review the state
of the art of security patch management to identify the socio-technical challenges in
this regard, reported solutions (i.e., approaches, tools, and practices), the rigour of
the evaluation and the industrial relevance of the reported solutions, and to identify
the gaps for future research. To achieve this goal, we conducted a systematic litera-
ture review (SLR) of 72 studies published from 2002 to March 2020, with extended
coverage until September 2020 through forward snowballing. Based on the findings
that highlight the important concerns in security patch management and the lack of
solutions, we discuss a list of future research directions at the end of the chapter that
opens the doors for the main contributions of this thesis in Chapters 4, 5 and 6.

22 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

3.1 Introduction

As mentioned in Chapter 1, cyber attacks targeting unpatched software vulnerabilities
continue to pose a critical risk to modern organisations. Applying security patches to
identified software vulnerabilities on time is regarded as the most effective and widely
recognised strategy for protecting software systems against such cyberattacks [17].
Despite the critical importance of timely security patch management, cyber attacks
resulting from patching delays continue to rise with increased concerns about the state
of security patch management in practice and suggest the need for more attention on
the topic with evidence-based research [55].

While this is an emerging area of rising interest in research, the focus has been
mainly on the technical aspects of security patch management. Despite the impor-
tance of understanding the socio-technical aspects of security patch management as
described in Chapter 1, this area of focus has been largely neglected in research. To
the best of our knowledge, there has been no review or survey aimed at organising
the body of knowledge on the socio-technical aspects of security patch management
covering the existing challenges and solutions in this area.

Responding to this evident lack of attention to a highly critical and timely topic
with growing interest in the industry and academia, we aimed to systematically anal-
yse the literature on security patch management. A systematic review would largely
benefit both researchers and practitioners to gain an in-depth holistic overview of
the state-of-the-art of security patch management as well as support in transferring
the research outcomes to industrial practice [28]. Further, the results provide useful
insights to identify the limitations of the existing solutions, and gaps that need the
attention of the research community. We focus on the less-explored socio-technical as-
pects of security patch management investigating the challenges and existing solutions
to address those challenges reported in 72 primary studies. The key contributions of
this novel systematic literature review (SLR) are as follows:

1. A consolidated body of knowledge of research on socio-technical aspects of se-
curity patch management, providing guidance for practitioners and researchers
who want to better understand the process.

2. A comprehensive understanding of the socio-technical challenges faced in the
security patching process.

3. A classification of the current solutions in terms of approaches, tools, and prac-
tices to address the challenges and mapping of the challenges to the proposed
solutions.

4. An analysis of the proposed solutions’ rigour of evaluation and industrial rel-
evance to inform and support the transferability of research outcomes to an
industrial environment.

5. Identification of the potential gaps for future research highlighting important
and practical concerns in security patch management that require further atten-
tion.

Chapter Organisation: Section 3.2 describes the background and other reviews
related to the topic. Section 3.3 describes the research methodology used for this
SLR. Sections 3.4, 3.5, 3.6 and 3.7 present the findings of the research questions. In
Section 3.8, we discuss some key future research opportunities and threats to validity
are presented in Section 3.9. Finally, Section 3.10 concludes the review.

3.2. Background and Related Work 23

3.2 Background and Related Work

In this section, we present an overview of the software security patch management
process. Then, we provide a comparison of our study with the existing related reviews.

3.2.1 Overview of the Software Security Patch Management Process

Given there is no commonly known/accepted definition of software security patch
management, we decided to devise an operational definition for our research based
on our evidence-based understanding from the longitudinal field study reported in
Section 2.2 [56] and the existing related literature [1, 17, 24, 57, 58, 59, 60, 61].
Hence, our operational definition of software security patch management is below:

Software security patch management is a multifaceted process of
identifying, acquiring, testing, installing, and verifying security
patches for software products and systems.

Software security patch management, commonly referred to as security patch man-
agement, is a security practice designed to proactively prevent the exploitation of se-
curity vulnerabilities that exist within an organisation’s deployed software products
and systems [1, 59]. Software security patches are “pieces of code developed to address
security problems identified in software" [1]. In general, software security patches are
always prioritised over non-security patches by industry practitioners and researchers
as they are aimed at mitigating software vulnerabilities (or security bugs) that present
exploitable opportunities for malicious entities to gain access to systems [1, 17]. In
addition, software security patches are acknowledged as the most effective strategy
to mitigate software vulnerabilities [17, 62]. A successful security patch management
process is thus essential and critical to sustaining the confidentiality, integrity, and
availability of IT systems [1]. Figure 3.1(a) shows the focus of security patch man-
agement from a typical software vulnerability life cycle perspective. For example, the
focus here relates to the process of a company (company A) applying security patches
to its deployed third-party software after the patches are released by the corresponding
third-party software vendors (company B).

Despite the importance, security patch management remains one of the most chal-
lenging efforts facing IT practitioners. Figure 3.1(b) illustrates the five main phases
of the security patch management process [2, 17, 20]. Firstly, in the patch information
retrieval phase, practitioners learn about new patches and acquire them from third-
party software vendors like Microsoft. In the next phase of vulnerability scanning,
assessment and prioritisation, the practitioners scan the managed software systems
for newly disclosed vulnerabilities to identify the applicability of patches in their
organisational context, assess the risk, and correspondingly prioritise the patching
decisions. Followed by the patch testing phase whereby the patches are tested for
accuracy and stability and prepared for installation by changing machine configura-
tions, resolving patch interdependencies and making backups. Then the patches are
installed at their target machines in the patch deployment phase. Finally, the patch de-
ployments are verified through monitoring (for unexpected service interruptions) and
post-deployment issues are handled in the post-deployment patch verification phase.

24 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

Time

Soft
ware

 se
cu

rity

vu
lne

rab
ilit

y d
isc

ov
ery

Vuln
era

bil
ity

 ex
plo

ita
tio

n

Vuln
era

bil
ity

 di
scl

osu
re

Soft
ware

 se
cu

rity
 pa

tch

rel
eas

e
Soft

ware
 se

cu
rity

 pa
tch

ap
pli

cat
ion

(a) Software security patch
management

Software
security patch
development

P1. Patch
Information

Retrieval

P3. Patch
Testing

P4. Patch
Deployment

P5. Post-
Deployment

Patch Verification

P2. Vulnerability Scanning
+Assessment and Prioritisation

(b) Software security patch management process

Figure 3.1. (a) The focus of software security patch management in
the software vulnerability life cycle. (b) An overview of the software

security patch management process.

3.2.2 Other Reviews Related to Security Patch Management

Despite the increasing demand and growing body of literature on the topic of secu-
rity patch management, we did not find any existing systematic literature review or
systematic mapping study focused on the security patch management process. How-
ever, there have been several existing reviews/surveys on security patch management-
related topics (Table 3.1), for example, international standards on patch management
and dynamic software updating (DSU) [63], i.e., a method that allows for runtime
patching without restarts or downtime. A comparison between these existing re-
views/surveys on related topics and our SLR is presented below.

Recently, Gentile and Serio [21] reviewed a set of existing international standards
on patch management and current industry best practices, assessing their relevance to
the context of complex and critical infrastructures, particularly the industrial control
systems (ICSs). Based on the survey results, they defined a general-purpose workflow
to support the patch management process in the ICSs. While our study provides a set
of practices for successful security patch management similar to this survey study, we
also include a set of recommendations, guidelines, lessons learned and shared experi-
ences of researchers and industry practitioners providing more coverage. However, the
main difference between the study conducted by Gentile and Serio [21] and our study
is the research focus, i.e., our SLR focuses on the existing challenges and solutions in
security patch management which is not covered in the study by Gentile and Serio
[21] that is limited to ICS context.

The other set of reviews and mapping studies exclusively focuses on dynamic soft-
ware updating (DSU) [63]. DSU aims at live patching to avoid restarts or downtime
that cause service interruptions. As such, the contributions of these studies focus on
facilitating one phase in the security patch management process, namely the patch
deployment phase (Figure 3.1(b)). For example, Miedes et al. [64] in their technical
report surveyed and classified the common dynamic update mechanisms providing

3.3. Research Methodology 25

Table 3.1. Comparison of contributions between our study and the
existing related reviews/surveys.

Study Study contribution Focus on secu-
rity patch man-
agement

Challenges Solutions Evaluation
of solu-
tions

Gentile
and Serio
2019 [21]

International standards
and best practices for
patch management of
complex industrial con-
trol systems

Overall software
patch management
process

– ✓(ICS
specific
best prac-
tices)

–

Miedes
and
Munoz-
Escoi
2012 [64]

A classification of the
dynamic software update
(DSU) mechanisms

Patch deployment
phase

– ✓(DSU
types)

–

Seifzadeh
et al.
2013 [65]

A framework for the eval-
uation of dynamic updat-
ing features

Patch deployment
phase

– – ✓(DSU
features)

Gregersen
et al.
2013 [66]

A systematic mapping of
DSU approaches, tools,
models, and techniques

Patch deployment
phase

– – ✓(DSU
features)

Mugarza
et al.
2018 [67]

An analysis of existing
DSU techniques for in-
dustrial control systems

Patch deployment
phase

– ✓(safety-
compliant)

–

Ahmed et
al. 2020
[68]

A framework for the eval-
uation of dynamic updat-
ing features

Patch deployment
phase

– ✓(DSU
ap-
proaches,
tools)

–

Islam et
al. 2023
[69]

A review of state-of-the-
art literature on runtime
patching approaches

Patch deployment
phase

– ✓(DSU
ap-
proaches)

–

This
study

A SLR on the socio-
technical aspects of soft-
ware security patch man-
agement

Overall software se-
curity patch man-
agement process

✓ ✓ ✓

an overview of the concepts and techniques of DSU in the literature. Subsequently,
several studies [65, 66, 67, 68, 69] followed the trend of reviewing the state-of-the-art
of DSU techniques such as the review by Seifzadeh et al. [65] in which they provided
a framework for evaluating the DSU features. Moreover, they highlight the need for
future research investigating the challenges of adopting runtime patching in organisa-
tions that have been investigated in our study. In summary, our review differs from the
existing studies by contributing to the gap area of a lack of a systematic review that
identifies and analyses the challenges and solutions in security patch management.

3.3 Research Methodology

As described in Chapter 2, we used Systematic Literature Review (SLR) to gain solid
background knowledge on socio-technical aspects of security patch management. We
conducted this SLR by following the guidelines proposed by Kitchenham and Charters
[29]. This section provides the details of the process illustrated in Figure 3.2.

To summarise the execution process of this SLR, after all the researchers discussed
and agreed on the research questions, the present author developed a review protocol.
All researchers were involved in the search string construction following several pilot
searches and multiple rounds of discussions. The study selection was jointly done

26 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

I - Planning the
review

III - Reporting the
review

II - Conducting the review

1. Research Need
Identification

2. RQs Definition
+ Pilot study to verify

feasibility of RQs

3. Research Protocol
Development

4. Running search on
Scopus (March 2020)

results = 2434

5. Inclusion and exclusion
criterion (E1, E3, I1)

+ removal of duplicates
results = 1766

6. Selection based on the
title, keywords and

abstract
results = 116

7. Read full paper and
appraise work
results = 48

8. Backward and Forward
snowballing

(September 2020)
results = 74

9. Assessing the
publication quality

removed results = 2

10. Final Article Pool
results = 72

11. Data Extraction
+ Pilot data extraction of 5
randomly selected studies

12. Data Analysis
using Thematic Analysis in

NVivo

13. Data Synthesis
and reporting the content

Figure 3.2. An overview of the research methodology.

by the present author and other researchers. The present author conducted a pilot
data extraction (DE) where the DE form and quality assessment (QA) form were
reviewed by other researchers. Then, the present author performed data extraction,
quality assessment and data synthesis under the close supervision of other researchers
who are experienced in conducting SLRs in SE. The data extraction and synthesis of
results were regularly discussed and verified by all in weekly meetings throughout the
process of 8 months.

3.3.1 Research Questions

This SLR is aimed at providing an overview of state-of-the-art of security patch man-
agement. We formulated three research questions (RQs) to guide this SLR. Table 3.2
presents the RQs, along with their motivations.

The answers to these RQs will provide an in-depth understanding of the socio-
technical challenges in security patch management (RQ1.1), available solutions (RQ1.2)
and how the solutions have been evaluated (RQ1.3). The findings will enable re-
searchers to identify gaps in this domain and potential future directions. It should
be noted that we present solutions (RQ1.2) in two categories namely approaches and
tools, and practices. We followed a similar strategy to Shahin et al. [70] in distin-
guishing between approaches and tools, and practices. The Cambridge dictionary
defines an approach, method, and technique as “a particular way of doing something
or handling a problem”; a tool as “something that helps in a particular activity”; and
practice as “the act of doing something regularly or repeatedly” [71]. In this review, we
define an approach, along with framework, method, technique, and tool as a technical
approach for addressing problems in security patch management, and classify them in
the category of “approaches and tools” , for ease of reference. It should be noted
that we categorised the studies that provided a comparison overview of the existing
tools also under “tools". Some studies reported more than one type of solution, hence
those studies were included in more than one category. Practices, on the other hand,
are defined as social practices and shared standards that can be supported by an
approach or tool to facilitate a process [72, 73]. We classified the recommendations,
guidelines, best practices, lessons learned and shared experiences as “practices” in
this review study.

3.3. Research Methodology 27

Table 3.2. Research questions of the SLR and their motivations

Research Question (RQ) Motivation

RQ1.1: What socio-technical chal-
lenges have been reported in security
patch management?

This RQ aims to understand the socio-technical challenges faced
by practitioners in the security patch management process.

RQ1.2: What types of solutions
have been proposed?
RQ1.2.1. What approaches and tools
have been proposed to facilitate secu-
rity patch management?
RQ1.2.2. What practices have been
reported to successfully implement
the security patch management pro-
cess?

The motive of this question is to obtain a detailed understand-
ing of the reported solutions in terms of approaches and tools
(RQ1.2.1); and practices including industry experts’ recommen-
dations, guidelines, best practices, lessons learned and shared
experiences for a successful security patch management process
(RQ1.2.2).

RQ1.3: How have the solutions been
assessed?
RQ1.3.1. What types of evaluation
have been used to assess the proposed
solutions?
RQ1.3.2. What is the level of rigour
and industrial relevance of the re-
ported solutions?

This RQ is aimed at analysing how the proposed solutions
have been assessed. Since security patch management is highly
industry-centric, identifying the types of evaluation used to as-
sess the proposed solutions (RQ1.3.1); and understanding how
well the solutions have been evaluated aligned with industrial
relevance (RQ1.3.2) would help practitioners to adopt the so-
lutions, and researchers to understand the gaps in the current
evaluation approaches.

3.3.2 Search Strategy

We decided to use only the Scopus search engine to identify the relevant primary
studies. The decision was based on the experiences reported by several other stud-
ies [70, 74, 75, 76] justifying that Scopus indexes a large majority of the journals
and conference papers in software engineering indexed by many other search engines,
including ACM Digital Library, IEEE Xplore, Science Direct, Wiley Online Library
and SpringerLink. Furthermore, there are several restrictions placed by the other dig-
ital libraries (e.g. SpringerLink, Wiley Online Library, IEEE Xplore) on large-scale
searches on the meta-data of the published studies. Additionally, the search string
needs to be modified for every single digital library which can result in errors being
introduced. Therefore, running the search string on Scopus enabled us to use one
search string while retrieving mostly relevant hits. We performed the search using the
studies’ titles, abstracts, and keywords.

Initially, the search string was developed by selecting keywords based on the re-
lated literature and the reference lists from those relevant primary studies. Then,
we systematically modified it by adding a set of alternative search terms obtained
through synonyms and subject headings used in the existing related research papers.
The identified search terms were merged using Boolean AND and OR to construct
various combinations of search strings. Based on these search string combinations, we
conducted several pilot searches to find the best search string and verify the inclusion
of well-known primary studies. However, given that security patch management is
still a new and emerging topic in research, we observed inconsistent use of different
terminology in the literature. For example, one of the initial search terms was “patch
management" but we decided to exclude it as a keyword since the inclusion of the
term “management" resulted in returning a large number of irrelevant studies due to
the inconsistent use of the term in the literature. A similar decision was followed
for the keywords: “update" and “socio-technical". Although these keywords were not
included, the structure of the search string was capable of finding relevant papers,

28 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

but we had to identify these papers through the study inclusion/exclusion phases.
Furthermore, to mitigate the risk of missing potential primary studies from these de-
cisions, we kept the search string as generic as possible and did not limit the search
to any particular time range. Following the above strategies, we finalised the search
string presented below:

TITLE-ABS-KEY ((‘software’ OR ‘system’) AND (‘patch*’) AND (‘security’ OR
‘vulnerabilit*’))

3.3.3 Study Selection

We retrieved 2434 studies from the execution of the search string on Scopus on 31st
of March 2020. We did not restrict our search based on publication year. We applied
snowballing [77] to scan the references of the selected studies to find more potential
studies. A backward and forward search ensured the extensiveness of our snowballing
results and extended the coverage of included studies until September 2020.

We filtered the retrieved studies based on the inclusion and exclusion criteria
presented in Table 3.3, initially defined when the review protocol was developed.
Specifically, we included the studies related to the process of application of software
security patches, that were in line with our SLR objectives and RQs. We refined the
criteria during several iterations of search and study selection to ensure we achieve
accurate classification of papers. For example, we did not include the short papers
(E2) because they presented only concepts or ideas instead of well-defined, concrete
approaches and did not provide sufficient and relevant evidence to answer the RQs.
A similar strategy has been followed by several other SLR studies, for example, [70].
Similarly, we decided to introduce E3 during the pilot searches as we observed that
those studies did not provide sufficient or useful data to extract based on the data
extraction form. This decision was mutually agreed upon by all researchers after a
careful review of the full text in several rounds of the study selection process. Corre-
spondingly, the application of the inclusion and exclusion criteria and assessment of
publication quality (Section 3.3.4) resulted in a final count of 72 primary studies to
be included in the data extraction, as listed in Appendix E.

Table 3.3. Inclusion and exclusion criteria.

Inclusion Criteria

I1 Full text of peer-reviewed conference or journal article in English that is accessible.
I2 A study that relates to or addresses at least one phase of the security patch management process
(i.e. the phases in Figure 3.1(b)).

Exclusion Criteria

E1 Workshop articles, books, and non-peer-reviewed papers such as editorials, position papers,
keynotes, reviews, tutorials, and panel discussions.
E2 Short papers (i.e., less than 6 pages).
E3 A study that reports only numerical analysis, algorithms, mathematical techniques related to
software security patch management
E4 A study that is only focused on hardware or firmware.
E5 A study that is not in the domain of security patch management (i.e. outside the focus area in
Figure 3.1(a)).
E6 Full text is unavailable.

3.3. Research Methodology 29

3.3.4 Assessing the Publication Quality

We assessed the quality of the reviewed primary studies with regard to their ability
to help answer the RQs and the effect on the drawn conclusions [29]. We developed
quality assessment criteria adopted and modified from a few published studies [78, 79,
80]. Table 3.4 provides a summary of the quality assessment. We graded the reviewed
studies on each element of the quality assessment criteria using a three points (“Yes”,
“Partially” or “No”) scale. We assigned the values: 2 to Yes, 1 to Partially, and 0 to No,
to produce a quantifiable result. A paper was considered to be of acceptable quality
and therefore included in the SLR if it received an average score ≥ 0.5. Two studies
were excluded based on the quality assessment score. The present author performed
the quality assessment while another researcher validated the results by independently
performing the quality assessment of a smaller set of randomly selected studies. Any
disagreements were sorted through discussions. The quality assessment was used to
exclude studies with low quality and to indicate the credibility of the study’s findings
[78, 81].

Table 3.4. Assessment of the quality of publications.

Id Quality Assessment Criteria Yes Partially No

C1 Does the paper have clearly stated aims and objectives? 63(87.5%) 9(12.5%) 0(0.0%)
C2 Does the paper provide a clear context (e.g., industry or labo-

ratory setting)?
54(75%) 13(18.1%) 5(6.9%)

C3 Does the paper have a research design that supports the aims? 51(70.8%) 21(29.2%) 0(0.0%)
C4 Does the paper explicitly discuss the limitations? 22(30.6%) 9(12.5%) 41(56.9%)
C5 Does the paper add value for research or practice of security

patch management?
42(58.3%) 28(38.9%) 2(2.8%)

C6 Does the paper provide a clear statement of findings? 52(72.2%) 19(26.4%) 1(1.4%)

3.3.5 Data Extraction

We extracted data from the selected primary studies using a pre-defined data extrac-
tion (DE) form in an Excel spreadsheet as presented in Appendix F. The present
author conducted a pilot DE on five randomly selected studies under the supervision
of the other researchers and refined the DE form to capture all the required infor-
mation in the best possible summarised version, through continuous discussions. We
extracted some demographic information (e.g., authors name, venue published, and
published year), and wrote critical summaries of the extracted data to be analysed
and synthesised for answering the RQs.

3.3.6 Data Analysis and Synthesis

The demographic and contextual set of data items (D1 to D10 in Appendix F) were
analysed using descriptive statistics while the other set of data items (D11 to D16
in F) was analysed using thematic analysis [82, 83], a widely used qualitative data
analysis method. The decision to use thematic analysis was based on our effort to
classify the reported socio-technical challenges and solutions in the domain. We used
the following steps guided by Braun and Clarke’s thematic analysis process [82] to
synthesise the qualitatively gathered evidence.

Familiarising with data: First, we got familiarised with the extracted data by
carefully reading each set of data. All data in the DE sheet were saved in the NVivo
data analysis tool [38] and shared among all researchers.

30 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

Open coding : Open coding started with breaking the data into smaller components
to generate the initial codes. A code (i.e., a phrase) of three-five words was assigned
to summarise the key points of the data.

Building themes: Next, we assigned the codes to potential themes by iteratively
revising and merging the codes based on their similarities using a multi-layered coding
structure in NVivo.

Merging themes: Iteratively applying constant comparison on the codes and themes
that emerged within one paper and between different papers, we grouped them to pro-
duce higher levels of themes. In the final step, we mapped the aggregated data to
the security patch management process phases based on the literature [2, 20]. The
synthesis of results for each RQ was carefully reviewed by all researchers in weekly
meetings before finalising the answers to the RQs.

3.3.7 Overview of Selected Primary Studies

In this subsection, we report the findings of the descriptive analysis of the demographic
and contextual set of data items extracted.

Demographic Data

Reporting demographic information in an SLR is considered useful for new researchers
in that domain [70]. We present the demographic data of the distribution of the year
and types of venues of the reviewed studies. Figure 3.3 presents the distribution of 72
primary studies over the years and the different types of venues. The selected studies
were published from 2002 to 2020 as we did not find any relevant studies published
before 2002. We found that 60% of the studies were published in conferences (43 of
72), while only 40% of the studies appeared in scientific journals.

1
2

1 1

4
3

5 5

2 2

5

2

4
3 3

1

4
1

5

1

1

1
2

3

1 1

2

2
3

1

0

1

2

3

4

5

6

7

8

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

N
um

be
r o

f s
tu

di
es

Conference Journal

Figure 3.3. Distribution of studies over years and types of venues.

Studies Distribution in the Security Patch Management Process

We looked at the distribution of the reviewed studies mapped onto the security patch
management process discussed in Section 3.2. Figure 3.4 reveals that a majority
of the studies (38.9%) focus on vulnerability scanning, assessment and prioritisation.
Patch information retrieval, patch testing and post-deployment patch verification have
received the least attention from the reviewed studies, with only 5 of 72 studies (6.9%)
focusing on those particular phases of the process. Twenty studies (27.8%) focus on
more than one phase of the process, which we classified under the overall process.

3.4. Socio-technical Challenges in Security Patch Management 31

Patch Information
Retrieval

6.9%

Vulnerability
Scanning,

Assessment
and

Prioritization
38.9%

Patch Testing
6.9%

Patch Deployment
12.5%

Post-Deployment
Patch Verification

6.9%

Overall Process
27.8%

Figure 3.4. Distribution of studies over the security patch manage-
ment process.

Research Type

We analysed the reported studies’ research types and classified them into four cate-
gories, as illustrated in Figure 3.5, based on the classification proposed by Petersen
et al. [84]. It should be noted that in Figure 3.5, the solution types are depicted
in green colour, while the research types are shown in blue colour. Furthermore, the
size and colour intensity of the circles refer to the number of solution types or re-
search types per software security patch management process phase. A majority of
the studies (44, 61.1%) reported validation research, in which the dominant research
methods consisted of simulation, laboratory experiments, mathematical analysis and
prototyping [85]. Thirteen studies (18.1%) reported solution proposals while only
10 studies (13.9%) reported evaluation research which consisted of strong empirical
research methods such as industrial case studies, controlled experiments with prac-
titioners, practitioner-targeted surveys and interviews [85]. The least reported were
9 experience papers (12.5%) that included industrial experience reports. We did not
find any studies related to the philosophical paper and opinion paper categories. The
lack of evaluation research and experience papers indicates a large need for research
aligned with industrial relevance in security patch management.

3.4 Socio-technical Challenges in Security Patch Manage-
ment

This section presents the findings for RQ1.1, the socio-technical challenges in security
patch management. Our analysis resulted in the identification of 14 challenges as
shown in Table 3.5. We have classified the challenges that are common across all
phases of the security patch management process as “common challenges" and others
as specific to each phase of the process.

32 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

Post-Deployment
Patch Verification

Patch Deployment

Patch Testing

Vulnerability Scanning,
Assessment and

Prioritization

Patch Information
Retrieval

Software Security Patch
Management Process

Solution Type Research Type

Solutio
n

Proposa
l

Vali
dati

on

Res
ea

rch

Eva
luati

on

Res
ea

rch

Exp
eri

en
ce

Pap
er

Approac
h

To
ol

Prac
tic

e

311

2511

5

81

5

13 2

4195 1

41

81

14

Overall Process 3 8 5 612 81

Figure 3.5. Mapping of the research types and solution types with
the security patch management process.

Table 3.5. Socio-technical challenges in security patch management.

Relevant
Patch
Management
Phase

Challenges Key Points (Included Papers) #

Common
Challenges

Ch1: Collaboration,
coordination
and communication
challenges

• Administrative overhead of coordinating
with several stakeholders of conflicting interests
[P4, P8, P11, P12, P30, P37, P63, P71]
• Delegation issues due to lack of accountability
and well-defined roles and responsibilities [P20,
P29, P30, P40]
• Communication challenges with multiple
stakeholders with conflict of interests [P10, P15,
P30, P34]
• Lack of collaboration among several
stakeholders [P20]

14

Ch2: Impact of
organisational
policies/compliance

• Need to balance between complying with
organisational policies and enforcing security [P8,
P10, P20, P30, P71]

5

3.4. Socio-technical Challenges in Security Patch Management 33

Relevant
Patch
Management
Phase

Challenges Key Points (Included Papers) #

Ch3: Complexity of patches • Diversity of patches (heterogeneity) [P15, P46,
P49]
• Increasing rate of patch release [P1, P10, P29,
P33, P35, P36, P40, P41, P44, P46, P55, P57,
P62, P63, P66, P71]
• Large attack surface (large and distributed
organisation structure) [P38, P42, P43]

21

Ch4: Limitations of existing
tools

• Lack of standardisation in heterogeneous tools
[P10, P11, P18, P19, P25, P53, P64, P66, P71]
• Cost [P11, P19, P24, P25, P28, P36]
• Time-consuming [P23, P29, P36, P43]
• Lack of accuracy [P44, P45, P49, P51, P53,
P67, P68, P69, P70]
• Lack of security [P1, P24, P30, P46, P47, P55,
P56, P72]
• Lack of usability [P1, P25, P38, P45, P58,
P70]
• Lack of scalability [P40, P54, P56, P58, P66,
P68, P72]

33

Ch5: Need of human
expertise

• Difficulty to achieve full automation in the
process [P1, P9, P10, P11, P14, P16, P22, P25,
P35, P48, P60, P62, P69, P70, P71]

15

Ch6: Lack of resources • Lack of skills and expertise [P1, P10, P15,
P30, P45, P50]
• Lack of process guidelines [P2, P10, P14, P15,
P20, P40, P69, P70]
• Lack of process automation solutions [P10,
P19, P25]

14

Patch
Information
Retrieval

Ch7: Lack of a central
platform for information
retrieval and filtering

• Lack of a unified platform for information
retrieval [P8, P10, P15, P18, P53, P56, P65,
P71]
• Lack of automatic validation, filtering and
classification according to organisational needs
[P8, P15, P18, P53, P56, P71]

8

Vulnerability
Scanning,
Assessment
and
Prioritisation

Ch8: Lack of a complete
scanning solution

• Lack of understanding of the system [P22,
P26, P29, P37, P42, P48, P64, P65, P70]
• Lack of support for configuration management
(detection) [P29, P32]
• Lack of knowledge of system inventories [P20,
P48, P65]

10

Ch9: Lack of support for
dynamic environment
context

• Inability to capture dynamic context-specific
factors [P7, P13, P14, P32, P34, P41, P42, P49,
P51, P55, P62]
• Lack of unified powerful metrics that capture
the contextual factors [P6, P33, P51]

13

Ch10: The gap of
knowledge of technical and
business context

• Lack of knowledge of organisational business
risk posture and technical risk [P34, P50, P52,
P71]

4

Patch
Testing

Ch11: Lack of proper
automated test strategy

• Need for fully automated patch testing [P3,
P8, P24, P59, P60, P68]

6

34 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

Relevant
Patch
Management
Phase

Challenges Key Points (Included Papers) #

Ch12: Poor test quality in
manual testing techniques

• Difficulty dealing with patch dependencies [P4,
P9, P10, P15, P16, P20, P60, P67, P68, P71,
P72]
• Manual testing is slow and delays the patch
deployment [P8, P12, P59, P71]
• Error-prone due to difficulty in exact replication
of production state [P15, P29, P59, P60, P67]

15

Patch
Deployment

Ch13: Failures and side
effects due to deployment
of patches

• Need for managing the risk of problematic
patches, missing configuration, and timely
deployment [P3, P8, P9, P10, P12, P15, P16,
P37, P45, P59, P60, P65, P71]
• Difficulty dealing with organisation constraints
(system downtime) [P8, P10, P12, P17, P22,
P25, P26, P30, P31, P37, P54, P58, P62, P63,
P65, P66, P67, P71, P72]

27

Post-
Deployment
Patch
Verification

Ch14: Lack of efficient
automated post-deployment
patch verification strategy

• Lack of an overview of patch state of the
system [P24, P37, P48]
• Issues with manual patch deployment
verification: difficult, error-prone,
time-consuming task [P5, P8, P12, P21, P48,
P57]

8

3.4.1 Common Challenges

The security patch management process is a collaborative effort between multiple
stakeholders such as internal teams including security managers, engineers and ad-
ministrators, third-party software vendors like Microsoft, Adobe, and customers/end
users. The conflicting interests and interdependencies between these parties (e.g.,
delays of patch release from third-party software vendors) make security patch man-
agement a challenging undertaking [P4, P20, P30, P37]. The lack of collaboration,
coordination and communication between the involved stakeholders thus represents
one of the main barriers in maintaining the security of the managed software systems
[P4, P8, P11, P12, P30, P37, P63, P71]. Moreover, the impact of organisational poli-
cies, i.e., the need to balance between complying with heterogeneous organisational
policies and maintaining software security is acknowledged as a key challenge in secu-
rity patch management [P8, P10, P20, P30, P71]. This is because the policies set by
the higher management (e.g., the minimum service interruptions policy) sometimes
contradict the timely application of emergency security patches [P20].

The rapid increase in the number and diversity of attacks has resulted in an in-
creased rate of patch release causing a nightmare situation for practitioners to handle
the increasing complexity of patches [P1, P33, P35, P40, P41, P44, P46, P55]. An-
other contributor to the increased complexity of patches is the large and distributed
attack vectors (i.e., the use of diverse software systems and products) in organisa-
tional environments [P38, P42, P43]. In addition, the limitations of the existing tools
have been noted as a major hindrance to the achievement of goals of security patch
management. Of them, some prominent limitations include the lack of a standard
platform to integrate the heterogeneous tools used for patch management [P10, P11,
P18, P19, P25, P53, P64, P66, P71], the lack of accuracy (e.g., the current tools fail-
ing to take into consideration the dynamic organisation context resulting in erroneous

3.4. Socio-technical Challenges in Security Patch Management 35

output [P44, P45, P49, P51, P53, P67, P68, P69, P70]), the lack of security [P1, P24,
P30, P46, P47, P55, P56, P72], and the lack of scalability in the design/architecture
of tools that create difficulties in applying patches to multiple systems with different
operating systems.

Due to the increased complexity and dynamic nature of security patch management
and the limitations of the current technologies used in patching, the need for human
expertise is inevitable throughout the patching process [P1, P9, P10, P11, P14, P16,
P22, P25, P35, P48, P60, P62, P69, P70, P71]. However, as a result of human
involvement in patching tasks and decisions, the time to patch has increased leaving
several attack vectors open to exploits [P1]. The risk of delays is further increased due
to a lack of resources in terms of skills and knowledge expertise, process guidelines
and process automation support. An important point highlighted in the literature [P4,
P29] regarding the lack of process automation support is that most of the existing
solutions only focus on patch deployment, but do not provide solutions covering the
entire process. Furthermore, several studies [P1, P19, P25, P30, P45, P50] have
reported a significant gap in the required skills and knowledge expertise in security
patch management particularly due to the increased complexity of patches.

3.4.2 Patch Information Retrieval Related Challenges

Practitioners are forced to spend hours monitoring multiple information sources due
to the lack of a central platform for patch information retrieval and filtering [P18,
P53, P56]. Li et al. [P8] reported that modern patch information sources range
from security advisories (78%), official vendor notifications (71%), mailing lists (53%),
online forums (52%), news (39%), blogs (38%) to social media (18%). Further, due
to the rapid rate of patch releases, the lack of automated validation, filtering and
classification of patch information according to organisational needs [P18, P53, P56]
results in delayed patch application and increases the risk of a zero-day attack [P53].

3.4.3 Vulnerability Scanning, Assessment and Prioritisation Related
Challenges

One of the prominent factors for the increased exposure to malicious attacks is the lack
of a complete scanning solution. As a result, the practitioners fail to obtain a clear
understanding of the system leading to missing the detection of software vulnerabilities
[P22, P26, P29, P37, P42, P48, P64, P65, P70] and system misconfigurations [P29,
P32]. Concerning the vulnerability assessment and prioritisation, the lack of support
for dynamic environment setting presents a prominent challenge [P7, P13, P14, P32,
P34, P41, P42, P49, P51, P55, P62]. The existing approaches are generally “one
size fits all” that create difficulties in incorporating the needs of the organisational
context and require a significant manual effort, particularly in virtual environment
patching [P41, P42, P49, P51, P55]. A few studies [P6, P33, P51] have mentioned the
need to have a common set of rigorous metrics with information such as exploit dates
for accurate patch prioritisation since the existing vulnerability scanners depend on
public vulnerability information which mostly includes only vulnerability disclosure
dates. In addition, the knowledge gap of technical and business context (e.g., the need
to apply security patches as soon as possible vs prioritisation of systems’ availability)
often results in patch prioritisation conflicts between different teams [P34, P50, P52,
P71].

36 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

3.4.4 Patch Testing Related Challenges

One of the most pressing challenges in modern patch testing can be attributed to
the lack of a proper automated test strategy [P3, P8, P24, P59, P60, P68]. A lack of
automated testing may stem from different reasons such as the difficulty in dealing
with issues of patch dependencies [P4, P9, P10, P15, P16, P20, P60, P67, P68, P71,
P72] and the significant amount of human effort required for configuring a test en-
vironment to simulate a production-identical environment [P8, P59, P60]. However,
interestingly, most of the current patch testing is done manually to avoid the risks of
unexpected system breakdowns caused by faulty and malicious patches [P8, P59, P60,
P68]. Nevertheless, the poor test quality in manual patch testing increases a system’s
vulnerability exposure as it often delays subsequent patch deployment [P8, P12, P59,
P71]. Moreover, manual patch testing is largely error-prone due to the difficulty in
the exact replication of a production state [P15, P29, P59, P60, P67].

3.4.5 Patch Deployment Related Challenges

One of the central challenges facing modern organisations in security patch manage-
ment is the failures and side effects from the deployment of patches. This challenge
emerges as a result of poor patch testing leading to faulty patches being deployed and
missing requisites for deployment such as the configuration and dependency changes
causing deployment errors [P3, P8, P9, P10, P12, P15, P16, P37, P45, P59, P60, P65,
P71]. Such errors would subsequently lead to additional service downtime, hence,
many practitioners often delay or refuse to install patches and keep using outdated
software instead leaving known vulnerabilities readily exploitable [P3, P37, P59, P60].
The other major challenge relates to dealing with the organisational constraints of sys-
tem downtime. The lack of a proper run-time patch deployment strategy coupled with
the organisational policies to avoid system downtime presents a serious challenge for
timely patch installation [P8, P10, P12, P17, P22, P25, P26, P30, P31, P37, P54,
P58, P62, P63, P65, P66, P67, P71, P72]. This is particularly challenging in critical
infrastructure system contexts such as healthcare for which downtime can create a
significant adverse impact [P25, P30, P31, P37, P54, P58].

3.4.6 Post-deployment Patch Verification Related Challenges

Most of the existing security patch management solutions lack an efficient automated
post-deployment patch verification strategy offering an overview of the system’s patch
state. This results in difficulties in detecting the problem location when an issue occurs
following patch deployment [P24, P37, P48]. In addition, most current patch auditing
methods are manual requiring practitioners to manually inspect the application for
signs of an attack and repair the damage if an attack is found. This is a frustratingly
difficult and time-consuming task with no guarantee of finding every intrusion and
reverting all changes exploited by an attacker [P21, P48, P57]. The need for this
verification to be done as quickly as the patch is deployed adds to the complex, effort-
intensive and time-consuming manual verification highlighting the challenges of a lack
of an efficient automated verification strategy [P5, P8, P12, P21, P48, P57].

3.5. Approaches and Tools Proposed to Facilitate Security Patch Management 37

3.5 Approaches and Tools Proposed to Facilitate Security
Patch Management

This section presents the findings for RQ1.2.1, the solution approaches and tools
proposed to facilitate the security patch management process. The analysis of the
solution types has revealed that 75% of the proposed solutions are approaches while
only 5.6% of the solutions are tools. Table 3.6 summarises the results for RQ1.2.1
presenting an overview of the key solution areas and the associated capabilities of the
proposed approaches and tools, mapped onto the security patch management process.

Table 3.6. A classification of solution areas and the associated capa-
bilities of the reported approaches and tools.

Relevant
Patch
Management
Phase

Solution Areas Associated Capabilities (Included Papers) #

Patch
Information
Retrieval

S1: Patch Information
Management

• Patch information retrieval from multiple
sources (P18, P25, P28, P53, P56)
• Information filtering based on organisational
configuration needs (P18, P56)
• Patch information validation (P18, P53,
P56)
• Patch download and distribution (P105,
P56, P28)

5

Vulnerability
Scanning,
Assessment
and
Prioritisation

S2: Scanning for
system vulnerabilities,
potential attacks and
ongoing attacks

• Central platform integrating the scan results
from multiple sources (P22, P37, P41, P48,
P51, P52, P64)
• Detailed host-based analysis to identify
assets resident on host (P48, P51, P42)
• Detection of system misconfigurations (P32)
• Guidance on scanning tool selection (P69,
P70)
• Identifying ongoing attacks (P22, P44)
• Providing historical scanning analysis (P22,
P34, P42)

27

S3: Assessment and
prioritisation of system
vulnerabilities,
potential attacks
and ongoing attacks

• Providing a customisable, detailed and
comprehensive analysis of vulnerability risks
(P13, P26, P32, P34, P41, P43, P45, P49,
P51, P52, P55)
• Prediction of optimal fixing strategy for
potential and ongoing attacks (P22, P26,
P43, P55)
• Measuring organisational vulnerability
remediation effectiveness (P38, P43, P71)
• Capturing the dynamic context for accurate
assessment and prioritisation (P7, P14, P23,
P32, P38, P41, P44, P49, P51, P52, P55,
P62)

Patch
Testing

S4: Automated
detection and recovery
from faulty
and malicious patches

• Automated detection of faulty patches (P9,
P16, P59, P60, P68)
• Automated detection of malicious patches
(P24, P46, P47, P72)
• Automated crash recovery of faulty patches
(P3)

10

38 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

Relevant
Patch
Management
Phase

Solution Areas Associated Capabilities (Included Papers) #

Patch
Deployment

S5: Automated patch
deployment

• Consideration of the dynamic context in
patch deployment (P9, P11, P16, P27, P31,
P36)
• Reducing system downtime in reboots (P12,
P17, P54, P58, P63, P67)

15

Post-
deployment
Patch
Verification

S6: Automated patch
monitoring and
patch auditing

• Automated detection of exploits and patch
deployment verification (P5, P9, P16, P24,
P30, P37, P39, P48, P57, P72)
• Automated repair of past exploits (P21,
P36)

12

3.5.1 Patch Information Retrieval Related Solutions

A unified patch information management platform including the capabilities of patch
information retrieval from multiple sources, information filtering, classification, vali-
dation, download and distribution of patches benefits practitioners with timely patch
information retrieval to protect from zero-day vulnerability attacks [P53]. Such a
platform reduces the administrative overhead of having to monitor multiple informa-
tion sources for receiving up-to-date patch information while providing an easy way
to obtain patch information with high accuracy [P18, P25, P28, P53, P56]. However,
verifying the information is important because the information is obtained through
various sources that may contain non-validated information, for example, Twitter
[P18]. To achieve that, Trabelsi et al. [P53] report a trust and reputation system to
verify patch information using the KPI trust model.

3.5.2 Vulnerability Scanning, Assessment and Prioritisation Related
Solutions

One of the first and foremost steps in securing software systems is scanning the systems
to identify existing vulnerabilities and potential and ongoing attacks. A set of studies
have aimed at improving vulnerability scanning in different aspects. For example,
a central platform that aggregates the scan results has been proposed to provide
an overview of the systems’ patch state [P22, P37, P41, P48, P51, P52, P64]. This
would serve as a proactive environment facilitating the identification of vulnerabilities,
and potential and ongoing attacks to assist practitioners with decision-making on the
possible mitigation actions (e.g., applying patches, changing firewall rules, closing IP
ports, etc.) [P22]. In an attempt to guide vulnerability scanning tool selection, Holm
et al. [P69] find that there are significant differences in the accuracy of the scans of
Windows and Linux hosts, through a comparative evaluation of seven tools used in
the industry.

