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A MATHEMATICAL EXAMINATION OF THE METHODS

OF DETERMINING THE ACCURACY OF AN OBSERV-

ATION BY THE MEAN ERROR, AND BY THE MEAN
SQUARE ERROR

Author's Note (CMS 2.757a)*
* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley
and Sons. Inc.

This early paper arose from an examination of a statement by
A. S. Eddington in his book, Stellar Movements, page 147. It con-
cerns the relative precision of two estimates of the variance of a nor-
mal distribution: (a) using Bessel’s formula, based on the mean
square; and (b) using Peter’s formula, using the mean deviation.

The results include the exact sampling distribution of Bessel’s es-
timate and the mean square of Peter’s. The variance of the latter
is, in large samples, the larger in the ratio (x2).

Next is considered the class of estimates based on powers of the
deviation in general, showing that the precision is maximised when
p = 2, the variance being 14 per cent greater for p = 1 and 9 per
cent greater for p = 3. For continuous variation of p the precision
of the mean square is a true maximum. These results had all been
obtained before, without the knowledge of the author or of Eddington.

The most important point of the paper is the consideration of the
simultaneous distribution of two estimates. This is examined in
detail for the case of four observations, but the more general point
is established that for a given value of o5 the distribution of ¢, is in-
dependent of ¢. Consequently when g3, the estiinate based on the
mean square, is known, a valuc of ¢y, the estimate based on the mean
deviation, gives no additional information as to the true value. It is
shown that the same proposition is true if any other estimate is sub-
stituted for ¢;, and consequently that the whole of the information
respecting the variance which a sample provides is summed up in
the single estimate 5. I believe this is the first occasion on which
attention has been called to this property characteristic of a sufficient
estimate.
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A Mathematical Examination of the Methods of determining the
Accuracy of an Observation by the Mean Errvor, and by the
Mean Square Error. By R. A. Fisher, M.A,

1. In estimating the precision of a number of observations
two methods are in comwmon use: that of the Mean Square Error,
and that of the Mean Error. It is, I believe, usually admitted
that the former has the firmer mathematical basis, although it is
sometimes asserted that the latter is more accurate. It is not
generally recognised that the merits of tle two methods may be
compared with precision. The case is of interest in itself, and it
will be found that thie method here outlined is illuminating in all
similar cases, where the same quantity may be ascertained by more
than one statistical formula.

Suppose the probability distribution of each observasion to be
centred about a true mean m, with normal distribution and
standard deviation o, so that the chance of any observation falling
in the range dx is
_fg—mp

1
e 7 du,

a2

The unknown, o, is to be determined from 7 observations,
Xy, Xgy Xyy o . .y iy Let

nE = S(x),

no, =JZS(|T—EI )
2

and
noyt = N(w—T)%,

then o, is the value obtained by the method c¢f Mean Krror, o
that obtained by the method of Mean Square Krror, and o the
true value. Both o and o, may be adjnsted by means of appro-
priate functions of # so as to make the mean value of each of them
obtained from a number of samples agree with the true value, but
this for the moment is immaterial.

2. The distribution of o,.

[ have described elsewhere (‘‘ Frequency Distribution of the
Values of the Correlation Coefticient in Samples from an In-
definitely Large Population,” Biometrika, 10, 5o7) a method
by which the frequency distribution of o, may be established.
If =, x,, . .., 2, are co-ordinates in generalised space of n
dimensions, then any sample is represented by a single point
having the observed values as co-ordinates. Let O be the origin
and C the point at which every observed value is equal to m
then at any point along the line OC, produced indefinitely in both
directions, all the co-ordinates are equal.

Let the point P represent the sample; from P draw PM
perpendicular to OC, then it is easy to see that M is the point,

LY=Ly ==, . . Tp=T,
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and that PM?2 is
S(x—Z)t=mnao,t
Now, since the chance of any observation falling in the range da is
' @@=y
e 2a* dll,',

I

o\ 27

the chance of the sample falling in the space d, , diry, . . . diyis
X _S(a:—m)2
e 2 dx,du,, ... dig,

(oV 2

S(x = m)? =n(T—m)*+noy?,

but

and the element of volume is evidently proportional to
Ak - o, o,

so that the chance of a sample falling in the range dZdo, is pro-

portional to
_Lu:i—m)* _nagy?
e * dr.o™? ¢ * do,.

