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Abstract—Much research has been carried out on the optimization of Water Distribution Systems (WDSs). Within the 
last decade, the focus has shifted from the use of traditional optimization methods, such as linear and non-linear 
programming, to the use of evolutionary algorithms (EAs), namely genetic algorithms, simulated annealing and more 
recently, ant colony optimization (ACO), an optimization algorithm based on the foraging behavior of ants. EAs have 
been seen to perform better than more traditional optimization methods and amongst the EAs applied to WDS 
optimization, a recent study found ACO to outperform other EAs for two well-known case studies. One of the major 
problems that exists with the use of EAs, particularly ACO, is that their searching behavior, and hence performance, is 
governed by a set of user-selected parameters. Consequently, a large calibration phase is required for successful 
application to new problems. The aim of this paper is to provide a deeper understanding of ACO parameters and to 
develop parametric guidelines for the application of ACO to WDS optimization. For the adopted ACO formulation, seven 
parameters are used: two decision policy control parameters α and β, initial pheromone value τ0, pheromone persistence 
factor ρ, number of ants m, pheromone addition factor Q, and the penalty factor PEN. Deterministic and semi-
deterministic expressions for Q and PEN are developed. For the remaining non-deterministic parameters a parametric 
study is performed, from which guidelines for appropriate parameter settings are developed. Based on the use of these 
heuristics, the ACO algorithm used achieves the best performance presented in the literature, in terms of efficiency and 
solution quality, for one of the well-known case studies, the New York Tunnels Problem. 

 
Index Terms—ant colony optimization, parameter guidelines, optimization, water distribution systems. 

I. INTRODUCTION 

ater distribution systems (WDSs) are systems that are designed to transport water from water sources to 

consumers. They typically involve a complex network of electromechanical components such as pipes, pumps, 

valves, and tanks. Optimization of WDSs usually focuses on the minimization of the material and installation costs 

of a WDS design, where the WDS components (e.g. the diameters of pipes) are treated as the decision variables and 

the constraints that determine the feasibility of a design are the design requirements (e.g. the provision of adequate 

pressure). Much research has gone into the optimization of WDSs. Within the last decade, the focus has shifted from 

the use of methods based on traditional optimization theory, such as linear programming [1]–[3], two-phase 

decomposition methods [4], [5], and non-linear programming [6] to the use of evolutionary algorithms (EAs), 

namely genetic algorithms (GAs) [7]–[13], simulated annealing [14], and more recently ant colony optimization 
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(ACO) [15]–[18].  It should be noted that ACO is often classified as a population-based metaheuristic, rather than an 

EA.  However, for the sake of simplicity, ACO will be classed as an EA for the remainder of this paper. 

EAs have been shown to perform better than the more traditional optimization methods [8]. The advantages of EAs 

for application to WDS optimization are that they: (i) are a discrete combinatorial optimization algorithm and as 

such deal only with realistic commercial pipe diameter sizes; (ii) perform a global search; and (iii) have a simpler 

application as they deal only with objective function values, and hence information such as first and second 

derivatives need not be computed. In a recent study [17], ACO was found to be extremely competitive and 

outperformed GAs for two well known case studies: the Two-Reservoir Problem; and the New York Tunnels 

Problem. As ACO is a relatively new discrete combinatorial optimization technique that has shown great potential 

for other optimization problems [19], this research focuses further on its application to WDS optimization. 

One issue that exists with the use of EAs, particularly ACO, is that their searching behavior, and hence performance, 

is governed by a set of non-deterministic (i.e. user-selected) parameters. For ACO, other papers have offered 

guidelines as to appropriate parameter settings [20], but optimal or near-optimal settings of these parameters are 

heavily dependent on the properties of the multi-dimensional objective function surface associated with the 

optimization problem. Consequently, recommendations for parameter guidelines can only be considered within the 

context in which they were derived. This determination of appropriate or optimal settings for different and new 

problems can be an optimization problem in itself. As ACO has only received little application to WDS 

optimization, no guidelines exist for its application to this problem.  

The objective of this paper is to develop parametric guidelines for the application of ACO algorithms to WDS 

optimization. The guidelines have been derived based on only one algorithm, but with other optimization problems 

(e.g. the traveling salesperson problem) other authors [22]–[25] have effectively utilized parameter guidelines that 

have been derived from simpler ACO algorithms [20] for the application of more advanced ACO algorithms. 

This paper is structured as follows. In section II WDS optimization is explained and is formally defined as an 

optimization problem. In section III the basic concept of the foraging behavior of ants is explained and, based on 

this, the mathematical formulation of the adopted ACO algorithm is given. This is followed by a brief discussion of 
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the ACO parameters. In section IV the transformations of the search space and conversion of ACO elements 

required for ACO to be applied to WDS optimization is given. The three case studies are outlined in section V. In 

section VI the derivations for the deterministic equation and the semi-deterministic equation for two of the 

parameters are given. The results from the parametric studies for the remaining parameters are presented in section 

VII. Parameter guidelines are derived from these results. Section VIII presents an assessment of the performance of 

ACO, utilizing the parameter guidelines derived in section VII, with the best performing algorithms in the literature 

for the given case studies. The summary and conclusions are given in section IX. 

II. THE WATER DISTRIBUTION SYSTEM OPTIMIZATION PROBLEM 

The optimization of a WDS is defined as the selection of the lowest cost combination of appropriate component 

sizes and component settings such that the criteria of demands and other design constraints are satisfied. A simple 

example of this is as follows. Consider two networks, the first comprising pipes with small diameters and the second 

comprising pipes with large diameters. The first network has a low cost but as the pipe diameters are small the 

headloss1 through the network will be greater, which is likely to result in insufficient pressure at the demand points 

(nodes). The second system is likely to provide more than adequate pressure, as the pipe diameters are large, but is 

also more expensive. The optimal design is then the least cost combination of diameter sizes that are able to provide 

adequate pressure at each of the nodes. 

In practice, the optimization of a WDS can take many forms, as WDSs are comprised of many different components 

and have many different performance criteria. For example, the decision variables within the optimization problem 

could involve the selection of diameter sizes for all the pipes, the sizing and locating of tanks, valve pressure settings 

and valve locations, and pump types and locations. In addition to these potential decision variables, the demands on 

the system could involve a range of demand cases including peak hour, fire loading, and an extended period 

simulation. The constraints on the system could be specified to include minimum and maximum allowable pressures 

at each demand point, a maximum velocity constraint for each of the pipes, and water quality requirements. In 

addition to all of these demands and constraints, for the system to be properly assessed as to whether it meets the 

 
1 Headloss through a pipe is the engineering term given to the reduction in pressure of a fluid as it flows along a pipe due to the energy losses from the 

friction of the fluid flow against the pipe wall and the resulting turbulence within the fluid body. It is typically expressed in units of meters (i.e. head = pressure / 
specific weight). 
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design criteria the inherent uncertainty that exists within the system (e.g. the realistic randomness of nodal demands 

and stochastic performance of the components) would also need to be quantified [26]. 

In the literature, the optimization of WDSs has traditionally dealt with a much more simplistic and idealized 

problem. The decision variables have primarily been related to the pipes within the system where, more specifically, 

the decision options have been the selection of: (i) a diameter for a new pipe; (ii) a diameter for a parallel pipe; and 

(iii) the cleaning of an existing pipe to reduce the hydraulic resistance. The constraints on the system have usually 

been the minimum allowable pressures at each of the nodes. This form of the optimization of WDSs is used within 

this paper. 

A semi-formal expression of the optimization problem, entitled the Water Distribution System Problem (WDSP) is 

given in the following sections, which expands on previous formulations [11], [13], as multiple demand patterns and 

pipe rehabilitation options are included (similarly to [13]) such that the formulation encompasses problems such as 

the Two-Reservoir Problem [9]. The following sub-sections more clearly provide a definition of a “design” as used 

in the WDSP and the constraints for a feasible design. From these the optimization problem is formulated. 

A. Definition of a design 

A WDSP typically falls into one of two categories: (i) “new” design; or (ii) “rehabilitation” of an existing network. 

A new design problem consists of a network layout where all of the pipes have to be assigned a diameter (i.e. the 

locations of all pipes are a given). A rehabilitation problem contains an existing network that requires an increase in 

its hydraulic capacity (e.g. via replacement, cleaning, or parallelization of existing pipes) and/or provision of water 

to new consumers (e.g. via expansion with new pipes). This rehabilitation involves one or all of the three decision 

options outlined in the introduction of this section. Due to the generality of the problem formulation presented here, 

both types of problems are encompassed within the same framework and from hereon are referred to as a design. 

