
Technical Report
Systems Department
The University of Adelaide Library

 Page 1 of 17

Restricting access to websites for walk in users

Author: Corey Wallis, Systems Librarian,
University of Adelaide Library

Last Update: 9/10/2006 10:27 AM

Abstract: Describes the use of a Perl script to generate a list of domains for
websites that can be accessed by walk in users of the Library.

Problem

The University of Adelaide Library makes available a number of networked
computers for use by Library patrons. These computers do not require a login
and are therefore available to any user who “walks in” to the Library. This type
of user is typically known as a “walk in user”.

The main aim of these computers is to provide access to a limited set of
resources that include:

1. The Library catalogue;

2. Websites listed in the Library catalogue; and

3. Electronic resources that the Library has a subscription to.

To achieve this aim it is therefore necessary to restrict the websites that can be
accessed using these computers. A proxy auto-config file is used to restrict
access by walk in users to a specific set of domains. More information on the
format of this file can be found at the Netscape website listed in the references
section of this document.

There are in excess of 88,000 links in the catalogue representing over 3,000
distinct domain names. With the large number of links, and more being added
daily, it is not feasible to manage a proxy auto-config file manually. Therefore
a Perl script was developed to generate the file, based on a small number of
guidelines.

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 2 of 17

Solution

To automate the generation of the proxy auto-config file a small Perl script
was developed. The script is comprised of the following five files:

1. walkin_pac_gen.pl – The Perl script that does all of the work;

2. walkin.pac.deny.txt – A list of domains of electronic resources that
should not be made available to walk in users due to license
restrictions;

3. walkin.pac.domains.txt – A list of domains that should be made
available to walk in users, that are not listed in the Library catalogue;

4. walkin.pac.header – A file containing the header of the proxy auto-
config file that is static and does not change often; and

5. walkin.pac.tlds.txt – A list of Top Level Domains, TLDs, for websites
that should be made available to walk in users. For example all walk in
users should be able to access Australian Government websites which
have the .gov.au TLD.

Each file that lists domains can include comments about why the domain is
included in the list, as well as any other notes that may be required.

Access to websites outside the University network is only possible via the
University proxy servers. Therefore the guidelines that underpin the script are
as follows.

1. If the requested domain ends in adelaide.edu.au, and is therefore on
the University network, access the website directly and do not use the
proxy server;

2. If the requested domain ends in one of the listed TLDS, access the
website via the University proxy server;

3. If the requested domain ends in a domain retrieved from the catalogue,
or listed in the walkin.pac.domains.txt file, access the website via the
University proxy server; and

4. If the requested domain is not listed in the proxy auto-config file
attempt to access the website directly. This access attempt will fail as all
access to websites outside the University network must go through the
University proxy servers.

Samples of the four supporting files are provided in the following sections.

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 3 of 17

Sample - walkin.pac.deny.txt

A list of domains that should not be included in the walkin.pac file
Place each domain on a new line
To ensure correct operation, start each domain with a "."
Lines beginning with a "#" are comments and are ignored
#
.westlaw.com
.example.com
.another-example.org

Sample - walkin.pac.domains.txt

A list of domains that should included in the walkin.pac file
These domains are typically required to access a resource but
are not listed in the catalogue.
Place each domain on a new line
To ensure correct operation, start each domain with a "."
Lines beginning with a "#" are comments and are ignored
#
.amazon.com
.google.com
.google.com.au

Sample - walkin.pac.header

function FindProxyForURL(url, host)
{

//Deal with local Adelaide Uni addresses
if (dnsDomainIs(host, "adelaide.edu.au"))
{

return "DIRECT";
}

Sample - walkin.pac.tlds.txt

A list of top level domains for inclusion in the walkin.pac file
Place each top level domain on a new line.
To ensure correct operation, start each domain with a "."
Lines beginings with a "#" are comments and are ignored.
#
Education Domains
.edu
.edu.au
.edu.tw
.ac.at
.ac.de
.ac.nz
.ac.be
.ac.uk
.ac.jp
Government Domains
.gov
.gov.au
.gov.tw
.govt.nz
.gov.uk
.go.jp

Technical Report
Systems Department
The University of Adelaide Library

 Page 4 of 17

Copy of the walkin_pac_gen.pl script

Note: This Perl script accesses the Voyager Oracle database and therefore uses the VGER Perl Module. This module is explained in
the “A trivial Perl module improving Oracle access from Perl” document available from the University of Adelaide Digital Library.