The distributions of Z and o, are therefore perfectly inde-
pendent ; the chance of £ falling in the range di is

T =m)*
\/;1' =T da s

e
0";2’"’

and the chance of o, falling in the range do, is

2
Hin—1) n—2 Y
n o, 2do, p

Shn-dl <n—- 3> ¢ o

2

We may note at once that the mean value of o, is

. (5

n— 1
e 0'2.

n

while the mean value of o,? is

As n is increased the curve rapidly tends to the normal form ;
the mean is approximately

(1-2)s,
4n

* The symbol = ! is here used in a sense equivalent to I(x) or I'(x+1),
whether « is an integer or not.

t For dx, read dx
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whence it is easy to see that the standard error of o, is
o

Vzn

If it were desired to bring the mean into coincidence with
the true value o, the value of ¢, obtained should evidently be
multiplied by

<n - 3> '
\/n 2 /-
2 (n - 2> |
— !
This correction, it it be so considered, is never of importance ;
when 7 is large the value 3 s of higher ovder than the standard
" -

error. HKven when n==2, and the correction amounts to an in-
crease of 25 per cent., the standard error is much greater, being
75 per cent. of the mean.

3. Standard error of o).

If the co-ordinates x,, .y, . . ., 2, are the deviations of in-
dividuals of a sample from its mean, the representative point lies
in a plane space of (n— 1) dimensions, in which

S(x)=o.

The frequency density at any distance, », from the origin is
proportional to
r!
e 2%,
and
7% = S(a?).

The region in which any co-ordinate has an assigned value,
x,, is a plane space of (n—2) dimensions, at a distance

X B

L
from the origin, and the frequency with which «, falls into the
range dx, is therefore proportional to

o nx?
e 2n—nada, .

Thus deviations from the mean of samples of » of a normal
population are themselves normally distributed. The deviations
from the mean of the population are, however, independent, while
deviations from the mean of the same sample are not. Consider
the distribution of pairs of values, x, and w,.

The space in which the representative points lie is parallel to
the line

I, +xy=0

Xy=uy= ... =Ty=0,
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while it makes with the line
@ =,
Ty=Ly= ... =ap=0

an angle the cosine of which is

Consequently the frequency in the range dxydz, is pro-
portional to

_L{(xl—xﬂ “+ n (L1+J32)‘}

e 2ot 2 Howe (]’L .l.IJ
__nh=1 [ xlx2 x

=g fzm-e)u”l ! —‘} + 3 d..ulrlz‘z,

showing a surface of normal correlation, with correlation co-

. I .
efficient, - between any two deviations.
n—

If the deviation be considered without reference to sign, each
is distributed from o to o with frequency,

2N -— —QE- l/,l
- & =1yt .
w(rn—1) o

and each pair with frequency,

n—t .
2("’_1) e Y eos (‘h"z) Axdr,.

N @ 2N
7ra'2\/n('n——2) (’12—2 a?

*  The mean value of x is therefore

n -1 2
o T —_
n ™

so that the mean value of o, is

as is generally known.
The mean value of x? is
=1
ol
n

and that of xy is
<Jn(n-2 +sin—1-2 >
n—1

whence it follows that the mean value of & ? is

(n—x)a( + (- 2) + sin™? )

n? n=-=1

mn

*  For x., read |[x|.
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As in the case of oy, the mean differs from the true value

by a term of the order L. When n is large this is insignificant,
n

for the mean value of o2 is approximately

n— I(rz{ I+<-7-r - I>"—"}
n 2 7LJ

/

hence the standard error i1s

a =2
N 2
As n is made large, therefore the standard error of o, tends to
bear a constant ratio to that of ¢, The former is the larger in
the ratio v/mw—2; in other words, the value of the standard
deviation, or probable error, obtained from the Mean Square
Deviation of a sample has greater weight by 14 per cent. than that
obtained from the Mean Deviation. To obtain a result of equal
accuracy by the latter method, the number of ohservations must
be increased by 14 per cent.*
4. The derivate of minimum error.
The correlation between deviations, taken positive, being of
1
n?
variance of a derivate, when = is large, because this is of order

order —, does not, as we have seen, affect the expression for the

711' We may, then, in examining the comparative variance of
different derivates ignore this correlation, and treat the deviations
as though they were independent. The term * variance” is used
here as elsewhere to signify the square of the standard deviation
or standard error; by the “relative variance” is intended the same
quantity divided by the square of the mean,

It is ecasy to verify that, although the variance is dimninished
as we pass from the derivate of the first power to that of the second.
it is increased as we pass from the second power to the third. It
is, therefore, of interest to determine for what power it is actually
a minimumn.