For the WDSP, a design option involves the selection of rehabilitation and/or duplication options for all or some of 

the pipes within the network. From the framework that has been qualitatively established earlier in this section, a 

WDS design Ω is defined as a set of n decisions where n is the number of pipes to be sized and/or rehabilitated, that 

is 
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{ }ndecisiondecision ,...,1=Ω  (1) 

 

where decisioni is the selected option for pipe i, and is defined as 

 

{ } nioptionoptiondecision
iNOiii ,...,1,..., ,1, =∀∈  (2) 

 

where { }
iNOii optionoption ,1, ,...,  is the set of all NOi options available for pipe i. For each option there is an 

associated cost, ci,j of implementing that option, a diameter and roughness coefficient for the new (or parallel) pipe, 

and a roughness coefficient for the existing pipe (i.e. exist
ji

new
ji

new
ji RCRCdia ,,, ,, ). The inclusion of exist

jiRC ,  as a variable 

within the alternatives allows for rehabilitation options that change the roughness coefficient only (e.g. for problems 

like that in [9]). Clearly, for rehabilitation options 0, =new
jidia . Similarly, existing pipe roughnesses exist

jiRC ,
 will remain 

constant for all non-rehabilitation options. By definition, for new design problems nidia exist
ji ,...,10, =∀=  and 

iNOj ,...,1=∀  as there are no existing pipes (i.e. the existing pipe diameters are zero). Option j for pipe i is given by 

the set of elements 

 

{ }new
ji

exist
ji

new
jijiji RCRCdiacoption ,,,,, ,,,= . (3) 

 

B. Constraints for a feasible design  

The constraints on a solution are categorized as design constraints and hydraulic constraints. A design constraint is 

an inequality constraint that defines the minimum acceptable performance of a design, whereas hydraulic constraints 

are equality constraints that describe the distribution of the flow of water through the WDS (based on the 

fundamental equations for fluid flow within a closed conduit and the governing equations for fluid flow within a 

looped network). The design constraint for the WDSP specifies the minimum allowable pressure at each node, and is 

given as 

 

( ) patternnode
j

i
j

i NjNiHH ,..,1,..,1 =∀=∀≥Ω  (4) 
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where ( )Ωj
iH  is the actual head at node i for demand pattern j and design Ω, j

iH  is the minimum allowable head at 

node i for demand pattern j, Nnode is the total number of nodes and Npattern is the number of demand patterns. 

The hydraulic equations for fluid flow within a WDS are the conservation of mass, the conservation of energy, and 

the pipe headloss equations (note: energy losses due to junctions, bends, and valves, etc. are generally small in 

comparison to frictional losses for WDSs and are consequently ignored). These equations can be formulated in many 

different ways but the authors have selected the following formulation for ease of understanding. As the fluid is 

assumed to be incompressible, the conservation of mass equations dictate that the flow rate into a node is equal to 

the flow rate out of a node. This can be expressed as 

 

( )
( )

( )
( )

patternnode
k

j
k

k

j
k

j
i NjNiQQDM

ii

,..,1,..,10 =∀=∀=Ω−Ω+ ∑∑
ΩΘ∈ΩΘ∈ −+

, (5) 

 

where j
iDM  is the demand for node i and demand pattern j (by definition, a positive demand is one that draws water 

from the node), ( )Ωj
kQ  is the flow in pipe k for design Ω for demand pattern j, ( )ΩΘ −

i  is the set of all pipes that 

provide flow into node i for design Ω, and ( )ΩΘ +
i  is the set of pipes that provide flow out of node i for design Ω. 

The conservation of energy equations ensure that the net frictional energy loss around a closed loop is equal to zero. 

This is expressed in terms of a summation of the headlosses around a closed loop 

 

( )
( )

( )
( )

patternloop
k

j
k

k

j
k NjNihh

ii

,...,1,...,10 =∀=∀=Ω−Ω ∑∑
ΩΨ∈ΩΨ∈ −+

 (6) 

 

where Ψi
+(Ω) is the set of pipes whose flow direction is in a positive rotation about loop i for design Ω (note: it is 

convention to take clockwise as being a positive rotation), Ψi
-(Ω) is the set of pipes whose flow direction is in a 

negative rotation about loop i for design Ω, ( )Ωj
kh  is the headloss in pipe k for demand pattern j and design Ω (by 

definition headloss is positive along the direction of flow) and Nloop is the number of loops. A special case of (6) is 

when the loop is an unclosed path between sources of fixed head (i.e. reservoirs). In this situation the summation is 
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equal to the head difference between the two sources. The general headloss equation, the last of the hydraulic 

constraints, is written as 

 

( ) ( ) ( )[ ] patternpipe

aj
i

j
i

j
i NjNiQrh ,..,1,..,1 =∀=∀ΩΩ=Ω  (7) 

 

where ( )Ωj
iQ  is the flow rate in pipe i for demand pattern j and design Ω, ( )Ωj

ir  is a hydraulic resistance term 

dependent on the type of headloss equation used, a is the flow exponent which is also dependent on the type of 

headloss equation used, and Npipe is the number of pipes including new pipes. The headloss equation used within this 

study is the standard Hazen-Williams equation, therefore, ( )Ωj
ir  is expressed as 

 

( )
( )[ ] ( )[ ] patternpipeb

i
a

i

ij
i NjNi

DC

L
Ar ,..,1,..,1 =∀=∀

ΩΩ
=Ω  (8) 

 

where Li is the length of pipe i, ( )ΩiD  is the diameter of pipe i for design Ω, Ci(Ω) is the Hazen-Williams coefficient 

for pipe i for design Ω (for the Hazen-Williams formulation the RC values are the Hazen-Williams coefficients), A is 

a constant that is dependent on the units used, and a and b are regression coefficients. The Hazen-Williams 

formulation has been assumed for the sake of continuity with other studies, but the Darcy-Weisbach equation could 

have just as easily been used. The adopted values of A, a, and b are found to vary throughout the literature [11], [6], 

[13], [17], bringing about a variety of optimum solutions for various problems. In an attempt to standardize, the 

values adopted in this paper are based on those used in the hydraulic solver software EPANET2 (as this is based on 

the original formulation by Hazen and Williams). These are: A = 10.6744 for SI units and 4.7270 for US customary 

units, a = 1.852, and b = 4.871. 

For the design to be feasible it must satisfy both sets of constraints. In practice, only the design constraints need to 

be considered, as the flow regime determined by the hydraulic solver automatically satisfies the hydraulic 

constraints. 

C. Formulation of the Water Distribution Problem 

As the objective is the minimization of the material and installation costs, the WDSP can be expressed as 
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( ) ( )

(7). and (6), (5), (4), Subject to

min
1

∑
=

=Ω
n

i
ii decisioncLC  (9) 

 
where C(Ω) is the cost of design Ω and c(decisioni) is the unit length cost of decisioni. 

III. ANT COLONY OPTIMIZATION 

A. Basis of Algorithm 

Ant Colony Optimization (ACO) is a discrete combinatorial optimization algorithm based on the foraging behavior 

of ants. Over a period of time ants are able to determine the shortest path from their home to a food source. This 

shortest-path-finding process of the colony can be viewed as a form of swarm intelligence [21]. This process is 

achieved by the colony’s accumulation of information about the surrounding area, which is communicated to the 

individual ants in the form of trails of pheromone, a chemical substance laid by the ants themselves. 

As explained in [20], isolated ants essentially wander randomly until they come across a previously laid pheromone 

path, which they will, by instinct, be more inclined to follow as opposed to continuing to wander randomly. As an 

ant traverses the path, it too lays pheromone, thus reinforcing the existing pheromone strength of the current path 

and hence attracting further ants to follow it. Gradually over time the shorter paths between destinations will 

increase in pheromone intensity due to lower traverse times, and so the colony gradually determines the optimum 

route between the destinations. This phenomenon is best illustrated by an example. 

In Fig. 1 a system comprising a colony home (H), a food source (F), and an obstacle (A–B) is depicted. The obstacle 

is placed such that there are two paths of unequal lengths, and it is assumed that path HAF takes two time steps to 

traverse and path HBF takes a single time step to traverse. At time t = 0 (Fig. 1(a)), eight ants are placed into the 

system with the objective of getting food from F back to H. As their initial selection of the path they take is random, 

it is assumed that 4 ants select each of the two alternate paths. 

