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Abstract

In this thesis we study a compatibility complex, derived form the Calabi complex, pro-
viding conditions for a symmetric 2-tensor on pseudo-Riemannian locally homogeneous
space to be in the image of the Killing operator. In the first chapter, we describe general
machinery to study the first cohomology group of the twisted de Rham complex of an
arbitrary vector bundle with connection. This machinery will be applied in the last two
chapters to the Killing bundle and the Killing connection, a vector bundle with connection
that arises from a prolongation of the Killing equation.

In the second chapter we introduce the Killing bundle and the Killing connection,
that provides an overdetermined system of linear partial differential equations for the
Killing equation. We prove a theorem analogous to Hano’s theorem on the splitting of
the Lie algebra of Killing vector fields of a product Riemannian manifold [26], to arbitrary
signature. Moreover, we study the structure of special subbundles of the Killing bundle
and apply these results in Chapter 3 to provide a characterisation of pseudo-Riemannian
locally homogeneous spaces in terms of the maximal parallel flat subbundle of the Killing
bundle and to give new proof of the Ambrose-Singer theorem regarding homogeneous
structures [3].

In the fourth chapter we construct a compatibility complex for the Killing operator,
that arises from a modification of the Calabi complex, and establish its equivalence to
the short twisted de Rham complex of the Killing connection. We make use of this
equivalence to provide a characterisation of the image of the Killing operator on pseudo-
Hermitian spaces of constant holomorphic sectional curvature by showing that the first
twisted de Rham cohomology group are locally trivial. Even more, we provide several
tools to study the first twisted de Rham cohomology group on product spaces. The
last chapter is dedicated to Lorentzian locally symmetric spaces and locally homogeneous
plane waves. We prove results on the Singer index of locally homogeneous plane waves
and determine exactly which ones have Singer index equal to 0. We make use of this fact
to show that the first twisted de Rham cohomology group of the Killing connections of
locally homogeneous plane waves with Singer index 0 is locally trivial. Lastly, we provide
a complete characterisation of the image of the Killing operator on Lorentzian locally
symmetric spaces, showing in which cases first twisted de Rham cohomology group of the
Killing connection is locally trivial and in which ones it is not.
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Introduction

The concept of symmetry has been of great importance in mathematics and physics since
their early beginnings. From a differential geometric point of view, they arise as a group
of diffeomorphisms of a smooth manifold that leave invariant the geometric structure of
interest. Particularly, in this thesis, the geometric structures in question will be pseudo-
Riemannian metrics on smooth manifolds, and their “continuous symmetries” will be Lie
groups of isometries. Their linear, or rather infinitesimal, counterpart are the Killing
vector fields. They are given by Lie algebras comprised of vector fields whose local flow
give rise to continuous symmetries of the metric.

Formally, a pseudo-Riemannian manifold is a pair (M, g), where M is a smooth man-
ifold and ¢ is a non-degenerate symmetric tensor on M, and its infinitesimal symmetries
will be a vector fields in the kernel of the following first order linear differential operator:

K:T(TM) — T(Sym*M), ¢+ Leg, (1)

where TM denotes the tangent bundle of M, Sym®M the bundle of symmetric 2-tensors
on M and L the Lie derivative in the direction of the vector field {. Perhaps it is not
evident at first sight that the operator defined above is indeed a linear differential operator
on vector fields, hence we refer to Section 2.1 for a clarification.

The differential operator defined in equation (1) will be the object of study in this
work, the so called Killing operator. Particularly, we will study differential conditions
on pseudo-Riemannian manifolds with a “large amount” of Killing vector fields, for a
symmetric 2-tensor field to be in the image of the Killing operator. The conceptual
idea of “large amount” of infinitesimal symmetries on pseudo-Riemannian manifold is
formalised by the notion of locally homogeneity. That is, a pseudo-Riemannian manifold
is locally homogeneous if for each point in M, there exists an open neighbourhood U,
with a local frame of the tangent bundle comprised of Killing vector fields in U.

On pseudo-Riemannian locally homogeneous spaces, the kernel of the Killing operator
is well understood. However, we can wonder what could be said regarding its image. The
image of the Killing operator has been studied by physicists in the context of linearised
gravity. When analysing the linearised vacuum Einstein field equations for a metric tensor
arising from a small perturbation of a “background metric”, a tensor field that is in the
image of the Killing operator can be regarded as an infinitesimal change in the background
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metric, due to an infinitesimal change of coordinates. Any two solutions of the linearised
Einstein field equations arising from a perturbation of the background metric will be
equivalent up to gauge if they differ by a tensor field that is in the image of the Killing
operator. Thus tensor fields in the image of the Killing operator provide a set of local
gauge transformations for the linearised Einstein equations (see [40, Section 5.7] or [43,
Section 7.5] for more details).

In order to provide a complete characterisation of the image of the Killing operator, we
need to find necessary and sufficient conditions for the inhomogeneous partial differential
equation

K(&) =h, forsome h e I'(Sym?M), (2)

to have a solution. The standard approach to provide necessary conditions for the exis-
tence of solutions to equation (2) is finding a suitable compatibility operator C, acting on
symmetric 2-tensors, such that the sequence of differential operators

D(TM) —~— T(Sym>M) —— I(CM) (3)

is in fact a differential complex, where C'M is an appropriate vector bundle over M where
C takes values. If such a complex exists, it will be referred to as a compatibility complex for
the Killing operator. Therefore, any compatibility complex will provide us with necessary
conditions for the inhomogeneous equation (2) to admit a solution and, moreover, these
conditions will be sufficient if and only if the complex (3) is locally exact. In other words,
the image of the Killing operator would be completely characterised by complex (3) when
it is locally exact.

A first instance of a compatibility complex for the Killing operator is due to Barré de
Saint Venant [4]. In 1864, studying conditions for a strain to arise from a linear displace-
ment (within the context of linear deformations of solids), he introduced a second order
linear differential operator providing necessary and sufficient conditions for a symmetric
2-tensor in Euclidean three-space to be in the image of the Killing operator. The result
of Saint-Venant can then be stated as the complex

[(TR?) —~ I(Sym?R?) —— T(A2R3 @ AZR?)
begin locally exact, where C denotes the differential operator given by the formula
(Ch)abcd = v(avc)hbd - v(bvc)had - v(avd) hbc + v(bvd)hozc~

Here, we have employed Penrose abstract indices notation. We refer to [40] or Chapter 4
for more details on this notation.

Later on, Eugenio Calabi introduced in his article [10], the complex of linear differential
operators

D(TM) —— T(Sym®’M) —— I'(RM) — ... (4)



where RM denotes the subbundle of A2M ® A2M, of tensors with the same symmetries
of the Riemannian curvature tensor. The compatibility operator for the Killing operator
in Calabi’s complex, the Calabi operator, is the second order linear differential operator
given by

(Ch)abea = VaVeyhwa = V6Voyhaa — VaVayhoe + Ve Vayhae — Ry (chae — Regfohbes

where R denotes the curvature tensor of the Levi-Civita connection associated to g. We
note that if the manifold in question is flat, the Calabi operator coincides with Saint-
Venant’s compatibility operator. In [10], Calabi proved that on Riemannian manifolds
with constant sectional curvature, complex (4) is locally exact. In other words, on a
Riemannian manifold with constant sectional curvature, the image of the Killing operator
is completely characterised as the kernel of the Calabi operator.

Further results were obtained by Gasqui and Goldschmidt, on Riemannian locally
symmetric spaces. In [23], they provided a locally exact compatibility complex in terms
of a third order compatibility operator. These results have been recently improved in
[12], by means of a locally exact compatibility complex defined by a second order linear
operator that arises from the Calabi operator. This operator has also been studied in
Lorentzian signature in [13], where analogous results to those of [12] have been obtain for
Lorentzian locally symmetric spaces. In the context of linearised gravity, compatibility
complexes for the Killing operator have been recently obtained for several Lorentzian
manifolds of physical interest in [1, 31] and, in a more general setting, a compatibility
operator derived from the Calabi operator is presented in [19].

Lastly, we would like to remark that the Killing operator viewed as a differential
operator acting on differential 1-forms, instead of vector fields, has a hidden symmetry
built into it. Under a suitable interpretation, the Killing operator is projectively invariant
[18]. Noting that a Riemannian manifold is projectively flat if and only if it has constant
sectional curvature, by Beltrami’s Theorem [5], the Calabi complex can be seen as a
Bernstein-Gelfand-Gelfand complex in flat projective differential geometry [16, 20).

In this thesis we will study a compatibility complex for the Killing operator on pseudo-
Riemannian locally homogeneous spaces, that arises from a modification of the Calabi
operator. Moreover, we will establish an equivalence between this compatibility complex
and the twisted de Rham complex of a vector bundle with connection, which are derived
from a prolongation of the Killing equation to an overdetermined system of partial dif-
ferential equations. The first twisted de Rham cohomology group will be computed in
several pseudo-Riemannian locally homogeneous spaces, providing necessary and sufficient
conditions for a symmetric 2-tensor to be in the image of the Killing operator.

This thesis is organised as follows: In Chapter 1 we will describe the general machinery
to be applied in Chapters 4 and 5 to study the image of the Killing operator. Specifically,
we will provide conditions and tests to determine the image of a connection D, on an
arbitrary smooth vector bundle E. Particularly, they will be described in terms of the
first cohomology group of the twisted de Rham complex of (E, D).
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In Chapter 2, we will introduce a vector bundle with connection which will provide us
with an overdetermined system of partial differential equations for Killing vector fields.
This bundle will be referred to as the Killing bundle, and its parallel sections will be
in one to one correspondence with Killing vector fields. Moreover, we will establish its
relation with the Killing operator and provide a description of special subbundles defined
in terms of tensor fields on the base manifold, with particular emphasis on the kernel of
its curvature. As an application, we present an extension of a theorem from Hano [26] on
the decomposition of the Lie algebra of Killing vector fields on product spaces.

Chapter 3 will be dedicated to study pseudo-Riemannian locally homogeneous spaces
and their relation with the Killing bundle and the Killing connection. Locally homoge-
neous spaces will be characterised in terms of the Killing bundle and a new proof of the
famous theorem of Ambrose and Singer on homogeneous structures [3], by means of the
results previously described in Chapter 2.

In Chapter 4 we will describe the Calabi complex for locally homogeneous spaces, and
derive a compatibility complex for the Killing operator, by means of a modification of
the Calabi operator. We will prove the equivalence between this complex and the twisted
de Rham complex of the Killing bundle and study its local exactness on product spaces,
given previous knowledge of the local exactness on each individual factor.

Lastly, Chapter 5 will be dedicated to Lorentzian symmetric spaces and locally homo-
geneous plane waves. Particularly, we will provide necessary and sufficient conditions for
a symmetric 2-tensor on a class of locally homogeneous plane waves to be in the image of
the Killing operator. Furthermore, we will make use of these results to characterise the
image of the Killing operator on any Lorentzian locally symmetric space.

The author would like to remark that the majority of the results presented in this
work have been obtained in collaboration with Micheal Eastwood, Thomas Leistner and
Benjamin McMillan, in [12, 13]. A clarification of the author’s contributions will be made
clear at the beginning of each chapter before their presentation.



Chapter 1

The image of a connection on a
vector bundle

In this chapter we will give a presentation of the necessary machinery applied in Chapters 4
and 5 to characterise the image of the Killing operator on certain pseudo-Riemannian
locally homogeneous spaces. To this end, we will describe recent results obtained in [13],
on the image of a connection on a vector bundle. This chapter is intended as a background
chapter. However, Proposition 1.2.5 is a contribution from the author.

Letting F be a vector bundle, over a smooth manifold M, and D be a connection on
E, we will aim to give a solution to the following problem: For a given differential 1-form
¢ with values on FE, find necessary and sufficient conditions for the differential equation

Dn=¢

to have solutions. A system of overdetermined linear partial differential equations can be
encoded in the equation for parallel sections of a vector bundle with connection (E, D) (see
[7,17]). The problem of finding necessary and sufficient conditions for a differential 1-form
with values in E to be in the image of D, will then be its inhomogeneous counterpart.

Particularly, in this thesis, the interest in this problem will become apparent in Section
2, when we introduce a vector bundle with connection, defining an overdetermined system
of first order linear partial differential equations for Killing vector fields.

1.1 The twisted de Rham complex

Fixing notation, throughout this chapter, £ — M will denote a smooth vector bundle
E, over a smooth manifold M, and D : I'(F) — I'(A'M ® E) will denote a connection
on E. The curvature of D will be denoted by x and it will be considered a section of
A*M ® End(E). Our convention for its definition will be

k(X,Y)n = DxDyn— Dy Dxn — Dixyn,

5
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with X,Y € T'(T'M) and n € T'(E). We will usually consider the curvature also as the
vector bundle homomorphism x : A*M @ E — A2M ® A*M @ E defined by

RW)(X,Y, Xy, .., Xy) = k(X Y)w(Xy, ..., Xk).

The exterior covariant derivative will be the natural differential operator, induced by
D, acting on E-valued differential forms

dp : T(AN"M ® E) — T(A\"' M @ E),

which generalises the usual exterior derivative on the differential k-forms, I'(A*M). Tt is
invariantly defined by the formula

k . A
(dDw>(X0,X1, ce ,Xk) = Z(—l)ZDXiO.J(Xo, . 7Xi7 e ,Xk)
=0
+ Z(—l)l—i—]W([XZ,X]],Xo, ce ,)(Z'7 ce ,Xj, Ce ,Xk),

i<y

where Xy, ..., X} are vector fields on M, w is differential k-form with values in E, and
the hat indicates omission. The exterior covariant derivative satisfies the Leibniz rule:

dp(0 Aw) =di Aw + (=1)Y0 Adpw,

where § € T(AMVM) and w € T(A*M ® E). Here d : [(AFM) — T(A*1M) denotes the
exterior derivative on differential forms. With the aid of an auxiliary affine connection on
the tangent bundle of M, we can extend D in a natural manner to T M " @ F, by

(Dxe) (X1, Xi) = Dx(@(X1,. ., X)) = (Vx X, Xp) = - —w(Xa, ..., VX,

In addition, if V is torsion-free, the exterior covariant derivative can be expressed suc-
cinctly as

dpw = (k+ 1) A*D(Dw) with w e (AWM ® E), (1.1)

where A® : T*M®" — A*M denotes the skew-symmetrisation map. To be precise, if «
is in T*M ®k, AW will denote the projection of o into AFAL. In the following, V will
denote a torsion-free affine connection, unless otherwise stated.

The compositions d2, : T(AFM @ E) — T'(AF2M ® E) are always vector bundle homo-
morphisms, which will be denoted by x*. The homomorphism «* will be referred to as the
k-curvature homomorphism of D. To corroborate that the k-curvature homomorphisms
of D are indeed vector bundle homomorphisms, the first thing to notice is that for any
section of A¥M ® E, we have that

(A® & A®)(D%) = k() (12)
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and

A(k+2)(D2w) _ A(k+2)((A(2) ® A(k))(D2w)) _ A(k+2)(DA(k+1)(Dw))- (1.3)

On the other hand, we can observe from equation (1.1) that
k(W) = (k4 2)!1(k + D)IA®2D(DAFD(Dw)) = (k + 2)!(k 4+ D)IAF+D (D).

Combining the above equation with equations (1.2) and (1.3), we obtain the following
formula for the k-curvature of D:

(k+2)l(k+1)!

K (w) = 5

(A®+2) 6 1) (w). (1.4)

That «* : A*\M ® E — A**2M ® E is a vector bundle homomorphism, follows directly
from equation (1.4), since x* is nothing but a linear combination of terms involving x.
The exterior covariant derivative defines the twisted de Rham sequence:

0 —— I(E) —25 T(A'M @ E) —25 T(A2M ® E) —2 ... (1.5)

It is well know that the twisted de Rham sequence is a complex if and only if D is a
flat connection [37]. To be precise, we refer to a connection being flat if its curvature
tensor vanishes identically. It can be easily spotted from equation (1.4) that x* = 0 for all
k > 0, when D is a flat connection, and also that D being a flat connection is a necessary
condition for the twisted de Rham sequence to be a complex, since x° coincides with the
curvature of D. Generally, it is too strong of a condition for a connection to be flat. For
this reason, under milder assumptions on D, we will construct a complex arising from the
twisted de Rham sequence.

For each point p of M and each k£ > 0, the map Ii’; : /\’;M ® E, — /\’;JFQM ® B, will
denote the restriction of k¥ to the fibre of A¥M ® E at p.

Definition 1.1.1. Let D be a connection on a smooth vector bundle E, over a smooth
manifold M. We will say that D is regular if for each k£ > 0, the k-curvature of D has
constant rank.

The notion of regularity of a connection is motivated by the need of building sub-
bundles of A*M ® E, defined in terms of the k-curvature homomorphisms of D. The
k-curvatures of a regular connection have, by definition, constant rank. For this reason,
we can define the vector bundles ker k* and Im x* over M, with fibres ker m’; and Im m’;,
at p, respectively.

In what follows, we will always be considering regular connections on E. For a given
section w of Im k¥ and any section n € T'(A*M ® E) such that x*(n) = w, we can observe
that

dpw = dpk®(n) = dn = k" (dpn). (1.6)
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This means that the image of dp on the sections of Im k¥ is always contained in I'(Im xF*1).
It follows from this argument that

0 — D(Imk®) —25 D(Imk!) —2 T(Imr2) —225 ... (1.7)

is a well defined subsequence of the twisted de Rham sequence. The exterior covariant
derivatives descend well to the sequence

0 — I(E) 25 TN M@ E) —45 I((A’M ® E)/Im %) —4— ... (1.8)

obtained by quotienting the twisted de Rham sequence by the subsequence (1.7). Here we
have denoted by d, the maps induced by the exterior covariant derivatives in the quotients.
For completeness, we will verify explicitly that the operators

d:T((A*M ® E)/Tm £¥72) = D((AM M @ E) /Tm £F71)

are indeed well defined. Choosing a section [w] of (A*™?M ® E)/Im x* and a representative
w + kF(n) of [w] such that w € T'(A**2M ® E) and n € I'(A*M ® E), we know that

dp o k¥ = k¥ o dp, from equation (1.6). Thus

dp(w + &*(n)) = dpw + " (dpn),

which is a representative of [dpw] in T((A*3M ® E)/Im "), Therefore the exterior
covariant derivative operators descend well to the quotients. Even more, sequence (1.8) is
a complex by construction, which will be referred to as the twisted de Rham complex. The
k-th cohomology group of the twisted de Rham complex will be denoted by H*(E, D),
which is given by

k _ker(d:T((A*M @ E)/Im £"72) = T((A"'M @ E)/Im 1))
HY(E, D) = Im(d: T'((AF1M @ E)/Im k#73) - T'(A*M ® E)/Im £+=2))

Remark 1.1.2. The zeroth twisted de Rham cohomology group can be defined also when
D is not a regular connection and it is comprised by the parallel sections of E. From now
on, we will always denote the vector space of parallel sections £ by H°(E, D).

1.2 The first twisted de Rham cohomology group

In this section we will present conditions, in terms of the twisted de Rham cohomology,
for an F-valued differential 1-form to be in the image of a regular connection. It is clear,
from the definition of H*(E, D), that an E-valued differential k-form will be in the image
of dp if and only if it represents the zero cohomology class in H*(E, D). Particularly, a
section w, of A'M ® E, will be in the image of D if and only if [w] = [0] in H'(E, D).
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This means that if the first cohomology group is trivial, any section of A'M ® E that is
mapped to the image of the curvature will be in the image of D.

Whenever it be convenient, we will make a mild change of notation by denoting the
differential operator

d:T((A*M @ E)/Im £*2) = T(A*'M @ E)/Im £F71))
by dg, so that H*(E, D) = ker(d)/Im(dg_;).

Definition 1.2.1. Let D be a regular connection on a vector bundle £. We will say that
(E, D), or simply D, is ezxact if its first de Rham cohomology group is locally trivial.

In order to avoid carrying adjectives referring to the locality of the results, we would
like to remark that in the reminder of this thesis, all results are local. This has been
the major motivation for us to define an exact connection as having a locally trivial first
twisted de Rham cohomology group rather than a globally trivial one.

The notion of exactness of a connection on a vector bundle can be defined in complete
generality, without any assumption on the regularity of the connection. A connection D
on a vector bundle £ will be exact if for any section w, of A'M ® E, that is mapped by
dp to the image of the curvature in A2M ® FE, there exists a section n of E such that
Dn = w. The motivation behind this definition comes from considering the short complex

I'(E) 25 I'(A'M @ E) —4 T((A2M ® E)/Im(k)). (1.9)

To say that a connection is exact is equivalent to say that the complex (1.9) is exact. If
D is an exact connection, the E-valued differential 1-forms that are in the image of D are
exactly the ones that are mapped to the image of the curvature. To be precise w € Im(D)
if and only if dpw = k(n), for some n € T'(E).

Definition 1.2.2. The complex defined in equation (1.9) will be referred to as the short
twisted de Rham complez of (E, D).

It is straightforward that if dp : T(A'M ® E) — T'(A2M ® E) is injective, D is exact,
since dpw = k(n) implies that dp(w — Dn) = 0. In other words, w = Dn, for some
n € I'(E). We have then proved the following proposition.

Proposition 1.2.3. Ifdp : [(A'M @ E) — T'(A2M ® E) is injective, D is exact.

It is worth noticing that x will be injective when dp : T(A'M ® E) — T'(A’M ® E) is
injective. From now on, Ey will denote the kernel of the curvature x : E — A2M ® E.

Proposition 1.2.4. The first twisted de Rham cohomology group, H*(E, D), is isomor-
phic to ker(dp)/Im(D|g,).
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Proof. Let us consider the sequence
Im(D|g,) — ker(dp) —— H'(E, D) = ker(d)/Im(D) (1.10)

where the ¢ and 7 denote the natural inclusion and projection, respectively. To be precise,
here 7 is the composition ker(dp) — ker(d) — ker(d)/Im(D). To say that H'(E, D) is
isomorphic to ker(dp)/Im(D|g,) is equivalent to say that 7 is surjective and that the
sequence (1.10) is an exact complex, as ¢ is injective by definition.

Firstly, let us see that 7 is surjective. Letting us pick [w] € HY(E,D) and any
representative w of [w], from the definition of H'(E, D), there exists n € E such that
dpw = k(n), or equivalently w — Dn € ker(dp). The image of w — Dn under 7 is
then |w], as needed. Clearly, this is independent of the choice of representative, since
dp(w + D) = k(n + 0) again implies that w — Dn € ker(dp).