If 6Pu, is the mean value of 27, then

2 [~ -1 21?
=alZ| tPe Y (1_7..._.. 1 S
Ko \/-;ﬁ 2 N

* Mr. Fisher kindly allows me to correct here an erronecous statement in
my book, Stellar Movements, p. 147, footnote. I think it accords with the
general experience of astronomers that, for the errors commouly occurring in
practice, the mean error is a safer criterion of accuracy than the mean square
error, especially if any doubtful observations have been rejected ; but I was
wrong in claiming s theoretical advantage for the mean error in the case
of a truly Gaussian distribution. My formule were somewhat different from
Mr. Fisher’s, since I considered the deviations of o, from o instead of from
o2 ; but, as he points out, this correction (as 1 considered it) is of minor
importance, sand my mistake arose in the numerical evaluation of the results.
—A. 5. EDDINGTON.
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if, then, oy is the derivate of the pt* power, we take as definition
o= S0
ey

It is well known that the variance of the pth moment of a sample

of nis
p Mop — Mp

when 7 is large ; whence it follows that the relative variance of

o,P is
l(’.ﬁ&.’ — 1>,
AVrS

and, therefore, that the relative variance of o, is

(e ) (2D o

A\t \(Gp—d) 1
Putting p=1, 2, and 3, we have 71-——-:"-, —l-, and 237 8, being
2n | 2n

in the ratio 1°1416 : 1 : 1'0868.
If the relative variance is a minimum for vaviations of p, then
must

=D = NN o
(b m e ) = st e =1 1= g - 1)

Now, when p=2, the factor outside the right-hand bracket
reduces to 3, and the left-hand side of the equation is therefore 2.
The right-hand bracket may be evaluated from the definite integral,

d (7 g—tr
oo (z1) &= _ . bl
zlzlob () j) <t - e“t>c @

writing successively 1} and % for z as in the bracket, there

remams
0 . e_l
[ <g"§f-—e"'§5> P—7 / A
Jo [—e=t

- / e~tdi - 2,
0

The equation is therefore satisfied, the relative variance having
its minimum value when p is 2. The mean square deviation is
the derivate with the minimum relative variance.

5. The distribution of pairs of values of o, and oy, when n= 4.

[ull knowledge of the effects of using one rather than another
of two derivates can only be obtained from the frequency surface
of pairs of values of the two derivates. By integration with
respect to one derivate or the other, the two frequency curves can
be obtained and compared, in respect of any quality which may

2
»
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764 Mr. R. A. Fisher, Methods of LXXX. 8,

be in question; but the additional information supplied by the
mutual frequency surface is essential to a thorough examination
of the question,

When 7 is large the problem is simplified by the fact that both
curves rapidly approach the normal form centred about the true
value as mean; the only possible difference between such curves
is in the standard deviation. For small values of n the case is
much more complicated ; failing a complete expression for the
frequency surface of o, and o, in terms of n, it will be best to
investigate this surface in the single case, n=4. This single case
will be found sufficient to bring out the decisive features of the
general surface.

If x,, 2, ,, and x, are the four observations, then the chance
of all four ohservations falling into their respective elementary

ranges 1is
) ‘l 4 _S(x=m)?
- 2 g . v
( _2__> e 7 dieydeydig de,.

o w

As in Article 2, this frequency density is the product of two factors,
one depending only on T,

\/_. WE —m)*
N T Zo7 -
20t (T,

e
o 2m
and the other on a,,
0,
: e oy
———5 ! ’
(v 27r)

in which «/# stands for the element of volume in the plane three-
dimensional space,
S(e - Z)=o.