Following the identification of vulnerabilities, and potential and ongoing attacks in
managed systems, accurate risk assessment is essential for prioritising critical patches
to protect against attacks. Approaches of a customised and comprehensive analy-
sis of vulnerability risks have been proposed in line with the industry standard, the
Common Vulnerability Scoring System (CVSS) [86] using different vulnerability char-
acteristics [P13, P26, P32, P34, P41, P43, P45, P49, P51, P52, P55]. In addition,
new quantitative metrics have also been introduced to consider the context-specific
risks [P51, P52], for example, patch time and patch discovery time to consider the

3.5. Approaches and Tools Proposed to Facilitate Security Patch Management 39

risk window between patch deployment and vulnerability scanning [P51]. Measur-
ing the patch impact and effectiveness of remediation actions are equally important
as devising timely remediation strategies for strategic planning. For that, solutions
with real-time feedback on the remediation delays and analysis of patch applicability
have been proposed [P38, P43, P71]. Several attempts [P7, P14, P23, P32, P38, P41,
P44, P49, P51, P52, P55, P62] have been made to address the challenge of a lack
of support for dynamic environment settings in risk assessment, particularly in the
cloud, as the standard CVSS algorithm does not take into account the cloud-specific
settings [P23, P49]. For example, the solution by Lin et al. is to consider temporal
and environmental metrics on top of the base score in the current CVSS algorithm.

3.5.3 Patch Testing Related Solutions

The necessity for rigorous patch testing emerges from the existence of faulty and ma-
licious patches. To overcome the identified challenges of rapid patch release rates and
poor test quality in manual patch testing techniques, approaches for automated detec-
tion and recovery from such faulty and malicious patches have been proposed [P9, P16,
P59, P60, P68]. For example, Maurer and Brumley [P59] propose a tandem execution
approach that immediately detects vulnerability exploits with no false positives. Few
studies [P24, P72] have proposed using Blockchain to ensure the integrity of patches
that are resilient to malicious attacks during patch distribution. Although several
attempts have been made at detecting faulty and malicious patches, we found only
one solution [P3] for surviving crashes that result from faulty patches. The proposed
solution is based on multi-version execution and helps achieve minimal disruption to
operations during a crash.

3.5.4 Patch Deployment Related Solutions

Several solutions have been proposed for automating patch deployment extending
context-specific support for distributed and heterogeneous environments and reduc-
ing the patch deployment time, cost and overhead [P19, P25, P27, P31, P36, P40,
P54, P58]. Additionally, reducing system downtime and reboots has been a priority
of several studies [P12, P17, P54, P58, P63, P67] to address the critical challenge of
minimising service interruptions when deploying patches. For example, Yamada et
al. [P54] propose a virtual machine monitor (VMM)-based approach namely Shadow
Reboot, to shorten the downtime and enable applications to run while rebooting. This
approach can serve as a complementary solution to the existing dynamic software up-
dating methods that usually require practitioners to have knowledge about the target
kernels at the source code level [P54]. Alternatively, an approach that achieves min-
imal downtime through instant kernel updates without additional modifications to
programs or state change tracking has been proposed by Kashyap et al. [P58]. They
use an application checkpoint and restart (C/R) method to reduce the downtime to
just three seconds.

3.5.5 Post-deployment Patch Verification Related Solutions

Several solutions have been suggested for automating post-deployment patch verifica-
tion tasks [P5, P9, P16, P24, P30, P37, P39, P48, P57, P72] and repairing past exploits
[P21, P36]. For example, “Pakiti" [P30] is a system that provides a central view of
the patching status to help practitioners be informed and detect problems following
patch deployment. Concerning the focus on automating the repair of past exploits,
“Nuwa" [P36] is a tool that can automatically detect and repair patch deployment

40 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

failures. It allows practitioners to retroactively patch vulnerabilities by automatically
repairing the changes that have resulted from exploits while maintaining legitimate
user changes [P21].

3.6 Practices Proposed to Successfully Implement Secu-
rity Patch Management

This section presents the findings for RQ1.2.2, the practices to successfully implement
the security patch management process. The classification of practices includes the
reported recommendations, guidelines, best practices, lessons learned and shared ex-
periences of researchers and industry practitioners. Similar to RQ1.1, we present the
practices that are common to all phases of the security patch management process
and those that are specific to each phase as shown in Table 3.7.

Table 3.7. Practices proposed for successful implementation of secu-
rity patch management.

Relevant
Patch
Manage-
ment
Phase

Practices Key Points (Included Papers) #

Common
Practices

PR1: Planning and
documentation

• Document the life cycle of each vulnerability
including reporting and tracking of remediation
measures (P20, P66)
• Review and update the process on a bi-yearly
basis (P20, P61)
• Time and dedication need to be given for
proactive planning (P20)

3

PR2: Establish formal policies
and procedures into process
activities

• Develop an appropriate mitigation strategy
when no patch/workaround is supplied by the
vendor (P20)
• Have formal processes defined into the process
covering all phases of the process (P2, P20, P50,
P61, P65, P66, P72)
• Measure the performance and effectiveness of
the process (P2, P20)
• Formalise procedures for dispute resolution (P2,
P20)

8

PR3: Define roles and
responsibilities in the process

• Define the roles and responsibilities of groups
and individuals involved in the process (P2, P20,
P40, P61, P72)
• Require stakeholders to take accountability
(P20)

5

PR4: Get management
involvement and a clear
understanding of the process

• Get senior management approval and
involvement in process activities (P20, P40, P72)
• Require clear understanding of the process for
accurate decision-making (P8, P20, P61)

5

PR5: Define procedures to
facilitate efficient
communication and
collaboration

• Establish procedures to enable efficient
communication and collaboration between
stakeholders (P20, P61, P66)
• Hold frequent patch meetings (P20)
• Increase stakeholders’ awareness of the process
(P50)
• Coordinate patch release schedules of different
vendors (P4)

5

3.6. Practices Proposed to Successfully Implement Security Patch Management 41

Relevant
Patch
Manage-
ment
Phase

Practices Key Points (Included Papers) #

Patch
Information
Retrieval

PR6: Establish policies and
responsibilities for information
retrieval, notification and
dissemination

• Establish and maintain a list of the information
resources (P2, P8, P19, P35, P65)
• Maintain an upstream and downstream
infrastructure for patch download and distribution
to limit latency (P28)
• Have proper patch information notification and
dissemination policies in place (P35)

6

Vulnerability
Scanning,
Assessment
and
Prioritisa-
tion

PR7: Regularly monitor both
active and inactive applications
and security intelligence
sources

• Regularly scan and monitor the network and
vulnerability alerts (P2, P4, P20, P34, P40)
• Establish a dedicated mailbox for vulnerability
alerts that are sent via email (P2)
• Close down unnecessary ports on network
devices (P34)
• Maintain historical scanning reports for future
analysis (P34)

4

PR8: Maintain up-to-date
system inventory

• Create and maintain a system inventory
including all the previous patches installed on
every system (P20, P40, P61, P72)
• Classify assets by platform hardware type,
location and software application records, and
develop risk potential for each asset (P2, P65,
P66)

7

PR9: Perform vulnerability
assessment based on
organisation needs and context

• Organisations should perform their own
vulnerability assessment (P50, P61, P65)
• Assess and respond to vulnerabilities on time
(P2, P20, P50)
• Consider historical scanning analysis in risk
assessment (P34)

6

Patch
Testing

PR10: Improve testing activity • Prepare and store the test environment for
manual system testing (P19)
• Develop and test back-out procedure (P2, P20,
P40)

4

Patch De-
ployment

PR11: Install patches on time
balancing the security risks,
resources and system
availability

• Install timely patches balancing the need for
security, resources, and time required to test a
patch for system stability (P2, P20, P35, P40,
P50, P65, P66, P72)
• Facilitate automation as much as possible in
the process (P35)
• Investigate workarounds to reduce system
reboots (P35, P50, P66)
• Define a matrix for patch scheduling by patch
severity and profile of managed systems (P19,
P66)

9

Post-
deployment
Patch
Verification

PR12: Keep track of the
deployment status of every
patch

• Regularly monitor the system’s patch status to
make sure every single patching job is executed
successfully (P19, P40, P65, P66)

4

42 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

3.6.1 Common Practices

A well-planned and structured process is vital for successful security patch manage-
ment. To define a solid patch management process, an organisation needs to give its
time and dedication upfront [P20]. The process should establish formal policies and
procedures in the process activities in all phases including documentation, communi-
cation, management reporting and auditing [P2, P20, P50, P61, P65, P66, P72]. For
example, standard procedures should be in place for dispute resolution to handle con-
flicts and escalation paths for emergencies [P2, P20]. It is also important to measure
the performance and effectiveness of the defined policies and procedures in the process
and update them accordingly on a bi-yearly basis [P2, P20].

Since several internal and external stakeholders are involved in the process, hav-
ing well-defined roles and responsibilities of individuals and groups helps reduce the
administrative overhead of coordinating with multiple stakeholders and increases task
accountability [P2, P20, P40, P61, P72]. According to Nicastro [P20], a local Com-
puter Incident Response Team (CIRT) and Information Risk Managers (IRMs) are
some of the roles that should be defined in every organisation. As such, adhering
to a standard set of procedures, roles and responsibilities can help achieve a clear
understanding of the process among all stakeholders and minimise conflicts [P8, P20,
P61]. It is also important to have the senior management actively involved and sup-
porting the patch management decisions to obtain organisational approvals without
delays [P20, P40, P72]. Finally, efficient communication and collaboration between
all stakeholders are vital for the smooth execution of the process [P20, P61, P66].

3.6.2 Patch Information Retrieval Related Practices

Developing formal policies and responsibilities for patch information retrieval, patch
download and dissemination (e.g., creating and maintaining a list of information
sources) has been reported as a useful practice to reduce the latency in information
retrieval-related activities [P2, P8, P19, P28, P35, P65].

3.6.3 Vulnerability Scanning, Assessment and Prioritisation Related
Practices

Concerning vulnerability scanning, regularly monitoring both active and inactive ap-
plications and security intelligence sources is important since there is a possibility of
exploitation for applications that are not frequently used [P4]. Maintaining a history
of the scanning reports [P34] is useful for analysing trends and making predictions of
potential attack opportunities. Another best practice for vulnerability scanning is to
maintain an up-to-date system inventory to increase the understanding and aware-
ness of the system. With regards to the vulnerability assessment, organisations should
perform their own risk assessment based on the context instead of solely relying on
the vulnerability assessment scores from software vendors to get a more accurate vul-
nerability risk.

3.6.4 Patch Testing Related Practices

As identified in Section 3.4.4, most current patch testing is done manually to avoid
the risks of unexpected system breakdowns from faulty and malicious patches. To
improve testing activities, it is proposed to prepare the test environment including pre-
configuration tasks and storage in advance to save time in testing [P19]. Although
some practitioners avoid testing small patches due to the large overhead involved

3.7. Evaluation of the Reported Solutions in Security Patch Management43

with patch testing, the authors in [P2, P20, P40] highlight the necessity for testing
all security patches and developing and testing the back-out procedure to be deployed
when required [P20].

3.6.5 Patch Deployment Related Practices

The patches need to be installed on time while balancing the risks of time for proper
patch testing and potential attacks while effectively managing the organisation’s con-
straints (e.g., service availability constraints). According to Marx et al. [P50], “a
successful patch management process is capable of patching vulnerabilities in the
shortest possible time frame while preventing the system downtime caused by an in-
sufficiently tested patch". The path to achieving this balance is to have an appropriate
risk-focused patch management process [P50] and proper patch scheduling (e.g., defin-
ing a matrix for scheduling patches based on the patch severity and its impact on the
managed systems) [P19, P66].

3.6.6 Post-deployment Patch Verification Related Practices

Keeping track of the deployment status of every patch is useful to verify the deployment
of patches, detect post-deployment issues early, and ensure the potential exploits
during patch deployment are properly identified and repaired. To achieve this, it is
suggested to regularly monitor a system’s patch status and seek client feedback for
any adverse impact on service continuity after every patching job [P19, P40, P65,
P66].

3.7 Evaluation of the Reported Solutions in Security Patch
Management

In this section, we report the results for RQ1.3, on how well the solutions have been
assessed. We adopted the classification of evaluation approaches proposed by Chen et
al. [87] presented in Table 3.8 to categorise the evaluation types used in the reviewed
studies. We have slightly modified the adopted classification with two additions (i.e.,
“SR - Simulation with real data" and “NE - No Evaluation") to make it more suitable
for our review.

Table 3.8. The scheme for classification of the evaluation types.

Evaluation type Definition

Field experiment Controlled experiment performed in industry settings

Case study An empirical study that investigates a contemporary
phenomenon within its real-life context; i.e., studies involving
industry practitioners [88]

Experience The result has been used on real examples, but not in the
form of case studies or controlled experiments, the evidence of
its use is collected informally or formally. e.g., industrial
experience reports

Simulation with artificial data Execution of a system with artificial data, using a model of
the real world

Simulation with real data Execution of a system with real data, using a model of the
real world performed in laboratory experiment

Laboratory experiment with
software subjects

A laboratory experiment to compare the performance of the
newly proposed system with other existing systems

44 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

Evaluation type Definition

Laboratory experiment with
human subjects

Identification of relationships between variables in a designed
controlled environment using human subjects and quantitative
techniques

Rigorous analysis Rigorous derivation and proof, suited for formal model (i.e.,
statistical or mathematical verification)

Discussion Provided some qualitative, textual, opinion-oriented
evaluation. e.g., compare and contrast, oral discussion of
advantages and disadvantages

Example application Authors describing an application and provide an example to
assist in the description for evaluation

No Evaluation A study that reports no evaluation

3.7.1 Types of Evaluation Used to Assess the Proposed Solutions

The importance of rigorous evaluation to assess the appropriateness of the proposed
solutions has been emphasised by the software engineering research community [87, 88,
89]. Accordingly, in this subsection, we present the results for RQ1.3.1, a distribution
of the evaluation types used in the proposed solutions based on the solution type
(i.e., approach/tool/practice) and the security patch management phase, as shown in
Figure 3.6.

Post-Deployment
Patch Verification

Patch Deployment

Patch Testing

Vulnerability Scanning,
Assessment and

Prioritization

Patch Information
RetrievalSo

ftw
ar

e
Se

cu
rit

y
Pa

tc
h

M
an

ag
em

en
t P

ro
ce

ss

Evaluation type

Approach Tool Practice

Overall Process

P53

Disc
uss

ion

Exa
mple

ap
plic

ati
on

No Eva
luati

on

Fiel
d ex

peri
men

t

Cas
e s

tudy

Exp
eri

en
ce

Sim
ulat

ion w
ith

 ar
tifi

cia
l d

ata

Sim
ulat

ion w
ith

 re
al

data

Lab
orat

ory
ex

peri
men

t

with
 so

ftw
are

 su
bjec

ts

Lab
orat

ory
ex

peri
men

t

with
 human

 su
bjec

ts

Rigorous a
naly

sis

P[n] - Included Paper

Legend

P30

P30

P38,
P52

P22,
P26

P2, P8,
P10, P35,

P50

P28

P34

P15, P20,
P40, P61,
P65, P66,

P72

P4

P1 P62

P16,
P57,
P68

P16, P54,
P58, P67

P36

P3, P9,
P16,

P59, P60

P33,
P45

P40,
P71,
P72

P5,
P39

P17,
P27

P7, P14,
P44, P48,
P55, P56,
P69, P70

P28

P32
 P6, P14,
P23, P32,
P41, P49,

P64

P29,
P46,
P59

P12,
P31,

P58, P63

P21

P24,
P25

P47

P27

 P42,
P44,
P45

P18

P37

P11

P28

P13,
P34,
P51

P19

P43

P9,
P36

Figure 3.6. Mapping of the evaluation types based on the solution
type and security patch management phase (symbol size based on the

number of papers per solution type).

With regards to the evaluation types of the proposed approaches, “Laboratory
experiment with software subjects" (30.36%) is the most frequently used type followed
by “Simulation with artificial data" (28.57%). Interestingly, four studies [P11, P13,
P34, P51] have reported “No evaluation" of their proposed approaches while evaluation
types such as “Case study" (3.57%), “Laboratory experiment with human subjects"
(1.79%) and “Rigorous analysis" (1.79%) have been rarely used. Concerning the tools,
the majority (50%) have been evaluated using “Simulation with real data". Regarding
practices, “Experience" has been a widely used method for assessment (56.25%). Five

3.8. Discussion 45

studies (31.25%) have used “Case study" whereby the real-world insights have been
captured through research methods such as industrial pilot projects [P2], practitioner-
targeted surveys [P8, P10, P35, P50] and interviews [P8, P10]. One study by Nappa et
al. [P4] proposes a set of recommendations for patch deployment based on a rigorous
analysis of 1593 client-side vulnerabilities.

It should be noted that 11 of the reviewed studies (15.3%) [P14, P27, P28, P32,
P34, P40, P44, P45, P58, P59, P72] have used two types of evaluation to assess
their proposed solutions. For example, Xiao et al. [P44] used “Simulation with artifi-
cial data" to evaluate the robustness of the proposed approach against vulnerability
exploits, and theoretical reasoning (i.e., “Discussion") to demonstrate its practical
utility for real-world monitoring of software vulnerabilities. Similarly, some studies
have proposed an approach and a tool that address the challenges across multiple
patch management phases (e.g., [P9] presents a method and a tool to analyse the
patch impact and support patch deployment).

3.7.2 The Level of Rigour and Industrial Relevance of the Reported
Solutions

The importance of providing practitioners with solutions to real problems and under-
standing how well the solutions have been evaluated cannot be overlooked in software
engineering research [90]. Correspondingly, this subsection reports our attempts in
assessing the level of rigour and industrial relevance of the evaluation types used for
assessing the reported solutions as findings for RQ1.3.2. Of the evaluation types listed
in Table 3.8, “Field experiment" is considered the most rigorous form of evaluation,
followed by “Case study". It is because both methods have the highest industrial
relevance as the evaluation involves industry practitioners [85]. Similarly, evaluation
based on “Experience" (e.g., industrial experience reports) also results in industry-
relevant outcomes. By contrast, all other evaluation types are not acknowledged as
rigorous forms of evaluation with proper industrial relevance. It is considered that
“Discussion" and “Example application" evaluation types contain the least rigour and
industrial relevance.

Since security patch management is a highly industry-oriented topic, employing
evaluation types of “Field experiment" and “Case study" would produce solutions
having higher industry adaptation and usefulness. However, a concerning finding is
that only 15 solutions (20.8%) have used an evaluation type with industrial relevance.
Of those 15 studies, seven solutions have been evaluated using “Case study", three
with “Field experiment" and the remaining five solutions using “Experience" (i.e.,
industrial experience reports). Another notable finding from this analysis is the lack
of replication studies in the reviewed studies. According to Chen et al. [87], replication
helps to provide solid and reliable evidence to support the adoption of a particular
solution. We have found that 65 studies (90.3%) have evaluated their solutions in
only one study indicating a general lack of replication. These findings reveal that
the majority of the proposed solutions lack rigorous and industry-suitable evaluation,
which is alarming given that the domain is highly industry-centric.

3.8 Discussion

In this section, we discuss the key findings from this SLR and the potential future
research and development opportunities in this domain based on the key limitations
and gaps identified through our study findings. We present a mapping of our findings
in Figure 3.7 to enable the reader to quickly identify the relationships between the

46 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

challenges (Section 3.4) and the proposed solutions (i.e., approaches and tools (Section
3.5), and practices (Section 3.6)) and the dependencies between them. An important
observation is the dependencies exist only among the challenges and practices, and
that they can be classified into two types, dependencies among challenges that neg-
atively affect or exacerbate another challenge and dependencies among practices that
positively affect or support another practice, as illustrated in Figure 3.7. For example,
the lack of a proper automated test strategy exacerbates the issues with poor test qual-
ity in manual testing techniques. Consequently, it leads to faulty patches deployed
causing failures and side effects during patch deployment. Alternatively, establishing
formal policies and procedures for process activities helps obtain a clear understanding
of the process and obtain approval for security patch management decisions from the
management without delays.

Challenges

Common Challenges

Impact of organisational Ch1
policies and compliance

Collaboration, coordination and Ch2
communication challenges

Complexity of patches Ch3

Lack of resources Ch4

Need of human expertise Ch5

Limitations of existing tools Ch6

Poor test quality in manual Ch11
testing techniques

Lack of proper automated Ch12
test strategy

Lack of efficient automated Ch14
verification strategy

Practices

Lack of a central platform Ch7

Patch Information Retrieval

Establish policies and PR6
responsibilities for information retrieval

Improve testing activity PR10

Install timely patches balancing PR11
the security risks, resources and
system availability

Keep track of the deployment PR12
status of every patch

Approaches and Tools

Patch information retrieval S1
from multiple sources

Customised patch information S2
filtering

Patch information validation S3

Guidance on scanning tool selection S4

Central platform integrating multiple S5
scan results

Detailed host-based analysis to S6
identify assets resident on host

Detection of system S7
misconfigurations

Customisable and detailed analysis S8
of vulnerability risks

Measuring organisational vulnerability S9
remediation effectiveness

Capturing the dynamic context S10

Patch Testing

Automated detection of faulty S11
patches

Reducing system downtime in S13
reboots

Automated detection of exploits S14
and patch installation verification

Lack of a complete Ch8
scanning solution

Gap of knowledge of technical Ch9
and business context

Lack of support for dynamic Ch10
environment context

Vulnerability Scanning, Assessment
and Prioritization

Automated detection of malicious S12
patches

Patch Deployment

Post-Deployment Patch
Verification

Establish formal policies and PR1
procedures into the process

Define roles and responsibilities PR2
in the process

Define procedures for efficient PR3
communication and collaboration

Planning and documentation PR4

Get management involvement PR5
and clear understanding of the
process

Patch Information Retrieval

Regularly monitor both active and PR7
inactive applications, and sources
Maintain up to date system PR8
Inventory
Perform assessment based PR9
on organisation needs and context

Patch Testing

Patch Deployment

Post-Deployment Patch
Verification

Approach/Tool
Challenge
Practice

An approach/tool/practice addresses a challenge
A challenge exacerbates another challenge

A practice supports another practice

Patch Information Retrieval

Vulnerability Scanning, Assessment
and Prioritization

Patch Deployment

Failures and side effects Ch13
due to patch installation

Post-Deployment Patch
Verification

Patch Testing

Common Practices

Vulnerability Scanning, Assessment
and Prioritization

Figure 3.7. A mapping of challenges onto solutions.

3.8.1 Need for More Investigation on the Less Explored Security
Patch Management Phases

As shown in Figure 3.4, out of the primary studies selected, 28 (38.9%) have exclusively
focused on proposing solutions to address the challenges in vulnerability scanning, as-
sessment and prioritisation phase, 20 studies (27.8%) have focused on facilitating more
than one security patch management process phase, and nine studies (12.5%) have
proposed solutions to patch deployment phase. However, an important realisation

3.8. Discussion 47

from the analysis is the lack of attention paid to patch information retrieval, patch
testing and post-deployment patch verification phases where only five studies (6.9%)
have focused on each phase. The patch management process represents a tightly cou-
pled sequence of phases where the output of one phase is input to the next phase. In
addition, the dependencies among them exacerbate the challenges in the execution of
tasks as identified in Figure 3.7 (e.g., [Ch12, Ch11] exacerbate−−−−−−−→ Ch13). Hence, there is
a clear opportunity for valuable future research focusing on these less-explored phases
of the patch management process.

3.8.2 Need for Evidence-Based Research on Socio-technical Aspects
in Security Patch Management Delays

Security patch management is predominantly a socio-technical phenomenon where
the human and technological issues/solutions are intertwined demanding exhaustive
collaboration and coordination between human-human and human-technical systems
interactions. The results in Section 3.4.1 have revealed that a lack of efficient collabo-
ration, coordination and communication [Ch2] during the security patch management
process can cause a significant negative influence on the timely vulnerability remedia-
tion. However, as shown in Figure 3.7, this important challenge has not received much
attention in the reviewed studies. Based on our findings (see Figure 3.7), we argue that
the patch interdependencies intrinsic to security patches resulting in increased com-
plexity of patches [Ch3] can have a significant effect on other socio-technical factors
like collaboration and coordination [Ch2]. Subsequently, this may result in additional
struggles for organisations to apply timely patches. This apparent influence of socio-
technical challenges on timely security patch management implies a need for more
evidence-based research on the role and effects of socio-technical aspects on security
patch management delays. Moreover, we believe such understanding would be useful
for software developers to consider the socio-technical aspect integral to the patch ap-
plication when developing patches. Additionally, future studies can invest effort into
building tools and solution frameworks to address the socio-technical aspects caus-
ing patching delays, for example, a tool enabling better collaboration across patch
management tasks and multiple stakeholders.

3.8.3 Human-AI Collaboration for Securing Software Systems

Over the years, several attempts have been made to integrate automation into security
patch management tasks. However, an important realisation in the results presented in
Section 3.4.1 is that there needs to be a delicate balance between human intervention
and automation in security patch management. Automation enables practitioners to
enjoy the benefits of less manual effort, while human expertise is required in the loop
taking control of the decision-making and tasks that cannot be completely automated
due to complexities of patches [Ch3] and limitations in the technology [Ch6]. Our
review has unveiled that such decision-making points exist throughout the security
patch management process. For example, according to P59, “in an aim to automate the
patch testing as much as possible, it is noted that human intervention is inevitable. As
patches can change the semantics of a program, a human will likely always need to be
in the loop to determine if the semantic changes are meaningful". As noted in Figure
3.7, only a few studies have addressed this challenge opening several possibilities
for future research in “Human-AI Collaboration" [91], which is a new and emerging
research paradigm aimed at exploring how human intelligence can be integrated with
Artificial Intelligence (AI) systems to complement machine capabilities. Such systems

48 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

aim at achieving complex tasks through hybrid intelligence to collectively achieve
goals and progressively improve by learning from each other [92]. We believe that an
intelligent system with a real-time, human-like, cognition-based framework can guide
practitioners to decisions by providing timely information and asking logical questions,
thereby assisting autonomous decision-making in security patch management [93].

3.8.4 Standardisation of Heterogeneous Tools

As identified in section 3.4.1, the diversity (heterogeneity) of patches increases patch
complexity [Ch3]. This usually results in several challenges to practitioners from patch
information retrieval to post-deployment patch verification. In addition, organisations
use a multitude of software products (e.g., operating systems (OS), software applica-
tions, tools and platforms) increasing the challenges of patch heterogeneity. Several
studies [P40, P54, P56, P58, P66, P68, P72] have reported the limitation of the lack of
scalability in the existing tools. It was also observed that the majority of the reported
solutions are only compatible with Linux, possibly due to the reasons it’s being open
source, easier to configure than other OSs and that patches applied to many Linux
distributions result in only minor changes as opposed to patches of Windows [P69].
Hence, there is an increasing realisation of an orchestrated platform that caters to
these heterogeneous tools. Future research could focus on designing and evaluating
an architecture to support the standardisation of heterogeneous patch management
tools which is dynamically adaptable to the organisational context and needs.

3.8.5 Real-world, Rigorous Evaluations

As revealed by the results in Section 3.7, a large number of studies lack rigorous
evaluation using more mature forms of evaluation like field experiments and case
studies. The low percentage of studies with industry-related evaluation highlights the
need for researchers to work with practitioners to improve the state of the practice of
rigorously evaluating research outcomes. We recommend that more attention be paid
to rigorously evaluating the solutions using approaches with industrial relevance. The
robust evaluation will improve the quality and transferability of the research outcomes
to industrial adoption.

3.8.6 Contextual Factor

The importance of reporting contextual factors has been emphasised in the literature
stating that software engineering research should investigate and understand their re-
spective context [94, 95, 96]. In our review, we have tried to identify how the studies
have reported the methodological and organisational context (i.e., research type, solu-
tion type). It should be noted that some studies had to be included in two categories
since they have reported two research types. Based on the findings in Subsection 3.3.7
and Section 3.7, only 20.8% of the reviewed studies have provided industry-related ev-
idence. The industry-related evidence enables researchers to understand the practical
utility of the reported solutions and practitioners to adopt the proposed solutions in
the literature. Given security patch management is a very industry-centric topic and
complements the need highlighted by previous literature [e.g., P10], we recommend
future research focus more attention on reporting the contextual factors as it helps to
increase the credibility and quality of the research.

3.9. Threats to Validity 49

3.9 Threats to Validity

In this section, we report the validity threats of our study and the corresponding
mitigation strategies following the guidelines proposed by [81, 97, 98].

3.9.1 Internal Validity

Bias in study selection (i.e., study filtering) and data extraction represent standard
threats to all SLRs [98]. To address this, we defined a review protocol with explicit
details about the search string construction, search process, study inclusion/exclusion
and data extraction strategy [78, 97, 99]. Following a well-defined protocol helps
achieve consistency in the study selection and data extraction, particularly, if multiple
researchers are involved in the process [99]. We iteratively developed and improved
the protocol, particularly the inclusion/exclusion criteria, after conducting a staged
study selection process and pilot data extraction. Further, two researchers selected the
studies while the other researchers cross-checked the outcomes and appropriateness of
the selection criteria using randomly selected papers.

Concerning data extraction bias, we executed a pilot data extraction on a randomly
selected sample of five studies to ensure the data extraction form captures all the
required data to answer the RQs. We used a data extraction form (adapted from
[29, 80]) which was reviewed by all researchers through the pilot data extraction. The
present author extracted the data which was cross-checked by the other researchers for
accuracy. Throughout the study selection and data extraction phases, weekly detailed
discussions were held between all researchers to resolve any disagreements.

Additionally, publication bias is acknowledged as an internal validity threat which
refers to the issue of the high likelihood of publishing positive results than negative
ones [29]. However, we have reported the negative results captured in the primary
studies (e.g., challenges in security patch management (RQ1.1)) and the challenges
have been mapped against the reported solutions (RQ1.2), i.e., the positive results
when identifying the gaps in Section 3.8 moderating the effect of unreported negative
results. Further, using snowballing to increase the time and publication coverage has
helped mitigate the publication bias of outcomes [97].

3.9.2 External Validity

Generalisability, referring to the likelihood of not being able to generalise the results,
presents an important threat to overcome in SLRs. To address this, we conducted
broad searches using one of the most well-known digital libraries (Scopus) to increase
the identification of the related primary studies with broad time and publication cov-
erage [97]. However, we acknowledge that our findings may not necessarily generalise
to grey literature and studies outside the review period.

3.9.3 Construct Validity

We are unable to guarantee that we have captured all the relevant primary studies
in our SLR. The possibility of missing primary studies is an inevitable limitation in
an SLR due to limitations in the search string construction and selection of non-
comprehensive digital libraries (DL) [78, 97]. However, to minimise the effects of this,
we used several strategies which are described below.

We executed several pilot searches through which we systematically improved the
search string to retrieve as many relevant papers as possible. An important point
to note is that although the term “software security patch management" is widely

50 Chapter 3. A Systematic Literature Review on Software Security Patch
Management

used in the industry, this is still a new and emerging topic in research. Thus the
use of inconsistent or different terminology in research papers, in particular, the term
“management", resulted in a large number of irrelevant studies after its inclusion in
the search string. Therefore, we have excluded it from the search string. Although
this keyword was not included, the structure of the search string (i.e., broad and
not time-bounding) was capable of finding patch management papers, but we had
to identify these papers through the study inclusion/exclusion phases. In addition,
we used snowballing (i.e., forward and backward search on references of the selected
studies) to mitigate the threat of missing relevant primary studies from the exclusion
of this term.

Regarding the selection of digital libraries, while using only Scopus to identify
studies may present a limitation of this study, this decision has enabled to increase
the coverage of the relevant studies since Scopus is considered the most comprehensive
search engine among other digital libraries with the largest indexing system [70, 75].
We also did a pilot search on ACM Digital Library to compare and confirm the cover-
age of results from Scopus. To further mitigate this threat, we made our search string
very broad by including the most common keywords to capture as many potentially
relevant studies as possible.

3.9.4 Conclusion Validity

Researcher bias or the potential bias of researchers while interpreting or synthesising
the data can impact the conclusions reached [97]. To reduce this impact, we adopted
the recommended best practices for qualitative data analysis and research synthesis
[97]. The present author led the data analysis and synthesis and the codebooks were
shared with all researchers every week where the second and third researchers went
through all the emergent codes, themes and synthesis results in detail. Disagreements
between researchers were discussed in detail in weekly meetings until an agreement
was reached between all researchers.

3.10 Chapter Summary

This chapter presents our research effort aimed at systematically reviewing and rig-
orously analysing the literature on security patch management. We have provided an
organised evidential body of knowledge in the area by identifying and categorising the
socio-technical challenges and available solutions, and analysing how well the reported
solutions have been assessed with their level of rigour and industrial relevance. To the
best of our knowledge, this SLR can be considered the first attempt toward system-
atically reviewing the literature on this topic. Based on a comprehensive analysis of
72 primary studies, we conclude:

• The review has enabled us to identify and classify 14 socio-technical challenges
and available solutions including 6 themes of approaches and tools, and 12 prac-
tices as common ones affecting all phases of the security patch management
process and those that are specific to each process phase. Moreover, the map-
ping of challenges onto solutions has revealed that 50% of the common challenges
are not directly associated with solutions unveiling open research challenges for
future work.

• The distribution of security patch management solutions is congregated around
vulnerability scanning, assessment and prioritisation, with 37.5% of the reviewed

3.10. Chapter Summary 51

studies focused on addressing the challenges related to this phase of the patch
management process. In contrast, patch information retrieval, patch testing and
post-deployment patch verification have received the least attention with only 5
studies (6.9%) each implying that there is a need for more studies investigating
these under-researched phases.

• The findings have revealed that only 20.8% of the solutions have been rigor-
ously evaluated in an industry setting using real-world representative evaluation
approaches such as field experiments and case studies. These results indicate
a large need for robust evaluation of solutions facilitating industrial relevance,
and with more representative and diverse cases.

• With regard to the research type, a large majority of the reviewed studies
(61.1%) have reported validation research. While only 10 studies (13.9%) have
reported evaluation research, even fewer studies (12.5%) reported experience
papers. The low numbers of evaluation research and experience reports reflect
the scarcity of research with industrial relevance. Hence, there is the potential
for future studies with active industry collaborations that will result in research
outcomes having higher value addition and practical utility.

• Concerning the reported solution types, 75% are approaches, 19.4% are prac-
tices and 5.6% are tools. Further, a large number of limitations in the current
tools (e.g., lack of accuracy, security and scalability) have been reported in the
reviewed studies. Hence, research and development on new, advanced tools
that address the limitations of current tools and support timely security patch
management present a current need.

• Even though it has been reported that a significant number of challenges in the
security patch management process emerge from socio-technical aspects such as
coordination and collaboration, there is not much empirically known about the
role (i.e., how and why) of such socio-technical aspects in the process leading to
patching delays. Our findings have revealed that the socio-technical aspects have
a wide-ranging effect across all phases of the process. Thus we recommend more
focus on both evidence-based research and practice on socio-technical aspects
of security patch management to explore their roles and impact on delays in
applying security patches.

• Despite the widespread attempts to adopt full automation, we note that human-
in-the-loop is inevitable in security patch management due to its inherent com-
plexity and dynamic nature. Based on the findings, we recommend that the
emerging research paradigm of “Human-AI Collaboration", which explores how
AI-based solutions can be developed to collaborate with human intelligence,
presents an important future research opportunity in this topic.

• Finally, the mapping of challenges with solutions and the security patch man-
agement process will be beneficial for practitioners to easily understand what
approaches, tools, and practices exist for facilitating each challenge. The classi-
fication of practices can serve as recommendations for guidance on the successful
execution of the security patch management process. As a direct practical im-
plication of the provided understanding, the security practitioners will be able
to identify and assess the factors associated with timely security patch man-
agement and devise suitable decision-making to improve their organisational
patching process.

53

Chapter 4

Why, How and Where of Delays in
Security Patch Management

Related publication: This chapter is based on our paper titled “Why, How
and Where of Delays in Software Security Patch Management: An Empiri-
cal Investigation in the Healthcare Sector", published in the ACM on Human-
Computer Interaction journal (CSCW), 2022 (CORE Ranking A) [100].

Numerous security attacks that resulted in devastating consequences can be traced
back to a delay in applying a security patch. However, as revealed in Chapter 3,
despite the criticality of timely patch application, not much is known about why and
how delays occur when applying security patches in practice, and how the delays
can be mitigated. This chapter presents our attempts to address this important
gap. Based on longitudinal data collected from 132 delayed patching tasks over a
period of four years and observations of patch meetings involving eight teams from
two organisations in the healthcare domain, and using quantitative and qualitative
data analysis approaches, we identify a set of reasons relating to technology, people
and organisation as key explanations that cause delays in patching. Our findings also
reveal that the most prominent cause of delays is attributable to coordination delays
in the security patch management process and a majority of delays occur during the
patch deployment phase. Towards mitigating the delays, we describe a set of strategies
employed by the studied practitioners. This research serves as the first step toward
understanding the practical reasons for delays and possible mitigation strategies in
vulnerability patch management. Our findings provide useful insights for practitioners
to understand what and where improvement is needed in the patch management
process and guide them towards taking timely actions against potential attacks. Also,
our findings help researchers to invest effort into designing and developing computer-
supported tools to better support a timely security patch management process.

54 Chapter 4. Why, How and Where of Delays in Security Patch Management

4.1 Introduction

As described in Chapter 1, cyberattacks breaching corporate networks often result in
catastrophic consequences ranging from exposure of sensitive and confidential data
[101, 102] and betrayal of client trust to even human death [9]. Despite security patch
management being the most effective remediation of this problem [17], it remains one
of the most challenging endeavours due to the inherent technical and socio-technical
interdependencies involved in the collaborative process of dealing with third-party
vulnerabilities and vendor patches [2, 20]. As a result, organisations struggle to apply
timely patches often leaving myriad vulnerabilities open to exploits. Consequently,
it has resulted in most security attacks targeting known vulnerabilities for which a
patch existed but delayed application. Despite the demonstrated criticality of timely
patching, the recent statistics [23] reveal that the situation has still not improved indi-
cating serious concerns and the increased importance of the efforts aimed at reducing
delays in security patch management in practice.

While the previous studies that investigated the socio-technical aspects of secu-
rity patch management have particularly focused on the process and its challenges
[2, 20, 59], these studies have not exclusively focused on the delays in applying se-
curity patches. Further, another set of studies has attempted to optimise the patch
management process by synchronising the organisational patch cycle with the ven-
dor’s patch release cycle [60, 61, 103]. An important observation was that although
previous studies have focused on approaches to reduce delays in security patch man-
agement, to date, there has been no study that explores why and how delays continue
to happen when applying security patches. It adds to the demonstrated critical need
for investigating the delays in patching, grounded in evidence from practice as ob-
served in Chapter 3. Motivated by the need and the background knowledge gained
in Chapter 3, we decided to empirically investigate the delays in real-world security
patch management from a socio-technical perspective. Figure 4.1 shows the focus of
the study in the vulnerability timeline. Towards this goal, we conducted a longitu-
dinal case study investigating the delays in the security patch management process.
Our study was guided by the following key research questions (RQs):

RQ2.1. Why, how, and where do delays occur in security patch management?

RQ2.2. How can the delays be mitigated?

Based on qualitative and quantitative analysis of the longitudinal data gathered
from patch meeting minutes spanning over four years from October 2016 to May 2021
between two organisations (Org A and B) as detailed in Section 2.2.2, we attempt to
answer these crucial overarching questions of delays in security patch management.
The findings explain the causes of delays with a taxonomy comprising technology,
people and organisation-related reasons and describe which reasons are more promi-
nent based on their frequency distribution, and where the delays occur in the security
patch management process. This study also reports a classification of strategies ap-
plied in practice to mitigate the delays including when to apply them during the patch
management process. To the best of our knowledge, this is the first study to provide
an evidence-based understanding of the causes and strategies for delays in security
patch management. Grounded in descriptive evidence from practice, our research
contributes to the state-of-the-art understanding of research and practice in several
ways:

1. Identifies a set of reasons for delays when applying security patches in practice.

4.2. Related Work 55

Time

Secu
rity

 vu
lne

rab
ilit

y

dis
co

ve
ry

Vuln
era

bil
ity

 ex
plo

ita
tio

n

Vuln
era

bil
ity

 di
scl

osu
re

Secu
rity

 pa
tch

 re
lea

se

Secu
rity

 pa
tch

 ap
pli

cat
ion

Security patch managementSecurity patch
development

t = delay

Planned
patch application

Actual
application

Patch cycle (e.g., 1 month)

Patch
retrieval

Figure 4.1. The focus of the study in the vulnerability timeline.

2. Describes the most prominent reasons for delays with rationales explaining their
variations.

3. Reports where a majority of delays occur in the patch management process
presenting their distribution over the process phases.

4. Presents a collection of strategies employed in practice to mitigate the delays
including when to apply them in the security patch management process.

5. Structures the understanding of delays in vulnerability patch management, draw-
ing attention to a critical yet less explored phenomenon in the software engi-
neering community.

6. Grounded in practical evidence, the findings lay a foundation for future re-
searchers and tool designers to design and develop computer-supported solutions
to reduce delays in patch application.

7. Offers practical guidance for practitioners to identify what and where is improve-
ment needed to mitigate patching delays and drive their decisions appropriately.

Chapter Organisation: Section 4.2 describes the related work. Section 4.3 reports
the research methodology used. Section 4.4 presents the findings of the research
questions. In Section 4.5, we discuss the findings and implications for research and
practice, and threats to the validity are presented in Section 4.6. Finally, Section 4.7
summarises the chapter.

4.2 Related Work

Prior research has invested effort in improving the patch management process through
both technical and socio-technical aspects. In the scope of technical enhancements,
advancing automation in the security patch management process, for example, auto-
mated detection of faulty patches [25, 104, 105] and mechanisms for reducing system
downtime in reboots [106, 107, 108], have been widely studied. However, the lit-
erature presents little empirical evidence of the socio-technical aspects relating to

56 Chapter 4. Why, How and Where of Delays in Security Patch Management

security patch management. Existing socio-technical studies have primarily focused
on the workflows of system administrators but did not focus on other roles (e.g.,
change manager) and external stakeholders (e.g., customer) involved in the patch
management process. Crameri et al. [25] were among the first to investigate system
administrators’ patch management practices. In a survey conducted with 50 system
administrators, they reported that 70% of administrators avoided deploying patches
due to issues caused by a lack of integration between patch testing, deployment and
post-deployment issue reporting. Dietrich et al. [109] explored the system adminis-
trators’ perspective on factors leading to security misconfigurations. Their findings
confirmed that the situation has not changed even after a decade, reporting that de-
laying and avoiding security patches are among the most frequently reported security
misconfigurations. However, these studies did not explain the reasons for such delays
or missed patches.

