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The introductory section says almost all that need be said about
this paper. In 1938 Bose and Roy found that Mahalanobis’ D?
statistic, used for measuring the ‘‘generalised distance’” in multi-
variate analysis, was of the form of (C) as defined here. Both (4)
and (C) will, I am sure, reappear in other problems, and their tabu-
lation, perhaps in a form comparable with that of the limiting distri-
bution (B) given in this paper, is much to be desired. Since (B) is
the limiting form as ny — « of both (4) and (C), the simplest ap-
proach to the problem of tabulation would seem to be to add tables
like that of (B) for ny = 144, 36, 16, 9, interpolation among which
would make the general functions readily accessible for all reason-
ably large values of ny. The distributions for small even values, if
required, are easily obtained from the elementary cases set out in
this paper.
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1. Introductory.

Of the problems of the exact distribution of statistics in common use that
of the multiple correlation coefficient is the last to have resisted solution. It
will be seen that the solution introduces an extensive group of distributions,
occurring naturally in the most diverse types of statistical investigation, and
which in their mere mathematical structure supply an extension in a new
direction of the entire system of distributions previously obtained, which in
their generality underlie the analysis of variance. The individual distributions
of this system were in each case obtained by the exact investigation of a
particular problem. It was realised only gradually that many of these distri-
butions, disguised by the different notations appropriate to different problems,
were in reality equivalent, and could be made available in practice by a single
system of tables. The remaining cases, with the notable exception of the
correlation coefficient, then fall into place as particular limiting forms of a
single general distribution. As the practical utility of these earlier solutions
depends greatly on a recognition of their place in a single system, a very brief
account of their mutual relationship may be given.

The only statistic derived from samples of a continuous variate, of which the
distribution was known before the present century, appears to be the arithmetic
mean of a sample drawn from the normal distribution. In addition, however,
two distributions which may be regarded as distributions of statistics had also
been found, namely, Bernoulli’s binomial distribution, and Poisson’s series.
Both of these distributions possess the property that the aggregate of the
values of a sample is itself distributed in a distribution of the same type. In
all three classical cases, therefore, the distribution of the statistic derived from
a finite sample was known only by a mathematical simplification of this special
type. In all other cases, approximations of unknown accuracy based on the
use of the standard error and the assumption of normal distributions had

perforce to be used.
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In 1908 “ Student “* attacked the problem of the distribution of the mean
of a normal sample measured, as in practice it must usually be, in terms of
the standard error as estimated from the same sample. He was thus inci-
dentally led to the equally fundamental distribution of the variance of a normal
sample. This latter, to which the general distribution of the analvsis of
variance degenerates when n, tends to infinity, is in reality equivalent to the
distribution found by Pearsont in 1900 for the % measure of discrepancy
developed for testing goodness of fit. From this “ Student ” was able to
derive the exact distribution (the distribution of ¢) of the mean of a unique
sample, which as subsequently appeared falls into the same system with
n; = 1. The two principal limiting forms of the general distribution were
thus known in 1908, and were available for practical application by means of
Elderton’s] and “ Student’s ”* first tables.

In 1915 the distribution of the coefficient of correlation was obtained§ by a
use of Huclidean hyper-space similar to that employed below. The same
method served at the same time to put  Student’s ” results upon a rigorous
basis. The distribution of the correlation coefficient stands outside the
analysis of variance system, but, as will be seen in the present paper, it is
brought into coherent connection with it by the distribution of the coefficient
of multiple correlation. When, however, the corresponding distribution of
the intraclass correlation was obtained||, the distribution found was of a new
and different type, which, as subsequently appeared, was the general distribu-
tion of the analysis of variance, in which the variance is analysed into two
parts representing that within and that between the classes or “ fraternities
of which the data are composed. This was the first instance of the general
distribution which from the notation there used is distinguished as the distri-
bution of z.

The recognition of the fundamental importance of the two parameters,
n, and n,, which specify the numbers of degrees of freedom in the two estimates
of variance to be compared, and the recognition of the distribution of * as
equivalent to that of an estimate of variance led, in 1922 and the following two
years, | to the demonstration that it is always the number of degrees of freedom

* ¢ Biometrika,’ vol. 6, p. 1 (1908).

+ ¢ Phil. Mag.,” vol. 50, p. 157 (1900).

1 ¢ Biometrika,’ vol. 1, p. 165 (1902).

§ Fisher, ¢ Biometrika,’ vol. 10, p. 507 (1915).

| ¢ Metron.,” vol. 1, No. 4, p. 1 (1921).

