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THE MOMENTS OF THE DISTRIBUTION FOR
NORMAL SAMPLES OF MEASURES OF DEPARTURE
FROM NORMALITY

Author's Note (CMS 21.15a)*

* Reproduced from Contributions to Mathematical Statistics (1950) by permission of John Wiley &
Sons Inc.

In an earlier paper (Paper 74) it had been shown that mean pow-
ers and other symmetric functions of the sampling distributions of
the k-series of symmetric functions of the observations could be ob-
tained from the combinatorial properties of certain bipartitional
functions, thus reducing to direct arithmetic the very heavy algebra
by which this type of problem had ordinarily been treated. Equiva-
lent properties are shown in this paper to be possessed by the ratios
of such functions to the powers of the same degree of the estimated
variance, ko, in samples from a normal population. We thus find
exact formulae in place of the approximate series arrived at in the
earlier publication, Section 11 of which is here superseded. The re-
currence relation of Section 2 and the use of symbolic operators in
Section 5 may well have applications beyond the immediate problem.
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1. The Appropriate Symmetric Functions of the Observations.

If z, ... z, are the values of a variate observed in a sample of n, from any
population, we may evaluate a series of statistics (k) such that the mean value
of k, will be the pth cumulative moment function of the sampled population ;
the first three of these are defined by the equations :

1
kl = ;i S(x):

1
ky = —— 8 (z — k)",

J— n .
ks—mS(w——kl)”,

then it has been shown (Fisher, 1929)* that the cumulative moment functions

* R. A. Fisher, “ Moments and Product Moments of Sampling Distributions,” ‘ Proe.

Lond. Math. Society,” Series 2, vol. 30, pp. 199-238 (1929).
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17 R. A. Fisher.

of the simultaneous distribution, in samples, of k;, ks, ks, ..., may be obtained
by the direct application of a very simple combination procedure.
The simplest measure of departure from normality will then be

Y = ko8,

a quantity which is evidently independent of the units of measurement, and
in samples from a symmetrical distribution will have a distribution sym-
metrical about the value zero. In testing the evidence provided by a sample,
of departure from normality, the distribution of this quantity in normal samples
is required.

Hitherto the exact values of the moments of this distribution have been
unknown, though a method of calculating the moments for large samples,
in a series of any number of powers of n7%, has been given. It will be shown
that the distribution may be investigated by means of a recurrence relation,
which yields the moments of the distribution and seems well adapted for the
Investigation of its other properties.

2. The Recurrence Relation for v.

For values of p from 1 to n — 1, let us define &, by the relation

1
gﬂ:(xp_kl) +n_~1(mn”‘k1),
or,
z—k —-E—L(x — k)
17 n— 1 n 1/
Then evidently
7n—1
8 (&) =0
and
8 (2, — ky)? = (@a— k )2<1+—1—> +"8 @
1 (B = ha)" = (20— n—1 1
while
$ (5, — b = (o = 1P (1 = ) = =2, — B) S (8 + 8 (@)
1 ? 1 n 1 . (n . 1)2 n—1v? 1 ’
so that, if

2 (@, — k)% = cot? 8. 8 (),
n—1
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we may express the ratio

nvVn — 1 . o
e R U
in terms of the ratio
=DVR—2¢ s . qan

LVE— 28 () + 8 ()

Yn—-1 =

in the recurrence relation

"= _«71&)(17;;(;? I sind 0.y, — ;\_{7—; cos 0sin? 0 + Vn cos? 0, (1)
where y,_, is the value of y calculated from the sample values excluding z,,
and v, is the value calculated from the whole sample of # values.