It is clear that sequence (1.10) is a complex, since Im(D|g,) — ker(dp) — ker(d) is a
complex by construction. It is only left to show that ker(w) C Im(¢). By definition, any
w € ker(m) represents the class [0] in H'(FE, D), namely w = Dn for some n € T'(E). Also,
w is contained in the kernel of dp, which implies that

0 =dpw =dpDn = k(n)
and thus n € I'(Ep) and w € Im(D|g,). O

The isomorphism between H'(E, D) and ker(d)/Im(D) is in fact natural in the sense
that it is the one which makes the following diagram commute:

Im(D|g,) —— ker(dp) —— ker(dp)/Im(D|g,)

lﬂ I |

Im(D) —*— ker(d) — = H'(E, D).

An immediate consequence of Proposition 1.2.4 is that a connection D is exact if and
only if the complex

D
T(Eo) 25 T(A'M @ E) 42 T(A2M ® E)

is exact. This provides us with many tools to test the exactness of a connection. For
instance, if D has injective curvature, Ej is trivial and thus H'(E, D) is exactly the
kernel of dp. On the other hand, if dp is injective, it is immediate that H'(E, D) is
trivial, providing an alternative point of view to Proposition 1.2.3.

We will say that a subbundle F of E is parallel if Im(D|r) C T(A'M ® F). In other
words, the restriction of D to F'is a connection on F'. In this case, D descends well to a
connection in the quotient bundle E/F.
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Proposition 1.2.5. Let E be a vector bundle with connection D and suppose that F' is
a parallel subbundle of E such that D|p is eract. If ker(dp) C T'(A'M ® F), then D is
exact.

Proof. Let Fy := F'N Ey denote the kernel of k, restricted to F'. Under the assumption
that D|p is exact, we know that ker(dp|r) = Im(D|g, ), by Proposition 1.2.4. Then, if
ker(dp) C T'(A}; ® F), it follows that

ker(dp) C ker(dp|r) = Im(D|g,) € Im(D|g,) C ker(dp).

This means that the kernel of dp is equal to the image D, restricted to Ey, and therefore
by Proposition 1.2.4, H'(E, D) = {0}. O

Proposition 1.2.6. Given a vector bundle E with a connection D and a parallel sub-
bundle F of E, if F' and E/F are exact, and if the curvature on E/F is injective, then
E is exact.

Proof. In order to show that H'(FE, D) ~ {0}, we will show that ker(dp) is contained in
['(A'M ® F). Then, by Proposition 1.2.5, (E, D) will be exact as (F, D|r) is exact by
assumption.

Choosing w € ker(dp) and letting [w] denote the class of w in A'M ® E/F, it is clear
that [w] is in the kernel of dp : "M ®E/F — N*)M ®E/F. By assumption, (E/F, D|g/r)
is exact and (E/F)y = {0}. Then, by Proposition 1.2.4, we get

{0} = H'(E/F, D|g/r) = ker(dp|p/r),

which implies that w represents the zero class in A'M @ E/F. In other words, w is a
section of A'M ® F and therefore ker(dp) C T'(A'M @ F). O

1.2.1 Twisted de Rham cohomology of direct sums

The twisted de Rham cohomology groups of (F, D) can be studied in terms of parallel
subbundles of . Suppose that E splits as the direct sum of two parallel subbundles F;
and Fs, and let D; denote the restriction of D to E;, for i = 1,2. In other words (£, D)
is isomorphic, as a vector bundle with connection, to the direct sum (F; @ Es, D1 + D>)
of (Ey, D) and (Ey, Dy). Notice that dp preserves the splitting of E, hence it splits as
well as dp, + dp,. Consequently we obtain the splittings

ker(dp) = ker(dp,) @ ker(dp,) and Im(D|g,) = Im(D:|g,),) ® Im(Da|(m,),)-
Their quotient becomes

ker(dp)/Im(D|g,) =~ ker(dp,)/Im(D1|(z,),) @ ker(dp,)/Im(Ds|(s,),)-
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By Proposition 1.2.4, the left hand side is isomorphic to H'(E, D) and the right hand side
to H'(Ey, D1)® H'(E,, Ds). In other words, the first twisted de Rham cohomology group
splits accordingly to the splitting of (£, D). In fact, we will show that all cohomology
groups split according to this direct sum decomposition of parallel subbundles.

The k-curvature homomorphisms, ¥, will split as

k¥ =d}, +dj, +dp, odp, +dp, odp, = K} + K5 +dp, odp, +dp, odp,,  (1.11)

for all kK > 0, where /{f = dZDZ_ APM @ E — A*20M @ E. By taking a section w = wy +ws
of NEM @ E, with w; € I'(A*M ® E;), we observe that

(le @) dD2 + dD2 9] le)(W) = ledDng + dD2dD1w1 = 0,

since dp,w; is a section of A¥1M @ E;. Therefore, the splitting

k_  k k
K" = K| + Kq

of the k-curvature operators, follows from equation (1.11).

Proposition 1.2.7. Let Fy and Ey be parallel subbundles of E, such that E = FEy & Ej.
Then, there is an isomorphism

H*(E,D)~ H*(Ey\, D)) ® H*(E,, D),
where D; = D|g, fori=1,2.

Proof. Recall that under the assumption that (E, D) splits as (Ey @& Ey, D1 + Ds), where
E, and F, are parallel subbundles of E, the induced operators by D, dp and &*, split as
well. Since Im(k¥) = Im(x¥) @ Im(x5%), the splitting d = d|g, +d|g, of the operatros d are
well defined. Therefore, it follows from the definition of H*(FE, D) that

ker dk ker dk|E1 ker dk|E2

(B, D) Imdg_ Imdk71|E1®Imdk,1|E2 (Er, D1) © HY(Ey, Dy),

as claimed. O

An immediate corollary from the above proposition:

Corollary 1.2.8. Let Fy and E5 be parallel subbundles of E, such that (E, D) decomposes
as
(E, D) - (El EB EQ, Dl —|— Dg)

Then (E, D) is exact if and only if both (E1, Dy) and (Es, Ds) are exact.

Proposition 1.2.9. Let D be an exact connection on the vector bundle E — M and
denote by 7, the natural projection from the product manifold M x M to M. Then 7D
15 an exact connection on the vector bundle 7" E over M x M.

Proof. This is a particular instance of [13, Proposition 2.7]. O]
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1.2.2 k!injectivity

In this subsection we will provide sufficient algebraic conditions for a connection to be
exact. Applications of these conditions will appear in Chapter 4, to prove that the Killing
connection is exact in certain pseudo-Riemannian symmetric spaces.

Definition 1.2.10. We will say that a connection D, on a vector bundle E, is x!-injective
if its 1-curvature homomorphism is injective.

kl-injectivity will provide us with a simple algebraic test for a connection to be exact.
We remark that not all connections are x!-injective. It can be observed from equation
(1.4) that, for a given w € A'M ® E, k! takes the form

K W) (X, Y, Z) = 2(5(X, Y)w(Z) + 5(Z, X)w(Y) + (Y, Z)w(X)).

Ezample 1.2.11. On any pseudo-Riemannian manifold (M, g), we can equip the tangent
bundle of M with the Levi-Civita connection associated to g. Then, letting w be the
element of /\;M ® T,,M identified with the identity endomorphism of 7,M, we get

KN W)(X,Y,Z) =2(R(X,Y)Z + R(Z,X)Y + R(Y,Z)X) =0,
where the last equality is nothing but the first Bianchi identity and thus x'(w) = 0.

Lemma 1.2.12. Let D be a k'-injective connection on a vector bundle E. Then D is
exact and has injective curvature.

Proof. By definition, the 1-curvature operator, ! is the vector bundle homomorphism
d4 :T(AN'M @ E) = T(A*M ® E), so it is immediate that

ker(dp : T(A'M ® E) — T'(A°M ® E) C ker(x").
Moreover, it implies that if ! is injective, so is dp : T(AN'M ® E) — T'(A?M ® E). Under
the assumption of D being x!-injective, it follows from Proposition 1.2.3 that D is exact.

It is only left to prove that D has injective curvature. Recall that k¥ odp = dp o k*
for all £ > 0 and, particularly, for £ = 0 we have that

dpr(n) = &' (Dn), (1.12)

for some section 7 of E. Supposing that 7 is a section of Ey, equation (1.12) implies that
Dn = 0, since x! is injective by hypothesis. By choosing any non-constant function f on
M, we have that

k(fn) =0 and D(fn) =df@n.

Then, from equation (1.12), we can see that

0= dpr(fn) = r'(df @n).
In other words, df ® n € ker(x'), which is a contradiction. O
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1.3 The curvature filtration

In this subsection we will build a filtration of subbundles of E, starting with the kernel of
the curvature, in order to study the exactness of connections with non-injective curvature.
Assuming D is a regular connection, the kernel of the curvature is a vector subbundle of
E. Then, E; :=={¢p € F : k(¢) € N*M ® FEy} is also a subbundle of E, since it is the
preimage of a vector bundle by . Inductively, we define for each ¢ > 0 the subbundle

Ep1:={0€E : k(¢) € N°M ® E,},

of E, that contains E; by definition. The family of vector subbundles {E,}7°,, defines a
filtration
EyCECEC...

of subbundles of E, that will be referred to as the curvature filtration of (E, D). For later
convenience we will set £_; = {0}.

We will be interested in vector bundles with connections that have a parallel curvature
filtration. In general, the curvature filtration is not parallel. For instance, in the following
chapters, we will see that for the Killing bundle it is rather unusual for the kernel of the
curvature to be parallel.

When the curvature filtration of (E, D) is parallel, namely E; is parallel for all £ > 0,
the restriction of D to Fyq and Ey.1/E, is again a connection, and

EZJrl —r /\2M X E[+1

| |

Epp1/Ey —— N°M ® Epyq1/Ey

is a well defined commutative diagram. By definition, x(¢) is in A2M ® E, for all ¢ in
Ey11, so the restriction of D to Eyyq/Fy is in fact a flat connection. On the other hand
k: Ep1/Ee — N°M @ Ey/E,_; is well defined and injective, for all £ > 1. To see this,
let ¢ € Eyyq be a representative of a class [¢] in Ey1/Fy. Then, by definition, x(¢) is in
N M ® E, and [k(¢)] = [0] if and only if (¢) is in A> ® Ey_q, i.e. ¢ € Ej.

Lemma 1.3.1. If the curvature filtration of (E, D) is parallel, then for each ¢ > 0, the
map
d:ker(dp : A' ® Epy1 /By — N2 @ By JEy) — NPM @ Ey/Ey_y,

18 1njective.
Proof. As it has been already noted, the connection induced on E,;/FE,_; is flat and there-

fore exact, so for ¢ € ker(dp : A' ® Ep 1 /Ey — A? @ Egy1/Ey), there exists a section 1 of
Ey/Ey_q for which Dy = ¢. But if dp¢ = 0, we have that

k(Y) =dpDy =dpp =0 € N(A’M ® Er1/E—»),
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which means that the curvature maps 1 so I'(A*M ® FEy_5), hence v is a section of Fy_;.
Therefore ¢ = Dy =0 € T(A'M ® Ey/Ep_1). O

The curvature filtration of (£, D) will stabilise after a finite number of steps, since E
has finite rank. We will denote by L, the first integer such that Fy = E ;.

Proposition 1.3.2. If the curvature filtration of (E, D) is parallel and E;, = E, D is
exact.

Proof. Any class of H'(E, D) can be represented by a section ¢, of A'M ® E such that
dp¢ = 0. By assumption E;, = F, so ¢ € A'M ® E;. Applying Lemma 1.3.1 inductively,
we conclude that ¢ is a section of A'M ® Ey. Since D is flat on Ey and dp¢ = 0, there
exists a section n of Ey such that Dn = ¢ and thus D is exact. O]

The above proposition will become the key to deal with the exactness of the Killing
connection on locally homogeneous plane waves spacetimes, in Chapter 5.

Corollary 1.3.3. Suppose that the curvature filtration of (E, D) is parallel and that it
stabilises in Er,. Then (EL, D|g,) is exact.

Proof. 1t is clear from its definition that the curvature filtration of (Ep, D|g,) will be
parallel and will stabilise in the L-th step to (Er)r, = Er. The exactness of (Er, D|g,)
then follows from Proposition 1.3.2. O]

The below theorem is an immediate consequence from Proposition 1.2.6 and Corol-
lary 1.3.3.

Theorem 1.3.4. If the curvature filtration of (E, D) is parallel and the induced connection
on E/Ey is exact, then D is exact on E.

Corollary 1.3.5. If the kernel of the curvature of D is parallel and E admits a parallel
complement C, to Ey, then Eqy is equal to Ey. In this case (E, D) is exact if and only if
the induced connection on C' is exact.

Proof. If Ey admits a parallel complement C'in E, clearly the curvature will map F; ®NC
into a subset of C', as a consequence of C' being parallel, which implies that £, = FEj.
That (E, D) is exact if and only if (C, D|¢) follows from identifying C' with Ej. O

Lastly, we provide characterisation for connections with parallel curvature filtration.
Lemma 1.3.6. For a vector bundle with connection, (E, D), the following are equivalent:
(1) The curvature filtration of (E, D) is parallel.

(2) For each £ >0, ¢ € T(E,) implies that (Dr)(¢) € T(AN'M @ A°M & E;_1).
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Proof. Let us assume that the curvature filtration of (F, D) is parallel. Firstly, for any
section ¢ of Ey, clearly (Dzr)(X,Y )¢ = —k(X,Y)Dz¢ = 0. For any fixed £ > 1, choosing
a section ¢ of Ey, we have that

(Dz8)(X,Y)d = Dzr(X,Y)d — k(V2X,Y)d — (X, VY )d — k(X,Y)Dzo,

for some auxiliary affine connection V. That (Dk)(¢) € T(A'M & A°M ® Ey_4), can be
observed from the above equation, since the curvature filtration is parallel and x(X, Y)(E)
is contained in E,_1, by definition.

Conversely, if ¢ € T'(E,) implies that (Dk)(¢) € T(A'M @ A2M ® E,_1), for £ = 0, we
have

0 = (Dz#)(X,Y)é = —w(X,Y)Dz,

which implies that DT'(Ey) C T'(A'M ® Ejp). Inductively, let us assume the statement
holds up to ¢. If ¢ € I'(Ey41), we have that

(DzE)(X,Y)é = Dzr(X,Y)d — 6(V2X,Y)b — (X, V2Y)b — k(X,Y)Dz¢ € T'(Ey)

implies that x(X,Y)Dz¢ € T'(E,_1), since r(¢) € T(A*M ® E;) and E, was parallel, by
assumption. ]
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Chapter 2

The Killing bundle

In this chapter we will introduce the Killing bundle and the Killing connection of a pseudo-
Riemannian manifold. Specifically, in Section 2.1 we will derive a prolongation of the
Killing equation giving rise to the Killing bundle and the Killing connection. Section 2.2
will be dedicated to the study of certain algebra structures on the space of sections of the
Killing bundle and of special subbundles of it, defined in terms of tensor fields on the base
manifold. Lastly, in Section 2.3, the curvature of the Killing connection will be studied,
in terms of the results described in Section 2.2.

2.1 The prolongation of the Killing equation

Let (M, g) be a pseudo-Riemannian manifold. The Killing operator on vector fields is the
first order linear differential operator

K:T(TM) — T(Sym*M), ¢+ Leg, (2.1)

where L¢ denotes the Lie derivative in the direction of the vector field {. The Killing
equation is the first order partial differential equation

K(€) =0

for the vector fields in the kernel of the Killing operator. Solutions to the Killing equation
are called Killing vector fields. These are the infinitesimal isometries of the pseudo-
Riemannian manifold (M, g), or more precisely, the vector fields whose local flow is given
by one-parameter subgroups of the isometry group of (M, g). The set of Killing vector
fields of (M, g), with the usual vector field bracket, forms a Lie algebra which will be
denoted by ill(M, g).

The choice of an affine connection, V, on T'M, permits us to define the family of
endomorphisms of T'M

A =-VE—1Y, £eT(TM),

19
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that will be referred to as Nomizu operators. Here 7V € T'(A2M @ TM) denotes the
torsion tensor of V and we will use the following convention for its definition:

VY =VxY - VyX — [X,Y].

Conveniently, the Lie derivative in the direction of £ can be expressed in terms of V and
Agv as

Le =Ve+ A (2.2)
If V is a metric connection, it follows from equation (2.2) that the Killing operator can
be expressed as

where - denotes the natural action of the endomorphisms of T'M on covariant tensors.
This action is given explicitly by

(A'Oé)(Xl,...,X,,«> = —OZ(AXh...,X,,,) - "'—Oé<X1,...,AXT),
where av € T*M®". Then, the Killing equation takes the form

for all X,Y € TM. From this point of view, we can see that the Killing operator is
a linear differential operator acting on vector fields. Indeed, for any &,n € T'(T'M) and
a € R, we have

AZH] = —V(a€ +n) _TtZJrn = —aV§{—Vn —aTgv —Tnv = CLAgV —i—AZ,

and thus
K(a& +n) = OLASV g+ AZ g =alk(§) + K(n).

From now on, we will fix V to denote the Levi-Civita connection associated to g, unless
otherwise stated. Also, to simplify notation, we will omit all upper scripts on the Nomizu
operators that indicate their relation to V. The endomorphisms of the tangent bundle of
M, which annihilate the metric g when acted upon, form the vector bundle so(TM, g) of
skew-symmetric endomorphisms of T'M. Then a vector field ¢ is a Killing vector field if
and only if the endomorphism A is in so(T'M, g).

For a given endomorphism A of TM, we will denote by A the projection of A to
s0(T'M, g), given explicitly by

o 1 .
A=(a-a,

where A* denotes the g-adjoint endomorphism of A. Analogously, we will denote the
projection of A to the symmetric endomorphisms of T'M, which we shall denote by
Sym*(T'M, g), by

A:%m+Am



2.1. The prolongation of the Killing equation 21

To avoid confusion, we remark that we denote the bundle of symmetric 2-tensors on M
by Sym?M, and Sym?(M, g) denotes the bundle of g-symmetric endomorphisms of 7M.

Remark 2.1.1. In this notation, we could define the Killing operator to be the differential
operator k : I'(T'M) — I'(Sym(T'M, g)), defined by

k(€) = —Ae, (2.4)

which will take values on the symmetric endomorphisms of T'M, instead of symmetric
2-tensors. The minus sign in the right hand side of the above equation has been taken for
convenience in the following chapters.

The action of any given skew-symmetric endomorphism A, by definition, annihilates
the metric tensor. Then, it follows that its covariant derivatives will also be skew-
symmetric, since

0=Vx(A-9)=(VxA)-g+A-Vxg=(VxA)-g. (2.5)

In general, for any vector fields X, Y, ¢ € T'(T'M), it follows from a straightforward calcu-
lation that
(VxAg)(Y) = (VyAg)(X) = —R(X, Y)E. (2.6)

For future convenience, we will define the differential operator
dV : T(End(TM)) = I'(A'M ® End(TM)),
acting on the endomorphisms of T'M, to be
(dVA)(X)Y = (VxA)(Y) — (VyA)(X).
Therefore, equation (2.6) takes the rather simple form
(@A) (X)Y = ~R(X,Y)E, (2.7)
in terms of dV.

Lemma 2.1.2. Let (M, g) be a pseudo-Riemannian manifold and let £ be a vector field
on M. Then

VxAe = —R(X,€) — (A Ag)(X) + (dV Ag) (X)". (2.8)
for all X € TM.

Proof. For any vector field X on M, the endomorphism V Xflg is skew-symmetric, since Ag
is skew-symmetric by definition. Making use of the symmetries of V x A and contracting
it with the metric tensor, we have

I(VxA)(Y), Z) = 9(VxAe)(Y). Z) — 9((VyAg)(X), Z)

—9((VyAe)(2), X) + g((VzAe)(Y), X)
+9((VzA)(X),Y) = g(VxAe)(2).Y)
—9((VxAg)(Y), 2),
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which, after a rearrangement of terms, takes the form
29((VxAe)(Y), Z) = g((dVAe)(X)Y, Z) — g((dV Ae) (V) Z, X) + g((dV Ae)(2) X, Y).
Letting us replace 1215 by Ae — Ag in the right hand side of the above equation, we get

20(VxA)(Y),2) = g((dVA4¢)(X)Y, Z) — g((d¥ A¢) (X)Y, Z)
—9((AVA)(Y)Z,X) + g((dVA)(Y) Z, X) (2.9)
+9((dVAe)(2)X,Y) — g((dV A (2) X, Y).

A direct computation reveals that for any symmetric endomorphism H, it holds that
g(@VH)(Y)Z, X) = —g((dVH)(X)Y, Z) — g((dVH)(Z)X.Y) (2.10)
and also, since (AVH)(Z)X is skew-symmetric in X and Z,
g(@VH)(Y)Z,X) = —g((dVH)(X)Y, Z) + g(dVH)(X)'Y, Z). (2.11)
Then, we notice from equations (2.7) and (2.11) that equation (2.9) becomes

29((VxA)(Y),Z) = —g(R(X,Y)E, Z) + g(R(Y, 2)§, X) — g(R(Z,X),Y)
—29((dVA¢)(X)Y, Z) + 29((d¥ Ae)(X)*Y, 2).

Finally, making use of the Bianchi identity, we obtain
9(VxA)(Y), Z) = —g(R(X, €)Y, Z) — g((d¥ Ag)(X)Y, Z) + 29((dY A¢) (X)*Y, Z),

or

VxAg = —R(X.€) = (A A)(X) + (VA (X)",
as required. O

If we consider a Killing vector field £, Lemma 2.1.2 together with equation (2.3) provide
us with the overdetermined system of partial differential equations

{ Vxé = —AX, EeI(TM) (2.12)

VxA = —R(X,§), Ael(so(TM,g))

for a vector field ¢ and a skew-symmetric endomorphism A, of TM, whose solutions define
Killing vector fields. This is, if the first line of equation (2.12) is satisfied, the second line
is automatically satisfied by equation (2.8). This result was first obtained by Bertram
Kostant in [34] and later by Robert Geroch in [24].

The system of partial differential equations (2.12) allows to define a connection on a
vector bundle over M, which was firstly introduced in [24] as Killing transport, whose
parallel sections define Killing vector fields.
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Definition 2.1.3. Let (M, g) be a pseudo-Riemannian manifold. We will say that the
vector bundle £ := TM & so(TM, g), over M, is the Killing bundle of (M,g). The
connection D : T'(E) = T'(A'M ® E) on E, defined by

Dy m _ {vjﬁigg@} . X eT(TM). (2.13)

will be referred to as the Killing connection.

For convenience we will denote sections of F, of the form (¢, /15), by ¢¢. Particularly,
when ¢ is a Killing vector field, A; = A¢ and ¢, is a parallel section of E. It follows by
equation (2.12), these are precisely all parallel sections of E, namely

H°(E,D)={¢: €T(E) : £ €ElI(M,g)}.