9 ¢ J. R. Stat. Soec.,” vol. 85, p. 87 (1922); ‘ Economica,’ vol. 3, p. 139 (1923); ‘ J. R.
Stat. Soc.,” vol. 87, p. 442 (1924).
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which is to be used in applying the test of goodness of fit. The further proof
that the test is only valid when the methods of estimation employed have
been efficient, binds the theory of goodness of fit cldsely to that of estimation
in the development of which the exact distribution of statistics play an essential
part.*®

Meanwhile,T a solution of the exact distribution of ¥* when applied to test
the goodness of fit of regression formuls had shown that a modification was
required in this case, which, in fact, involved dropping the approximate assump-
tion that n, was infinite, and reduced the general distribution to the same form
as that already found in the study of intraclass correlation. At the same time,
the distribution of the correlation ratio, v, derived from uncorrelated material,
was shown to belong to the same class with n;, equal to one less than the number
of arrays; and the distribution of regression coefficients, whether total or
partial, and whether employed in a linear or a non-linear formula, were shown
to conform to ° Student’s” distribution. The solution of the distribution
of the correlation ratio 7 really included also that of the multiple correlation
coefficient for samples drawn from uncorrelated material, the distribution of
which was given in its appropriate notation in 1924.1

In the same year§ it was found possible to use the representation in hyper-
space to demonstrate that the distribution of the partial correlation coefficients
is exactly the same as that primarily found for the total correlation, provided
that unity is deducted from the sample number for each variate eliminated.

Each distinet type of distribution found has thus occurred repeatedly in
different investigations ; whereas, however, nearly all cases are reducible to
a common type capable of exact treatment by the same simple arithmetical
procedure,|| and requiring the same fundamental table, the distribution of the
(intraclass) correlation coefficient, total or partial, stood aside from the main
system, and was capable of only an approximate treatment by using the
distribution of z.

The distribution of the multiple correlation coefficient, apart from the
practical necessity of applying to observed results sufficiently exact tests of sig-
nificance, is thus of great theoretical interest owing to the close connection which
must exist between it and the simple correlation coefficient, on the one hand,
and, on the other, to the form already obtained from uncorrelated material.

* ¢ Phil. Trans.,” A, vol, 222, p. 309 (1922).

+¢J. R. Stat. Soc.,” vol. 85, p. 597 (1922).

1 ¢ Phil. Trans.,” B, vol. 213, p. 89 (1924).

§ ¢ Metron.,” vol. 3, p. 329 (1924).

(| ¢ Statistical Methods for Research Workers,’ 2nd ed., Oliver & Boyd, Edinburgh, 1928.

For intraclass, read interclass.
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The latter solution involves, besides the variate and frequency, the two
parameters n, and n, and is therefore a functional relation between four
variables. The new solution necessarily involves also the multiple correlation
in the population sampled, making a fifth variable ; complete tabulation of
the results would thus require a table of fourfold entry; even confining
attention to specified points of special importance, such as the 5 per cent. and
1 per cent. points, a procedure that has made tabulation practicable for the
distribution of #, we should still have tables of triple entry. The problem of
adequate tabulation is certainly not insurmountable, but to ascertain the
proper method to adopt in its presentation will require further study of the
nature of the function. The table of the 5 per cent. points of the distribution
of B (Section 5) should in the author’s opinion provide sufficient guidance for
the greater number of practical applications.

2. Method of Solution.

The primary problem of the sampling distribution of the correlation co-
efficient between. two variates, 2 and y, was originally solved by interpreting the
n individual values of either variate appearing in the sample as the co-ordinates
of a point in Euclidean space of » dimensions. It then easily appeared that
the correlation coefficient between the variates was the cosine of the angle
between the two radit vectores drawn from the origin to points, the co-ordinates
of which represented the deviations from the mean of the sample of the two

variates concerned. .

The frequency with which #, the observed correlation coefficient, falls in
any infinitesimal range dr may be usefully thought of as the product of two
factors, one being the generalised volume in which the second sample point
may lie so that the correlation may fall within the assigned range, this value
being independent of the correlational properties of the population sampled,
while the second is a factor by which the frequency density in any element of
volume is modified by the correlation between 2 and y in the population.
With zero correlation in the population, the frequency density at any point
depends only on its distance from the origin, and since for any given distance
the point is free to move over a sphere in (n — 1) dimensions, one dimension
having been eliminated by using the sample mean as origin, it is easy to see
that for this case the frequency distribution of r is given by

_ GO e
Y= fw—mtys T
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The generai solution of the primary problem*

2)F(n=1) (] 42yt (1—9) j ? dz .dr,

o (cosh z — pr)™!

may be written with advantage

df = [$(n—3)]! (1 =72yt (=9 g

T =01 /=
< 3 (n—2)]! (1 — 92)'}-(”-1) J-t ___.._____.dz .
(2 (n—3)]!\/x — (cosh 2 — pr)*?
The second factor then represents the effect upon the frequency density, in

the region represented by dr, of a correlation p in the sampled population :
the numerical part of this factor is merely such as to reduce it to unity when

p=0.
With multiple correlations we are concerned with the correlations between
a dependent variate y, and a number of independent variates, ;, z,, ... ,

and, moreover, with the correlations of the latter among themselves. It was
not at first obvious that the sampling distribution did not involve this whole
matrix of correlations, in which case, even if it could be determined, it would
be of no practical use. The argument, by which it can be seen to depend from
only a single parameter of the population, is therefore of special interest,
as by its general character it is applicable to a number of statistical problems,
and leads in this case directly to the solution.