Extending the study by Crameri et al., two recent studies [2, 20] have examined
a larger sample of system administrators through a combination of surveys and in-
terviews to perform a comprehensive investigation of the patch management process.
Both studies explored system administrators’ practices, behaviour, and experiences
in the patch management process. According to them, administrators rely on various
sources such as security advisories, direct vendor notifications, patch management
tools, mailing lists and online forums to retrieve meaningful patch information. Fur-
ther investigating system administrators’ patch information retrieval-related needs
and practices, Jenkins et al. [110] studied how the mailing list of the website Patch-
Management.org extends support in patch management activities. They argue that
the mailing list acts as an online community of practice extending support not only in
the patch information retrieval phase but throughout the process in various aspects
such as guidance for patch prioritisation, workarounds for post-deployment issues and
tool selection.

Another set of studies [2, 20, 22, 54, 103, 106] has explored the challenges in the
patch management process. For example, the impact of organisational policies and
culture [2, 20, 59], collaboration and coordination challenges due to conflicts between
stakeholders [2, 22, 103, 106], lack of resources in terms of skills and expertise required
for handling complex patching tasks [20, 110, 111], and the increasing rate of patch
release [20, 106, 111] are some of the most common challenges faced by practitioners.
In addition, challenges relating to the lack of dedicated patch testing environments
[2, 105, 112], post-deployment patch verification [2, 113], and system downtime during
patch deployment [2, 20, 106, 107] have been widely discussed. Despite widespread
attempts to the adoption of automation in different phases of the process, it is revealed
that the need for human interaction still presents an inevitable challenge [2, 20, 54,
104, 111].

To address some of these pressing socio-technical challenges, several studies have
proposed tools, frameworks and practices. For example, a set of studies [24, 60, 61]
has proposed synchronising an organisation’s patch cycle with the vendor’s patch
release cycle to optimise the process, minimise stakeholder conflicts and reduce costs.
Although several approaches have been proposed to improve the patch management
process to reduce delays, the reasons why such delays occur and how to mitigate them
remain unexplored. Furthermore, given patch management is largely an industry-
centric topic, relatively little has been done to understand the state of practice. For
example, why do practitioners continue to delay applying the security patches leading
to compromises that would have been easily prevented like the Equifax case [102]?

In contrast, delays have been widely studied in related fields like software develop-
ment. In the majority of these studies [114, 115, 116, 117], the focus has been on delays

4.3. Research Method 57

in global software development (GSD). For example, they have explored the effect of
distance on delays in a multi-site software development organisation and mechanisms
to reduce delays. Closely related to our study but focused on software development
projects is the empirical analysis conducted over a decade ago by Genuchten [39]. By
analysing the planning data of six projects in one software development department of
an organisation, he provided a classification of reasons for delays in software develop-
ment activities. The findings report that capacity-related reasons cause the majority
of the delays in the studied context. Further, the study highlights the importance of
understanding the causes of delays for software developers to take necessary actions
for improvement. Similarly, the recent expediting attacks targeting unpatched soft-
ware security flaws exhibit a pressing need towards understanding the practical causes
of delays in patch management and suitable strategies to reduce such delays, which is
accomplished by this study.

4.3 Research Method

To understand why and how delays occur in practice, we conducted a longitudinal
industrial case study with Org A and Org B involving 21 participants from 8 teams,
which was described in Section 2.2.2 in Chapter 2. The findings of this chapter
are based on the longitudinal data collected from patch meeting minutes maintained
by the case organisations as the main artefact from patch meetings. In addition, we
observed the patch meetings to supplement our understanding of the process, activities
and strategies documented in the meeting minutes and verify the emerged findings
from the artefact analysis.

4.4 Findings

In this section, we present the findings of our study. Figure 4.2 presents an overarching
representation of the findings from the qualitative analysis. We provide examples from
the patching tracker chosen based on their representativeness, as supporting evidence
and to increase the verifiability of our findings [50]. In the examples, we include the
subject of the task (see Figure 2.2) and evidence relating to the delay using unique
identifiers for ease of reference, for example, “P[n]-AT1" refers to a participant from
Org A’s EMR team, and “Win, Task ID 2" refers to the 2nd task discussed in the
Digital Health Windows meeting.

Delays in Software
Security Patch
Management

Set of Reasons
cause

Strategies
applied to minimise

Overall patch
management process

Specific patch
management process

phase

applied to applied to

Technology-related
reasons

People-related
reasons

Core category Category Sub-category

Organisation-
related reasons

include

Figure 4.2. High-level overview of the findings from the qualitative
data analysis.

58 Chapter 4. Why, How and Where of Delays in Security Patch Management

4.4.1 Why, How, and Where do Delays Occur in Security Patch
Management?

We identified a set of reasons that cause delays in security patch management, pre-
sented as a taxonomy in Figure 4.3. In summary, we found nine reasons, grouped
into three main categories: technology-related reasons, people-related reasons and
organisation-related reasons.

Reasons for
delays

Technology-related
Reasons

R1. Complexity of
patches

R2. Limitations of
current tools

Patch interdependencies (30)
Faulty patches (12)
Extensive monitoring for faulty patch fixes (8)
Patch heterogeneity (5)
Increasing rate of patch release (2)

Lack of accuracy (9)
Lack of scalability (3)
Functionality limitations (7)

Delays in obtaining approval (37)
Lack of awareness of task progression (22)
Lack of understanding of roles and responsibilities (6)
Poor communication and information misinterpretation (5)
Missing information due to overload of emails (2)
Delays in obtaining customers' approval (14)
Delays in coordinating with vendors for support (12)
Administrative overhead of coordinating with multiple customers (3)
Delegation delays due to conflicts of task ownership (3)

Delays in delivering reports (16)
Delays in delivering patch schedule information (15)
Delays in providing team requirements (4)
Delays in patch release by vendors (11)
Delays in providing input for support cases (8)

Troubleshooting (23)
 Manual patch deployment (17)

Decision approvals need thorough assessment of patch impact (10)
Manual configurations (6)

Resource limitations (e.g., human resources) (24)
Infrastructure limitations (e.g., performance issues) (11)
Time limitations (e.g., monthly patch cycles) (5)

Delays in getting approval from higher management (18)

Delays due to changes in company schedules (13)

Multi reboots requiring longer and additional patch windows (8)
Customer requests to postpone patch deployment schedules (4)

Missing patch pre-requisites during installation (1)
Inaccurate estimates of patch windows (3)
Incomplete patch deployment (5)
Inadequate post-patch deployment verification (6)

People-related
Reasons

Organisation-related
Reasons

Category Sub-category Concept Code (number of references)

R3. Need of human
intervention

R4. Coordination
delays

R5. Input
requirement delays

R6. Failures due
to poor planning

and execution

R7. Organisation
delays

R8. Capacity
limitations

R9. Service-
availability
restrictions

Inability to allow service downtime from reboots (13)

Figure 4.3. Detailed overview of the causes of delays in security
patch management.

Next, we quantitatively analysed the identified set of reasons to understand the
most prominent reasons that need practitioners’ and researchers’ attention. To achieve
this, we conducted a frequency analysis of the reasons for delays. An important ob-
servation was that in the majority of the delays, we found multiple reasons attributed
to one delayed task. For example, a delay in applying a critical security patch was
identified due to a combination of reasons such as delayed input by the vendor (R5),
delays in coordination with the vendor (R4), and lack of expertise (R8). In total, we
found 417 occurrences of the identified nine reasons ascribed to the 132 delayed tasks
analysed. Figure 4.4 presents the frequency distribution of the reasons for delays.
Accordingly, the most prominent causes for delays relate to people-related reasons,
for example, delays in coordinating the patch management activities (24.9%) and
providing input requirements (16.8%).

In determining where the aforementioned delays occur in the patch management

4.4. Findings 59

3.6%

4.6%

6.0%

7.4%

9.6%

13.4%

13.7%

16.8%

24.9%

R6: Failures due to poor planning and
execution

R2: Tools limitations

R9: Service availability restrictions

R7: Organisation delays

R8: Capacity limitations

R3: Need of human intervention

R1: Complexity of patches

R5: Input-requirements delays

R4: Coordination delays

Frequency % of occurrence

Figure 4.4. Frequency distribution of the reasons for delays in se-
curity patch management from a total of 417 occurrences of delayed

reasons.

process, our quantitative data analysis revealed that the delays are distributed through-
out the process with a majority of the delays, i.e., 54% occurring during the patch
deployment (P4) phase as shown in Figure 4.5. We identify that it can be attributed
to the inherent socio-technical complexities involved in the patch deployment tasks
and decisions. The second-highest number of delays happen during patch testing (P3)
and post-deployment patch verification (P5) phases where each account for 15% of
the delays. Possible explanations of these numbers can be recognised by the evident
challenges in the respective stages, for example, managing the delays occurring due to
the poor quality of patches, which may result in unanticipated post-patching failures
leading to disastrous consequences and inconvenience to users, e.g., unavailability of
service. Additionally, we have reported the average delay duration in months in each
process phase. As shown in Figure 4.5, the longest average delay is reported as 3.6
months belonging to patch testing and vulnerability scanning, assessment and priori-
tisation tasks. In the following, we describe the nine reasons for delays mentioned in
italic under their corresponding main categories.

Technology-Related Reasons.

The technology-related reasons denote the compound characteristics intrinsic to soft-
ware security patches, limitations of the tools used in patch management, and tech-
nological limitations resulting in the need for human intervention in the process.

Concerning the complexity of patches, the patch interdependencies consisting of
software, hardware, and firmware presented a major reason for delays in patch testing

60 Chapter 4. Why, How and Where of Delays in Security Patch Management

5%
11%

15%

54%

15%2.5

3.6 3.6
2.9

1.8

P1: Patch
Information

Retrieval

P2: Vulnerability
Scanning,

Assessment &
Prioritisation

P3: Patch Testing P4: Patch
Deployment

P5: Post-
Deployment

Patch
Verification

Distribution of delayed tasks % Average delay in months

Figure 4.5. Distribution of delays over the security patch manage-
ment process and average delay duration in months in each phase.

Total number of delayed tasks = 132.

and deployment tasks. We identify that such complexities emerge from the existing
dependencies in the source code, for example, function-level or library-level dependen-
cies. Patching large and complex software systems involves a diverse set of operating
systems, tools, and software applications with multiple versions. It introduces addi-
tional challenges to match the compatibility of several versions which often leads to de-
lays during patch testing. Moreover, patch interdependencies with the legacy software
were a recurrent cause of the delays in the studied context. This reason exacerbated
problems with delays since the solutions, for example, upgrading or decommissioning
the legacy system, or continuing to receive extended support (i.e., obtaining patches)
from the vendors presented even further challenges. This is because, besides the large
costs involved in these workaround solutions, the teams were faced with high risks as
most of the legacy systems operated on critical medical services. In addition, due to
the complex and business-critical nature of legacy systems, resolving legacy software
dependencies often resulted in significant delays leading up to several months in some
cases.

On the other hand, the unknown errors during patch testing, deployment, and
post-deployment arising from faulty patches led to delays. In such instances, the
practitioners spent a significant amount of time troubleshooting the error not know-
ing that it is caused by a faulty patch. Following the identification of the root cause as
a faulty patch, the practitioners often pursued the vendor’s support which further de-
layed the completion of the task. We also observed that some security patches required
extensive monitoring to verify the fixes for post-deployment errors. For example, the
task was kept under monitoring for several weeks until the results confirmed the ap-
plied fix poses no unanticipated adverse effects on the managed systems. Furthermore,

4.4. Findings 61

the increasing rate of patch release coupled with the patch heterogeneity adds to the
complexity of patches creating delays in patching. This is because as the number and
diversity of patches increase, the number and complexity of the patch interdependen-
cies that need to be managed also increase. Consequently, it leaves myriad attack
vectors vulnerable to cyberattacks increasing the risk of exploits.

[Subject - Patch deployment error at the [server s1]
“13/12/19 - Workaround applied and timings were all good. Keep open till
January run for confirmation." - EMR, Issue ID 35

The analysis unveiled that some delays can be attributed to the limitations of
tools. In particular, the lack of accuracy in the output of current tools (e.g., miss-
ing some vulnerabilities during scanning, omitting patches during patch deployment)
resulted in inaccurate vulnerability prioritisation and incomplete patch deployment
respectively. Subsequently, the practitioners had to re-execute the tasks resulting in
delays in task completion. Another limitation is associated with the lack of scala-
bility to handle diverse types of patches and their features. In such cases, patches
introduce complications to tool functionalities such as disabling some tool functions.
Furthermore, we identified functionality limitations of existing tools like the inability
to detect patch compatibility arising from the patch dependencies and the lack of
capability to detect multi-reboot requirements that delayed the tasks.

[Subject - Additional reboot required for .NET patching]
“7/2/20 - An investigation is needed around the number of required reboots
for EMR patching and window requirements as a result if more reboots are
required. A new process needs to be fleshed out when patching is postponed
to accommodate the identification of the number of reboots required." -
EMR, Task ID 35

Another prominent cause of delays is ascribed to the need of human expertise
throughout the security patch management process. The need for human interven-
tion emerges because of the inability to achieve complete automation in the process
owing to technological limitations. Troubleshooting the issues, mostly related to the
unknown errors during and post-deployment, and faulty patches consumed a lot of the
practitioner’s time and effort delaying patch testing and deployment tasks. Similarly,
manual configurations, for example, selecting the suitable Group Policy Object (GPO)
configurations based on the needs and making decisions about the patch process, e.g.,
changes to the patch cycle and patch window, needed to be thoroughly assessed for
the impact on multiple aspects to avoid breakdowns. Moreover, we noticed that
the practitioners undertook manual patch deployment during complex, erroneous, or
business-critical patch installations, for example, legacy systems patching. Manual in-
tervention was also required for re-executing failed patch deployments and re-planning
patch schedules due to requirement changes.

[Subject - [Hospital h1] patching stage 3 on 27th November]
“18/10/19 - Patching needs to be moved to OOB due to the change freeze
from 15th November to 3rd December.
31/10/19 - [B-T1] team putting in significant amounts of work, like 15-
20 hours per month, to redo the schedules on custom dates each time the
deployments move off standard windows." - EMR, Task ID 30

62 Chapter 4. Why, How and Where of Delays in Security Patch Management

People-Related Reasons.

These refer to a group of reasons relating to the coordination of patch management,
delivery of input requirements, and planning and execution of patch management
tasks.

Delays occurring due to lack of coordination presented the most recurrent reason
for delays. It refers to the delays in getting things done in the security patch man-
agement process. It is challenging because completing a single patching task (e.g.,
applying security patch X to server Y in Customer Z) involves multiple interdepen-
dent activities and several stakeholders. We found coordination delays stemming from
both internal and external stakeholders.

Internal stakeholder coordination delays, in the studied context, relate to the
delays from lack of coordination of dependencies deriving from the interactions be-
tween stakeholders of Org A and Org B. As several interdependent teams between the
two organisations collaboratively worked towards an end goal of timely application of
security patches to ensure systems’ security, a delay of one party resulted in delays
in task completion. Similarly, a lack of awareness of task progression between teams
also created delays in inter-team task progression. As such, the multiteam system
[118] in the studied context resulted in delays in decision approvals as they had to
go through multiple teams (or levels). In addition, a lack of understanding of shared
roles and responsibilities led to delays in coordinating tasks between teams because
the task assignee did not know whom to contact in the event of errors or who was
handling the interdependent task. We noticed that coordination delays also occurred
due to missing information owing to an overload of emails. Email being the primary
source of communication between the internal teams, there were cases where some
emails had been missed resulting in delays in passing information on time. More-
over, poor communication and information misinterpretation contributed to delays in
information passing.

Concerning external stakeholder coordination delays, we found delays attributed
to the coordination with customers (e.g., hospitals), end-users (e.g., hospital patients
and staff), and vendors (e.g., Microsoft). A dominant reason was the delays in ob-
taining customers’ approval for patch deployment. Since patch deployment usually
resulted in system downtime arising from the reboots, obtaining approval for patch
deployment schedules was important.

[Subject - Request to change patch window of [s1] server]
“10/5/19 - Currently set to 0000-0300, but the full backup of the server
happening during this window causes slowness and issues with patching.
Suggest changing the window to 0600-0900. [P1-AT2] checking on the
status with business approval
14/6/19 - [P1-AT2] to follow up as no response from the business." - Win,
Task ID 19

The other reason was the delays in coordinating with vendors for support. Coordinat-
ing vendor dependencies is integral to security patch management as the practitioners
rely on vendors’ support for errors encountered during patching and to obtain infor-
mation about patch releases. Additional delays included the administrative overhead
of coordinating with multiple customers for pre and post-patching verification and
delegation delays due to conflicts of task ownership with other third-party vendors
owing to a lack of accountability.

4.4. Findings 63

Another instrumental people-related reason was the delays in providing input re-
quirements. This is because the security patch management process represents a
sequence of phases with tightly coupled activities whereby the output of one phase
is the input to the next phase. Similar to coordination delays, we identified that the
input requirements delays emerge internally and externally.

Internal input requirements delays occurred when requested information was not
provided by the internal teams on time. This included delays in delivering the reports
such as the vulnerability scan reports which led to delays in vulnerability assessment
and prioritisation. Similarly, delays in delivering patch schedules-related information
led to delays in planning and subsequently deploying patches. Other reasons included
delays in supplying other information requisites such as server details and providing
the team’s requirements in the patch cycle. An important observation was that the
teams did not maintain an online repository with the server details which created the
need for waiting for information about up-to-date server details (i.e., with the latest
patched versions).

External input requirements delays are concerned with the requirements deliv-
ered late by vendors. For example, delays in the patch release, particularly the patches
for fixing critical security vulnerabilities, can result in a significant increase in the risk
of exposure to cyberattacks. Additionally, the delays in receiving vendor support for
patching errors and new patch release information caused delays in addressing the
vulnerabilities.

[Subject - New zero-day vulnerability warning]
“12/6/20 - Monitor Microsoft patch release for critical vulnerability identi-
fied on [T1] servers. Font Type 1 is expected as a zero-day soon, full report
is not available yet.
24/7/20 - No update from Microsoft." - EMR, Task ID 43

We noticed that some delays were caused by failures from poor planning and execu-
tion. Security patch management in large and mission-critical domains like healthcare
entails challenging tasks that need to be cautiously planned and executed to avoid
system breakdowns. However, the complexity of patches, particularly, the unforeseen
errors during deployment presented a major risk to deploying within the planned time
frame. With regards to poor planning, inaccurate estimates of patch windows caused
patch deployment to exceed the allocated patch windows resulting in inconvenience
to customers and end-users. As a consequence, practitioners often halted patch de-
ployment to avoid service disruptions resulting in patching delays.

[Subject - Execution exceeding the patch window]
“31/5/17 - Only 72.9% of scheduled patch deployments were completed as
of 11.20 am. Two further windows are to be raised to ensure the appro-
priate length of time is scheduled due to unknown 2016 updates that were
required to be implemented, first window is 1st June 8 am to 12 pm." -
Win, Task ID 4

Of poor execution, missing patch prerequisites such as registry changes, GPO con-
figuration and installation of preparation packages halted execution due to errors
during the deployment. Similarly, incomplete patch deployment (e.g., failing to re-
boot after deployment which resulted in the installed patch not taking effect), and
inadequate post-deployment patch verification such as failing to monitor the status of
patch deployment tasks caused the need to re-execute patch deployment. Insufficient
post-deployment patch verification also resulted in operation disruptions due to unex-
pected errors. For instance, we observed a heated discussion during a patch meeting

64 Chapter 4. Why, How and Where of Delays in Security Patch Management

owing to an issue with the printers not working reported by the customers to Org A
caused by a lack of post-deployment verification by Org B.

Organisation-Related Reasons.

This category covers reasons relating to the organisation approvals, schedules, capac-
ity to undertake patch management tasks and policies on service availability.

We found some reasons denoting organisation delays resulting from organisation
policies and schedules. The need for compliance with organisation policies and the
involvement of multiple parties (i.e., two organisations and several teams) has resulted
in delays in obtaining approval from organisational management for monthly patch
schedules and changes in the process. We also noticed that delays occur due to
changes in organisation schedules such as change freeze periods, testing schedules like
regression testing plans, and holidays (e.g., year-end shutdown period) during which
no patch deployments were allowed to be scheduled.

[Subject - Patching for December 2019]
“18/10/19 - OOB for November patching from 4th December instead of
December patching.
31/10/19 - [AT1] patching for December month is off but November Mi-
crosoft patches will be applied in the first week of December instead to keep
compliance up." - EMR, Issue ID 29

Further, we noticed a lack of capacity concerning human resources, infrastructure
and the time leading to delays. With regard to resource constraints, insufficient hu-
man resources appeared to be a major factor in delays. For example, unavailability
of task assignees due to high work overload and assignee being on leave held up the
tasks in progress until the assignee was available. Another root cause was the lack of
qualified personnel with sufficient experience to handle complex tasks such as legacy
system upgrades, thus leading to an experienced practitioner getting overloaded with
tasks that would end up queued for a long time. Regarding infrastructure-related
limitations, hardware and network limitations hindered task progression in ways such
as performance delays. For example, the high patch load described in the complex-
ity of patches (R1) impacted the reboots following deployment and issues with the
bandwidth required for patching due to a lack of capacity to handle the load.

[Subject - Backup server patching]
“24/1/20 - Patching cannot go ahead when the active backup is running.
The patch load can impact servers before reboot. Need a window change,
proposal to be sent by [P1-BT1] to [P2-AT1]." - EMR, Issue ID 39

Another reason stemmed from the periodic patch cycles as they presented the
practitioners with a time-bound restraint to progress with the tasks. In particular,
some tasks such as testing the workarounds for failed deployments had to be delayed
for weeks given the time-driven (i.e., monthly) patch cycle in practice.

Another crucial cause of delays stemmed from the service availability restrictions.
We noticed that patch deployment was often delayed due to organisations’ inability
to allow service downtime from reboots. Reboots were necessary for the patch to take
effect after deployment and some patches required multiple reboots or multi reboots
depending on the level of complexity involved, for example, the number of patch
interdependencies. As such, the multi-reboots required longer and additional patch
windows than the usually allocated 4-hour window. Consequently, in most cases, the

4.4. Findings 65

patch schedules were delayed to be deployed in out-of-band (OOB) windows to reduce
service disruptions from longer patch windows during business hours.

[Subject - [Servers s1 and s2] patching]
“26/7/19 - OOB window is needed for the multi reboots to catch up.
9/8/19 - Waiting for the customer’s confirmation of the new patch window,
pending information from [P1-AT1]." - EMR, Issue ID 20

However, getting customers’ approval for a change of patch window presented an
additional challenge to the practitioners as customers were always hesitant about the
risk of system downtime. Correspondingly, further delays occurred due to customers’
requests to postpone the schedules to allow service continuity.

Summary for RQ2.1: We identified nine causes for patching delays associated with
technology, people and organisation-related reasons. In a majority of the delays, we
found multiple reasons attributing to one delayed task. Among these reasons, people-
related reasons, for example, coordination delays appeared as the most prominent and
recurrent reasons for delays. Concerning where the delays occur, we found that the
delays are distributed throughout the security patch management process, however,
most of the delays, i.e., 54% occurred during one phase, i.e., patch deployment. Yet,
regarding the duration of delays, we found that tasks related to vulnerability scanning,
assessment and prioritisation and patch testing phases account for the longest delays.

4.4.2 Mitigation Strategies for Delays in Security Patch Manage-
ment

We identified a group of strategies implemented by the studied teams as corrective/re-
active actions to reduce delays. Further investigation enabled us to identify where to
apply the strategies in the security patch management process. Figure 4.6 presents
the strategies grouped by the relevant security patch management process phase with
the number of references for each strategy (in parentheses).

Common strategies relating to the overall patch management process

 S1. Frequent communication (24)
 S2. Collaborative decision-making (3)
 S3. Task delegation (31)
 S4. Regularly review and update patch management process-related documentation (3)

Strategies relating
to Patch Information

Retrieval (P1)

Strategies relating
to Vulnerability

Scanning, Assessment
& Prioritisation (P2)

Strategies relating
to Patch Testing (P3)

Strategies relating
to Patch

Deployment (P4)

Strategies relating
to Post-Deployment

Patch Verification (P5)

S11. Timely coordination
of patch deployment
schedules (19)

S12. Apply workarounds
to maximise service
availability (18)

S13. Manual deployment
for complex patches to
minimise damage (12)

S14. Agile deployment
for executing changes (6)

S15. Establish post-
deployment verification
procedures (10)

S16. Collectively handle
 post-deployment issues
(9)

S17. Document
deployment status of
every patch (3)

S8. Define compliance
policies and contingency
plans for test failures (9)

S9. Patch pre-requisites
investigation (4)

S10. Modify software
configurations and
dependencies (3)

S6. Plan alternatives for
delayed patches (6)

S7. Define priorities for
vulnerability remediation
(15)

S5. Set strict timelines
for patch download (2)

Figure 4.6. Detailed overview of the strategies applied to mitigate
delays in security patch management.

66 Chapter 4. Why, How and Where of Delays in Security Patch Management

Strategies Relating to the Overall Patch Management Process.

The following set of common strategies can be applied across all phases of the security
patch management process.

Frequent communication with all internal and external stakeholders is vital in re-
ducing the patching delays as it helped strengthen collaboration and improve mutual
understanding by bringing all stakeholders on the same page. Regarding internal
communication, the studied practitioners held bi-weekly patch meetings to discuss
patching issues, find solutions to the issues, report the status of patching tasks, and
measure the progress of the patch cycle. Besides the patch meetings, they held infor-
mal discussions on complex and critical issues when required.

[Subject - Post-deployment issue - Data Capture servers not able to com-
municate with [system s1]]
“7/8/20 - [P1-AT1] checking with [P2-AT2] for the other three servers that
do not have a commissioning request.
21/7/20 - Set up another meeting with BT1 to discuss this request (ID
1772737)." - EMR, Issue ID 42

As to external communication, the practitioners frequently negotiated with cus-
tomers about the patch deployment schedules. It involved getting consent for patch
deployment at customers’ premises, agreeing on the patch deployment dates and times
(i.e., patch window), establishing contact persons at the customer sites for emergency
contact and notifying completion of the patch deployment task. Similarly, the practi-
tioners regularly negotiated with the vendors regarding the delayed patch releases and
support cases raised for faulty patches. Frequent communication helped all stakehold-
ers gain awareness of the tasks and schedules, assisting them with up-front planning
and coordination of the dependent tasks.

[Subject - Unix patching schedule confirmation]
“24/7/20 - The requirements analysis revealed a major OS upgrade, not
simple patching. The schedule is still being negotiated with [customer c1]."
- Non-Win, Issue ID 7

Collectively making decisions about patch management, for example, patch pri-
oritisation based on the vulnerability assessment results and organisation needs, and
selecting workarounds for delayed patching and post-deployment issues helped the
team members gain insight into the prospective plans and activities. In addition,
it allowed the individual team members to make well-informed decisions about their
task assignments which reduced the impact of the delays from waiting for input from
dependent tasks and changes in the organisation’s schedules.

[Subject - Proposal for a patch cycle change in [servers s1 and s2]]
“4/4/18 - Discussions are still ongoing for the decision. AT1 is still con-
sidering various options and has put them out in slides for discussion at
the meeting." - EMR, Issue ID 2

We observed the patch meeting facilitator delegating the tasks to BT1 team mem-
bers based on their expertise and experience during the patch meetings. In rare cases,
the practitioners voluntarily self-assigned the tasks based on their interests and due to
the unavailability of task assignees. The delegated tasks including details of the task,
task assignee, raised by, and date of the assignment were documented in the patch-
ing tracker during the meeting. It appeared a useful strategy to increase dependency
awareness of the tasks, particularly, in scenarios where task B is dependent on task

4.4. Findings 67

A (A → B) and the assignee of task B needs input from task A to progress with the
task. Moreover, employing this strategy ensured well-defined roles and responsibilities
around patch management activities resulting in increased accountability for actions.

[Subject - Vulnerabilities in .NET Core]
“21/2/20 - .NET Core is not receiving updates. A new process is required
to patch this version and a service request (SR) needs to be submitted for
review and assessment. [P1-BT1] to raise the SR for the issue raised by
BT1 on 7th Feb 2020." - Win, Issue ID 40

Another common strategy that emerged from the data analysis was having a sys-
tematic process to regularly review and update the documentation about security patch
management process actions and decisions. It is important to consistently review the
process and test any process changes internally before documenting them. A well-
documented process ensures clarity in the process activities and decisions and eases
tracing back during troubleshooting post-deployment errors.

[Subject - Update documentation for the split of [servers s1 and s2] patch-
ing into two procedures]
“13/12/19 - Finalising the documentation after testing internally for han-
dover to 24x7.
10/1/20 - Documentation to be tested in February, will be ready for han-
dover in March." - EMR, Task ID 24

Strategies Relating to Patch Information Retrieval (P1).

Setting tight timelines for patch download, for example, within two days of the “Patch
Tuesday" when large vendors like Microsoft, Adobe, and others release the patches,
was a strategy followed by the studied practitioners. It allowed them sufficient time to
plan and coordinate the patch windows, negotiate with customers, obtain organisation
approval, and undertake extensive patch testing before deployment. In the studied
context, Org B provided a report to Org A teams containing a list of the retrieved
patches each month that aided the collaborative assessment of vulnerability risks.

[Subject - Provide .NET report at the start of the patch cycle]
“15/3/19 - Org A requests BT1 to provide an extract of .NET released
patches every month and a report including what patches will be applied to
what servers." - EMR, Task ID 53

Strategies Relating to Vulnerability Scanning, Assessment and Prioritisa-
tion (P2).

We observed the practitioners planning alternatives for scheduled patching that will
be delayed due to known reasons. For example, a major upgrade for critical legacy
software is a complex and time-consuming process that often involves several challeng-
ing subtasks like an intensive assessment of the cost-benefit analysis and impact on
other services, and laborious data migration procedures. In such cases, the practition-
ers planned alternatives (i.e., what to do and when to do it) for the time being until
the software is patched to minimise the risks of attacks. We observed them collabora-
tively analysing various workarounds for suitability during delayed patch releases and
delayed patching and assessing the timing of those alternate remediation plans.

[Subject - Org A Change Freeze from 14th December to 12th January]
“31/10/19 - Due to the change freeze in December, there will be no patch-
ing for December.

68 Chapter 4. Why, How and Where of Delays in Security Patch Management

1/11/19 - AT2 wants to reserve the first two weeks of December for reme-
diation and out-of-band patching of critical vulnerabilities as required." -
Win, Task ID 34

Defining priorities for vulnerability remediation appeared beneficial in reducing the
risk of exploitable attack vectors from delayed remediation due to the large number
and diversity of patch releases. The studied practitioners prioritised vulnerabilities
based on the patch severity and impact. In the studied context, the security team
(AT4) prioritised security patches based on the global vulnerability rating and their
own risk assessment. High-risk critical patches were prioritised to be deployed within
48 hours while the medium to low-risk patches were deployed in the next patching
cycle. Prioritisation based on the patch type, for example, operating system patch vs
software application patch, was another strategy employed for defining the priorities.
In some cases, we observed them prioritising the operating system security patches
over other security patches like .NET, IE, Adobe, and Java.

[Subject - OS security patches need to be tracked separately in the vul-
nerability remediation]
“15/5/20 - [P1-AT1] requesting the OS security patches to be tracked sepa-
rately from all other vulnerability remediation. Org B’s report should only
be addressing OS security patches anyway but can make sure to separate
any non-OS remediation tasks." - EMR, Task ID 45

Strategies Relating to Patch Testing (P3).

Definition of compliance policies, for example, the standards imposed by the security
team to reboot every legacy server even if there are no patches, and developing con-
tingency plans in cases of failures appeared beneficial in mitigating the risk of delays
caused by the erroneous patches.

[Subject - [s1] new servers compliance]
“4/12/18 - This item remains open until all new [s1] servers are fully com-
pliant including security hardening prior to being pushed into production
and support.
18/2/18 - Security approved the new [s1] servers, go-live completed on
18/2." - EMR, Task ID 1

Patch prerequisites such as the registry changes and preparation package instal-
lation represent preconditions that needed to be set up for the patch to take effect
during the deployment. As a strategy to avoid possible delays resulting from the
runtime errors hindering patch deployment due to missing prerequisites and delays in
manual configurations associated with the prerequisites, the BT1 team performed an
investigation of prerequisites for the patches released every month as a separate task
during patch testing.

[Subject - Registry key missing for Knowledge Base (KB) ID [n] (LDAP)]
“2/10/20 - Patches not installed on [servers s1 and s2] due to missing a
registry key. [P1-BT1] to check settings and apply where missing." - Win,
Task ID 24

In preparing the machines for patch deployment and avoiding potential delays
arising from complexities of patches due to patch dependencies, the practitioners ded-
icated a specific time to identifying and modifying the dependencies and configurations

4.4. Findings 69

during patch testing. For example, they created patch clusters based on the patch sim-
ilarity and configured the group settings, also known as Group Policy Object (GPO),
to reduce time spent on manual configurations on individual patches.

[Subject - GPO creations (configs) to be done together]
“12/6/20 - [P1-BT1] to create new GPOs at the same time early next
week in preparation for the next round of additions for vulnerability reme-
diation." - Win, Task ID 49

Strategies Relating to Patch Deployment (P4).

Well-timed coordination of patch deployment schedules can help mitigate several de-
lays associated with the coordination delays, capacity limitations, organisation policies
regarding service availability, organisation schedule changes, failures from poor plan-
ning, and increased rate of patch release during patch deployment. The activities
involved internal planning and scheduling of the patch windows for each managed
system (i.e., when to patch), defining the teams’ roles and responsibilities for contact-
ing customer sites for patch deployment verification and planning the servers’ load to
spread evenly through the patch windows to avoid performance issues and unexpected
service disruptions during patch deployment (i.e., how to patch).

[Subject - Review of [s1] servers’ patch windows: re-balancing and ex-
tended windows proposed]
“13/3/19 - Org B proposes 4-hour windows starting at 18:00 each night.
The first lot of servers are to start Friday week 2 after the "Patch Tues-
day". Sample of re-balanced servers provided for Org A’s consideration."
- Win, Task ID 9

Given the mission-critical nature of healthcare operations, the risk of system down-
time from reboots presented a major challenge to the practitioners in reducing the
risk of service disruptions during patch deployment. As a strategy to maximise ser-
vice availability and reduce potential associated delays, they applied various coun-
termeasures including clustering, load balancing, and failover. Clustering refers to
grouping patches based on their similarity. As such, configuring the group settings
and deployment of the patch clusters significantly reduced the time spent in testing,
deployment, and rebooting than comparable single-patch work resulting in increased
service availability. Similarly, load balancing which refers to balancing the load on
servers during deployment helped avoid unnecessary service disruptions. This is be-
cause the servers will be patched in batches reducing the risk of all services being
interrupted at the same time. Failover or maintaining backup servers to concurrently
run the services while being rebooted was another workaround employed to minimise
the downtime. Subsequently, the backup servers’ patching was carefully planned with
separate patch windows. A few other countermeasures included planning extended
windows for patches that required multi-reboots in out-of-band windows and pre-
loading the patches offline to avoid patch deployment exceeding the allocated patch
window.

[Subject - Patch deployment failed at [server s1]]
“24/1/18 - Single point of failure for [server s1]. AT1 to review the pro-
posed design for clustering for high availability. Currently hard to obtain
reboot timings, only one reboot is allowed. Ask the customer for an ex-
tended window and move the patching to the weekend." - Win, Task ID 6

70 Chapter 4. Why, How and Where of Delays in Security Patch Management

The practitioners decided to shift to manual patch deployment for business-critical
server patching, complex patches that involved multiple version dependencies, multi
reboots and legacy software systems, and redeployment of erroneous patches. This
strategy was deemed effective in minimising the damage (i.e., service operations left
unstable post-deployment) caused by failed deployments and avoiding the risk of fur-
ther delays. However, we noticed that shifting to the manual deployment itself could
lead to delays in patching as described in R3 in Section 4.4.1.

[Subject - Post-deployment error at [server s1] causing the printing service
unavailable]
“31/10/19 - This server was patched on 18/10 at 2 am-6 am. Due to the
errors, patching will be done manually in November." - Win, Issue ID 6

Agile deployment was another strategy employed by the teams where they executed
the changes to patch deployment procedures in small iterations. This was adopted as
a precautionary measure against unexpected breakdowns since a small change in the
deployment process could result in disastrous consequences to service continuity and
build confidence around the new changes.

[Subject - Review of patch cycle timings]
“22/2/18 - Org A is considering going for bi-monthly deployment cycles
for .NET patching and then moving to monthly deployment after the con-
fidence is built." - EMR, Task ID 2

Strategies Relating to Post-Deployment Patch Verification (P5).

Having a defined set of procedures for post-deployment patch verification helps reduce
the risk of delays caused by failures from poor execution due to inadequate post-
deployment verification. The studied teams verified the patch deployment status using
several approaches such as monitoring the system for any functional, performance, or
unexpected issues, analysing the system logs, collecting user feedback (i.e., confirming
with customers about any adverse impact on service continuity), and getting periodic
scans to verify the targeted security vulnerabilities have been patched.

[Subject - Automated second rescan for reboots]
“31/10/19 - [P1-BT1] raised this issue, he has configured the window to
rescan for missing patches and conduct a second reboot if required. No
issues during patching, seeking client feedback for verification." - EMR,
Task ID 28

Post-deployment issues such as an unresponsive server or unavailability of service
may have developed due to failures during patch testing and deployment, or lack of
proper post-deployment verification. To avoid such issues leading to long delays caus-
ing unexpected service disruptions, the practitioners engaged in a collaborative problem
handling approach. We observed long discussions at the patch meetings about the in-
vestigations of the root causes for post-deployment issues and finding workarounds for
failed deployments. The most commonly used workarounds in the studied context in-
cluded reverting to the previous working software version, restoring from the backup,
and patch redeployment in out-of-band windows.

[Subject - Tracking of GPO applications that are not intended]
“10/7/20 - Information sent to [P1-AT2] and [P2-AT2]. [Patch p1] will
need a rollback.
24/7/20 - Rollback executed, no reported issue due to the rollback. Keep

4.5. Discussion 71

open for one more meeting for monitoring." - Win, Task ID 51

The team members documented the deployment status of every patch in the patch-
ing tracker. It served useful as a vulnerability wiki to keep track of the progress of
every patch and as a reference in cases of errors encountered during the execution.
Further, employing this strategy during post-deployment patch verification ensured all
patches are properly deployed and audited. As a result, the delays that occurred due
to tool limitations, for example, missing patches during deployment were minimised.

[Subject - [Servers s1 and s2] successfully patched]
“24/7/20 - [...] No further issues experienced since patching. Manual in-
structions and deployment status are updated in the shared tracker. Will
be kept in-monitor for another couple of weeks." - EMR, Issue ID 47

Summary for RQ2.2: We identified 17 strategies applied by the practitioners as
corrective/reactive actions to mitigate the delays. Among these strategies, frequent
communication, collaborative decision-making, task delegation, and regularly review-
ing and updating the documentation were common strategies applied across all phases
of the security patch management process. Further, we found a group of strategies
executed at each phase of the process to mitigate the delays that occurred during each
step.

4.4.3 Findings from Member Checking

The participants provided positive feedback on the study findings and agreed with the
accuracy of the results. Several participants including the executive complimented our
research, saying “Thanks for all the information. Very interesting analysis"- P1-Org
A, “From my point of view, I think your analysis is very good and useful because it’s
not just looking at how good or bad things are but also highlights where the improve-
ment could be"- Executive-Org A. Further, it was interesting to see their motivation
to improve the delays following the presentation. “I hate to see this good work going
wasted, a really good analysis where we got some really good insights. So, I’d like to
see our teams taking these on board, then revisit this to see how the pie chart changes
when we address the top reasons for delays"- Executive-Org A. The participants did
not mention any new information or variations to the findings but explained the chal-
lenges of dealing with some of the delays, for example, “The patching timeline is fixed
by vendors such as Microsoft who use a monthly schedule so reducing the time frame of
getting appropriate approvals and executing is an absolute necessity. And getting new
patches tested, confirmed, and approved in a week is always a challenge before they
are rolled out confidently to production"- P1-Org A, “Also, not all environments have
testing environments to test these patches. So, in a fair few cases application testing
actually occurs in deployment environments which can cause many failures leading to
delays"- P2-Org B, “Yes, to add to it, vendors introducing application patches at the
same time as OS patches can also cause delays and conflicts with OS security patch-
ing"- P3-Org B. They also asked us several questions including how they can reduce
the delays further, to which we suggested some improvements which are discussed in
Section 4.5.

4.5 Discussion

In this section, we reflect upon our findings and discuss them in light of the existing
literature. Further, we present the implications for research and practice.

72 Chapter 4. Why, How and Where of Delays in Security Patch Management

Mitigating delays in security patch management is instrumental in maintaining the
security, availability, and confidentiality of information technology (IT) systems [19],
and failure to do so has resulted in several devastating outcomes [102]. Yet, the topic
remains less explored in the literature, particularly, in understanding the practical
reasons for delays in applying the patches. Based on a comprehensive analysis of
the gathered artefacts over a period of four years, we have identified why, how and
where delays happen in security patch management in practice and a set of corrective
strategies to mitigate them.

Our findings unveil that the primary cause of the most prevalent delays (24.9%)
is coordination delays in the patch management process (Figure 4.4). An interesting
finding is that internal coordination delays were more recurrent than the delays oc-
curring from external stakeholders, i.e., customers and vendors. This was confirmed
during the member checking as described by the executive, “I’m not surprised by some
of these reasons, especially the coordination delays as the difficulties in collaborating
and communicating between the teams are evident in almost every aspect of the pro-
cess." Although it appears that such delays are within the control of the practitioners,
our findings emphasise the need for further support on coordination across patch man-
agement tasks and stakeholders. Similarly, with regards to the second most recurrent
reason, the input requirements delays (16.8%), a majority of the delays emerged from
internal teams as opposed to external vendors, indicating that adopting strategies like
frequent communication (S1) and task delegation at meetings (S3) can help reduce
such delays.