The curvature of the Killing connection x € I'(A*M ® End(FE)) will be referred to as
the Killing curvature. It has the form

o) |§ ! 214)

A} - [(ng)(X, Y)+ (A -R)(X,Y)|"

In what follows K will always denote the maximal parallel flat subbundle of FE.
Equipped with D|g, (K, D|x) becomes a flat vector bundle over M, such that H°(E, D)
is contained in I'(K’). Consequently, Killing vector fields are uniquely determined by the
value of ¢¢ at a point in the sense that, for a given Killing vector field £, by knowing the
values of £ and V¢ at a point p, one can always recover ¢ by parallel transporting (¢e),.

The space of parallel sections of E can be equiped with a bracket operation defined as

{Be, &n} = Dren (2.15)

for two given sections ¢¢ and ¢, in H°(E, D). It is immediate that H°(F, D) is closed
under the above bracket, since the Lie bracket of ¢ and 7 is again a Killing vector field.
Moreover, it satisfies the Jacobi identity

{0, {00, Oc}} = Bemcy = Prema+imiecn = ({0, dnb oct + {8y, {de, dc}}

and thus H(E, D), equiped with the bracket defined in equation (2.15), is a Lie algebra
over the real numbers. We have proved that:

Proposition 2.1.4. The map ¢ : (8l(M,g),[-,"]) = (H*(E,D),{-,-}), £ — ¢¢ is a Lie
algebra isomorphism.

Remark 2.1.5. The above proposition shows that the dimension of the Lie algebra of
Killing vector fields is bounded by above by the rank of E.
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It is a well know result by Hano [26] (see also [33, Theorem 3.5]), that if (M,g) is a
complete and simply connected Riemannian manifold with de Rham decomposition [14]
given by

(M, g) = (Mo, go) x - -+ x (Mg, gk),
where (My, go) is an Euclidean factor, the connected component of its isometry group
decomposes accordingly:

ISOO(M7 g) = ISOO(MO790) X X ISOO(Mk7gk)7

where Isog(M;, g;) denotes the connected component of the isometry group of (M;, g;),
with ¢ = 0,...,k. In terms of Killing vector fields, it means that they split as well in
terms of the de Rham decomposition of (M, g), i.e.

BII(M, g) = BlI(My, go) x - - - x EI(My, gi).

Even though the de Rham decomposition was generalised by Wu to pseudo-Riemannian
manifolds [44], where the factors are flat or indecomposable, i.e. when the action of the
holonomy group with basepoint p, on 7,M, leaves no non-trivial non-degenerate sub-
spaces, Hano’s theorem does not directly generalise. In fact, in Lorentzian signature,
a product of Euclidean space with an indecomposable Cahen-Wallach space (see Re-
mark 5.1.5) has more Killing vector fields than just the Killing vector fields of the factors,
see [35, Remark 3.6]. Below we provide decomposition theorem, similar to the one from
Hano, in arbitrary signature.

Theorem 2.1.6. Let (M, g) be a pseudo-Riemannian manifold with de Rham-Wu decom-
position
(Ma g) = (Mlagl) X X (Mlmgk)

If (E;, D;) denotes the Killing bundle and connection of (M;,g;) and

{XeT,M : R(X,)=0}={0} forall pe M,
then

HO(E7 D) = HO(E17 Dl) S D H0<Ek7 Dk)

Proof. For the proof of Theorem 2.1.6 we refer to Theorem 4.3.9 in Section 4.3. m

The Killing bundle can be endowed with a fibrewise bilinear map [-, -], : E, X E, — E,,

defined by
H)ﬂ ’ EHL N {[A,/B}T—_ng))é Y| (2.16)

where [-, -] denotes the commutator of endomorphisms, which turns its fibres into algebras
over the real numbers. We will refer to the bracket, defined in equation (2.16) as the
Killing bracket. In general, the Killing bracket is not a Lie bracket but we will prove in
the following sections that on the fibres of certain subbundles of E, the Killing bracket
becomes a Lie bracket.
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Remark 2.1.7. The Killing bracket is C°° (M )-linear and thus it can be extended to sections
of E.

2.2 Algebras of sections of the Killing bundle

The sections of the Killing bundle define derivations on the sections of the algebra of
tensors over M, in a natural way. Since M is equipped with a metric tensor, without
loss of generality, we will always assume that the tensors which we are working with
are covariant, unless otherwise stated. For a section ¢ = (£, A) of E and a tensor field
a € T(T*M®"), we define

¢-a:=Vea+A-a.

These are indeed derivations of the algebra of sections of the tensor algebra since they
preserve the tensor type and satisfy the Leibniz rule: For any « in T'(T*M®"), S in
D(T*M®") and f in C°°(M) we have that

¢ (a®@pP)=Ve(a@B)+A - (a®p) = (Vea) @+ a® (V) + (A a) @ B+a®(A-P).
Therefore we get

¢-(a@®@p)=(¢-)@B+a®(o-p)

and also

¢ fa=Vefa+ A fa=E(flat fVea+ fA-a=¢(fla+ fo-a,

where we have defined A- f = 0. In general, for (ay,...,a;) € D(T*M®" @---®T*M®™"),
it is given by

¢ (o,...,0p) = (0 aq,...,0 ag).
Particularly, since E' is contained in the tensor algebra, for any element (X, A) of E and
any section (Y, B) of E, we have

HRE R RS owiE 0

It is worth noticing that the operation defined in equation (2.17) makes the pair (I'(E), -)
an algebra over the real numbers. The product operation on I'(E), defined in equa-
tion (2.17) will be referred to as the Killing product. Also, for any pair of subbundles E
and Fs of E, we will use the notation

L(Ey) - T(E2) :=={¢1 -2 €T(E) : ¢ €T(En), d2 € I'(E2)}.

In the rest of this section we will focus our attention on the derivations of the sections
of the tensor algebra which annihilate an arbitrary (but fixed) tensor field and all of its
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iterated covariant derivatives at a point, however later on we will pay special attention to
the Riemannian curvature tensor. Also, since T'M is equiped with a metric tensor, without
loss of generality we will always consider covariant tensors, unless otherwise stated.

Let us fix an arbitrary tensor field « of type (0,r) and let Vi« denote the (-th iterated
covariant derivative of a. To be precise, for a tensor field « of rank (0, r), its {-th iterated
covariant derivative is the tensor field V'« of rank (0,7 + ). For a, a point p of M and
a non-negarive integer number ¢, we define the vector subspace

KM :={9p€E, : ¢-V'a, 0<i<(},

of E,. For convenience, when ¢ = 0 we will simply write K. Notice that the vector
spaces KI‘}’E correspond to the intersections

¢
al Via
Kp o ﬂ Kp ’

i=0
thus these subspaces of E, define the non-increasing sequence
« a,l a,2
E, 2K, 2K} 2K ”2... (2.18)

of vector subspaces of F, which will stabilise to a subspace of E,, since £, is finite
dimensional. We will denote the aforementioned space by K.
For a given X € T'M we will denote by ¢y, the contraction map

ix : TEME S TME, (ixa)(Xy, . X)) = a(X, X, X)),
for some o € T*M®". Also, we will use the formulas
y(VxVa) —ix(VyVa) =R(X,Y)-a and (x(¢-Va)=¢ -Vxa—Vsxa. (2.19)
Here ¢ € E and R(X,Y) - @ denotes the usual endomorphism action of R(X,Y) on a.

Lemma 2.2.1 (Leibniz rule). Let a be a tensor field on M and let ¢ be a section of E.
Then
Vx(¢-a)=(Dx¢) a+ux(¢- Va), (2.20)

for all X € T'(T'M).

Proof. Let us choose a section ¢ = (£, A), of the Killing bundle E. Then, it follows from
the definition of D that

(DX¢) Q= va£+AXOé + (VxA + R(X, f)) o (2.21)

Noticing that
VxA'Oé = VX(A-Q)—A'V)(O(

— Vy(A-a)—ix(A-Va) — Vaxa, (2.22)
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and
R(X,f) X = vaga—V§Von—vaga+Vv€on
= vaga — Lx(V§VOé) — vaga

we can replace equations (2.22) and (2.23) in equation (2.21) to obtain, after a rearrange-
ment,

(2.23)

VX(¢ . C() = (Dx(b) -+ Lx(¢ . VOé),

as claimed. O

Even though the dimensions of K;"e can vary from point to point, our interest will be
placed in manifolds and tensors where the dimension of Kg’e is constant on M.

Definition 2.2.2. Let a be a tensor field on M. We will say that « is Killing-regular on
(M, g) if, for each £ > 0, the map p — dim K}?’e is constant.

If « is a Killing-regular tensor field, for each ¢ > 0, we can build a vector bundle over
M with fibres K;"e. We will denote such bundle by K®*.

Lemma 2.2.3. Let « be a Killing-reqular tensor field on (M, g). Then K** is the unique
maximal parallel subbundle of E, which is contained in K.

Proof. Firstly, let us see that K“* is a parallel subbundle of E. Let ¢ be a section of
K®* then equation (2.20) implies that

0= —Lx(¢ : VE—HO./) = (Dqu) : VEOé

for all ¢ > 0. Therefore DT(K*>) C T'(A'M ® K**), i.e. K®* is a parallel subbundle of
E, contained in K. It is only left to prove that K* is the maximal subbundle with this
property. Let K’ be another parallel subbundle of E contained in K¢, and let ¢ € I'(K”).

Then
0 = (DXg"-DX1¢)'Oé

= —ux,((Dx, ,...Dx,¢)-Va)

; (_1>£LX5 e lxy (Cb : VZO‘)7

which means that ¢ is a section of K Ve for all £ > 0. Consequently K’ C K®
completing the proof. O

If o is a Killing-regular tensor field, analogously to sequence (2.18), we define the
non-increasing sequence of vector bundles

EDK“YDK*DK*D ... (2.24)

which will converge to K. Since E has finite rank, sequence (2.24) stabilises after a
finite number of steps and we will denote by s,, the first integer such that K% = K®sa+l,
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Proposition 2.2.4. Let a be a Killing-reqular tensor field on (M,g). Then K*% coin-
cides with K%,

Proof. Any section ¢ of K**® will satisfy, by definition,
¢-Via=0 forall (< s.q.
It follows, from Lemma 2.2.1, that
0=Vx(¢-Via) —ix(¢- V) = (Dx¢) - Via,

for all £ < s,, which implies that D¢ € T'(A'M @ K% ) and hence K®* is parallel.
Since K**> is parallel and it is contained in K¢, by Lemma 2.2.3, it must be contained
in K**. By definition K**° C K“® and therefore K*% = K*°, O

The space of sections of the bundles K**° equiped with the Killing bracket, are in
fact algebras over C°°(M). However, in general, the Killing bracket does not satisfy the
Jacobi identity.

Proposition 2.2.5. Let a be a Killing-reqular tensor field on (M, g). Then I'(K**) is
closed under the Killing bracket, inherited from I'(E). In other words, (I'(K**),[-,]) is
a subalgebra of (I'(E), [, ])-

Proof. Let (X, A) and (Y, B) be sections of K**°. Then, it follows from the definition of
the Killing bracket that

[(X,A),(Y,B)] - Via = VayVia — VpxVia + [A, B] - Via — R(X,Y) - Via.  (2.25)
Since (X, A) and (Y, B) are sections of K**, we know that
w(VxViPa) = =iy (A-V5a) and  1x(VyVTa) = —ix(B - V7).
Recall, from equation (2.19), that 1y (A - V*la) = A - VyVia — Vay Via. Therefore

Ly(VX . VZ—HCY) = —-A. vaéOé + VAYVEa
= A (B V') + Vi Vi (2.26)
= [A, B]-Vla+ B- (A V') + Vi Vi

and analogously
1x(Vy - Va) = B- (A-V'a) 4+ VexVia. (2.27)
Substracting equation (2.27) from equation (2.26), we obtain
w(Vx Vi) — ix(Vy VT a) = Vay Via — Vex Via + [A, B] - Via.
Recall that
wy (VxVTa) —ix(VyVia) = R(X,Y) - Va,

from equation (2.19). It follows that [(X, A),(Y,B)] - Vfa = 0 and, as ¢ is arbitrary,
therefore [(X, A), (Y, B)] € T'(K*>). O
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The Killing bundle is equipped with natural projections onto 7'M and so(T'M, g). Let
us denote them by mry : E — TM and 7, : E — s0(T'M, g), respectively.

Lemma 2.2.6. Let ¢ and ) be sections of E. Then

¢ : 1/} = D7rTM(¢)¢ + H¢7 w]] (228)
Proof. The result follows directly from the definitions. O

Proposition 2.2.7. Let a be a Killing-reqular tensor on (M, g). Then (I'(K**),-) is a
subalgebra of (I'(E),-).

Proof. Let ¢ and 1 be sections of K“*°. By Lemma 2.2.6, we know that the Killing
product relates to the Killing connection and Killing bracket by ¢-¢ = Dy )0 + [0, ¢],
hence it will be enough to show that Dy, (»% and [¢, 1] are sections of K*>°. We have
showed in Lemma 2.2.3 that K is a parallel subbundle of F, hence Dy, ¥ is a
section of K. Also, I'(K®*) is closed under the Killing bracket, by Proposition 2.2.5.
Therefore, ¢ - = Dz, 0% + [0, ¢] is a section of K**, as claimed. O

In what follows we will introduce a metric tensor on the Killing bundle, in terms of
the pseudo-Riemannian metric on 7'M, and its associated Killing form, BY on so(T'M, g).

Definition 2.2.8. On a pseudo-Riemannian manifold (M, g), we will say that the tensor
field gg : E x E — R, defined by

gE((XvA)7(KB)) = g(X,Y)—Bg(A,B), (XaA)a(Y7B) €L, (229)
is the Killing metric of E.

Remark 2.2.9. The choice of the minus sign in the summand corresponding to the Killing
form was made for gg to be positive definite when (M, g) is a Riemannian manifold.
Moreover, when (M, g) is Riemannian, the restriction of gg to any subbundle of £ remains
positive definite.

The Killing metric enjoys desired compatibility conditions with (I'(E),-). It is clear
that (X, A)-g =Vxg+A-g=0forall (X,A) € ['(E). The Killing form on so(T'M, g) is
adso(r,g)-invariant and, by definition, the metric in so(7'M, g) induced by g. This means
that (X, A)- B9 =VxB9+A-B? =0 for all (X,A) € I'(E), just as for g. The proposition
below follows.

Proposition 2.2.10. The Killing metric is annihilated by the action of (I'(E),-). To be
precise

gb "9 = 07
for all p € I'(E).
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In terms of the natural projections, and for a given Killing-regular tensor field «, we
can define the vector subbundle

H*" .= ker(nmppy : K — TM)
of K¢ Tt is explicitly by
H* ={(0,A) € E : A-Via=0, forall 0 <i < (}.
The projection of H*! into so(TM, g) will be denoted by h¢, i.e.
bt = {A € s0(TM,g) : A-Via=0, forall0 <i < ¢}.

When the restriction of the Killing form on so(7'M, g) to h** is non-degenerate, the
vector bundle K®* admits an orthogonal direct sum decomposition

K%t = g ¢ Cc**, (2.30)

where C*¢ will denote the orthogonal complement of H** in K, with respect to gg|xa..
We will restrict ourselves to Killing-regular tensor fields such that the Killing form
restricted to h**° is non-degenerate.

Proposition 2.2.11. Let « be a Killing-regular tensor field on (M, g) such that the Killing
form on > is non-degenerate and let

0 — [Jeneo D O

be an orthogonal direct sum decomposition. Then, the orthogonal direct sum decomposition
is preserved by T'(K®*), i.e.

D(K®%®) . T(H*®) C T(H*®) and T(K®®) T(C“®) C T(C*>).

Proof. By Proposition 2.2.7, (I'(K**),-) is a subalgebra of (I'(E),-). To show that
['(K ) preserves the splitting of K*, the first notice that if ¢ is a section of K**> and

(0, A) one of H** we have that
0 0
3] =17

is a section of K**. Since its T'M component is equal to 0, it is in fact a section of H*>.
It is only left to show that ['(K*>) . T['(C**>) C I'(C**>). By Proposition 2.2.10,
¢-gg =0 for all ¢ € ['(E). Then, choosing ¢ € I'(H**) and n € ['(C**>), we get

0=1(¢-98)(W,n) =0 (9e(¥,n)) — ge(¢-¥.n) — ge(¥, ¢ - n) = —ge(¥, ¢ - ).
Since 1 € I'(H*), this shows that ¢ - n € ['(C*>) for all ¢ € I'(K*>). O
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Interestingly enough (for the following sections), the above proposition shows that
C(H®>®) - T(C*>®) C T(C*™).
The following corollary shows us that an analogous statement as the one of the above
equation holds for (I'(K*>), [-,-]).

Corollary 2.2.12. Let « be a Killing-reqular tensor field on (M, g) such that the Killing
form on H*> is non-degenerate and let

0 — o0 D Coz,oo
be an orthogonal direct sum decomposition. Then,
[[Ha,oo’ca,oo]] g oo

Proof. Let us chosing ¢ € T'(H**) and ¢ € I'(C**). By Lemma 2.2.6, we can see
that [¢,¢] = ¢ - ¥ — Drpyye®. However, mra(¢) = 0 from the definition of H** and,
consequently, [¢,¥] = ¢ - ¢ which is contained in I'(C**), by Proposition 2.2.11. O

In the reminder of this section, we will present a procedure to build metric connections
from sections of 1-forms taking values on subbundles of the Killing bundle. In general,
we will consider the 1-forms with values in E as

ANM @ TM End(TM)
ANM @ s0(TM, g) NM @ s0(TM,g)

Abusing notation, the projections to each summand will be
T ANM@E - AN'M®@TM and 7, : A'"M Q@ E — A'M ® s0(TM, g)

and also their restrictions to subbundles of A'M ® E. By considering A'M @ T'M as
the bundle of endomorphisms of 7'M, we can see from equation (2.31) that it is always
possible to build sections of A'M @ E such that its ALM ® T'M component is equal to
Id7yy, the identity endomorphism of the tangent bundle viewed as a section of A'!M QT M.
In other words, this is equivalent to say that there exists a section

o € (AM'M ® E) such that 77 (0) = Idry,. (2.32)

Given any o € I'(A'M ® F) satisfying equation (2.32), we will let S denote its projection
into A' ® s0(T'M, g), i.e. S = ms(0). When contracted with a vector X, we will write S
instead of S(X). Notice that

o(X)-a=Vxa+Sxy-a, forany X €TM and ocT(T*M®).
Since S is a section of A'M ® so(T'M, g), it is evident that
0(X) - g=Vxg+Sx-g=0, forall X e&TM,

which means that in fact o defines a metric connection V := V + S.



32 Chapter 2. The Killing bundle

Remark 2.2.13. The above construction holds if we replace the Killing bundle for any of
its subbundles that projects surjectively onto T'M.

We will pay special attention to subbundles of F associated to families of Killing-
regular tensor. Analogously to how we have previously defined the bundles K and H?,
if aq,...,a; are Killing-regular tensors, we can define the subbundles

k
Kenar) . — ﬂKO"' and H©0%) = ker(mpy : K@) — TM),

=1

of the Killing bundle. In the case when the Killing form on (@) the image of 7q,
on H(®-) is non-degenerate we will denote the orthogonal complement of H (1) in
K (esag) by C/(ar,ar)

Lemma 2.2.14. Let aq, ..., be a Killing-reqular tensor fields such that the natural
projection mry : K@% — TM s surjective and the Killing form on hl@t) g
non-degenerate. Then, there exists a unique section o, of N'"M ® C@v-2%)  sych that
7TTM(O') = IdTM

projects surjectively onto TM, so does C(®) By the above construction, the vector
bundle A'M @ C(@1-) admits a section satisfying equation (2.32)(see Remark 2.2.13).

Let o be a section of A'M ® C(@1-2%) such that mry (o) = Idry. To prove that o is
unique, suppose there exists a section o’ € I'(A*M ®@C(@1+2%)) such that wpp (') = Idpay.
Then, if we let S and S’ be the A'M ® so(T'M, g) components of o and o', respectively,
we observe that

0=0(X) a;—0'(X)-a;=(Sx —S5%) «;, forall i=1,... k.

The above equation implies that Sy —S% is in h(@12%) for all X € T'M, which contradicts
our assumption of o and ¢’ being sections of A'M ® C(@1-)  Consequently, S = S’ and
hence o = o. ]

At first sight, the above lemma may appear disconnected to the narrative of this
section. However, we have previously showed in Proposition 2.2.4 that the subbundle
K** is in fact equal to K** for some integer s, < co, which is nothing but the bundle
K(@Ve.s¥**a) " This means that in the instances where K> satisfies all the hypothesis
imposed on K (@) in Lemma 2.2.14, the existence of a unique section of A'M @ C>
which solves equation (2.32) is guaranteed.

Lemma 2.2.15. Let o be a Killing-regular tensor such that wpy @ K — TM is

surjective and the Killing form on h®* is non-degenerate. Then, if o is a section of
ANM @ Co>® of the form o = (Idra, S), we have

VxS+Sx-5=0.
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Proof. We have shown in Proposition 2.2.11 that I'(K*>) - I'(C*>) C I'(C**) and,
particularly, I'(C*>) - I'(C**>®) C T'(C**). By Lemma 2.2.14 there exists a unique
section of ALM ® C** which is of the forms (Idrys, S). Let us denote this section by o.
It is straightforward to see that

VxY + SxY VxY 4+ SxY 0
X)-o(Y) = = e I'(C™™).
o(X) oY) =19, 8y + [Sx, Sy]} { Sv . visey }* [(VXS)Y +(Sx - )y | ETET)
Lastly, that VxS + Sx - S = 0 follows from the uniqueness of o. O

Lastly, for a given Killing-regular tensor field, we will say that ¢ € [(A'M ® E) is an
a-Killing section if it solves the system or partial differential equations

mrp(0) =ldry, o(X)-a=0 and o(X)-0=0 foral X eTM (2.33)

Lemma 2.2.16. Let o be a Killing-reqular tensor field on (M, g) and let 0 € T(N'M®E)
be an a-Killing section. Then o is a section of N'M @ K.