The value of the recurrence relation in this form lies in the fact that the
distribution of 6 is independent of that of v,,_;, for whatever may be the values
of Epy ey by =V S—(——?), if ¢ be the standard error of the population sampled

the distribution of
t=(z, — k)Vnn—1
will be

= ¢~ P2t ;
o4/ 2r

¢ =t[V8,

where S stands for S (£2), since the distribution of 8 is known to be

hence if

af = 0 RS,
2\bn—~20 T T
(207) 5!

the distribution of ¢ will be given by

“ n—3,
—3n—2) LS e 5 "
(éf — dc . (20’2) n C 1Zl:',:(l'+‘ o ) S"' (ll_'i)‘ (ZS e 2 (lc — )
oVim n—t no R+ )T
2 0 2
or, if ¢ is cot 0, the distribution of 0 is
n—3 '
df = ' $in""3 6 d0. (2)
n—4, -
IRV

independently of the value of y,_;, as indeed is obvious if the sample is con-

gidered geometrically.
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19 R. A. Fisher.

3. The Distribution for Samples of 3.

The terminal values of v, are given by putting 6 = 0 and =, wheny, = 4 Vn
irrespective of the values of v,_; which is indeed indeterminate at these values.
The recurrence relation enables us also by means of a single integration to
obtain the distribution of y,, from that of v, _;, or alternatively to obtain the
moments of the distribution of v,, in terms of those of the distribution of y,_;
To utilise the recurrence relation in these ways we shall need the distribution
of y for the smallest possible samples, s.e., for n = 3.

When # = 3, we may represent the 3 deviations of the observations from

the mean of the population by
#, = b+ acos ¢, x2=b+acos<¢+gg> w3=b+acos(¢+é?:-°>,

then the mean of the sample is b, and the statistics k, and k; are given by

ky = ;{cos2¢+cosz<¢+ >-l—cos2<¢+ )}

= 32

| ky = 32 {cos3¢+cos3(¢+ >+cos3<q$—|— >}

Y = kgky 3 = V'3 cos 3.

but
cos® ¢ = % (cos 3¢ + 3 cos ),
hence
kg = § a® cos 3¢,
and
|

For the sampling distribution of ¢, since

d(ay, 2y mg) _ _3V3
o (b, @, ¢) 2

and
7.2 + 22 4 242 = 3% + a?,
we have

1 3,\/‘3; ® _?71)_; 0 __:_3%_;
df_m(cﬁr)a.—g—j_we 2 dbj0 ae” i . dg,

which on integration with respect to b yields

_ 1 3““4,,-2
df_-(c\/z_ﬁ)g My i da . dg,

and on integration with respect to a, yields simply

& = z-dé.
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Moments of Distribution for Normal Samples. 20

Since, we have already found y as a function of ¢, we have on substitution

if = T—M%_——; )

as the distribution of y for the case n = 3, since y takes any particular value

six times as ¢ changes from 0 to 2.
The distribution is, of course, symmetrical, and has the following even

moments
g = 3/2
uy = 27/8
ue = 135/16
95 = (S - %) ' 34
st Vm

4. The Moments of y tn General.

The exact distribution for » > 3 seems not to be expressible simply in terms
of known functions. For the moments about the mean (zero) of the distribu-
tion we may proceed as follows : let v, be the variance of the distribution of
Y»» then squaring both sides of equation (1) and averaging over all possible

values we find

_ _Mn—=3P . 60
v, _(n—l)(n-—-2)3sm 6.v,y +ncos®b o

-+

cos? 6 sin® 0

In

T cos? Osint 0

since equation (2) gives the distribution of 6 we may now average over all
values of 6, by multiplying by the right-hand side of this equation and inte-
grating with respect to 6 from 0 to 2w, we then have

72 (n — 3) (n—2)n(n+2)

=D —2 m—Dmt D@+d)
1 6n -
~{P(n—1>(n+1t>(n+3>{”‘1‘3”‘3—,1_,2-1'3 (n-2)
9n
n(n £ 2)(n— 3 Vp1 + 6n

T m=2Fm—12(n+ )+ 3) n—2)(n—1)(n +3)
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21 R. AL Fisher,
The variance for any particular value of #» may now be found by direct
substitution ; alternatively we may note that if