The next prominent reason, the complexity of patches (13.7%) can be attributed
to the inherent complex patch dependencies and unknown risks of faulty patches.
Although the intrinsic factors are essentially in control of the third-party vendors in
charge of patch development, strategies like extensive patch testing to identify the
prerequisites and inherent patch dependencies (S9, S10) [2, 54] and defining contin-
gency plans to handle faulty patch errors (S8) can help reduce delays arising from the
patch complexity. The socio-technical endeavour in security patch management con-
stituting the fourth-most recurring delay (13.4%) can be explained by the inevitable
need for human intervention in the process. While it suggests a need for a better
understanding of human interaction in security patch management, our findings can
guide practitioners in the planning of patch schedules allowing sufficient time for man-
ual intervention (S11). Regarding the delays caused by capacity limitations in human
resources, infrastructure, and time (9.6%), properly planning the task assignments
with minimum task dependencies (S3), patch clustering and load balancing (S12),
and implementing patch deployment changes in an agile manner (S14) can be helpful.

While organisation-related delays (7.4%) can be implied to be within the control
of practitioners, service availability restrictions (6%) may appear difficult to always
be taken control of. This is because service continuity presents a pressing need for
modern enterprises, particularly in the context of mission-critical domains for which
service disruptions even for a few seconds can result in severe consequences. As de-
scribed by a participant during member checking, “it is very challenging with the
service availability restrictions, one example is the ambulance service, even though we
have received approval, we always have to call the service just to confirm if it’s okay to
patch because we don’t want to shut down the system in the middle of an operation".
However, applying workarounds such as failover, clustering, and load balancing (S12)
can help reduce such delays. Concerning the least occurring delays, limitations of
existing tools (4.6%), although reflect reasons not within practitioners’ control, hav-
ing well-established roles, patch management practices, and policies can help mitigate

4.5. Discussion 73

such delays. Finally, the delays emerging from failures in poor planning and execution
(3.6%) can be addressed with careful planning and execution (S9-11, S17).

Further reflecting upon our findings and in comparison to previous works, we dis-
cuss that some of the identified reasons are not necessarily specific to security patching
in the domain of healthcare, but could be also observed in other domains. For example,
the complexity of patches (R1). The patch interdependencies are found to be in-
trinsic characteristics present in the patches released by the vendors [103]. Therefore,
the resultant delays from managing these patch interdependencies could be challeng-
ing in other domains as well. Similarly, the need of human expertise is a standard
notion accepted in security patch management because the process is inherently a
socio-technical endeavour, where the human and technical interactions are tightly in-
terconnected [54, 59]. Therefore, we find the reasons relating to the need of human
intervention (R3) as reasons that could also apply beyond the studied context. In
addition, we recognise the reasons relating to the service availability restrictions
(R9) could be present in other domains as well. This is because the reboots following
patch deployment are necessary for the applied patch to take effect. Further, the ser-
vice interruptions caused by the reboots have been widely acknowledged as a major
obstacle in patch management across several domains [2, 20, 106, 107, 108].

In contrast, we believe that some of the reasons are likely to be specific to the
domain of healthcare and the context of studied organisations. For example, the rea-
sons attributing to organisation delays (R7) and capacity limitations (R8).
Concerning organisation-related reasons, patching delays resulting from delayed ap-
proval from higher management may not directly apply to a small organisation with
one team or to an organisation with a flat hierarchy where no line approvals are
needed. Although these reasons may not necessarily represent reasons beyond the
studied cases or the context, an understanding of the context-specific reasons enables
researchers and practitioners to better appreciate the practical utility of the solutions
and formulate appropriate plans for mitigating potential delays. We believe there are
possibilities for future research to explore the reasons for delays in a broader context
using these categories.

4.5.1 Related Works

Our study confirms the findings of the previous studies that suggest some challenges in
security patch management could contribute to delays in patching. For example, our
finding of coordination delays contributing to the majority of the delays complements
the existing research [2, 22, 59, 103, 106], which reported that coordination is one
of the most pressing challenges of timely patch management. Our analysis extends
the knowledge by showing how coordination delays are introduced internally and ex-
ternally. Additionally, our findings further highlight the importance and the need
to focus more on the socio-technical aspects such as coordination in the time-critical
security patch management process as mentioned by previous literature [2, 20, 54, 59].

Our analysis reveals that the complexity of patches causes the third-most frequent
reason for delays; it complements the previous work [20, 25, 59, 103, 104, 110, 112],
which has mentioned that faulty patches and configuring patch dependencies are chal-
lenging as they often lead to breakdowns during patch deployment. Similarly, the need
of human expertise in the process [2, 20, 25] and capacity limitations, specifically, lack
of human resources [20, 110, 111] are mentioned as challenges in security patch man-
agement in the related studies. Further, several studies (e.g., [2, 20, 106, 107, 108])
have highlighted service disruption as a central challenge of patch deployment. Our

74 Chapter 4. Why, How and Where of Delays in Security Patch Management

study extends the knowledge of these challenges by showing how, why and when they
contribute towards patching delays.

Alternatively, previous studies [60, 61] have predominantly focused on achieving
timely patch management through optimising the process by attaining a balance be-
tween an organisation’s patch cycle and a vendor’s patch release cycle. Dey et al. [24]
have developed a quantitative framework that analyses and compares various patching
policies to find the optimum policy considering the costs of periodic patching against
the security risks from patching delays. By investigating vendors’ patch release and
practitioners’ patch deployment practices, Nappa et al. [103] revealed that only 14%
of the patches are deployed on time and the patching mechanism (e.g., automated
vs manual patch deployment) impacts the rate of patch deployment. Despite the
widespread attention towards timely security patch management, an important ob-
servation is the absence of an investigation of the root causes (i.e., reasons) for delays
in security patch management. To the best of our knowledge, the existing studies have
not explored why the application of patches is delayed but rather proposed approaches
to achieve a timely patch management process. Hence, our study contributes to the
existing body of knowledge by:

• Providing a taxonomy of reasons explaining why delays occur when applying
security patches in practice;

• Reporting what reasons for delays are more prominent based on frequency anal-
ysis;

• Demonstrating where the delays occur in the security patch management pro-
cess;

• Presenting a set of strategies to mitigate the delays and describing when they
can be applied in the security patching process;

• Providing practical implications for practitioners to identify and mitigate delays;

• Establishing a foundation for future research towards effective management of
patching delays.

4.5.2 Implications for Practitioners

Our findings reveal why delays happen when applying security patches in practice
with a set of reasons contributing to the delays, explain how the reasons vary, and
how delays are distributed in the security patch management process. As a direct
practical implication of the provided understanding, the security analysts and system
administrators will be able to identify and assess the factors associated with the causes
of delays and take precautions to mitigate potential delays. Further, the understand-
ing of the frequency analysis of reasons and distribution of the delays highlights what
reasons need practitioners’ immediate attention and where is improvement needed
to overcome the delays. In addition, the knowledge will help practitioners in suitable
decision-making, prioritisation, and planning of security patch management tasks with
minimal impediments.

In addition to explaining why, how, and where delays occur in patching, our find-
ings describe how the delays can be mitigated. We present a set of strategies employed
by the studied practitioners to rectify the delays. Knowing what to do and when to
do can be useful for practitioners and organisations in taking prompt actions to mit-
igate the impact of delays. The findings may also help predict a delay in a given

4.5. Discussion 75

scenario whereby practitioners can better plan patch cycles and refine the patching
process in light of their organisational contexts. For example, practitioners can con-
sider the development of new tools like Environment Diagrams as a visualisation tool,
to keep track of the system dependencies that would save time in patch testing and
deployment. Other approaches like maintaining an online shared repository docu-
menting organisation schedules and regularly documenting patch exemptions in detail
would assist teams with accurate planning of patch schedules. Towards overcoming
delays of coordination in patching, adopting computer-supported collaborative tools
like “Slack" can benefit from accomplishing timely communication, collaboration, and
information sharing between all stakeholders [119]. In this way, our findings offer guid-
ance to practitioners to make suitable decisions to alleviate the threat of cyberattacks
from delayed patching.

4.5.3 Implications for Researchers

Given our findings are based on the cases studied limited to the domain of healthcare,
other researchers can extend and adapt the results through future studies within the
same domain involving different stakeholders or different domains. Further, future
research exploring the viability of the findings based on the contextual factors, for ex-
ample, variations in context-specific reasons for delays like capacity limitations (R8)
and organisation delays (R7), can result in useful insights from additional cases with
extended scope. With regards to the reported strategies for mitigating the delays,
future studies can investigate their suitability and effectiveness depending on the con-
text and organisation policies (e.g., similar to future work of [2, 20]). In addition, the
findings can be used in potential interview guides and surveys to verify the findings
in other contexts and discover variations within them. Another possibility is to inves-
tigate the impact of patching delays on organisations and other stakeholders such as
end-users.

Considering the most recurrent delays occur due to a lack of coordination in the
patching process and delays in providing the required inputs, future research can in-
vest efforts into understanding in depth how and why ineffective coordination cause
delays in security patch management in practice and what can be done to address
the coordination delays in the security patch management process. Another direc-
tion is developing computer-supported tools and platforms that can support better
coordination across patching tasks and reduce delays in collaborative tasks.

Further, the data analysis has revealed that the limitations in current tools con-
tribute to delays in applying the patches. We believe that future research can address
this limitation by developing advanced tools leveraging deep learning techniques. For
example, an automated tool that provides dependency visibility by highlighting mis-
matches of patch dependencies. Solutions could be further investigated on how au-
tomation support can be extended to assist the decision-making in patch management,
for example, developing intelligent interactive systems like software bots [120] for col-
laborating with practitioners that guide them to decisions by asking rational questions.
This further opens up an avenue for future research to explore how “human-AI col-
laboration" [91], an emerging research paradigm [121], can be extended to a crucial
topic like security patch management. Moreover, there is room for research to explore
how to improve the performance and accuracy of the patch management tools. Tool
development needs to consider the diversity of operating systems, software applica-
tions, platforms, and programming languages in vulnerability patch management to
overcome the obstacles of lack of accuracy and scalability in the current tools (R2).
This presents an excellent opportunity for future researchers to investigate the role

76 Chapter 4. Why, How and Where of Delays in Security Patch Management

of automation in security patch management in practice to better understand prac-
titioners’ needs and wants in order to cater to them. In addition, the researchers,
particularly the usable security researchers, can study how to improve the design of
such smart tools.

4.6 Threats to Validity

In this section, we discuss the potential threats to validity and how they were miti-
gated following the guidelines proposed by [33, 122, 123].

4.6.1 External Validity - Generalisability

This study is based on the empirical data collected from a particular context, i.e., se-
curity patch management in the healthcare domain. Hence, our findings do not claim
for generalisation to all other contexts of patch management, instead, this study fo-
cuses on performing a comprehensive investigation of the delays in security patch
management within the studied setting to provide detailed explanations through rig-
orous data analysis. However, we do not assert the results to be absolute or final,
rather they can be recreated and adapted in other contexts [34, 35, 45].

Regarding data representativeness, the study includes data collected limited to
the patching tracker. However, collecting data from two organisations with multiple
teams including participants with diverse roles and wide experience increased the
data reliability and assisted in ensuring participant triangulation [123]. Although we
have analysed data spanning over four years from October 2016 to May 2021, it is
possible that we may have missed some variations in the findings, specifically the
context-specific reasons and strategies. We suggest that any future studies on this
topic include more data sources such as additional cases or interviews to extend the
scope of our findings and verify their explanatory power in other contexts.

4.6.2 Reliability

To mitigate the threat of subjectivity and ensure reliability in the data analysis, all the
data collection and analysis procedures, emerged codes, and identified relationships
were discussed in detail among all researchers and finalised through multiple revisions.
In addition, related to interpretive validity [123], we conducted member checking to
verify the accuracy of our findings, which was attended by the present author and two
other researchers, further ensuring investigator triangulation.

4.6.3 Construct Validity

To address the threat of construct validity, we used multiple sources of evidence, i.e.,
analysis of artefacts and observations, and multiple stakeholders, and maintained a
chain of evidence (e.g., the coding procedure following the Grounded Theory data
analysis method [124]), and had the findings reviewed through member checking.

4.6.4 Internal Validity

To mitigate the threat of internal validity and misrepresentation, we ensured par-
ticipant triangulation by covering the entire population involved in security patch

4.7. Chapter Summary 77

management representing all teams in both organisations. In addition, the partici-
pants had a wide experience in security patch management, which helps mitigate the
risk of participants’ lack of expertise.

4.6.5 Evaluative Validity

The verifiability of the findings that emerged from a Grounded Theory data analysis
can be attained from the adequacy and soundness of the research methodology through
which the findings emerge [34, 35]. To achieve this, we have detailed our data analysis
process of the application of the Straussian GT data analysis procedures in Section
2.2.2. Further, to alleviate the reporting bias, we have included quotes from the
patching tracker in Section 4.4.

4.7 Chapter Summary

In this chapter, we empirically explore and systemically explain why, how, and where
delays occur when applying security patches in practice, and how the delays can be
mitigated. Through a longitudinal industrial case study representing eight different
teams from two organisations in the domain of healthcare, and based on a Grounded
Theory data analysis of 132 delayed tasks documented in the patching tracker over
a period of four years from October 2016 to May 2021, we identify a set of reasons
relating to technology, people and organisation that cause delays in security patch
management. We also provide an analysis of the frequency distribution of reasons for
delays and distribution of delays over the security patch management process. Such
information highlights the reasons that need immediate attention and the areas of
improvement in the security patch management process. Additionally, we report a set
of strategies that can be used for mitigating the delays in applying security patches
by practitioners.

Compared to the related literature, our study provides an evidence-based under-
standing of the reasons for delays when applying security patches in practice, and to
the best of our knowledge, it is the first attempt to empirically investigate the topic
in-depth. We assert that the reported understanding of why, how, and where delays
occur during patching and how they can be mitigated will help practitioners take
suitable decisions to mitigate delays and guide them towards taking timely actions to
avoid potentially disastrous consequences from delays in patching. Furthermore, our
findings lay the foundation for future research to investigate and develop computer-
supported tools that can address the practical concerns causing delays in security
patch management, drawing attention to a topic, critical and timely, yet less explored
in the software engineering community.

79

Chapter 5

A Grounded Theory of the Role of
Coordination in Security Patch
Management

Related publication: This chapter is based on our paper titled “A Grounded
Theory of the Role of Coordination in Software Security Patch Management",
published in the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE),
2021 (CORE Ranking A*) [56].

In Chapter 4, we have identified a set of reasons relating to the socio-technical
aspects of security patch management that are key explanations that cause delays in
security patching and discovered that the most prominent cause of delays relates to a
lack of coordination in the security patch management process. While researchers and
practitioners have paid attention to studying the socio-technical challenges in patch
management, there has been relatively little effort dedicated to gaining an in-depth
understanding of how and why the socio-technical aspects, e.g., coordination of inter-
dependent activities of the patching process and patching decisions impact patching
delays. In this Chapter, we address this gap by presenting a grounded theory of the
role of coordination in security patch management. The reported theory consists of
four interrelated dimensions, i.e., causes, breakdowns, constraints, and mechanisms.
The theory explains the causes that define the need for coordination among inter-
dependent software/hardware components and multiple stakeholders’ decisions, the
constraints that can negatively impact coordination, the breakdowns in coordination,
and the potential corrective measures for reducing coordination delays. This study
provides potentially useful insights for researchers and practitioners who can carefully
consider the needs of and devise suitable solutions for supporting the coordination of
interdependencies involved in security patch management.

80 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

5.1 Introduction

Timely development and application of security patches to the identified vulnerabili-
ties are considered critically important to avoid potentially successful security attacks
[17]. As revealed in Chapter 4, a majority of the delays in the security patch manage-
ment process emerge from socio-technical aspects such as coordination [2, 20, 54, 59].
As described in previous chapters, security patch management activities entail several
socio-technical aspects that underpin some of the critical decision points that make
security patch management a complex and challenging undertaking [2, 20, 22]. Fur-
ther, it needs the coordination of the efforts and decisions of multiple stakeholders
with conflicting interests and several interdependencies [100].

While it is widely understood that effective coordination is needed for timely
decisions and actions by the involved stakeholders, there is not much empirically
known about why and how coordination causes delays in applying patches as described
in Section 4.5.3. That means researchers and practitioners may not find much guidance
in gaining a good understanding of the role and impact of coordination in security
patch management to answer some critically important questions: What is the role
of coordination in security patch management? How and why does the coordination
aspect cause delays in security patch management? What can be done for addressing
coordination delays in security patch management? These questions motivated us
to carry out a Grounded Theory study of the role of coordination in security patch
management.

In this Chapter, we present the first, to the best of our knowledge, Grounded
Theory study exploring the role of coordination in security patch management. It is
based on observations of 51 patch meetings over a period of 9 months, which involved
21 industry practitioners from two organisations in the mission-critical healthcare
domain. We explain how coordination impacts the security patch management process
in four interrelated dimensions: causes, constraints, breakdowns, and mechanisms.
Grounded in the evidence from industrial practices of security patch management,
the theory aspires to enhance the state-of-the-art understanding of researchers and
practitioners in several ways:

1. The theory highlights the importance of gaining a deep understanding of the
interdependencies before applying security patches and how improved support
in coordination can help reduce the delays in security patch management.

2. It structures the knowledge about the unexplored phenomenon of security patch-
ing in the mission-critical healthcare domain.

3. Provides a theoretical model to shape future Software Engineering (SE) research
to address the practical concerns in security patching.

4. Practitioners can leverage the understanding to reduce patching delays attributable
to coordination delays in the process.

5. The theory can also be useful to practitioners as guidance to enhance confidence
in patching decisions.

Chapter Organisation: Section 5.2 summarises the related work. Section 5.3
presents the application of the Grounded Theory research method. Section 5.4 re-
ports the results of the theory. In Section 5.5, we discuss the contributions of our
theory in comparison with prior related work and its implications for practice and
research. The threats to the validity and verifiability of the findings are presented in
Section 5.6. Finally, Section 5.7 concludes the study.

5.2. Related Work 81

5.2 Related Work

There has been extensive research [25, 22] on improving automation support in the
security patch management process, however, we noticed a scarcity of empirical studies
investigating the socio-technical aspects of security patch management as described
in previous chapters. Existing empirical studies on socio-technical aspects of security
patch management have primarily focused on studying system administrators [2, 20,
25, 109], the patch management process and its challenges [2, 20, 54], and patch
information retrieval behaviours and approaches of system administrators [20, 110].

We found several studies (e.g., [2, 22, 54, 103, 106]) reporting coordination and
collaboration challenges in the patch management process. However, they lack a com-
prehensive investigation of what causes the coordination needs and related challenges,
its effects on the security patch management process, and the impact on delays of
patch application. Some studies [20, 59, 125, 126] have described at an abstract level
the dependencies between multiple stakeholders, such as vendors and organisations.
Similarly, Nappa et al. [103] reported that the coordination challenges concerning
vendor dependencies arise from a lack of synchronised patch releases from different
vendors because of shared vulnerabilities in the software code. Their analysis was
based on a large data set of deployed patches in client-side vulnerabilities. Similarly,
quantitative models and frameworks presented by a few other studies [24, 60, 61] fo-
cused on optimising patch management by synchronising an organisation’s patch cycle
with the vendor’s patch release cycle to reduce patching costs and risks. As such, the
reported dependencies with software vendors raise important concerns about the need
for an in-depth understanding of the role and impact of such dependencies on security
patch management.

However, coordination has been studied extensively across various dimensions in
related domains such as software development over the last decades [127, 128, 129, 130,
131, 132]. The literature defines coordination as the management of interdependencies
[133, 134, 135] and describes different types of coordination as explicit coordination
and implicit coordination. Similarly, Crowston [133] provided a categorisation of the
types of dependencies based on the context such as task, knowledge, resource, and
technical dependencies. Furthermore, previous work [129] on the coordination chal-
lenges in software development processes has demonstrated that ineffective coordina-
tion of dependencies represents a major cause of project failure, justifying the need
for effective coordination to manage various interdependencies. Correspondingly, a
comprehensive understanding of the role of coordination in patch application presents
a critical research gap [54, 100], which is fulfilled by this study.

5.3 Research Method

We used Grounded Theory (GT) [35, 44] for data collection, analysis, theory develop-
ment, and reporting. The details of the application of the Grounded Theory research
method with examples and the reasons for the choice of this research method were
described in detail in Section 2.2.3.

5.4 Findings

In this section, we describe the theory of the role of coordination in security patch
management using four interrelated dimensions: Causes, Breakdowns, Mechanisms,
and Constraints, providing evidence with grounded quotes from the underlying data.

82 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

Figure 5.1 presents the theory of the role of coordination in security patch manage-
ment. For ease of reference, we used unique identifiers to refer to participants, for
example, AT5, M10-dis refers to a participant from Org A’s Security team in the
10th post-meeting discussion, and BT1, M4 refers to a participant from Org B’s
Server team in the 4th meeting (see Table 2.1 and Table 2.4).

The role of
coordination in

software security
patch

management

Causes

Breakdowns

Mechanisms Constraints

Socio-technical
dependencies

Technical
dependencies

Social
dependencies

Software dependencies

Hardware & firmware
dependencies

Internal stakeholder
dependencies

External stakeholder
dependencies

Sudden escalations to
patch schedules

Delays in organisation
approvals

Lack of dependency
awareness from localized

work distribution

Legacy software
dependencies

Lack of automation
support

Increased patch load

Early investigation of
 inter-dependencies

Collaborative
decision-making

Continuous progress
measuring

Frequent
communication

Load balancing

Centralized risk
assessment

Dimension Category ConceptCore
Category

Figure 5.1. A grounded theory of the role of coordination in security
patch management.

5.4.1 Causes - Socio-Technical Dependencies

We identified several socio-technical interdependencies inherent in the security patch
management process that define the need for coordination. We recorded discussions
about several scenarios exemplifying the potentially disastrous implications as a result
of failing to identify dependencies before applying a patch. Through the data analysis,
we have placed the observed interdependencies in two categories: Technical and Social
Dependencies.

Technical Dependencies

The interdependencies between the software and the associated hardware and firmware
give rise to technical dependencies, arising as a result of dependencies in software code.
For example, a security vulnerability present in multiple functions in the source code
may include dependencies among the functions. As a result, a security patch devel-
oped to fix the identified vulnerability also inherits these function-level dependencies
creating complexities that must be carefully handled during the security patch man-
agement process.

In terms of software-related patch dependencies, several factors such as oper-
ating system (OS) dependencies, software application dependencies, and prerequisites

5.4. Findings 83

for patch installation fostered the conditions for coordinating the dependencies. Secu-
rity patch management in large software systems involves managing multiple software
components (or services) with different OS versions. The existence of the interde-
pendencies between OS versions and other software applications built on top of a
particular OS like web browsers may create additional tasks for practitioners as all
of them need to be synchronised. For example, the inability to detect incompatible
version dependencies of different OSs prior to patch installation led to unexpected
errors that often needed time-consuming manual investigations.

“We have about 15-16 versions of Windows 10. So, before patching we need to
see which version is running on which server? What is the build number? Are we
running the latest? It’s a lot!" - AT5, M14-dis

Additionally, some security patches contained interdependencies with legacy OS.
It presented a much more arduous task to the studied practitioners since some crit-
ical emergency medical services were running on Org A’s legacy systems that were
not supported by large vendors, e.g., Microsoft. In such cases, the participants often
felt forced to delay patch installation as the available solutions like decommissioning
or upgrading legacy systems presented high risks of operation interruptions. Conse-
quently, this practice of delayed patching of security vulnerabilities in systems would
significantly increase the risk of exposure to attacks.

Similarly, interdependencies between software applications, platforms, and tools
presented another major category of software-related dependencies. This is because
the build dependencies between the software application and patch sources require
the versions to be in sync before attempting patch installation [136]. As the size of
an organisation grows, managing these dependencies appeared difficult with a large
number of diverse applications installed. For example, Org A’s software applications
ranged from general applications, e.g., Java, .NET to specific medical applications,
e.g., Electronic Medical Record Software. As such, Org B’s teams spent most of
their time detecting the existing interdependencies such as version incompatibilities
between various software applications.

“There’s an old HP tools version and a new version, and the vulnerabilities are
coming up on the scan as with the new version. But the issue is because the old version
is still there which we should have got rid of earlier." - BT1, M14

The circular dependency represented a more complex semantic dependency in
security patch management. An example scenario was when software B is dependent
on software A, and software A uses software B to function (B ↔ A). In such cases
applying a security patch to A led to service unavailability of B as a result of rebooting
A to make the security patch take effect. In particular, effectively coordinating circular
dependencies was crucial in the healthcare domain as A and B could represent critical
medical services like emergency life support or surgery equipment.

“And there could be like A needs B to run, and vice versa but when we accidentally
took B offline that day, A didn’t work. That was when we all got goosebumps." - AT5,
M10-dis

On the other hand, some security patches required prerequisites to be established
before installation for the patch to take effect. In most cases, the prerequisites com-
prised registry changes and preparation package installation. We identify that it is
resulting from the patches that do not contain source code modifications, as explained
by Li and Paxson [137]. To investigate the prerequisites of the security patches re-
trieved each month, Org B allocated a specific time frame before patch testing and
discussed with Org A during the patch meetings how and when they would handle
the identified prerequisites. Coordinating the prerequisites was often a manual task as
it involved decisions about suitable configurations based on the organisation’s needs

84 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

and the other associated software dependencies. Failing to configure the prerequi-
sites led to errors that would halt a patch installation. However, we found that the
teams became more receptive to detecting prerequisite-related dependencies with the
continuous early investigation approach employed.

“The patches listed here needed a preparation package installed before the patching
window and then the reboot would have applied the patch. We’ll do that just before the
current patching window and then patching should proceed as normal without errors."
- BT1, M11

Besides the most common software-related dependencies, some security patches
also contained dependencies with the associated hardware and firmware giving rise
to hardware and firmware-related dependencies. For example, in one instance,
practitioners were unable to patch the security vulnerabilities found in virtual machine
(VM) software as the VM-related firmware was not up to date. So, they had to
regularly keep track of the existing dependencies and update the supporting hardware
and firmware accordingly before attempting patch installation.

“Some patches need a certain type of hardware to be at a certain level. There was
a 2008 security patch which we couldn’t install until we updated the firmware or the
utilities." - AT5, M10-dis

Social Dependencies

Social dependencies that stem from interdependencies between stakeholders are an-
other major category of dependencies integral to security patch management. Security
patching in large organisations is challenging due to the increased complexity stem-
ming from a high number of stakeholders. Therefore, effectively coordinating the
dependencies between multiple stakeholders is important for successful patch man-
agement. Our data analysis led to the emergence of two subcategories of social de-
pendencies: Internal stakeholder dependencies and External stakeholder dependencies
as illustrated in Figure 5.2.

Org A Org B

EMR

Security

Windows

Non-
Windows

Change
Management

Pathology

Technical
(distributed teams)

Non-
Technical

Organisation-level interdependencies

Team-level interdependencies Team-level interdependencies

Internal stakeholder dependencies
External stakeholder dependencies

End-users

Customers

Customer dependencies

Vendor dependencies

Vendors

Figure 5.2. The social dependencies present in the studied context.

5.4. Findings 85

Internal Stakeholder Dependencies - The two organisation’s stakeholders
worked together to achieve a common goal of securing the state’s healthcare system by
timely installation of security patches. Hence, the internal stakeholder dependencies,
in this context, relate to the dependencies stemming from the interactions between
stakeholders across Org A and Org B. We identified two layers of dependencies namely
team-level dependencies and organisation-level dependencies.

The current context displays a multiteam system (MTS) structure [118] as multiple
interdependent teams within each organisation collaborated towards a collective goal.
The interdependent team interactions gave rise to team-level dependencies. Since each
organisational team had assigned responsibilities, coordination between and within
teams remained pivotal to achieving the goals. In most cases, the inter-team tasks
contained dependencies that required management of the cross-team interconnections.
For example, Org A teams T1, T2, and T3, often depended on T6 to approve security
patch schedules before assigning them to Org B to be executed. Lack of awareness
of the roles and responsibilities complicated the coordination of team dependencies
causing delays of several weeks in patching known vulnerabilities.

“We are still waiting for an email from [P1] approving the manual patching process.
(BT1)
Well, I’m not sure whether it should come from [P1] or some other guy. I will confirm
it with [P2] and get to back you." - AT2, M8

Similar to the inter-team dependencies, organisation-level dependencies also cre-
ated several challenges for security patch management. The large-scale and heteroge-
neous nature of Org A created additional complexities to coordinating organisation-
level dependencies that often resulted in delays in patch testing and deployment. For
example, every security patch required approval from Org A’s Change Management
(T6) before they could be installed at the customer’s sites (i.e., hospitals). Given
the critical nature of the task, it was important to effectively coordinate it and leave
sufficient time for the customers’ agreements. It was needed to reduce the time of
service interruptions and manage technical dependencies.

“This morning [Org A’s] change manager said that the change hasn’t been ap-
proved yet. So, we had to suddenly change plans just minutes before the [scheduled]
patch window." - BT1, M10

External Stakeholder Dependencies - The involvement of external stakehold-
ers such as customers, end-users, and vendors is integral to security patch manage-
ment. Effectively coordinating the collaborative relationships and the dependencies
with external stakeholders is vital to a sound patch management process. In this
context, the external stakeholders consisted of customers (e.g., hospitals) and ven-
dors (e.g., Microsoft). The end-user dependencies consisted of hospital patients and
staff, hence, these were not directly linked to Org A and Org B. However, ineffective
coordination of customer dependencies negatively impacted end-users. For example,
uninformed operation interruptions to medical equipment resulted in inconveniences
to patients and medical staff. In contrast to internal stakeholder dependencies, man-
aging external stakeholder dependencies presented a much more difficult challenge to
practitioners. The main reason was the lack of a shared understanding of the impor-
tance of security patching and the visibility of the existing process interdependencies.

Vendor-Related Dependencies refer to the dependencies that are created due to
the need of installing security patches received from vendors. Management of vendor
dependencies became difficult with the presence of shared vulnerabilities and associ-
ated technical dependencies in software applications. This demanded coordination of
patch releases from the vendors of different software applications. Additionally, some

86 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

of Org A’s third-party applications were patched by external vendors, for example, the
medical application providers, as per the agreement at the point of purchase. Thus,
it required synchronising each vendor’s patching cycles to avoid the unavailability of
the interdependent systems.

“Regarding the recent concern from Security (T5) on [S1 server] patching is one
month behind, can we confirm this with [third-party vendor’s] requirements? Because
this vendor’s patching cycle is always one month behind, every month they release the
patches for the last month." - BT1, M17

Furthermore, missing, faulty, or exempted security patches and unknown errors
during patch installation increased the need for coordinating vendor dependencies
during patch testing, deployment, and post-deployment patch verification. Patch ex-
emption was when selected security patches were excluded from installation due to
legitimate reasons approved by Org A’s Security team. We observed several scenar-
ios of patching delays due to a lack of coordination of software dependencies with
exempted security patches that were managed by external vendors.

Managing customer-related dependencies with hospitals presented a challenge to
Org A and Org B teams, particularly when negotiating the patch schedules. Reaching
a consensus on a patch installation time was essential to minimise any potential impact
of service disruptions from reboots. However, an interesting observation was that
in a majority of cases, practitioners spent most of the time trying to communicate
to customers on the need to patch systems, as opposed to agreeing on the patch
installation time. It was due to the lack of understanding of the need to apply security
patches and the inability to accept the high risks of service downtime.

“A lot of customers don’t always understand the worth of security patching, they
just want to use the server, and keep asking; “why do you want to reboot it every then
and there, or why you got to update it? It’s working so leave it alone!" - AT5, M4-dis

Detailed planning and proper coordination were essential during patch installations
at hospitals. Since service interruptions are critical in the health domain, Org B team
members were required to complete the patch installations within a specified patch
window. Failure to do so, at times, resulted in even heated discussions between Org
A and Org B teams. An example scenario that resulted in an emergency at a hospital
due to ineffective coordination with hospital staff was that one of Org B’s system
administrators installing a patch to a surgical medical device forgot to inform the
hospital’s medical staff about the additional service interruption.

“For mission-critical and time-sensitive medical devices, we will actually ring and
check up with the nurse to make sure it’s not an issue to patch." - AT5, M3-dis

5.4.2 Constraints

This section presents the constraints that hindered the coordination. When the con-
straints affected the socio-technical dependencies, they caused coordination break-
downs. Hence, it is important to devise suitable approaches and tools for identifying
and managing the potential impact of constraints.

Legacy Software-Related Dependencies

Legacy systems pose a security threat to organisational ICT infrastructures, particu-
larly in mission-critical domains like healthcare. This is because most of the critical
services that run on legacy systems remain unsupported by vendors leaving them vul-
nerable to security attacks. Org A had several legacy systems like 2008 servers that
were no longer receiving security patches from Microsoft. Furthermore, the depen-
dencies with these legacy systems produced wider implications for security patching.

5.4. Findings 87

It resulted in practitioners being unable to patch until the dependent legacy systems
were upgraded to the current version or offered extended support from vendors. How-
ever, upgrading legacy systems required a critical evaluation of the impact on other
important services. In some cases, Org A had acquired extended support for critical
legacy systems through negotiations with the vendors. However, it presented practi-
tioners with the additional challenges of having to perform manual configurations to
install security patches as the current configuration settings did not work and some
installed patches got rolled back.

“There are 26 2008 servers still waiting to be patched this month. But there are
some servers that we need to have a look at why the patches aren’t applying. Even
though we have installed all the required preparation packages, they keep rolling back."
- BT1, M12

Similarly, prerequisite dependencies associated with legacy systems create hurdles
for timely patch installation. The major hindrance factor is the incompatibility of
software versions as security patches often contain interdependencies that require as-
sociated software versions to be up-to-date. Such uninformed dependencies led to
practitioners spending a considerable amount of time in patch meetings trying to find
solutions for version dependency-related challenges. Moreover, the incompatibilities
with version dependencies created additional difficulties during patch testing. In-
vestigating the right pre-installation packages with the correct versions presented a
daunting manual task for many practitioners that resulted in delays in patch instal-
lation and increased security risk.

“I found that those 46 IE-related vulnerabilities are 2008-related and everything is
running on IE 11. That was why the patch installation looked to be corrupt as we
couldn’t update it to IE 11 back when the updates happened." - BT1, M10.

Lack of Automation Support

The lack of suitable tool support presented a major constraint for the coordination of
the dependencies. One of the key constraints was the inability to oversee technical de-
pendencies across all systems inventory. The inability to identify the existing software
dependencies from the current tools resulted in practitioners spending hours trying to
find the current software versions in the event of errors during a patch installation.
Additionally, the lack of automation support to investigate the patch prerequisites as
mentioned in Section 5.4.1, caused delays and sometimes errors in installing patches
due to missing out on some registry changes.

On the other hand, the limitations on the features of the available support tools
presented constraints in detecting specific dependencies such as legacy dependencies
and their contextual categorisation. This could be because most of the tools available
to the studied teams focused on function-level patching assuming that vulnerable
code resides within only one function [136, 137]. For example, Org A’s decisions were
largely based on vulnerability scan reports. However, the existing scanning tool was
unable to filter the unpatched vulnerabilities resulting from legacy dependencies and
exempted patches, which constrained accurate decision-making.

“These vulnerability numbers will go down by as much as half since [scanning
tool] captures 2008 servers’ vulnerabilities as well. I don’t know whether we can do
exceptions through the tool, like flag things that are legacy, to make the numbers reflect
what we see." - BT1, M12

88 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

Increased Patch Load

As the organisation size grew, the number and diversity of systems also expanded
which resulted in increased complexity in the patching. Hence, the practitioners often
faced difficulties in keeping up with the patch release rate. Accumulated patch load
due to the previous patch exclusions added to the challenges as they had to patch
previously excluded patches in the following month. Correspondingly, an increased
patch load led to more socio-technical dependencies creating additional constraints on
coordination. Overall, it led to an increased risk of exposure to attacks as installing
security patches was often delayed.

“There’s just too much to check! We’re dealing with 1500 servers, we don’t have
time to look at each patch for every server like, “Yeah, this one is right, this isn’t.
Which servers have interdependencies that can’t be patched at the same time? Which
server has which version of this software, that software..." - AT5, M14-dis

5.4.3 Breakdowns

In this subsection, we report the scenarios that exemplify the breakdowns resulting
in the security patch management process from ineffective coordination of the socio-
technical dependencies and related constraints.

Sudden Escalations to Patch Schedules

Security patch installation within the allocated patch window is critical in a mission-
critical domain like healthcare to avoid unexpected service disruptions. Org A pro-
vided specific patch windows to Org B, usually 4 hours, to install the security patches
on production servers (i.e., operating in hospitals) after agreeing with the customers.
To adhere to the specified patch window while installing patches, Org B teams were
required to plan well ahead to establish each patch’s prerequisites, identify interdepen-
dencies, test the patches, and obtain management approval. As such, the miscoordi-
nation of these conditions would usually lead to unexpected escalations in the planned
patch schedules. Given the critical nature of the healthcare operations, security patch
installations going beyond the scheduled patch window resulted in devastating con-
sequences such as life-threatening risks to critical patients from additional service
unavailability even for a couple of minutes.

“We realised there’s a need to do a sudden change of configuration for [ISP] servers
at the time of patching, so our team had to escalate immediately to switch to manual
patching because some servers needed Windows approved patches to be rolled out." -
BT1, M12

Delays in the Organisation Approvals

All security patches needed to be approved by Org A’s change manager a month before
a patch installation to allow Org B teams to prepare in advance for installing a patch.
However, we observed some delays in approvals from the Change Management team
resulting in abrupt changes to patch installation plans such as shorter patch windows.
Such unforeseen changes invoked changes to the dynamics of socio-technical depen-
dencies resulting in breakdowns in the process. For example, having to install the
emergency security patches in shorter patch windows warranted re-testing of patches
to confirm that patch installation can fit into the shorter patch window, and obtaining
reapproval from customers to avoid unexpected service interruptions.

5.4. Findings 89

“We were ready for the patch deployment. But this morning [Org A’s] change
manager said that the change hasn’t been approved yet. So, if it isn’t approved prior
to the scheduled start time, we will have to reschedule it." - BT1, M10

Lack of Dependency Awareness from Localised Work Distribution

Org A and Org B teams had localised work distribution settings within their team
structures. Org A teams were located in the same office and Org B teams were
distributed across different offices in the same city. This structure led to the creation
of a lack of dependency awareness of the task assignments and progression between
teams. We observed this during status reporting in the meetings as some members
were unaware of the tasks progressing in the teams. Their lack of understanding
resulted in added challenges of coordinating the inter-team dependencies that inhibited
measuring the progression of security patch management tasks.

“I believe [P1 from AT2] is working on this issue at the moment. Do you know
when he’s likely to get that done? - (BT1)
Not sure, but I would be hoping by next week. I would contact him and let you know."
- AT2, M13

5.4.4 Mechanisms

This subsection presents a collection of strategies that have emerged from analysing
the data; the studied teams practised these mechanisms to manage the dependencies
while mediating the constraints.

Early Investigation of Interdependencies

Org A and Org B teams used patch meetings to discuss the findings from the investiga-
tions of the technical dependencies. Since the participants with diverse technical back-
grounds and expertise attended the meetings, this configuration enabled knowledge
sharing to collaboratively identify dependencies upfront. Failing to identify the de-
pendencies resulted in scenarios of installed patches not working as intended, patches
refusing to get installed resulting in rollbacks, and patches going beyond the allocated
patch window during installation. Early identification of dependencies helped practi-
tioners to coordinate the task dependencies among teams, and make timely decisions
to address the usual problems such as raising support cases to vendors seeking expert
advice and finding workaround solutions.

“From troubleshooting why the last two weeks’ patches hadn’t worked properly, we
can realise that each patch needed to be rebooted at the beginning. Since we failed to
do so, the current reboot may have applied the last month’s patches." - AT5, M14

Collaborative Decision-Making

Accurate and timely decision-making is pivotal throughout the patching process. The
studied practitioners used patch meetings as a platform to collaboratively decide about
vulnerability risk assessment and prioritisation, and approval of the patch decisions
and schedules. Collaborative decision-making helped the teams to maintain depen-
dency awareness about the decisions and to plan the associated tasks with minimum
impact of dependencies. For example, the decisions about patch exemptions involved
a collective assessment of the requests. Thus, the awareness of patch exemptions
helped the teams to plan their other patch schedules with limited dependencies to the

90 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

exempted patches, keep track of the exempted patches in the month and organise the
to-do patch list in the following month including them.

“The last item on the agenda is about the [s1] servers that are marked as excluded
from patching. We need to decide if they are being exempt from our patching list this
month or not because we haven’t got the official confirmation whether we’re doing the
patching or if the [third-party] vendor is doing it again?" - BT1, M13

Other examples of collaborative decision-making involved selecting the optimum
patch configurations based on organisational needs, and managing legacy software
dependencies. In most cases, the decisions for legacy software dependencies revolved
around the need for decommissioning or rebuilding legacy systems, when and how to
do it, and how to patch them following the rebuilds. Decisions about the patch sched-
ules for the approved patches helped the teams to coordinate the planning upfront
and identify the need for out-of-band (OOB) patching. OOB patching refers to the
need to allocate an additional patch window when some security patches require more
installation time than the allocated patch window due to the compound dependencies
involved.

Continuous Measuring of Progression

Org A teams measured the continual progress of vulnerability remediation through
Org B’s status reports in meetings and regular vulnerability scan reports. When the
scans indicated an increase in the number of vulnerabilities present in the systems,
the matters were discussed extensively to remedy the situation. The continuous mea-
surement of the progression enabled the identification of the outliers such as missing
patches resulting in the investigation of the causes and coordinating the associated
stakeholder dependencies with the third-party vendors.