Proof. From the first two equations in (2.33) we deduce that o = (Idra, S) and a section
of N'M @ K*°, for some S € T(A'M ® so(T'M, g). Expanding the third equation, we can
see that

00 VXIdTM+[Sx,IdTM]}:[ 0 }

VxS+8x-8 VxS+S5x-95

implies that o(X)-S = 0 for all X € TM. In other words, ¢ is a section of A'M @ K (@9,
It is only left to show that K% is in fact equal to K®>. Recall that for any section ¢
of E we have

tx(¢p-Va)=¢-Vxa—Vyxa and Vya=-Sx-a.
Then, a direct calculation reveals
wy(0(X)-Va) =0(X)-Vya—Vyx)ya=—0(X)-(Sy @)+ Syxyva = —(0(X)-S)y -«
which is equal to 0, since o € I'(A'M ® K(*9)). Inductively, we can see that
w(o(X)-VTa) = —(0(X) - S)y - Via

for all £ > 0. This means that ¢ is a section of A'M @ K. O]

2.3 The Killing curvature

The kernel of the Killing curvature at a point p is, by definition, the vector subspace of
E, comprised by elements (X, A) such that

VxR+A-R=0,
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namely, Kf. In [38], Katsumi Nomizu introduced the notion of Killing generators of a
pseudo-Riemannian manifold. These are elements (X, A) € E,, solutions to the following
equation

VxVR+A-V'R=0 (2.34)
for all £ > 0, i.e. the space of Killing generators at p is precisely Kf’o". Moreover, in [39],
it was proven that the space of Killing generators at a point p, equiped with the Killing
bracket, becomes a real Lie algebra.

For completeness, we will show that the Killing bracket, defined in equation 2.16 is
indeed a Lie bracket on K/*>. That K[> is closed under the Killing bracket follows
from Proposition 2.2.5, with the Riemannian curvature tensor taking the place of a. To
show that the bracket defined in equation (2.16) satisfies the Jacobi identity, we compute

(0] L] [0 = on s 30 e o

A direct computation reveals that the T'M component of the cyclic sum of the above
equation vanishes identically. Letting € denote the cyclic sum, its so(7T'M, g) component
becomes

(a0 0 ©) [Hﬂ [Hg]{ ””] — _(A-R)(Y,Z)— (B-R)(Z,X)— (C-R)(X,Y). (2.35)

Since (X, A), (Y, B) and (Z,C) are Killing generators, it follows that
A-R=-VxR, B-R=-VyR and C-R=-VzR

and therefore
(a0 0 €) ﬂm , Hg} , {CZJH”] — (VxR)(Y, Z) + (Vv R)(Z, X) + (V2R)(X,Y).

which, by the second Bianchi identity, vanishes identically. It is worth noticing that
equation (2.35) is the only obstruction for the Killing bracket on K>, to be a Lie
bracket. The proposition below follows directly from this argument.

Proposition 2.3.1. Let a € T(T*M®"). Then (K> N K> [-,-]) is a Lie subalgebra
Of (Kf’oov ) [['7 ]])

Interested in pseudo-Riemannian manifolds whose curvature tensors are Killing-regular,
we obtained the following relation between the maximal parallel flat subbundle K, of the
Killing bundle, and the bundles of derivations of R.

Proposition 2.3.2. Let (M, g) be a pseudo-Riemannian manifold and let K be the maz-
imal parallel flat subbundle of E. Then, for each p € M, K, C Kf"x’ and the equality
holds if and only if R is Killing-reqular.
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Proof. Let ¢ be any section of K. For each p € M, by definition K, is contained in Kf,
the kernel of the Killing curvature at p. Since K is parallel we obtain

0 = (Dx,...Dx,0)-R
= _LXZ((DXg_l--'DXﬂb)'VR)

; (_1)ZLXZ - lxy (¢ ' VER)

which follows from Lemma 2.19. This is independent of the point and of ¢ and therefore
K, C K™,

If in addition we assume that R is a Killing-regular tensor field, the kernel of the
Killing curvature is the vector bundle K*. By Lemma 2.2.3, the bundle K% is the
maximal parallel subbundle of E which contained in K®. This is precisely the definition

of K. ]

Corollary 2.3.3. If (M, g) is a pseudo-Riemannian manifold whose curvature tensor is
Killing-reqular, K = K.

The following proposition is a well known result, which we have taken from the book
of Kobayashi and Nomizu [33, Proposition 2.6, Chapter VI]. We should say that there is
a sign mistake in the statement of the proposition.

Proposition 2.3.4. Let & and n be Killing vector fields. Then
At = [Ag, Ay] = R(E, 7). (2.36)

Proof. In general, the bracket of vector fields can be expressed in terms of the Nomizu
operators as

[§:n] = Ven = V€ = Aen — A€ (2.37)
Then, it is straightforward to see that

A X = =Vx(Aen — Ayl) = —(VxAe)(n) — AcVxn + (VxAy)(§) + 4,VxE (2.38)
Notice that in the right hand side of equation (2.38) we have that
—AVxn+ A VxE=AAX — A A X = [Ag, A X.
Since ¢ and 7 are Killing vector fields, we have that
(VxAg)(n) = —R(X,&§)n and  (VxAy)(§) = —R(X,n)§

by equation (2.12). Then, the remaining terms of the right hand side of equation (2.38)
become

—(VxAg)(n) + (VxAy)(§) = R(X, &)n — R(X,n)§ = —R(E,n)X,
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where the last equality follows from the Bianchi identity. It follows that equation (2.38)
becomes

A X = [Ag, 4] X — R(§,n) X
as claimed. O

Corollary 2.3.5. The natural inclusion map (H°(E, D), {-,-}) — (O(K).[-,-]) is a Lie
algebra monomorphism.

Proof. Let € and n be Killing vector fields. From the definition of the bracket in H°(E, D),

we have that
A a1 ]

From equations (2.36) and (2.37) in Proposition (2.3.4), it follows that

E‘ieﬂ - [[As,A jg:%né,n)} - “Ai] ’ unm ’

where the last equality follows from restricting the Killing bracket to sections of K. [

To conclude this chapter, let gé%,oo denote the projection of Kf"x’ to so(1,M, g,) and
let hol,(M, g) be the holonomy Lie algebra of (M, g) with base point p.

Proposition 2.3.6. The projection of K** to so(T,M, g,) is contained in
n, :={A €s0(T,M,g,) : [A H]€bol,(M,g), VH € hol,(M,g)}, (2.39)
the normaliser of the holonomy algebra of (M, g).
Proof. Choosing (&, A) in Kf"’o, it follows by equation (2.34) that
A-V'R=-VV'R e (AM)P @ A2M @ bhol, (M, g).
A closer look at the above equation reveals that
(A, (VR)(X1,..., X X,Y)] = —(VHR)(E Xy,..., X X,Y)

+(VER)(AXy, ..., X X,Y)
HVIR) (X, Xp: X, AY)

The right hand side of the above equation is contained in the holonomy algebra of (M, g),
since it is contained in the span of the curvature tensor and its derivatives. It follows that

[A, (V'R)(X1,..., X5 X,Y)] € hol (M, g),

for all Xy,...,X,, X,Y € T,M, which implies that A is in the normaliser of holonomy
algebra, n,. O



Chapter 3

Pseudo-Riemannian locally
homogeneous spaces

In this chapter we provide a characterisation of pseudo-Riemannian locally homogeneous
spaces by means of the Killing bundle and the Killing connection, and give a new proof of
the Ambrose-Singer on homogeneous structures [22], under slightly different assumptions.
In the last Section, we discuss the Singer index of pseudo-Riemannian locally homogeneous
spaces and relate it to properties of subbundles of the Killing bundle.

3.1 The Killing bundle of pseudo-Riemannian locally
homogeneous spaces

A pseudo-Riemannian manifold (M, g) is called locally homogeneous if for any given pair
of points p and ¢ of M, there exist open neighbourhoods U and V' of p and ¢, respectively,
and a local isometry f : U — V such that f(p) = q. Equivalently, in terms of local Killing
vector fields, (M, g) is a pseudo-Riemannian locally homogeneous space if and only if for
each point p € M, there exists an open neighbourhood of p such that its Killing vector
fields provide a frame of the tangent bundle of M. Particularly, (M, g) will be called
(globally) homogeneus if there exist a subgroup of the isometry group Iso(M, g), acting
transitively by isometries on M. In other words, for any two given points p and ¢ of
M, there exists g € G such that g - p = ¢q. A pseudo-Riemannian homogeneous space
might admit many subgroups of its isometry group acting transitively, for which the same
homogeneous space could be represented by different quotient spaces. If M = G/H, and
we let g and § be the Lie algebras of G and H, respectively, we will say that the pair
(g,b) is reductive if g admits a direct sum decomposition,

g=bh®m suchthat [h,m]Cm.
We have shown in Proposition 2.1.4 that the Lie algebra #ill(M, g), of Killing vector

37
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fields of (M, g), is isomorphic to the Lie algebra of the parallel sections of its Killing
bundle, equiped with the bracket defined in equation (2.16). Therefore we can provide a
characterisation of the local homogeneity of (M, ¢g) in terms of the local parallel sections
of its Killing bundle. In general, for any open subset U of M, the map

B, gle) > TO.F), €[]
3
is an injection of the local Killing vector fields on U into the local sections of the maximal
parallel flat subbundle K, of E. Letting #ll(U, g|r), denote the vector subspace of T,,M,
obtained by evaluating the local Killing fields of U at p, it follows that when (M, g) is
locally homogeneous, the composition

BI(U, glv), — K, — T,M

is surjective for all p in M. In other words, the natural projection from K to T'M is
surjective. On the other hand, K being a flat and parallel subbundle of the Killing
bundle implies that, locally, there exist a frame of K composed of local parallel sections
of E. If in addition K — T'M is a surjection, for each point of M, there exist a local
frame of T'M comprised of Killing vector fields. Therefore, we have proven the following
proposition.

Proposition 3.1.1. A pseudo-Riemannian manifold (M, g) is locally homogeneous if and
only if the natural projection K — T'M is a surjection.

The previous proposition was known to Nomizu in [38] for the Riemannian setting.
However, he enunciated his result in a slightly different language than ours. In our
terminology, he showed that a Riemannian manifold (M, g) is locally homogeneous if and
only if

(1) R is Killing-regular.
(2) The projection K> — T, M is surjective for all p in M.

These two conditions are in fact equivalent to K — T'M being a surjection. Indeed,
condition (1) implies that we can build the vector bundle K> whose fibres are given
by Killing generators which, by condition (2), will project subjectively onto T'M. That
K — TM is a surjection follows from Corollary 2.3.3, which provides us with the equality
between K and K.

In the previous chapter we provided a description of subbundles of the Killing bundle,
associated to Killing-regular tensors. Now, we will focus on tensor fields on pseudo-
Riemannian locally homogeneous spaces, which are invariant by local isometries. To be
precise, we will say that a tensor field a € I'(T*M®") is invariant by local isometries if
for any local isometry of (M, g), f: U — V, then f*aly = aly.
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If o is a tensor field invariant by local isometries of a pseudo-Riemannian locally
homogeneous space, we have a natural isomorphism between Kl‘f’f and K g“’e , for any pair
of points p, ¢ in M and consequently, for each ¢ > 0, the map p — dim K]‘j’é is a constant
function on M. In other words, invariant tensor fields on locally homogeneous spaces are
Killing-regular, which will allow us to define the vector bundles K** over M, with fibres
ngf at p € M. Particularly, we will apply the results obtained in Chapter 2 to build
metric connections that parallelise invariant tensor fields.

Recall that the kernel of the Killing curvature at a point p of M is given by Kf.
The curvature tensor of the Levi-Civita connection is of course invariant by local isome-
tries and, for this reason, local homogeneity guarantees us that the kernel of the Killing
curvature is in fact a vector subbundle of E. Moreover, for each ¢ > 0, Klﬂu is defined
solely in terms of R and its iterated covariant derivatives and, for this reason, K will

be subbundle of E.

Proposition 3.1.2. Let (M, g) be a pseudo-Riemannian locally homogeneous space. Then
the mazimal parallel flat subbundle K of E is the vector bundle over M whose fibres consist
of Killing generators.

Proof. Since (M, g) is locally homogeneous, its curvature tensor is invariant by local
isometries and ,therefore, it is Killing-regular. It follows by Corollary 2.3.3, that the
maximal parallel flat subbundle of E is equal to K> which, by definition, has fibres
comprised by the Killing generators. O]

Establishing conventions for the reminder of this chapter, we will simplify our notation
when considering locally homogeneous spaces. We write K instead of K> and analo-
gously H and b will take the place of H>* and h#>, respectively. Lastly, if the Killing
form on b is non-degenerate, C' will denote the orthogonal complement of H in K.

3.2 Homogeneous structures

It is a well known result, due to E. Cartan, that a connected, simply connected and
complete Riemannian manifold is a symmetric space if and only if its curvature tensor
is covariantly constant. In [3], W. Ambrose and I. M. Singer provided a characterisation
of a Riemannian homogeneous space (M, g), extending the aforementioned result from
E. Cartan, to homogeneous spaces. To be precise, they proved that a connected, simply
connected and complete Riemannian manifold (M, ¢) is homogeneous if and only if there
exists a tensor field S € T'(A'M ® End(T'M)), that is a solution to the system of partial
differential equations

Sx-g=0, VxR+Sy-R=0 and VxS+Sx-5=0, (3.1)

for all X € I'(T"M). The above system of partial differential equations will be referred
to as the Ambrose-Singer equations. These conditions for the tensor field S are in fact
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equivalent to the existence of a metric connection V* := V + S with covariantly constant
curvature and torsion tensors, with respect to V. Namely,

V% =0, V°T°=0 and V°R°=0, (3.2)

where T° and R® are the torsion and curvature tensors of V°, respectively. Any tensor
field satisfying equations (3.1) will be referred to as a homogeneous structure on (M, g)
and its associated connection or, equivalently, a connection satisfying equation (3.2) will
be called an Ambrose-Singer connection. The torsion and curvature of V¥ relate to R
and S by the formulas

TRY = SxY —SyX and R(X,Y) = R(X,Y) — [Sx, Sy] + Srgy (3.3)

and, contracting S with the metric tensor, we can recover the homogeneous structure S
from T by
29(SxY, Z) = g(T3Y, Z) — g(T¥ Z, X) + g(T7 X, Y). (3.4)

In the book [42], of Tricerri and Vanhecke, a new proof of the results of Ambrose and
Singer was given. In the pseudo-Riemannian setting, Gadea and Oubina showed in [22]
that a homogeneous structure on a pseudo-Riemannian manifold exists if and only if it
is a reductive homogeneous space. The most general statement, due to Kiricenko [32],
shows that the Ambrose-Singer connection also preserves any tensor field that is invariant
by local isometries. We also refer to the book of Calvaruso and Castrilléon Lépez [11] for
a proof of the most general, Ambrose-Singer-Kiricenko theorem.

In what follows, we will apply the results obtained in Chapter 2 to provide a descrip-
tion of the Ambrose-Singer equations and the Ambrose-Singer-Kiricenko theorem in the
language of the Killing bundle. Recall that a section of A'M ® E, solving the system of
differential equations

mryv (o) =ldry, o(X)-R=0 and o(X)-0=0, (3.5)

has been called an R-Killing section. The existence of such a section is in fact equivalent
to the existence of a homogeneous structure on (M, g), and equation (3.5) is in a sense,
an embedding of the Ambrose-Singer equations into the Killing bundle setting. Indeed,
the first of the above equations implies that o = (Idra, S), where S is some section of
AN'M ® s0(T'M, g). Therefore

U(X)'RZVXR+Sx~R

and
o(X) 0= VxlIdrar + [Sx, Idray] _ 0
VxS+8x-95 VxS+5x-95

show that equations (3.1) and (3.5) are equivalent. For future convenience, we note that
equation (3.6) is equivalent to

(3.6)

o(X) 0= [U(XO) . S] . (3.7)
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Proposition 3.2.1. Let (M, g) be a pseudo-Riemannian manifold let o be an R-Killing
section. Then (M, g) is locally homogeneous.

Proof. In order to show that (M, g) is locally homogeneous, we will prove that ¢ is in fact a
section of A'M® K. Then, as 7ry(0) = Idras, we would get that the projection K — T'M
is surjective and therefore, by Proposition 3.1.1, (M, g) will be locally homogeneous.

Let us denote the A'M ® so(T'M, g) component of ¢ by S. From ¢(X) - R = 0, we
observe that
Ly(O’(X) VR) = O'(X) 'VyR—VU(X).yR = —(O’(X) 'Sy—SU(X).y> -R = —(O'(X) S)yR
From Lemma 2.2.1 we obtain

(Dyo(X)) - R=—ty(c(X)-VR) = (0(X)-S)y-R=0,
where the last equality follows from equation (3.7). Inductively, we can see that
o(X)-V'R=0 forall ¢>0.

In other words, o is a section of A'M ® K>, From Proposition 3.1.2, we then conclude
that o is in fact a section of A'M ® K. As claimed before, K — T'M is surjective and by
Proposition 3.1.1, (M, g) is locally homogeneous. O

For the converse statement, we will provide a proof in the more restrictive case when
the Killing form on b is non-degenerate, instead of assuming reductivity.

Proposition 3.2.2. Let (M, g) be a pseudo-Riemannian locally homogeneous space such
that the Killing form on b is non-degenerate. Then, there exists a unique section o of
N M @ C, solution to equation (3.5). Moreover

o(X) -a=0,
for any tensor field which is invariant by local isometries of (M, g).

Proof. Under the assumption of (M, g) being locally homogeneous, by Proposition 3.1.2
we get the equality K = K. Proposition 2.2.4 tells us that K = K®%& for some

Lemma 2.2.14 we know that the exists a unique section o, of A'M ® C, such that 7wpy (o)
is equal to Idry,. Lastly, that
0(X)-0=0 and o(X)-R=0

follows by Lemma 2.2.15 and by construction, respectively.

It is only left to prove that if « is a tensor field which is invariant by local isometries
of (M,g), then o(X) -« =0 for all X € TM. Recall that the Lie derivative can always
be expressed as Lx = Vx + Ax for any vector field X. Particularly, if £ is a local Killing
vector field, we have that

pe-a=Vea+As-a=La=0, where ¢ = (£ A) € I'(K).
It follows that ¢ - o = 0 for all sections of I'(K') and, particularly o(X). O



42 Chapter 3. Pseudo-Riemannian locally homogeneous spaces

3.3 The Singer homogeneous index

Let (M, g) be a pseudo-Riemannian manifold and let p be a point in M. We will define
a non-increasing sequence of subalgebras of so(7,M, g,), analogously to the sequence
introduced in equation (2.18), depending on the curvature tensor of (M, g). Recall, from
Chapter 2, that the Lie algebra of skew-symmetric endomorphisms which annihilate the
curvature tensor and its iterated covariant derivatives at a point p and up to order /,
when acted upon, has been defined as

bt ={A€so(T,M,g,) : A-V'R=0,V0<i<(}.

It is clear from their definition that f)ﬁ’“l is contained in f)ﬁ"] and, consequently, they
define the non-increasing sequence of subalgebras

s0(T,M, gp) 2 b, 2,70 20,02 2 2. (3.8)

It is clear that the above sequence will stabilise after a finite amount of steps. We will
denote by k,(p), the first integer such that f)ﬁ’kg(p) = bf}”%(”“, for all £ > 0, and we
will refer to ky(p) as the Singer index of (M, g) at p. We note that in the literature it is
usually referred to as the Singer invariant.

In a general setting, the Lie algebras hf’f depend on p and so does k,(p). Nevertheless,
it will be of our interest to focus on pseudo-Riemannian manifolds such that for each pair
of points, p and ¢ in M, there exists an isomorphism between hg’é and hf’g . Particularly,
when (M, g) is locally homogeneous, the curvature tensor and its covariant derivatives are
invariant by local isometries. Consequently, any local isometry f that maps a point p to a
point ¢, will induce an isomorphism between hf’g and f)f’e . It follows from this argument
that the Singer index map, p — k,(p), will be constant on locally homogeneous spaces.
In general, when the Singer index is constant, we will ignore the point and we will simply
denote it by £,.

The curvature tensor of a locally homogeneous space is always Killing-regular and
therefore, for each ¢ > 0, we can define the vector bundle h** with fibre h* at p.
Considering H™ instead, we have the sequence

EDHED R D gR2 D gR3 O (3.9)
of subbundles of F, that will clearly stabilise in the &, step.

Proposition 3.3.1. Let (M, g) be a pseudo-Riemannian locally homogeneous space. Then
k, < sg and the equality holds when (M, g) is reductive.

Proof. We have shown in Proposition 2.2.4 that the sequence defined in equation (2.24)
stabilises at the sp-th step. That is, K7 = Kzt for all k > 0. For each ¢ > 0, H**
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is contained in K¢ and particularly for ¢ = sp. Consequently, H$r = HTsrtF for all
k > 0 which implies that k; < sg.
It is only left to prove that, in the case when (M, g) is reductive, k, = sg. When
(M, g) is reductive we have
KR =H" g 0>, (3.10)

as a consequence of the existence of a homogeneous structure. It follows that from the
decomposition of K% in equation (3.10) that the sequence for K will stabilise in the
same step as the sequence for H®, hence k, = sg. O]

Examples in the literature for locally homogeneous spaces of arbitrarily high Singer
index can be found in [36]. Locally homogeneous spaces with k, = 0 will be of our
particular interest in the rest of this thesis. Non-trivial examples of such spaces are scarce
in the literature, a few of them can be found in [28].

FExample 3.3.2. Locally symmetric spaces are pseudo-Riemannian manifolds whose curva-
ture tensor is parallel with respect to the Levi-Civita connection. Particularly they are
locally homogeneous. Since VR = 0, A- VR = 0 for all A € so(T'M, g), which implies
that h® = 1. Consequently, locally symmetric spaces have Singer index equal to 0.

The following corollary is an immediate consequence of Proposition 3.3.1.

Corollary 3.3.3. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous space.
Then K is parallel if and only if k, = 0.

Proof. By Proposition 3.3.1, k, = sg. Also, by the Ambrose-Singer theorem, if (M, g) is
a reductive locally homogeneous space it admits a homogeneous structure S. Then, we
observe that Ct = Cl>* = {(X,Sx) : X € T,M}, which implies that sp will depend
only on the sequence

HE D HR' D gR2 D .

and that K = H® @ C%>. By Proposition 2.2.4, the kernel of the Killing curvature
is parallel if and only if it is equal to K>, and this equality will happen if and only if
HR = Hf> ie. k, = 0. O

Corollary 3.3.3 provides us with a criterion to find locally homogeneous spaces such
that the kernel of their Killing curvatures are parallel. In Chapter 5 we will present
examples of a class of locally homogeneous Lorentzian manifolds which have Singer index
equal to 0.
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Chapter 4

The Calabi complex

In this chapter we will give an introduction and present results obtained on the main
topic of this thesis, concerning the problem of finding necessary and sufficient conditions
for a symmetric 2-tensor to be in the image of the Killing operator. The results pre-
sented in Sections 4.1 and 4.2 have already appeared in [12, 13] for pseudo-Riemannian
locally symmetric spaces. The author’s contribution has been the adaptation of the afore-
mentioned results found in [12, 13] to reductive pseudo-Riemannian locally homogeneous
spaces. Most of Section 4.3.2 has already appeared in [13], and the majority has been of
the author’s contribution.

