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THE SAMPLING ERROR OF ESTIMATED DEVIATES,
TOGETHER WITH OTHER ILLUSTRATIONS OF THE
PROPERTIES AND APPLICATIONS OF THE INTEGRALS
AND DERIVATIVES OF THE NORMAL ERROR FUNCTION

Author's Note (CMS 23.xxva) *

* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley &
Sons, Inc.

This section of the introduction to Volume I of the series of mathe-
matical tables published by the British Association for the Advance-
ment of Science is reprinted principally for the sake of the treatment
in Application 1 of the sampling error of estimated deviation, which
had become inaccessible.

The example is remarkable in that the quantities a and « are each
defined as a function of the other, having, when the other is known,
the property that, while being given functions of the statistics and
the parameters, their distributions are independent of both parame~
ters. The solution may be used directly to find the probability that
the proportion of defective parts in a consignment of which a sample
has been tested shall exceed any assigned value; it is therefore of
practical importance in the critical drafting of specifications.

PROPERTIES OF THE FUNCTIONS
Introductory
1. The Hermite polynomial, H,, is defined by the equation

S AN
Hy= et~ ) )
from this it follows that
Cd . a
Iln+1= ~€*ZEJ—C(HHB'*‘°)=xH"—Z£H” (I)

from which the polynomials may easily be written down in succession, the
coefficient of the highest power of » being unity.
Also :

1
Ed;cH,. =xH,+ e*”( - %)ﬂ( ~xe¥y=xH, - xH, +ne*‘°'( - %}ﬂn e nl, | (2)

Hence is established the recurrence formula
Hyy-xH, +nH, ;=0 3)

Mathematical Tableg, 1: xxvi-xxxv, British Association for the Advancement of Science,
(1931).
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Writing this in the form
H,-xH, ;+(n-1)H, ;=0
and substituting
1 d*H,
2" n(n—1) da®
s

H,

we find the differential equation
@ d
(d—xz-xa+n>1{,,=o )
an equation by means of which we can define the Hermite function for non-
integral values of .
Turning now to the closely related functions defined by

Gp= == e¥H,
. " Vo "
we have by definition the relation
d
Gony= =G ()
and evidently also the recurrence formula,
Guip=2Gpiy + (0 +1)G, =0 6

whence it follows that G, satisfies the differential equation
a4
(g +#p +(+1))Gamo @)

The connection of this equation with equation (4) is most clearly shown by

writing
.. . In=G'~(n+l)
giving the equation
d

g +x.x-n>1,,=o ®)

where (8) is the same equation in ix as (4) is in x.

2. The Orthogonal Relation of G and H—Since
d

Gp=~ E;,Gn—-l

the integral
[ H.Gde= -[H,,,G,H] +f Gy Hod

of which the first part vanishes, for G,_, is a polynomial multiplied by e~#. If
m is less than n, the repetition of the process shows that

. o 4 \m+1
]_mHmG,,dx= [_wG”"’"“l(ﬂ) H,dx
which is zero, for H,, is a polynomial of degree m. Since, moreover,
H,G.=H,G,
it follows that if m and » are any unequal integers, the integral is zero. If
m=n, we have also

f H,,G,,dx=/ Gynldx=n! ©

3. The Integrals of the Probability Integral —The functions I, have hitherto
been defined onﬁr' when 7 is a negative integer; for such values equation (5) may
be written

L= [ L (x0)
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for I must tend to zero as x tends to infinity. We may therefore, commencing
with 1 ;= G, define

I G0
Iy= —= [e~itdt
7l

and define J, for positive integers by means of equation (10). We may then
reduce 1, to a single integral by successive integrations by parts, for

I,- f In_ldt=[(t—x)l,,4:| r f (t - ),_odt
z z x
and

*© t—x)? © ot -x)?
fz (t—x)In_zdt=[(?—)-I,,_2L+ ] ( 2!)1"_3&

'z

leading after » stages to

v (-,
o REve-4 A (x1)
and to the definite integral
A
% | g H 2,
==, e (12)

To show that I, satisfies the differential equation (8), observe that by
differentiating equation (11) we have

el

dy _ I / (-.ﬁ.)“"”)"e—wdt:__‘_ Cn  Nrengy
*

" A 2n t-x/ =l Vamlo t.n!
whence
a 1 [Zn(t+a)r ' I Pnt-x .,
i = T I el MRS AP 12
== [ Seriera 7=2,,£ Gm® U
therefore

