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Abstract

Recent approaches to human category learning have often (re)invoked the notion
of systematic search for good rules. The RULEX model of category learning is em-
blematic of this renewed interest in rule-based categorization, and is able to account
for crucial findings previously thought to provide evidence in favor of prototype or
exemplar models. However, a major difficulty in comparing RULEX to other models
is that RULEX is framed in terms of a stochastic search process, with no analytic
expressions available for its predictions. The result is that RULEX predictions can
only be found through time consuming simulations, making model-fitting very dif-
ficult, and all but prohibiting more detailed investigations of the model. To remedy
this problem, this paper describes an algorithmic method of calculating RULEX
predictions that does not rely on numerical simulation, and yields some insight into
the behavior of the model itself.

Key words: RULEX, category learning, rule-based inference.
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Early research on human category learning (e.g., Bruner, Goodnow & Austin
1956) stressed the importance of systematic rule search. The idea is that people
solve a learning problem serially, by forming hypotheses about the structure
of a category, and testing them against environmental feedback. Following
influential studies such as those of Posner and Keele (1968) and Rosch and
Mervis (1975), this notion of rule-based categories fell out of favor, and was
largely replaced by prototype-based models and exemplar-based models (see
Komatsu, 1992, for an overview). Nevertheless, interest in rule-based models
has resurfaced in recent years, in part due to concerns with the psychologi-
cal plausibility of the high-memory requirements of existing models, but also
due to the ability of rule-based models to account for phenomena previously
assumed to be inconsistent with them.

One of the more interesting rule-based models is Nosofsky, Palmeri and McKin-
ley’s (1994, see also Nosofsky & Palmeri 1995, Palmeri & Nosofsky 1998) rule-
plus-exception (RULEX) model, which has been shown to capture a number
of important empirical findings with minimal memory requirements. However,
work involving RULEX is hampered by the difficulty in extracting precise pre-
dictions from the model: extensive simulations are required in order to esti-
mate the probability that RULEX makes a particular response on any given
trial. The main purpose of this paper is to introduce an algorithmic method
of quickly calculating response probabilities for RULEX without having to
resort to stochastic methods. However, since the methods used are standard
combinatorics, an ancillary goal is to illustrate the general idea of developing
algorithms for computing discrete models in cognitive psychology. It should
be emphasized at the outset that the notation used in this paper differs from
that used in previous RULEX papers. This is unavoidable, since the mathe-
matical approach adopted here necessarily requires the use of a large number
of functions and variables, which rapidly become unwieldly in the original
notation.

1 The RULEX Model

The workings of RULEX during supervised learning tasks are as follows. When
presented with a stimulus, a participant is generally assumed to have a candi-
date rule in mind which assigns the observed stimulus to one of the available
categories, and responds accordingly. If no rule is available, or if the rule does
not help in this case, then a response is made at random. After receiving some
feedback the participant may either keep the rule, or discard it and try a new
one. The next trial follows. In this way, a participant should eventually settle
on a good rule, at which point he or she starts looking for exceptions. The
RULEX strategy is characterized by four different types of search:
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• Exact search (E). Look for a rule that discriminates perfectly between
classes, using only a single attribute or dimension.
• Imperfect search (I). Look for a rule that discriminates fairly well be-

tween classes, though not necessarily perfectly, again using only a single
attribute.
• Conjunctive search (C). Look for a rule that discriminates fairly well

between classes using multiple attributes.
• Exception search (X). Look for exceptions to the rule.

RULEX always starts with an exact search, in which a rule is maintained until
it misclassifies a stimulus. If all rules fail in this manner, RULEX starts either
an imperfect search or a conjunctive search. If one of the rules adopted during
this search works “sufficiently well”, then it is permanently adopted and a
search for exceptions begins. If no rule works well enough, then RULEX tries
the other type of search (either conjunctive or imperfect), again starting an
exception search if it finds a good enough rule. Finally, if none of the rules
works well enough, then RULEX starts looking for “exceptions” without a
rule. This is essentially equivalent to adopting a random rule. This procedure
is shown schematically in Figure 1.