Oftentimes, throughout this chapter, we will employ Penrose’s abstract index notation.
At first glance, this change of notation may appear inelegant for the exposition, however
its usefulness will become apparent in the proofs of the main results obtained in this
chapter and Chapter 5. We will proceed to give a brief description of Penrose’s notation.

Upper indices will denote covariant tensors and lower indices will denote contravariant
ones. For instance, a vector field will be denoted by £* and, with the aid of a metric tensor,
£ = gapt® will denote the 1-form that is dual to €%, with respect to gqp. We will always
raise or lower indices with the metric tensor without expressly saying it. Enclosing indices
with round and square brackets will indicate to take the symmetric and skew-symmetric
part of a tensor, respectively. For instance, if &, € A'M @ A'M, §p) and &[4y will be the
tensor fields given by the formulas

1 1
g(ab) = i(fab + gba) and g[ab] = E(gab - gba)~

The curvature tensor Rgpeq € ['(RM), of an affine torsion-free connection V,, will be
defined by the formulas

(VaVh = ViV)E = Ryfof’ and  (VoVy = ViVa)ée = — R,

for €4 € TM and &, € A'M. For more details about Penrose abstract indices notation we
refer to the book of Roger Penrose and Wolfgang Rindler [40].

45
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The role played by Killing vector fields in the former chapters will be replaced by
Killing 1-forms. For this reason, the Killing operator will be consider as the first order
linear differential operator

K :T(A'M) — I'(Sym>M) ap = V(a0p), (4.1)

acting on differential 1-forms, rather than on vector fields. We note that if we let X =
g®oy, the Killing operator acting on o, is nothing but

1

(ICU)ab = V(ao-b) - E(LXg)ab'

4.1 The twisted de Rham complex and a Calabi com-
plex

In this section, we will derive a complex of linear differential operators providing necessary
conditions for a symmetric 2-tensor on pseudo-Riemannian locally homogeneous space to
be in the image of the Killing operator. Furthermore, we will establish a relation between
the Calabi complex and the short twisted de Rham complex of the Killing bundle with its
Killing connection (see Definition 1.2.2). Before proceeding, we remark that the results
presented below have already appeared in [12, 13].

Recall that we have defined the Killing operator, as a differential operator acting
on vector fields and taking values on the symmetric endomorphisms of the pseudo-
Riemannian manifold (M, g), to be the first order linear differential operator

k:D(TM) — T'(Sym(TM, g)),

defined by
. . . 1 .
k(§) = —Ae, with A =-VE¢ and A = 5(145 + Ag). (4.2)
The kernel of the Killing operator on locally homogeneous spaces is well understood, but
what about its image? For a given symmetric endomorphism () of the tangent bundle of
M, we can ask ourselves the following question:

Is there a vector field on M such that k(§) = Q7

This problem can be formulated as an existence problem for a solution to the linear first
order the partial differential equation:

k(§) = @, (4.3)

for a given symmetric endomorphism @, of 7M. We will refer to equation (4.3) as the
inhomogeneous Killing equation. The first thing to notice from equation (4.2) is that the
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inhomogeneous Killing equation will have a solution if and only if there exists a vector

field £ € I'(T'M) such that
QX = —A X =Vxé+ A X, forall X eT(TM).

The right hand side of the above equation suggests an embedding of the inhomogeneous
Killing equation into the Killing bundle. Indeed, the following theorem provides us with
an overdetermined system of partial differential equations, built into the Killing bundle,
that is equivalent to the inhomogeneous Killing equation.

Theorem 4.1.1. Let (M, g) be a pseudo-Riemannian manifold. Then, £ € T'(T'M) is a
solution to the inhomogeneous Killing equation

k(€) =Q for a given Q € T'(Sym(T'M,g))
if and only if

bx [ﬂ - {(va)(X)Ci)iva)(X)*

Proof. Suppose that & € I'(T'M) is a solution to the inhomogeneous Killing equation with
inhomogeneous term @ € I'(Sym(7T'M, g)). Inspecting equation (4.2), we can observe that
QX = —AX and also QX = Vx{ + A X. By Lemma 2.1.2 we obtain

for some A € T'(so(T'M,yg)).

VxAe + R(X,€) = —(d¥A¢)(X) + (0¥ Ag) (X)" = (d¥Q)(X) — (dVQ)(X)".
Consequently, it follows immediately that

[(va)(X )Ci)iva)(X)*] - {V:j{f: Jj(g?(,f)] - L‘i] '

To prove that the converse statement holds, it will be required only to look at the T'M
component of
o 3] - [ea i) = leran Vs o
YAl T |[VxA+ R(X¢) (@VQ)(X) — (d¥YQ)(X)* |

Since () is symmetric by assumption, the same must be true for the endomorphism VE+ A.
This means that

Q+Ac = —Ac+ A,
since V& = —flg —Ag. The left hand side of the above equation is a section of Sym(7'M, g)
and the one on the right hand side is on I'(so (7'M, g) ), hence A = A; and @ = — A = k(§),

as required. The equation on the so(7T'M,g) component is automatically satisfied by
Lemma 2.1.2. ]
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The above theorem provides us with an overdetermined system of linear partial differ-
ential equations, embedded into the Killing bundle, which is equivalent to the inhomoge-
neous Killing equation, however before investigating the consequences of Theorem 4.1.1,
we will change the notation for the reminder of this section. In the following we will
employ Penrose’s abstract index notation and establish a few conventions for the objects
that we have been working with.

The Killing bundle will be considered as the vector bundle with connection

Al 2 Op | Va0y — Hab
E=NMeNM D, LMJ = |:vzz,ufbc a Rbcdaad:| , (4.4)

instead of the one defined previously. It is worth noticing that the Killing connection
defined as above differs from the one defined throughout this work by a sign. To be
precise, in abstract indices notation, the Killing connection defined in Chapter 2 would

be
D {O'b:| _ { Va0 + Hab }
“ Hbe Va,ubc + Rbcdao-d '
Nevertheless, our interest has been placed in the kernel and image of this connection, for
which this sign discrepancy becomes irrelevant.
The role played by Killing vector fields in the former chapters will be replaced by

Killing 1-forms. For this reason, the Killing operator will be consider as the linear first
order differential operator

K:T(A'M) = T(Sym®’M) oy — V.0, (4.5)

acting on differential 1-forms, rather than on vector fields, just as it has been defined in
the introduction of this chapter. It can be observed from its definition in equation (4.5)
that

Vwop =0 if and only if V,0, = V{04 (4.6)

Therefore, the isomorphism provided in Proposition 2.1.4 can be translated into this new
construction by

0 Oq
ker(K) - H (E, D) Oq > [VQUJ .

In other words, the parallel sections of the new Killing bundle are exactly those of the
form

vaa-b

The curvature of the Killing connection will take the form

{ Ta } such that V.o, = V[,0y.

0
4.7
—O’e(veRabcd) + ZRabTCud]e + 2Rcdctaﬂb]e ’ ( )

(DuDy — DyDy) [ ;ﬂ = [
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and the exterior covariant derivative, acting on I'(A'M ® E), will be taken to be the
differential operator D" : T(A'M ® E) — I'(A*M ® E) given by

v allblc + ¢ able
DA Mo — Dy, Mele | _ [aT]b] [ab] . 48
“ |:77Z)bcd:| [ |:wb]cd ViaWsjed = B Mle (4.8)

With these conventions 2D” is equal to the exterior covariant derivative operator
dp : T(AM'"M ® E) = T'(A\*M ® E),

defined in Chapter 1, and the curvature of the Killing connection can be expressed, in
terms of D and D", as the composition 2D" o D = k.

We remark that the terms involving p in the formula for the curvature of the Killing
connection are precisely pu, thought as a skew-symmetric endomorphism of T'M, acting
on the Riemannian curvature tensor in the usual sense. Moreover, it defines the homo-
morphism of vector bundles R : A2M — RM, given by

(R,U)abcd = 2Rach/de]e + QRCdTa/Lb]ea (49)

where RM denotes the vector subbundle of A2M ® A2M of tensors with the symmetries
of the Riemannian curvature tensor, i.e.

RM = {Tabcd S /\2M X /\2M . Tabcd - Tcdab and 77[abc]d = 0}

Lastly, we remark that differential forms taking values on the Killing bundle will be
denoted with Greek upper scripts, namely ¢* will be a section of E and ¢,“ will denote
a section of A'M ® E.

Given that our new conventions are settled, we will return to the consequences of
Theorem 4.1.1. In abstract indices notation it can be restated as follows: Let hy be a
given symmetric 2-tensor field on a pseudo-Riemannian manifold (M, g). Then

hay = V(qop), for some o3 € D(A'M),

if and only if

o) hab 1 2
D, = , for some o, € I'(A"M) and . € T'(AM).
|:H’bc:| |:2V[bhc]a:| b ( ) Ho ( )
We are now in condition to consider the existence problem for solutions to the inho-
mogeneous Killing equation in terms of the Killing bundle. This problem can be stated
as follows: For a given section of A'M ® E of the form

a hab 2
w,* = [QV[th]a] for some Ay, € I'(Sym“M). (4.10)



50 Chapter 4. The Calabi complex

Does there exists a section w® of the Killing bundle such that D,w® = w,“?

Conditions for such a problem to have a solution have been presented in Chapter 1,
for arbitrary vector bundles with connections. We will proceed to investigate these con-
ditions specifically for the Killing bundle. For w,® € T(A'M ® E) of the form given in
equation (4.10), we can see that a necessary condition for the inhomogeneous problem to
have a solution is that

hb 1 0 g
D © == . . . fi ‘1l eT(R).
a [QV[chd]b} 2 [_(VeRabcd)g + 2Rab [Cﬂd]e + 2Rcd [aﬂb]e:| OF Sote |:,ucd:| ( )

A straightforward (but rather long) calculation shows that

A hfbc o 1 0
Fa [QV[chd}J 2 [(Ch)abea |’ (4.11)

where C : ['(Sym*M) — T'(RM) denotes the Calabi operator. Recall that the Calabi
operator is the second order linear differential operator acting on symmetric 2-tensors
which is defined by the formula

(Ch)abcd = V(avc)hbd - v(bvc)h’ad - V(avd)hbc + V(bvd) hac - Rabfchd]e - Rcde[ahb]e'

If we let p1qy = V[,0p) for some differential 1-form o, a straightforward but rather lengthy
calculation shows that the composition

I(A'M) —£— T(Sym?M) —£— T'(RM) (4.12)
takes the simple form

(C o ’C) (0>abcd - _(veRabcd)O-6 + 2Rabe[c,ud]e + 2Rcde[a,ub]e - _(VeRabcd)Ue + (R,U)abcd'

In the special cases when (M, g) is a reductive locally homogenous space, we can
say more about sequence (4.12). By the Ambrose-Singer theorem [11, Theorem 2.2.1],
there exists a tensor field Sy € T(A'M ®&A?M) (a homogeneous structure) solution to the
Ambrose-Singer equations, so let us assume that (M, g) is a reductive locally homogeneous
space with homogeneous structure Sy;.. In abstract indices, the Ambrose-Singer equations
(see equation (3.1)) take the form

0°VeRapea = 07 S, Reved + 07 S,  Raced + 07 S 1. Raved + 07 S 14 Rapee (4.13)

0°VeSure = 0751, Sene + 075 1, See + 07 S Sune (4.14)

for all o € T'M. After a rearrangement of terms on the right hand side of equation (4.13),
it takes the simpler form

0°VeRapea = =2R ! 1,0 Sjetarr — 2R g 1,0 Siepy
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which is nothing but R applied to the 2-form —o¢S,,,. Here the vertical bars indicate
that the indices enclosed by them are not being affected by the skew-symmetrisation. For
instance 2Spje] = Sabe — Sea- Defining the linear differential operator S : A'M — A2M
to be the map

op > 0Seap + V0a0y (4.15)

we have proved the following proposition:

Proposition 4.1.2. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous
space with homogeneous structure Syp.. Then the following diagram commutes

D(A'M) —£— D(Sym?M)
ls lc (4.16)
T(A2M) —E— T(RM).

The vector bundle homomorphism R, is defined solely in terms of the Riemannian
curvature tensor which means that, in the cases when (M, g) is locally homogeneous, it
will have constant rank. When this is the case, the kernel and image of R will be in
fact well defined vector subbundles of A2AMf and RM, respectively. Defining the quotient
bundle CM := RM/Im(R), the composition map

['(Sym*M) —%— I'(RM) —— T(CM)

which will be denoted by £ : I'(Sym*’M) — T'(CM), provides us with the following
complex of linear differential operators

D(A'M) —— T(Sym?M) —5— T(CM). (4.17)

The complex (4.17) will be called the Calabi complez.

Before proceeding to the main theorem of this section, we remark that if we write
dogy = V[a0op), then 0°Scqp = (S0)ap — dogy and by the Ambrose-Singer equation (4.13),
the curvature of the Killing connection takes the form

O, 0
[ucd] — {'R(SJ —do + () abed| (4.18)

Theorem 4.1.3. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous space.
Then, the Calabi complex

D(A'M) —£— D(Sym*M) —5— D(CM) (4.19)
15 locally exact if and only if the short twisted de Rham complex
I'(E) —2- I(A\'M @ E) —4— T(A\*M @ E)/k(E)) (4.20)

15 locally exact.
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Proof. If the short twisted de Rham complex of the Killing bundle is locally exact, the
Calabi complex will be exact by construction. Suppose that hg, is in the kernel of £, then
(Ch)abea = 2Rabe[cwd}e + 2R, i aWile = (Rw)apea for some 2-form wy,. Embedding hgp, into
the Killing bundle, we can see that

b lzvfffzd}b] -3 lwh(;abcd] -3 [(Ra%abcd] € r(E).

Since the short twisted de Rham complex is exact by assumption, there exist a 1-form o,
and a 2-form p,; such that

D Oy | _ Va0y — Hap _ Pay
“ Hoe Va,ubc - Rbcdaad QV[bhc]a ’
which implies that V(04 = hgs, since jiqp is a 2-form. Thus the Calabi complex is exact.

To show the converse, let us choose 7, € T(A'M @ A'M) and ¢up. € T(AN'M @ A2M)
such that

Obed 2 [ (Ri) abed

If we denote by wg, and hgy, the skew-symmetric and symmetric part of 7,,, respectively,
by adding a convenient section of A2M ® E to the above equation, we get

h 0 h 1 0
() ] o ]
¢ < |: ¢bcd ’ Wed “ ¢bcd + vbwcd 2 (R,u + 7?'W)abcd

A closer inspection reveals that

P hbe _ | Vihe + dage + Vipwe | _ 1 0
@ N Pved + Vpwea V[a(ﬁb]cd + V[avb]wcd - Rcde [ah‘d}e 2 (R/L + Rw)ade ’

1
D» [nbc] = [ 0 } , for some jigp € AM.

which implies that
Plat)e T Viawye = —Viahye € F(/\2M ® /\IM). (4.21)

The map AN'M @ A°M — N*M @ AN'M defined as Ty — Tiaye is an isomorphism with
inverse given by Tabc — Tabc + QTC(ab). Applying this isomorphism to equation (4.21), we
find that

Pved + Viwed = =Vishye — Vichay — Vichya = 2V chya,
where the last equality follows from the identity Vi hye + Vphee + Vichep = 0, which is
nothing but a consequence of the symmetries of hy,. Lastly, we can see from

D/\ hbc _ A hbc :1 O
@ | Pved + Vpwea 12V chap 2 | (Ch)apeal
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and from the exactness of the Calabi complex and Theorem 4.1.1 that there exist a 1-form
op and a 2-form . such that

op e Whe + Npe 0
D, |%| = _ 4D ,
[Hbc} |:2v[chd]b:| |i ¢bcd 1 ’ |:wcd:|

which after a rearrangement yields

Tlbe 0y
=D, .
[%CJ [Mbc - wbc:|

Consequently, the short twisted de Rham complex is exact. O]

4.2 The curvature filtration of the Killing connection

In this section we will apply the results described in Section 1.3, on the curvature filtration
of a vector bundle with connection, to the Killing bundle and the Killing connection on a
special class of pseudo-Riemannian locally homogeneous spaces. The results presented in
this section are a slightly more general to the ones that have appeared previously in [13],
for the Killing connection on pseudo-Riemannian locally symmetric spaces. Here we will
present analogous results which extend the locally symmetric case to locally homogeneous,
under extra assumptions on their holonomy algebras. We will assume that (M, g) is a
pseudo-Riemannian locally homogeneous space whose holonomy algebra with base point
p is contained in b = {A € 50(T,M,g,) : A-R =0} for all pin M.

This condition on the holonomy algebra may appear to be quite a strong of condi-
tion, however this is always the case for any pseudo-Riemannian locally symmetric space.
Recall that a pseudo-Riemannian locally symmetric space is characterised by possesing a
curvature tensor which is invariant by parallel transport, i.e. VR = 0. The famous holon-
omy theorem from Ambrose and Singer [2] tells us that the holonomy algebra of (M, g)
is generated by its curvature endomorphisms, hence VR = 0 implies that H - R = 0 for
all H € hol,(M, g).

Instances of non-symmetric locally homogeneous spaces whose holonomy algebras are
contained in bf are locally homogeneous plane waves, which shall be properly presented
in Chapter 5. It will be observed in equation (5.7) that the holonomy algebra of an
(n + 2)-dimensional locally homogeneous plane wave, which is defined by a rank &k < n
symmetric endomorphism of the tangent bundle, is

0 2zt 0
hol, (M, g) ~ 0 0 —x]€cso(l,n+1): ek},
00 0
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and in Proposition 5.2.3 we showed that

0zt 0
b~ 3o, (Qp) X (EAX_), ~ 0 A —z|e€so(l,n+1): AEjem(Qo)r R,
00 O

where Qg is a constant symmetric n x n matrix. Thus the inclusion of hol, (M, g) in bf
becomes evident. We refer to Sections 5.1 and 5.2 for more details.

Remark 4.2.1. When bol,(M, g) is contained in bf, the vector space
v, =span{R(X,Y) : X, Y € T,M},

is in fact an ideal in hJ.

We will proceed to study the curvature filtration of the Killing bundle of pseudo-
Riemannian locally homogeneous spaces. Recall that the curvature filtration {E,}32, is
defined by setting Ej := ker &, which for the Killing bundle is K, inductively by

E o ={p€E : k(¢) e N°M® E,_}, foreachl>1.

The curvature of the Killing connection is given by

k(p) = — [¢9R]’ for some ¢ € E.

As usual, we will let mpp : E — TM and 75 : E — s0(TM,g) denote the natural
projections from E to TM and so(T M, g), respectively. The projection onto the tangent
bundle allows us to define

b = ker(mry|g, - B¢ — TM), for each ¢ > 0.

Particularly, hy = b and for aesthetic reasons we shall simply use by rather than h.
Inspecting the definitions of E, and b,, we notice that for an arbitrary element ¢ of F,

¢ € E, ifandonlyif ¢ -R e A*M ® bo_y.

More precisely,

E,={¢pcE : ¢-Rec N°M @b,_1}.
Notice that the family of vector bundle {h,}7°,, defines a the filtration

hoCh ChyC ...

of subbundles of so(T'M, g). Also, in general, a direct calculation reveals that

(¢p-R)(X,Y)=[AR(X,Y)] mod hol(M, g), (4.22)
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for any element ¢ of E such that ms(¢) = A. If in addition we assume the contention
hol(M, g) C by, we get that

(¢p-R)(X,Y)€eb, ifandonlyif [A, R(X,Y)] € b,.

For the reminder of this section, we will only consider locally homogeneous spaces with the
properties described in the first paragraph of this section, namely spaces whose holonomy
algebras are contained in fj.

By letting v denote the subbundle of so(7'M, g) whose fibres at p are given by the v,
as in Remark 4.2.1, we have showed that

he={Acso(TM,g) : [A, Bl €bhpy, VBET), (>1.

Lastly, notice that the Killing curvature will map any element ¢ in £ such that 7, (¢) = 0,
to A2M ® FE,;. Since E, is contained in E, for all £ > 1, we have proved the following
proposition.

Proposition 4.2.2. Let (M, g) be a pseudo-Riemannian locally homogeneous space such
that hol(M, g) is contained in bo. Then

hy={Aecso(TM,g) : [A,Bl by, VBer}, foralll>1. (4.23)

Moreover
E,=TM &b, foralll>1. (4.24)

We recall, before the proposition below, that &, denotes the Singer homogeneous index
of a pseudo-Riemannian locally homogeneous space (M, g).

Proposition 4.2.3. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous
space such that hol(M,g) is contained in bho. Then the curvature filtration of (E, D) is
parallel if and only if k, = 0.

Proof. That k; = 0 when the curvature filtration of (E, D) is parallel follows directly
from Corollary 3.3.3, since Ey = K. To show the converse, we will prove that ¢ € I'(E})
implies that (Dk)(¢) € T(N'M @A M ® E,_,) for all £ > 0, where we have set E_; := {0}.
Then, that the curvature filtration of (E, D) is parallel, would follow from Lemma 1.3.6.

First of all, we will calculate Dk. Choosing ¢ € T'(F) and X,Y,Z € I'(TM), by
definition we have

(Dzr)(X,Y)p = Dzr(X,Y)p — k(V2 X, Y)p — k(X,V2Y)p — k(X,Y)Dyo.
Expanding the above equation, it is not hard to see that

—(¢-R)(X,Y)Z

(Dzr) (X Y00 =1 _(v,(6- R)(X,Y) + (Dd) - RYX, V)|
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Applying Lemma 2.2.1 to the so(7'M, g) component of (Dzr)(X,Y)p, we obtain

(0- R)(X,Y)Z
(¢-VR)(Z; X, Y)|"

When k, = 0, it is immediate that ¢ € I'(Ep) implies that
(Dk)(¢) € T(N'M @ N*M @ E_;) = {0}.

For ¢ > 1, we can see from equation (4.22) that ¢ - VR € T(A'M ® A2M ® b,_1) when
¢ € T'(Ey). To conclude, by Proposition 4.2.2 we have that E, = TM & b, for £ > 1 and
therefore (Dk)(¢) € T(A'M @ A°M ® Ey_1) when ¢ € T'(Ey), as desired. O

(Dzr)(X,Y )¢ = —

When the restriction of the Killing form of so(T'M,g) to by is non-degenerate, it
provides us with the orthogonal decompositions

so(TM,g) =bhy@ by and E=FEy®by

of s0(T'M, g) and E, respectively. Such decompositions will be of great help for in the
reminder of this chapter, when dealing with Riemannian locally homogeneous spaces.