#!/m1/shared/bin/perl
use File::Copy;
use DBI;

Add the UALS lib dir to the list of lib dirs
Use the VGER module from the UALS lib dir
use lib "/m1/uals/lib";
use VGER;

Define global constants
$lib_dir = "/m1/uals/lib";
$header_file = $lib_dir . "/walkin.pac.header";
$tld_file = $lib_dir . "/walkin.pac.tlds.txt";
$other_domains_file = $lib_dir . "/walkin.pac.domains.txt";
$no_walkin_file = $lib_dir . "/walkin.pac.deny.txt";
$production_file = "/tmp/walkin.pac";
$email_from = 'xxx.yyy@adelaide.edu.au';
$email_to = 'xxx.yyy@adelaide.edu.au';
$sendmail = "/usr/lib/sendmail -t";

Break up a string based on a set delimiter and reverse the elements
e.g. "adelaide.edu.au" becomes "au.edu.adelaide"
sub reverse_string {

if (@_ != 3) {
print "WARNING! &reverse_string expects exactly three arguments.\n";
return undef;

} else {
my ($string, $sep, $concat) = @_;
my ($sep_to_join);
@string_parts = split /$sep/, $string;
@string_parts = reverse @string_parts;
$sep_to_join = $sep;
$sep_to_join =~ s/\\(.)/$1/g;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 5 of 17

$new_string = join $sep_to_join, @string_parts;

if ($concat == 1) {
if ($string =~ /$sep$/) {

$new_string = $sep_to_join . $new_string;
}

 }

return $new_string;
}

}

Remove any domains from the list that start with one of the domains that
prohibit walk in access defined in the file $no_walkin
sub remove_no_walkin {

my (@list) = @_;
my (@saved, @no_walkin, $test);

#read in contents of file
if (! open NO_WALKIN, "<", $no_walkin_file) {

die "Cannot open file: $!";
}

@no_walkin = <NO_WALKIN>;
close NO_WALKIN;

 chomp(@no_walkin);

 # Remove any of the comment lines from the array
while(@no_walkin) {

$item = shift(@no_walkin);

if($item !~ /^#/) {
push(@saved, $item);

}
}

@no_walkin = @saved;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 6 of 17

@saved = ();

#reverse top level domains
foreach $domain (@no_walkin) {

$domain = &reverse_string($domain, "\\.", 1);
}

@no_walkin = sort @no_walkin;

 # Remove any domains from the list matching one of the domains for
 # resources that do not allow walk in users
while(@no_walkin > 0) {

$test = shift(@no_walkin);

while(@list) {
$item = shift (@list);

if ($item !~ /^$test/) {
push(@saved, $item);

}
}

@list = sort @saved;
@saved = ();

}

return @list;

}

Remove any domains from the list that start with one of the TLDs
defined in the file $tld_file
sub remove_top_level {

my (@list) = @_;
my (@saved, @top_level, $test);

#read in contents of file
if (! open TOP_LEVEL, "<", $tld_file) {

die "Cannot open file: $!";
}

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 7 of 17

@top_level = <TOP_LEVEL>;
close TOP_LEVEL;

 chomp(@top_level);

 # Remove any of the comment lines from the array
while(@top_level) {

$item = shift(@top_level);

if($item !~ /^#/) {
push(@saved, $item);

 }
}

@top_level = @saved;
@saved = ();

#reverse top level domains
foreach $domain (@top_level) {

$domain = &reverse_string($domain, "\\.", 1);
}

@top_level = sort @top_level;

 # Remove any domains from the list starting with one of the
 # defined TLD's
while(@top_level > 0) {

$test = shift(@top_level);

while(@list) {
$item = shift (@list);

if ($item !~ /^$test/) {
push(@saved, $item);

}
}

@list = sort @saved;
@saved = ();

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 8 of 17

}

return @list;

}

Remove any domains that have a common stem
sub remove_duplicates {

my (@list) = @_;
my (@saved, @temp, $test, $item, $backup, $match_found, $short_stem);