& d\, 1 (" (t-x)n g
(d—xz+x[-l-’—c>1"———ﬁrf;n ——¢ dt=nl,

as is required. It will be noted that equations (11) and (12) define the function
I, for all values of n greater than — 1 (using the ordinary generalisation of the
factorial), and that the function so defined satisfies the differential equation (8)
and the recurrence formula

(n+ )y +2d, ~I, =0 (13)

4. The Value of I,(o).—Substituting zero for x in equation (11), we have

I 1 O y
n(o)'*—*rz—‘;-_r | et

(";‘)!zm—l)
_ 2 I

2401 (@
I,(0)= f zln—De~7dy = =
o)==k Var al  (n)iaioD

. . . I
For negative integers also, if I, = G_,,, noting that G,(0) = —=H,(0), and

or, if z=112,

Van
that H,(0) is zero when m is odd, but when m is even reduces to
(- m~1)(m-3) . .. 5.3.1
or,if m=—-(n+1), to 1
(n+2)n+4). .. (—3)(_1)=%‘§E
we should still have
20(0) =y (1)
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so that a function I, defined for negative values of % 5o as to have this value when
% is zero, and to satisfy the differential equation (8), will reduce at integral values
to the function G_g,,.

5. The Solutions of the Differential Equations—The differential equation (8)
yields an indicial equation (¢ - 1) =0, the two roots corresponding to odd and
even functions which satisfy the equation; if

y=x+ A3+ Ax5+ - - -
is the odd solution, then substituting in the equation we find

2r(2r + 1) Ay + (27 — 1 ~ )}y =0
or

R et FOUN bk )W

=2+ 3 a8 5l x5+

a series which is absolutely convergent for all values of 7 and w, and reduces to
a polynomial if # is an odd positive integer. Similarly the even solution is
seen to be
) IO

—14laty
Y2 2! 4!

which also is absolutely convergent, and reduces to a polynomial for even positive
integral values of n.  Since the function 7, has at x =0 a known value and a known
differential coefficient, we may express it in terms of y, and v, in the form

240t 5-fntD)
e (15)

Ly=—"9.-
n n-—-1
G 59
which shall define I, for all values of n. We may note that
—in
L) + L =) =(s9n

and this will be a polynomial in x when # is an even positive integer, while

2—#(n-1)
L(-%)- L(®)=———

n-1
()
and this will be a polynomial in x when 7 is an odd positive integer.
Reversing the order of the terms in these polynomials we have, when # is

€ven
n-1

n(n—l)(n*Z)("‘S)xn-4+. . ]

Lx)+ L,(-%)= ’%[x" o ot i1
X o a2 I xn—4
TR T AR CE I R (16)

which is also the form for I,( - x) — I(x), when # is odd.
The polynomials represented by (16) correspond closely to the Hermite
polynomials, and may be written H,*+n!. Then 1t is easy to verify that

A
H# =17 (o)

and that

d
Hnﬂ.' =xH*+ Zx‘Hn*
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and so to derive the relations

‘%Hn* = "Hn—-l*

H,*-xH.*-nH, *=o

d? d N
(F o -n)e=o

It is of more interest that, defining the Hermite function H, as
Hy=Vime L,

substituting in equation (15) and identifying the odd and even parts with the
corresponding solutions of the differential equation for H,, we have

elr’<x—"+!!x2+("+1)('"+3)x4- . .):1——'—'—.x2+”("72)x‘— e
2! 41 2! 4!
and
et x~wxz+wx4_ .. _):x_’i:_lx3+(’l——-l)£r£__-_:¥)x5_ .. _=y*
3! 5! ! 5! 1
and

24/ 2in+ i/

= Yo* - yo*
i ( n+ 1)' ( n +2>,
2/ 2/

which reduces to the polynomial form for positive integers.

Applications

1. The Sampling Error of Estimated Deviates—If the population sampled is
specified by

1
e Ty

df =

ovan

then from a sample we can calculate the estimates
~_1 a1 =
= ;S(x) 2= '-lS(x %)

and the simultaneous distribution of ¥ and s is known to be

(n—-3) 52 -
*<n—3>' 202 of " VYan a 7
=)!