:(n — 2% (1) (n+ 3)@

7

ns

then
(n— 32n(n+2)

m—1p v

and the recurrence relation is reduced to

6(n —2)(n+ 1) _ 6+12G_ 1 \);
n

W= Ut = n(n — 1) n—1

whence

w, = C 4 6n 4 12/n,
where C is a constant to be determined from

1wy =1 ;
whence

wn_—_-GIK)L——S-{--Z-): 6(7?;—].)(77/—‘2) ’
n' n

and
v 6n (n —1)
" -2 (nt1)(nt3)

the general formula for the variance of v,

The same process applied to the mean fourth power will give a recurrence
formula involving the variance, for which the value found can now be sub-
stituted ; in this way the mean values of all even powers may be evaluated
in succession. Writing o' for the fourth moment, we have the equation

ot M —3)t (n—2)n(n—+2) (n+4) 0+ 6)(n+ 8)
S |y ) Y i Yy o e R
+ 628 (n—3)2 6 (n2—n-+T70)n(n -+ 2)

(1) (1—2) " (n—2) (n—1) (0 1) (#+-3) (145) (n£1) (n+9) "
10822 (31n® — 144n% + 183n + 70)
(n—28m—L)m+1)®m+3)m+5)n+T)@+9)’

..1[_

or, substituting for »,_,

o’ — 73 (n — 3) (n 4 2) (n -+ 4) (0 + 6) (n -+ 8) ,
n T =2 — 1P D) (eI 3) £ 5) (o - T) (L 9)
1085® (208 + 2303 +- 21> — 2370 - 70)

(n—2)% (w— 1) (n+ 1) (1 + 3) (n }—o)(n—i—7)(n+9)

q}‘
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bub it
=2 ALY ML D),
then
wy — g, = -1;?2?(7(&”—.__‘“1)22) (20t - 2308 + 2% — 237w +- 70)
_ 964 om—1 )\
— 108 {2n 28— T M0
so that

\
w, =108 (n2 + 24m 4 € - 25 _u,
N n

where C is to be determined from

wy = 480
so that
C = — 149,

! — 108 (0 —1)(n — 2)

- 3 (n® -+ 2Tn — 70),

and the fourth moment of y is given by
g () =, — 108n% (n — 1)* (n® -+ 270 — 70)
(n—2(n+ 1) (n+3) (n + 5) (v + 7) (n + 9)
Similarly the sixth moment is found to be
_3240m3 (n — 1) (n* - 84n® + 26952 — 15168n - 20020)
bs () = n—2pm+ 1) (nt3).. (nT 1b)
and the same method may be applied to determine the higher moments.

From the moments the cumulative moment functions may be determined
by the invariable relationships, which for symmetrical distributions become

’

Koy == g
Ky = g — Bihg’
Kg = g — 10apy + 30p5%

which give us the values

ey = 6n (n — 1) ,

(n—2)(n+1)(n+3)
129602 (n — 1)% (n — 7) (n* 4 2n — 5)
(n— 28 (n + 1)*(n + 3)*(n + 5) (n + 7) (n + 9’
o = 4665607&3. (n—1)8 (Tn®—88n°—286n 328403 1667@2—221081@—}—20020)
(n—2)3 (n+1)3 (n+3)3 (n-+5) (n+7) (n+9) (n+11) (n~+13) (1 415)

Ky
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23 R. A. Fisher.

from which we may derive the ratios,

-1-:“«:‘2: 3(n—1T)(n+ 2n — b)

4174 9 —2)(+ B+ 1) (0 + 9)’

—1-K:<’3= 3 (Tn® — 88n® — 286n4 +3284n3+1667n2~22108n+20020)
g1 &2 (n—2)%(n 4 B)(n+ T)(n + 9) (n + 11) (n + 13) (n + 15) °

which determine the rate of approach of the distribution of y to normality
as the sample number # is increased. It will be noticed that «, changes from
a negative to a positive sign at » = 7, and that the corresponding ratio rises
to its greatest value about 0-024 at n = 22, while the corresponding ratio for
kg starting from positive values has a negative maximum about — 0-0016 at
n =8, is positive again at n = 13, and reaches a positive maximum about
+ 0-0027 at » = 32. Using the reciprocal of # as abscissa the course of these
two ratios is shown in figs. 1 and 2.

s \\
-02 \\
A/ $

N

-02 N

\

40 20 15 12 10 8 6 5 4
VALUES OF n IN HARMONIC PROGRESSION.