At t = 1 (Fig. 1(b)), the ants that traversed HBF have acquired food and begin to journey back to H. As there is 

existing pheromone on FBH the ants have a higher probability of utilizing this path, consequently three ants select 

FBH and one ant selects FAH. The ants that are traversing HAF are only half way along this path. 

At t = 2 (Fig. 1(c)), the three ants that traversed FBH are home again while the ant that embarked on FAH is only 
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half way along this path. The four ants that were traversing HAF have made it to F and embark on their journey back 

to H via either FAH or FBH. Path FBH has a greater amount of pheromone on it (note that the pheromone intensity 

is represented by the darkness of the path) as it has been traversed seven times, whereas FAH has only been 

traversed five times. Consequently, by probability, three ants select path FBH and one ant selects FAH. 

At t = 4 (Fig. 1(d)), all ants have returned to H (note that the ant that embarked on FBH at t = 2 arrived at H at t = 3). 

From Fig. 1(d) it is seen that the shorter path HBF has a greater amount of pheromone on it as it has been traversed 

ten times in total, while the longer path HAF has been traversed only six times. Future ants entering the system will 

have a higher probability of selecting path HBF. In the pattern illustrated here the operation of swarm intelligence to 

determine the shortest path is seen. 

In addition to the positive feedback strategy illustrated in the example, the pheromone trails also decay with time. 

This means that paths that are not regularly given additional pheromone will eventually decay to zero intensity. This 

decaying quality of pheromone also aids in the ability of the ant colony to find the shorter paths. The longer paths, 

which receive less pheromone, will decay more rapidly enabling shorter paths to have a higher probability of being 

selected. 

B. Formulation of Ant Colony Optimization 

In applying the ant colony analogy to develop ACO, [20] highlighted some differences between the analogy and 

ACO. These are that, as distinct from real ants, artificial ants: (i) have some memory; (ii) are not completely blind; 

and (iii) live in a discrete time environment. In addition to this, the formulation of ACO used in this paper includes 

the following differences: (iv) ants enter the network consecutively; (v) pheromone is laid on each ant’s path when 

all ants have completed their tours; and (vi) the amount of pheromone placed on a path is non-constant but is 

dependent on the length of that path (as represented by the objective function value). 

The ACO algorithm operates by iteratively generating a population of solutions where each solution is representative 

of the path that a single ant has traveled. An ant generates a solution by selecting an edge at each decision point 

based upon a decision policy [20]. Once each ant has generated a solution, an amount of pheromone proportional to 

the quality of the solution is deposited upon the path. In this way, good solution components are reinforced with 

greater amounts of pheromone. 
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At each decision point, an ant probabilistically selects an edge governed by the decision policy. This policy 

considers a trade-off between the pheromone intensity on a particular edge and the desirability of that edge with 

respect to its isolated impact on the objective function. The desirability of an edge has different definitions for 

different problems. For example, if the objective is to minimize cost, the desirability of an edge may be set equal to 

the inverse of the cost associated with that edge. Taking these two properties of an edge into account, ACO 

algorithms effectively utilize heuristic information that has been learned (i.e. represented as pheromone intensity) in 

addition to incorporating a bias towards edges that are of a greater desirability or local optimality. The most common 

form of the decision policy is [20] 

 

[ ] [ ]
[ ] [ ]∑

∈

=

il
lili

jiji
ji

t

t
tp

θ

βα

βα

ητ

ητ

,,

,,
,

)(

)(
)(  (10) 

 

where pi,j(t) is the probability that edge (i,j) is chosen at iteration t, τi,j(t) is the concentration of pheromone 

associated with edge (i,j) at iteration t, ηi,j is the desirability of edge (i,j), α is the parameter controlling the relative 

importance of pheromone in the decision making process, β is the parameter controlling the relative importance of 

the desirability, and θi is the set of edges l available at decision point i. 

As stated above, the way the colony utilizes information about the optimization problem is via the addition of 

pheromone to the graph to reinforce good edges. The common form of the pheromone update equation is [20] 

 

( )ttt jijiji ,,, )()1( τρττ ∆+=+  (11) 

 

where ρ is the coefficient representing pheromone persistence (note: 0 ≤ ρ ≤ 1 ) and ∆τi,j(t) is the pheromone 

addition on edge (i,j). The pheromone persistence factor allows for the modeling of pheromone evaporation 

(mentioned in the preceding example), which is analogous to a gradual loss of memory. This is important as it allows 

ACO algorithms to forget poor information that was learned early on in the search, and to focus on using the better 

information that has presumably been gained later on in the search. 

Many authors have proposed different formulations of ∆τi,j(t) [20], [22]–[25] as this function dictates how the ACO 
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algorithm utilizes the learned information. In this research, a simple formulation is used based on the work of [17], 

[24], and [25]. This formulation is given the title Iteration-Best Ant System (ASi-best) as it updates only the path of 

the ant that finds the best solution within a given iteration. The advantage of this formulation is that only the best 

information is retained and reinforced. The authors in [17], when applying ACO to the WDSP, found that updating 

only the iteration-best ant’s path worked better than updating all ant paths. Within ASi-best, ∆τi,j(t) is defined as 

 

( ) ( )( ) ( )







 ∈
=∆

otherwise0

),( edge if
,

tSji
tSf

Q

t
best

bestjiτ  (12) 

 

where Q is the pheromone reward factor (a constant), f( ) is the objective function, and Sbest(t) is the set of edges 

contained within the best solution (i.e. the solution with the minimum objective function value) found within 

iteration t. From (12) it is clear that the amount of pheromone that is awarded to a path is inversely proportional to 

the objective function value. This is important as solutions that give better results are awarded greater amounts of 

pheromone (analogous to the shorter path receiving more pheromone from the preceding example) and hence are 

more likely to be reselected by future ants. 

C. Summary of ACO parameters 

In this section, a summary of the ACO parameters for which guidelines are derived in sections VI and VII is 

provided. 

1) Decision policy control parameters, α and β 

As stated previously, α and β are the coefficients that determine the relative importance of pheromone intensity and 

desirability, respectively, in an ant’s decision process, as given by (10). The pheromone intensity is representative of 

the learned attractiveness of an option, whereas the desirability is representative of the inherent attractiveness of an 

option (i.e. lower cost options are more attractive). If α >>β then the algorithm will make decisions based mainly on 

the learned information, as represented by the pheromone. If β  >> α the algorithm will act as a greedy heuristic, 

selecting mainly the shortest or cheapest edges, disregarding the impact of these decisions on the final solution 

quality. 
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For the traveling salesperson problem, the recommended values are α = 1.0 and β = 5.0, as originally suggested in 

 [20]. These values have been successfully used by other authors [23]–[25]. In the application of ACO to the WDSP, 

[16] and [17] used values of α = 5.0 and 3.5 and β = 0.5 and 3.5, respectively. 

2) Pheromone initialization value, τ0 

The pheromone initialization value is the pheromone intensity that all paths are initially set at (i.e. τi,j(1) = τ0, for all 

i and j). This is an important parameter in the solution evolution of ACO as it affects the relative importance of 

pheromone additions ∆τij(t) [24]. This effect is especially exaggerated in the early stages of the search, when good 

solutions have not yet been established. If τ0 is set too small the relative difference in pheromone levels as a result of 

an addition of ∆τij(t) will be given too much importance in the probability determination, and premature convergence 

can result. Conversely, if τ0 is set too high, a difference of ∆τij(t) will not be given sufficient importance. 

Appropriate settings for τ0 are largely un-discussed in the literature on ACO parameters. When applying the Ant 

Colony System (a version of ACO) to the symmetric and asymmetric traveling salesperson problem, the authors of 

[22] suggest the use of 

 

( ) 1
0

−⋅= nnLnτ , (13) 

 

where n is the number of decision points and Lnn is the tour length produced by the nearest neighbor heuristic. In a 

non-problem-specific sense, (13) is analogous to a quantity equal to the pheromone addition based on the objective 

function value of some near-optimal solution divided by n (the number of decision points). This extrapolation to the 

general case is justified by recognizing that, for the Ant Colony System applied to the traveling salesperson problem, 

the pheromone additions are equal to the inverse of the tour lengths. 