Within this space the values of (x-Z) will be positive or
negative according as the representative point lies on one side or
the other of four planes, through M, drawn parallel to the faces
of a regular tetrahedron. The surface of a sphere with M as centre
is therefore divided into 714 areas (all combinations of sign being
possible except @/l positire and all negative). Of these areas 6
are regular four-sided figures, including the cases in which two
deviations are positive and Lwo negative ; the remaining 8, regular
three-sided figures, include the cases in which one deviation is of
opposite sign to the other three. All the sides of these figures
are 60° and the angles cos™'+ 1. The fraction of the total area
included in the four-sided figures is

6
3 - —cos7l4="6490,
- ;
and the remainder in the three-sided areas is
6
~cos~lt—2="3510.

m

The distribution of o, is different in these two groups of regions,
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When two of the deviations are positive and two negative, o)
will be constant on a plane space of the type,

(&, = &) + (w0, - &) = (w0 = T) = (w,— T) =\/;:’_r . 4oy,

This space is at right angles to that which we have consideved,
namely
S(z—%)=o,

and its least distance from the centre therefore lies in that space.
This distance is ”1\/3 and passes through the centre of figure
m

of the spherical quadrangle in which the representative point lies.
[f @ be the angular distance of this point from the centre of figure

8
209c08 0=0 4/,
K

. 2 o
z.e. Cos B=Af= .t . . . . la.
w Gé

In the triangular regions the plane space over which o is
constant, such as

- - - - 2
() =) + (0, = T) + (2, — B) — (2, = F) = \/; . 404,

is not perpendicular to the space in which the representative
point lies, but makes with it an angle of 60°, the distance from
the centre to the plane of intersection is therefore

8 - [32
\/—_—.(rl cosee 60° =, 32
m 3#

R
cosf@=,/— .1
3T oy

whence

IB.

The frequency distribution of o), for a given value of oy, is
thus reduced to the frequency of occurrence of ditferent values
of 6, in two types of spherical figures. For the.quadrangles the
greatest possible value of 6 is 45°, while the least distance from
the perimeter to the centre is sin~! JE. From these 6 regions
we have

From o to sin~'—_  frequency 3 sin 646 ]
3
> I1a,

From sin—'— = to 45° frequency 3sin 9(1 —.4_0()5—1,__..1___),19
\/3 3 4 T Jz tan 6
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766 Mr. R. A. Fisher, Methods of LXXX. 8,

The greatest value of 6 in the triangles is sin—‘_l_-, and the

least distance from the perimeter to the centre is sin—! 4, therefore
from 8 such regions we have

from o to sin~1% frequency 4 sin 040
IIs.
from sin—14 to sinml.L  fre uency 4 sin 9(1_.1(05"‘ >l€
V3 4 J8tan 6 j
Substituting for # in expression II., we obtain for the distri-
bution of o for a given value of o,
from o \/E to o IE frequenc 2 do,
4 Vi 2\/ q Yy o3A/- _0'_:
p IT1a.
from 0.3\/—7-.37 to o-,\/— frequency 3\/—<l - -C()S"l r_ = >(;:'
for the quadrangles, and for the triangles
from o.,q/éz-rto 02\/— frequency 8»\/— do,
- 8 37r (r(;
- IIIB.

o
from o \/‘ Lo (ro\/_ frequency 84/ — <1_—co‘;—‘m> (r,l,

These two frequency curves are shown on opposite sides of the.
same base in fig. 1. The existence of two or more distinct curves
according to the partition of the observations by the mean, and the
existence of one or more discontinuities are no doubt characteristic
of such curves in general. For higher values of n, the right-hand
side would no longer be truncated, but would meet the base with
increasingly high contact.

From the expressions III., may he obtained the frequency
surface. For the frequency in the range do,, being, by Article 2,

2
2 -0
8vz2 of )
. 5 lo, ,
Ve @

the frequency in the range doy doy is

20 2 \
48 -5 oydo, o, '
= —_— - 2
\/’ \/’ ™ Al l
20,?
ﬁ>ﬂ>ﬁ 48 ——(r — % o Al > . 0-2dcr‘({%J
3 %2 4 ™ Vo= 20 o3

1Va,
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when two observations lie on each side of the mean, and

~z2ol
3.,,->a-1> T 128 ot g%d(rldUQ }
3 IVs

Ty

- \/g
\/7: bl >«/P 128 , (1 =3 cos—l-——-—(rl——->(r; dodo,
m V 3may? — 8o,

when three are on one side and one on the other.

FREQUENCY DISTRIBUTION OF ayfoy.

2:394

FREQUENCY

FREQUENCY

; i, )

3-687

1

L 5
I'O@ f}g_l Q] 1-2 /gf
VALUES OF /o
Fic. 1

In expressions IV. we have the complete account of the facts
of random sampling respecting the two variables o, and o, ; it will
be of interest first to obtain the frequency curves of o,.