F16. 1.—Graph of the Ratio x,~2/4! of the distribution of y = kgk,~3/%
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VALUES OF n IN HARMONIC PROGRESSION.
Fig. 2.—Graph of the Ratio xg,~%/6 ! of the distribution of y = k;k,~%2.

5. The Moments of the Simultaneous Disiribution of Different Measures of
Departure from Normality.

It is obvious that the method of approach adopted in the foregoing sections
is applicable to the determination of the moments of the distributions of, or
more generally of the simultaneous distribution of, all measures of departure

from normality such as

Y = gk, ™%
8 = k4k2—2
¢ = fegky 5

and so on.
For 3 and ¢ we find the recurrence relations comparable with that already

found for y, namely

3%1/2 n(n___g)
— V23 __ 2 3
Yo = nM2c3 n_2cs -+ "2 — 1)1!28 Y1
6n 3 4%1/2(71,—[,- 1)
— net — 2202 4_ s
3, = ne n——2°s +n-28 (n-—2)3f'2(n—1)1/268 Yn—1
(n+41) (n—4)
+W—S4.8n__l,
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25 R. A. Fisher.
1002 Pt L 15012 st 10n(n+1) 5\

e 32 5 263 __
A e A (n—2)3/2(n—1)1/2<” T

_ b2 (n45) ,

n? (n? — 25) s°
m—2p Snr T ;

(n— 2)5/2 (n — 1)1/2 (n + 4) €n—1»

and by a mere repetition of the algebraic processes employed above, we may
obtain a recurrence relation for the mean value of any expression of the form

o3l ..,

from which the mean value in question may be derived.

If, in accordance with the notation employed for the designation of the
moments of the set of statistics &y, kg, &y, ..., we represent such a mean product
by

(... 5° 42 32277),
where

20 = 3a -+ 4b -+ Be -+ ...,

so that r is always an integer save for the odd moments which necessarily
vanish, we may list the following formule :

— 6n (n — 1)
I P N
(8271 = 24n (n — 1)

(n—3) (n—2) (n+3) (n+5)°

21612 (n — 1)

© (43278 = e - s
(1 — 2% (n 1) (n+3) (0 +5) (n + 7)
0 (5 275) — 120n2 (n 4+ 5) (n — 1)3
m—4)(n—3)(n—2)(n+1)(n+3)(n—+5)(n+17)°
(34 976) — 10802 (n — 1)2 (n2 + 27Tn — 70)
¥ =2+ D)+ 3)(n+5) (n+7)(n+9)°
(48 97) 1728n (n — 1) (% — bn - 2)
¢ (n—3) (0 — 2 (n +3) (n 1 5) (n 1) (n + 9)
0 (36979 = 32400° (n — 1) (n* -+ 84n3 -+ 269502—15168n + 20020)

(n—2)? (n-F1) (n-43) (n4-5) (n+7) (n+9) (n+11) (n+13) (n+15) "

A comparison of these formuke with those already given (Fisher, 1929), for
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the cumulative moment functions of k,, ks, ks, which in every case but u(34)
and (3% are also the moments of the distribution, shows that

6n
w (3% :m),(zs,
2y — 24n (n + 1) 4
S e TR T
21672 ;
“““ZMTWWtW“’
0 120%2 (n -+ b) S
L) = T -9 =5
1728 (n + 1) (n* — bn 2)
P = T I = 2
Moreover
0 (39 = « (3Y) + 32 (3%)
_ { 648n2 (5n — 12) 108n% )
R (e T e T
_ 108n? (n® 4 27Tn — 7 O)
(n — 1)3 (n — 2) >
and