“What is the status of internal [s1] server security vulnerabilities? - (AT5)
We’re getting our regular scans to measure that. That one is progressing quickly. We
will share the report next week" - BT1, M9

Frequent Communication

Frequent communication appeared to be essential for the effective coordination of de-
pendencies. It helped to erase boundaries between roles, teams, and organisations,
and increase cohesion and trust between stakeholders. Teams used various commu-
nication mediums such as bi-weekly patch meetings, email, and Skype. Additionally,
the studied practitioners held separate meetings to discuss critical and urgent mat-
ters that emerged in between patch meetings or when patch meeting discussions were
dragged beyond the allocated time. Patch meetings were the most preferred com-
munication medium as the teams felt more comfortable with direct communication.
Communication during patch meetings facilitated collaboration, knowledge sharing,
and information exchange about technical and socio-technical matters affecting the
patching process, for example, upcoming patch schedules, changes to patching plans
such as out-of-band patch schedules, and vendors’ patch release information. Regular
patch meetings benefited the teams in numerous ways such as allowing visibility into
task progression and assignments, staying proactive to potential issues about criti-
cal security vulnerabilities, and effectively coordinating security patch management
activities.

“[Security Advisor shares the vulnerability remediation progress report on screen]
We were averaging 75 high-risk vulnerabilities per server back in 2016 when I joined.
As you can see now, we’re down to 5 per server. Given the mix of environments we

5.5. Discussion 91

are dealing with, this is amazing. You can see that the frequent patch meetings making
a big difference!" - AT5, M10

Load Balancing

An important strategy employed by the studied teams to coordinate patch schedules
was load balancing. It was used to balance the patch load in servers at any given
patch installation time. Balancing the server load helped reduce service interruptions.
Patching dozens of servers at the same time significantly increased the risk of system
failure as all the servers go offline at the same time during reboots. Load balancing,
on the other hand, helped to run the critical medical services concurrently on another
server while the desired server(s) is being rebooted. However, the presence of technical
dependencies created difficulties in load balancing. In particular, for instances with
one-to-one dependencies such as (A → B), the practitioners had to rigorously analyse
the interdependencies before planning the load on servers to avoid unexpected system
downtime.

“Before we started with the load balancing, we patched 50 servers one night, and
just two the next night. So, I suggested we plan to load balance. But there’s a lot
to manage, especially when we have systems like system A that is redundant to B,
and oops! we accidentally took both of them down at the same time to patch." - AT5,
M10-dis

Centralised Vulnerability Risk Assessment

Regularly performing vulnerability risk assessment and prioritisation was necessary
as it could potentially differ from that of the vendor’s assessment based on the or-
ganisation’s environment. It aided practitioners to plan well in advance to promptly
respond to critical security vulnerabilities. To regularly monitor security vulnerabili-
ties, the teams devised a centralised role in Org A’s Security team (Security Advisor)
responsible for scanning and categorising the vulnerabilities based on teams’ own-
ership. Having a centralised structure helped maintain consistency in vulnerability
risk assessments across teams as well as reduce delays in vulnerability assessment and
prioritisation decisions. Additionally, frequent comparisons with the previous scans
assisted with evaluating the vulnerability remediation performance.

“[Security Advisor] gets the global rating of a vulnerability risk and re-assess it
to see if it’s critical to us and how it can be exploited. For medium to low risks, we
patch in the next cycle, but if it’s critical or we’re under attack, we’ll patch within 48
hours." - AT5, M10-dis

5.5 Discussion

In this section, we discuss our theory in comparison with the prior related work and
elaborate on the broader implications of our theory for practitioners and researchers.

5.5.1 Comparing to Related Work

Following Glaser’s advice [35, 36], we compare our theory with the existing literature.
The prior related work on this topic [2, 22, 54, 103, 106] primarily focuses on the
coordination and collaboration challenges but does not provide in-depth details of the
causes of coordination challenges or the potential strategies to address the coordination
challenges leading to delays in applying security patches. A few studies [59, 125, 126]

92 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

investigate the social dependencies concerning the involvement of multiple internal
and external stakeholders. Another set of studies [24, 60, 61, 103] exclusively focuses
on vendor dependencies that might arise from shared vulnerabilities in software code.
In particular, their main focus remains on optimising patch management by obtaining
an equilibrium of an organisation’s patch cycle with a vendor’s patch-release cycle to
minimise cost. An important observation is the absence of theories that focus on the
socio-technical aspects concerning security patch management delays in contrast to
quantitative models and frameworks [138]. This is an important point as the theories
provide “basic concepts and underlying mechanisms which constitute an important
counterpart to the knowledge of passing trends” [139]. In contrast, our theory derived
from the gathered data differs from these existing works in several ways as it:

• Explains the role of coordination in security patch management as incorporating
a multi-dimensional nature across four interrelated dimensions in contrast to
focusing on one type such as vendor dependencies reported in [24, 60, 61, 103];

• Explains the socio-technical dependencies that create the need for effective co-
ordination in security patch management going beyond reporting just the chal-
lenges with lack of coordination in the process [59, 125, 126];

• Explains the constraints that hinder the coordination of interdependencies and
shows scenarios of breakdowns resulting from ineffective coordination of causes
and constraints;

• Suggests strategies that can be used for effective coordination in the process;

• Offers a comprehensive overview of the impact of (in)effective coordination in
timely security patch management in a mission-critical domain like healthcare;

• Presents a theoretical model for future research, and,

• Provides guidance to practitioners to overcome patching delays and increase
confidence in their decisions.

5.5.2 Implications for Practitioners

The reported theory can be used to gain an in-depth understanding of the significance
and impact of the role of coordination in security patch management. Practitioners
can use this understanding to realise their roles and responsibilities in ensuring coordi-
nation effectiveness across different dimensions of the role of coordination. Moreover,
practitioners can use the theory as a guide to identify the related dependencies and
how they might affect their security patching process. Further, we have observed
that adopting these coordination mechanisms has resulted in a reduction in patch-
ing delays and the number of unpatched security vulnerabilities in Org A’s systems.
Hence, our findings may also be useful in exploring the suggested mechanisms in
other organisational settings. Additionally, practitioners can benefit from the early
detection of constraints and breakdowns to avoid failures and delays in security patch
management.

5.5.3 Implications for Researchers

Given a Grounded Theory study is considered to produce a “mid-ranged” theory based
on the contexts studied [44], other researchers can carry out an extension through
future research including a more detailed analysis of the present dimensions, new

5.6. Threats to Validity 93

dimensions discovered, or different contexts. Context-specific research investigating
how the role of coordination is impacted by contextual factors can result in useful
models of coordination in patch management [124, 140]. For example, organisation-
level dependencies may not directly apply to small organisations where security patch
management is usually handled by one team. Future studies can also investigate the
effectiveness of the coordination mechanisms and the context in which they should be
employed. The impact of organisational policies is often cited as one of the dominant
socio-technical challenges in security patch management [2, 20, 54, 59, 125, 141].
Similarly, future studies can explore how organisational culture affects the role of
coordination. Another possibility is to employ the findings in large-scale surveys to
evaluate the theory and identify variations in different organisation settings such as
in DevOps processes.

While this study is based on data collected from security patch management, the
findings can be directly beneficial to software development research. This is because
patch application is inherently dependent on patch development. An important point
to note from our theory is the need to consider the socio-technical aspect intrinsic
to patch management when developing patches (e.g., future work similar to Li et
al. [2]). We show that early identification of the dependencies is the key to avoid-
ing coordination-related patching delays and failures, but lack of automation support
presents a key constraint as previously mentioned for timely identification of the de-
pendencies [100]. Therefore, there is a need for research on how automation support
can be employed in dependency detection in patch development and management.
The findings also highlight the important need for further research and development
for advanced security patch management tools. For example, scanning tools can be
enhanced to customise the software dependencies such as excluding exempted patches
to provide real-time feedback that assists practitioners with accurate decision-making.
Accordingly, an evidence-based understanding of the role of automation in security
patch management would be beneficial to identify other areas of improvement relating
to advancing automation support in the process. Furthermore, our theory provides
an in-depth understanding of how the role of coordination impacts a mission-critical
domain, particularly, healthcare. An understanding of the causes of unexpected ser-
vice interruptions can help researchers to devise strategies to avoid such downtime.
While the research into dynamic software updating (DSU) [63] attempting to address
this issue is progressing, our results can be useful information for future research that
investigates the effectiveness of the developed strategy in mission-critical contexts.

5.6 Threats to Validity

In this section, we reflect upon the potential threats to the validity of this study and
discuss how we have mitigated them.

A Grounded Theory study does not affirm generalisation as the theory formulation
is pertinent to the studied context [35, 45]. The context of this study is limited to the
cases studied in security patch management in the domain of healthcare. Nevertheless,
we believe that our theory can be recreated in other contexts and modified.

In terms of data representativeness, our data collection is limited to the observa-
tions of patch meetings, post-meeting discussions, and analysis of meeting minutes
and patch mailing threads as described in Section 2.2.3 (Data Collection). We ac-
knowledge that more data sources such as interviews and surveys can be incorporated
into future studies to increase the scope of the analysis and verifiability of the theory
[142].

94 Chapter 5. A Grounded Theory of the Role of Coordination in Security Patch
Management

While employing Grounded Theory procedures permits the data analysis to be
grounded in collected data, there is a threat of subjectivity of the data analysis referred
to as the “uncodifiable step" [143, 144]. To alleviate this threat, we regularly held
internal discussions on the emergent findings throughout the study as described in
Section 2.2.3 (Data Analysis). In addition, the findings were further cross-checked with
a senior member of Org A’s security team to ensure we have accurately interpreted
the theory from the observed practices.

The verifiability of a grounded theory can be deduced from the robustness of the
research method, and evidence of theory formulation from its application [44]. To
confirm verifiability, we have described our application of the Glaserian version of
GT in detail (Section 2.2.3) and included quotations from the underlying data in the
findings (Section 5.4). These details provide evidence of how our theory meets the
GT evaluation criteria: the generated categories fit the underlying data (see Figure
2.5); the theory can work as it explains the main concerns of the participants in patch
meetings; the theory has relevance to the domain of security patch management; and
the theory is open to modification based on future studies in different contexts [36, 45].

5.7 Chapter Summary

In this Chapter, we present a grounded theory of the role of coordination in secu-
rity patch management. The developed theory explains the effects of coordination
in the security patch management process across four interrelated dimensions namely
causes, breakdowns, constraints, and mechanisms. Our theory is based on a longitu-
dinal Grounded Theory study of 51 patch meeting observations involving 21 indus-
try practitioners in two organisations in the healthcare domain over a duration of 9
months. We provide grounded evidence that the role of coordination in security patch
management represents a core concern, contrasting with a perception among the soft-
ware engineering community that automation and tooling alone can be sufficient to
achieve success in timely security patching and highlight the need to have a delicate
balance between the socio-technical concerns such as coordination and automation
to reduce delays in security patch management, which is often unrecognised in the
existing literature.

Overall, besides providing a holistic understanding of the role of coordination in
security patch management that is based on empirical evidence and grounded in prac-
tice, our study is the first attempt to investigate in-depth the socio-technical aspects
of security patch management in the mission-critical healthcare domain. The theory
provides important insights for practitioners to avoid patching delays and failures and
enhance confidence in their decisions, and for researchers to shape their work on patch
development to address the practical concerns in patch application. The findings can
also be used for developing the next generation of AI-enabled tools for supporting
effective coordination of the security patch management process.

95

Chapter 6

Automation in Security Patch
Management

Related publication: This chapter is based on our paper titled “An Empirical
Study of Automation in Software Security Patch Management", published in the
37th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2022 (CORE Ranking A*) [145].

In the previous Chapters 4 and 5, we observed that tools limitations and lack
of suitable automation have largely contributed to delays in security patch manage-
ment and caused constraints in effectively coordinating the process interdependencies
leading to further delays. Additionally, several other studies have also shown that
automation support for different activities of the security patch management process
has great potential for reducing delays in applying security patches. However, as de-
scribed in Chapter 5, it is also important to understand how automation is used in
practice, its limitations in meeting real-world needs and what practitioners really need,
an area that has not been empirically investigated in the existing software engineering
literature. This chapter addresses this gap by reporting an empirical study aimed
at investigating different aspects of automation in security patch management using
semi-structured interviews with 17 practitioners from three different organisations in
the healthcare domain. The findings are focused on the role of automation in security
patch management providing insights into the as-is state of automation in practice,
the limitations of current automation, how automation support can be enhanced to
effectively meet practitioners’ needs, and the role of the human in an automated se-
curity patch management process. Based on the findings, we have derived a set of
recommendations for directing future efforts aimed at developing automated support
facilitating human-automation collaboration for addressing the current gaps and user
needs for timely security patch management.

96 Chapter 6. Automation in Security Patch Management

6.1 Introduction

Failure to install security patches to the identified software vulnerabilities usually re-
sults in disastrous consequences as a result of successful cyberattacks that particularly
target software systems in mission-critical domains such as healthcare [10, 11]. Several
studies [1, 110] report that available but not installed security patches are one of the
main reasons for such successful cyberattacks, for example, the Heartbleed security
bug that remained unpatched in systems for several years [146]. In our study reported
in Chapter 4 to understand the reasons for delays in applying security patches in prac-
tice, we identified that the limitations in current tools and lack of suitable automation
leading to the need for human intervention in several activities of the security patch
management process give rise to many delays in security patching. Further, in our
attempt in Chapter 5 to understand and provide a solution framework addressing the
most prominent cause of the delays, i.e., ineffective coordination in the process, the
lack of automation support presented a major constraint in effectively managing the
socio-technical interdependencies leading to further delays.

Additionally, like other areas of software engineering [147, 148], it has been claimed
that automation has great potential for significantly improving the effectiveness and
efficiency of the security patch management process to minimise the delays in apply-
ing available security patches [108]. That has led to increased enthusiasm for devising
and integrating automation support in different activities of the security patch man-
agement workflow. For example, automated approaches/tools for patch information
retrieval [149, 150], vulnerability scanning [151, 152], assessment and prioritisation
[151, 153], patch testing [25, 104], patch deployment [108, 154] and post-deployment
patch verification [125, 155]. Despite these research efforts producing promising results
for streamlining different activities of security patch management by providing auto-
mated solutions, delays in real-world security patch management still exist [23, 156].
We assert that it is important to empirically understand the current status of au-
tomation, the real-world issues facing the current automation and the practitioners’
needs for improved automation support to develop suitable automated approaches
and tools for effectively reducing delays in security patch management. To the best
of our knowledge, there is little empirically known about these aspects of automation
for security patch management.

Motivated by the need to empirically understand the role and user needs of au-
tomation for reducing delays in security patch management, in this chapter, we con-
ducted an empirical investigation using in-depth semi-structured interviews with 17
practitioners from three organisations in the healthcare sector. We followed the Straus-
sian version of the Grounded Theory data analysis method [34] to systematically un-
cover the findings in a bottom-up approach. Our study findings contribute to the
state-of-the-art understanding of research and practice by:

1. Providing an evidence-based understanding of the as-is state of automation in
security patch management by describing the current manual and automated
tasks in the process;

2. Identifying the limitations of the current automation in practice;

3. Informing how automation support can be enhanced in effectively meeting prac-
titioners’ needs;

4. Explaining the role of the human in security patch management automation
identifying the tasks and points in the process in which automation needs to
facilitate a human-in-the-loop approach; and

6.2. Related Work 97

5. Discussing the future avenues of research and providing a set of recommendations
that can guide tool designers and researchers to address the identified gaps and
user needs towards reducing patching delays.

Chapter Organisation: Section 6.2 summarises the related work. Section 6.3
presents the research questions of the study and describes the research method. Sec-
tion 6.4 reports the results of the study. In Section 6.5, we discuss the study findings
and their implications for practice and research and present our recommendations for
future work. The limitations of the findings are presented in Section 6.6. Finally,
Section 6.7 concludes the study.

6.2 Related Work

Although no work has specifically investigated the role of automation in the process in
practice, the previous research has invested efforts aimed at providing automation for
security patch management activities to bring efficiency into the patch management
process and reduce delays [25, 104, 108, 125]. Most of the previous efforts focus
on automating specific tasks in security patch management, rather than supporting
the end-to-end process [54]. A few studies have proposed solutions for automated
patch information retrieval from multiple sources [149, 157], customised information
filtering [149, 158], information validation [150] and patch download and distribution
[150]. For vulnerability scanning, a central platform integrating the scan results from
multiple information sources has been suggested [152, 151]. Towards vulnerability risk
assessment and prioritisation, researchers [151, 153, 159] have proposed customisable
tools/approaches for vulnerability risk analysis in line with the industry standard, the
Common Vulnerability Scoring System (CVSS) [86].

Towards patch testing, a set of tools have attempted automated detection of faulty
[25, 104] and malicious patches [160, 161]. However, only limited attention has been
given to recovering from crashes that result from faulty patches with minimum disrup-
tion. Several studies focus on automating patch deployment [157, 162]. To minimise
downtime and service disruptions, several approaches have been developed; such as
dynamic software updating (DSU) [63], JIT patching [108] and instant kernel updates
[154]. For post-deployment patch verification, automated approaches for verification
of patch deployment [125], detection of exploits [163], and repair of past exploits
[155] have been presented. An important observation is that only a few studies have
rigorously evaluated the proposed solutions in real-world contexts [54, 69]; an impli-
cation of little empirical understanding of how well the solutions have addressed the
practitioners’ needs.

Meanwhile, another set of studies has investigated the socio-technical aspects re-
lating to security patch management, particularly the patch management process and
its challenges [2, 20], the role of coordination and collaboration [22, 56, 59, 103], sys-
tem administrators’ practices, behaviour and experiences [2, 20, 25, 109, 110], and
reasons and mitigation strategies for delays in security patch management [100]. The
understanding of the socio-technical aspects is considered important as security patch
management is essentially a socio-technical endeavour whereby humans and technolo-
gies continuously interact for enabling team members to effectively coordinate and
collaborate using the available tools [54]. An important observation is the highlighted
need for human involvement in the patch management process despite the advance-
ments in automation to reduce patch management delays [2, 20, 25, 54, 104, 105, 152].
However, why human involvement is needed in process automation and the desired
balance between automation and human involvement has not been investigated.

98 Chapter 6. Automation in Security Patch Management

Our work distinguishes itself from the above-mentioned works as it purports to
provide a holistic understanding of the role of automation in security patch manage-
ment grounded in evidence gathered from practitioners. We explain how practitioners
have integrated automation into the security patch management process by describ-
ing the automated and manual tasks in the workflow, the limitations of the current
automation in meeting practitioners’ needs, how automation support can be improved
to assist practitioners, and the roles of humans in process automation, i.e., why and
where is human involvement needed. Given the criticality of timely security patch
management, these findings will provide a solid foundation to propose practical so-
lutions that can address the limitations of current automation support for timely
security patch management.

6.3 Research Method

This study was aimed at understanding the role of automation in security patch
management in practice. We conducted a qualitative study using semi-structured in-
terviews that are expected to enable us to gain a better understanding of real-world
practices through practitioners’ perspectives. To achieve this goal, we developed the
following research questions (RQs):

RQ4.1. What is the as-is state of automation in security patch manage-
ment?
This RQ focuses on understanding the current state of automation in practice by
identifying which security patch management tasks are currently supported by au-
tomation.

RQ4.2. What are the limitations of current automation?
This RQ focuses on identifying the limitations of the current automation/tools to
understand how well the current automation meets practitioners’ needs.

RQ4.3. How automation in security patch management can be en-
hanced to support practitioners?
This RQ aims at understanding the kind of support practitioners expect from im-
proved automation. This knowledge is important to design future tools to effectively
meet practitioners’ needs.

RQ4.4. What is the role of the human in security patch management
automation?
This RQ focuses on understanding the roles humans play in security patch manage-
ment automation and the reasons demanding human involvement. Such understand-
ing can help in identifying the tasks for which future automation can be designed to
facilitate a human-in-the-loop approach.

We collected data through semi-structured interviews with 17 practitioners from
Org A, B and C, and used Strauss and Corbin’s GT version (Straussian GT) [34]
for data analysis. The details of the data collection and analysis were described in
Section 2.2.2.

6.4. Results 99

6.4 Results

This section reports our study’s findings for different aspects of automation in secu-
rity patch management. We describe the as-is state of automation in the security
patch management process in Section 6.4.1, limitations of existing automation in Sec-
tion 6.4.2, practitioners’ desires for enhanced automation support in Section 6.4.3,
and the role of the human in process automation in Section 6.4.4.

6.4.1 As-Is State of Automation in Security Patch Management

Our findings to answer RQ4.1 reveal that whilst some tasks of security patch man-
agement have full or partial automation support, several of the tasks are carried out
entirely manually. Figure 6.1 summarises the current state of the automation reported
by the participants characterised by each process phase (shown in Figure 3.1(b)). We
describe how practitioners have integrated automation into the main tasks and the
tools below.

Patch Information Retrieval from Third-Party Vendors

Most patch deployment tools automatically retrieve the patches from third-party ven-
dor sites and distribute them to the patching towers. However, learning about new
patch releases is a manual task whereby practitioners proactively search for patch
release information using various sources such as direct vendor calls, security profes-
sional mailing lists, community Slack channels and online forums.

“The [vendor] schedules a call monthly for his premium customers. Then there’s a
security professionals’ community where we share intelligence on incidents happening.
For example, mid-last year, a Microsoft patch caused problems on the printer and it
was highlighted in that forum. So at least we had some forewarning to minimise the
business impact." - P9

Vulnerability Discovery through Scans

A dedicated role is established for centralised vulnerability scanning for increased re-
liability in vulnerability risk assessment and reducing delays in patch decisions. Vul-
nerability scanning involves performing scans to locate the assets on the network and
finding vulnerabilities in the assets which are automated using the tool “Tenable.sc"
[164]. The practitioners schedule the vulnerability scanner (e.g., Nessus [165]) to
perform the scan and retrieve the results through automatically generated reports.
However, identifying the potential locations of a known vulnerability sometimes re-
quires manual effort; for example, writing a script to query what DLLs or java files
the machine had in certain locations to find the locations of the Log4j vulnerability
[166] as echoed by P13:

“We wrote a small batch file to query what DLLs or java files the machine had in
certain locations and pushed out to all the servers and executed it without the tool. It
created a results file locally on the machine and that was scraped and analysed later."
- P13

Vulnerability Risk Assessment and Prioritisation

Based on the understanding of existing system vulnerabilities through the scan re-
ports, practitioners manually perform the risk assessment and prioritisation to decide

100 Chapter 6. Automation in Security Patch Management

A SAutomated Manual Semi-automated (automated and manual)M

Retrieve patches from third-party vendors

S

M

M

A

A

M

M

Patch
information

retrieval
phase

Vulnerability
scanning,

assessment
and

prioritisation
phase

Patch
testing
phase

Patch
deployment

phase

Post-
deployment

patch
verification

phase

Overall
process

Learn about new patch releases

Identify potential locations of a known vulnerability
Scanning to find vulnerabilities on network assets

Assess vulnerability risk based on the context
Prioritise patches on vulnerability severity and impact
Decide the need for patch window extensions based
on risk assessment
Decide risk mitigation strategies for delayed, missed
or legacy-related patches

Changing configurations in the machines
Identifying patch prerequisites

Patch information retrieval from third-party vendors

Vulnerability discovery through scanning

Vulnerability risk assessment and prioritisation

Planning and preparation for patch deployment

Handling patch dependencies
Server commissioning
Scheduling patch windows

Testing patches for accuracy and unintended effects
Preparing the test environment to replicate the
production environment
Testing patches on the test environment
Handling patch testing errors

Deploying patches to machines
Automated deployment
Automated deployment with human monitoring
Manual deployment on critical services (i.e., manually
stop, patch and restart)

Verifying the success of patch deployment

Handling post-deployment issues

Patch defect management

Running post-deployment scans

Identifying the root cause of the issue
Identifying the impact caused by the issue

Management of faulty patches
Incident management (logging, tracking to-do requests)
Coordination of tasks during the processM

A
A

M

A

M

M

M

M
M
M
M

M
M
M

M

A
S

Figure 6.1. The as-is state of automation in each phase of the se-
curity patch management process. The bold text in the right column
denotes the main tasks in each phase and the sub-tasks are listed un-

derneath.

on patching. This is because the existing scanners fail to incorporate the organi-
sational context and needs which are required for an accurate representation of the

6.4. Results 101

risk.
“The security risk assessment is based on multiple factors, for example, the CVSS

score and how easy it is to exploit within our organisation. We also look at if there’s
a particular exploit in the wild that will put more urgency on applying this patch." -
P9

Patch prioritisation is based on the vulnerability severity and impact. The need
for patch window extensions is decided based on the risk assessment as some security
patches could have a wide impact on several other services, for example, Log4j vul-
nerability [166]. The security team then delegates the vulnerability remediation tasks
to the relevant teams based on ownership. In cases such as delayed patch releases,
missed patches in the previous cycle or legacy software-related vulnerabilities, practi-
tioners collectively discuss suitable risk mitigation strategies (e.g., building firewalls,
changing registry settings, configuring OS to harden against vulnerabilities, server
clustering and upgrading the legacy systems). The vulnerability remediation progress
is evaluated by comparing the vulnerability scans over time for strategic planning to
improve the process efficiency.

Planning and Preparation for Patch Deployment

In preparing for patch deployment, the practitioners engage in a set of tedious man-
ual tasks involving changing configurations in the machines, identifying the patch
prerequisites, handling patch dependencies, server commissioning (i.e., the process of
building servers ready for deployment), and planning the patch schedules. In this,
identifying patch prerequisites and scheduling tasks are perceived as the most chal-
lenging, necessitating significant manual overhead.

A lot of security patches generally have prerequisites that demand a set of con-
figurations (e.g., registry changes, group policy object (GPO) changes, preparation
package installation) to be configured prior to patch deployment for the patch to take
effect during the deployment. Identifying prerequisites is considered a daunting man-
ual task because they are identified by extensively reading through the patch release
notes, knowledge base (KB) articles or information on the vendor’s website. Besides,
it is prone to missing some prerequisites, which results in deployment errors. As a
result, significant effort is needed to redeploy the patches through out-of-band (OOB)
patching (i.e., outside the scheduled windows). On top of that, identifying the cause
of deployment errors as missing prerequisites is an equally challenging task since the
tools are incapable of detecting the issue.

On the other hand, scheduling a patch window involves a series of tasks of extensive
planning and organising with external stakeholders. Some participants use a third-
party integrated risk management solution (e.g., Archer GRC [167]) for organisational
governance and compliance with industry regulations; however, configuring the tool is
a laborious task. The others manually schedule patches using an Excel spreadsheet.
Due to the vast information and lack of automation support, identifying which servers
need which patches, approving the changes and, load balancing (i.e., balancing the
patch load on servers to reduce service interruptions) require arduous administrative
overhead and a lot of discussions during patch meetings.

“I do a lot of manual work to get the tool ready for patching. Every month, I
export the information of 1800 servers from CMDB to a large sheet with 27 columns
and go through it to find the windows. It’s quite a complex and time-consuming task,
and if I make a mistake with one formula, it can affect the whole process." - P13

102 Chapter 6. Automation in Security Patch Management

Testing Patches for Accuracy and Unintended Effects

For most participants, patch testing is a challenge as it is a time-consuming and
strenuous manual process. The participants perform testing in dedicated testing en-
vironments (e.g., “Dev", “Test" and “Pre-prod") before rolling out the patches into
production (“Prod"). However, due to resource constraints, client machine patching
typically employs a staged deployment with a 10:30:60 rollout (i.e., systematically
deploying patches to clusters of 10%, 30% and 60% of machines without testing).
Preparing the test environment to replicate the “Prod" is also a laborious task due
to shared access resulting in too many interdependencies. Additionally, patch testing
errors are handled manually, which generally occur owing to a broken dependency. As
a result, the practitioners spend hours organising the testing with other teams that
owned the dependent services.

“If we find that the patch has an interdependency with an application, then my
team has to work internally with the related teams to deploy the patch from Dev, Test,
Pre-prod through to Prod which needs a lot of coordination." - P11

Additionally, errors during patch testing are also handled manually. Generally,
errors occur because of a broken dependency. When the practitioners are unable to
fix the error, they aim at finding workarounds to resolve the vulnerability risk without
installing that particular patch or replan the testing.

Deploying Patches to Machines

Patch deployment is largely automated, however, in critical scenarios, it is shifted
to semi-auto or manual depending on the level of human intervention needed. Au-
tomated deployment, referred to as auto windows by the participants, is when the
patch deployment and rebooting of the machine are done with no human interfer-
ence. The participants use several third-party patch management software like Ivanti
(server) [168], SCCM (server) [169], WSUS (server) [170], and VMware Workspace
ONE (desktop) [171] for deploying patches based on their needs and budget. On av-
erage, 67% of the servers (i.e., 1200/1800) are patched automatically. However, the
success of automated deployment relies on the accuracy of server information fed into
the tool and tool configuration.

In an issue during automated deployment (e.g., the application not automatically
restarting upon the server reboot), it is switched to semi-auto allowing practitioners
to log into the machines to monitor the patching job while trying to investigate the
issue. Semi-automatically patched machines are assessed for any recurring errors in
the next patch cycle and moved to the auto group based on the success. On average,
11% of the servers (i.e., 200/1800) are patched semi-automatically.

Meanwhile, 22% of deployments, i.e., 400 of 1800 servers on average rely on
decision-making that is extremely challenging or impossible to be automated; hence
those systems are patched manually. One example is when a patch is deployed to
a critical server that provides life support to patients or an ambulance service. For
example, “we can’t automatically shut down a system in the middle of an ongoing
mission. So we tell the client we need to reboot the system and it’ll be out for X time.
They might say no, we’ve got four missions going on. So in such cases, there’s no
way automation is ever going to work there." - P6

Verifying the Success of Patch Deployment

The main verification technique used is scanning the systems post-deployment; the
commonly used tools are Ivanti [168] and Tenable.sc [164]. The practitioners run

6.4. Results 103

a post-deployment scan overnight which generates a report presenting the summary
statistics. The report is then analysed to identify the success of deployment and if any
patches have been missed. Interestingly, the participants reported that they target
99% coverage of the server fleet as the remaining 1% is usually never completed due to
various reasons such as legacy systems. Other verification techniques are monitoring
the system performance for a few weeks and collecting user feedback after an issue
has been identified post-deployment.

Handling Post-Deployment Issues

Handling post-deployment issues involves two manually performed activities: identi-
fying what caused the issue and how wide the impact it has caused. Some common
troubleshooting incidents are identifying why the patched systems are not (re)starting
or performing as expected and why some patches have been missed during the de-
ployment. Participants use various troubleshooting mechanisms such as collecting
system log information, gathering end-user feedback, obtaining information from on-
line sources (e.g. forums, news, mailing lists), investigating for errors in the process,
patching tool and production environment, recreating the issue to monitor its symp-
toms (e.g., when and how was the issue created), debugging error messages, shutting
down service to identify the impact on dependent systems, and reaching out to the
software vendor for assistance. Identifying the impact of the issue is important for
deciding on the appropriate mitigation actions. The impact is initially measured in
terms of the number of client complaints received and vendor announcements. The
gathered information is then analysed to calculate the risk and identify the potential
workarounds (e.g., rollback) to enable service continuity.

“It’s a real pain in the bum to have patches fail because it can be quite intensive.
We’ve had months where we had to roll back 20, 30, and 40 servers. And that’s when
it gets really ugly because the rollbacks are expensive like a full virtual server restore."
- P15

Patch Defect Management

Since there is no end-to-end solution that caters to the needs of all phases in the
process, the participants use multiple tools to handle different tasks in the workflow.
To manage the patch defects identified during patch testing through deployment to
verification, participants use an in-house application life cycle management (ALM)
solution. Incident management (i.e., logging and management of to-do patching re-
quests) is supported by different tool choices such as third-party IT Service Man-
agement tools (e.g., Marval [172]) and in-house solutions. However, the coordination
of tasks between teams is primarily done manually. General communication around
patch management is through regular patch meetings, email and Microsoft Teams
chats while keeping track of task progress is achieved through Word documents and
Excel spreadsheets.

6.4.2 Limitations of Current Automation

This subsection presents the limitations of the current automation/tools to answer
RQ4.2. An understanding of the current solutions’ limitations is important for iden-
tifying the areas of improvement for addressing the identified limitations as discussed
in Section 6.5.

104 Chapter 6. Automation in Security Patch Management

Limited Support for Dynamic Environment Conditions

Whilst many vulnerability management tools claim to have supported automated vul-
nerability assessment, they do not capture the dynamic context factors in vulnerability
assessment leading to an inaccurate risk assessment. That is why practitioners are
required to do the heavy lifting for risk assessment incorporating the organisational
context. In addition, the current automation lacks adequate support for accommodat-
ing sudden changes in the schedules, for example, out-of-band (OOB) patching (i.e.,
outside the scheduled windows). Whilst many participants desire automation support
to adapt to unforeseen changes, some believe that the coordination among different
stakeholders and decision-making in such cases depend on human intuition which is
difficult to be automated.

“Automation, while great and saving time, also reduces the chance for special
requirements, interaction and coordination with the business when things suddenly
change. We have to work out what we can patch automatically and what still requires
coordination with the business and all those things." - P14

Lack of Proper Support in Process Workflows

Limited support for patch deployment preparation warrants significant effort for read-
ing through release notes to identify patch prerequisites. Correspondingly, limited
support for handling patch dependencies seems to be a common complaint. The lack
of a holistic view of the system interdependencies requires practitioners to spend a
significant amount of time and effort in identifying the dependencies during testing
and troubleshooting deployment issues. The absence of automation support to han-
dle legacy software dependencies creates further complications, often leading to delays
in restarting services to avoid system breakdowns. Another drawback is the lack of
support for detecting the need for multiple reboots. Although the tools are capable
of automatically executing the scheduled reboots, identifying how many reboots are
required is a manual task.

The current tools do not support identifying and remedying the service interrup-
tions caused by incompatible dependencies during deployment. As a result, practi-
tioners are forced to adopt effort-intensive workarounds to minimise resultant service
disruptions. A lack of real-time report generation detailing the deployment errors
leads to a lack of interpretability in verification leaving practitioners to spend hours
troubleshooting the root cause of an issue.

“Some tools are chosen because of the practicality, not because it’s the evergreen
solution. Sometimes automatically deploying a patch becomes impossible when the
application does not restart correctly due to a broken dependency. So, we often do a
very tedious manual process to stop, patch and restart the services." - P2

Lack of Accuracy of Output

Another deficiency is missing information (e.g., skipping some patches) in scanning
leading to incorrect vulnerability reports. According to P4, discrepancies in the scan
reports can be caused by a failure in running the scan completely or some information
may be missing from the scan report. Inaccurate scan reports thus result in inaccurate
vulnerability assessment leaving the system exposed to a myriad of attack opportu-
nities. Lack of capacity to detect mid-cycle patch releases (i.e., superseding patches
released during the patch cycle) is another limitation that leads to false positives in
the scan reports.

6.4. Results 105

“In cases of superseded patches, the tool reports them as missing patches. So we
had to go through Microsoft’s catalogue to find out that those patches have superseded
the previous patches and notify the security team that this is what has happened." -
P5

Lack of Scalability in Tool Design/Architecture

The lack of a unified platform to deploy patches to heterogeneous environments (i.e.,
multiple operating systems, dependent applications, etc.) is an important infrastruc-
ture limitation of existing tools. Microsoft SQL is a classic example that results in
great annoyance for practitioners, forcing them to shift to manual deployment or jug-
gle between several tools leading to often missing out on patches during deployment.

“The tool has only a finite number of products that it can patch. Imagine the
trouble when I have hundreds of products but it can only patch half. It’s not just the
OS that you patch, you’ve gotta patch Office, Adobe drivers and whatnot, has it got
WinZip? Creative Writer? or other third-party Oracle, Java, you know, there are so
many little things to think about. " - P10

Another concern is the performance limitations in terms of the lack of capacity
to run parallel deployment jobs and execute multiple reboots on different servers
simultaneously. These limitations demand practitioners to spend a lot of effort in
careful planning to cope with the time and service availability constraints.

“The tool at times has failed to launch two new jobs at once so we’ve had to
stagger the jobs. In other words, there wasn’t enough IO shoot enough jobs out in a
given window." - P15

Service Disruptions During Patch Deployment

A key limitation of the current automation is the service downtime resulting from
reboots forcing practitioners to rely on workarounds like server clustering and failovers.
Despite the constant struggle to minimise service disruptions, the workarounds also
require extensive effort for planning and execution. Similarly, the necessity to do
multiple reboots in some cases is a frequent frustration given the narrow patch windows
and extended service interruptions.

“It’s very challenging as the application is unable to support redundancy or high
availability. If you take one server down then the technology should be able to continue
to run." - P2

Lack of Usability

The notifications indicating an error in the current patch deployment tools do not
suffice for the level of understanding required for participants to detect errors. The
lack of meaningful error messages leads to insufficient information for troubleshooting
deployment failures causing practitioners to spend significant time and manual effort
“finding where to look for what" (P10).

“It’s scary when something breaks after patching because no one knows where to
start looking. So someone has to look at the error messages to understand what it
means. How do you automate something if you don’t know what you’re looking for?"
- P10

106 Chapter 6. Automation in Security Patch Management

6.4.3 Practitioners’ Needs for Enhanced Automation

This section answers RQ4.3, the desires expressed by the participants in response
to the interview question “what tasks do you wish would have been better supported
by the technology and how?". We raised this question to better understand what
practitioners really need to fill the gaps in the current automation to effectively meet
their needs.

Automation Support for Patch Information Management

The participants desire a single platform for retrieving trusted patch information
from multiple sources covering new patch releases, mid-cycle releases, delays in patch
releases, and potential patch adverse effects. Such a platform would assist them in
making informed decisions about the patch application, the level of testing required
and finding workarounds for potential adverse effects.

Additionally, the participants wish that a system provides an analysis of the po-
tential impact of new patches based on the patch information retrieved from external
sources. P3 recalled a situation wherein they spent significant time searching through
public forums to find out about a faulty patch release.

“There was a Windows OS security patch rolled out this week that prevented
Windows 10 desktops from being able to print on Windows 2003. The patch didn’t say
exactly what it was doing, just that it’s a security patch, but behind the scenes, it has
changed the protocol." - P3

Central Platform Integrating Vulnerability Scanning and Risk Assessment

The participants reported the need for enhanced filtering and customisation on vul-
nerability scanning that enables better filtering and information sorting to identify
outstanding vulnerabilities at a glance. Additionally, the compiled wish list includes
the ability to easily search through a myriad of vulnerabilities to track the remediation
status and generate scan reports with better visualisations as the current report only
provides summary statistics in Excel spreadsheet format. Another need is the capa-
bility to integrate vulnerability scanning and assessment reports with other tools such
as the configuration management database (CMDB). While some existing platforms
(e.g., Archer GRC Solution [167]) enable practitioners to view the reports generated
through the vulnerability scanner, it requires a lot of manual effort on the customisa-
tions.

“If the tool could communicate directly to [the scanner], then we can do some bet-
ter filtering and information sorting. And if it can be linked to our internal knowledge
bases, no need for manually tracking or storing with any individuals." - P4

Automated Preparation for Patch Deployment

The need for automation support for identifying the patch prerequisites was high-
lighted by many participants. As described in Section 6.4.1, detecting prerequisites is
currently a manual effort of reading through the release notes. However, the execu-
tion of prerequisites is considered difficult to be automated as selecting the optimum
configuration needs reasoning based on the environment, therefore demanding human
intervention.

“The tools do not consider what vendors have written in their release notes.
The release note may say, to complete this patching, you also need to set up this
configuration in this manner, and a lot of times this is missed. So a system that

6.4. Results 107

can flag which patches require manual intervention to adjust settings would come in
handy." - P9

Another requirement is better automation support for patch testing with the flex-
ibility to easily configure the test environment depending on the patch dependencies.
This presents an additional requirement which is automation support for detecting
dependencies, for example, a dependency graph visualising the system interdependen-
cies.

Automation Support to Articulate Patch Scheduling

Another noteworthy desire from many participants was automation support for ar-
ticulation work in patch scheduling as it involves a series of cooperative tasks (as
described in Section 6.4.1). The existing tools lack support in managing the integral
set of patch scheduling tasks. The participants desire a single dashboard view of all
patch schedules enabling easy identification of patch windows based on availability,
modification of schedules, tracking status and schedule changes, interactive commu-
nication between stakeholders, and integration with the patching tool to export the
schedules straight to deployment. Such a platform would assist in articulating patch
scheduling and rescheduling tasks among distributed stakeholders to speed up patch
deployment.

Automated Patch Deployment With Better User Control

Whilst the current tools are capable of automated patch deployment, the participants
expressed the need for enhanced automation with more user control in the capabilities
described below. Reduced or no system downtime to address the challenges of service
disruptions during reboots and exhaustive manual overhead of the stop-patch-restart
process described in Section 6.4.2.

“It would help a lot if there’s a way of figuring out non-rebooting patches so that
we could patch and keep going and it wouldn’t matter when you patch as much." - P8

The capability to automatically execute simultaneous multiple reboots on multi-
ple servers is preferred as the current manual activity often leads to missing them
leaving practitioners with “no way to catch up" due to time and resource constraints.
Another need is a unified platform capable of supporting patch deployment across
heterogeneous environments, particularly beneficial in alleviating obstacles associated
with shared access in an environment. In addition, a few participants indicated the
need for improved usability of patch deployment tools with increased efficiency.

“I guess the idea of automated patching is at a more holistic level and it’s not
well known in the enterprise context. It’s an interesting one because you don’t like a
tool because of technical limitations is one thing but an experience of a customer is
an entirely different vector of thought associated with a tool. I mean, yes, we can tick
some boxes in the tool and be happy because they’re all ticked but if it’s not easy to
use, what’s the point then." - P1

Automated Patch Deployment Verification And Recovery

Several participants expressed the need for improved automation for verifying patch
deployment and detecting post-deployment issues, particularly reporting. This need
was emphasised by many as the current verification tasks require significant manual
overhead thus often leaving them neglected. Real-time reporting is preferred by the
participants over monthly summary reports as it enables detecting and responding

108 Chapter 6. Automation in Security Patch Management

to issues promptly. Additionally, providing meaningful error messages to aid the
troubleshooting and automated recovery of patch deployment failures is also desired.

“Verification of the deployment would be the biggest plus, so we wouldn’t find
an issue a week later. And then better reporting on the patching success and the
exceptions. A summary at the end of the month to me is a waste of time, I want as
close to real-time." - P10

Improved Configuration Management Database With an Overview of Sys-
tem Interdependencies

A configuration management database (CMDB) displays the configuration items (e.g.,
server, application, router, etc.) in a managed environment and how they interact with
each other. As mentioned by P1, “a good CMDB will have whatever you want in there,
whereas at best we have got a list of servers that may or may not be up to date with no
relationships between them. It is something that helps you make informed decisions,
especially around change management, be it patching or otherwise. I think that is
an important vector into patching and the culture of how stressful it makes people".
The participants indicated the need for an improved CMDB providing a real-time
overview of the system’s patch state including information about the server status,
patched date, decisions (e.g., server exemptions), and better filtering.