————— Insert Figure 1 about here —————

To see how RULEX might work in practice, consider a task based on a do-
main with only two categories c ∈ (A,B), and three binary-valued attributes.
Suppose that the first stimulus is represented by the vector s1 = [0, 1, 0], the
second stimulus by s2 = [0, 0, 1], and that RULEX starts out by considering
a single dimensional rule based on the first attribute. This rule r1 could indi-
cate that all stimuli that take on a value of 0 on the first attribute (such as
both s1 and s2) would be classified as belonging to category A. Denote this
as r1 : 0 → A. In the current example, r1 can take two forms, 0 → A and
0→ B. In RULEX, it is assumed that the choice of rule variant is data-driven,
in the sense that r1 takes whichever form has previously displayed better clas-
sification performance. During exact search, this is trivial. If r1 is adopted
after observing that s1 → A, then r1 will take the form 0 → A. It will never
reverse, because a single incorrect response causes r1 to be discarded. So, if
the next trial results in s2 → B, r1 is discarded, and a new rule is chosen. The
new rule is either r2 or r3, corresponding to single dimensional rules based on
attributes two and three respectively. If the new rule is r3, then it will take the
form 0 → B, since s2 has value 0 on the third attribute and belongs to cat-
egory B. The candidate rules r1, r2 and r3 are sampled without replacement
with probability proportional to the saliency αk (the distribution of saliencies
is assumed to be uniform unless other information is available). Clearly, if
one of the rules leads to perfect performance then RULEX never discards it,
and no further search takes place. However, many real-world problems and
most laboratory problems do not have such a simple solution, so RULEX will
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eventually (probably quite quickly) discard all such rules and move on to im-
perfect search or conjunctive search. If this occurs, then with probability β
(short for branching probability), the next stage is imperfect search and if
that fails, conjunctive search follows. Alternatively, with probability 1 − β,
the conjunctive search precedes the imperfect search. Should either of these
searches succeed, then the entire rule search process terminates, and RULEX
immediately looks for exceptions.

Imperfect search proceeds in much the same way as exact search. Once again,
candidate rules are sampled without replacement with probability propor-
tional to αk. The main difference is that a rule is not necessarily discarded if
it leads to an incorrect response. In fact, it is always retained for some mini-
mum number of trials λ (the lower bound). Between the lower bound λ and
the upper bound µ, the rule is maintained as long as its performance (mea-
sured in terms of proportion of correct classifications) always remains above
some level φL (the lax criterion). The other difference is that the form of the
rule can shift back and forth between 0→ A and 0→ B, depending on which
version better accounts for the stimuli observed since the rule was adopted. If
a rule survives to reach the upper bound µ, then it is adopted as a permanent
rule if it exceeds some stricter level φI (the imperfect acceptance criterion),
and the search for exceptions begins. Conjunctive search is almost identical
to the imperfect search, differing only in the form of the candidate rules, and
the value of the acceptance criterion, φC. In RULEX, the only conjunctive
rules considered are two-dimensional, so for instance the rule r13 could take
the form (00, 11) → A, (01, 10) → B. As with the single dimensional rules,
the assignment of cases (00, 01, 10 and 11) to categories (A and B) is done
on the basis of previously observed stimuli. Successfully finding a conjunctive
rule prompts a search for exceptions.

At some point, RULEX will almost certainly begin the exception search. The
process suggested by Nosofsky et al. (1994) allows a learned exception to
constitute more than a single stimulus, but in the current paper it is assumed
that an exception consists of a single stimulus (there are difficulties associated
with this assumption, and the issue will be discussed in more detail later). In
this case, if the learned rule fails to predict the correct response, the exception
is remembered with probability σγm, where σ is a storage probability, γ is a
capacity parameter, and m is the number of exceptions already learned. In this
way, even an error-prone rule can eventually lead to perfect performance. The
last element to RULEX is the decision parameter ε. In the form previously
described, the response given by RULEX is determined entirely by the rule
(or exception). However, an additional component to the model suggests that
there is some small probability ε of making the opposite response, so the rules
are technically probabilistic. A summary of the parameters of RULEX is given
in Table 1.
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————— Insert Table 1 about here —————