(3%) = « (3%) + 15k (3%) x (3%) + 15«3 (3%)
144 (22n% — 111n 4 142) #® + 18 (bn — 12) n8
(n— 17 (n — 2 (n— 1) (n— 2
)
(n—1F (n— 2p)
3240%3 (n* - 84n? 4+ 2695n> — 15168n - 20020) )
(n—1F (0 — 2P 5

= 3240 ,® {

+

In every case, therefore, the moment of the distribution of v, 3, ¢, ..., I8
derivable by multiplying by
(n— 1)
(n—1)(n+1) .. (n+ 2r — 3) k'

the corresponding moment of the distribution of &j, ky, &5, .... Since many of
the latter moments may be found relatively expeditiously by means of the
combinatorial procedure, this will be the quicker method for the more complex
product moments. For moments of high degree, however, such as (3%) and
(39) it does not seem ecasy to enumerate with certainty all the combinatorial
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27 R. A. Fisher.

patterns, and the recurrence method, though necessarily heavy, supplies a
valuable check.

An analytical proof of this relationship, or at least analytical grounds for
accepting it as general, may be found by the method of transforming the
characteristic function previously employed in demonstrating the rules of
the combinatorial method. If

M(ty, £y, ...)
is the characteristic function of the simultaneous distribution of the variates
Ty, Toy - ., and if

M (v, g, -..)

is that of variates &;, &,, ..., defined in terms of w;, %,, ..., by the relations
& =fi (@, @, ...),

£y = fa (2, 2o ..),

Ml (11, 72, -..) = @T"f|+rﬁf’+'" M (tl’ tz, -..)

then

at t; = 0, {, = O, ..., where f, in the in/'ex stands for

/

To apply th's theo.em to the present case we utilise the fact that in sampling
from the normal distribution k, is distributed independently of v, 8, ¢, ..., in
the known distribution

, _pdeen ,
df = - 1 <”f 1> ot =9 o=t =D kibas g

F(n—3)"\ 2,
of which the characteristic function,
J‘ e df,
is
<1 _ M\)—i(n-l)
n—1

Hence the general characteristic function of the simultaneous distribution
of ks, v, 3, ..., is of the form

L Dugly \"HOD
(1 Mn_ﬁ) M (ty, by, ..,

where M is the sum of terms such as
[

c! ™’

l“'( 50 4b 3a 2—-r)_t_§‘_zt_gz
alb!
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and from this expression we must be able to derive the function

@ . b [
M (73 7 o) = Z (. 5042 39 2 54'— ci'i

IS

by the action of the operator

DD 47, DD, DD g

where D, stands for dfdt,.
It appears, therefore, without discussing what meaning should be attached
to the fractional indices, which find in fact only zero terms on which to operate,

that
4 ety \ ")
... B 4% 39) = .. BC 40 32 9T .—-——-<1- 22>
b (o 54239 = p (.. 5 R
at ty = 0, or that
o — 1) ... (n+ 2% —3)
B4 39 = (. 5o 40 3a ) (2 r
P~( ) V‘( ) (n—1y Ko

which is the relationship required.

Summary.

Two methods are given for discussing the distribution of the ratios of the
symmetric functions kg, %, ..., obtained from samples from a normal distri-
bution to the powers of £, of the same degree.

The first method consists in the development of recurrence relations expressing
the ratios from a sample of # in terms of the corresponding ratios from a sample
of n — 1 observations, and of a parameter distributed independently in a known
distribution. Theoretically all properties of the general distribution could be
obtained from these relations in conjunction with a study of samples of 3, 4,
5 ... observations.

Therelationsareused toderive the exact valuesof the first threeeven moments
of the simplest ratio vy, and of the simpler non-vanishing moments of the
simultaneous distribution of all the ratios. It is observed that these moments
are very simply related to the corresponding moments of the distribution of
kg, kg, ..., given in a previous paper.

The second method is an application of the method of symbolical operators
developed by the author, which confirms the generality of the relationship
found. The moments of the one distribution may thus be inferred directly
from that of the other for which the combinatorial procedure is available.
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