A single view of system interdependencies would be helpful to reduce the man-
ual overhead of handling issues, particularly legacy software dependencies wherein the
current process relies on human knowledge and expertise. It also facilitates the under-
standing and coordination of manual patching and patch scheduling between teams,
thereby reducing the delays and risks of additional outages to critical services. A few
expressed their desire for predictive analysis on the impact of patch dependencies, for
example, predicting the list of interdependencies that could potentially be impacted
by a particular patch to guide practitioners in patch testing.

“For systems that are 20 years old, it’s pure luck if there’s somebody who knows it
is still around. If not, there’s no formal process to follow in the absence of architectural
design documents. So during decommissioning, we will shut them down for two weeks
and then wait to hear who complains because we don’t know who relies on what." -
P14

6.4.4 Role of Human in Process Automation

This section answers RQ4.4 by describing the crucial roles of humans in the secu-
rity patch management process automation and explaining why and where human
involvement is needed.

Gain Control Over Uncertain and Dynamic Environment Conditions

The evolving conditions of the environment resulting in unpredictable changes to
schedules are one of the main reasons demanding human involvement in automation.
In such cases, the participants revealed switching to manual patch deployment to
obtain increased control of the situation. Below are some use cases that describe the
roles humans play in a dynamic context.

Emergency patches released to fix critical vulnerabilities require urgent attention
as the patches need to be deployed within 48 hours of release. The unanticipated
event and urgency of the task calls for human involvement in careful planning and
execution in an OOB window, which is not possible through automation.

6.4. Results 109

Lack of visibility into patch load dynamics during the patch window (e.g., how
many patches get applied, how long it takes to apply) is another reason that requires
humans to be involved in instructing the tool of the subsequent actions (e.g., revert
the installed patches, extend the window by x hours) to maintain system availability.

Unforeseen errors in patch deployment resulting from faulty patches create the
need for understanding the severity and impact of the situation, wherein humans are
accountable for service continuity. Despite the uncertainty, incompatible dependen-
cies exacerbate the challenges demanding an increased level of human involvement to
resolve the broken dependencies. This is because new patch releases only consider
compatibility with the most recent vendor-supported software versions.

The dynamic environment context calls for a high degree of coordination to man-
age the interrelated tasks between stakeholders. In mission-critical contexts, some
coordinating tasks such as safety checks (e.g., time to deploy the patch) are extremely
difficult to automate. Many participants do not believe that coordination tasks such as
finding an outage window or negotiating a patch window extension can be automated
as expected.

“From my point of view, the biggest problem is coordination and that’s a purely
human-driven process. I can’t see how the AI or a machine with various tools can help
us find an outage window." - P11

Contextual Awareness-Based Decision-Making

Increased complexity of tasks together with existing tools’ lack of domain expertise
and inflexibility demand human involvement in the appropriate decision-making. Hu-
mans’ contextual awareness, which cannot be fully automated away, is key for making
the right decisions during uncertain and complex events. For example, shared ser-
vices necessitate the need to handle a large number of interdependencies in managed
systems. Certain interdependencies such as legacy software dependencies entail sig-
nificant domain expertise in assessing the risks of service interruptions.

“One of the biggest things is understanding and trying to work out all the com-
binations of interdependencies. If we patch this one, will it break the other one or
do we have to upgrade this one and this one? That is a big challenge as the more
applications you put on one server, the more possibilities of interactions, hence more
combinations that you’ve got to consider when patching." - P10

High severity and impact of services exacerbate the challenge of service downtime
resulting from reboots. The criticality of service downtime requires an increased sense
of agency in initiating, executing and controlling the patch deployment, where human
sense-making is needed to decide on the right action.

Further, the large volume of machines with myriad software versions, machine
clusters and patch levels result in too many configuration options leading to cog-
nitive overload. The patch exemption requests from clients further complicate the
issue. Hence, it necessitates human involvement in selecting and implementing the
suitable configurations as the automation is not capable and trusted in reasoning,
classifying or predicting the configuration options. Other example scenarios include
making informed decisions about the need and number of extra reboots during a
patch window and implementing workarounds to maintain system availability during
post-deployment errors based on the severity and impact.

“Very often human decision-making is needed. That extra setting really depends
on your environment. And to see how your environment may be relevant, you have to
assess how the risk is applied to your context." - P9

110 Chapter 6. Automation in Security Patch Management

Handle Legacy Systems In Place.

Having unsupported legacy systems in place is one of the fundamental reasons requiring
human involvement. While the unsupported software poses a huge threat leaving
several attack vectors open for exploits, many organisations retain legacy systems
because of the service criticality and high cost and complexity involved in migrating
legacy systems. The lack of an upgrade path for legacy applications and the lack
of support from vendors place the burden of handling incompatible legacy software
dependencies on the practitioners’ shoulders alone. An additional challenge in this
is finding human resources with the knowledge and capability of resolving the legacy
system-related issue.

“When we have problems with legacy systems, we find someone who knows the
system to get it working again and then we don’t touch it. If we can find someone who
knows to fix it, beauty but if we don’t, we wouldn’t know what to do." - P14

Another instance is executing multiple reboots. The legacy software requires mul-
tiple reboots for getting the software up to date. As the number of reboots required
depends on the system being patched, a human understanding of the context is needed
to identify the exact number of reboots. Further, since multiple reboots can poten-
tially exceed the patch window, human involvement is needed to take remediation
action depending on the conditions.

Adapt to the Organisational Needs and Culture

Organisational factors including culture, policies and needs play an important role
in the need for human association in process automation. This finding provides ad-
ditional evidence to previous work [2, 109], which also reported the influence of the
organisation’s internal policies and management on system administrators in the pro-
cess.

Handling negative perceptions about security in the organisational culture, for ex-
ample, lack of interest, freedom and priority for security, results in poor practices
or decisions that adversely impact security patch management. For example, non-
security teams tend to neglect security patching, higher management delays patch
approval decisions, and stakeholders refuse to corporate. In such cases, human in-
volvement is essential in getting people to understand the need for security patching
and negotiating the patch schedules maintaining a balance between the need to patch
and maintaining system availability. Another instance is the need for managing resis-
tance to change. Interestingly, in some cases like patch scheduling, some participants
reported they are resistant to shifting to an automated solution as they have got used
to manually doing it with Excel spreadsheets.

“Trying to get some people to understand why you need to patch is a big challenge.
You can tell all the scare stories about people being hacked by ransomware but does it
mean my server has to be down twice even between 2 and 4 a.m., I need it up 24/7. I
can’t afford you to take it down." - P8

6.5 Discussion

We discuss the findings from this study and its broader implications for practitioners
and researchers to derive some actionable insights and identify the areas for future
efforts aimed at providing automation solutions for security patch management.

6.5. Discussion 111

We present an evidence-based understanding of the role of automation in secu-
rity patch management that describes the as-is state of automation in practice, its
limitations, practitioners’ needs for improved automation support and the role of the
human in security patch management automation. The evidence from Section 6.4.1
shows that a majority of the tasks in the security patch management process are
performed manually (see Figure 6.1).

We find several reasons for the current state of manual work in the process. The
key reason is the limitations of the current automation support reported in Section
6.4.2. This situation stems from different factors such as limitations in the existing
tool capabilities, lack of specific features, performance limitations, infrastructure con-
straints, and usability limitations as shown in Table 6.1. These limitations show the
gap areas that present excellent opportunities for researchers and tool builders for
providing advanced automation/tooling support.

Table 6.1. Classification of limitations of current automation

Category Example limitations

Limitations in
existing tool
capabilities

• Capture organisational context in risk assessment
• Accommodate sudden changes to patch schedules
• Real-time detailed reports for deployment errors
• Miss out information in scans
• Service downtime resulting from reboots

Lack of specific
features

• Identify prerequisites from patch release notes
• Handle patch interdependencies
• Detect the need for multiple reboots
• Handle service interruptions from incompatible depen-
dencies during deployment
• Detect mid-cycle patch releases

Performance
limitations

• Execute parallel deployment jobs
• Run simultaneous multiple reboots on multiple servers

Infrastructure
constraints

• Deploy patches to heterogeneous environments

Usability limitations • Lack of meaningful error messages

Further, the evidence from Sections 6.4.2 and 6.4.3 indicates that certain limita-
tions of the current automation solutions require the practitioners to perform several
tasks manually which usually causes delays in patching. We argue that the tool design
may have failed to take into consideration why and how automation is actually used
in practice. We anticipate our findings would provide a solid understanding of what
enhancements in automation support are needed (Sections 6.4.2 and 6.4.3) and how
those enhancements will be used in practice (Section 6.4.1). Such understanding will
also be beneficial to shaping future work to effectively address the practical concerns in
security patch management. The findings of Section 6.4.3 can provide an opportunity
for tool builders to identify the features that would enable their tools to add more
value and practical utility in practice. We recognise that these findings might not
capture all the desired tool features as the participants might not be aware of other
available tools and their capabilities. This limitation also prompts future work for a
mapping of the features of the existing patch management tools to the practitioners’
desired needs to scope down what is missing where.

112 Chapter 6. Automation in Security Patch Management

Given our findings are context-dependent, i.e., in the healthcare domain, future
research is needed for broader validation in different contexts and using additional
data sources (e.g., large-scale surveys). The findings from this study can be extended
to other domains to identify additional desired features with concrete requirements.
Similar to previous work [20, 54], we foresee the value of future work to evaluate the
tools in real-world contexts to better understand how well the tool meets the industry
needs.

Another set of reasons for the increased manual work stems from the socio-
technical implications of human and machine interaction in the security patch man-
agement process (reported in Section 6.2). These reasons demand an in-depth investi-
gation of the critical roles that humans play in gaining control of uncertain situations,
understanding the context, making sense of the available information and accordingly
making informed decisions as described in Section 6.4.4. Our findings identify the
tasks and points in the security patch management process that require a balance
between human control and automation so that future automation can be designed
to facilitate a collaborative relationship with humans. The findings present oppor-
tunities for future research in “Human-AI collaboration" [92], an emerging research
paradigm which combines human and machine intelligence to collectively achieve a
goal. We also suggest further research to investigate the challenges in developing patch
management tools that harness collective human and machine intelligence. Based on
our findings and the existing research on “Human-AI collaboration" [91, 173, 174], we
propose some recommendations that can guide future tool development to address the
limitations of the current automation solutions.

6.5.1 An Integrated Platform Offering Support Across All Process
Phases

The lack of an end-to-end automated solution that supports all phases of the secu-
rity patch management process has been an important anti-pattern recognised in our
study, also reported in Chapter 3. This situation forces practitioners to use multi-
ple tools for different tasks in diverse environments resulting in increased errors and
delays. Since building a unified solution capable of supporting heterogeneous environ-
ments (e.g., Windows, Linux, Mac) is highly complex due to the inherent differences in
each environment, there is a need for a consolidated platform that can offer end-to-end
patch management life cycle support in a single environment to address a majority of
the limitations of the existing solutions. Moreover, such a consolidated environment
will also benefit from being interoperable with external third-party solutions to cater
for the needs of a multi-vendor environment.

6.5.2 Human-Machine Collaboration for Patch Management

We envision the integration of human and machine intelligence can be beneficial in
several security patch management tasks reported in Section 6.4.4. For patch prereq-
uisites identification, we envision a system that not only leverages combined human
and machine intelligence but also learns from each of the collaborative partners (i.e.,
human and machine) to improve future prediction accuracy. Specifically, a machine
can convert the unstructured data in patch release notes to a structured format and
identify the prerequisites, and provide the summary results to the human partner to
ease the selection of the optimum configuration options based on domain knowledge.
Given the recent advances of Large Language Models (LLMs) such as ChatGPT and

6.5. Discussion 113

GPT-4 [175] in diverse tasks and contexts, future research can investigate the ap-
plication of LLMs for human-machine collaborative patch prerequisite management.
Further improvements can be made by leveraging machine learning techniques to pre-
dict the most suitable configuration options that can guide practitioners to make quick
decisions.

Similarly, joint human and machine intelligence can benefit in identifying and
handling machine configurations and patch dependencies. A machine can identify the
interconnections between configurations and patch dependencies, and predict the po-
tential dependency breakdowns to reduce the possibilities of human errors in handling
them and the expected delays in manual work. Another task that can benefit from
human and machine collaboration is patch deployment. When there are errors during
patch deployment, a machine can inform the dependent stakeholders of deployment
failures and guide them about the potential subsequent actions (e.g., revert deploy-
ment, estimates of patch window extensions).

Human-Centred AI Explanations to Assist Contextual Decision-Making

To support human decision-making based on contextual understanding (Section 6.4.4),
we propose that future automation focuses on enabling human-centred explanations.
As suggested by the Human-AI Interaction design guidelines [173] “make clear why
the system did what it did", we anticipate such a capability will assist humans in
understanding a machine’s predictions thereby allowing them to make better deci-
sions based on the context. For example, in selecting the optimum configuration
during patch testing, a machine can provide the basis for the prediction. As another
important design functionally, such a system shall enable interactive bi-directional
communication. Interactive explanations enable humans to interact with machines
[176]; for example, by editing input and changing the prediction based on the con-
text. Further, a machine can learn from human interactions and evolve to improve its
predictions by leveraging machine learning training techniques such as Reinforcement
Learning and Active Learning. Future research can further investigate how informa-
tion (e.g., visualisations, chat summaries) and notifications should be best presented
to ensure effective human-machine communication.

Decision Support for Patch Scheduling

The evidence reported in Section 6.4.1 shows that sudden changes to the patch sched-
ules demand an arduous manual task of patch rescheduling. Further, it can produce
a cascading effect on the dependent patch schedules resulting in increased complexity
for rescheduling and further delays in patching. Responding to these challenges, we
suggest developing a smart decision support system to guide practitioners toward ac-
curate and quick decisions about patch scheduling and rescheduling. The envisioned
system should be able to identify the cascading effect on dependent patch schedules,
i.e., which schedules will likely get affected and how much the impact, based on the
identified patch dependencies and prerequisites. Accordingly, the system should pro-
vide an estimate of the patching delay. We argue that these insights if presented in
simple visualisations (e.g., graphs), would lead practitioners to make informed deci-
sions faster about rescheduling.

114 Chapter 6. Automation in Security Patch Management

6.6 Threats to Validity

In this section, we discuss the potential threats to validity and how they were mitigated
based on the guidelines reported in [33, 123].

6.6.1 External Validity

Our findings do not claim to be generalised from a sample to a population but rather
applicable to the studied cases like most qualitative research. Our findings are lim-
ited to the practitioners in the case organisations in the domain of healthcare studied
in-depth to provide a holistic understanding of the studied topic grounded in evi-
dence that is not attainable through broader but shallower approaches (e.g. surveys).
However, we believe that our findings can be recreated and adapted in other simi-
lar contexts; for such purposes, we have provided sufficient details about the studied
participants and the research methodology (Section 2.2.2) to facilitate transferability.

Concerning data representativeness, we are aware that our data collection is lim-
ited to the interviews although it covers a wide range of the participants’ roles and
experiences. We acknowledge that data triangulation, e.g., additional cases, observa-
tions or surveys, will be useful for future studies to verify this study’s findings and
also extend the scope.

6.6.2 Construct Validity

To mitigate this validity threat, all researchers collectively prepared the interview
guide and pre-interview questionnaire. The interview questions were revised through
several iterations following a pilot interview which was held between researchers (i.e.,
the present author as the interviewee, the third researcher as the interviewer, and
others as observers). It assisted in finalising the questions’ scope, clarity and duration.
However, as the findings were not verified with the participants through member
checking, there is a threat of potential misinterpretations from the interviews.

6.6.3 Internal Validity

To alleviate potential internal validity threats, we included the participants who are
involved in security patch management and ensured a representation covering all as-
pects of security patching in the case organisations, i.e., server and desktop. Further,
the participants had 22 years of experience on average, mitigating the risk of the
participants’ lack of expertise.

6.6.4 Reliability

To ensure the reliability of the findings, the data collection, analysis process, and the
emerged findings were thoroughly discussed among all researchers in weekly meetings,
as described in Section 2.2.2. Furthermore, two researchers were present in seven
interviews to minimise the threat of researcher error.

6.7 Chapter Summary

In this chapter, we report an empirical study aimed at providing an evidence-based
holistic understanding of the role of automation in security patch management. Based
on semi-structured interviews of 17 practitioners, we conclude that while the secu-
rity patch management workflow in practice incorporates manual and automated

6.7. Chapter Summary 115

approaches, the majority of the tasks are performed entirely manually due to the
limitations of the existing automation/tools and the lack of capacity of the available
automation to handle certain use cases demanding human involvement. Based on an
improved understanding of the practitioners’ perceived needs for enhanced automa-
tion support, this study enables us to explain why and where human involvement
is needed in security patch management automation. Our findings indicate that hu-
man involvement in certain tasks in the workflow, particularly concerning contextual
awareness-based decision-making and human intuition, is crucial in security patch
management. That is why we propose that future patch management tool develop-
ment should aim at supporting human-machine collaboration by leveraging the best
of both capabilities. For future work, we outline how and what functionalities may
be needed to effectively address the current gaps and user needs whilst embracing
the desired balance between automation and human control in the security patch
management process for reducing patching delays.

117

Chapter 7

Conclusions and Future Work

Timely security patch management is vital for safeguarding software systems against
cyberattacks. Despite the practical importance, security patch management remains
one of the most complex challenges facing modern organisations due to the inherent
technical and socio-technical interdependencies involved in the process. As a result,
many organisations often delay or avoid the installation of security patches leaving a
multitude of attack vectors vulnerable to exploits. While researchers and practitioners
have paid significant attention to the technical aspects of security patch management
to address delays, the socio-technical aspects of security patch management delays
have received relatively limited attention. This is an important limitation because
security patch management is an inherently socio-technical endeavour involving com-
plex interactions between humans, machines and environmental aspects. Therefore,
knowledge of the socio-technical aspects is essential to gain a complete understanding
of how human, organisational, and social factors and technological systems in security
patch management lead to delays. This understanding can contribute to the design of
solutions involving the process, organisational structures and technical advancements
to address the root causes of patching delays.

This thesis aimed to address this gap by providing an evidence-based understand-
ing of the socio-technical aspects of security patch management. Specifically, this
thesis presents a set of empirical studies to identify, understand and address the role
and impact of socio-technical aspects on delays in security patch management. To that
end, we have first provided an organised evidential body of knowledge on the topic
by identifying and categorising the socio-technical challenges and available solutions,
and analysing how well the reported solutions have been assessed with their level of
rigour and industrial relevance. Then we conducted a longitudinal field study with
10 teams from three organisations in the healthcare domain to gain an in-depth un-
derstanding of delays in real-world security patch management from a socio-technical
perspective. Based on longitudinal data collected from artefact analysis, observa-
tions of patch meetings, and semi-structured interviews, we have identified the root
causes and mitigation strategies for delays in security patch management, proposed
a grounded theory of the role of coordination in security patch management that ex-
plains and addresses the most prominent cause of delays in the process and provided
an evidence-based understanding of the role of automation in security patch manage-
ment. This chapter first summarises the main findings and key contributions of this
thesis and then suggests some avenues for future research.

118 Chapter 7. Conclusions and Future Work

7.1 Summary of Findings and Contributions

This section summarises the main findings and key contributions of this thesis.

7.1.1 A Systematisation of Knowledge of Security Patch Manage-
ment

In Chapter 3, we have provided a holistic insight into the state of the art of socio-
technical aspects of security patch management. From a comprehensive review of 72
primary studies on security patch management, we have identified and categorised the
socio-technical challenges and available solutions and analysed the reported solutions
based on their level of rigour and industrial relevance. Given there is no commonly
known/accepted definition, we have provided an operational definition of security
patch management based on our evidence-based understanding from a longitudinal
field study and the related literature.

From the analysis, we have identified and classified 14 socio-technical challenges
as six challenges common across all phases of the security patch management process
and eight others as specific to each phase of the process. Further, we have identified
18 solutions including 6 themes of approaches and tools and 12 practices as common
ones affecting all phases of the security patch management process and those specific
to each process phase. We have also provided a mapping between the solutions and
challenges to provide an overview of the gap areas. The findings have revealed that
50% of the common challenges have not been directly addressed in the solutions and
that 37.5% of the solutions address the challenges in one phase of the process, namely
vulnerability scanning, assessment and prioritisation. Moreover, we found that only
20.8% of the reported solutions have been rigorously evaluated in industrial settings
indicating a need for more empirical investigations using real-world representative
evaluation approaches. Our findings have shown that the socio-technical aspects have
a wide-ranging effect across all phases of the process and that human-in-the-loop is
inevitable in security patch management due to its inherent complexity and dynamic
nature. However, an important observation has been the lack of evidence-based un-
derstanding of the role and impact of socio-technical aspects on the delays in security
patch management. It presents an important limitation as evidence-based research
with industrial relevance produces outcomes having higher value addition and practi-
cal utility. This observation motivated us to conduct a longitudinal empirical inves-
tigation into the socio-technical aspects of the delays in security patch management
presented in Chapter 4.

7.1.2 An Evidence-Based Understanding of the Reasons and Miti-
gation Strategies for Security Patching Delays

In Chapter 4, we have conducted a longitudinal case study to explain why, how and
where delays occur when applying security patches in practice, and how the delays
can be mitigated. Based on longitudinal data collected from artefacts consisting of
132 delayed patching tasks over a period of four years and 66 observations of patch
meetings involving eight teams from two organisations, and using quantitative and
qualitative data analysis approaches, we have presented a taxonomy of reasons relat-
ing to technology, people and organisation as key explanations that cause delays in
security patch management. Further, we have provided an analysis of the frequency
distribution of reasons for delays and the distribution of delays over the patch man-
agement process. The findings have revealed that the most prominent cause of delay

7.1. Summary of Findings and Contributions 119

is ascribed to coordination delays in the security patch management process and a
majority of delays occur during the patch deployment phase. Such knowledge is useful
in identifying the reasons that need immediate attention and the areas of improvement
in the security patch management process. We have also provided a classification of
strategies that can be applied in practice to mitigate the delays including when to
apply them during the security patch management process.

To the best of our knowledge, this is the first research attempt to provide an
evidence-based understanding of the causes and mitigation strategies for delays in
real-world security patch management. The reported understanding helps practi-
tioners to understand what and where improvement is needed in the security patch
management process and guide them towards taking suitable decisions and timely
actions to avoid potentially catastrophic consequences from delays in patching. Fur-
thermore, our findings lay the foundation for future researchers and tool designers to
design and develop computer-supported solutions to address the practical concerns
causing delays in security patch management.

7.1.3 A Grounded Theory of the Role of Coordination in Security
Patch Management

Motivated by the need to gain a thorough understanding to address the most promi-
nent cause of delay in security patch management as revealed in Chapter 4, we have
conducted a Grounded Theory study of the role of coordination in security patch
management in Chapter 5. Based on observations of 51 patch meetings over a pe-
riod of 9 months involving 21 practitioners from eight teams in two organisations, we
have provided answers to some important questions such as how and why coordina-
tion causes delays in security patch management and what can be done for address-
ing the coordination delays in security patch management? Following the guidelines
of Glaser’s Grounded Theory [44] research method, we have uncovered a grounded
theory of the role of coordination in security patch management consisting of four
interrelated dimensions, i.e., causes, constraints, breakdowns, and mechanisms. The
theory explains the causes that define the need for coordination among interdependent
software/hardware components and multiple stakeholders’ decisions, the constraints
that can negatively impact the effective coordination of the causes, the breakdowns
resulting from ineffective coordination of causes and constraints, and the potential
corrective measures for enabling effective coordination in the process.

Overall, we have provided evidence that the role of coordination represents a core
concern in timely security patch management and provide emphasis on the need to
have a delicate balance between socio-technical concerns such as coordination and
automation in the process to reduce delays. The reported theory provides several
useful insights for practitioners to avoid patching delays and failures and increase
confidence in their security patch management decisions. The theoretical model can
be useful in shaping future research to address the practical concerns in coordination
delays in security patching and for developing automated solutions for supporting
effective coordination in the security patch management process.

7.1.4 An Empirical Understanding of Automation in Security Patch
Management

Another key reason for security patching delays as described in Chapter 4 attributed
to technology-related reasons owing to the limitations of current tools and the need

120 Chapter 7. Conclusions and Future Work

for human intervention. While it is widely understood in the existing software en-
gineering literature that automation support for different activities of the security
patch management process has great potential for reducing security patching delays,
there is not much known about how automation is used in practice, its limitations in
meeting real-world needs and what practitioners really need. To find answers to these
questions, we have conducted an empirical investigation in Chapter 6 of the role of
automation in security patch management. Based on semi-structured interviews with
17 practitioners from three organisations in the healthcare domain, we have provided
a holistic insight into the role of automation in security patch management explaining
the as-is state of automation in practice, the limitations of current automation, how
automation support can be enhanced to effectively meet practitioners’ needs and the
role of the human in an automated security patch management process.

Concerning the as-is state of security patch management, we have found that
whilst the security patch management process incorporates manual and automated
approaches, the majority of the tasks are performed entirely manually due to the
limitations of the existing automation/tools and the lack of capacity of the available
automation to handle certain use cases resulting in the need for human interven-
tion. Based on an understanding of the practitioners’ needs for improved automation
support, we have explained why and where human involvement is needed in the se-
curity patch management process automation. Our findings have shown that human
involvement in certain tasks in the process, for example, decision-making based on
contextual awareness and human intuition, is critical in security patch management.
Accordingly, we have proposed a set of recommendations for directing future work to
address identified gaps and user needs. In these recommendations, we have described
how and what functionalities may be needed to effectively address the current gaps
and user needs whilst embracing the desired balance between automation and human
control in the security patch management process.

7.2 Opportunities for Future Research

This thesis has made several contributions towards gaining an evidence-based under-
standing of security patch management from a socio-technical perspective. However,
there are still several opportunities for future research to address and further advance
the field. While some suggestions for future work have already been described in the
previous chapters, we summarise them in the following areas below.

7.2.1 Replicating the Study

While our research is the first attempt to incorporate a longitudinal approach to
empirically explore delays in security patch management from a socio-technical per-
spective, the replication of our research with larger samples and different contexts
can be an important direction for future research. Given our findings are based on
the contexts studied limited to the domain of healthcare, researchers can extend and
adapt the findings through future research within the same domain involving different
stakeholders or different domains. This presents an excellent opportunity for the gen-
eralisation of the findings presented in this thesis. Furthermore, future research can
explore what other reasons for delays exist, and the viability of the findings based on
contextual factors, for example, variations in organisation-related reasons for delays
and how the role of coordination and automation is impacted by contextual factors.
Such context-specific research can result in useful insights and models from additional
cases with extended scope. Another direction of future research is investigating the

7.2. Opportunities for Future Research 121

effectiveness of the solutions proposed in this thesis (e.g., mitigation strategies for de-
lays in security patch management and coordination mechanisms) and the context in
which they should be deployed. Additionally, future research can use the findings in
potential interview guides and large-scale surveys to evaluate the findings in different
organisation settings and identify variations within them.

7.2.2 Technological Support for Dependency Management

As explained in Chapter 5, the security patch management process involves intricate
technical and social interdependencies among various software and hardware/firmware
components, as well as multiple stakeholders. These dependencies create the need for
effective coordination, which represents a crucial factor in reducing patching delays
and ensuring smooth security updates. In our research, we further discovered in Chap-
ters 5 and 6 that a lack of automation support hinders the effective management of
both technical and social interdependencies. This limitation is a significant concern
highlighted by practitioners who express the need for technological tools to assist in
dependency management, as reported in Chapter 6. This opens up exciting opportu-
nities for future research to explore and develop innovative solutions in this area. For
example, one potential avenue for future research is to investigate the creation of au-
tomation support or tools specifically tailored to manage socio-technical dependencies.
These tools could facilitate collaboration among various stakeholders involved in the
patch management process, ensuring smoother communication and decision-making.
Such support could improve the overall efficiency of the patch management process
and reduce the likelihood of delays that might otherwise lead to potential exploits.

Moreover, concerning technical dependencies, future research can delve into de-
signing systems capable of automatically identifying complex system configurations
and patch interdependencies. By doing so, these systems could preemptively identify
potential technical dependency breakdowns, which are often responsible for delays and
errors in patch testing and deployment. Automating this process could significantly
expedite the identification and resolution of technical dependencies, leading to faster
and more reliable patch deployment.

7.2.3 Decision Support for Security Patch Management

Effective decision-making plays a pivotal role in ensuring timely and efficient security
patch management. As highlighted in Chapter 6, the practical implementation of
security patch management involves several decision points that necessitate human
intervention. These decisions are often impeded by task complexity, a lack of domain
expertise, and the limited flexibility of existing tools, resulting in significant delays in
the patch management process. Consequently, there is a pressing need for an evidence-
based understanding of the role of decision-making in security patch management.
This need for comprehensive knowledge presents an opportunity for future research to
focus on developing intelligent decision-support tools and technologies that can assist
human decision-makers in making accurate and timely patch management choices.

Another promising avenue for future research is the design and implementation
of decision support systems that harness the power of Artificial Intelligence (AI).
By integrating machine learning algorithms, these systems can learn from historical
security patch management data and offer real-time insights and recommendations to
human decision-makers. For instance, AI-based decision support can be particularly
valuable in activities such as customised vulnerability assessment and prioritisation,
dynamic patch scheduling, and post-deployment patch verification. The application

122 Chapter 7. Conclusions and Future Work

of machine learning algorithms can aid in identifying critical vulnerabilities, assessing
their potential impact, and prioritising patch deployment accordingly. This not only
streamlines the decision-making process but also ensures that resources are allocated
efficiently to address the most critical security vulnerabilities.

Moreover, the design of these decision support systems should be centred around
facilitating effective collaboration and coordination among different stakeholders in-
volved in the security patch management process. By fostering seamless communi-
cation and knowledge sharing, these tools can foster a more collaborative and coop-
erative approach to patch management, leading to improved overall security posture
with reduced delays.

7.2.4 Studying the Influencing Factors and Impact of External Stake-
holders on Patching Delays

As demonstrated in Chapter 4, our investigation revealed several contributing factors
to patching delays, such as input requirement delays, service availability restrictions,
and the complexity of patches relate to interdependencies with external stakeholders,
including vendors and customers. While this thesis presents compelling evidence re-
garding the influencing impact of external stakeholders on security patching delays,
further research is warranted to gain a comprehensive understanding of the underly-
ing factors and the extent of their impact on patching delays. For example, future
research can adopt a stakeholder-centred approach and study the perspectives of ex-
ternal stakeholders to identify additional socio-technical aspects that may influence
patching delays. By capturing the insights and experiences of these stakeholders, re-
searchers can identify previously unexplored factors and uncover potential solutions
to mitigate delays.

Moreover, a critical area for investigation lies in exploring methods to enhance the
awareness of the importance of timely security patch management among external
stakeholders, such as customers and end-users. By examining the knowledge gaps
and perception barriers surrounding patch management, future research can devise
strategies to promote understanding and instil a culture of prioritising timely security
patches. For instance, employing targeted educational campaigns, interactive work-
shops, or informative materials can be effective ways to communicate the significance
of security patches to customers and end-users. Increasing awareness can lead to a
more proactive approach towards patch management, reducing delays and minimising
the window of vulnerability to potential cyber threats.

123

Appendix A

Codebook for the Reasons for
Security Patching Delays

Category Subcategory Concept Code Description Number of
references Examples

Patch interdependencies

The software, hardware, and firmware
interdependencies. The dependencies
consisting in the source code (functions,
library), versions and legacy software.

30

[Subject - Software version issues on the system [EPAS 17.3] to
resolve]
24/1/19 - 47 Office patches on servers [s1-6] (multi-languages and x32
and x64 bit versions) and 7 Visual Studio-related security patches
having errors while testing.
6/2/19 - A ticket raised to investigate Visual Studio patches and
manually apply if required. - EMR, Issue ID 9

Faulty patches
Unknown errors during patch testing,
deployment, and post-deployment arising from
faulty patches.

12

[Subject - [Server s1] non-functional after patching]
30/10/18 - Org A raised a support case to the [vendor v1] as the server
was left in an unusable state with no communication post-patching.
4/4/19 - No further update regarding the support case. - Win, Issue ID 6

Extensive monitoring for faulty patch fixes
Issue kept open and under monitor until the
practitioners confirm that the patch poses no
unanticipated adverse effects.

8
[Subject - Patch deployment error at the [server s1]
13/12/19 - Workaround applied and timings were all good. Keep open
till January run for confirmation. - EMR, Issue ID 35

Patch heterogeneity Diverse set of patch types increasing the
complexity. 5

[Subject - Type 4a vs Type 4 for .NET patches]
28/6/19 - Confirm if all servers have moved to Type 4 vs 4A - all needs
to be Type 4 with .NET patching as it is -2 months behind (Pre-Prod,
Prod)
12/7/19 - Miscommunication regarding patch types 4a and 4. From July
onwards Type 4A in previous format will be defunct and Type 4A
profile will be used for Type 4 .Net-2 months.
9/8/19 - Type 4A is now named Type 4EMR, [P1-AT1] will send out
email to advise wider audience. Item to close. – EMR, Issue ID 24

Increasing rate of patch release A large number of patches and patch types. 2

[Subject - PreProd and Prod of [T1] to be patched monthly and in
separate machine group]
22/2/19 – Org A considering going bi-monthly with PreProd and Prod
to keep up with patches. Then moving monthly after confidence is built
around for .NET patching
04/04 – Team [T1] still considering the patch cycles and windows for
the PreProd and Prod [T1] servers. Various options were requested and
were put out in slides for their consideration- T&M apply as outside
standard patching methods. – EMR, Issue ID 2

Lack of accuracy
Lack of accuracy in the output of current tools -
missing vulnerabilities in scans, omitting
patches during patch deployment.

9

[Subject - Issues with IE patches]
7/8/19 - [...] The Windows update is showing zero missing patches but
the [patch deployment tool] is showing 15 missing patches related to
IE. [P1-AT2] to raise a support case for Microsoft account manager
attention. - EMR, Issue ID 35

Lack of scalability Lack of scalability to handle diverse types of
patches and their features. 3

[Subject - 2019 SHA-2 Code Signing Support requirement for
Windows and WSUS]
8/3/19 – The patch team following MS release dates for those required
updates and will apply to affected OS - win2008R2 SP1 & SP2.
12/3/19 - MS released stand alone security updates: KB4474419 and
KB4490628 released to introduce SHA-2 code sign support - for
Win2008R2 SP1. Will be applied with March cycle to affected servers.
3/5/19 - Excluded against 2008 servers as the tool doesn’t support it, [B-
T1] working in reports on how it can be applied in near future in May.
– EMR, Issue ID 24

Functionality limitations Functional incapabilities in the tools. 7

[Subject - Additional reboot required for .NET patching]
7/2/20 - Investigation is needed around the number of required reboots
for EMR patching and window requirements as a result if more reboots
are required. A new process needs to be fleshed out when patching is
postponed to accommodate the identification of the number of reboots
required. - EMR, Task ID 35

Troubleshooting Troubleshooting the issues, unknown errors
during and post-deployment and faulty patches. 23

[Subject - Issues with patch installation at [server s1]]
17/4/19 - Installed patches reverting and some patches not getting
installed, need further investigation.
3/5/19 - [P1-BT1] ran troubleshooting, no success. Need to raise a
support case with Microsoft for advice. - Win, Issue ID 20

Manual patch deployment
Manual patch deployment during complex,
erroneous, or business-critical patch
installations.

17

[Subject - [Hospital h1] patching stage 3 on 27th November]
18/10/19 - Patching needs to be moved to OOB due to the change
freeze from 15th November to 3rd December.
31/10/19 - [P1-BT1] team putting in significant amounts of work, like
15-20 hours per month, to redo the schedules on custom dates each
time the deployments move off standard windows. - EMR, Task ID 30

Decision approvals need thorough
assessment of patch impact

Thorough assessment of the impact on multiple
aspects to avoid breakdowns. 10

[Subject – Decision on pre-Download of patches for [A-T1]]
29/11/19 - Pre-download to be reverted, no Pre-Download going
forward until we can confirm no impact on windows. - EMR, Issue ID
38

Manual configurations Manual configurations based on the
organisation needs. 6

[Subject – Decision on pre-Download of patches for [A-T2]]
31/10/19 – [P1-AT2] raised issue, Org B has configured 2nd job 2
hours into the window that rescans for missing patches and conducts a
second cycle/post-reboot if required. No issues experienced in October
to our knowledge, seeking client feedback.
1/11/19 – [P2-AT2] will check how many servers needed the 2nd
reboot and configure accordingly. - Win, Issue ID 38

Delays in obtaining approval Delays in decision approvals as they had to go
through multiple teams (or levels). 37

[Subject - IE version upgrade approval required]
7/9/18 - quote now with [A-T2] team to approve.
3/5/19 - [P1-AT4] to follow up with [P2-AT2] on the status of this.
10/5/19 - [P1] following up, still waiting for approval. - Win, Task ID 1

Lack of awareness of task progression Lack of awareness of task progression between
teams and organisations. 22

[Subject - Need Service Packs updated to resolve software version
incompatibility.]
31/8/18 - Not sure if [A-T1] team has raised Non-Standard Service
Request (NSSR) ticket to upgrade 32-bit clients that are lower than
IE8.
14/9/18 - Well, [P1-AT1] must know but he's not at the meeting, I'm
not sure about it. - Win, Task ID 2

Lack of understanding of roles and
responsibilities

Lack of understanding of shared roles and
responsibilities between teams. 6

[Subject - Investigation of post-deployment issue]
18/10/19 - [P1-BT1] says Org B should not be accountable for apps
that don't start correctly.
31/10/19 - Decided that Org A or third-party vendor X should be fixing
this error, Org B should not be accountable for application problems. -
EMR, Issue ID 26

Poor communication and information
misinterpretation

Lack of communication and misinterpretation
of communication creating delays as it creates
the need to constantly follow up to get
responses.

5

[Subject - Cluster-based patching (Type 4a vs Type 4 .NET patches)]
12/7/19 - miscommunication regarding Types 4a and 4.
9/8/19 - Type 4a is now named Type 4-EMR. [P1-AT1] to send out
email to advise wider audience. - EMR, Issue ID 18

Missing information due to overload of
emails

Missed emails resulting in delays in passing
information on time. 2

[Subject - 2008 patching in Week 2]
1/4/21 - Check emails for update KB5000851. The plan had been
already emailed to the teams. - EMR, Issue ID 5

Delays in obtaining customers' approval Delays in obtaining customers' approval for
patch deployment. 14

[Subject - Request to change patch window of [s1] server]
10/5/19 - currently set to 0000-0300, but the full backup of the server
happening during this window causes slowness and issues with
patching. Suggest changing the window to 0600-0900. [P1-AT2]
checking on the status with business approval.
14/6/19 - [P1-AT2] to follow up as no response from the business. -
Win, Task ID 19

Delays in coordinating with vendors for
support

Delays in coordinating with vendors for
support cases. 12

[Subject - Patch deployment issue - file validation errors in [s1] server]
25/2/19 - [Vendor v1] case [n] - number of fixes suggested, completed
last tests on server [s1], still no fix found.
3/5/19 - awaiting full response from [Vendor v1], investigations still
underway. - Win, Issue ID 17

Administrative overhead of coordinating
with multiple customers

Administrative overhead of coordinating with
multiple customers for pre and post-patching
verification.

3

[Subject - Verify client email contact for the task [T1]]
27/2/19 - Provided email contact gives an error message stating that the
email is restricted. So [Org B] has altered the special instructions to
send emails to [P1] until sorted.
1/3/19 - Org A to contact the client and verify the client's email address.
- Win, Issue ID 14

R
e
a
s
o
n
s

f
o
r

D
e
l
a
y
s

People-related reasons

Complexity of patches

Limitations of current tools

Need of human intervention

Technology-related reasons

Coordination delays

Delegation delays due to conflicts of task
ownership

Delegation delays due to conflicts of task
ownership with other third-party vendors
because of lack of accountability.

3

[Subject – Investigation into SRM services not starting after patching]
31/10/19 - SRM process instructions were added for manual checks
and run in October. Org B should not be accountable for apps that
don't start correctly. SRM Prod boxes don't seem to be doing this, [A-
T1]/[Vendor V1] should be fixing this at right level, Org B should not
be accountable for application problems. - Win, Issue ID 36

Delays in delivering reports Delays in delivering the reports such as the
vulnerability scan reports. 16

[Subject – Awaiting reports on missing patches on EPAS]
24/1/19 – [P1-AT1] waiting for his request on a monthly report in
missed patches - compliance report. Org B to organise and send weekly
group reports for missed patches + monthly compliance report. Will
consider also list of January released patches required on each server to
be produced and communicated. - EMR, Issue ID 10

Delays in delivering patch schedule
information

Delays in providing information about patch
cycle changes, patch windows, server lists and
organisational schedule changes like change
freeze delaying planning and execution of
patch deployment.

15

[Subject - Scheduling Out-Of-Band (OOB) patching for exempted
servers]
14/6/19 - An email sent to [P1-AT2] asking for patch window
information, pending response.
28/6/19 - A follow-up email was sent to [P1-AT2] as no information
was received.
26/7/19 - The patch window is still pending. - Win, Issue ID 22

Delays in providing team requirements Delays in providing team requirements for
patching tasks. 4

[Subject - SQL Security Patching]
1/5/19 - No update since 17/4. Seeking confirmation on whether this is
still a requirement from us [BT1]. - Non-Win, Issue ID 1

Delays in patch release by vendors Delays in the patch release. 11

[Subject - Investigation of missing patches from March patch run]
1/4/21 - OOB investigation results. Microsoft patch releases on patch
Tuesday included listing KB5000803 (also applies to KB5000851 and
KB5000853) but the patch was not available to download through [tool
T1] until the 16th March. This patch also had a pre-requisite
KB5001078 released in Feb that was also released late after Feb patch
Tuesday. - EMR, Issue ID 54

Delays in providing input for support cases Delays in receiving vendor's support for
support cases. 8

[Subject - New zero-day vulnerability warning]
12/6/20 - Monitor Microsoft patch release for critical vulnerability
identified on [T1] servers. Font Type 1 expected as a zero-day soon,
full report not available yet.
24/7/20 - No update from Microsoft. - EMR, Task ID 43

Missing patch pre-requisites during
installation

Missing patch pre-requisites such as registry
changes, GPO configuration and installation of
preparation packages. As a result, errors in
patch deployment.