6. The distribution of o,

The expressions I'V. may be integrated with respect to o, over
its whole range of variability from o to o ; by so doing we arrive
at two frequency curves corresponding to the two partitions of the
observations,

12 —ﬂfi - [18—2—@—‘2'2 dt ) do,
(0]

e S L AL A ¥
w t 2+1y o
and
160,° ~ _ 3._,—-12 (1 2022
32 T 3wg?! 3\/3 e 3mo? (7— g dt (](Tl \Y
e | =, b . . . B.
™3 ™ . 3°+1) o

-3
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Of these curves it is easy to calculate the moments, and thence
to find those of the compound curve obtained by throwing them
together, as is done if we consider the distribution of o, without
regard for the manner in which the observations are parted by
the mean.

The moments of these three curves and of the corresponding
curve for o, are shown in the following table :—

Ty Ty Ty,
A, B Total.
3-—95 6—“-2 1
mw m
" 1 V3
2V3 V3 2
1 N
fro2t s AGemmtSm A-ot-de ¢
Ty RELE stV3
T 96v3 ' I
9 277 4 133

" 29 9 or
—pg) b ——m (e )4 - Zer-7a)+
64" @) f64\/2 512(3(; ™) 384V2 512157 70) 384N/ 2

a here stands for cos~!%; of the numerical values we need
only cite the coefficient of variation, ‘4296 for o, and ‘4220 for
oy. The derivate of the second power is less variable even for
small values of 7, but the difference in weight in favour of o, is
increased fourfold when n is made large. The curve for o, has
not only a larger coeflicient of variation, it is also more skew, /3,
is 297 against -238 and (3, is 3°28 against 3'x1.

7. Unique properties of o,.

So far the variables have been compared only in respect of
the quantitative characters of their frequency distributions. There
cxists also in the form of the frequency surface (IV.) a qualitative
distinetion, which veveals the unique character of o,.

From the manner in which the frequency surface has been
derived, as in expressions 111, it is evident that:—

For a given value of o, the distribution of o, is independent
of o.

On the other hand, it is clear from expressions (1V.) and (V.)
that for a given value of o, the distribution of &, does involve o.
In other words, if, in seeking information as to the value of o, we
first determine o, then we can still further improve our estimate
by determining o, ; but if we had first determined o, the fre-
quency curve for o, being entirely independent of ¢, the actual
value of o can give us no further information as to the value of o.
The whole of the information to be obtained from o, is included
in that supplied by a knowledge of .

This remarkable property of o, as the methods which we
have used to determine the frequency surface demonstrate, follows
from the distribution of frequency density in concentric spheres
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over each of which ¢, is constant. It therefore holds equally
if o, or any other derivate be substituted for o,. If this is so,
then it must be admitted that:—

The whole of the information respecting o, which a sample
provides, is summed up in the value of o,.

This unique superiority of o, is dependent on the form of the

normal curve,
@)

I
¢ z0¢ dux,

aN 2T

which leads to a frequency density in generalised space dis-
tributed on concentric spheres.  Since it is sometimes urged in

T T Ll 1§ T T i

Fic, 2.

favour of the Mean Krror that it gives less weight to the large
deviations, and that these large deviations do in fact occur in
excess of the normal expectation, it is of interest to see if any
curve is related to the Mean lirror in the same way as is the
normal curve to the Mean Square Krror.

The somewhat artificial curve

|x—m|
o Af;d.z;

I -

—

/2
replaces the generalised spheres by generalised octahedra, upon
the surfaces of which o, is constant, provided Z=m. For large
values of = this condition is sufficiently approached and o, may
be taken as the ideal measure of o for curves of this type. When

n is small, and allowance has to be made for the aberrations of
#, the figure on which o, is constant is the central section of a
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generalised octahedron, as was seen in the case n=4, where
the figure over which ¢, is constant was found to be bounded
by six squares and eight equilateral triangles; while the surface
of equal probability is in general an eccentric section in which
the squares become rectangles and the triangles are not all equal.
When 7 is large, however, it does not seem unreasonable to
employ o, to samples from curves which resemble the above
rather than the normal curve. The value of B, (the ratio of the
fourth moment to the square of the second moment) seems well
fitted to provide a test. If this is near to 3 the Mean Square
Error will be required ; if, on the other hand, it approaches 6, its
value for the double exponential curve, it may be that o, is a
more suitable measure of dispersion. It should not be forgotten,

however, that the factor /% in the formula for o, s derived
2

from the normal curve of errors. The corresponding factor for
the double exponential curve is «/z, about 12 per cent. bigger.
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