Proposition 4.2.4. Let (M,g) be a pseudo-Riemannian locally symmetric space such
that the Killing form on bg is non-degenerate. Then Ey = Fy and, in addition, D is exact
if and only if the connection that is induced on by from the Levi-Civita connection of g
18 exact.

Proof. Since (M, g) is locally symmetric, VR = 0, which implies that FEy = TM @ .
Choosing ¢ € E; such that A is its component in b, we get that

m(gb):—{A(?R] € N’M ® E,

and thus A- R € A2M ® by. This implies that [A, R(X,Y)] € by for all X,Y € TM.
On the other hand, R(X,Y) € by and [ho, by] C by, since so(T'M,g) = by @ by is an
orthogonal decomposition. Hence [A, R(X,Y) = 0. By the pairwise symmetry of R, we
also get that

R(AX,Y)+ R(X,AY) =0 forall X,Y € TM.

Consequently A € ho N ht = {0}.
Lastly, from Theorem 1.3.4, (E, D) will be exact if the connection induced in E/FEy =
by is exact. Also, we have that

0 AX 0
R R

Since the Killing form on so(7'M, g) is induced by g, by is parallel with respect to the
Levi-Civita connection, so the connection on b3, induced by D, is indeed the Levi-Civita
connection. O
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4.3 The exactness of the Killing connection

4.3.1 Spaces of constant holomorphic sectional curvature

In this subsection we will study the exactness of the Killing connection on pseudo-
Hermitian manifolds with constant holomorphic sectional curvature. A pseudo-Hermitian
manifold is a triplet (M, g, J), where (M, g) is a pseudo-Riemannian manifold and J is
complex structure, namely an endomorphism of T'M such that J? = —Idzy,, which is
compatible with the metric in the sense that g(JX,JY) = ¢g(X,Y), for all X,Y € TM.
We will say that (M, g, J) has constant holomorphic sectional curvature if the sectional
curvatures of (M, g, J) restricted to complex planes are constant. Here, by complex planes
we mean a subspace of T),M that is spanned by pairs of vectors of the form X, JX.

Instances of peudo-Hermitian manifolds with constant holomorphic sectional curvature
are, in the Riemannian setting, CP", CH™ and C" for positive, negative and zero constant
curvatures, respectively. In general, if we let (M, g, J) be a pseudo-Hermitian manifold of
constant holomorphic sectional curvature k and w(X,Y) := g(JX,Y) be its fundamental
2-form. Its curvature tensor is of the form

k
R(X,Y) = =2 (X AY +JX AJY +20(X,Y)J), (4.25)

where X \Y = ¢(X, )Y —g(Y,-)X. We refer to [41] for more details on the curvature ten-
sors of almost-Hermitian manifolds. Notice that the terms X AY and JX AJY correspond
to curvature tensors of pseudo-Riemannian manifolds with constant sectional curvature.
Therefore, if we let A be any skew-symmetric endomorphism of TM, a straightforward
computation reveals that its action on the curvature tensor takes the rather simple form:

(A-R)(X,Y) = —gw(X, Y)[A, J] — gg([A, J)X,Y)J. (4.26)

All spaces of constant holomorphic sectional curvature are Kahler and, particularly,
locally symmetric. This can be easily seen from the formula for the curvature tensor given
in equation (4.25), since R is constructed entirely in terms of the metric tensor and the
complex structure, which are parallel tensor fields.

We have shown in the previous sections that locally symmetric spaces have Singer
index equal to 0 (see Example 3.3.2), hence the kernel of the Killing curvature on locally
symmetric spaces is equal to the maximal parallel flat subbundle of F and it is given
by K = TM @ hf. Particularly, in the case of spaces of constant holomorphic sectional
curvature, bf coincides with the holonomy algebra of (M, g) at p, which is equal to

w(T,M, g,,J,) :={A €so(T,M,g,) : [A, J,] =0}
Therefore, the kernel of the Killing curvature is given by

K=TM®&u(TM,g,J), (4.27)
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where u(T'M, g, J) denotes the vector bundle over M, with fibre u(7,M, g,, J,) at p. To
simplify notation, from now on, we will use h% instead of u(T'M, g, J).
The goal of this subsection is to prove the following theorem.

Theorem 4.3.1. The Killing connection of a pseudo-Hermitian manifold of constant
holomorphic sectional curvature is exact.

The approach to this problem we will be the following: Since K is a parallel flat
subbundle of F, (K, D|g) is trivially exact. By Proposition 1.2.6, if (£/K, D|g/k) is
exact and the curvature homomorphism,

k:E/K - NM®E/K

induced on the quotient bundle is injective, (E, D) will be exact.

First of all, we will show that x : E/K — A2M ® E/K is injective. Notice that, from
equation (4.27), the quotient F/K is equal to so(TM, g)/b. Choosing a representative
A of a class [A] € E/K, we can see that the Killing curvature on E/K can be expressed
as

K(X,Y)(A) = —(A- R)(X,Y) = gw(X, Y)[A,J]  mod bE, (4.28)

where the last equality follows from the fact that hol(M, g) = h and from equation (4.26).
From the above equation follows that [A] will be in the kernel of k : E/K — N°M @ E/K
if and only if [A, J] is in h®. Particularly, x will be injective if h¥ is self-normalising in
so(TM,g).

Proposition 4.3.2. u(T'M, g, J) is self-normalising in so(TM, g).

Proof. Suppose that A € so(T'M, g) is in the normaliser of u(7'M, g, J) in so(TM, g). By
definition, [A, U] will be in uw(T'M, g, J) for all U € u(T'M, g, J). Making use of the Jacobi

identity, we can see that
0=[A[UJ]=[AU]LJ+[U[AJ]=[UI[AJ]], forallUew(TM,g,J).

Because [A, J] is in u(T'M, g, J), the above equation implies that [A, J] is in the centre of
uw(T'M, g, J), which is nothing but RJ. In other words, [A, J] is a multiple of J. If we let
[A, J] = ¢J, for some ¢ € R, multiplying by J and tracing we obtain

tr([A, J]J) = c tr(J?) = —c tr(Id) = —2nc.
A closer look at the left hand side of the above equation reveals
tr([A, J]J) = tr(AJ?) — tr(JAJ) = —tr(A) + tr(JAT ) =0,

which implies that ¢ = 0. It follows that A commutes with J and therefore A is in
w(TM,g,J). O
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We have showed that the curvature on E/K is injective, as a consequence of the
above proposition. It is only left to show that (E/K, D) is exact. In order to do this,
we will investigate k' : A'M @ E/K — AN3M ® E/K. We conclude with the proof of
Theorem 4.3.1.

Proof of Theorem 4.3.1. Recall that k' : A'"M ® E/K — A*M @ E/K is defined by
'(9)(X,Y,Z) = 26(X,Y)p(Z) + 26(Z, X)p(Y) + 26(Y, Z)p(X),

for an E/K-valued 1-form ¢. Explicitly, by equation (4.26), '(¢) takes the form

K(O)(X, Y, Z) = k(X Y)[$(2), J) +kw(Z, X)[$(Y), I+ kw(Y, Z)[¢(X),J]  mod h™.

Letting us choose a g-orthonormal frame {X;, JX;}? ,, of TM, and fixing ¢ € {1,...,n},
for any Z € span{X,, JX,}* we get

K1 (0)(Xe, J Xy, Z) = kw(Xe, JX()[$(Z), J] = k[#(Z),J]  mod b".
We can observe from the above equation that [¢] will be in the kernel of
K ANM®E/K - AN°M®E/K

if and only if [¢(Z),J] € hf. However, by Proposition 4.3.2, b is self-normalising in
s0(TM, g), which implies that [¢] = [0] and therefore k' : A'M @ F/K — N*M @ E/K
is injective. By Lemma 1.2.12, the exactness of (E/K, D) follows from the injectivity
of k! : N'M ® E/K — A*M ® E/K. By Proposition 1.2.6, (E,D) is exact, since
(E/K,D|g/k) is exact and the curvature homomorphism,

k:E/K - N°M®E/K

induced on the quotient bundle is injective. O]

4.3.2 Product spaces

This subsection will be dedicated to study the exactness of the Killing connection for
products of pseudo-Riemannian spaces, provided previous knowledge of each individual
de Rham-Wu factor [44]. Throughout this subsection, we will return to Penrose abstract
index notation (see Section 4.1 or [40] for more details). To work with product spaces,
we will borrow standard notation from complex geometry as follows: Letting (M, g) be
a pseudo-Riemannian manifold which is a product of two pseudo-Riemannian manifolds
(M, g1) and (Ms, go), that is, M = M; x My and g = g1 + g2, we will write

AYM =i (A'My)  and A% M o= mi(ATM)
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for the pullback bundles of 1-forms over M; and My, respectively. Here ; : My x My — M;,
i = 1,2 denotes the natural projection. Analogously, for the bundles of 2-forms we will

write
AOM =7 (A°M;) and A% M = 75 (A*My)

and its complement in A2M will be denoted by A M. That is, the bundle of 2-forms on
M decomposes as
NM =N NO2M @AM M @ A2 M.

The curvature tensor will be regarded as a section of (A*°M @ A2OM) @ (A®2M @ A%2M).
In regards with the Killing bundle, it will have the decomposition

E=FE"gE" oabM, (4.29)

inherited from the bundles of 1-forms and 2-forms. Here E'? = AYYM ¢ A2OM and
E% = AYIA @ A%2 M correspond to the pullbacks of the Killing bundles of M; and M,
by the natural projections. We will denote indices from A M with a, b,..., indices from
AYTM with @, b, ..., and A, B,... for both groups of indices.

Lemma 4.3.3. The vector bundles E*° and E%' are parallel subbundles of E.
Proof. Tt follows from their definitions. m

Recall that in Proposition 1.2.5 we have showed that if I’ is a parallel and exact
subbundle of E and the kernel of D" : T(A'® E) — I'(A*’® E) is contained in T'(A' ® F),
then (£, D) is exact. The aim for the rest of this subsection will be to find conditions
for the kernel of D" : T(A' ® E) — I'(A? ® E) to be contained in T'(A' ® K), where K
denotes the maximal parallel flat subbundle of £. Since K is flat, it is trivially exact,
hence the exactness of the Killing connection on F would follow from Proposition 1.2.5.
For simplicity we will denote the kernel of D" : T'(A' ® E) — T'(A? ® E) by ker(D").

First of all, let us choose sections npc of A'MQA'M, pep of N'M & (A2 M SA2M)
and ¢gop of A'M @ AM M, and let us considered them as the sections

{ 150 ] eT(AN' @ (E** @ E™)) and [

YroD ] eD(A'M @ AV CT(A'M ® E),

¢BCD

of the Killing bundle. We will find constraints on ng¢, ¥peop and ¢pep for

@ NBC 1
Q0 = eT(N'M ® E),
& LZ)BCD + ¢BC’D} ( )

to be in the kernel of D*. The map D" : T(A' ® E) — T'(A? ® E), on Q3 is given by

DAQ,” — [V[AUB]C + Ypc + ¢[AB]C:| N { 0 }

Viavsiep — Rop ansie Viabpiep|’
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where the first summand of the right hand side is a section of A*M @ (E*Y @ E%?) and the
second one is of A2M @ AMM C A°M @ E. Then Qz* will be in the kernel of D" if and

only if npc, ¥Ypep and ¢pep are solutions to the system of partial differential equations:

Viansic + Yasic + ¢usic =0, Viulsiep — Refanse =0, Viaggep = 0. (4.30)

The following lemmas will provide us with helpful constraints on sections A'M @ E,
to be in the kernel of D on product manifolds.

Lemma 4.3.4. On a product of pseudo-Riemannian manifolds with curvature tensor
Rapep, let pape € T(AN'M @ AMM) be a solution of

Via¢piep = 0. (4.31)

Then
R e¢&el_; =0, and R@Bég¢abé = 0. (432)

ab ¢

Proof. Re-writing equation (4.31) using barred and unbarred indices, we obtain
ViaPsea =0, Vi@ =0 and  Vadgzy — Vagus = 0.
Differentiating the first equation with respect to the barred indices, we have
0= Va(Vaos = Vo@acs) = VaVabps — VeVaPaa.
The third equation implies that
VaVabys — ViVadas = VaVidacs — VoVabacs = — Ry e Pach,

and therefore R, %¢z.; = 0. Analogously, differentiating the second equation with respect

to the unbarred indices, we obtain R_;°¢.e = 0, as claimed. O
ab ¢

Remark 4.3.5. We can observe from equations (4.32) that a section ¢ of A'M ® AN M
will be a solution of equation (4.31) if and only if ¢. = XY ¢, and ¢z = XY ¢ are
contained in {Xp € A'M : R,;P-Xp =0} for all X4,Y € A'M. In other words, if the
curvature endomorphisms RabdC are injective, the map ¢pcp — Via¢pjop will be injective,

which will allow us to reduce the problem of the exactness of the Killing connection to
the equations on AM @ (E'0 @ E%1).

This leads us to the nullity of a pseudo-Riemannian manifold. If we let R be the
curvature tensor of a pseudo-Riemannian manifold, the nullity of (M, g) at a point p will
be the vector subspace of T,M defined as v,(M,g) :={X € T,M : xR = 0}. In the
cases when p — dim,(M,g) is a constant map, the nullities define a vector subbundle
of T M, which shall be referred to as the nullity bundle of (M, g) and it will be denoted
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by v(M,g). To simplify notation we will write v instead of v(M, g), unless otherwise
necessary.

Particular instances of pseudo-Riemannian manifolds admitting a nullity bundle are
locally homogeneous ones. Indeed, for any pair of points p,q € M there exists a local
isometry f : U — V mapping p to ¢ such that f*v, = v, which is a simple consequence
of the curvature tensor being invariant by local isometries.

On a product pseudo-Riemannian manifold (M, g) = (M, g1) X (Ma, g2), we will write
v = miv(My, g1) and V%! = wiv(Msy,gs), in order to fit the nullity bundles in our
conventions for vector bundles over product manifolds.

In terms of the nullity bundles, Lemma 4.3.4 could be stated as follows.

Lemma 4.3.6. On a product (M, g1) x (Ms, g2) of pseudo-Riemannian manifolds with
nullity bundles v'0 and v, respectively, let ¢ € T(A'M @ AVLM) be a solution of

Via¢picp = 0.
Then ¢ is a section of (NYYM @ (AYOM A VOY) @ (AP M @ (AY1M A v10)).

Lemma 4.3.6 suggests that the study of the exactness of the Killing connection on
product spaces is simplified if the manifolds in question have zero nullity, namely v = {0}.
We will proceed to do that but before, we note that (M, ¢g) will have zero nullity if and only
if each local de Rham-Wu decomposition of (M, g) has factors with zero nullity bundles.
The below lemma follows from this observation and Lemma 4.3.6.

Lemma 4.3.7. Let (M,g) be a pseudo-Riemannian manifold with v = {0}. If (M,g)
splits as a product, i.e. (M,g) = (My,g1) X (Ma, g2), then

ker(D") C T(A'M @ (EY° @ E™)).

The following theorem will provide us with a characterisation of the exactness of the
Killing connection on spaces with zero nullity.

Theorem 4.3.8. Let (M, g) be a pseudo-Riemannian manifold with zero nullity bundle.
Suppose that (M, g) is the product of two pseudo-Riemannian manifolds (M, g1) and
(Ms, g2), then the first twisted de Rham cohomology group of (E, D) splits as

HY(E,D) = HY(E", D|gi0) @ H' (E™, D|gon).

Particularly, the Killing connection of (M, g) is exact if and only if the Killing connections
of (My, g1) and (Ms, g2) are exact.

Proof. The idea behind the proof is to make use of Proposition 1.2.4, which states that the
first twisted de Rham cohomology group of (£, D) is isomorphic to ker(D")/Im(D|g, ).
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First of all, we will show that Ey = ES’O S5 Eg’l, which will yield the decomposition
Im(D|g,) = Im(D|Eé,o) D Im(D|Eé,o), since E'Y and E%! are parallel subbundles of E,

by Lemma 4.3.3. Suppose that there exists a section ¢,; of A"'M such (0, ¢,;) is in the
kernel of the Killing curvature. Then, we would get that

Rag (c9jp + Rep adme = 0. (4.33)
By taking ABCD = abcd and ABC' D = abéd, the above equation becomes
Rabe c¢cfe =0 and Ra(}é E(bdé =0.

By assumption, the nullity bundles of the curvature tensors of (M, g1) and (M,, g2) were
trivial, thus ¢,; = 0. We have proved that Ey = ES’O & Eg’l.

By Proposition 4.3.7, we know that ker(D") C T'(A'M @ (E'°@® E®!)) and, by Lemma
4.3.3, EM and E%! are parallel subbundles of E. Therefore we get that ker(D") splits as

ker(D") = ker(D|p1.0) ® ker(D|zo.1)-

The isomorphism provided in Proposition 1.2.4 reveals that the first twisted de Rham
cohomology group of (E, D) will be given by

H'(B, D) ~ ker(D")/Im(D|z,) = ker(D[30)/Im(D] 1) & ker(Djn.)/Im(D] o).
which again, by Proposition 1.2.4, yields the desired isomorphism
Hl(E, D) ~ Hl(El’O, D|E1,0) D HI(EO’I, D|E0,1).

That the Killing connection of (M, g) is exact if and only if the Killing connections of
(M, g1) and (Ma, go) are exact follows directly from Proposition 1.2.9. O

Before proceeding to the consequences of Theorem 4.3.8, we would like to remark that
hidden in its proof is the key to prove the following:

Theorem 4.3.9. Let (M, g) be a pseudo-Riemannian manifold with zero nullity bundle.
Suppose that (M, g) is the product of two pseudo-Riemannian manifolds (My,g1) and
(Ms, go), then the zeroth twisted de Rham cohomology group of (E, D) splits as

H°(E,D) = H*(E™, D|g1o) ® H°(E®', D|go.).

Proof. Let ¢* be a section in H°(E, D) of the form

P = ["B] + { 0 } , with pupc € T(A*°M @ A"?M) and wpe € T(AMM).
122:1¢) wBc
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Since ¢ is in H°(E, D), we know that

0= —0"VgRapcp + Rap (cHUD)E + Reopy AMBIE + Rz cwWole + Ropy AWB]E-
Noticing that the above equation decouples as

0= —O’EVERABCD + RABE [C,UD]E + RCDE [AMB]E € F(@Q /\2’O M D @2 /\0’2 M)
and

0= Rug cwpip + Rop awme € T(A*° @ A%?) © ALY,

where ® denotes the symmetric product, we are in the same situation as in equation (4.33).

Since (M, g) has zero nullity, from the above equation we get that

R, wzg =0 and R we =0
imply that wap = 0. In other words H(E, D) = H°(E"*® E%', D|piogpo.1). Lastly, that
H°(E,D) = H°(E™, D|g10) ® H°(E®!, D|go.) follows from the fact that E'? and E%!
are parallel, by Lemma 4.3.3. O

Returning to the consequences of Theorem 4.3.8, the simplest instances of pseudo-
Riemannian manifolds with zero nullity bundles are spaces with constant sectional cur-
vature. They have curvature tensors of the form

Rabcd = k(gacgbc - gadgbc)a ke R.

If they are non-flat, their nullity spaces are always equal to {0}. In the complex setting,
analogously to spaces of constant sectional curvature, are pseudo-Hermitian manifolds
with constant holomorphic sectional curvature. Letting w,, denote their fundamental
2-firm, their curvature tensors are of the form

Rabcd — k(gacgbc — GadGbe + WacWpe — WadWhe + 2wabwcd)7 k € R?
and also they will have zero nullity bundles, if they are non-flat.

Corollary 4.3.10. The Killing connection of the product of pseudo-Riemannian man-
ifolds with non-zero constant sectional curvature and pseudo-Hermitian manifolds with
non-flat constant holomorphic sectional curvature is exact.

Proof. The Killing connection of a space of constant sectional curvature is flat and thus
trivially exact. On the other hand, we have proved in Theorem 4.3.1 that the Killing
connection of spaces of constant holomorphic sectional curvature are exact. The exactness
of the Killing connection follows straightforwardly from Theorem 4.3.8. O
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In the Riemannian case, it was proved in [15, Proposition C] that if (G/H,g) is a
simply connected homogeneous Riemannian manifold without an Euclidean de Rham
factor [14], in the following cases the nullity bundle of (G/H, g) is trivial:

(1) The Lie algebra of G is reductive, i.e., the direct sum of a semisimple and an abelian
ideal.

(2) The Lie algebra of G is 2-step nilpotent.

These spaces provide us with large families of examples where the above proposition
reduces the problem of studying the exactness of the Killing connection is completely
reduced to their irreducible de Rham factors. Particularly, it is well known that all
non-flat irreducible Riemannian symmetric spaces have a simple Lie group of isometries
and, in fact, they are all classified by the real simple Lie algebras. We refer to the
book of Helgason [27] for more details about the classification of Riemannian symmetric
spaces. The exactness of the Killing connection in such spaces was addressed in [12],
where it was proved that the Killing connection of a Riemannian locally symmetric space
is exact, unless they have at least one Hermitian and one flat factor in its local de Rham
decomposition. Clearly, non-flat irreducible Riemannian symmetric spaces are a particular
cases of those, so Theorem 4.3.8 provides us with an alternative proof of the exactness
of the Killing connection for their products, given a priori knowledge of the exactness of
each irreducible de Rham factor.

Corollary 4.3.11. The Killing connection of a Riemannian symmetric spaces without
Fuclidean de Rham factors is exact.

Before finishing this section, we will make a last comment on the implications of
Lemma 4.3.4. Suppose that ¢pcp € T(A'M @ AV'M) is a solution to equation (4.31).
By tracing equations (4.32) in Lemma 4.3.4 we observe that

Rac¢a% =0 and R&E¢abé =0
imply that ¢pcop — Via¢pjcp will be injective when the Ricci tensor is non-degenerate.

Proposition 4.3.12. Suppose that (M,g) = (M, g1) X (Ma, g2) has a non-degenerate
Ricci tensor. Then ker(D") C T(A'M @ (EY° @ E%Y)).

Perhaps the simplest instance of pseudo-Riemannian manifolds with non-degenerate
Ricci tensor are Einstein manifolds with non-zero scalar curvature.

To conclude, we prove the following lemma providing conditions for exactness of the
Killing connection of a product space, given previous knowledge on the de Rham-Wu
factors.
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Lemma 4.3.13. Let (M, g) = (M, g1) X (Ma, g2) be a product of two pseudo-Riemannian
manifolds such that the Killing connection of each factor is exact and Eq = K. Then

ker(D")NT(A'M @ (E** @ E%Y)) C T(A'M ® K).