If now = is the true deviation of any point in terms of the true standard
deviation ¢, and £ is the apparent deviation in terms of s,
X+st=m+or

and for each value of =, ¢ will have a determinate distribution.
Changing the variates from ¥ and s to ¢ and s, we have

dx= ~sdt

and
X-m=or —st

so that the index of the exponential term is

nfs? ( s)2} n{ (s Tt )2 72 }
S TR (P I B I Oy | (LA P
2{3E "% 2 (1+8) s T e e
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and, writing » for s/e, we obtain

in

("__;_§> | gitn-2/57

n 2 ﬂ(1+c")(u r%>z
e BITRd  wlem T T\ du (18)

Now # varies in value from o to oo, and the integral between these limits of
the frequency factor involving u may be written

(n-1)ln(x + )40 . 1,,_1< -—T\/%%> N

giving the distribution of £ in the form

——("—"nil%— NI W e .1,,_1<- ”‘/”‘> dt (19)
Bn—8)( 22
ato-o(223))

Since
2—*( n+41)
I, _(0)= s

n—1I
)
when r =o the distribution reduces to
2)
2 (1 +2)irdr
(’.‘_‘_3.) V7
2

which is “ Student’s”’ distribution.

In considering the approximation to normality of the general distribution
(19), we shall require an approximate value of the integral function I, ., with
negative argument proportional to V7, for the case when # is large. For this
purpose we shall use the formula, wherein x= —2Vnsinh ¢,

_atn Vamn
n! V2 cosh¢
or, neglecting terms which do not contain ¢,
log I,y =n($ —4e~)+C

I,_4(x) e—tognip—te— %) (20)

Differentiating with respect to x, since

de  2V'ncoshd dp
d
gilog I, _y)= - Ve

and since
dx_ Van
P A ST

the approximate equation for the mode is

nt nr’t nr
- =% = 21
142 +(1 + ) +(1 + ) ° (21)

which is satisfied by

t=1

for at this point

T3

1478

2sinh¢=
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whence
2+7?
2 cosh =
¢ Vi+rt
and
1
e~ P =
. . . Vi+r?
Using this relation,
d -Vn
d—x(IOg = ~Vi.et =v-—--;—;-;§
T e
it V8 )—zcosh$ Tzt
4 ~1 —2(1 + 723
= (log I)= =
dx® (log 1 4Vncosh3¢  Va(z+72)
d* _ —3sinhg 671477}
dxt (log 1)~ 8ncosh®d ~  m(z +7E) (22)
and
oy - Vr &x 3Vnrt
i oo Il e
Bx 3Vanr(1 -4  Px 1 sVnrt(42% - 3)
B T+ By BT (Lt BpE (23)
consequently, at the mode,
&? Jnr? nr?
g log D)= - (1+720 {1+ 7Pz + )
& o gnr(r —47Y) onr’ 2nt®
B (log I)= - (1 + 2y * 1+ (2 +79) * (r +72)%(2 + %)
ot _ —agnr(¢r =3)  nr(757i-12) 36nt ~ 6n7t
7GR R ppre e T PRl e el ey s R )

The second derivative of the ordinate at the mode is therefore

n(1 - 1%) +n72(1 -3t8)  gmr® nr? ___zm
TOEFERE T T+ (e (14 (et+ ) 2+7%

for large samples we infer that the variance of ¢ is given by

. nV(t) =1+ 37 (z5)
The third derivative is
ani(3 ~8) 12nt®(1-1%) 3nr(1 -47%) N onrd . 2nt® _anr(iz+ 57%)
(1 +2%p3 G+2% G+ e+ 1+ + TP (2+72 )3

Equating this to y,¢3, we find
(12 +57%)
N oz + O
Finally, the fourth derivative is

(26)

6n(1 - 682+ 1) 12n7(1 102+ 51%)  15m7%(3—47) | 3nTH4 —257%)

C+ 0% TR G+ (1+Hz+7

B 36nrt _ 6nrs
(r+72)42+72)° (r+7d)i(z2+7°)°

6
=G~ 3a7t - 4ot = g7)

and on equating this to y,0!, we have

3 32-327°-40rt—g7°
N T G (27)

3 3
For Ylot , read \(1/01t .