3) Pheromone persistence factor, ρ 

The pheromone persistence factor ρ regulates the decay of the pheromone trails (as implemented in (11)), which 

results in the gradual decrease of the probability of selection of paths that are not regularly traversed. This decay is 

important as it allows for new, and better, information to guide the search. For ρ ?  1 only small amounts of 

pheromone are decayed between iterations and the convergence rate is slower, whereas for ρ ?  0 more pheromone 
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is decayed resulting in faster convergence. 

Values suggested in the literature range from ρ  = 0.5 [20], [23], to ρ = 0.75 [24], and ρ  = 0.8 [25]. For application 

of ACO to the WDSP, [16] and [17] found that higher values of ρ = 0.8 and 0.95 resulted in improved performance. 

4) Number of ants, m 

The number of ants, m, indicates the number of trial solutions generated before new information (i.e. pheromone 

addition) is utilized to further guide the search. The parameter m is also effectively equal to the number of random 

starting positions that the algorithm has in objective function space. For the traveling salesperson problem it is 

recommended that m = n [20], which has been used effectively by numerous authors [22]–[25]. For applications to 

the WDSP, m has tended to be set higher than the value given by this recommendation, where a value of m = 100 

was assumed for problem sizes of n = 14 and 21 [17]. However, no relationship between the search space 

characteristics and m has been determined for the WDSP. 

5) Pheromone reward factor, Q 

The reward factor Q is used as a scaling factor for the pheromone additions (see (12)). The parameter Q quantifies 

the influence of new information relative to the pheromone initialization value τ0 [24]. The authors of [20] and [24] 

stated that the performance of the ACO algorithms used in their studies were relatively insensitive to Q, and 

furthermore that it is not a crucial parameter. Typically Q = 100 for the application of ACO to the traveling 

salesperson problem [20], [23], [24]. The authors of [17] also found that a similar performance was achieved for a 

broad range of values of Q when applying ACO to the WDSP. 

IV. INTEGRATION OF ACO AND THE WDSP 

As ACO is a discrete combinatorial optimization algorithm that can only deal with unconstrained search spaces [19], 

transformations of the WDSP from a constrained optimization problem to an unconstrained problem must be 

performed. Similarly, for application to different problems ACO elements such as desirability must be redefined. 

A. Transformation From Constrained To Unconstrained Problem 

ACO, like all EAs, performs the optimization process by navigating the n-dimensional solution space, where 

searching behavior is governed by the value of the objective function at each point. It is desired to guide the search 
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of the EA into the feasible region and to do this it is necessary to transfer information about the feasibility of the 

solution to the EA via the objective function value. As performed previously in the application of EAs to the WDSP, 

[9], [10], [16], [17], this can be achieved by the use of a penalty function [27]. A penalty function is a function that 

makes infeasible solutions unattractive (in terms of objective function value) relative to the optimum solution such 

that they are treated by the algorithm as being poor, non-optimal solutions. As the objective function in the WDSP is 

the minimization of cost, the cost of infeasible solutions is increased via the use of a penalty cost. Therefore, the 

optimization problem in its transformed unconstrained state takes the form 

 

( ) ( ) ( )Ω+Ω=Ω PCCNCmin , (14) 

 

where NC(Ω) is the total network cost for design Ω, C(Ω) is the material cost for design Ω (i.e. the objective for the 

constrained problem), and PC(Ω) is the penalty cost incurred by design Ω. There are many different forms that 

PC(Ω) can take that account for the number of constraints violated, the degree of violation, and extent of the search 

(see [27] for a state-of-the-art overview of penalty functions). Here PC(Ω) is defined similarly to [9] and [17], in that 

it is proportional to the maximum pressure violation. That is 
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where PEN is the penalty factor (constant) with units of dollars per meter of pressure violation. The parameter PEN 

is a user-defined parameter, as appropriate values of PEN are different for each case study [17]. Typically PEN 

requires calibration [17], however a semi-deterministic expression for PEN is derived in section VI. 

B. Conversion From the General ACO Problem Formulation to the WDSP 

In addition to a transformation of the optimization problem, a redefinition of the desirability of an option is required. 

For the WDSP, the objective is to minimize the total network cost. Therefore, the desirability for each option is 

equal to the inverse of the unit cost of implementing that option. To generalize the formulation given in [17], the 

desirability of option j at pipe i is defined as 
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From (16), as lower cost options are more desirable, a higher bias in the probability of selection of lower cost 

options results. An issue arises with this definition of desirability when a pipe has a ‘null’ option (i.e. the option to 

take no action), as the cost is zero and consequently the desirability factor is infinity. To overcome this, a ‘virtual-

zero-cost’ [17] for these options was used. The value of the virtual-zero-cost was selected such that it was 

approximately one third of the lowest cost option. 

Table 1 gives a summary of the conversion of the problem elements from the general ACO problem formulation to 

the WDSP. 

V. CASE STUDIES 

A. The New York Tunnels Problem 

The New York Tunnels Problem (NYTP), originally considered in [1], involves the rehabilitation of a WDS by 

selecting design options for the 21 tunnels in the system. The network has 20 nodes, including a reservoir, and a 

single demand case.  In this paper, the metric version of the problem as defined in [10] was used.  There are 16 

design options for each tunnel (i.e. parallelization with one of 15 tunnel sizes or the null option) creating a search 

space size of 1621 (approximately 1.9342 ×  1025). As there is the null option, a virtual-zero-cost of $110 per meter 

was used. 

The NYTP has been considered as a continuous [1], [29], [3], [4], split pipe [30], and discrete [31], [32], [10]–[13], 

[17] WDS optimization problem. The current feasible known-optimum (i.e. current lowest cost solution) to the 

discrete version of this problem is $38.638 million (i.e. $38,638,000) found by [17]. 

B. Hanoi Problem 

Originally considered in [4], the Hanoi Problem (HP) involves the selection of diameters for 34 new pipes within a 

WDS consisting of 32 nodes, including a reservoir. There are six diameter options for each pipe, creating a total 

search space size of 634 (approximately 2.8651 ×  1026) designs. The HP has been considered as a continuous [4], [6], 
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split-pipe [4], [33], [5], [6], and discrete pipe [11], [14], [13] optimization problem. (The reader is referred to [13] 

for case study details.) 

As ASi-best deals only with discrete optimization problems, only the discrete solutions to this network are considered 

for comparison in this paper.  As a range of coefficients for the Hazen-Williams head-loss equation were used in 

differenct studies, all reported solutions have been analyzed using EPANET2, which was the benchmark hydraulic 

analysis tool used in this research. The resulting heads for the critical nodes are given in Table 2. It can be seen that 

the $6.073 million solution (from [11]) fails the design pressure constraint at nodes 13 and 30, whilst the $6.065 

million solution (from [14]) fails at nodes 13, 16, 27, and 29 and thus these two solutions are deemed infeasible. The 

$6.195 million solution (from [11]) and $6.182 million solution (from [13]) were found to be feasible solutions, and 

thus the current known-optimum cost is $6.182 million. 

C. Doubled New York Tunnels Problem 

The Doubled New York Tunnels Problem (NYTP2), which has not been considered previously in the literature, 

consists of two NYTP networks connected via the single reservoir at node 1 (see [10] for network data). Similarly to 

the NYTP, there are 16 design options, creating a search space size of 1642 (approximately 3.7414 ×  1050) designs. 

The minimum cost, although never found previously, is calculated as double the cost of the known-optimum solution 

for the NYTP ($77.276 million). It can be determined this way because the two sub-networks are hydraulically 

independent of one another as they are connected only by a source node (reservoir). 

VI. DERIVATIONS FOR DETERMINISTIC AND SEMI-DETERMINISTIC PARAMETERS 

If possible, it is advantageous to develop deterministic expressions for parameters of algorithms like ACO as this 

decreases the calibration requirements. For a parameter to be a candidate for the development of a deterministic 

expression it must have certain properties. In the case of Q, it was realized that a relationship exists between Q and 

another parameter (τ0) such that the other parameter could be calibrated to any value of Q without any loss in the 

algorithm’s performance. In the case of PEN, as this is the parameter that determines the penalty cost, a conservative 

approach was taken such that all infeasible solutions were guaranteed to assume a network cost higher than the 

optimum. This formulation assumes no a priori knowledge of the optimum except that it has a lower cost than the 
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maximum material cost C(Ωmax), where 

 

( ) { }∑ ==Ω
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max ,...,max . (17) 

 

Clearly, deterministic expressions cannot be developed for all parameters, as not all parameters are dependent on 

other parameters (as with Q) or have a physical meaning that can be exploited (as with PEN). 