Proof. Let us pick an element (nag,¥apc) of ker(D") NT(A'M @ (E'Y & E®!)). From
equation £4.30) with all indices unbarred and all indices barred, i.e. ABC = abc and
ABC = abc, we know that

fab | _ Va0b = Hab Nab | _ Vaop — tap
|:wabc:| B [vaubc - Rbc ZU€:| and |:¢sz)é:| N |:Va,u(_;5 - REE 20'6:| ’ (434)

by the exactness of each factor. Here, the sections (9ap, ¥ape) and (15, Vaze), are still
depending on the unbarred and barred coordinates respectively. By assumption, Fjy is
equal to K, and by the isomorphism from Proposition 1.2.4, we get that (og, jtqs) and
(0a, pgp) are sections of K. Furthermore, since K is parallel, (7ap, Yabe) and (133, Vgpz) are
sections of A' ® K. The first equation in (4.30) with ABC = abc tells us that

Yave = Vilac — Vanlee = Vilac — Va(Vioe — fipe).-
Since Yape = Yapg and Vy, and V; commute, we can rewrite the above equation as
VYave = Vilbac + Vatiee = Vipbiaig + Valtee (4.35)
where 0z, 1= 174 — Vao,. From equation (4.35) we can see that
Vebpale) =0

This means that 65, is a Killing 1-form with respect to the unbarred index. To be precise,
picking a vector field X® that is the pull-back of a vector field on M, and such that
V. X% =0, the 1-form 0, := X%, satisfies

0= XaV(b9|a|c) = V(bec).

For this reason we can conclude that

Nab Oap + Vaoy ab Op 1
— = D, cel'(NM®K).
|:wabc:| |:vb9ac + vaﬂbc:| |:vb‘9ac:| + |:,ch:| ( @ )

In an analogous way, interchanging the barred and unbarred indices, we can see that
(Nap> Vape) 18 contained in T(A'M @ K) and therefore (nap,v¥apc) € T(AN'M ® K), as
required. O]



Chapter 5

Lorentzian symmetric spaces and
plane waves spacetimes

In this chapter we will study the exactness of the Killing connection on locally homoge-
neous Lorentzian manifolds. Specifically, in Section 5.1, we described known results about
locally homogeneous plane wave spacetimes. Section 5.2 will be dedicated to the Singer
index of locally homogeneous plane waves, where we characterise all locally homogeneous
plane waves with Singer index equal to 0. Lastly, in Section 5.3 we study exactness of the
Killing connection of locally homogeneous plane wave with Singer index 0 is exact and
Lorentzian locally symmetric spaces. In addition, the author would like to remark that
the results obtained in Section 5.3, regarding Lorentzian locally symmetric spaces, have
appeared previously in [13], and are one of his contributions to the article.

5.1 Locally homogeneous plane waves

Throughout this section, (M, g) will denote a Lorentzian manifold. For a given a vector
field X € I'(T'M) and a given point p of M, we will let

Xt ={yYeTM : ¢(X,Y)=0}

denote the vector subbundle of T'M with fibre RXPL at a point p of M. A Lorentzian
manifold (M, g) is called a pp-wave spacetime (where pp stands for plane fronted with
parallel rays) if it admits a vector field, which shall be denoted by X_, that is parallel,
null and such that its curvature tensor is non-null and it vanishes identically on X+ A X,
namely

VX =0, g(X_,X)=0 and R(X,Y)=0 forall X,Y €T(X%).

Originally, four dimensional pp-waves spacetimes were discovered by Brinkmann [8] as a
class of Einstein manifolds that can be mapped conformally to each other, however, their

67
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name was introduced in [30], by Jordan, Ehlers and Kundt, in the English republication
of their article [29].

Our convention for bivectors, considered as skew-symmetric endomorphisms of the
tangent bundle of M, will be

XAY =(x9)®Y — (1xg9) ® X.

In general, any two vector subbundles of the tangent bundle, V; and V5, will define the
subbundle

Vi ANVa :=span{X AY €s0(TM,g) : X € VyandY € 3}

of the skew-symmetric endomorphisms of T'M.
An (n + 2)-dimensional pp-wave spacetime always admits a special set of local coor-
dinates (x_,x1,...,x,,x1), such that its metric tensor is of the following form:

g=2dz_dzy +2H(x1,...,2,, v4)da’ + Z da?. (5.1)

=1

Here H denotes a smooth function on M that does not depend on the coordinate z_. In
the literature, these coordinate charts are referred to as Brinkmann coordinates, see for
example [21]. In Brinkmann coordinates, the Levi-Civita connection, associated to g, is
given by

Vo_- =0, V0,=(0;H)dzy ®0- and VI, =dH ®0- —dz; @grad(H), (5.2)

where grad is taken with respect to the Euclidean metric in span{dy, ..., d,}. It is straight-
forward to verify from equations (5.1) and (5.2), for the metric tensor and its Levi-Civita
connection, that the coordinate vector field 0_ is null and parallel. Particularly, from
equation (5.2), we can observe that the vector subbundle X+ := 0+ is parallel with
respect to the Levi-Civita connection.

The Riemannian curvature tensor and of a pp-wave spacetime and its first covariant
derivative, in Brinkmann coordinates, are given by the formulas

R= 4H;(dz;Adz,)-(dz;Adzy) and VR =Y 4dH; @ (dz;Adry)-(do;Ady),

i,j=1 i,j=1

where H;; denotes 9,0, H.

A special class of pp-waves spacetimes are the so called plane waves. These are pp-
waves spacetimes for which, in addition, the curvature tensor is parallel in the directions
of the subbundle X+ of TM. To be precise, for the curvature tensor of a plane wave, it
must hold that

VxR=0, forall X eD(X?).
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This implies that it is a necessary and sufficient condition, for a pp-wave spacetime to be
a plane wave, that the function H satisfies

0;0;00bH =0, forall 4,jk=1,...,n,

forcing H to be a quadratic function on the variables x4, ..., z,. Therefore, the function
H will be of the form

1 n
ij=1
where @);; corresponds to the ij-entry of an n x n symmetric matrix ), that is a function
of only the coordinate 7. Letting E denote the vector subbundle of T'M, spanned by
{01,...,0,}, we will often consider @) as a symmetric endomorphism of E, with respect

to the restriction of ¢ to [E. Abusing notation, we will also consider () as the symmetric
2-tensor on M defined

Q = Z QZ](ZE+)d$ZdJZJ

i<j=1

From now on, we will fix once and for all, the frame {X_ | X;,..., X,,, X, } of TM
which is given by
X_ =0, X,=0, X,=-Ho_ +0,. (5.3)

In this frame, the non-vanishing components of the curvature tensor and its iterated
covariant derivatives are

(VIR) (X, .., X5 X, X, Y, X)) = g(QYX,Y), with XY € [(E) (5.4)
where Q) denotes the symmetric endomorphism of E, defined by
Q=Y (9,Qy)(zy)dzdz;.
i<j=1
The endomorphisms Q. in this frame, will be
Q= Z Qij(tx,9) ® X;.
ij=1

Regarding the skew-symmetric endomorphisms of 7'M, their matrices will take the form

a & 0
y A —x with a € R, z,y € R" and A € so(n), (5.5)
0 —y' —a

when expressed in the frame (5.3).
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In order to simplify our notation, we will usually write VﬁR for the iterated covariant
derivatives of R in the direction of X, i.e.

(VER)(U,V, X, Y) := (V'R)(X*,..., X" UV, X,Y),

Notice that all of the covariant derivatives of R are of the same algebraic type, in the
sense that VﬂR is completely determined by a symmetric endomorphism which, in this
case, is QY. The curvature endomorphisms can be expressed in terms of bivectors as

(VL R)(X, X)) = (QUX) A X_.

Remark 5.1.1. When (M, g) is indecomposable, @) is injective. It follows straightforwardly
that the holonomy algebra of an indecomposable plane wave is isomorphic to R™:

0zt 0
bol,(M,g) ~ (EAX_), ~ 0 0 —x|€so(l,n+1):zeR" . (5.6)
0 0 O

In the case that (M, g) is a decomposable plane wave, i.e. the product of an indecompos-
able plane wave and a flat factor (R¥, ggx), in terms of Q, it will mean that dim ker(Q) = k.
In this case, we will let H, := ker(Q,)* C so(T,M, g,) and H will denote the vector bundle
over M with fibre H, at p. Therefore, we have that the holonomy algebra is

0 2t 0
bol,(M,g) ~(HAX_),~< |0 0 —z]€so(l,n+1) : zeR"*}. (5.7)
00 0

For a given point p in M, we will let n,, denote the normaliser in so(7,M, g,) of the
holonomy algebra of (M, g), with basepoint p. That is

np = {A € BU(TPM7gp> : [A7H] € ho[p(Mag)7 v H € ho[p(Mag)}

Proposition 5.1.2. Let (M, g) be an indecomposable plane wave spacetime. Then, n, is
1somorphic to the parabolic subalgebra

0

a
p = 0 A —x)eso(l,n+1l):acR zeR" Acso(n)p,
0 0 —a

of so(1,n+1).

Proof. From equations (5.5) and (5.6), and a straightforward calculation we can observe
that

a = 0 0 u 0 —y'u u'(ald — A) 0
y A —z|,[0 0 —u]|= 0 yu' —uy®  —(ald + A)u
0 —y' —a 0 0 0 0 0 ylu

will be in the holonomy algebra of (M, g) if and only if y*u = 0. Since a, x and A can be
chosen freely, it follows that n, will be isomorphic to p. m
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We will denote by p,, the Lie algebra spanned by the skew-symmetric endomorphisms
of T,M, spanned by
{(XoA X+)pa (X A Xj):m (X A X—)p i

1,=1>
which is isomorphic to p, the parabolic subalgebra of so(1,n + 1).

Corollary 5.1.3. Let (M,g) be a locally homogeneous plane wave, and let Ef"’o be the
projection of Kf“’o to so(T,M,gy,). Then Ef"x’ s contained in p,.

Proof. By assumption, (M, g) is a locally homogeneous plane wave and therefore it fol-
lows from Proposition 5.1.2 that n, ~ p. On the other hand, by Proposition 2.3.6, the
projection of Kf’oo to so(T,M, g,) is always contained in the normaliser of the holonomy
algebra of (M, g). It follows that Ef’oo is contained in p,, as claimed. O

In the rest of this section we will place our attention on the plane waves which are
locally homogeneous. In [6], Blau and O’Laughlin provided a classification of homogeneous
plane waves spacetimes and, later on, Globke and Leistner showed that an indecomposable
locally homogeneous pp-wave such that the rank of the curvature endomorphism is greater
than 1, is a plane wave [25]. Therefore, with the exception of the cases when the curvature
endomorphism has rank equal to 1, indecomposable locally homogeneous pp-waves are
completely classified in terms of the symmetric matrices ). In adequate coordinates, an
(n + 2)-dimensional indecomposable locally homogeneous pp-wave is defined by a matrix
that takes the form

Q(z4) = e Qpe™+" (5.8)
or
1 log(z4++x0)P —log(z4++4x0)P
Qlzs) = e o) € Qoe ; (5.9)
+

where zy € R, Qy € Sym(n) with trivial kernel and P € so(n). For @ defined in equation
(5.9), we will always take {x; € R : x, + x¢y > 0} as its domain. We will say that a
locally homogeneous pp-wave (M, g) is regular, if @Q is of the form (5.8), and we will say
that (M, g) is singular if @ is of the form (5.9). We will usually write @, in generality, as

Q = (¢')%e?"Qoe™"", (5.10)

where ¢ is a smooth function, depending only on z,. In this notation, a regular locally
homogeneous plane wave will correspond to the endomorphism @), with ¢(x,) = x,, and
a singular one will correspond to the one with ¢(z,) = log(zs + xy). For convenience,
and without loss of generality, we will always choose singular locally homogeneous plane
waves with zo = 1. In this case, it is worth noticing that Q(0) = Qo.

Remark 5.1.4. Singular locally homogeneous singular plane waves with the same matrices
P and @y are isometric.
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Remark 5.1.5. A special class of indecomposable locally homogeneous plane waves are the
so called Cahen-Wallach spaces, introduced in [9]. They are indecomposable, in the sense
of the de Rham-Wu decomposition theorem [44], and they are locally symmetric spaces,
i,e. VR = 0. They are the locally homogeneous plane waves which are defined by a pair
(Qo, P) such that [P,Qy] = 0. Results regarding the image of the Killing operator on
Lorentzian locally symmetric spaces were obtained in [13], and in Section 5.5 we extend
this results to locally homogeneous plane waves with Singer index equal to 0. In fact,
P = 0 can be chosen.

We will let 350(n)(A) := {B € s0(n) : [A, B] = 0} denote the centraliser of a matrix,
A € gl(n,R), in so(n). For the centraliser of a family of matrices, {A1, ..., A¢}, we will
write

dso(n) (Ah cee ,Ag) = mf:lﬁso(n)(Ai)-

Recall that if A and B are matrices in gl(n,R) which commute, then e
(M, g) is a locally homogeneous plane wave, defined by the pair (Qq, P), we can always
add elements from the centraliser of )y and P, to P, leaving () invariant. This follows by
inspecting

A+B _ QAGB. If

Q = (&2 Que ) = (2P QueT.

Consequently, any other locally homogeneous plane wave defined in terms of the pair
(Qo, P+ Z), with Z € 350(n)(Qo, P), will be isometric to (M, g).

5.2 The Singer index of locally homogeneous plane
waves

In this subsection we will study the Singer index of locally homogeneous plane waves.
Particularly, we will determine exactly those with Singer homogeneous index equal to 0,
in terms of the pairs of matrices (Qo, P) defining them.

In order to compute the Singer homogeneous index of locally homogeneous plane
waves, first we will describe the Lie algebras of automorphisms of algebraic curvature ten-
sors of the same type of locally homogeneous plane waves. We will let V"2 denote a real
vector space of dimension n + 2, equiped with a non-degenerate symmetric bilinear form
of signature (1,n+ 1), which shall be denoted by (-, ). The Lie algebra of endomorphisms
of V"2 ie. s0(V"?) .= {A € End(V""™?) : (Az,y) + (x, Ay), for all z,y € V" 2} is
naturally isomorphic to so(1,n 4+ 1). We will fix an orthogonal basis {e_,e1,...,e,, e4}
of V2 such that

(e_,e_)y = (e_,e;) = (ej,er) =0, (e_,er)=1 and (e;e;) =0,

and will denote by V", the vector subspace of V"2 spanned by {ey, ..., e,}. In this basis,
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a generic element of so(V"2) will be of the form

a ¢ 0
y A —z|, a€R uvelR" Acso(n). (5.11)
0 —y' —a

We will consider the algebraic curvature tensors on V"*2 of the same algebraic type
of the curvature tensor of an indecomposable locally homogeneous plane wave at a point.
The vector space of tensors with the symmetries of Riemannian curvature tensors on a
vector space V' will be denoted by RV'. Explicitly,

RV :={T € Sym*A*V* : T(w,z,y,2)+T(y,w,x, 2)+T(x,y,w,2) =0, Yw,z,y,2 € V}.

Let @ be a symmetric endomorphism of V" with trivial kernel and let R¢ € RV"*2 be
the algebraic curvature tensor such that its only non-zero components, up to symmetries,
are given by

Rz, eq,y,ep) = (Qr,y), with z,ye V" (5.12)

Here (-, -) denotes the restriction of (-,-) to V™. We will denote the Lie algebra of skew-
symmetric automorphisms of R? by

aut(R9) = {A € s0(V"?) : A-R9 =0}.

Proposition 5.2.1. Let R? € RV"*? be an algebraic curvature tensor defined by a
symmetric endomorphism @ of V™, as in equation (5.12). Then

aut(RQ) = 550(\/”)(@) X Vn7

where
0w 0
so(vm) (@) X V" = 0 A —ul| €s0(V™?) 1 A€ jo0v)(Q), ue V"
0 0 O

Proof. Let A be an element of aut(R?) which, in the basis {e_, ey, ..., e,, e, }, takes the
form

, a€R, u,veR" Acso(n),

and let x and y be elements of V". By inspection, we can see that

Ae_ =ae_ +v, Az = (u,z)e_ + Az — (v,2)ey, Aey = —u—aey.
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By definition, the action of A annihilates R?. Expanding (ARQ)(JL‘, ey, y,es) = 0reveals
that

0=ROAzx,eq,y,eq) — aR%(z,eq,y,ey) + ROz, ep, Ay, el) — aRO(x, eq,y, e4),
which, by equation (5.12) is nothing but
0= (QAz,y) + (Qz, Ay) — 2a(Qz,y) = (([Q, 4] — 2aQ)z,y), forallz,ye V"
The inner product (-,-) is of definite signature and therefore it must hold that
[A, Q] + 2aQ = 0.
Multiplying the above equation by () and taking its trace we get
0 = tr([4, QJQ) = ~2a tr(Q?) £ 0,
which implies that a = 0 and A € 340(,)(Q). Lastly, we can observe that
0= (A -R9(e_,eq,z,e.) = —RUqv,eq,z,e4) = —(Qu, )

for all x € V". Since @ is injective, v must be equal to 0. The remaining cases do not
reveal any extra constraint for A and thus

) 0 u 0
A=(0 A —u|, with weV" and A€ jouwn(Q),
0 0 0
as claimed. 0

If (M, g) is a locally homogeneous plane wave defined by the pair (Qo, P), by choosing
a point p in M, we can observe that R, and R9 are of the same algebraic type in the
sense that they are equal as elements of RT,M. Consequently, by Proposition 5.2.1, we
have obtained the isomorphism

bl = aut(R9) = 3000 (@) X V™.

More generally, the iterated covariant derivatives (VﬂR)p, of the curvature tensor, are of

the same algebraic type as RQI(’Z), which yields the isomorphism
ViR n
hp T dso(Vn) (Q;(f)) X V ’

again by Proposition 5.2.1. Identifying 350(V7L)(Q1(f)) x V™ with 350(]317)(@1(;@) x (EAX_),,
we have showed that ,
BV = 300y (QY) x EA X_. (5.13)
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Lemma 5.2.2. Let Q : I CR — Sym(n) be a smooth function of the form
Q(t) = ¢/(t)2e¢(t)PQoe—¢(t)P7

where Qp € Sym(n), P € so(n) and ¢ € C*(I) such that ¢'(t) # 0 for all t € I. Then,
for each ¢ > 0,

350 (Q(1), Q' (1), -, Q1)) = 300y (Q(1), ad(P)Q(1), . . ., ad(P)‘Q(1)). (5.14)

Proof. Letting ¢ : I C R — Sym?(n) be the map ¢ = e?”’Qpe™?" and recalling that

% et = ¢/ Pe?’ = ¢/e?T P,

it is straightforward from the Leibniz rule that
¢ = ¢'Pe?"Que™ " — ¢'e?TQoe ™" P = ¢'[P, q].
Since Q = (¢')?q, we have that Q' is given by
Q' =2¢'¢"q + (¢/)’ad(P)g = 2¢"(¢)7'Q + ¢ad(P)Q. (5.15)

Inductively, it is clear that Q) will be a linear combination of Q,ad(P)Q,...,ad(P)‘Q,
since @)’ is a linear combination of @) and ad(P)Q, namely

QU(t) = fooQ(t) + fea(Dad(P)Q(1) + - - + fre(t)ad(P)'Q(2), (5.16)

where fo, ..., fo are smooth functions on I. Now, suppose that equation (5.14) holds for
all £ up to k. Then

3so(n)(Q, Q... 7Q(k-&-l)) _ 350(n)(Q7 ad(P)Q, o ad(P)kQ) N 350(n)<Q(k+1)).

Since Q**Y is of the form found in equation (5.16), the right hand side of the above
equation is exactly equal t0 3eo(n)(Q, ad(P)Q, ..., ad(P)*Q, ad(P)*Q). O

Proposition 5.2.3. Let (M, g) be a locally homogeneous plane wave. Then
B = 3o (@, ad(P)Q, ..., ad(P)'Q) x EA X _.

Proof. Let us choose an element A of h%*. By equation (5.13), for any vector X in T'M,
it is clear that AX € X*, since h®* C h%. Then

ix(A-VHIR) = A-VxV'R— V iy V'R =A-VxV'R,
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follows from the fact that, for each ¢ > 0, V*R is parallel in the directions of X*. The
above equation implies that A is in h*+! if and only if A is in l‘)vx+v2R. Particularly,
when ¢ = 0, this yields the isomorphism

bR,l ~ hR N bV.,_R'
Inductively, we observe that for each ¢ > 0

L

b =7+, (5.17)

i=0
which, by equation (5.13), yields
bR’é —= 350(]}3) (Q, e ,Q(Z)) X E /\ X_.

Applying Lemma 5.2.2 to each fibre of hf*

b ~ 300w (Q, ad(P)Q, . .. ,ad(P)'Q) x EA X_.

, we get the desired isomorphism:

]

The above proposition allows us to construct examples of locally homogeneous plane
waves with Singer homogeneous index equal to 0. The simplest one, perhaps, is a locally
homogeneous plane wave defined by a (g with all of its eigenvalues possessing multiplicity
1. In this case, the centraliser of Q) in s0(n) is trivial and, therefore, h? = hft>° = EAX_.
Here is a non-trivial example:

Ezample 5.2.4. The locally homogeneous plane wave with @y € Sym?(n) and P € so(n)

given by
~ (Id,—2 O (0 0
QO_( 0 Q> wnd P_<0 p)

with ¢ € Sym?(2) and p € s0(2), such that ¢ has different non-zero eigenvalues and p # 0.
The commutator of P and () is
0 0
P,Qy) = .
rail=(g )

Clearly, P and )y do not commute, since the commutator of p and g does not vanish,
and their centralisers in so(n) coincide and are given by

3s0(n) (Q0) = 3so(n)(P) = { (13 8) . A€ so(n— 2)}

Consequently, h# = h> or, in other words, the locally homogeneous plane wave defined
by the pair (Qo, P) has a Singer homogeneous index equal to 0.
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We will show in Theorem 5.2.7 that all locally homogeneous plane wave with £, = 0
are, in a sense, of the same form as in Example 5.2.4.

Lemma 5.2.5. Let Q € gl(n,R) and P € 350(,1)(@)# Then 3eon) (@, [P, Q]) = 3s0(n) (@, P).