The multiple correlation of y with z;, z,, ..., #,, is the correlation between y
and that linear function of #,, #,, ..., #, with which its correlation is highest.
If, therefore, for the dependent variates, z, we substitute an equal number of
new variates, £, defined as linear functions of the n, variates, z, then the
multiple correlation in the population, and in every sample from it, will remain
unchanged. In particular we may choose as &;, that linear function the corre-
lation of which with y in the population sampled is highest, and for the remaining
variates, £, we can choose linear functions of z, uncorrelated with £, or with
each other. In choosing the last of these we have no more than n; — 1 con-
ditions to be satisfied by the ratios of n, coefficients. If this is done it is easy
to see, or to demonstrate, that all of the variates &, except £;, have zero corre-
lation with y. Using the variates £ the sampling distribution of the multiple
correlation R can only depend on the correlation in the population sampled
between £, and y, namely, on the multiple correlation in the population
sampled, which we may designate by p.

* Fisher, ¢ Biometrika,’ vol. 10, p. 507 (1915).
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Distribution of Multiple Correlation Coefficient. 659

The geometrical interpretation of the multiple correlation coefficient R is
that it is the cosine of the angle between the radius vector of the dependent
variate y and the planar region including the radis vectores of the n, independent
variates ; its distribution when p = 0, which depends only on the geometrical
elements of volume, has been thus shown* to be

= 3y +ny—2)]! 2)i(—2) (] __ R} -2 § (R2
I B MG ) TR,

where 7, the sample number, is replaced by n, + n, 4 1; but in what way
this distribution is modified when p is not zero has been hitherto entirely
unknown.

It is evident, however, that since we have reduced the problem of the
multiple correlation coefficient to one involving only a single correlation, the
frequency density of any configuration will be affected merely by a factor

[é (n . 2)] ' (1 - 2)}(';—1) * dZ
Gzt

in which r is the correlation in the sample between y and £, ; this factor will,
however, vary, because r varies in the different configurations which give rise
to the same value of R. Consider now a third variate, Y, representing the
linear function of the independent variates which in the sample is most closely
correlated with y, or, in other words, the prediction formula for y. Its corre-
lation with £, we may represent by cos ¢, and since the partial correlation of
y with &, (or any other linear function of the independent variates) when Y is
eliminated, must be zero, it is evident that

r = R cos {.
For a given value of ¢, therefore, the density factor is constant in the different

configurations which give the same value of R, but, in the absence of corre.
lation, the frequency with which ¢ falls in the range d{ is evidently

= (coshz — pr)"~1’

[% (nl — 2)] ! gipt-2 ‘pd\p .
(3 (m—3))! V= ’
hence integrating over all values of ¢, the density factor becomes
(L= gt (3 (n, + my — 1]
™ (3 (n, + 7o — 2)]!

X[t(nl—2)]!rd\”'m : sin™~2 ¢ . dz

[3(n, —3)11 o cosh z — pR cos )+ '

* Fisher, ¢ Phil. Trans.,’ B, vol. 213, p. 89 (1924),
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and the complete expression for the distribution of R is

df = 3 (ny +ny — 1! (1 — g2)} (mtra)
%( "2}?[ (ny — 3)J1° =
RZ +(n,~2) _ R2 3 (n,—2) 9 Sinn, 2 4’ dz
x s (L — g @) T2y [ o e

3. The Hypergeometric Form.
Apart from the factor,
(1 — 2yt (mtna),

the density factor may be reduced to a hypergeometric function. For in the
expression,

1 [3(n + my — ]! '[%(nl-*.‘z)]!rdﬂm st § . de
e [F (g +ny—2)] [F(ng —3)1tJo —w (cosh z — pR cos )+’

the integrand may be expanded in the uniformly convergent series

$ (g +ny+2—1)" cos® § sin™?

¥ (amey
Zoim tng— DT @)1 coshnrmry F 00

in which the odd powers of cos ¢, which evidently disappear on integration,
have been omitted. Remembering now that

2t 1 "~ _[%(2‘:—1)]![1(” — 3)]!
Jcost s g = S SR BT,

and

r dz B+ 2% —29]1VT
—w COSh™ Tty [3(ng +ny + 26 —1)]1

we have a power series for the integral, which may be written

Gy —2]! B0+ +2—2]8
(3 (ny 4 ny — 2)] im0 !5 (my + 2t — 2)]!