2 Calculating the Predictions of Cognitive Models

Calculating RULEX predictions is made difficult, not by any inherent prob-
lem with the model, but by the method of its construction. Nosofsky et al.
(1994) began with an intuition about the process by which people might solve
categorization problems, which became formalized as the RULEX model. The
principal interest of those authors was to expound a theoretical idea, so the
purpose of the model was to illustrate the theory, and not necessarily to pro-
vide a tractable statistical framework for category learning. It is a cognitive
model by design and a statistical model only by necessity. This is entirely
appropriate for psychological theorizing, but it does mean that some work is
required to rewrite the model in a more tractable form. In fact, one of the
goals of this paper is to suggest that this “mathematization” process is not
only useful for computing the model, but can also provide some insights about
the underlying theory.

Like most cognitive models, RULEX makes assumptions about a range of
unobservable states (i.e., rules and exceptions) that translate into observable
behavior in an experimental context. The difficulty is that we can only elicit
behavioral data, and so need to make inferences about latent “rule states”,
for instance. The standard solution to this problem is to simulate the model.
When we simulate a model such as RULEX, we generally sample values for
these hidden states and use them to predict a response. By simulating the
model repeatedly, we numerically integrate out our uncertainty about the
hidden states. There is some probability (possibly 0 and 1) that the model
is in hidden state h, denoted P (h), and given a hidden state h there is some
probability P (A |h) of making response A. This lets us write the probability
of response A as,

P (A) =
∑

h

P (A |h)P (h)

Thus, there is a sense in which we can think of these sorts of simulations
as a kind of Monte Carlo integration. However, there are some substantial
difficulties that tend to arise with simulation-based integration. To illustrate
these problems, consider the task of simulating RULEX. For this model we
define a hidden state h = (r, x) as consisting of a rule r and a set of exceptions
x. The nature of the RULEX model is such that the hidden state hτ at time
τ depends on the sequence of hidden states h0:τ−1 = (h0, . . . , hτ−1) that the
model passed through on previous trials, as well as the sequence of stimuli
s0:τ−1 and category memberships c0:τ−1 that were observed on those trials. The
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important thing to recognize is that the choice of hidden state is dependent on
observed things (s0:τ−1, c0:τ−1) and on unobserved things h0:τ−1. We can write
the probability for hτ as

P (hτ) =
∑

h0:τ−1

P (hτ |h0:τ−1)P (h0:τ−1 | s0:τ−1, c0:τ−1)

=
∑

h0:τ−1

τ∏

k=1

P (hk+1 |h0:k, s0:k, c0:k)

This complex dependency is the reason that it can be difficult to calculate
RULEX predictions. We need to integrate out the entire set of state sequences
h0:τ−1 just to obtain a prediction about P (hτ ). Thus the number of simulations
needed can be very large, because a large number of hidden state sequences
are possible. Furthermore, since the integration process is stochastic, it is
hard to use for parameter fitting. Approaches like gradient descent by finite
differencing do not work well, because the estimates in fit are corrupted by a
small but significant amount of noise.

The natural solution to this difficulty is to replace stochastic methods with de-
terministic ones. Ideally, we would derive closed forms for the model, in which
the predictions are described by a simple equation. Unfortunately, as cognitive
models become more complicated this becomes progressively more difficult to
do. As a practical alternative, it is often feasible to derive algorithmic methods
for the fast calculation of model predictions. In the remainder of the paper
I give an explicit mathematical formulation of RULEX, which will naturally
suggest algorithmic methods. Since the state space for RULEX is discrete, the
main tool is combinatorics, which could presumably be applied to a range of
different models. Accordingly, the exposition will attempt to convey not just
the results for RULEX, but the method by which such results can be derived.
The approach is based on the following observations about the dependencies
in RULEX:

• The number of trials that a rule r is maintained for (during exact, inexact
or conjunctive search) depends only on the stimuli s and their categories
c.
• The transition between rules is governed by sampling without replace-

ment from the set of rules that belong to the current search phase.
• There are only a small number of possible orderings of search phases, as

illustrated in Figure 1.