A. Pheromone reward factor, Q 

A theoretical analysis of the influence of the pheromone reward factor Q on the decision-making policy (10) shows 

that the parameters τ0 and Q are dependent. A definition of dependent parameters, as well as a proof of the 

dependence of Q and τ0, is given in the appendix. The corollary of the proof is that Q can be set to a constant and the 

optimal value of τ0 can be calibrated to it without compromising the algorithm’s performance. Therefore, the 

adopted expression for Q is 

 

( )maxΩ= CQ . (18) 

 

Theoretically any value of Q is appropriate, but (18) was selected for convenience as Q is automatically scaled to be 

within the magnitude of the case study network costs. 

B. Penalty factor, PEN 

The basic function of the penalty factor PEN is to scale up the physical cost of infeasible networks such that they 

produce poorer objective function values than the optimum or near optimum solutions. As the optimum solution is 

generally not known, a conservative approach is to assign a value to PEN such that all infeasible solutions are more 

expensive than the maximum physical cost C(Ωmax), as the network cost of the optimum solution is clearly less than 

C(Ωmax). To formulate this, PEN can be defined such that the smallest network cost NC(Ωmin) (i.e. NC(Ωmin) = 

C(Ωmin) + PC(Ωmin), where C(Ωmin) is also given by (17) with use of the min{⋅} rather than the max{⋅} function) with 

an assumed maximum pressure deficit of d is equal to the maximum physical cost C(Ωmax). That is 
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( ) ( ) ( )maxminmin Ω=⋅+Ω=Ω CdPENCNC , (19) 

 

from which PEN can be solved for as 

 

( ) ( )[ ]
d

CC
PEN

minmax Ω−Ω
= . (20) 

 

This formulation for PEN is referred to as being semi-deterministic, as it is still dependent on the user specified 

value of d. However, a value that is assigned to d (units in m) is more intuitive than a penalty cost multiplier (units in 

$/m), as it deals with a real physical property (i.e pressure deficit). Another way to view d is to consider the 

following question: what maximum pressure deficit would the user accept to achieve a cost saving of C(Ωmax) –

 C(Ωmin)? 

The parameter d should theoretically be able to be determined from a hydraulic analysis of the Ωmin network. The 

assumption within the formulation of the hydraulic equations ((5), (6), (7), and (8)) is that the nodal demands are 

satisfied. For networks with extremely large frictional losses (e.g. large flows through small diameter pipes), the 

resulting solution to the set of hydraulic equations is typically a set of negative pressure heads of unrealistic 

magnitudes for all or some of the nodes. As an example, for the Ωmin of the HP the nodal pressure heads ranged from 

–907 m at node 2 to –17635 m at node 13. Considering that the vapor pressure of water is just over –10 m, these 

negative pressures for water are unachievable and therefore this solution is not representative of reality. 

Realistically, in such a network the flow provided at the nodes would be limited such that only realistic headlosses 

would occur. The corollary of this is that, with the current available hydraulic analysis techniques for WDSs, the 

actual nodal pressures for networks that are unable to provide realistic pressure whilst satisfying nodal demands 

cannot be determined. Therefore, d must be user-selected. 

In this study, d has been selected to be a small value (0.01 m) such that infeasible solutions are considered to be 

extremely poor. Reference [27] highlighted an approach called the minimum penalty rule. This states that, ideally, 

the penalty should be kept as low as possible such that the value of the objective function for infeasible solutions is 

just above the optimum objective function value. This requires PEN to be a function of the magnitude of the 

pressure violation such that large violations are penalized sufficiently and small violations are not penalized too 
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much. The advantage of this is that the algorithm would be able to converge on the optimum from both the feasible 

and infeasible regions as valuable information is gained from searches within the boundaries of the infeasible region. 

However, for the purposes of this study, d = 0.01 m was found to be suitable. 

VII. PARAMETRIC STUDY FOR ANT COLONY OPTIMIZATION PARAMETERS 

This section provides a summary of parametric studies undertaken for the non-deterministic ACO parameters α, β, 

ρ, τ0, and m and the heuristics derived from these results. Due to the computationally expensive nature of the 

hydraulic solver process (i.e. this requires the solution to the large system of non-linear equations, given by (5), (6), 

and (7), performed by iterative techniques such as the Newton-Raphson method or more sophisticated algorithms) 

and the large number of parameter combinations, five to ten runs were typically performed for the parametric 

sensitivity analysis simulations. This number of runs was deemed to be sufficient for the observation of behavioral 

trends with the parameter variations. Extended simulations were performed once the parameter guidelines were 

determined, the results of which are given in section VIII. 

A. Decision policy control parameters ?α and β 

Due to the joint influence of α and β on the decision policy, these parameters were considered together within the 

parametric studies. Based on preliminary analyses, values of 0 = α = 5 and 0 = β = 2.5 were used for more detailed 

sensitivity analyses. 

Fig. 2 gives a summary of the sensitivity analysis results of α and β for the NYTP (note: Imax is the maximum 

number of iterations). The results are presented in terms of the means of two main properties of an algorithm’s 

performance, referred to here as ‘best-cost’ and ‘search-time’. Best-cost is the lowest network cost that the algorithm 

found during the run, and search-time is the number of evaluations that the algorithm took to first find the best-cost 

solution. As the behavior exhibited by the surfaces was similar for the other case studies, only the results for the 

NYTP are given. 

As displayed in Fig. 2(a), the best-cost surface formed a “valley” shape centered on the range 1 = α = 2 and 

0 = β = 1 with the lowest point occurring at α = 1 and β = 0.5. It can be seen that solution quality was very sensitive 

to β (more so than α). For β = 0 (for this parameter value the searching is effectively independent of the local costs 
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of the pipe options), the algorithm performed generally only slightly worse than for β = 0.5 and 1.0, the former being 

the best parameter value for all values of α. However, in 2(b) it is seen that a lack of consideration of the local costs 

of the pipe options greatly reduces the efficiency of the algorithm. 

For β > 1.5 only poor solutions were found. On one level, this is a non-intuitive result, as it could be considered that 

higher values of β should encourage the selection of better (lower cost) solutions. However it was found that for 

high values of β, the search was repeatedly pushed into the infeasible region (i.e. low-cost infeasible solutions were 

constantly selected) meaning that the algorithm had to gradually find the optimal region based on information from 

the fewer feasible solutions found. This behavior is also reflected in the search-times (Fig. 2(b)). For example, for 

β = 1.5 the algorithm searched for a longer time before finding the best-cost solution. 

The algorithm’s inability to explore the search space for high values of β is illustrated by the fact that for β > 1.5 the 

algorithm converged to the same solution for each run (as indicated by the plateau in Fig. 2(a)), indicating a 

drastically skewed probability distribution due to the high β values. These solutions were also found within the first 

iteration, as indicated by the plateau in Fig. 2(b). 

As expected, the algorithm performed worst for α = 0, as this parameter setting is equivalent to the ants ignoring the 

pheromone trails when selecting pipe options. From Fig. 2(a) and (b) it is seen that as α increased, ASi-best found the 

best-cost solution earlier in the run, and increasingly poorer quality solutions were found for α > 1. This behavior is 

indicative of an increase in the convergence pressure in the algorithm’s search, resulting in poorer exploration of 

alternative regions in the search space. The value of α dictates the emphasis placed on the relative difference in the 

pheromone intensities between all options in the probability determination (i.e. (10)). As α increased, the difference 

was emphasized more and consequently pheromone additions had a greater influence. The result of this was that the 

probability of reselection of an option that was updated was proportionally larger. Consequently, the algorithm’s 

ability to consider non-updated options decreased, resulting in premature convergence. 

No feasible solutions were found for α = 1.5 and β = 1 for the HP. This may be attributed to the fact that the known-

optimum solution contains many pipes that are set to the largest or near largest diameter size [13], and consequently, 

as the optimum solution lies on the boundary between the feasible and in feasible region [9], it can be deduced that 

there are few feasible solutions that contain small pipe diameters. Therefore, if the local cost of a diameter option is 
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overly influential in the searching process, as is the case for high values of β, the search will be guided into the 

infeasible region of the search-space. 

From the investigations, α appears to be more robust than β, which was recognized as being a highly sensitive 

parameter. Even though β = 0 produced a moderately better performance for the HP (a reduction in the mean best-

cost of about 1%), the consistently best combination of parameters with respect to all case studies was α = 1.0 and 

β = 0.5. Thus β plays a less important role in that it provides a bias towards the lower cost options and the main 

factor driving the search is the learned information, as represented by the heuristically evolving pheromone 

intensities. 