$match_found = 0;
$short_stem = 0;

Take out the IP addresses first
They don't go through the common stem process well
while(1) {

$item = shift (@list);

if ($item =~ /^(\d{1,3}\.){3}\d{1,3}$/) {
push(@saved, $item)

} else {
unshift (@list, $item);
last;

}
}

Get the first test case
$test = shift(@list);

Remove any domains that have a common stem
while(@list > 0) {

 # If a match has not been found,
 # Conver the domain to a stem if required
if ($match_found == 0) {

@temp = split /\./, $test;
 $backup = $test;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 9 of 17

 # Most top level domains like .com .org .csiro etc
if (@temp >= 3 && length $temp[1] > 3 && $temp[1] ne "info") {

$short_stem = 1;
$test = $temp[0] . "." . $temp[1] . ".";

 # Most of the other domains like .edu.au .com.au etc
}elsif(@temp >= 3 && length $temp[2] >= 3) {

$short_stem = 1;
$test = $temp[0] . "." . $temp[1] . "." . $temp[2] . ".";

}
}

 # Get an item to test with, and make sure we actually got one
 # If we reach the end of the array at this point we can get an
 # undef value and not a domain
 #
 # If we do get an undef value, save the last test variable
$item = shift(@list);

if (!defined($item)) {
if ($short_stem == 1) {

push(@saved, $test);
last;

} else {
push(@saved, $backup);

}
}

 # If there is a match, continuing test
 # If there is not a match, save the test variable and get a new one
if ($item =~ /^\Q$test\E/) {

$match_found = 1;
} else {

$match_found = 0;
if ($short_stem == 1) {

push(@saved, $test);
$short_stem = 0;
$test = $item;

} else {
push(@saved, $backup);
$test = $item;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 10 of 17

}
}

 # If we reach the end of the list at this point.
 # Save the test variable
if (@list == 0) {

if ($short_stem == 1) {
push(@saved, $test);
last;

} else {
push(@saved, $backup);

}
}

}

Remove the www from the front of the domains
Remember the domains are reversed at this point!
foreach $domain (@saved) {

$domain =~ s/www$/\./;
 $domain =~ s/www\.$/\./;

}

return @saved;
}

A helpful little subroutine to print out the values in an array
Used during development debugging
sub print_list {

print "\n";
my (@list) = @_;
foreach $domain (@list) {

print "Domain:\t$domain\n";
}
print "\n";

}

Get the list of domains to process
Either from a file, or the DB
sub get_domain_list {

my ($todo) = @_;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 11 of 17

my (@full_list, @other_domains);

if ($todo eq "file") {
We need to operate on a file

 if (! open FULL_LIST, "<", "./cw_elink_hosts.txt") {
die "Cannot open file: $!";

}

@full_list = <FULL_LIST>;
close FULL_LIST;
chomp(@full_list);

} else {
We need to get info from the DB

 # Connect to the Oracle Database
 my $dbh = DBI->connect("dbi:Oracle:host=$db_host;sid=$db_sid",

 $db_username,
 $db_password

) or die "Could not connect: $DBI::errstr";

 # Prepare the SQL statement
 my $sth = $dbh->prepare(qq|

 SELECT DISTINCT(LOWER(elink_index.url_host)) AS hosts
 FROM elink_index
 WHERE elink_index.record_type = 'B'
 AND elink_index.url_host IS NOT NULL

 OR elink_index.record_type='M'
 AND elink_index.url_host IS NOT NULL

 ORDER BY hosts|
) or die $dbh->errstr;

Execute the statement
 $sth->execute or die $dbh->errstr;

 # Get the results
 while ($host = $sth->fetchrow_array()) {
 push(@full_list, $host);
}

 # Close the statement and database handlers
 $sth->finish;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 12 of 17

 $dbh->disconnect;
}

We need to add any other domains to the list
read in contents of file
if (! open OTHER, "<", $other_domains_file) {

die "Cannot open file: $!";
}

@other_domains = <OTHER>;
close OTHER;

chomp(@other_domains);

Remove any of the comment lines from the array
while(@other_domains) {

$item = shift(@other_domains);

if($item !~ /^#/) {
push(@saved, $item);