The rest of the paper is structured as follows. The next section is devoted to
a discussion of the length of time that a particular rule survives. After that,
I discuss how RULEX switches between rules that belong to the same search
phase, and how this can be combined with knowledge about rule survival.
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Next, I build in the flow between the different search phases shown in Fig-
ure 1. The following section shows how this can be incorporated to calculate
the response probabilities for the model. Finally, I present validations and
applications of the method.

3 On the Survival of a Rule

Suppose that rule r is adopted at some point during exact, inexact, or con-
junctive search. According to the RULEX model, that rule will be maintained
until it makes too many errors, or is judged to be good enough to adopt per-
manently. Furthermore, so long as rule r survives, the behavior of RULEX
does not depend on the rules that were adopted previously. This suggests that
a basic mathematical unit of RULEX is the length of time spent considering
the rule. I will refer to this time as the lifetime of a rule, and the purpose of
this section is to find the probability that a rule has a lifetime of length t. The
probability that a rule has a lifetime of length t (the lifetime probability at t)
is denoted f(t | r), and the probability mass function f is called the lifetime
distribution. For the remainder of this section the dependence on r will be su-
pressed for ease of exposition, so the lifetime probability will be denoted f(t).
Note that since some rules have a nonzero chance of being permanently ac-
cepted, some probability appears as a point mass at infinity. For generality and
convenience, the mathematical formalism will not treat RULEX predictions
as a function of a specific stimulus sequence. Instead, the model’s behavior
will be characterized in terms of the overall effectiveness of the different rules
(i.e., the number of stimuli k correctly classified out of a possible n) and the
sampling scheme that governs the production of the observed stimuli.

3.1 Exact Rules

This section presents expressions for the lifetime distributions associated with
rules adopted during exact search.

3.1.1 Uniform Sampling.

Suppose that stimulus presentation is determined by random uniform sampling
with replacement. If the rule r correctly classifies k of the n stimuli, then the
probability that the rule survives exactly t trials is determined by calculating
the probability that the current stimulus is one of the n−k incorrectly classified
stimuli, and that all t−1 previous stimuli were among the k correctly classified
stimuli. Thus,
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f(t)=P (error now)× P (no errors until now)

=
n− k

n
×
(

k

n

)t−1

=
(n− k)kt−1

nt
. (1)

Examples of the lifetime distributions are shown in Figure 2.

3.1.2 Block Sampling.

The convention in many experimental tasks is to sample all stimuli randomly
without replacement until all have been sampled (called a “block” or “epoch”),
and then to replace all stimuli. Suppose that the initial adoption of the rule (at
t = 0) occurs at the beginning of a block. On the first trial the probability of
discarding the rule is (n−k)/n, as before. However, in order for the rule to be
rejected on the second trial, it must have survived the first trial, in which case
the number of “good” stimuli left is now k − 1, and the number of remaining
stimuli is n− 1. Therefore, if t ≤ k

f(t)=P (error now)× P (no errors until now)

=
n− k

n− t
× k(k − 1) . . . (k − t + 1)

n(n− 1) . . . (n− t + 1)

=
n− k

n− t

t−1∏

i=0

k − i

n − i
(2)

————— Insert Figure 2 about here —————

(obviously, f(t) = 0 if t > k). However, Eq. 2 holds only if all t trials belong
to the same block. Suppose that rule r is adopted with q1 trials remaining in
the current block. When t ≤ q1 all trials belong to the same block and Eq. 2
applies, but when t > q1 the stimuli span two blocks. Since the two blocks are
independent, the lifetime probability for t can be broken into two independent
probabilities corresponding to the q1 trials in the first block, and the q2 = t−q1

trials in the second block. Using the same logic as before, the second block
breaks up into the first q2− 1 trials, in which no errors are made, and trial q2,
which produces an error. Thus,

f(t | q1, q2) =P (error now)× P (no errors in block 2 until now)

×P (no errors in block 1)