B. Pheromone Initialization, τ0 

Based on a preliminary analysis of τ0 for the three case studies, values of 10 = τ0 = 300 were tested. Fig. 3 displays 

the results for the NYTP2. The top set of three curves give the maximum, mean, and minimum best-cost values for 

each parameter value. The bottom set of three curves gives the maximum, mean, and minimum search-times, 

expressed in units of evaluation number / 103. It is advantageous to consider all three statistics as they present a more 

rounded description of the algorithm’s performance. 

As is seen in Fig. 3, τ0 is a relatively robust parameter, where the maximum variation in best-costs for the entire 

range of τ0 tested is 2.2 %. The best-cost curves indicate an increasingly improved performance for τ0 ?  200. 

Despite other parameter values achieving lower cost solutions, τ0 = 200 was considered to be the best parameter 

setting as it induced a more robust performance. This is indicated, primarily, by the fact that the lowest mean best-

cost was achieved for this parameter value, and also the fact that a tighter bounding of the maximum best-cost curve 

occurs at this point. From the search-time curves, a definite trend of an increased search-time for τ0 increasing 

from 0 to 100 is seen, followed by a plateau for τ0 > 100. This agrees with an intuitive consideration of (10), (11), 

and (12) in that higher values of τ0 attenuate the influence of the pheromone additions resulting in slower 

convergence. Despite this increased search-time, better solutions were generally not found (particularly for the HP). 

This implies that there is an optimum value of τ0 for which appropriate importance is given to the pheromone 

updates. 

Despite the relative insensitivity of the algorithm to τ0, the results showed that the best value of τ0 is not case study  
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independent. This finding is intuitive when one considers that the action of τ0 is to assign appropriate importance to 

the pheromone additions. Thus, in agreement with (13), it was considered that τ0 should be a function of an 

estimation of the potential pheromone additions. Based on maintaining a simple relationship between τ0 and an 

estimation of the potential pheromone addition, the following heuristic was derived for the application of ASi-best to 

the WDSP 

 

( ) avg
n
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C

Q
⋅

Ω
= *0τ

, (21) 
 

where NOavg is the average number of options for the n decision variables and Q/C(Ωn
*) is the pheromone addition 

for design Ωn
* where C(Ωn

*) is the physical cost of a near optimum design Ωn
* (i.e. the known-optimum or some 

other low cost solution). Equation (21) varies from that given in (13) in that the number of decision variables n has a 

positive exponent and NOavg is also included as a variable. However, the general relationship of τ0 being proportional 

to the pheromone addition of a near optimal solution is maintained (note the similarity between the expression in 

(21) and the relationship between Q and τ0 derived in the appendix). 

From Table 3 it is seen that the heuristic values of τ0 approximate nearly exactly the best values of τ0 for the HP and 

the NYTP2 (i.e. the near-heuristic values are the best values). For the NYTP, the heuristic value was some distance 

from the best value of τ0. However, for this case study the performance of the near-heuristic value was still very 

good, with the mean best-cost varying just over 0.5% from that obtained when the best value of τ0 was used. 

C. Pheromone Persistence, ρ 

 A summary of the sensitivity analysis results of ρ for the NYTP2 is given in Fig. 4. The top set of three curves 

presents the minimum, mean, and maximum values of the best-cost for each value of ρ, and the bottom set of three 

curves presents similar results for the search-times. It is seen from this figure that as ρ increases the mean best-cost 

tends to decrease with a generally tighter bounding by the maximum and minimum curves, and the mean search-time 

increases with a generally looser bounding. These observations indicate that for higher values of ρ the algorithm’s 

ability to find least cost solutions is improved due to increases in the algorithm’s ability to explore, resulting from a 
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decrease in convergence pressure. These results also agree with an intuitive consideration of (11), as higher values 

of ρ will enable the pheromone intensities of non-updated edges to persist for longer thereby allowing their 

probabilities of selection, given by (10), to maintain non-trivial values. Similar results were observed for the other 

case studies. 

 The results for ρ = 0.97, 0.98, and 0.99 (note that only these values are considered in more detail as, on inspection 

of Fig. 4, it is clear that the performance is better for ρ ?  1) are shown in Table 4. It can be seen that ρ = 0.98 

achieves the lowest mean best-cost for the NYTP and NYTP2. A value of ρ = 0.97 results in the best performance 

for the HP, with a mean best-cost just marginally lower than that obtained using ρ = 0.98. However, despite the 

better mean, ρ = 0.98 achieved lower maximum and minimum best-cost values. It is interesting to note that ρ = 0.99 

did not find any feasible solutions for any of the HP runs. This indicates that, for this case study, the stronger 

degradation of the pheromone trails (and hence the lowering of the probability of selection) for the poor options is 

important for the algorithm to find the feasible region within the search space. 

Based on good results in all the case studies, ρ = 0.98 was found to be the most reliable value for the pheromone 

persistence parameter. 

D. Number of Ants, m 

Fig. 5 gives a summary of the sensitivity analysis results for a range of m values for the NYTP. The top set of three 

curves gives the maximum, mean, and minimum values of best-cost, and the bottom set of three curves gives the 

corresponding values of search-time. From the top set of curves it is seen that for m = 20 the known-optimum 

solution of $38.638 million was found for at least one of the 10 runs (as indicated by the “min best-cost” curve). As 

m increases the mean best-cost decreases thus indicating more reliable and robust algorithmic performance. This 

robustness is also seen in the tighter bounding of the mean best-cost by the maximum and minimum best-cost values. 

The trade-off for this robustness is illustrated in the bottom set of three curves by the increase in search-time (or 

decrease in efficiency) as m increases. A corollary of these behavioral observations is that the best value of m is the 

smallest value that gives a suitably robust performance. A further point to note is that the bounding of the mean 

search-time curve by the maximum and minimum curves is tighter for lower values of m, indicating that the 

convergence pressure is stronger, as for each run the algorithm converges within similar times. 
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The expression of m = n, given in [20], tended to result in relatively poor performance for all WDS case studies 

considered, as too few ants were employed. Values of 10 = m = 200 were tested for the NYTP and NYTP2 networks 

and 10 = m = 100 for the HP, where the maximum number of evaluations Imax ×  m was kept at a constant. Based on 

the results the following heuristic for m was determined 

 

avgNOnm = . (22) 

 

This provides a deterministic method of scaling up the expression given in [20] and relates m not only to the number 

of decision variables within the problem (i.e. n) but also to the average number of options at each decision point, 

NOavg. Equation (22) yields values of m = 84, 83.3, and 168 for the NYTP, HP, and NYTP2, respectively. 

A comparison of the best results obtained using the value of m with those obtained using the near-heuristic value of 

m within the tested parameter series is shown in Table 5. From this table it is seen that even though (22) 

underestimates the best value of m for the NYTP, the best-cost statistics of the near-heuristic value are very close to 

the minimum, mean, and maximum best-cost values, deviating 0.0%, 0.05%, and 0.51%, respectively, from best 

value statistics. Equation (22) provides a conservative overestimate of m for the HP and the NYTP2. From Table 5 it 

is seen that the performance of the algorithm with the near-heuristic value of m for these two case studies compares 

well to that obtained using the best value. For both case studies, the near-heuristic value of m results in a lower 

minimum best-cost compared with that obtained using the best value of m and the mean and maximum best-costs 

vary only by just over 1% for the HP and under 0.2% for the NYTP2. 

Based on these results, (22) is considered to provide a very good estimate of m for the three case studies considered. 

VIII. ASSESSMENT OF PERFORMANCE OF HEURISTIC PARAMETER SETTINGS 

Based on the parameter setting recommendations presented in the previous section, extended simulations were 

performed for the three case studies involving 100 runs. Results from these simulations, along with results from 

other algorithms presented in the literature, are given in Table 6. In addition to the standard GA [11], these other 

algorithms include: the Improved GA [10] (GAimp), which is a GA that uses grey coding combined with creep 

mutation and a variable power scaling of the fitness function; ACOA [15], which is a version of ACO that possesses 
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a similar updating scheme to ASi-best but has a different penalty function and does not use the parameter heuristics; 

the Fast Messy GA [13] (GAfm), which uses variable-length strings, a threshold genetic selection and messy 

operators of cut and splice.  It is important to note that other authors [11]-[14] have presented cheaper solutions for 

the NYTP and the HP that were found to be infeasible by EPANET 2 (see [15] for the NYTP and section V for the 

HP hydraulic analysis of these designs), and as such are not included in Table 6. 