Proof. The inclusion of 3so(m) (@, P) in 3so
identity. To verify that 3.0 (Q, [P, Q))

350(n) (@, [P, Q]). Since [A,Q] [A, [P, Q]]
02[A,[P,QH:[[A,P],Q]—G—[P,[A,QH:[[A,P},Q],

which implies that [A, P] € 3so(n)(Q). As A € 3s0(n)(Q, [P, Q]) and P € 3so()(Q)F, the
commutator [A, P] is in js(m)(Q)*, since

dso(n (Q [P Q]) - dso(n) (Q) and [550(n)(@)7350(n)(Q>L] - 550(n)(@)l'

It follows from this argument that A commutes with P and thus 3s(,) (@, [P, @]) is equal
t0 3s0(n) (@, P), as claimed. ]

2 (Q, [P, Q]) follows directly from the Jacobi
3s0(n) (@, P), let us choose an element A, of
0, by the Jacobi identity we can observe that

1N

The above lemma will provide us with a useful tool to characterise the locally homo-
geneous plane waves with Singer homogeneous index equal to 0. For the reminder of this
section, we will let Py denote the 3s0(,)(Qo)" component of P.

Proposition 5.2.6. Let (M, g) be a locally homogeneous plane wave defined by the pair
(Qo, P). Then, ky =0 if and only if 3eo(n)(Qo) = 3so(n)(Qos Fo)-

Proof. On a locally homogeneous space, to posses Singer index equal to 0 is equivalent
to have hf = h/i! for an arbitrary point p. To prove this proposition, we will show that

bf - hf’l if and Only if 350(n)(Q0) - 350(71)(@07 PO)
We have showed in Proposition 5.2.3, that

B = 300y (Q) x EAX_ and  §™' = 5,05 (Q, [P, Q) x EA X_.

The choice of a point such that x, = 0, yields

hf = 3so(n)(Q0) x R™ and f)Rl = Jso(n) (Qo, [P, Qo)) x R" = = Jso(n (Qo, [Fo, Qo)) x R™.

Lastly, by Lemma 5.2.5 it follows that 3s(m)(Qo, [Fo, Qo)) = 3s0(n)(Qo, Fo) which implies
that bR = IJR " if and only if dso(n (QO) = Jso(n (Q07 R). L

To conclude this chapter, for a given )y, we will characterise explicitly the matrices
P for which the pair (Qq, P) defines a locally homogeneous plane wave with Singer index
equal to 0. In order to do this, we will make use of Proposition 5.2.6, by finding all
possibles Py € 3so(n)(Qo) T such that 3eo(n)(Qo) = 3so(n)(Qo, Po). To be clear, we will find
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conditions on P, such that [A, Py = 0 for all 3s(,)(Qo). However, before stating the
theorem, we will set up the notation.

We will let A\q,..., A\ denote all the different eigenvalues of @)y, i.e. not counting
multiplicities, and W; will denote the eigenspace associated to the eigenvalue A;. If we
let 1(\;) denote the multiplicity of \;, without loss of generality, we will assume that the
eigenvalues are ordered in a way such that pu(A) > p(A) > -+ > pu(Ag). Also we will
assume that p(Ay) > -+ > p(A) > 1 and p(Aep1) = -+ = p(Ax) = 1 for some ¢ and we
will set

¢ k
Wy =W, and W, := P Wi
=1

i=0+1

Theorem 5.2.7. Let (M,g) be a locally homogeneous plane wave defined by the pair
(Qo, P). Then, k, = 0 if and only if the projection of P into jsomy(Qo)*, i.e. Py, lies in
so(W,=1) C so(n).

Proof. Let m;; : so(n) — so(W; @ W;) be the natural projection, for 4,5 = 1,...k. The
centraliser of @ in so(n) is then given by 3so(m)(Qo) ~ so(W1) @ --- ® so(W;) and the
projection of Py to so(W,; & W;) will be of the form

ol 0

v

7 (Py) = ( 0 pij) for some p;; € W; @ W;.

Choosing an arbitrary element of s0(W;) C 3s0(n)(Qo), we have that

A0 0 Dij . 0 Apij o 0 0 :
(A0 (0 )] = (L0 ) = (0 ) ot aentis

will hold if and only if p;; = 0. It follows that in order to get the equality between
3s0(n) (Qo) and 3so(n) (Qo, Fo), we need p;; = 0 and thus m;;(Fy) = 0. Repeating this process
for all 4,57 = 1,...,¢, we conclude that 7,1 (FPy) = 0, where 7, : s0(n) — s0(W,z) is
the natural projection.

Lastly, writing Fy in blocks as

Py = ( (;t 5), with pe W,u ® W,y and p; € so(W,—1),
- 1

reveals that

Kjg 8) ) (jgt 51)] = (_;A %p> = (8 8) for all A € s0(W,)@ - @ so(Wp)

will hold if and only if p = 0. Consequently, 3so(n)(Q0) = 3so(n)(Qo, Fo) if and only if
Py € s0o(W,—1). Lastly, the claim follows from Proposition 5.2.6. n
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5.3 Exactness on Lorentzian symmetric spaces and
plane waves spacetimes

In this section we will study the exactness of the Killing connection on Lorentzian locally
symmetric spaces and locally homogeneous plane waves with Singer index equal to 0.
Particularly, the main result obtained on locally homogeneous plane wave is the following
theorem:

Theorem 5.3.1. The Killing connection of a locally homogeneous plane wave spacetime
with Singer index equal to 0 is exact.

Particular instances of locally homogeneous plane waves with Singer index 0 are the
locally symmetric ones, i.e. Cahen-Wallach spaces (see Remark 5.1.5). We therefore get
the following corollary.

Corollary 5.3.2. The Killing connection of a Cahen-Wallach space is exact.

Lorentzian symmetric spaces were classified in 1970 by Cahen and Wallach [9]. In
their article they proved that if (M, g) is a simply connected Lorentzian symmetric space,
then (M, g) is the product of a Riemannian symmetric space with one of the following:

(1) R with metric —d¢?.

(2) The universal covering space of an n-dimensional de Sitter or anti de Sitter space
with n > 2.

(3) An n-dimensional Cahen-Wallach space, with n > 3.

Particularly, any Lorentzian locally symmetric spaces is universally covered by a simply
connected Lorentzian symmetric space. Regarding the exactness of the Killing connection
on Lorentzian locally symmetric spaces, the main result obtained in this section is the
following theorem:

Theorem 5.3.3. Let (M, g) be a Lorentzian locally symmetric space. Then the Killing
connection is exact unless the de Rham-Wu decomposition of (M, g) contains a Hermi-
tian factor and a factor that is flat or a Cahen-Wallach space, in which case the Killing
connection is not exact.

We will first proceed to prove Theorem 5.3.1. In order to achieve this goal, we will
compute explicitly the curvature filtrations of locally homogeneous plane waves spacetimes
and apply the machinery previously described in Sections 1.3 and 4.2. The proof of
Theorem 5.3.1 will be organised as follows: Locally homogeneous plane waves have their
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holonomy algebras contained in by (see Remark 5.1.1) and it has been proved in [25]
that they are reductive. If in addition we assume that k, = 0, by Proposition 4.2.3 the
curvature filtration of (E, D) will be parallel. Lastly, we will compute their curvature
filtrations and show that they stabilise at the second step and that Fo = E. Then, that
(E, D) is exact would follow from Proposition 1.3.2. Before proceeding to calculate the
curvature filtration of locally homogeneous plane waves, we will set up the notation for
this subsection and recall previous results about locally homogeneous plane waves.

We will let (M, g) be an (n + 2)-dimensional locally homogeneous plane wave, defined
by the pair (Qo, P), and we will let P, denote the projection of P t0 3so(m)(Qo)*. We
will often refer to )y and P as endomorphisms of the vector bundle [E, or its matrices in
an appropriate orthogonal frame. If the rank of ) is equal to k, we will let H to be the
subbundle of E of rank k with fibre ker(Q,)* C E, at p. The bundle with fibre hol,(M, g)
at p will be hol(M, g) = HA X_ and hy = 3e0r) (@) X (EA X_). We will make use of the
identifications

0 =zt 0
hol,(M,g) =< [0 0 —z| €so(l,n+1): zeRF} = hol
0O 0 O
and
0 2t 0
(hO)]D2 0 A —x 650(1an+1) : Aeﬁso(n)(QO)xeRn :5so(n)(Q0)D<Rn
0O 0 O

We will let p := (X_ A X, @s0(E)) x EAX_ be the subbundle of so(7'M, g) whose fibres
will be identified by the isomorphism

zt 0
A —xz | eso(l,n+1) : aeR, Acso(n), e R" ) =(R@so(n)) x R™.
0 —a

Pp

12
oo

Lastly, we also remark that hol,(M, g) is generated by the curvature endomorphisms and
therefore hol(M, g) coincides with vt = {R(X,Y) : XY € TM}.

We are now in condition to proceed to compute the curvature filtration of (E, D).
Firstly, we will calculate the kernel of the Killing curvature and, for the remaining steps
of the curvature filtration, we have proved in Proposition 4.2.2 that for each ¢ > 1 the
curvature filtration is given by E, = TM & b, with

hy={A€so(TM,g) : [A,B] € by, VBET}

Thus, it will only be required to calculate b,.
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Proposition 5.3.4. Let (M, g) be a locally homogeneous plane wave, defined by the pair
(Qo, P). Then, the kernel of the Killing curvature is K% = H® & CE, where

. 0 e (XY X,
& _{ME)(QWEAX} and ¢ ‘[0 BRI

with Ay given by
Ay =-— Z(Po)ini N X

1<j

in the case when (M, g) is a reqular plane wave and

1
A, =— (X_ /\X++Z(P0)ini/\Xj> )

Ty + 1 i<y

when (M, g) is singular plane wave.

Proof. Recall that the bundle H* is the subbundle of E, defined by elements of the form
(0, A), such that A - R = 0. We have showed, in Proposition 5.2.3, that h% is equal to
3s08) (Q) X EA X_. Therefore, the bundle H is given exactly by

0
B 350(E)(Q)KE/\X7 '

The subbundle C® of K%, complementary to H? is given by elements (X, A) of E, solu-
tions to the equation

HR

VxR+A-R=0.

Notice that if the 7'M component of (X, A) € CF is in X+, the endomorphism A can be

taken to be equal to 0, since R is parallel in the directions of X*. It is immediate that

X2 injects into CF as

XJ_
0

It is only left to find an element, A, in so(T'M, g), such that

Xf<—>{ }QC’R.

At each p € M, Proposition 2.3.6 implies that A, must be in the normaliser of the

holonomy algebra of (M, g), which is isomorphic to p,, by Corollary 5.1.3. Also, A, lies

in a complement of h® in so(T'M, g) hence, without loss of generality, we can assume that
A is of the form

0

A+:—CLX_/\X++ZAUX1‘/\X]': 0

i<j

Y

o O 2

0
A
0

—a
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such that @ € R and A € 35()(Q)*". We note that if (X, By) is another element in C'#,
A, — By would lie in h¥ which implies that A, will be unique modulo h=.
A closer look at equation (5.18) reveals that

0 = (Vx R)(X, X0, Y, X0) + (Ay - R)(X, X4 Y, X))
= 9(Q@'X.Y) +g([A QIX,Y) + 2a g(QX,Y).

The vector fields X,Y € I'(E) were arbitrary, hence
Q' +[4,Q] +2aQ = 0. (5.19)
must hold. Recall that Q = (¢')2e*YQpe~?". Then, a direct calculation yields
Q' =2¢"(¢')7'Q + [P, Q)
for what equation (5.19) becomes
[P+ A,Q]+2(¢"(¢') " +a)Q = 0. (5.20)
The endomorphism A, is unique modulo h%, so we will take
a=—¢"(¢)7" and A=—-¢'R,

since A € 34 (Q)*, by assumption. In the case that (M, g) is regular plane wave,
¢(zy) = x4 and thus a = 0. It follows that A, is given by

Ay == (R)iy Xi N X,

1<j

Lastly, in the case when (M, g) a singular plane wave, ¢(z,) = log(zy + 1) and therefore
a=(zy+1)7! and

1
+ v 41 ( ++;j( 0)ij J)

We can conclude that N
X X
R _ z +
C _[0}@R[AJ‘
O

Now we will proceed to calculate b, for £ > 1. We will show that h; = p and
ha = so(TM,g), hence hy = s0(T'M,g) for all £ > 2. Following the notation used in
Section 4.2, and using the identifications established in the beginning of this subsection,
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we have showed that (b),, is isomorphic to 3ee(n) (Qo) x R™. For locally homogeneous plane
waves we can observe that, for £ = 1, we have

(h1)p @ {A€so(l,n+1) : [A B] € 350n)(Qo) x R"V B € hol}.

Choosing arbitrary elements A € so(1,n+ 1) and B € hol, of the form

a & 0 0 u 0
A=y Z -—=z and B=10 0 —u],
0 —yt —a 0 0 O

we get that their commutator is given by

—y'u (au+ Zu)* 0
[A, B] = 0 yut —uyt  —(au+ Zu) | . (5.21)
0 0 y'u

The first thing to notice is that there are no constraints in a, x or Z for [A, B] to be in
hol, whereas for y we have that it must solve the following equations

yu=0 and [yu' —uy’, Qo] =0 forall u e Im(Qo) = ker(Qo)L.

The first equation implies that y € ker(Qy), since u € ker(Qy)*. This implies that yu’—uy
takes an off diagonal form, but the centraliser of (), is block diagonal, hence y needs to be
equal to 0. Consequently, we have showed that (h;), is isomorphic to (R @ so(n)) x R™,
which translated into the vector bundles becomes

hi=p=(X_AX;®so(E)) x EAX_.

Analogously as for the case of h;, we can observe from equation (5.21) that there are not
constraints A € so(1,n + 1) for it to satisfy [A, B] € (R @ so(n)) x R" for all B € hol,
hence (h3), ~ so(1,n + 1). We have showed that hy = so(T'M, g).

Proof of Theorem 5.3.1. It was noted in Remark 5.1.1 that the holonomy algebras of
locally homogeneous plane waves are always contained in b, hence E, = TM @ b, for all
¢ > 1, by Proposition 4.2.2. We have proved in Proposition 5.3.4 that

hO = 550(E)(Q) X E A X—7

and also we have computed
hi = (X_AX,®s0(E) x EAX_ and by =s0(TM,qg),

which implies that the curvature filtration of (£, D) stabilises at the second step and that
E = FE5. By assumption, the Singer index of (M, g) is equal 0, hence that the curvature
filtration is parallel follows from Proposition 4.2.3. Lastly, it follows from Proposition 1.3.2
that (E, D) is exact, since the curvature filtration is parallel and E = Fj. O
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Before moving into the proof of Theorem 5.3.3, we need to remark that Cahen-Wallach
spaces and of course flat manifolds, have a non-trivial nullity bundle. To deal with prod-
ucts of such spaces we will need to prove a rather technical proposition and, for conve-
nience, we will enunciate a crucial lemma from [12]:

Lemma 5.3.5. [12, Lemma 3] Supouse (M, g) is a Riemannian locally symmetric space
with neither Hermatian not flat factors. If py. is a 2-form on M so that

Valtbe — Rbcdaad, for some uniquely determined 1-form o,
then Vo, = [pe-

Proposition 5.3.6. Let (M, g1) be a locally symmetric space of dimension > 1 that is
either one of the following:

1. Pseudo-Riemannian of non-zero constant sectional curvature.
2. Non-Hermitian indecomposable Riemannian.

If (Ms, gy ts another pseudo-Riemannian locally symmetric space whose Killing connec-
tion is exact, then the Killing connection of (M, g) = (M, g1) x (M, g2) is exact.

Proof. The proof is structure as follows: First, we will show that the kernel of D" is
contained in T(A'M @ (E*° & E®')). Then, by Lemma 4.3.13, the kernel of D" would
be contained in T'(A'M ® K). Since K is a parallel flat sub-bundle of E, D|f is trivially
exact and therefore , by Proposition 1.2.5, D would be exact.

Let Qz* € T(A'M ® E) be in the kernel of D", with

Qp" = {”BC} + { ) } such that {"BC} eT(A'M & (EY* @ E))
YBcD ¢BcD YD

and ¢pcp € T'(A'M @ AVIM). By hypothesis, M; is pseudo-Riemannian of non-zero
constant sectional curvature or a non-Hermitian indecomposable Riemannian symmet-
ric space, for which R, ¢ has trivial kernel as an endomorphism acting on 1-forms.
Lemma 4.3.4 guarantees us that R ¢, = 0, hence ¢,,5 = 0.

Now we will show that ¢ua = @(ap)a- Since Vpog4e = 0, we have

0= V[avb¢c]dé = _Red[ab¢0]eé' (5-22)

Fixing X¢, set X oz = hap + Wap, With hep = X P(apye and way = X@jape. Contracting
equation (5.22) with X¢ we obtain

0= Red[abhc]e + Red[abwc}e- (523>
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In the case of (1) that (M, ¢1) is pseudo-Riemannian of non-zero constant sectional
curvature, we have that Rg.q is a non-zero constant multiple of ¢uc9pq — GaaGpe, SO that
equation (5.23) gives

0= ge[ahcegb}d - ge[bhcega]d + ge[awcegb]d - ge[bwcega]d = _QQe[awbegc]w

since hgp, is symmetric. But this is nothing else than

0= WlabYc|ds

which implies that wy, = 0.
In case (2), when (M, g1) is non-Hermitian indecomposable Riemannian, tracing equa-
tion (5.23) over bd we have

0 = 2R [ hae + 2R (qwye + Rac wey. (5.24)

As (M7, g1) is an indecomposable Riemannian symmetric space, it is Einstein and without
loss of generality, we can assume R, = £¢4. Then equation (5.24) becomes the eigenvalue
equation

R wep = 42w (5.25)

for a 2-form on M;. It was proven in [12, Theorem 2] that if equation (5.25) holds on M;,
then wg, has to be parallel, and hence (Mj, g1) is a Hermitian locally symmetric space
with w,p a constant multiple of its Kdhler form. Therefore, by our assumption on (M7, ¢1),
we obtain as well that wy, = 0.

Hence, in both cases we have X E¢[ab]é = wgp = 0. This holds for every vector field X
and therefore it must hold that ¢p.a = 0.

In a similar way as in Lemma 4.3.13, we know that

TNab = V(1(711 — Hab and wabc = Vaﬂbc - Rbc Zae (526)

by the exactness of the Killing connection of (Mj,g;) for some o, € A! and g € A%
From the first equation in (4.30) with ABC = abc and equation (5.26) we have

Va(Vyoe — tive) = Villac + Vabe + Gvea = 0.
Defining 03, := nap — Va0ou, it takes the form
—Vibac — Vatipe + Yape + Goca = 0. (5.27)
Symmetrising and skew-symmetrising Equation (5.27) in be, we obtain

VYave = Viphialg + Vatiee and  dpea = Vbjale) (5.28)
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as Yabe = Vajp] a0d Paba = P(av)a- Then

Vaed = Votaca = Va(Viptea — Reg50e) — Vo(Vichjaia + Vattea)
= (Vavb — vaa),ucd — Rcdivaae — va[cem‘d] (5.29)
= —R,,%Vaoe — ViVl

The second equation in (4.30) with ABC' D = abed becomes

Vaoed — Viacd = —BeqyNac- (5.30)
Combining above equations we obtain

R.y%5(Nae — Vaoe) = ViVibiaq,

which is nothing but
R.i%0ac = ViV (0ja)a)- (5.31)

Since (M, g1) is a space of non-zero constant sectional curvature or a non-Hermitian in-
decomposable Riemannian symmetric space, by Lemma 5.3.5, the above equation implies
that

Vilae = V[(ﬁmc] (5.32)

This means that ¢yca = V(,0a) = 0 and therefore ¢ 4pc = 0.

We have shown that the kernel of D" is contained in T(A'M & (E'° & E%')). Then,
by Lemma 4.3.13, ker(D") is contained in I'(A'M ® K). Moreover, by Proposition 1.2.5,
D is exact, as D|k is exact.

[]

The following example illustrates the need of excluding Hermitian symmetric spaces
in the previous theorem. A different version of it appeared in [12, Proposition 4].

Example 5.3.7. Let (M, g1) be an indecomposable Riemannian Hermitian symmetric
space and let (Ms,g2) be a symmetric space with non-injective curvature RaEdE‘ In
other words, M, has a parallel differential 1-form &;. Then the Killing connection of
(M, g) = (My x Ms, g1 + go) is not exact.

To see this, and here we follow [12, Proposition 4], let wap = wap, be the Kéhler form
of (M, g1) with Kéhler potential ¢pp = ¢y, i.e. Viadp) = wap, and 4 = & be the parallel

vector field on M,. Then we set hap = ¢aép),

o h
Ypep = 2V (chpip = wepép + 5 (Vedpén — Vpopée) and g = L/}BB;D} -
Then Ypcp) = 0, and for the exterior covariant derivative of nz® it is

0
D/\ o )
A'lB Via¥Bjcp — RCDE[AhB]E}
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Since wap is parallel, it is Va4V oo = VaVeop, so that, together with V&5 = 0,

Viatpiep = 3 (VaVedcép — ViaVedpéc) = —2Rap” c&pdp.
On the other hand,
Rep”iahpe = $Rep” 48p1dE,
so that, for pap = ¢1a&m),

0

D/\ a
AllB Rag®cppie + Rep®lapse

is in the range of the curvature of the Killing connection. However, if ;% was in the
range of the Killing connection, then there would be a one-form oo = 0. + 0; such
that hge = Vpgoc — upe, and this, by the definition of hge and pupe, implies that

Voo = ¢p§c = ¢pée. Hence
0=Vyo.=Vso.=V3o: and Vyo: = ¢pés.

Therefore, o. is a lift of a parallel vector field on M7, and, with M; being indecomposable
and Riemannian, must be zero. The last equation implies that

0=V Vyoe = warle,

which is a contradiction, as the Kahler form and the parallel vector field are both not
Zero.

We conclude with the proof of main theorem of this section.

Proof of Theorem 5.3.5. Let (My,g1) X -+ X (Mj, gr) X (L, gr) be the local de Rham-Wu
decomposition of (M, g) into irreducible Riemannian factors (M, ¢;) and a Lorentzian
factor (L, gr), such that (L, gr) does not contain a non-flat Riemannian factor, that is,
(L, gr) is either one of the following:

1. Indecomposable Lorentzian, i.e. with non-zero constant sectional curvature or a
Cahen-Wallach space.

2. A product of an indecomposable Lorentzian symmetric space with a Fuclidean fac-
tor.

3. Minkowski space.

In all three cases, Corollaries 4.3.10 and 5.3.2 imply that the Killing connection of (L, gr)
is exact. Moreover, by [12] the same holds for (Mg, gx), so that we can apply Proposi-
tion 5.3.6 to obtain that the Killing connection is exact for (My, gr) X (L, gr), provided
that (Mg, gx) is an irreducible Riemannian symmetric space that is non-Hermitian if L
admits a parallel vector field. Inductively, it follows that the Killing connection of (M, g)
is exact unless it contains a Hermitian factor in its local de Rham decomposition and L
admits a parallel vector field.

[]
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