=
n− k

n− q2
× k(k − 1) . . . (k − q2 + 1)

n(n− 1) . . . (n − q2 + 1)
× k(k − 1) . . . (k − q1)

n(n− 1) . . . (n− q1)
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=
n− k

n− q2




q1∏

j=0

k − j

n − j






q2−1∏

j=0

k − j

n− j


 (3)

Since P (q1, q2) = 1/n, the lifetime probability is just the marginal probability,

f(t) =
∑

q1+q2=t

f(t | q1, q2)P (q1, q2) =
1

n

∑

q1+q2=t

f(t | q1, q2). (4)

where f(t | q1, q2) is given by Eq. 2 if t ≤ q1, and by Eq. 3 if t > q1. An
illustration of what these lifetime distributions look like for exact rules and a
block sampling technique is shown in Figure 3. They are very similar to the
distributions shown in Figure 2, suggesting that the choice of sampling scheme
does not substantially affect RULEX. Nevertheless, they are not identical.

————— Insert Figure 3 about here —————

3.1.3 Comments.

Unlike the search for imperfect or conjunctive rules, there is the possibility
that exact search is stable, in the sense that RULEX may never leave this
state. When stimuli are presented by block sampling, this can only occur if
the rule correctly classifies all stimuli. Under uniform sampling, there is some
probability that an error-prone rule is retained due to a quirk in the sampling.
However, this probability goes to zero in the limit of large t.

3.2 Imperfect and Conjunctive Rules

This section presents expressions for the lifetime distributions associated with
rules adopted during imperfect or conjunctive search.

3.2.1 General Remarks.

The shortest possible lifetime for an imperfect or conjunctive rule is λ, since
RULEX always maintains these rules until the lower bound. Similarly, the life-
time probability is always zero above the upper bound µ, since a rule is never
tested after the upper bound. For t between λ and µ, the lifetime probability
is the probability that the proportion of correct responses falls below φL given
that it was above or equal to φL on the preceding trial. As a result, many of
the trials between t = λ and t = µ will never cause a rule to be discarded. A
rule survives trial t if the number of correct responses made over those t trials
is greater than or equal to dtφLe. Letting mt = dtφLe, the lifetime probability

10



f(t) is zero when mt = mt−1, and the rule is tested only when mt > mt−1. For-
mally, there is a sequence of “test trials” over the interval [λ, µ], occurring at
t = z1, . . . , zj. The first test trial occurs at z1 = λ, while the others occur when
t = dk/φLe where k is an integer and t ∈ [λ, µ]. If s(zi, yi) denotes the proba-
bility of surviving the test at trial zi with exactly yi correct responses having
been observed, then we can express this as the following marginal probability:

s(zi, yi) =
∑

yi−1

s(zi, yi | zi−1, yi−1)s(zi−1, yi−1). (5)

In this expression, s(zi−1, yi−1) is the probability that the previous test trial
zi−1 was survived with yi−1 correct responses, and s(zi, yi | zi−1, yi−1) is the
conditional probability of surviving trial zi with exactly yi correct responses
given this. Thus this marginal probability functions as a kind of “update rule”.
That is, if we know the probability that the rule survived the previous test
trial, we can use Eq. 5 to find the probability that it survives the next test
trial.

Given the update rule, all that is required is the survival probability at the
lower bound z1 = λ. It is convenient to treat the lower bound as if it were any
other test trial, except that the “last test” for the rule occurred at t = 0, with
y0 = z0 = m0 = 0. Then it is trivial to note that

s(λ, y1) =
∑

y0

s(λ, y1 | z0, y0)s(z0, y0)

= s(λ, y1 | 0, 0) (6)

Thus, if we have an expression for the conditional survival probabilities s(· | ·),
we can obtain the full survival probabilities s(·), from which it is straightfor-
ward to construct lifetime distributions. To do so, note that the probability
that trial t was survived is simply

s(t) =
∑

y

s(t, y).