1

[Subject -IE version upgrades resulting in additional patches]
1/5/20 - Review status of the IE patching after the current patching run.
Will generate status report from [tool T1] now as the patching run is
complete. [P1-AT5] to also run a new report.
15/5/20 - Found 3 outstanding servers with patches to be applied for
IE. [P2-AT1] to review the list of vulnerabilities from [P3-AT5] to
confirm.
12/6/20 - 3 vulnerabilities identified under a new yet to be created
GPO. [P4-BT1] scheduling the implementation of this.
24/07 - IE patches up to date, 0 missing patches. But keep under
observation for one more patch cycle please. [P4-BT1] doing a final
scan in relation to IE patching. Item can close. - EMR, Issue ID 57

Inaccurate estimates of patch windows Inaccurate predictions of timing of patch
installations. 3

[Subject - Execution exceeding the patch window]
31/5/17 - Only 72.9% of scheduled patch deployments were completed
as of 11.20 am. Two further windows to be raised to ensure the
appropriate length of time is scheduled due to unknown 2016 updates
that were required to be implemented, first window is 1st June 8 am to
12 pm. - Win, Task ID 4

Incomplete patch deployment Patch deployment task left incomplete, such as
required rebooting not completed. 5

[Subject – 2008 Critical patches from March]
16/4/21 – Server [s1] is the last remaining EMR 2008 server with
missing patches.
30/4/21 – The last outstanding server is being tracked separately; item
can close. - EMR, Issue ID 56

Inadequate post-patch deployment
verification

Failing to monitor the status of patch
deployment tasks. 6

[Subject - [Server s1] post-patching functionality issues]
8/10/19 - [Server s1] has not shut down properly during the patch
window which caused the printers to be unavailable for [customer c1].
It needs to move to semi-auto patching for November to monitor. -
Win, Issue ID 32

Delays in getting approval from higher
management

Delays in obtaining approval from
organisational management for monthly patch
schedules and changes in the process.

18

[Subject - RITM for new bespoke solution]
8/10/19 - Approval received from AT1, has been sent across to [P1-
AT2] to raise the purchase order.
29/11/19 - The requested item is still with Finance (team) for
processing. - EMR, Issue ID 23

Delays due to changes in company
schedules

Delays due to changes in organisation
schedules like change freeze, testing plans, and
holidays/shot down plans.

13

[Subject - Patching for December 2019]
18/10/19 - OOB for November patching from 4th December instead of
December patching.
31/10/19 - EMR patching for December month is off but November
Microsoft patches will be applied in the first week of December instead
to keep compliance up. - EMR, Issue ID 29

Resource limitations Insufficient human resources to carry out
certain tasks. 24

[Subject - L1TF spectre update]
16/5/19 - Task 0117374 assigned to [P1-BT1] (a senior server
engineer) for implementation.
14/6/19 - Task on hold until July due to resource (i.e., P1-BT1) being
borrowed by [AT4] team (for another critical task). - Win, Issue ID 21

Infrastructure limitations Infrastructure-related limitations leading to
performance delays. 11

[Subject - Backup server patching]
24/1/20 - Patching cannot go ahead when the active backup is running.
The patch load can impact servers before reboot. Need a window
change, proposal to be sent by [P1-BT1] to [P2-AT1]. - EMR, Issue ID
39

 Time limitations Time-bound limitations, e.g., monthly patch
cycles, to progress with the tasks. 5

[Subject - [Server s1] storage failover issue]
7/2/19 - A support case was raised with [vendor v1]. Waiting for the
next failure to occur to submit the logs, the next patch run is due in late
March. - EMR, Issue ID 33

Inability to allow service downtime from
reboots

Organisations' restrictions/inability to allow
service downtime from reboots. 13

[Subject - Go-Live for [Hospital h1] on 19th, need to postpone any
patching happening on that day]
14/6/19 - OOB to be raised to patch servers - list of impacted servers to
be sent to [P1-BT1] from [P2-AT1].
28/6 - OOB scheduled on the next go-live 24th July.
12/7 – Customer proposing date 7th August. Need to reschedule. -
EMR, Issue ID 22

Multi reboots requiring longer and
additional patch windows

The patch schedules scheduled in out-of-band
windows to reduce service disruptions from
additional patch windows during business
hours.

8

[Subject - [Servers s1 and s2] patching]
26/7/19 - OOB window is needed for the multi reboots to catch up.
9/8/19 - Waiting for the customer's confirmation of the new patch
window, pending information from [P1-AT1]. - EMR, Issue ID 20

Customer requests to postpone patch
deployment schedules

Delays due to accommodating customer
requests to delay patch deployment to avoid
service interruptions.

4
[Subject - Go-Live for [hospital h1] on 19th July]
12/7/19 - Customer [hospital h1] asking to postpone patching until 7th
August. - EMR, Issue ID 16

R
e
a
s
o
n
s

f
o
r

D
e
l
a
y
s

Input requirement delays

Failures due to poor planning
and execution

People-related reasons

Organisation delays

Capacity limitations

Service availability restrictions

Organisation-related reasons

Coordination delays

127

Appendix B

Codebook for the Mitigation
Strategies for Security Patching
Delays

Category Subcategory Mapping to the patch
management process Concept Code Description Number of

references Examples

Regular patch meetings

Bi-weekly patch meetings to
discuss patching issues, find
solutions, report the patching status,
and measure the progress of the
patch cycle.

8

[Subject - SQL Security Patching RITM# 52442]
12/7/19 - Patch meeting to be booked for 9am Friday 19th July to
define requirements.
26/7/19 – [P1-BT1] putting together test run & proposal for discussion.
- Win, Issue ID 1

Informal team discussions for complex,
critical issues

Scheduling different meetings for
issues that need further discussion
(Shifting long standing issues to
other forums for future tracking).

6

[Subject - Post-deployment issue - Data Capture servers not able to
communicate with [system s1]]
7/8/20 - [P1-AT1] checking with [P2-AT2] for the other three servers
that do not have a commissioning request.
21/7/20 - Set up another meeting with BT1 to discuss this request (ID
1772737). - EMR, Issue ID 42

Negotiation with customers about
procedures and responsibilities

Getting consent for patch
deployment at customers' premises,
agreeing on the patch deployment
dates and times, and establishing
contact persons at the customer
sites.

5

[Subject - Unix patching schedule confirmation]
24/7/20 - The requirements analysis revealed a major OS upgrade, not
simple patching. The schedule is still being negotiated with [customer
c1]. - Non-Win, Issue ID 7

Frequent negotiation with vendors for
support

Negotiate with vendors regarding
delayed patch releases and support
cases.

5

[Subject - hlt100hvd001 reverting, post patch-deployment issue]
17/4/19 – Incident INC0117732 raised, need further investigation,
need to troubleshoot, and organise OOB.
3/5/19 – [P1-BT1] patched, ran troubleshooting, will need to raise with
Microsoft and investigate. [P2-BT1] to send info to [P3-AT2] to raise
with Microsoft.
10/5 - Email sent 9/5 to [P3-AT2] with info to raise Microsoft support
case. - Win, Issue ID 39

Making decisions about patch
management activities 2

Making decisions about task
assignments 1

Task assignment Delegating the tasks to teams/team
members 21

[Subject - EPAS and .NET patching - with no upgrade of .NET
version]
14/2/18 - Apps team to do due diligence and test after each night patch
group in week2-3 and if any identified issues - to advise for week4 pre-
prod and prod servers (pull out of patching if needed).
Ownership/investigation if any reported issues to be agreed - apps
team as a first point? - EMR, Issue ID 3

Define roles and responsibilities around
tasks

Well-defined roles and
responsibilities around patch
management activities resulting in
increased accountability.

10

[Subject - Vulnerabilities in .NET Core]
21/2/20 - .NET Core is not receiving updates. A new process is
required to patch this version and a service request (SR) needs to be
submitted for review and assessment. [P1-BT1] to raise the SR for the
issue raised by BT1 on 7th Feb 2020. - Win, Issue ID 40

Regularly document patching tasks and
decisions

Constantly document the decisions
and activities to ease tracing back
during troubleshooting post-
deployment errors.

1

[Subject - New process provided for Server [sx016] but still require
updates for [sx018]]
29/1/20 - Email received with manual instructions about the process.
Instructions have been updated in the patching master sheet. - Win,
Issue ID 54

Regularly update the documentation

Consistently review the
documentation and test any process
changes internally before updating
the documentation.

2

[Subject - Update documentation for the split of [servers s1 and s2]
patching into two procedures]
13/12/19 - Finalising the documentation after testing internally for
handover to 24x7.
10/1/20 - Documentation to be tested in February, will be ready for
handover in March. - EMR, Task ID 24

Report which patches are download
from patch releases 1

Classify set of patches for application 1

Analyse workarounds for suitability
(what)

Alternatives for delayed patch
releases and patching. e.g., review
compliance to security when legacy
systems cannot be upgraded.

3

[Subject - New 0-day vulnerability warning]
7/8/20 – The article points to an updated workaround with monthly
rollup KB links, not a specific patch.
21/8/20 - Confirmation that this applies to 2012 R2,2016 and 2008 R2.
Workaround decision to be addressed in the security forum. - EMR,
Issue ID 56

Assess timing of alternative remediation
plans (when)

When to execute the alternative
plans. 3

[Subject - Org A Change Freeze from 14th December to 12th January]
31/10/19 - Due to the change freeze in December, there will be no
patching for December.
1/11/19 - AT2 wants to reserve the first two weeks of December for
remediation and out-of-band patching of critical vulnerabilities as
required. - Win, Task ID 34

Prioritisation based on patch severity
and impact

Prioritising patches based on
severity (vulnerability risk
assessment) and its impact.

11

[Subject - LDAP GPO issues]
15/5/20 - GPO creation required for testing. Proceed with GPO
creation part of the request so servers can be tested before wider
rollout. DCs to be updated progressively with communication to Org
A’s ICT and Apps teams for verification.
12/6/20 - GPO updates to proceed again next week and creation of
new GPO's required to be done first.
26/06 – This has taken a backseat due to critical patches being
addressed as a priority. - Win, Issue ID 85

Prioritisation based on patch type Prioritising patches based on the
patch type. 4

[Subject - OS security patches need to be tracked separated in the
vulnerability remediation]
15/5/20 - [P1-AT1] requesting the OS security patches to be tracked
separately to all other vulnerability remediation. Org B's report should
only be addressing OS security patches anyway but can make sure to
separate any non-OS remediation tasks. - EMR, Task ID 45

Develop security compliance policies Compliance with security standards
before deployment. 5

[Subject - [s1] new servers compliance]
4/12/18 - This item remains open until all new [s1] servers are fully
compliant including security hardening prior to being pushed into
production and support.
18/2/18 - Security approved the new [s1] servers, go-live completed on
18/2. - EMR, Task ID 1

Develop contingency plan for test
failures

Preparing plan B for patch testing
errors. 4

[Subject - EPAS and .NET patching - with no upgrade of Net version]
14/2/18 - As discussed with the security team, EPAS17.3 Pre-Prod
and Prod will go into 2-monthly cycle, starting March. Non-Prod will
continue monthly. Plan is to move all EPAS 17.3 to monthly patching
after 3 consecutive successful cycles. Success criteria = no business
impact AND no major .NET version upgrades (e.g., updates within
the .NET version).
If any issues are identified after due diligence and testing, week4 pre-
prod and prod servers to be pulled out of patching. - EMR, Issue ID 3

Pre-investigation of requisites 2

[Subject - Registry key missing for Knowledge Base (KB) ID in
LDAP]
2/10/20 - Patches not installed on [servers s1 and s2] due to missing a
registry key. [P1-BT1] to check settings and apply where missing. -
Win, Task ID 24

Update the progress of pre-requisite
investigation 2

[Subject - March Pre-requisite Investigation relating to OS Patching]
17/4/20 - 3 new SSU pre-requisites to be applied. Updates have been
populated on the SharePoint, but servers identified will be rectified as
part of normal monthly patching cycle. 29 Servers currently require
this patch and no registry changes or reboots required. 16 servers were
flagged as auto and changed to semi auto to confirm application of the
patches. Remaining 13 were manual. - Win, Issue ID 79

Identify the dependency changes
Identify and prepare the required
dependencies for patch
deployment.

2

[Subject - OCS Dependencies & Risks]
28/6/19 - Information required from OCS around any dependencies
and risks of security patching (OS) to progress with patching. - Non-
Win, Issue ID 2

[Subject - Provide .NET report at the start of the patch cycle]
15/3/19 - Org A requests BT1 to provide an extract of .NET released
patches every month and a report including
what patches will be applied to what servers [...]. - EMR, Task ID 53

Set strict timelines for patch
download

Patch information
retrieval

Strategies specific to
each phase of the

process

Frequent communication

Team members making decisions
about patch management tasks and
task assignments.

[Subject - Proposal for a patch cycle change in [servers s1 and s2]]
4/4/18 - Discussions still ongoing for the decision. AT1 is still
considering various options and has put them out in slides for
discussion at the meeting. - EMR, Issue ID 2

Collaborative decision-
making

Task delegation

Regularly review and update
patch management process-

related documentation

Define compliance policies
and contingency plans for test

failures

Patch pre-requisites
investigation

Common strategies All phases of the
process

Each month after "patch Tue", Org
B is to provide extract to Org A of
the released patches for that month
and a report including what patches
will be applied in the month.

S
t
r
a
t
e
g
i
e
s

Set up the required requisites for
patch deployment.

Modify software
configurations and

dependencies

Patch Testing

Plan alternatives for delayed
patches

Define priorities for
vulnerability remediation

 Vulnerability
Scanning, Assessment

& Prioritisation

Modify the configurations Change the configurations to suit
patch deployment. 1

[Subject - GPO creations (configs) to be done together]
12/6/20 - [P1-BT1] to create new GPOs at the same time early next
week in preparation for the next round of additions for vulnerability
remediation. - Win, Task ID 49

Planning patch windows Planning when to patch. 8

[Subject - Review of [s1] servers' patch windows: re-balancing and
extended windows proposed]
13/3/19 - Org B proposes 4-hour windows starting at 18:00 each night.
The first lot of servers to start Friday week 2 after the "Patch
Tuesday". Proposal provided for Org A's consideration. - Win, Task
ID 9

Establish contact roles during and post-
deployment for verification

Defining who will contact the
external parties to confirm the
deployment.

6

[Subject – Scheduled deployment at hospital [h1]]
24/1/19 - [P1-BT1] to ensure phone call after patching is completed
tonight for [server s1].
7/2/19 - Information provided this morning for build process to
commence. - EMR, Issue ID 34

Planning load balance
Planning the spread of servers
evenly through patch windows
(how to patch).

5

[Subject - Review of [s1] server’s patch windows - rebalancing &
extended windows proposed]
11/1/19 - Need to move back the start time for [s1] servers patching to
"patch Tue" + 2days @21:00. For this we need to review the current
schedule, agree on new extended patch windows (proposed 4-6 hrs
windows) and to spread servers evenly through the windows.
Ongoing work - for consideration by Org A once the new patch
windows are clarified.
31/5/19 - Email directly to [P1-AT4] to advise that the change can be
accommodated while awaiting 4h window approval and overall
rebalancing approach approval. - Win, Issue ID 14

Cluster-based patching (based on patch
types)

Configuring the group settings and
deployment of the patch clusters for
higher availability.

7

[Subject - Patch deployment failed at [server s1]]
24/1/18 - Single point of failure for [server s1]. AT1 to review the
proposed design for clustering for high availability. Currently hard to
obtain reboot timings and only one reboot is allowed. Ask the
customer for an extended window and move the patching to the
weekend. - Win, Task ID 6

Extend patch windows for critical
patches with multi reboots

Planning extended windows for
patches that required multi reboots
in out-of-band windows.

4

[Subject - Smartlink Servers extended patch windows]
31/5/19 - OOB patch needed to catch up. [P1-AT1] to advise the
window, may need longer window (5-6 hrs suggested) and multi
reboot. Note: Server [s1] is not under support.
14/6/19 - OOB patching completed, reintroduced to standard schedule.
- EMR, Issue ID 20

Balancing the load on servers
Balancing the load on servers
during deployment to reduce
service unavailability.

4

[Subject - Auto Rebalancing required]
3/10/19 - Optimal amount per window for auto patching is 32 servers.
8/10/19 – The spreadsheet sent to [P1-AT2] and [P2-AT5] for
redistribution.
18/10 - Review in progress.
31/10 – [P3-BT1] suggesting maximum limit of servers per window is
32 per 4-hour block, client looking at which windows can shuffle. -
Win, Issue ID 57

Pre-load the patches offline to avoid
exceeding patch windows

Pre-loading the patches offline to
avoid patch deployment exceeding
the allocated patch window.

1

[Subject -Pre-download for auto patching required by management]
31/10/19 – Org B is expecting formal NSSR from Org A - T2 to
advise that pre-staging of patches or downloading "earlier" than the
patching window to allow earlier patch download/multi-reboots. Org
B is suggesting patches can be predownloaded on week 2 Thursday as
there is no patching on that day. - Win, Issue ID 53

Separate patch windows for failover
patching

Maintaining backup servers to
concurrently run the services while
being rebooted.

2

[Subject - Request to change the patch window of HLT667U003]
11/4/19 – Currently set to 0000-0300, but the full backup of server
patching happening during this window which causes slowness/issues
with patching. Suggest changing the window to 0600-0900. - Win,
Issue ID 36

Redeployment of failed patching for
unknown reasons

Redeployment of erroneous
patches. 7

[Subject - Post-deployment error at [server s1] causing the printing
service unavailable]
31/10/19 - This server was patched on 18/10 at 2 am-6 am. Due to the
errors, patching will be done manually in November. - Win, Issue ID 6

Manual patching of business critical
servers

Manual patching for business-
critical servers (e.g., life support
machines).

3

[Subject - Software version issues on some servers]
Issues with 47 Office patches on [server s1]-5 (multi-languages and
x32 and x64 bit versions) and 7 Visual Studio related patches on
SCMPRODCPMW001.
24/1/19 - A ticket raised for [server s1] for Org B to investigate Visual
Studio patches and manually apply if required.
3/8/19 – Patches are installed by [P1-BT1] as OOB with [change
request ch1]. This item can be closed now. - EMR, Issue ID 11

Manual patching of complex legacy
systems

Manually patching legacy software
systems. 2

[Subject – 2008 patching update]
18/11/20 - Currently down to 11 servers out of the 273 with patching
issues. It’ll be a manual patching in OOB. Also, someone will be
sitting there watching to rectify if any issues arise during the
deployment. - EMR, Issue ID 69

Agile deployment for
executing changes

Execute complex patch deployment
changes in small iterations

This is done as a precautionary
measure and to build confidence
around the changes. Also, because
a change in the patching process
could create devastating
consequences.

6

[Subject - Review of patch cycle timings]
22/2/18 - Org A is considering going for bi-monthly deployment
cycles for .NET patching and then move to monthly deployment after
the confidence is built. - EMR, Task ID 2

Verification through gathering client
feedback 4

[Subject - Automated second rescan for reboots]
31/10/19 - [P1-BT1] raised this issue, he has configured the window to
rescan for missing patches and conduct a second reboot if required. No
issues during patching, seeking client feedback for verification. -
EMR, Task ID 28

Verification through monitoring 2

[Subject – Tracking of GPO applications not intended]
24/07 - Rollback status: no reported issue due to the rollout, rollback
not required at this point. Keep monitoring for one more week. - Win,
Issue ID 91

Verification through analysis of log
system status 2

[Subject – SQL tlogs and IIS logs on C drives - capacity issue]
22/2/19 - Org B to run report of servers that have any SQL or IIS
logs/data on C drive and provide to [P1-AT2]. Then, apps teams to
look at moving off C. - Win, Issue ID 19

Verification through periodic scans 2

[Subject – Internal DXC server vulnerabilities]
20/3/20 – The scans identified application vulnerabilities on internal
Org B’s Jump hosts. The remediation is being investigated. – Non-
Win, Issue ID 15

Find workarounds for failed
deployments (countermeasures)

Workarounds such as Out-Of-Band
(OOB) patching to catch up with
missing patches, reverting back
installed erroneous patches, and
uninstalling EOL and unnecessary
software.

6

[Subject - Tracking of GPO applications that are not intended]
10/7/20 - Information sent to [P1-AT2] and [P2-AT2]. Patch [p1] will
need a rollback.
24/7/20 - Rollback executed, no reported issue due to the rollback.
Keep open for one more meeting for monitoring. - Win, Task ID 51

Investigation of root causes
(troubleshooting)

Identify the root causes for issues
identified post-deployment. 3

[Subject – Issue with Print Servers Patching]
16/10/20 - [P1-BT1] did some investigation and it was found that a
KB was missing in one server. Since this KB is only for 2016 server, it
is inapplicable. Need verification on that. [P1-AT5] to double check
on the vulnerabilities scan. - Win, Issue ID 54

Document deployment status
of every patch Document the status of each task Record the status of each patch in

the Patching Tracker. 3

[Subject - [Servers s1 and s2] successfully patched]
24/7/20 - [...] No further issues experienced since patching. Manual
instructions and deployment status updated in the shared tracker. Will
be kept in-monitor for another couple of weeks. - EMR, Issue ID 47

Strategies specific to
each phase of the

process

S
t
r
a
t
e
g
i
e
s

Manual deployment for
complex patches to minimise

damage

Patch Deployment

Establish post-deployment
verification procedures

Define set of procedures for post-
deployment patch verification (how
to verify).

Collectively handle post-
deployment issues

Post-Deployment
Patch Verification

Modify software
configurations and

dependencies

Patch Testing

Timely coordination of patch
deployment schedules

Apply workarounds to
maximise service availability

131

Appendix C

The Interview Guide

PRE-INTERVIEW QUESTIONNAIRE TO COLLECT THE DEMOGRAPHICS

Question Choices Provided

Full name

What is your current role (job title)?

How long have you been in the industry (total

industry experience)?

What is your team (team name)?

What is the team size (number of people)?

Which types of patches are you working with? Security patches, Non-security patches, Both,

Other (please specify)

What types of software components are you in charge

of patching?

Operating System (OS), Applications, Custom

Inhouse Software Applications, End of Life

(EOL) Software, Other (please specify)

How many machines/devices do you manage?

What type of machines/devices do you manage? Client machines (e.g., desktops, laptops, etc.),

Servers, Mobile devices (e.g., phones and

tablets), Routers/network devices, Embedded

devices/Internet of Things, Other (please

specify)

What are the operating systems on the

machines/devices that you manage?

--

INTERVIEW QUESTIONS

Warm-up Questions

Q1. Can you briefly walk me through your responsibilities in the security patch management

process?

Current tools/automation support in security patch management

Q2. What tools do you use in security patch management tasks?

- When do you use them (i.e., which task in which phase)?

- How does the tool help in security patch management tasks?

- Does the tool require human involvement at any point to proceed with the task?

- If yes, can you explain why? When does it need human input?

Limitations of current tools/automation support in security patch management

Q3. What challenges do you experience in dealing with these tools?

- Can you give me some examples of such challenges you have experienced?

- Why do you think they are challenging?

- In your experience, what situations are the most challenging to handle and why?

- How do you overcome these challenges? Can you please provide some examples?

Needs for better automation/tool support in security patch management

Q4.1. What are the situations or security patch management tasks that are currently not

supported by automation in your process?

- Can you explain why they are manual?

Q4.2. What tasks do you wish would have been better supported by the technology, if any?

- What kind of support do you expect from an improved tool?

- How do you anticipate such kind of a tool will help reduce patching delays?

- Any specific features you think are important to have in such a tool?

Q4.3. Have you heard about artificial intelligence (AI) or machine learning?

- How do you think AI can help bring efficiency in the process?

- In your opinion, do you think it is possible to replace human involvement with AI in

the security patch management process?

Q4.4: Any related points that we missed but you would like to reflect on?

135

Appendix D

The Observation Protocol for the
Grounded Theory Study

136 Appendix D. The Observation Protocol for the Grounded Theory Study

Table D.1. Observation protocol

Topic Question

Participants What are the roles and other details of the participants?
• Number of attendees
• Role (manager, system administrator, etc.)
• Affiliation (Org A or Org B)
• Team (Security, Windows, Server, etc.)

Is someone acting as a facilitator?
• Who?
• How is he/she facilitating the meeting?

Communication What is the communication channel?

How does the communication happen?
• Directed / indirect questions?
• Active participation in communication?
• Any roles that are most active in communication?

Activities What are the various discussions and activities?
• Topics discussed
• Challenges discussed
• Activities (demonstrations etc.)

Objects What resources/media are used?
• Presentation slides, excel sheets, tools, etc.

Collaboration How do the participants interact and corporate with each other?

Events Are there any particular events or anything unanticipated?

Time When does the meeting start?
What is the sequence of events?
When does the meeting end?

Goals What are the participants trying to accomplish?

Feelings How is the atmosphere?

Closing How is the meeting ended?
Is there a post-meeting planned?
Is there anything discussed about the next meeting?

137

Appendix E

Selected Primary Studies in the
Literature Review

Table E.1. Selected primary studies in the SLR.

ID Title Author(s) Venue Year

P1 Computer security and operating
system updates

G. Post, A. Kagan Information and Software
Technology

2003

P2 Reducing internet-based intrusions:
Effective security patch management

B. Brykczynski, R.A.
Small

IEEE Software 2003

P3 Safe software updates via
multi-version execution

P. Hosek, C. Cadar International Conference on
Software Engineering

2013

P4 The attack of the clones: A study of
the impact of shared code on
vulnerability patching

A. Nappa, R. Johnson,
L. Bilge, J. Caballero,
T. Dumitraş

IEEE Symposium on Security
and Privacy

2015

P5 Identifying Information Disclosure in
Web Applications with Retroactive
Auditing

H. Chen, T. Kim, X.
Wang, N. Zeldovich,
M. F. Kaashoek

USENIX Symposium on
Operating Systems Design
and Implementation

2014

P6 Improving VRSS-based vulnerability
prioritization using analytic hierarchy
process

Q. Liua, Y. Zhanga, Y.
Konga, Q. Wu

Journal of Systems and
Software

2012

P7 Improving CVSS-based vulnerability
prioritization and response with
context information

C. Frühwirth and T.
Männistö

International Symposium on
Empirical Software
Engineering and
Measurement

2009

P8 Keepers of the Machines: Examining
How System Administrators Manage
Software Updates

F. Li, L. Rogers, A.
Mathur, N. Malkin and
M. Chetty

USENIX Conference on
Usable Privacy and Security

2019

P9 Towards A Self-Managing Software
Patching Process Using Black-Box
Persistent-State Manifests

J. Dunagan, R.
Roussev, B. Daniels, A.
Johnson, C. Verbowski
and Y.M. Wang

IEEE International
Conference on Autonomic
Computing

2004

P10 Security, Availability, and Multiple
Information Sources: Exploring
Update Behavior of System
Administrators

C. Tiefenau, M. Häring,
K. Krombholz, E. von
Zezschwitz

USENIX Symposium on
Usable Privacy and Security

2020

P11 Patch management automation for
enterprise cloud

H. Huang, S. Baset, C.
Tang, A. Gupta, K.M.
Sudhan, F. Feroze, R.
Garg, S. Ravichandran

IEEE Network Operations
and Management Symposium

2012

P12 Shadow Patching: Minimizing
Maintenance Windows in a
Virtualized Enterprise Environment

D. Le, J. Xiao, H.
Huangy, H. Wang

International Conference on
Network and Service
Management

2014

138 Appendix E. Selected Primary Studies in the Literature Review

ID Title Author(s) Venue Year

P13 VULCAN: Vulnerability Assessment
Framework for Cloud Computing

P. Kamongi, S.
Kotikela, K. Kavi, M.
Gomathisankaran, A.
Singhal

International Conference on
Software Security and
Reliability

2013

P14 VRank: A Context-Aware Approach
to Vulnerability Scoring and Ranking
in SOA

J. Jiang, L. Ding, E.
Zhai, T. Yu

International Conference on
Software Security and
Reliability

2012

P15 “Anyone Else Seeing this Error?”:
Community, System Administrators,
and Patch Information

A. Jenkins, P.
Kalligeros, K. Vaniea,
M. K. Wolters

IEEE European Symposium
on Security and Privacy

2020

P16 Staged Deployment in Mirage, an
Integrated Software Upgrade Testing
and Distribution System

O. Crameri, N.
Knezevic, D. Kostic, R.
Bianchini, W.
Zwaenepoel

ACM SIGOPS Operating
Systems Review

2007

P17 Devirtualizable Virtual Machines
Enabling General, Single-Node,
Online Maintenance

D.E. Lowell, Y. Saito,
E.J. Samberg

ACM SIGARCH Computer
Architecture News

2004

P18 An automated framework for
managing security vulnerabilities

A. Al-Ayed, S.M.
Furnell, D. Zhao, P.S.
Dowland

Information Management and
Computer Security

2005

P19 A cross-site patch management
model and architecture design for
large scale heterogeneous
environment

C.W. Chang, D.R. Tsai,
J.M. Tsai

International Carnahan
Conference on Security
Technology

2005

P20 Security patch management F.M. Nicastro Information Systems Security 2003

P21 Intrusion recovery for
database-backed web applications

R. Chandra, T. Kim,
M. Shah, N. Narula, N.
Zeldovich

ACM Symposium on
Operating Systems Principles

2011

P22 MAD: A visual analytics solution for
Multi-step cyber Attacks Detection

M. Angelini, S.
Bonomi, S. Lenti, G.
Santucci, S. Taggi

Journal of Computer
Languages

2019

P23 Designing an efficient framework for
vulnerability assessment and patching
(VAP) in virtual environment of
cloud computing

R. Patil, C. Modi Journal of Supercomputing 2019

P24 A new cost-saving and efficient
method for patch management using
blockchain

Y.Kim, Y. Won Journal of Supercomputing 2019

P25 Linux patch management: With
security assessment features

S. Midtrapanon, G.
Wills

International Conference on
Internet of Things, Big Data
and Security

2019

P26 Vulnus: Visual vulnerability analysis
for network security

M. Angelini, G. Blasilli,
T. Catarci, S. Lenti, G.
Santucci

IEEE Transactions on
Visualization and Computer
Graphics

2018

P27 Handling vulnerabilities with mobile
agents in order to consider the delay
and disruption tolerant characteristic
of military networks

T. Aurisch, A. Jacke International Conference on
Military Communications and
Information Systems

2018

P28 Green WSUS S. Kadry, C. Jouma International Conference on
Future Energy, Environment
and Materials

2012

Appendix E. Selected Primary Studies in the Literature Review 139

ID Title Author(s) Venue Year

P29 Checking running and dormant virtual
machines for the necessity of security
updates in cloud environments

R. Schwarzkopf, M.
Schmidt, C. Strack, B.
Freisleben

IEEE International
Conference on Cloud
Computing Technology and
Science

2011

P30 A race for security: Identifying
vulnerabilities on 50 000 hosts faster
than attackers

M. Procházka, D.
Koüril, R. Wartel, C.
Kanellopoulos, C.
Triantafyllidis

The International Symposium
on Grids and Clouds and the
Open Grid Forum

2011

P31 Multi-layered virtual machines for
security updates in grid environments

R. Schwarzkopf, M.
Schmidt, N. Fallenbeck,
B. Freisleben

Euromicro Conference on
Software Engineering and
Advanced Applications

2009

P32 A study and implementation of
vulnerability assessment and
misconfiguration detection

C.H. Lin, C.H. Chen,
C.S. Laih

IEEE Asia-Pacific Services
Computing Conference

2019

P33 Using the vulnerability information of
computer systems to improve the
network security

Y.P. Lai, P.L. Hsia Computer Communications 2007

P34 Analyzing enterprise network
vulnerabilities

M. Nyanchama, M.
Stefaniu

Information Systems Security 2003

P35 The dilemma of security patches G. Post, A. Kagan Information Systems Security 2002

P36 Always up-to-date: Scalable offline
patching of VM images in a compute
cloud

W. Zhou, P. Ning, X.
Zhang, G. Ammons, R.
Wang, V. Bala

Annual Computer Security
Applications Conference

2010

P37 A process framework for
stakeholder-specific visualization of
security metrics

T. Hanauer, W.
Hommel, S. Metzger,
D. Pöhn

International Conference on
Availability, Reliability and
Security

2018

P38 VULCON: A system for vulnerability
prioritization, mitigation, and
management

K.A. Farris, A. Shah,
G. Cybenko, R.
Ganesan, S. Jajodia

ACM Transactions on Privacy
and Securitys

2018

P39 Patch auditing in infrastructure as a
service clouds

L. Litty, D. Lie International Conference on
Virtual Execution
Environments

2011

P40 Designing a distributed patch
management security system

Y. Nunez, F.
Gustavson, F.
Grossman, C. Tappert

International Conference on
Information Society

2010

P41 Beyond heuristics: Learning to
classify vulnerabilities and predict
exploits

M. Bozorgi, L.K. Saul,
S. Savage, G.M.
Voelker

ACM SIGKDD International
Conference on Knowledge
Discovery and Data Mining

2010

P42 NetGlean: A methodology for
distributed network security scanning

G.W. Manes, D.
Schulte, S. Guenther,
S. Shenoi

Journal of Network and
Systems Management

2005

P43 RL-BAGS: A tool for smart grid risk
assessment

Y. Wadhawan, C.
Neuman

International Conference on
Smart Grid and Clean Energy
Technologies

2018

P44 From patching delays to infection
symptoms: Using risk profiles for an
early discovery of vulnerabilities
exploited in the wild

C. Xiao, A. Sarabi, Y.
Liu, B. Li, M. Liu, T.
Dumitraş

USENIX Security Symposium 2018

P45 PKG-VUL: Security vulnerability
evaluation and patch framework for
package-based systems

J.H. Lee, S.G. Sohn,
B.H. Chang, T.M.
Chung

ETRI Journal 2009

140 Appendix E. Selected Primary Studies in the Literature Review

ID Title Author(s) Venue Year

P46 A Study of Integrity on the Security
Patches System Using PM-FTS

K.J. Kim, M. Kim Wireless Personal
Communications

2017

P47 Patch integrity verification method
using dual electronic signatures

J. Kim, Y. Won Journal of Information
Processing Systems

2017

P48 Software asset analyzer: A system for
detecting configuration anomalies

X. Li, P. Avellino, J.
Janies, M.P. Collins

IEEE Military
Communications Conference

2016

P49 Vulnerabilities scoring approach for
cloud saas

Z. Li, C. Tang, J. Hu,
Z. Chen

International Conference on
Ubiquitous Intelligence and
Computing, International
Conference on Advanced and
Trusted Computing,
International Conference on
Scalable Computing and
Communications and its
associated Workshops

2015

P50 Risk assessment and mitigation at the
information technology companies

B. Marx, D. Oosthuizen Risk Governance & Control:
Financial Markets and
Institutions

2016

P51 A proposed framework for proactive
vulnerability assessments in cloud
deployments

K.A. Torkura, F.
Cheng, C. Meinel

International Conference for
Internet Technology and
Secured Transactions

2015

P52 Elementary Risks: Bridging
Operational and Strategic Security
Realms

W. Kanoun, S.
Papillon, S. Dubus

International Conference on
Signal-Image Technology and
Internet-Based Systems

2015

P53 Mining social networks for software
vulnerabilities monitoring

S. Trabelsi, H. Plate,
A. Abida, M.M. Ben
Aoun, A. Zouaoui, C.
Missaoui, S. Gharbi, A.
Ayari

International Conference on
New Technologies, Mobility
and Security

2015

P54 A VMM-level approach to shortening
downtime of operating systems
reboots in software updates

H. Yamada, K. Kono IEICE Transactions on
Information and Systems

2014

P55 A vulnerability life cycle-based
security modeling and evaluation
approach

G.V. Marconato, M.
Kaâniche, V. Nicomette

The Computer Journal 2013

P56 iDispatcher: A unified platform for
secure planet-scale information
dissemination

M.S. Rahman, G. Yan,
H.V. Madhyastha, M.
Faloutsos, S.
Eidenbenz, M. Fisk

Peer-to-Peer Networking and
Applications

2013

P57 Efficient patch-based auditing for web
application vulnerabilities

T. Kim, R. Chandra, N.
Zeldovich

USENIX Symposium on
Operating Systems Design
and Implementation

2012

P58 Instant OS updates via userspace
checkpoint-and-restart

S. Kashyap, C. Min, B.
Lee, T. Kim, P.
Emelyanov

USENIX Annual Technical
Conference

2016

P59 Tachyon: Tandem execution for
efficient live patch testing

M. Maurer, D. Brumley USENIX Security Symposium 2012

P60 Efficient online validation with delta
execution

J. Tucek, W. Xiong, Y.
Zhou

International Conference on
Architectural Support for
Programming Languages and
Operating Systems

2009

Appendix E. Selected Primary Studies in the Literature Review 141

ID Title Author(s) Venue Year

P61 Enterprise Vulnerability Management
and Its Role in Information Security
Management

M. Nyanchama Information Security
Management

2005

P62 A Machine Learning-based Approach
for Automated Vulnerability
Remediation Analysis

F. Zhang, P. Huff, K.
McClanahan, Q. Li

IEEE Conference on
Communications and
Network Security

2020

P63 Reducing Downtime Due to System
Maintenance and Upgrades

S. Potter and J. Nieh USENIX Systems
Administration Conference

2005

P64 Increasing virtual machine security in
cloud environments

R. Schwarzkopf, M.
Schmidt, C. Strack, S.
Martin and B.
Freisleben

Journal of Cloud Computing:
Advances, Systems and
Applications

2012

P65 Understanding Software Patching J. Dadzie ACM Queue 2005

P66 Patching the Enterprise G. Brandman ACM Queue 2005

P67 Why Do Upgrades Fail and What
Can We Do about It?

T. Dumitras, P.
Narasimhan

ACM/IFIP/USENIX
International Conference on
Distributed Systems
Platforms and Open
Distributed Processing

2009

P68 Transparent Mutable Replay for
Multicore Debugging and Patch
Validation

N. Viennot, S. Nair, J.
Nieh

ACM SIGARCH computer
architecture news

2013

P69 A quantitative evaluation of
vulnerability scanning

H. Holm, T.
Sommestad

Information Management &
Computer Security

2011

P70 Evaluation of Security Vulnerability
Scanners for Small and Medium
Enterprises Business Networks
Resilience towards Risk Assessment

I. Chalvatzis, D. A.
Karras, R. C.
Papademetriou

IEEE International
Conference on Artificial
Intelligence and Computer
Applications

2019

P71 SLA-driven Applicability Analysis for
Patch Management

B. Yang, N. Ayachitula
(Arun), S. Zeng, R.
Puri

IFIP/IEEE International
Symposium on Integrated
Network Management

2011

P72 A Design for a Hyperledger Fabric
Blockchain-Based
Patch-Management System

K. T. Song, S. I. Kim,
S. H. Kim

Journal of Information
Processing Systems

2020

143

Appendix F

Data Extraction Form in the
Literature Review

Table F.1. Data extraction form used in the SLR.

ID Data item Description RQ
(Section 3.3.1)

D1 Title The title of the paper Demographic
data

D2 Author(s) The author(s) of the paper Demographic
data

D3 Venue The publication venue Demographic
data

D4 Year The year of the publication Demographic
data

D5 Publication type The type of publication (e.g., conference paper,
journal paper)

Demographic
data

D6 Area of Focus The focus of the paper in the security patch
management process

Demographic
data

D7 Target User(s) The intended users (e.g., security manager) Demographic
data

D8 Application Domain The target application domain (e.g., cloud) Demographic
data

D9 Solution Type The type of solution i.e., Practice, Approach, Tool Demographic
data

D10 Research Type The type of research i.e., Validation Research,
Evaluation Research, Solution Proposal,
Experience Paper, Philosophical Paper, Opinion
Paper

Demographic
data

D11 Challenges The reported socio-technical challenges RQ1.1

D12 Solutions: Approaches and
tools

The proposed approaches and tools (key
elements), and their strengths and capabilities
documenting how the solution addresses the
reported challenges

RQ1.2.1

D13 Solutions: Practices The reported practices to successfully implement
security patch management

RQ1.2.2

D14 Evaluation The type of evaluation used to assess the reported
solutions, and the level of rigour and industrial
relevance

RQ1.3

D15 Limitations and Threats to
Validity

The limitations of the solution and the reported
threats to validity

Discussion

144 Appendix F. Data Extraction Form in the Literature Review

ID Data item Description RQ
(Section 3.3.1)

D16 Future Work The reported future work Discussion

145

Appendix G

Approved Ethics Application

Our reference 34332

02 April 2020

Professor Ali Babar
School of Computer Science

Dear Professor Babar

ETHICS APPROVAL No: H-2020-035
PROJECT TITLE: Human-AI Collaboration for Securing Organizational Systems: A Case

of Software Security Patch Management

The ethics application for the above project has been reviewed by the Executive, Human Research Ethics
Committee and is deemed to meet the requirements of the National Statement on Ethical Conduct in Human
Research 2007 (Updated 2018) involving no more than low risk for research participants.

You are authorised to commence your research on: 02/04/2020
The ethics expiry date for this project is: 30/04/2023

NAMED INVESTIGATORS:

Chief Investigator: Professor Ali Babar

Student - Postgraduate
Doctorate by Research (PhD):

Mrs Nesara Madugoda S. Dissanayakege

Associate Investigator: Dr Asangi Jayatilaka

Associate Investigator: Dr Mansooreh Zahedi

CONDITIONS OF APPROVAL: Thank you for addressing the feedback. The revised ethics application
provided on the 17th of March 2020 has been approved.

Ethics approval is granted for three years and is subject to satisfactory annual reporting. The form titled Annual
Report on Project Status is to be used when reporting annual progress and project completion and can be
downloaded at http://www.adelaide.edu.au/research-services/oreci/human/reporting/. Prior to expiry, ethics
approval may be extended for a further period.