For yzot“, read yz/ct".
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The value of y,, measuring asymmmetry of the third moment, ranges from
zero when r=o, to 5/V/2n when 7 is infinite, thus showing a very moderate
asymmetrfy. The value of y,, which measures the departure of the fourth
moment from its normal value, varies from 6/z when r=o0, to —27/2n when
7 is infinite. The nature of the approximations found above, appropriate for
large samples, is illustrated by the fact that when +=o, the exact value of y, for
“Student’s” distribution is 6/(n— 5).

2. Truncated Normal Distribution—If, in a normal distribution with mean
m and standard deviation o, all record is omitted of individuals below a given
value, which we may write m+ ¢, the frequency of the truncated distribution
in the range dx will be

G—m)

% dx (28)

1 F—m) ® oy . 1
df = ——=ze” "I dx —:—/ e e g
J oV o ¢ Vo oV 2l (€)
provided that x exceeds m + of.
"The moments of the distribution about its terminus are easily expressed in [
functions, for

P SUNNY I =0 £ (3)
#r—o\/;;r-lo(f) mﬁvvgxe 2e8 dx ar!m (29)

It is noteworthy that in the estimation of the unknown parameters ¢ and o,
the method of moments gives in this case the same solution as the method of
maximum likelihood; and is therefore, in this case, efficient.

For, apart from a constant, taking the origin at the terminus,

—nlog I

B S(x +0é)?
L= -nloga- -—5-;2—'

so that the equations of maximum likelihood are

n 1 X
~2edsls(e+ D)= (o)
x I, ,
—S(f +;) +npt=o (30 bis)
but
I,=¢L,+1
so that equation (30 bis) may be written
X= a'j—."-

o

which is the equation obtained by equating the first moment of the sample to
that of the population. Substituting, now, in (30) the value found for x, we have

I 1 2y
n IO+FS(x ) =1
but
2l,=I,-¢1
hence
— (31
1]

which is the equation obtained by equating the second moment of the sample
to that of the population. ) .
Eliminating o between the two equations, the maximum likelihood solution
for ¢ must satisfy the equation
nS(xY) 2Ll (32)
SH(xy  If
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and the practical solution consists in entering the observed value of the quantity
on the left in a table showing, for values of ¢, the quantity on the right.
The precision is determined by the second differential coefficients

82L—_n{ o }__ n{ A }
50-_'2——- ;_, 25;‘!"35-2-—1 -——a-é 2§§;+67; I

2L nx al

2008 ot oI,
tL I 1, -1 2
e = ! (33)
Using
I—-2=61—1
and
I, ‘flo=11

it is clear that
I, -1 2= -1,
and
- L1 =12 - I(I + €l)) =2 L, - I?
If, therefore,

-k

nl I, I}? n , n( - ,2)
27 ) - Gl

2
=Syl i+ 0%y — 20%,%}
then
A ot
V(o) =B =—— L2 ; (34)
)= = o —m )}

A oy +6%) .
V(g)="U= 2 - bis
@ A n{py py + 0¥ (2p — 2} (34 bis)

and the correlation between the sampling errors of ¢ and ¢ will be

FES. . - (35)
olpg +0

3. Modified Poisson Series—In the simple Poisson series the frequency with
which the variate takes the integral value x 1s
e—mm.'r.
xl

If, now, m is a variate with distribution specified by

y- 2l<q—1><2%l>!

as, for example, is the standard deviation as estimated from a sample, the frequency
of the value x will be

¢

I (m)«e_%nvi, dm (6)

eboig® ® fm\*te _.E(’.'.",.,)?dm
—| ) = Gn
! 2*(q_l)<q_—_1_>!j; (o) o

2
and this is equal to
4ot/ +x)!
e (o) )
2*((1—1)(15_7!
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putting x=0, 1, 2, . . . we have the modified series, in which evidently
s [(g+2)! }_ (925 Se-np-dor
g?){ o1 0 Ler0) =T <T> 2t e (39)

A more general distribution of m which develops a modified series in I
functions is
1/m 2
dj =-——-I———__mqe'§(77+“> dm
/ o (a)g! V2n
a being a real parameter which may be either positive or negative. 'Then the
frequency of the value « is
eav-«!—}v’ % m 2
T [ metne b (50r) o
o (a)g! x1V 21r£ ‘ )
which is
erHet (g4 )1

I{ag! " T"xla-?z(a +a) (41)

giving the interesting identity

w (g +x)! .
3D ol (o + ) =gt I a)emsenie 42)
=1 *
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