(e* RY)',
or

F[}(n, + ny), %(ny+my), In, p*RE,
so that the distribution of R obtained in section 2 takes the form

I YO | LI T
Uf = e F S g (et Bl ), -ty 7R

X (R2)1(m-2) (1~ R (m—2 (RD). (A)
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4. Elementary Cases.
4.1. When n, ts even.—When n, is even the identity,
Fli(n + ny), % (”1. + n), Imy, P*RY
= (L — p®RY)~HutIm B (—fny, — ny, ny, o°R2),
gives a terminating series.
Thus, when n, = 2, we have the series of distributions

0f = (1 — g2+ (1 — @RY) IO+ (n, + 2¢7RY R~ R,
having the special forms

(2.2) df = (1 — %2 (2 + 2R?)/(1 — (*R?)?. R R,
(3.2) df = (1 — g¥%2 (3 + 20*R?%)/(1 — ¢*RY)”? . R? R,
(4.2) df = (1 — 6?8 (4 + 26°R)/(1 — o*R2)4. RO 4R

‘when 7, is 2, 3 and 4.
When n, = 4, we have a somewhat less simple series of distributions
f _ 1 92)‘}‘("1"'4)

(1__ 2R2)§(n.+8)

{1 Bt g gee -2 (1R 4 (RY),

and when n, = 6, a series which may be written

3 (1 — p?)im+® 2 4 2 4
df = 21;”2;“"1“2) {” L(n ;‘ 4) (gq +4 +3 (ny + ) (”1 + 4) o*R?

+ 32t S e RO} RA (1 — RApd (R,

an expression in which the general method of formation of the terms is readily
seen. ‘

4.2. When ny and ny are both odd.—A second group of cases in which the
frequency element is expressible in finite terms in elementary functions occurs
when both #; and », are odd. If, for example, we put n, = 3 in the expression

j dtbj sin™~*¢ . dz
0 w (

cosh z — pR cos {)utm’

and integrate with respect to cos ¢, we obtain
® dz
——"O_{(cosh z — pR)~™+? _ (cosh z 4+ pR)"™*%},
J’-’uo('”lz"l‘2)i’R( eR) ( e }

a form of integral which, as was shown in the case of the simple correlation
coefficient®, is expressible in finite terms by the aid of the circular functions.

* Fisher, ¢ Biometrika,’ vol. 10, p. 507 (1915).
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For
J‘w dz _ 26
-wcoshz—pR  sin 6’
where cos 8§ = — pR, and 6 does not exceed the bounds 0 to 7 ; hence
j.w dz _ 2 < d >n.+1 9
—w (cosh 2 — pR)"*2  (n, - 1)!\dcos 6/  sin 6’

and therefore, if n, is odd,

1

m j {(cosh Z - pR)—(n.+2) — (cbsh 2+ PR)—(n.+2)} dz

_ 4 ( d >n=+1 sin~! R
(ny +2)! R \d(pR)/ /1 — @RY’

Hence for the determination of the simpler distributions of this series we
require

<cos i dd;)z coqz é = 00813 ¢(¢ + 3 tan ¢ + 3¢ tan? ¢)

d_\ ¢ __1
d 6 ¢ _ 9
(°°8 ¢ d¢> cos ¢ cos’ ¢(25¢ + 231¢ + 52541* - 1190¢°

+ 15754t -+ 115566° + 11554¢°,
which lead directly to the distributions,

31) df= 1.1;(1 — 2 (1 — R~ (1— *R2)2 {3 + « (1 -+ 2¢°R%)} R¥R,

in which « stands for

in—1

(33) df= 57—:(1 — M3 (1 — R} (1 — oRE)~* RER
% {6 (11 4 10p*R?) + 3a (3 - 24¢*R® + 8p4RY)},

(35) df= 517', (1 — g?)* (1 — R2)P8(1 — o*R?)~SR2dR

X {7 (33 + 104¢2R2 + 28p%R4) + 50(5 + 90g2R? - 120p4R¢ -+ 16¢°R%)}.
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A similar process of integration is available for other odd values of n,;; for
n, = b we have the distributions

(6.1) df—-——p-z(l — )3 (1 —Ry)H(1 — R R24R
X {1 4 14p*R? + a (— 1 4 8p?R? - 8pR4)}.
=== _§_. — 2)4 — R2) — 2R2Y—5 R2
(5.3) af 87:93(1 p))t (1 — R} (1 — pR?)™° R*dR
X {1 + 68p*R? + 36p%R* + « (— 1 -+ 18p2R? - T2p4R4 + 16p°R®)}.
_ 1
if = 64mp?
(5.5) X {25 + 4678p°R2 +- 8664p4R4 4 1648p°R®
+ a (= 25 + 800pR2 }- 7200p*R* -- 6400p°R® + 640p°R®)}.