Participants in the study are to be given a copy of the information sheet and the signed consent form to retain.
It is also a condition of approval that you immediately report anything which might warrant review of ethical
approval including:

serious or unexpected adverse effects on participants,
previously unforeseen events which might affect continued ethical acceptability of the project,
proposed changes to the protocol or project investigators; and

RESEARCH SERVICES
OFFICE OF RESEARCH ETHICS, COMPLIANCE
AND INTEGRITY
THE UNIVERSITY OF ADELAIDE

LEVEL 4, RUNDLE MALL PLAZA
50 RUNDLE MALL
ADELAIDE SA 5000 AUSTRALIA

TELEPHONE +61 8 8313 5137
FACSIMILE +61 8 8313 3700
EMAIL hrec@adelaide.edu.au

CRICOS Provider Number 00123M

the project is discontinued before the expected date of completion.

Yours sincerely,

Professor Paul Delfabbro
Convenor

The University of Adelaide

149

References

[1] P. Mell, T. Bergeron, D. Henning et al., “Creating a patch and vulnerability
management program,” NIST Special Publication, vol. 800, p. 40, 2005.

[2] F. Li, L. Rogers, A. Mathur, N. Malkin, and M. Chetty, “Keepers of the ma-
chines: Examining how system administrators manage software updates,” in
Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019). USENIX
Association, 2019, pp. 273–288.

[3] Accenture, “2020 cyber threatscape report,” https://www.accenture.com/
_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf.

[4] B. Thomas, “New windows vulnerabilities highlight patch
management challenges,” https://www.bitsight.com/blog/
new-windows-vulnerabilities-highlight-patch-management-challenges.

[5] S. Coleman, “Cyber security review,” https://www.cybersecurity-review.com/
what-if-you-cant-patch/.

[6] R. Brandom, “Former equifax ceo blames breach on a single person
who failed to deploy patch,” https://www.theverge.com/2017/10/3/16410806/
equifax-ceo-blame-breach-patch-congress-testimony.

[7] M. Lee, “Equifax data breach impacts 143 million amer-
icans,” https://www.forbes.com/sites/leemathews/2017/09/07/
equifax-data-breach-impacts-143-million-americans/#7aa9c117356f.

[8] L. H. Newman, “Equifax officially has no excuse,” https://www.wired.com/
story/equifax-breach-no-excuse/.

[9] N. P. Melissa Eddy, “Cyber attack suspected in german woman’s
death,” https://www.nytimes.com/2020/09/18/world/europe/
cyber-attack-germany-ransomeware-death.html?smid=tw-share.

[10] C. for Internet Security (CIS). (2022) Cyber attacks: In the health-
care sector. [Online]. Available: https://www.cisecurity.org/insights/blog/
cyber-attacks-in-the-healthcare-sector

[11] R. Southwick. (2022) Cyberattacks in healthcare surged
last year, and 2022 could be even worse. [On-
line]. Available: https://www.chiefhealthcareexecutive.com/view/
cyberattacks-in-healthcare-surged-last-year-and-2022-could-be-even-worse

[12] N. A. Office, “Investigation: Wannacry cyber attack and the nhs,” Department
of Health, Report by the Comptroller and Auditor General, October 2017.

[13] S. Ghafur, S. Kristensen, K. Honeyford, G. Martin, A. Darzi, and P. Aylin, “A
retrospective impact analysis of the wannacry cyberattack on the nhs,” NPJ
Digital Medicine, vol. 2, p. 98, 2019.

https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
https://www.bitsight.com/blog/new-windows-vulnerabilities-highlight-patch-management-challenges
https://www.bitsight.com/blog/new-windows-vulnerabilities-highlight-patch-management-challenges
https://www.cybersecurity-review.com/what-if-you-cant-patch/
https://www.cybersecurity-review.com/what-if-you-cant-patch/
https://www.theverge.com/2017/10/3/16410806/equifax-ceo-blame-breach-patch-congress-testimony
https://www.theverge.com/2017/10/3/16410806/equifax-ceo-blame-breach-patch-congress-testimony
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/#7aa9c117356f
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/#7aa9c117356f
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html?smid=tw-share
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html?smid=tw-share
https://www.cisecurity.org/insights/blog/cyber-attacks-in-the-healthcare-sector
https://www.cisecurity.org/insights/blog/cyber-attacks-in-the-healthcare-sector
https://www.chiefhealthcareexecutive.com/view/cyberattacks-in-healthcare-surged-last-year-and-2022-could-be-even-worse
https://www.chiefhealthcareexecutive.com/view/cyberattacks-in-healthcare-surged-last-year-and-2022-could-be-even-worse

150 REFERENCES

[14] Kaspersky, “What is wannacry ransomware?” https://www.kaspersky.com/
resource-center/threats/ransomware-wannacry.

[15] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown:
Reading kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018, pp. 973–990. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/presentation/
lipp

[16] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (S&P’19). IEEE, 2019, pp. 1–19.

[17] M. Souppaya and K. Scarfone, “Guide to enterprise patch management tech-
nologies,” NIST Special Publication, vol. 800, p. 40, 2013.

[18] NIST, “Procedures for handling security patches,” Special Publication (SP) 800-
40, 2002.

[19] P. Mell, T. Bergeron, and D. Henning, “Creating a patch and vulnerability
management program,” NIST Special Publication (SP) 800-40 Revision 2, 2005.

[20] C. Tiefenau, M. Häring, K. Krombholz, and E. von Zezschwitz, “Security, avail-
ability, and multiple information sources: Exploring update behavior of sys-
tem administrators,” in Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020). USENIX Association, 2020, pp. 239–258.

[21] U. Gentile and L. Serio, “Survey on international standards and best practices
for patch management of complex industrial control systems: the critical infras-
tructure of particle accelerators case study,” International Journal of Critical
Computer-Based Systems, vol. 9, no. 1-2, pp. 115–132, 2019.

[22] H. Huang, S. Baset, C. Tang, A. Gupta, K. M. Sudhan, F. Feroze, R. Garg, and
S. Ravichandran, “Patch management automation for enterprise cloud,” in IEEE
Network Operations and Management Symposium. IEEE, 2012, pp. 691–705.

[23] Automox, “Palo alto 2022 incident response report,” https://www.automox.
com/blog/palo-alto-2022-incident-response-report.

[24] D. Dey, A. Lahiri, and G. Zhang, “Optimal policies for security patch manage-
ment,” INFORMS Journal on Computing, vol. 27, no. 3, pp. 462–477, 2015.

[25] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W. Zwaenepoel, “Staged
deployment in mirage, an integrated software upgrade testing and distribution
system,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 221–236,
2007.

[26] C. Islam, M. A. Babar, and S. Nepal, “A multi-vocal review of security orches-
tration,” ACM Computing Surveys (CSUR), vol. 52, no. 2, pp. 1–45, 2019.

[27] F. E. Emery and E. L. Trist, “Socio-technical systems,” Churchman, C.W.,
Verhulst, M. (Eds.), Management Science Models and Techniques, vol. 2, p.
83–97, 1960.

https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.automox.com/blog/palo-alto-2022-incident-response-report
https://www.automox.com/blog/palo-alto-2022-incident-response-report

REFERENCES 151

[28] T. D. Barbara A Kitchenham and M. Jorgensen, “Evidence-based software en-
gineering,” in Proceedings. 26th International Conference on Software Engineer-
ing. IEEE, 2004, pp. 273–281.

[29] S. Keele et al., “Guidelines for performing systematic literature reviews in soft-
ware engineering,” Technical report, Version 2.3 EBSE Technical Report. EBSE,
Tech. Rep., 2007.

[30] T. A. Schwandt, Qualitative Inquiry. London: Sage, 1997.

[31] M. N. Marshall, “Sampling for qualitative research,” Family practice, vol. 13,
no. 6, pp. 522–526, 1996. [Online]. Available: https://doi.org/10.1093/fampra/
13.6.522

[32] R. K. Yin, Case study research and applications: Design and methods. Sage
publications, 2017.

[33] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Software Engineering, vol. 14, no. 2,
pp. 131–164, 2009.

[34] A. L. Strauss and J. M. Corbin, Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory, 2nd ed. Sage, 1998.

[35] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. Chicago: Aldine Transaction, 1967.

[36] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software engi-
neering research: A critical review and guidelines,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE). ACM, 2016, pp.
120–131.

[37] A. L. Strauss and J. M. Corbin, Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory, 3rd ed. Sage, 2007.

[38] Q. International, “Nvivo qualitative data analysis software,” https://www.
qsrinternational.com/nvivo-qualitative-data-analysis-software/home, 2023.

[39] M. V. Genuchten, “Why is software late? an empirical study of reasons for delay
in software development,” IEEE Transactions on Software Engineering, vol. 17,
no. 6, pp. 582–590, 1991.

[40] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering. Lon-
don: Adisson-Wesley, 1975.

[41] S. B. Merriam, Qualitative Research and Case Study Applications in Education.
Revised and Expanded from. ERIC, 1998.

[42] K. Charmaz, Constructing Grounded Theory: A Practical Guide through Qual-
itative Analysis. Sage, 2006.

[43] L. Birt, S. Scott, D. Cavers, and C. C. F. Walter, “Member checking: A
tool to enhance trustworthiness or merely a nod to validation?” Qualitative
Health Research, vol. 26, no. 13, pp. 1802–1811, 2016. [Online]. Available:
https://doi.org/10.1177/1049732316654870

https://doi.org/10.1093/fampra/13.6.522
https://doi.org/10.1093/fampra/13.6.522
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://doi.org/10.1177/1049732316654870

152 REFERENCES

[44] B. G. Glaser, Basics of Grounded Theory Analysis: Emergence vs Forcing. Mill
Valley, CA: Sociology Press, 1992.

[45] B. G. Glaser, Theoretical Sensitivity: Advances in the Methodology of Grounded
Theory. Mill Valley, CA: Sociology Press, 1978.

[46] R. Hoda, J. Noble, and S. Marshall, “The impact of inadequate
customer collaboration on self-organizing agile teams,” Information and
Software Technology, vol. 53, no. 5, pp. 521–534, 2011. [Online]. Available:
https://doi.org/10.1016/j.infsof.2010.10.009

[47] I. Cook and M. Crang, Doing ethnographies, U. of East Anglia Norwich, Ed.
Sociology Press, 1995.

[48] H. Sharp, Y. Dittrich, and C. R. B. de Souza, “The role of ethnographic studies
in empirical software engineering,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 786–804, 2016.

[49] J. P. Spradley, Participant Observation, 1st ed. Austin, TX: Rinehart and
Winston, 1980.

[50] C. Urquhart, Grounded Theory for Qualitative Research: A Practical Guide.
Sage, 2013.

[51] S. Georgieva and G. Allan, “Best practices in project management through a
grounded theory lens,” Electronic Journal of Business Research Methods, vol. 6,
no. 1, 2008.

[52] R. Hoda, J. Noble, and S. Marshall, “Developing a grounded theory to explain
the practices of self-organizing agile teams,” Empirical Software Engineering,
vol. 17, no. 6, pp. 609–639, 2012.

[53] B. G. Glaser, The Grounded Theory Perspective III: Theoretical Coding. Mill
Valley, CA: Sociology Press, 2005.

[54] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, “Software security
patch management-a systematic literature review of challenges, approaches,
tools and practices,” Information and Software Technology, vol. 144, p. 106771,
2021. [Online]. Available: https://doi.org/10.1016/j.infsof.2021.106771

[55] A. Jenkins, P. Kalligeros, K. Vaniea, and M. K. Wolters, “ “anyone else seeing
this error?”: Community, system administrators, and patch information,” in
2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2020, pp. 105–119.

[56] N. Dissanayake, M. Zahedi, A. Jayatilaka, and M. A. Babar, “A grounded
theory of the role of coordination in software security patch management,” in
Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21).
ACM, New York, NY, USA, 2021. [Online]. Available: https://doi.org/10.1145/
3468264.3468595

[57] T. Gerace and H. Cavusoglu, “The critical elements of patch management,” in
Proceedings of the 33rd annual ACM SIGUCCS conference on User services,
2005, pp. 98–101.

https://doi.org/10.1016/j.infsof.2010.10.009
https://doi.org/10.1016/j.infsof.2021.106771
https://doi.org/10.1145/3468264.3468595
https://doi.org/10.1145/3468264.3468595

REFERENCES 153

[58] B. Brykczynski and R. A. Small, “Reducing internet-based intrusions: Effective
security patch management,” IEEE software, vol. 20, no. 1, pp. 50–57, 2003.

[59] F. M. Nicastro, “Security patch management,” Inf. Secur. J. A Glob. Perspect.,
vol. 12, no. 5, pp. 5–18, 2003.

[60] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Security patch management: Share
the burden or share the damage?” Management Science, vol. 54, no. 4, pp.
657–670, 2008.

[61] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Economics of security patch man-
agement,” in WEIS. Citeseer, 2006.

[62] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinforma-
tion,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 942–953.

[63] M. Hicks and S. Nettles, “Dynamic software updating,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 27, no. 6, pp. 1049–1096,
2005.

[64] E. Miedes and F. D. Munoz-Escoı, “Dynamic software update,” Instituto Univer-
sitario Mixto Tecnológico de Informática, Universitat Politècnica de València,
Technical Report ITI-SIDI-2012/004, 2012.

[65] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, “A survey of dynamic
software updating,” Journal of Software: Evolution and Process, vol. 25, no. 5,
pp. 535–568, 2013.

[66] A. R. Gregersen, M. Rasmussen, and B. N. Jørgensen, “State of the art of
dynamic software updating in java,” in International Conference on Software
Technologies. Springer, 2013, pp. 99–113.

[67] I. Mugarza, J. Parra, and E. Jacob, “Analysis of existing dynamic software up-
dating techniques for safe and secure industrial control systems,” International
journal of safety and security engineering, vol. 8, no. 1, pp. 121–131, 2018.

[68] B. H. Ahmed, S. P. Lee, M. T. Su, and A. Zakari, “Dynamic software updating:
a systematic mapping study,” IET Software, vol. 14, no. 5, pp. 468–481, 2020.

[69] C. Islam, V. Prokhorenko, and M. A. Babar, “Runtime software patching: Tax-
onomy, survey and future directions,” Journal of Systems and Software, p.
111652, 2023.

[70] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and practices,”
IEEE Access, vol. 5, pp. 3909–3943, 2017.

[71] “Cambridge dictionary,” https://dictionary.cambridge.org/.

[72] Y. Dittrich, “What does it mean to use a method? towards a practice theory
for software engineering,” Information and Software Technology, vol. 70, pp.
220–231, 2016.

https://dictionary.cambridge.org/

154 REFERENCES

[73] K. Schmidt, “The concept of ‘practice’: What’s the point?” in COOP 2014-
Proceedings of the 11th International Conference on the Design of Cooperative
Systems, 27-30 May 2014, Nice (France). Springer, 2014, pp. 427–444.

[74] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner, M. Niazi,
and S. Linkman, “Systematic literature reviews in software engineering–a ter-
tiary study,” Information and software technology, vol. 52, no. 8, pp. 792–805,
2010.

[75] M. Zahedi, M. Shahin, and M. A. Babar, “A systematic review of knowledge
sharing challenges and practices in global software development,” International
Journal of Information Management, vol. 36, no. 6, pp. 995–1019, 2016.

[76] M. Shahin, M. A. Babar, and M. A. Chauhan, “Architectural design space for
modelling and simulation as a service: A review,” Journal of Systems and Soft-
ware, vol. 170, p. 110752, 2020.

[77] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th international
conference on evaluation and assessment in software engineering, 2014, pp. 1–
10.

[78] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A
systematic review,” Information and software technology, vol. 50, no. 9-10, pp.
833–859, 2008.

[79] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of software archi-
tecture visualization techniques,” Journal of Systems and Software, vol. 94, pp.
161–185, 2014.

[80] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering,”
Information and Software Technology, vol. 106, pp. 101–121, 2019.

[81] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature
reviews in software engineering,” 2007.

[82] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative
research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[83] D. S. Cruzes and T. Dybå, “Research synthesis in software engineering: A ter-
tiary study,” Information and Software Technology, vol. 53, no. 5, pp. 440–455,
2011.

[84] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping
studies in software engineering,” in 12th International Conference on Evaluation
and Assessment in Software Engineering (EASE) 12, 2008, pp. 1–10.

[85] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting sys-
tematic mapping studies in software engineering: An update,” Information and
Software Technology, vol. 64, pp. 1–18, 2015.

[86] “Common vulnerability scoring system,” https://www.first.org/cvss/.

[87] L. Chen and M. A. Babar, “A systematic review of evaluation of variability
management approaches in software product lines,” Information and Software
Technology, vol. 53, no. 4, pp. 344–362, 2011.

https://www.first.org/cvss/

REFERENCES 155

[88] M. Shaw, “Writing good software engineering research papers,” in 25th Inter-
national Conference on Software Engineering, 2003. Proceedings. IEEE, 2003,
pp. 726–736.

[89] C. Zannier, G. Melnik, and F. Maurer, “On the success of empirical studies in
the international conference on software engineering,” in Proceedings of the 28th
international conference on Software engineering, 2006, pp. 341–350.

[90] N. Fenton, S. L. Pfleeger, and R. L. Glass, “Science and substance: A challenge
to software engineers,” IEEE software, vol. 11, no. 4, pp. 86–95, 1994.

[91] E. Kamar, “Directions in hybrid intelligence: Complementing ai systems with
human intelligence.” in IJCAI, 2016, pp. 4070–4073.

[92] D. Dellermann, A. Calma, N. Lipusch, T. Weber, S. Weigel, and P. Ebel, “The
future of human-ai collaboration: a taxonomy of design knowledge for hybrid in-
telligence systems,” in Proceedings of the 52nd Hawaii International Conference
on System Sciences, 2019.

[93] J. A. Crowder, J. Carbone, and S. Friess, “Human–ai collaboration,” in Artificial
Psychology. Springer, 2020, pp. 35–50.

[94] D. Kirk and S. G. MacDonell, “Investigating a conceptual construct for software
context,” in Proceedings of the 18th international conference on evaluation and
assessment in software engineering, 2014, pp. 1–10.

[95] T. Dybå, D. I. Sjøberg, and D. S. Cruzes, “What works for whom, where, when,
and why? on the role of context in empirical software engineering,” in Pro-
ceedings of the ACM-IEEE international symposium on Empirical software en-
gineering and measurement, 2012, pp. 19–28.

[96] K. Petersen and C. Wohlin, “Context in industrial software engineering re-
search,” in 2009 3rd International Symposium on Empirical Software Engineer-
ing and Measurement. IEEE, 2009, pp. 401–404.

[97] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou,
“Identifying, categorizing and mitigating threats to validity in software engi-
neering secondary studies,” Information and Software Technology, vol. 106, pp.
201–230, 2019.

[98] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats to validity of
systematic literature reviews in software engineering,” in 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2016, pp. 153–160.

[99] M. Unterkalmsteiner, T. Gorschek, A. M. Islam, C. K. Cheng, R. B. Per-
madi, and R. Feldt, “Evaluation and measurement of software process improve-
ment—a systematic literature review,” IEEE Transactions on Software Engi-
neering, vol. 38, no. 2, pp. 398–424, 2011.

[100] N. Dissanayake, M. Zahedi, A. Jayatilaka, and M. A. Babar, “Why, how
and where of delays in software security patch management: An empirical
investigation in the healthcare sector,” Proceedings of the ACM on Human-
Computer Interaction (CSCW), vol. 6, no. 362, 2022. [Online]. Available:
https://doi.org/10.1145/3555087

https://doi.org/10.1145/3555087

156 REFERENCES

[101] L. H. Newman. (2017) Equifax officially has no excuse. [Online]. Available:
https://www.wired.com/story/equifax-breach-no-excuse/

[102] D. Goodin. (2017) Failure to patch two-month-
old bug led to massive equifax breach. [On-
line]. Available: https://arstechnica.com/information-technology/2017/09/
massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/

[103] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The attack of
the clones: A study of the impact of shared code on vulnerability patching,” in
IEEE Symposium on Security and Privacy (S&P). IEEE, 2015, pp. 692–708.

[104] J. Dunagan, R. Roussev, B. Daniels, A. Johnson, C. Verbowski, and Y.-M.
Wang, “Towards a self-managing software patching process using black-box
persistent-state manifests,” in International Conference on Autonomic Com-
puting, 2004. Proceedings. IEEE, 2004, pp. 106–113.

[105] M. Maurer and D. Brumley, “Tachyon: Tandem execution for efficient
live patch testing,” in 21st {USENIX} Security Symposium ({USENIX}
Security 12. Bellevue, WA: {USENIX} Association, 2012, pp. 617–
630. [Online]. Available: https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/maurer

[106] S. Potter and J. Nieh, “Reducing downtime due to system maintenance and up-
grades,” in Proceedings of the 19th USENIX Systems Administration Conference.
IEEE, 2005, pp. 6–6.

[107] T. Dumitraş and P. Narasimhan, “Why do upgrades fail and what can we do
about it?” in ACM/IFIP/USENIX International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing, ser. Middleware 2009. Lecture
Notes in Computer Science, vol. 5896. Berlin: Springer, 2009, pp. 349–372.

[108] F. Araujo and T. Taylor, “Improving cybersecurity hygiene through jit patch-
ing,” in Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’20). ACM, 2020, pp. 1421–1432.

[109] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigating
system operators’ perspective on security misconfigurations,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS’18). ACM, 2018, pp. 1272–1289. [Online]. Available: https://doi.org/
10.1145/3243734.3243794

[110] A. Jenkins, P. Kalligeros, K. Vaniea, and M. K. Wolters, ““Anyone Else Seeing
this Error?”: Community, system administrators, and patch information,” in
2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2020, pp. 105–119.

[111] G. Post and A. Kagan, “Computer security and operating system updates,”
Information and Software Technology, vol. 45, no. 8, pp. 461–467, 2003.

[112] J. Tucek, W. Xiong, and Y. Zhou, “Efficient online validation with delta ex-
ecution,” in Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, 2009, pp. 193–204.

https://www.wired.com/story/equifax-breach-no-excuse/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer
https://doi.org/10.1145/3243734.3243794
https://doi.org/10.1145/3243734.3243794

REFERENCES 157

[113] H. Chen, T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Identifying information disclosure in web applications with retroactive
auditing,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). USENIX Association, 2014, pp. 555–569. [On-
line]. Available: https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/chen_haogang

[114] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An empirical
study of global software development: Distance and speed,” in Proceedings of
the 23rd International Conference on Software Engineering, ICSE 2001. IEEE,
2001, pp. 81–90.

[115] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “Distance, depen-
dencies, and delay in a global collaboration,” in Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work (CSCW). Association
for Computing Machinery, 2000, p. 319–328.

[116] J. D. Herbsleb and A. Mockus, “An empirical study of speed and communication
in globally distributed software development,” IEEE Transactions on Software
Engineering, vol. 29, no. 6, pp. 481–494, 2003.

[117] T. Nguyen, T. Wolf, and D. Damian, “Global software development and delay:
Does distance still matter?” in 2008 IEEE International Conference on Global
Software Engineering. IEEE, 2008, pp. 45–54.

[118] J. E. Mathieu, M. A. Marks, and S. J. Zaccaro, “Multiteam systems,” Handbook
of Industrial, Work and Organizational Psychology, vol. 2, pp. 289–313, 2001.

[119] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers are
slacking off: Understanding how software teams use slack,” in Proceedings of
the 19th ACM Conference on Computer Supported Cooperative Work and Social
Computing Companion (CSCW ’16 Companion). ACM, New York, NY, USA,
2016, p. 333–336.

[120] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P.
Chaves, and M. A. Gerosa, “The power of bots: Characterizing and
understanding bots in oss projects,” Proceedings of the ACM Conference on
Computer Supported Cooperative Work Social Computing, vol. 2, no. CSCW,
2018. [Online]. Available: https://doi.org/10.1145/3274451

[121] D. Wang, J. D. Weisz, M. Muller, P. Ram, W. Geyer, C. Dugan, Y. R. Tausczik,
H. Samulowitz, and A. Gray, “Human-ai collaboration in data science: Explor-
ing data scientists’ perceptions of automated ai,” Proceedings of the ACM on
Human-Computer Interaction, vol. 3, no. CSCW, 2019.

[122] R. K. Yin, “Case study research: Design and methods,” 1994.

[123] J. A. Maxwell, “Understanding and validity in qualitative research,” Harvard
Educational Review, vol. 62, no. 3, pp. 279–301, 1992. [Online]. Available:
https://doi.org/10.17763/haer.62.3.8323320856251826

[124] P. Rodriguez, C. Urquhart, and E. Mendes, “A theory of value for value-based
feature selection in software engineering,” IEEE Transactions on Software En-
gineering, 2020.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_haogang
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_haogang
https://doi.org/10.1145/3274451
https://doi.org/10.17763/haer.62.3.8323320856251826

158 REFERENCES

[125] M. Procházka, D. Kouril, R. Wartel, C. Kanellopoulos, and C. Triantafyllidis,
“A race for security: Identifying vulnerabilities on 50 000 hosts faster than
attackers,” in Proceedings of Science (PoS). International Symposium on Grid
and Clouds, 2011.

[126] T. Hanauer, W. Hommel, S. Metzger, and D. Pöhn, “A process framework
for stakeholder-specific visualization of security metrics,” in Proceedings of the
13th International Conference on Availability, Reliability and Security, 2018,
pp. 1–10. [Online]. Available: https://doi.org/10.1145/3230833.3232855

[127] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns and their impact on
development productivity and software failures,” IEEE Transactions on Soft-
ware Engineering, vol. 39, no. 3, pp. 343–360, 2012.

[128] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in
co-located agile software development projects,” Journal of Systems and
Software, vol. 85, no. 6, pp. 1222–1238, 2012. [Online]. Available:
https://doi.org/10.1016/j.jss.2012.02.017

[129] S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl, “Coordination chal-
lenges in large-scale software development: A case study of planning misalign-
ment in hybrid settings,” IEEE Transactions on Software Engineering, vol. 44,
no. 10, pp. 932–950, 2017.

[130] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley, “Identification
of coordination requirements: Implications for the design of collaboration and
awareness tools,” in Proceedings of the 2006 20th anniversary Conference on
Computer Supported Cooperative Work (CSCW). ACM, 2006, pp. 353–362.

[131] R. E. Kraut and L. A. Streeter, “Coordination in software development,” Com-
munications of the ACM, vol. 38, no. 3, pp. 69–82, 1995.

[132] A. H. V. de Ven, A. L. Delbecq, and R. K. Jr, “Determinants of coordination
modes within organizations,” American Sociological Review, pp. 322–338, 1976.

[133] K. Crowston, “A taxonomy of organizational dependencies and coordination
mechanisms,” Organizing Business Knowledge: The MIT Process Handbook, p.
85–108, 2003.

[134] T. W. Malone and K. Crowston, “Toward an interdisciplinary theory of coordi-
nation,” Organizing Business Knowledge: The MIT Process Handbook, 1991.

[135] T. W. Malone and K. Crowston, “What is coordination theory and how can
it help design cooperative work systems?” in Proceedings of the 1990 ACM
Conference on Computer-Supported Cooperative Work (CSCW). ACM, 1990,
pp. 357–370. [Online]. Available: https://doi.org/10.1145/99332.99367

[136] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B. Saltaformaggio,
and W. Lee, “Automating patching of vulnerable open-source software
versions in application binaries,” in NDSS, 2019. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2019.23126

[137] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2017, pp. 2201–2215. [Online]. Available:
https://doi.org/10.1145/3133956.3134072

https://doi.org/10.1145/3230833.3232855
https://doi.org/10.1016/j.jss.2012.02.017
https://doi.org/10.1145/99332.99367
https://dx.doi.org/10.14722/ndss.2019.23126
https://doi.org/10.1145/3133956.3134072

REFERENCES 159

[138] P. Ralph, “Toward methodological guidelines for process theories and taxonomies
in software engineering,” IEEE Transactions on Software Engineering, vol. 45,
no. 7, pp. 712–735, 2019.

[139] J. E. Hannay, D. I. Sjøberg, and T. Dybå, “A systematic review of theory use in
software engineering experiments,” IEEE Transactions on Software Engineering,
vol. 33, no. 2, pp. 87–107, 2007.

[140] Z. Cheng, A. Dimoka, and P. A. Pavlou, “Context may be king, but
generalizability is the emperor!” Journal of Information Technology, vol. 31,
no. 3, pp. 257–264, 2016. [Online]. Available: https://doi.org/10.1057/
s41265-016-0005-7

[141] B. Yang, N. Ayachitula, S. Zeng, and R. Puri, “Sla-driven applicability anal-
ysis for patch management,” in 12th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2011) and Workshops. IEEE, 2011, pp.
438–445.

[142] J. Silva, I. Wiese, D. M. German, C. Treude, M. A. Gerosa, and I. Steinmacher,
“A theory of the engagement in open source projects via summer of code pro-
grams,” in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE’20). ACM, 2020, pp. 421–431.

[143] A. Langley, “Strategies for theorizing from process data,” Academy of Manage-
ment review, vol. 24, no. 4, pp. 691–710, 1999.

[144] S. Baltes and S. Diehl, “Towards a theory of software development expertise,”
in 26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’18). ACM, 2018, pp.
187–200.

[145] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, “An empirical study
of automation in software security patch management,” in Proceedings of the
37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22). ACM, New York, NY, USA, 2022, pp. 1–13. [Online]. Available:
https://doi.org/10.1145/3551349.3556969

[146] G. Maayan. (2022) Five years later, heart-
bleed vulnerability still unpatched. [Online]. Avail-
able: https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/09/
everything-you-need-to-know-about-the-heartbleed-vulnerability/

[147] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin, “Au-
tomated patch correctness assessment: How far are we?” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’20). ACM, New York, NY, USA, 2020, p. 968–980.

[148] U. C. Türker, R. Hierons, M. R. Mousavi, and I. Tyukin, “Efficient state syn-
chronisation in model-based testing through reinforcement learning,” in 2021
36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2021, pp. 368–380.

[149] A. Al-Ayed, S. Furnell, D. Zhao, and P. Dowland, “An automated
framework for managing security vulnerabilities,” Information management

https://doi.org/10.1057/s41265-016-0005-7
https://doi.org/10.1057/s41265-016-0005-7
https://doi.org/10.1145/3551349.3556969
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/09/everything-you-need-to-know-about-the-heartbleed-vulnerability/
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/09/everything-you-need-to-know-about-the-heartbleed-vulnerability/

160 REFERENCES

& computer security, vol. 13, no. 2, pp. 156–166, 2005. [Online]. Available:
https://doi.org/10.1108/09685220510589334

[150] M. S. Rahman, G. Yan, H. V. Madhyastha, M. Faloutsos, S. Eidenbenz, and
M. Fisk, “idispatcher: A unified platform for secure planet-scale information
dissemination,” Peer-to-Peer Networking and Applications, vol. 6, no. 1, pp.
46–60, 2013.

[151] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond heuristics: learn-
ing to classify vulnerabilities and predict exploits,” in Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, 2010, pp. 105–114.

[152] M. Angelini, S. Bonomi, S. Lenti, G. Santucci, and S. Taggi, “Mad: A visual
analytics solution for multi-step cyber attacks detection,” Journal of Computer
Languages, vol. 52, pp. 10–24, 2019.

[153] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal, “Vul-
can: Vulnerability assessment framework for cloud computing,” in 2013 IEEE
7th International Conference on Software Security and Reliability. IEEE, 2013,
pp. 218–226.

[154] S. Kashyap, C. Min, B. Lee, T. Kim, and P. Emelyanov, “Instant {OS} updates
via userspace {Checkpoint-and-Restart},” in 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016, pp. 605–619.

[155] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich, “Intrusion recov-
ery for database-backed web applications,” in Proceedings of the 26th Annual
Computer Security Applications Conference, 2011, pp. 101–114.

[156] A. Security. (2021) State of cybersecurity resilience 2021.
[Online]. Available: https://www.accenture.com/_acnmedia/PDF-165/
Accenture-State-Of-Cybersecurity-2021.pdf

[157] S. Midtrapanon and G. B. Wills, “Linux patch management: With security
assessment features,” in International Conference on Internet of Things, Big
Data and Security, 2019, pp. 270–277.

[158] S. Trabelsi, H. Plate, A. Abida, M. M. B. Aoun, A. Zouaoui, C. Missaoui,
S. Gharbi, and A. Ayari, “Mining social networks for software vulnerabilities
monitoring,” in 2015 7th International Conference on New Technologies, Mobil-
ity and Security (NTMS). IEEE, 2015, pp. 1–7.

[159] M. Angelini, G. Blasilli, T. Catarci, S. Lenti, and G. Santucci, “Vulnus: Visual
vulnerability analysis for network security,” IEEE transactions on visualization
and computer graphics, vol. 25, no. 1, pp. 183–192, 2018.

[160] Y. Kim and Y. Won, “A new cost-saving and efficient method for patch man-
agement using blockchain,” The Journal of Supercomputing, vol. 76, no. 7, pp.
5301–5319, 2020.

[161] K. J. Kim and M. Kim, “A study of integrity on the security patches system
using pm-fts,” Wireless Personal Communications, vol. 94, no. 2, pp. 165–173,
2017.

https://doi.org/10.1108/09685220510589334
https://www.accenture.com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-2021.pdf
https://www.accenture.com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-2021.pdf

REFERENCES 161

[162] C.-W. Chang, D.-R. Tsai, and J.-M. Tsai, “A cross-site patch management model
and architecture design for large scale heterogeneous environment,” in Proceed-
ings 39th Annual 2005 International Carnahan Conference on Security Technol-
ogy. IEEE, 2005, pp. 41–46.

[163] W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and V. Bala, “Always up-to-
date: scalable offline patching of vm images in a compute cloud,” in Proceedings
of the 26th Annual Computer Security Applications Conference, 2010, pp. 377–
386.

[164] Tenable, “tenable.sc,” 2023. [Online]. Available: https://www.tenable.com/
products/tenable-sc

[165] Tenable, “Nessus,” 2023. [Online]. Available: https://www.tenable.com/
products/nessus

[166] Apache, “Apache log4j,” 2023. [Online]. Available: https://logging.apache.org/
log4j/2.x/security.html

[167] R. S. LLC, “Archer grc solution,” 2023. [Online]. Available: https:
//www.archerirm.com/content/grc

[168] “Ivanti,” 2023. [Online]. Available: https://www.ivanti.com/

[169] Microsoft, “Microsoft system center configuration manager,” 2023. [Online].
Available: https://docs.microsoft.com/en-us/mem/configmgr/

[170] Microsoft, “Windows server update services,” 2023.
[Online]. Available: https://docs.microsoft.com/en-us/
windows-server/administration/windows-server-update-services/get-started/
windows-server-update-services-wsus

[171] VMware, “Vmware workspace one,” 2023. [Online]. Available: https:
//www.vmware.com/products/workspace-one.html

[172] Marval, “Marval itsm,” 2023. [Online]. Available: https://marvalglobal.com/

[173] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh,
S. Iqbal, P. N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, and E. Horvitz,
“Guidelines for human-ai interaction,” in CHI Conference on Human Factors
in Computing Systems Proceedings (CHI 2019). ACM, New York, NY, USA,
2019, pp. 1–13. [Online]. Available: https://doi.org/10.1145/3290605.3300233

[174] J. A. Crowder, J. Carbone, and S. Friess, “Human–ai collaboration,” in Artificial
Psychology. Springer, Cham, 2020.

[175] OpenAI, “Gpt-4 technical report,” arXiv:2303.08774, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.08774

[176] V. Lai, S. Carton, and C. Tan, “Harnessing explanations to bridge ai
and humans,” arXiv preprint arXiv:2003.07370, 2020. [Online]. Available:
https://arxiv.org/pdf/2003.07370

https://www.tenable.com/products/tenable-sc
https://www.tenable.com/products/tenable-sc
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://www.archerirm.com/content/grc
https://www.archerirm.com/content/grc
https://www.ivanti.com/
https://docs.microsoft.com/en-us/mem/configmgr/
https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus
https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus
https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus
https://www.vmware.com/products/workspace-one.html
https://www.vmware.com/products/workspace-one.html
https://marvalglobal.com/
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/pdf/2003.07370

	List of Figures
	List of Tables
	Abstract
	Declaration of Authorship
	Acknowledgements
	Dedication
	Introduction
	Research Objectives and Questions
	Thesis Overview and Contributions
	Publications
	Thesis Organisation

	Research Design
	Systematic Literature Review
	Longitudinal Field Study
	Field Study Context
	Longitudinal Case Study
	Data Collection
	Data Analysis
	Member Checking

	Grounded Theory
	Data Collection
	Data Analysis

	A Systematic Literature Review on Software Security Patch Management
	Introduction
	Background and Related Work
	Overview of the Software Security Patch Management Process
	Other Reviews Related to Security Patch Management

	Research Methodology
	Research Questions
	Search Strategy
	Study Selection
	Assessing the Publication Quality
	Data Extraction
	Data Analysis and Synthesis
	Overview of Selected Primary Studies
	Demographic Data
	Studies Distribution in the Security Patch Management Process
	Research Type

	Socio-technical Challenges in Security Patch Management
	Common Challenges
	Patch Information Retrieval Related Challenges
	Vulnerability Scanning, Assessment and Prioritisation Related Challenges
	Patch Testing Related Challenges
	Patch Deployment Related Challenges
	Post-deployment Patch Verification Related Challenges

	Approaches and Tools Proposed to Facilitate Security Patch Management
	Patch Information Retrieval Related Solutions
	Vulnerability Scanning, Assessment and Prioritisation Related Solutions
	Patch Testing Related Solutions
	Patch Deployment Related Solutions
	Post-deployment Patch Verification Related Solutions

	Practices Proposed to Successfully Implement Security Patch Management
	Common Practices
	Patch Information Retrieval Related Practices
	Vulnerability Scanning, Assessment and Prioritisation Related Practices
	Patch Testing Related Practices
	Patch Deployment Related Practices
	Post-deployment Patch Verification Related Practices

	Evaluation of the Reported Solutions in Security Patch Management
	Types of Evaluation Used to Assess the Proposed Solutions
	The Level of Rigour and Industrial Relevance of the Reported Solutions

	Discussion
	Need for More Investigation on the Less Explored Security Patch Management Phases
	Need for Evidence-Based Research on Socio-technical Aspects in Security Patch Management Delays
	Human-AI Collaboration for Securing Software Systems
	Standardisation of Heterogeneous Tools
	Real-world, Rigorous Evaluations
	Contextual Factor

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Chapter Summary

	Why, How and Where of Delays in Security Patch Management
	Introduction
	Related Work
	Research Method
	Findings
	Why, How, and Where do Delays Occur in Security Patch Management?
	Technology-Related Reasons.
	People-Related Reasons.
	Organisation-Related Reasons.

	Mitigation Strategies for Delays in Security Patch Management
	Strategies Relating to the Overall Patch Management Process.
	Strategies Relating to Patch Information Retrieval (P1).
	Strategies Relating to Vulnerability Scanning, Assessment and Prioritisation (P2).
	Strategies Relating to Patch Testing (P3).
	Strategies Relating to Patch Deployment (P4).
	Strategies Relating to Post-Deployment Patch Verification (P5).

	Findings from Member Checking

	Discussion
	Related Works
	Implications for Practitioners
	Implications for Researchers

	Threats to Validity
	External Validity - Generalisability
	Reliability
	Construct Validity
	Internal Validity
	Evaluative Validity

	Chapter Summary

	A Grounded Theory of the Role of Coordination in Security Patch Management
	Introduction
	Related Work
	Research Method
	Findings
	Causes - Socio-Technical Dependencies
	Technical Dependencies
	Social Dependencies

	Constraints
	Legacy Software-Related Dependencies
	Lack of Automation Support
	Increased Patch Load

	Breakdowns
	Sudden Escalations to Patch Schedules
	Delays in the Organisation Approvals
	Lack of Dependency Awareness from Localised Work Distribution

	Mechanisms
	Early Investigation of Interdependencies
	Collaborative Decision-Making
	Continuous Measuring of Progression
	Frequent Communication
	Load Balancing
	Centralised Vulnerability Risk Assessment

	Discussion
	Comparing to Related Work
	Implications for Practitioners
	Implications for Researchers

	Threats to Validity
	Chapter Summary

	Automation in Security Patch Management
	Introduction
	Related Work
	Research Method
	Results
	As-Is State of Automation in Security Patch Management
	Patch Information Retrieval from Third-Party Vendors
	Vulnerability Discovery through Scans
	Vulnerability Risk Assessment and Prioritisation
	Planning and Preparation for Patch Deployment
	Testing Patches for Accuracy and Unintended Effects
	Deploying Patches to Machines
	Verifying the Success of Patch Deployment
	Handling Post-Deployment Issues
	Patch Defect Management

	Limitations of Current Automation
	Limited Support for Dynamic Environment Conditions
	Lack of Proper Support in Process Workflows
	Lack of Accuracy of Output
	Lack of Scalability in Tool Design/Architecture
	Service Disruptions During Patch Deployment
	Lack of Usability

	Practitioners' Needs for Enhanced Automation
	Automation Support for Patch Information Management
	Central Platform Integrating Vulnerability Scanning and Risk Assessment
	Automated Preparation for Patch Deployment
	Automation Support to Articulate Patch Scheduling
	Automated Patch Deployment With Better User Control
	Automated Patch Deployment Verification And Recovery
	Improved Configuration Management Database With an Overview of System Interdependencies

	Role of Human in Process Automation
	Gain Control Over Uncertain and Dynamic Environment Conditions
	Contextual Awareness-Based Decision-Making
	Handle Legacy Systems In Place.
	Adapt to the Organisational Needs and Culture

	Discussion
	An Integrated Platform Offering Support Across All Process Phases
	Human-Machine Collaboration for Patch Management
	Human-Centred AI Explanations to Assist Contextual Decision-Making
	Decision Support for Patch Scheduling

	Threats to Validity
	External Validity
	Construct Validity
	Internal Validity
	Reliability

	Chapter Summary

	Conclusions and Future Work
	Summary of Findings and Contributions
	A Systematisation of Knowledge of Security Patch Management
	An Evidence-Based Understanding of the Reasons and Mitigation Strategies for Security Patching Delays
	A Grounded Theory of the Role of Coordination in Security Patch Management
	An Empirical Understanding of Automation in Security Patch Management

	Opportunities for Future Research
	Replicating the Study
	Technological Support for Dependency Management
	Decision Support for Security Patch Management
	Studying the Influencing Factors and Impact of External Stakeholders on Patching Delays

	Codebook for the Reasons for Security Patching Delays
	Codebook for the Mitigation Strategies for Security Patching Delays
	The Interview Guide
	The Observation Protocol for the Grounded Theory Study
	Selected Primary Studies in the Literature Review
	Data Extraction Form in the Literature Review
	Approved Ethics Application
	References