From Table 6 it is seen that ASi-best performed extremely well for the NYTP, with a mean best-cost deviating only 

0.54% from the known-optimum ($38.638 million). Out of the 100 runs performed, ASi-best found the known-

optimum solution 41 times. Consequently, ASi-best with the heuristic parameter settings is more robust than the ACO 

formulation used by [17] with calibrated parameter values. Both ASi-best and ACOA performed better than GAimp in 

terms of solution quality and efficiency. A good performance for the NYTP2 was also observed, as ASi-best was able 

to find the known-optimum once and achieved a mean best-cost deviating only 1.33% from this. 

Despite its relatively good performance for the two other case studies, ASi-best was unable to find the known-

optimum for the HP. The best solution found was $6.367 million (2.99% deviation from the known-optimum) with a 

mean best-cost deviating 10.68%. To give a comparison of the ASi-best, GA and GAfm solutions for the HP, from 

Table 7 it is seen that only 11 of the 34 pipes differ between the ASi-best and the GAfm design, and nine of theses 

pipes only differ by one diameter size. This relative closeness in solutions indicates that ASi-best was searching in the 

neighborhood of the known-optimum solution. Of the 11 different pipes, 7 are smaller than the optimum design. This 

fact highlights an issue in the management of ACO’s bias towards selecting lower cost options, resulting from the 

use of the desirability values in the decision probabilities in (10). To accommodate the smaller diameters in ASi-best’s 

solution, pipes 16 and 18 were forced to be much larger, inducing the majority of the cost difference. 

An important point to note is that ASi-best has a far smaller search-time than the other algorithms; 53.9% of GAfm’s 

search-time and 6.1% of the GA’s search-time. Similar results reporting ACO’s shorter search-times are also 

reported by [17] and [18]. This is clearly an advantage with problems like the NYTP where ASi-best’s solution quality 

remains high. However for problems like the HP, this shorter search-time combined with a poorer solution quality 

indicates that ASi-best is not able to explore for a long enough period of time, and converges too quickly for this type 

of problem. 
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IX. SUMMARY AND CONCLUSIONS 

In this paper, a formulation of ACO for WDS optimization has been presented, namely the iteration-best ant system 

(ASi-best). ACO has many advantages for WDS optimization, however one major disadvantage is the many user-

defined parameters that govern the algorithm’s search behavior. 

In order to overcome these limitations, parameter guidelines for ACO applied to the WDSP have been developed. 

From simple theoretical analyses, deterministic expressions have been developed for two of the parameters; the 

pheromone addition factor Q and the penalty factor PEN. For the remainder of the parameters (the decision control 

parameters α and β, the pheromone persistence factor ρ, the initial pheromone value τ0, and the number of ants m) 

guidelines have been developed based on a detailed parametric study using three case studies. The guidelines are 

summarized in Table 8. 

Using the derived parameter guidelines, ASi-best has been seen to perform extremely competitively when compared to 

other optimization algorithms. For two of the three case studies, ASi-best found the known-optimum solution. The 

algorithm’s performance was also extremely robust, as the mean cost found for 100 different runs varied only 

slightly from the optimum (i.e. less than 1.5%). Additionally, ACO was found to be a much faster and more efficient 

algorithm than GAs when applied to WDS optimization. 

The advantage of the parameter guidelines that have been established is that they provide guidance for the future 

application of ACO to the WDSP. Because of their success with the case studies used, there is scope for their 

applicability to other, possibly real-world, problems.  In addition, recent developments in the use of EAs show 

potential for application to WDS optimization.  Examples of these are: an elitist compact GA (CGA) [34], a CGA 

that retains the elitist solution, indefinitely or for a fixed generation period, and uses it to evolve the CGAs 

probability vector; the society and civilization algorithm [35], which is new algorithm for constrained problems that 

mimics the interaction between societies (i.e. populations of solutions distributed throughout the solution space) and 

the distribution of information to individuals (i.e. the manner in which individual solutions are altered); and the Lévy 

evolutionary programming (EP) algorithm [36], which uses the Lévy distribution (a generalized form of the Cauchy 

distribution) to govern mutation to encourage broader searching through the solution space due to the infinite second 

moment property of this distribution. 
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APPENDIX: PROOF OF DEPENDENCE OF Q AND τ0 

Dependence between two parameters is defined here as the ability to express either one of the parameters as some 

function of the other parameter without loss of generality of the algorithmic process2. This means that one of the 

dependent parameters can assume any value and the other parameter can be calibrated to it without compromising 

the algorithm’s performance. That is, as long as one of the parameters is calibrated, the algorithm’s performance is 

independent of the value that the other dependent parameter takes. 

Proposition: Q and τ0 are dependent parameters. 

Proof: To prove that Q and τ0 are dependent parameters, two steps are taken: (i) a general expression of the 

algorithmic process is derived as a function of the parameters Q and τ0; and (ii) from this it is shown that τ0 can be 

expressed as some function of Q without loss of generality in the algorithmic process. 

The algorithmic process of ACO can be seen as an evolution in time of the probability functions at each decision 

point. This can be justified by considering that the sole aim of ACO is primarily to alter the probability functions to 

make the selection of the global optimum more probable. Consequently, step (i) involves deriving an expression 

for pi,j(t) as a function of Q and τ0. To do this, firstly an expression of τi,j(t) as a function of Q and τ0 is required. 

From (11), τi,j(t) can be expressed as a function of τi,j(t–2), ∆τi,j(t–2), and ∆τi,j(t–1) by 
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In a similar recursive pattern, τi,j(t) can be expressed as a function of the pheromone value in the first iteration and 

all the pheromone additions up to iteration t-1. Recognizing that τi,j(1) = τ0, by recursion the following expression is 

obtained 

 
2 “Without loss of generality of the algorithmic process” is defined as actions on the parameters that do not confine the generality of the 

process. For example as ρ is not a dependent parameter if it is set to 1 no manipulation of the other parameters can restore the general nature of 
the process. 



Under consideration for publication in IEEE Transactions on Evolutionary Computation 
 

28

 

( ) ( )∑
−

=

−−− ∆+=
1

1
,

1
0

1
,

t

l
ji

ltt
ji lt τρτρτ . (24) 

 

To include the Q term, (12) is substituted into (24) to obtain the following expression 
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where δi,j(t) is a delta function given by 
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This means that edge (i,j) receives the pheromone addition of Q/f(Sbest(t)) if it is an element of Sbest(t) (note: (i) this is 

just a convenient way of expressing (12) and (ii) this proof holds for any definition of ∆τi,j(t) that is linearly 

proportional to Q) Substituting (25) into (10), an expression for the evolution of the probability distributions based 

on the initial pheromone value and the pheromone additions from iteration 1 to t – 1 is achieved. This can be written 

as 
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Equation (27) represents a complete expression of the algorithmic process (i.e. an expression for pi,j(t) for all t) 

based on Q and τ0, as required by step (i) above. To achieve step (ii), dividing (27) by Qα/Qa and taking out [ρt-1]α as 

a common factor yields 
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The parameters τ0 and Q appear only together as a ratio in (28), and as (28) represents a complete expression of the 

algorithmic process it can also be seen that τ0 and Q can be replaced by another parameter (say ξ, where ξ = τ0 / Q) 

without loss of generality in the process. A result of this is that τ0 can be expressed as a function of Q (i.e. τ0 = ξ Q) 

without loss of generality. This implies that Q and τ0 are dependent parameters. ?  
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Figure 1 Example of evolution of pheromone trails.
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Figure 2 Sensitivity analysis results for α and β for the New York Tunnels Problem, m = 100, τ0 = 100, ρ = 0.98, and 
Imax = 1000. Performance measures for each parameter value are averaged from five runs 
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Figure 3 Summary of sensitivity analysis results for the initial pheromone value τ0 varied for the Doubled New York 
Tunnels Problem where α = 1.0, β = 0.5, m = 100, ρ = 0.98, and Imax = 1000. Performance statistics for each parameter 
value are based on results from five runs.  
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Figure 4 Summary of sensitivity analysis results for ρ varied for the Doubled New York Tunnels Problem where a = 2.0, 
β = 0.5, τ0 = 300, ρ = 0.98, m = 100, and Imax = 1000. Performance statistics for each parameter value are based on results 
from ten runs. 
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Figure 5 Summary of sensitivity analysis results for the number of ants m varied for the New York Tunnels Problem 
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Table 1 Summary of the conversion from the general ACO problem formulation to the Water Distribution System 
Problem. 