The polynomial coefficient of « in the hypergeometric function is itself easily
expressed in terms of a function of this sort, in the forms

%P (1 — R%¥2 (1 — o?R%)~7 R*dR

> 52;'..45'7‘.1 - (27)»1-!?;:.22)2 " (— R4 B[ (n,my—2), (mytny—2),
32— n), "R,

or

n—2 TR2\ (k1) [...’ﬁa _mtng—2 _1_]

T (g PRV =5 2 7 @Rl
from this the remainder may in any particular case be found fairly essily by
equating coefficients in the initial terms of the expansion of

F ( ‘}(nl + "2),‘}(”'1 + ”z)s %'nl’ 92R2)°

5. The Problem of Large Samples.

Some confusion has been caused by the fact that, while for any finite value
of p, however small, the distribution of R will be normal for a sufficiently
large sample, yet when p =0 the distribution is far from normal. The
approximate distribution appropriate to the theory of large samples, for
different values of pV/n,, may be found as follows.

If we write ngp? = B2, nR% = B2, and allow %, to increase indefinitely, the
limiting form taken by the general distribution is

= @B™D pe e { 1 B 1 g*B ) } 2
Fr) I L B e IS
which may be written in terms of a Bessel function as
(BJig)t -9 e~ ¥#) Ty o) (i8B) . d (}BY).
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When n, is odd, these may be reduced to elementary functions; thus for
n, = 3, we have

df-m_.{ —3(B~ ﬁ)’___.e-{r(B-Pﬁ)?} dB,

IRYE

an interesting distribution which connects the extreme forms found by making
B zero for uncorrelated populations, and large for populations with a significant
though still small correlation. When g = 0, we have

df = (2/n)* B2 exp (— 3B?) dB,
the distribution of X for 3 degrees of freedom, while when { is large, B is
distributed normally about B, in the form

df = (2r) “*exp{— } (B — )} dB,

and therefore R is distributed normally about p, with variance which may be
equated to 1/n,.
When n; = 5, the system of distributions is

of = 7= 5 |(1— g5 e (- 1B — 83
+(1gp e (—1(B10)3 ] aB

and when nl =17

af = 7= \(1= 35 * o o2 - 1B — B

~ (14 g5+ ) e (= b+ B3} B

In the cases in which », is even, the probability of exceeding a given value B
may be written

d 2t
) (—2) ,~38* z !3 ghtat=1 e-—w dx:
an ¢ 1= 02% 1 [} (4 2t —2)]! ’

using the fact that when & is odd

°° o e gy i [ B2 B Bt
th(k—l),[%(k__l)]!e dw=c¢ l1+2+2.4+"'+2.4...(k——1)}’

the integral becomes

$ e—ée'(%@z)t t*i%-z)e—w-( B2)*

¢ t! ul’

0 . u=0
involving ouly the terms of two Poisson Series with mean values }£* and B2

1f t and u be regarded as variates distributed independently in two such series,
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the probability may be identified with the probability that » should not
exceed ¢ by 3ny, or more.

The distributions developed in this section are limiting forms appropriate
to large samples, in which exact account is taken of the positive hias of small
observed multiple correlations; they will provide at least an approximate
treatment of those cases of great practical importance in which #, does not
exceed 100, and in which, therefore, the positive bias is prominent for observed
values of R which are not small. The fact that sampling errors of the simple
correlation coefficient have been successfully represented by a normal distri-
bution by means of the transformation z = tanh™! 7, suggests that pending
fuller tests than are at present practicable, the transformation

B=4nytanh 'R, B=Vm, tanh™?p,
will supply tests of significance of precision, sufficient for practical purposes,
in the important region alluded to.
Table I (table of B) shows the 5 per cent. points of these distributions, for

Table of 5 per cent. points of the distribution of B.

Value of n,
Values of
1. 2. 3. -~ 4. 5 6. 7
0 1-9600 24477 27955 30802 3-3272 3-5485 3-7506
0-2 1-9985 2.4720 2-8140 3-0955 3-3405 3-5602 3-7613
0-4 2-1070 2-5419 2-8680 3-1408 3-3796 3-5951 3-7930
0-6 22654 26497 2-9533 3-2125 3-4426 3-6517 3-8445
0-8 24505 27856 3-0640 3-3076 35268 3-7278 3-9144
1-0 2-6461 2-9398 3-1941 3-4216 36201 3:8210 4-0005
1-2 28451 3-1059 3-3386 3-5505 37462 3-9289 4-1008
1-4 3-0449 3-2796 3-4935 3-6911 3-8756 4-0491 4-2134
1-6 32449 3-4584 3-6561 3-8408 4-0148 4-1796 4-3363
1-8 3-4449 3:6410 3-8246 3-9978 4-1620 4-3184 4-4681
2-0 3-6449 3-8263 3-9976 4-1604 4-3158 4-4645 4-6074
2-2 3-8449 4-0137 4-1743 4-3278 44750 4-6166 4-7531
2-4 4-0449 42027 4-3539 4-4990 4-6388 4-7738 4-9043
2-6 42449 4:3932 45359 4-6735 4-8065 4-9353 5-0603
2-8 4-4449 45847 4-7199 4-8506 4-9774 5-1006 5-2204
3-0 4-6449 47772 4-9055 5-0301 5-1512 5-2691 5-3840
3-2 4-8449 4.9705 5-0926 5-2115 5-3273 5-4404 5-5508
3-4 50449 5-1644 5-2809 5-3946 5-5056 5-6142 57204
3-6 5-2449 5-3589 5-4703 55792 5-6857 5-7901 5-8924
3-8 5-4449 5:5539 | 5-6606 57650 5-8675 5-9679 6-0665
4-0 56449 57493 5-8516 5-9521 6-0506 6-1475 62426
4.2 5-8449 5-9451 6-0434 6-1401 6-2351 6-3285 6-4204
4-4 6-0449 6-1412 6-2359 6-32980 6-4206 6-5109 6-5998
4-6 62449 6-3376 6-4288 6-5187 6-6072 6-6945 6-7805
4-8 6-4440 6-5342 6-6223 6-7091 6-7947 6-8792 69625
5-0 66449 6-7311 6-8162 6-9002 6-9831 7-0649 7-1457