}
}

@other_domains = @saved;

push (@full_list, @other_domains);
return @full_list;

}

Write the new pac file
sub write_pac_file {

my (@list) = @_;
my (@top_level, @saved);
my ($proxy) = "return \"PROXY www-proxy.adelaide.edu.au:8080\";";

Write a production walkin.pac file
Copy the template to the production name
copy($header_file, $production_file)

or die "Unable to copy $header_file to $production_file: $!";

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 13 of 17

Get the top level domains
if (! open TOP_LEVEL, "<", $tld_file) {

die "Cannot open file: $!";
}

@top_level = <TOP_LEVEL>;
close TOP_LEVEL;

chomp(@top_level);

Remove any of the comment lines from the array
while(@top_level) {

$item = shift(@top_level);

if($item !~ /^#/) {
push(@saved, $item);

}
}

@top_level = @saved;
@saved = ();

Open the production file for output
if (! open OUTPUT, ">>", $production_file) {

die "Cannot open file: $!";
}

Output the list of top level domains
print OUTPUT "\n";

$domain = shift(@top_level);
print OUTPUT " if (dnsDomainIs(host, \"$domain\") ||\n";

while(@top_level) {
$domain = shift(@top_level);

 if (@top_level != 0) {
print OUTPUT " dnsDomainIs(host, \"$domain\") ||\n";

 } else {
print OUTPUT " dnsDomainIs(host, \"$domain\"))\n";

 }

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 14 of 17

}

print OUTPUT " {\n";
print OUTPUT " $proxy\n";
print OUTPUT " }\n\n";

Output the list of other domains
$domain = shift(@list);
print OUTPUT " if (dnsDomainIs(host, \"$domain\") ||\n";

while(@list) {
$domain = shift(@list);

 if (@list != 0) {
print OUTPUT " dnsDomainIs(host, \"$domain\") ||\n";

 } else {
print OUTPUT " dnsDomainIs(host, \"$domain\"))\n";

 }
}

 print OUTPUT " {\n";
print OUTPUT " $proxy\n";
print OUTPUT " }\n\n";

Write the end of the file
print OUTPUT " return \"DIRECT\";\n";
print OUTPUT "}";

Close the file
close OUTPUT;

}

Email the walkin.pac file to somebody
sub email_file {

Read in contents of the production walkin.pac file
if (! open PROD, "<", $production_file) {

die "Cannot open file: $!";
}

my(@walkin_pac) = <PROD>;

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 15 of 17

close PROD;

Send the email
open(SENDMAIL, "|$sendmail") or die "Cannot open $sendmail: #!";
print SENDMAIL "From: $email_from\n";
print SENDMAIL "Subject: New Walkin Pac file\n";
print SENDMAIL "To: $email_to\n";
print SENDMAIL "Content-type: text/plain\n\n";

 foreach $line (@walkin_pac) {
print SENDMAIL $line;

}

close SENDMAIL;
}

Main program block
Get the list of domains
@domain_list = &get_domain_list("oracle");

Reverse & sort the domains
foreach $domain (@domain_list) {

$domain = &reverse_string($domain, "\\.", 0);
}
@domain_list = sort @domain_list;

Remove any domains matching the list prohibiting walkin users
@domain_list = &remove_no_walkin(@domain_list);

Remove any domains matching the list of TLDs
@domain_list = &remove_top_level(@domain_list);

Remove domains with a common stem
@domain_list = &remove_duplicates(@domain_list);

Put domains back into the right order
foreach $domain (@domain_list) {

$domain = &reverse_string($domain, "\\.", 0);
}

Restricting access to websites for walk in users

ST, 19/04/2004 5:04 pm Page 16 of 17

@domain_list = sort @domain_list;

Write the new walkin pac file
&write_pac_file(@domain_list);

Email the new walkin.pac file
&email_file();
#print "Process Complete!\n";

Technical Report
Systems Department
The University of Adelaide Library

 Page 17 of 17

References

Proxy auto-config file format
http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html

A trivial Perl module improving Oracle access from Perl – Available via the
University of Adelaide Digital Library
http://hdl.handle.net/2440/14785

	Walkin Proxy Pac File.doc