 
 
 

General ACO problem 
formulation  WDSP equivalent 

Element Symbol Element Symbol 

Path S Design Ω 

Edge (i,j) Option optioni,j 

Set of edges 
available from 
decision point i 

θi 
Set of options 
available for 

pipe i 











iNOi

i

option

option

,

1,

...,

,...  

Objective 
function f(S) Network cost NC(Ω) 
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Table 2 Nodal heads of the critical nodes for the Hanoi Problem. Hydraulic analysis was performed using EPANET2 with 
a maximum number of iterations = 5000 and accuracy = 0.00001. 

 
 
 

Nodal heads for critical nodes (m), (difference from minimum allowable head, m) 

Node Savic & Walters (1997), GA No.1a Savic & Walters (1997), GA No.2a Cunha & Sousa (1999)b Wu et al. (2001)c 

13 29.83 (–0.17) 34.18 (+4.18) 29.76 (–0.24) 31.76 (+1.76) 

16 30.30 (+0.30) 34.31 (+4.31) 29.94 (–0.06) 32.05 (+2.05) 

27 30.19 (+0.19) 33.10 (+3.10) 29.75 (–0.25) 32.00 (+2.00) 

29 30.87 (+0.87) 31.84 (+1.84) 29.84 (–0.16) 32.29 (+2.29) 

30 29.86 (–0.14) 30.97 (+0.97) 30.10 (+0.10) 31.85 (+1.85) 

Cost ($million) 6.073 6.195 6.065 6.182 

Feasibility infeasible feasible infeasible feasible 
a ref. [11] 
b ref. [14] 
c ref. [13] 
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Table 3 Comparison of the best-cost statistics for the best value and the near-heuristic value of initial pheromone τ0, with 
α = 1.0, β = 0.5, m = 100, ρ = 0.98, Imax = 1000. Performance statistics for each parameter value are based on results from 

five runs. 

 
 

Best value of τ0 in tested parameter series Near-heuristic value of τ0 in tested parameter series 

Best-cost ($million) Best-cost ($million) (% deviation from best value statistics) Case study 
τ0 

minimum mean maximum 

Heuristic for 
τ0 given by 

(21)a τ0 
minimum mean maximum 

NYTP 100 38.638 38.638 38.638 139.51 140 38.638 (0.0) 38.8732   (0.61) 39.187   (1.42) 

HP   25   6.427   6.7786   7.156   25.87   25   6.427 (0.0)   6.7786 (0.0)   7.156 (0.0) 

NYTP2 200 77.808 77.9662 78.256 197.31 200 77.808 (0.0) 77.9662 (0.0) 78.256 (0.0) 

a C(Ωn
* ) was taken as $38.638 million (from [17]), $6.056 million (from [13]), and $77.285 million for the NYTP, HP, and NYTP2, respectively. 
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Table 4 Sensitivity analysis summary for pheromone persistence factor ρ with α = 1.0, β = 0.5, m = 100, Imax = 1,000 for 
the NYTP and HP and 10,000 for the NYTP2 and τ0 = 100, 50, and 200 for the NYTP, HP, and NYTP2, respectively. 
Performance statistics for each parameter value are based on results from five runs and the statistics are ordered as 
(minimum), mean, and [maximum]. The lowest mean best-cost values are bolded. NFS means no feasible solution was 

found. 

 
 
 

Best-cost ($million), Search-time (evaluation number) 
Case study 

ρ = 0.99 ρ = 0.98 ρ = 0.97 

  (38.638)   (31,655)   (38.638) (19,328)   (38.638) (16,462) 

  38.700   36,749   38.638 23,964   38.818 17,509 NYTP 

  [38.949]   [44,263]   [38.638] [29,596]   [39.062] [18,886] 

  (NFS)     (6,295)   (6.637) (75,385)     (6.652) (50,692) 

  NFS   17,330   6.770 80,425     6.757 58,454 HP 

  [NFS]   [29,543]   [6.839] [95,175]     [6.948] [77,793] 

  (77.434)   (85,685)   (77.808) (37,769)   (79.600) (30,177) 

  78.213   97,759   77.966 44,282   80.128 31,938 NYTP2 

  [79.254] [106,669]   [80.678] [54,702]   [80.678] [35,324] 
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Table 5 Comparison of the best-cost statistics for the best value and the near-heuristic value of the number of ants m with 
α = 1.0, β = 0.5, ρ = 0.98, τ0 = 140, 50, and 200 for the NYTP, HP and NYTP2 respectively, and Imax ×  m ≈  100,000 for 

the NYTP and the HP, and 1,000,000 for the NYTP2. Performance statistics for each parameter value are based on 
results from ten runs for the NYTP and five runs for the HP and NYTP2. 

 

 
 
 

Best value of m in tested parameter series Near-heuristic value of m in tested parameter series 

Best-cost ($million) Best-cost ($million) (% deviation from best value statistics) Case study 
m 

minimum mean maximum 

Heuristic for 
m given by 

(22) m 
minimum mean maximum 

NYTP 100 38.638 38.774 39.216   84   80 38.638  (0.00) 38.794 (0.05) 39.415 (0.51) 

HP   40   6.492   6.706   6.900        83.28   80   6.354 (-2.13)   6.779 (1.08)   6.970 (1.01) 

NYTP2 100 77.808 77.966 78.256 168 160 77.474 (-0.43) 78.082 (0.15) 78.364 (0.14) 
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Table 6 Performance of ASi-best with heuristic parameter settings for different case studies. Imax ×  m ≈  100,000, 200,000, 
and 500,000 for the New York Tunnels Problem, the Hanoi Problem, and the Doubled New York Tunnels Problem 
respectively. Performance statistics for ASi-best are based on results from 100 runs. NA means information was not 

available. 

 
 
 
 
 

Best-cost statistics ($million) (% Deviation from known optimum) Search-time statistics (evaluation number) Case 
Study Algorithm 

minimum mean maximum 

 

minimum mean maximum 

ASi-best 38.638 (0.00) 38.849   (0.54) 39.492   (2.21)  16,664 22,052   33,610 

GAimp
a 38.796 (0.41) NA NA  96,750 NA NA NYTP 

ACOAb 38.638 (0.00) NA NA    7,014 13,928 23,045 

ASi-best   6.367 (2.99)   6.842 (10.68)   7.474 (20.90)  60,433 67,136 110,561 

GAc   6.195 (0.21) NA NA  ~106 NA NA HP 

GAfm
d   6.182 (0.00) NA NA  113,626 NA NA 

NYTP2 ASi-best 77.275 (0.00) 78.302   (1.33) 79.922   (3.43)  60,376 75,760 141,388 
a Ref. [10] 
b Ref. [17] 
c Ref. [11] 
d Ref. [13] 
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Table 7 Comparison of ASi-best design to current best designs for the Hanoi Problem. Diameters differing from GAfm 
solution are in italics. Smaller diameters are also bolded. 

Link no. GAfm
a GAB ASi-best 

  1 40 40 40 

  2 40 40 40 

  3 40 40 40 

  4 40 40 40 

  5 40 40 40 

  6 40 40 40 

  7 40 40 40 

  8 40 40 40 

  9 40 40 30 

10 30 30 30 

11 24 30 24 

12 24 24 24 

13 16 16 12 

14 12 16 12 

15 12 12 12 

16 12 16 24 

17 20 20 20 

18 24 24 40 

19 24 24 24 

20 40 40 40 

21 20 20 20 

22 12 12 12 

23 40 40 40 

24 30 30 30 

25 30 30 24 

26 24 20 20 

27 12 12 12 

28 12 12 12 

29 16 16 20 

30 16 16 16 

31 12 12 16 

32 16 12 12 

33 16 16 12 

34 24 20 20 
a Ref. [13] 
b Ref. [11] 
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Table 8 Summary of heuristics for ACO parameters for the Water Distribution System Problem. 

 
 

 
Parameter Description Value / expression 

α 
Decision control parameter for 

pheromone values 1.0 

β 
Decision control parameter for 

desirability values 0.5 

τ0 Initial pheromone value ( )*
navg CNOnQ Ω⋅  

ρ Pheromone persistence factor 0.98 

m Number of ants avgNOn  

Q Pheromone reward factor ( )maxΩC  

PEN Penalty factor ( ) ( )( ) dCC minmax Ω−Ω  

 
 