666 R. A. Fisher.

values of B from 0 to 5 and of n, from 1 to 7. The values tabulated are the
values of B which will be exceeded by chance in 5 per cent. random trials, and
which therefore give a presumption that B is really greater than the value
postulated. Thus, when n, = 3, it may be seen at a glance that a value
B = 5-7 indicates that B probably exceeds 3-8.

For a great part of the labour of constructing this Table I am indebted to
Mr. A. J. Page, 1.C.8., whose assistance in my laboratory while on leave has
thus enabled me to press forward with the theoretical investigation of the new

distributions.

6. The Probability Integral.

For calculations involving finite probabilities of occurrence, including tests
whether an observed R is or is not significantly discrepant from a hypothetical
p, it is not the frequency element but its integral that is required. It is
fortunate that the frequency distribution we have found when n, is even leads
to a probability integral of a tolerably simple form.

The frequency element

_ aimam M M —2 (Rt (u-2)
= 2 3 —2)1!
A —RY™D Tty mtny .
QVw—2n!F[lz © T ”glﬁﬁﬂdam,

X

may be written

— ming) o Bl 4 my 20— 2)]1% , (R2)t (m+2t-2)
(1 — et +)t§0 [%(xnl+znz—2)]!t! pt[%(n1+2t——2)]!

(1 — Rpm-2 2N

pYOe I

but if n, is even

‘*R’ ny + ng + 9% — 92 | (RZ)%(nx+2t~2) (1— Rs)}(n.—il) d(R’)

Jo 2 [3(n, + 26— 211" [} (5 — 2)]!
is
Rn,+2t {1 + 'n] ;’ 2t (1 — Rz) + ('nl + Zt) (2”1:"‘ 2t + 2) (1 — Rz)z __I_ .
(ng +2t) ... (0 +2t 4 ny—4) 4 "
LW ...1(n2—2) : (1 — B 2)}

or

oD (1 — B [ (ny + 2 + 2p — 2)]! (Rayb 20,
bmo P! [} (n; + 2t — 2)]!
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Again
$ (g +ng+ 26— 2)1! 2 [§(n + 2 + 2p —2)]! (RR)} (20
o Bm =20t Bnt 23!

is

m B2 -l nin +n n+2 n
S F vy p(utth, wid N, om)
or

(3 (n +2p —2)]! R™ ne
(3 (n, —2)]! (1 — p?R2)tmtmt2p) F <"' » - ‘22 , -51 , 92R2> ,

which terminates in p -} 1 terms, and is equivalent to

b (ng)! B GRY w(—p — Mt =2
(3 (e — 2p)]1 " (T — @R T "\ ™ P 2

n—2p+2 1 )’

) ’ oR3
or
(3ny)! R™ (=) (__p ANy mg—2p A2 1 )
(3 (ng —2p)]! " (1 — p*RECtm) o2 2 " 1—-p'R2/

The probability integral, when n, is even, may therefore be written in the
forms

e[, +2p—2)]! (1R
— t(t+n) R 1
(1 P’) ¥ . R péﬂ [% ("1 — 2! D U (1— szz)i(n;+n,+2p)

F(—p’ _7_;27 %1: szs)r

or .
1 — o2 \}F(rtny) nli(n{~2) v (3n2) ! _ paw
= ® 2 gmoapi R

e R M —2p+42 1
F( p’ 2 ’ 2 4 1_93R2>-'

both of which terminate in % (ng + 2) elementary terms,
When n, = 2, we have the simple probability integral
{(1 — )1 — Psz)}i (m+2) R

when 7, = 4, it becomes

1___2>i(m+4){n1+4 1—R 2}, ny
(1_922112 Tt [ (1 RN R,
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and, when 7y = 6,

BE A e  (CETOER TS 3
1= ?RY 2.4 1— 2R2)

~mt6 + 62— 3R2) © (L — 3R+ 3R‘)} R™.

2Rz
It should be observed that the coefficient of { 1 — R?/(1 — R}’ is given by
HCEELIES A ERUES
[3(n, +ny—2)]1 p!? da® z

when = — 1.

1. Extension of the Analysis of Variance.

The distribution of the simple correlation coefficient, although one of the
first sampling distributions to be determined with exactitude*, has
hitherto occupied a somewhat isolated position. For all the exact distri-
butions of statistics since discovered have grouped themselves in a single
system ; they are all amenable to the same technical procedure known as the
analysis of variance ; and all may be reduced to an equivalent problem of the
distribution of the difference of the logarithms of two independent estimates of
variance, based respectively upon », and n, degrees of freedom.

The distribution of such an estimate s, derived from n, degrees of freedom
is given by

: 2
af = [—%—(7’;1—]_—2)—]161% (m=2) ¢~ dt,, where t, = %1521— ,
and o is the parameter of which s, is the first estimate,

If, now, t, = n,s,%/26% and

z == log s; — log s,,
it follows that
ty == (nyny) € ty,

and the simultaneous distribution

1 L(ne2) — -
Af = g Em=D =t gy 1 4 #m—2) o~b gy
if 1 1 0% (ny 2 2

[ (n — 2)]! — 2!

may be written

df =

g Ny p2s
2 M 2 >%"‘ RILALE) e" 1+ " ) dtydz ;

(3 (ny — 2)]! [§(np —2)] !<n2

* Fisher, < Biometrika,’ vol. 10, p. 507 (1915).
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this expression may be integrated with respect to t; to yield the distribution
of 2, in the form

df —] 2 [% (nl + ,n-a - 2)] ! . ng‘k"’z rnlinx e”;’ )
[{’ (nl - 2)] ! [% ('”'2 — 2)] ! (71,2 -+ n, 32”)4‘ (ny+ny)

dz,

completely independent of the unknown variance.

By the insertion of the appropriate values of n, and n,, including the
important bounding values of unity and infinity, the appropriate distribution
of z for the analysis of variance is obtained. In the case, for example, of the
multiple correlation coefficient drawn from uncorrelated material, », is equated
to the number of independent variates, n, + n, + 1 to the sample number, and
2z to

log (R?/n,) — log (1 — R?/ny).

It was from the first obvious that this system was capable without formal
modification of extension to the case in which s; and s, were estimates of two
different parameters o, and o,; for in such cases we have only to write
¢ = log 6; — log oy, and the distribution found above will be that appropriate
to the variate z — .

The new system of distributions found for the multiple correlation coefficient
derived from correlated material is not only a generalisation of that previously
found* for the simple correlation coefficient, but provides an extension of a
different kind from that mentioned above to the analysis of variance. For the
limiting distribution found in section 5 (distribution of B) may be interpreted
as the distribution of the sum of the squares of », variates normally distributed
with equal variance, but not with zero means as in all cases previously discussed.

To show this, let T = é%"p7§1 (¥, — @)%, in which z,, ..., z,, are variates
distributed independently about zero with common variance o Let
£ = 8 (az)/o8 (a?), then & will be normally distributed about zero with unit

variance, and if we write }y? for T — % (£ — V'8 (a¥)/o)? or %g(wzlcz) — 38,

which is the sum of the squares of (n, — 1) quantities independently distributed
about zero with unit variance, it appears that the distribution of x? is of the
familiar form

i (nll_ 3)]! (Bt e d (3,

and is independent of that of £, namely (2m)™ ¢~ dE,
* Fisher, ¢ Biometrika,’ vol, 10, p. 507 (1915).
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If, now, B is written for V8 (a?)/o and « for £ — B, it follows that
=T — 3,

and as the same value of 2% is provided by the two values of &, B 4 V22, the
frequency element required from the distribution of £ is

1
\/ o
only positive values of z being now considered. Substituting for x? in terms of
T and z, the frequency distribution of the latter two variates will be given by

1 2 g
e (T — 12)3 (0=3) —3pt ,~T
af o3 (T — }2?) dr . \/%e e~ T cosh (Bz) . dz.

{emt B2y 1 g~4(6~2") g,

For a given value of T, the variate z cannot exceed V4 2—'1.‘, and the random
sampling distribution of T is therefore found by integrating between 0 and v/ 2T.
Expanding the hyperbolic cosine in powers of z, and integrating term by term,

gince
Jm (T — La2)t (m-3) ™ B
0 (2p)!
— B@p— DIy —3)]! i (n,+2p—2) 25(21:—1)_&2.’_,
(3 (m + 2p — 2)]! (2p)!

we have the distribution of T in the form.

i o T-}( ny+2p—-2) @21’
df =¥ e T 3 dT,
/ ot I =211 T 5]

or
df = e—iﬁ‘

T (m—2) - 1 1 (T2
Forn®” L+ )+ gy B+ 28
which is the B-distribution of section 5 if T is equated to $B%.

This interpretation of the distribution previously obtained adds greatly
to its importance, for it is seen to replace the x* distribution of the analysis of
variance for cases in which the sum of squares corresponding to n, degrees of
freedom is derived theoretically for non-central deviations with fixed central
displacements. This will be similar to, but not identical with, the case of
the », degrees of freedom in multiple correlation in its proper form ; for although
these are non-central, the displacements will depend on the variation in the
sample of the independent variates, and this will vary from sample to sample.
In many cases, however, such as the dependence of weather upon the position
and altitudes of a number of fixred meteorological stations, we are not interested
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in the effects of possible variations in.the positidns of the stations, but solely
in the possible variations of the weather at these spots. In fact, the problem
of practical importance is often that in which the central displacements are
constant, and although it may be urged, rightly enough, that to such cases the
purely empirical concept of multiple correlation is not the most appropriate
approach, yet it remains true that of the practical applications of multiple
correlation methods many are of this kind.
The airect extension of the analysis of variance for non-central squares
may be completed by writing
1 —2) T N o
df=mt2§(”' Ne~tdt, and il n—;ez,
then, if, in spite of the caution above, we choose to express our results in terms

of R,

1— R 1 —Re d(R) T

and the distribution of R is found by integrating with respect to T from
0to o the expression

S SN T 7S <1~—R2>'*“’ dR?__ 2 T (tmtio- gw
[} (ny—2)]! R2 R (1—R?) = o[} (n,+2p—2)]! 2°. p!

a process which yields

- (LR e & (flntony 12 2)]) (REGY
R2)X )[% i e p:o [élnl—}f?,p——2)]' >l d (R?),

df = (

or !
—__ [mtn,—2)]! m~2) (1R (1s—2) —1p* ny+n, R2B?
Y = 2] 1T T ) (IR0 e {14k

(n1ny) (n+ny+2) (R2E? 7 (R2 (
lnl(le+§) 221 < 2 >+ '}d(R)’ (©

a third general distribution of this interesting group.

Although it will not be possible within the limits of this paper to give an
account of the properties of the distribution of Type (C), beyond indicating
their analogy with those of Type (A), it should not be overlooked that in the
problems in which the multiple correlation ceefficient is actually employed,
distributions of Type (C) will be, owing to the absence or irrelevanee of
sampling variation in the variances of the independent variates, of at least
a8 frequent occurrence as those of Type (A).
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A typical example of the distinction here drawn is provided by the correlation
ratio. If corresponding to any value @ of the independent variate a number of
values n, of the dependent variate y is observed, then the correlation ratio
72 of 4 on « is defined by the relation

2 _ S{n (7. — 5%
1-— 7]2 S (?/ - —g:c)2

in which y, is the mean of y in any array, and ¥ is the general mean ; the
variance in all arrays is supposed equal, and the summation in the numerator
1s applied to the several arrays, while that in the denominator is applied to the
whole of the individual observations. In most practical cases the idea of a
sampling distribution of %? can only be given a definite meaning by supposing
the number 7, in each array to be the same for all samples. In such a case
the distribution of %2 will be that of R? in distribution (C), with n, equal to one
less than the number of arrays, and n, + n, + 1 equal to the total number of
observations. If, however, the numbers n, be regarded as subject to sampling
variations, then the distribution (A) may be used, and will be exact, apart from
grouping errors, if the expectations of y for the values of = in the sampled
population are normally distributed.

Summary.

By an appropriate linear transformation of the independent variates it may
be shown that the sampling distribution of the multiple correlation coefficient
does not depend on the whole matrix of correlations between these variates, but
solely upon the multiple correlation in the population sampled.

The actual distribution (A) may then easily be obtained by similar methods
to those by which the distribution of the simple correlation coefficient has been
obtained.

The frequency function involves a hypergeometric function of p*R? which is
a rational function when #; and n, are both even, a,lgebra.id when n, only is even,
and reducible to circular functions when #, and z, are both odd.

The case of large samples yields a series of distributions (B) of great interest,
involving Bessel functions, which connect the x2 distributions with the Gaussian,
and are intimately related to a double Poisson summation. Owing to the
practical importance of this limiting form a table of its 5 per cent. points is
given up to seven independent variates.

When n, is even, the probability integral of the general distribution is
expressible in finite terms which are developed in section 6.
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The (B) distribution of Section b replaces the 2 distribution in the analysis
of variance if the squares summed are non-central. An analysis of variance
so extended leads to a third group of distributions (C), closely related to (A),
and tending like it to a common limit (B). The distinction between (A) and
(C) arises from the fact that in cases proper to the multiple correlation the
central displacements will vary from sample to sample owing to variations in
the second order moment coefficients of the independent variates, and for such
cases (A) is the correct distribution. The type (C), however, is of frequent
occurrence owing to the absence or irrelevance of such variation.
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