If t is not a test trial, then the survival probability s(t) is unchanged from
the last test trial. The lifetime probability is simply the amount by which the
survival probability decreases,

f(t) = s(t− 1)− s(t) (7)

Note that t = µ is a special case. At the upper bound µ, the minimum number
of correct responses mµ can jump sharply, since the test criterion φU may be
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different from φL. In particular let this test criterion φU = φI if RULEX is
searching for imperfect rules, and let φU = φC if RULEX is searching for
conjunctive rules. Then the number of correct responses required is simply
mµ = dµφUe, and the value of s(µ, yj+1) can be obtained using the same
formula (Eq. 5) as before. In practice, the only thing that changes at the
upper bound is that it is possible for mµ −mzj > µ − zj.

3.2.2 Uniform Sampling

When stimuli are sampled independently from a uniform distribution, the
conditional survival probability s(· | ·) follows a binomial distribution, given
by

s(zi, yi | zi−1, yi−1) =
(

∆z
∆y

)(k

n

)∆y (
n− k

n

)∆z−∆y

I1(zi, yi) (8)

where ∆z = zi−zi−1 and ∆y = yi−yi−1, and I1(zi, yi) is an indicator function
that equals 1 if the choice of yi and zi is possible and leads to the rule’s
survival, and is zero otherwise. That is,

I1(zi, yi) = 1 if





∆z ≥ ∆y ≥ 0

zi ≥ yi ≥ mzi

I1(zi, yi) = 0 otherwise

(9)

Figure 4 shows the lifetime distributions obtained in a domain consisting of
n = 15 stimuli for rules that classify k = 10, 11, . . . , 15 of those stimuli cor-
rectly, assuming that the stimuli are sampled independently and with replace-
ment, and assuming λ = 3, µ = 13, φL = .65, φU = .85. In comparison to
the distribution shown in Figure 2, it is quite complex. In general, if φU is
substantially larger than φL, these densities tend to take on U-shapes.

————— Insert Figure 4 about here —————

3.2.3 Block Sampling.

When stimuli are generated using a block sampling scheme the expressions for
s(· | ·) are more complicated. Again, assume that the onset of the rule occurs
with q1 ≤ n trials remaining in the current block. If ∆z ≤ q1, then all stimuli
belong to the same block. There exist k stimuli that are classified correctly by
the rule, and

(
k

∆y

)
ways of observing ∆y of them. Similarly, there are

(
n−k

∆z−∆y

)

ways for the remaining ∆z−∆y observed stimuli to belong to the set of n−k
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incorrectly classified stimuli. Since there are ( n
∆z) ways of observing a set of

∆y stimuli,

s(zi, yi | zi−1, yi−1, q1, q2) =

(
k

∆y

) (
n−k

∆z−∆y

)

( n
∆z)

I1(zi, yi) (10)

where I1(zi, yi) is the indicator function given in Eq. 9. Alternatively, if q1 >
∆z the trials span multiple blocks, with q1 in the first, and q2 = ∆z − q1 in
the second. In this case,

s(zi, yi | zi−1, yi−1, q1, q2) =
∑

x1+x2=∆y

[I1(zi, yi)I2(x1, x2)

(
k
x1

) (
k
x2

) (
n−k

q1−x1

) (
n−k

q2−x2

)

(
n
q1

) (
n
q2

)

 (11)

where the second indicator function is 1 only for those choices of x1 and x2

that are logically possible, namely

I2(zi, yi) = 1 if





k ≥ x1 ≥ 0

k ≥ x2 ≥ 0

(n− k) ≥ (q1 − x1) ≥ 0

(n− k) ≥ (q2 − x2) ≥ 0

I2(zi, yi) = 0 otherwise

(12)

Not surprisingly, s(zi, yi | zi−1, yi−1, q1, q2) gives rise to a lifetime probability
f(t | q1, q2) that depends on q1 and q2. Once again, the overall lifetime prob-
ability f(t) is found by marginalizing these variables using Eq. 4. Also, note
that Eq. 11 can still be applied if the sampling spans three or more blocks. In
order to span three blocks, the entire second block (known to elicit k correct
responses from n trials) must be observed, so all that is required is an ad-
justment to mzi and ∆z. If the sampling spans a > 2 blocks, the appropriate
adjustment is,

mzi←d(mzi − (a− 2)n)φLe − (a− 2)k

∆z←∆z − (a− 2)n.

It is important to note that Eq. 11 is an approximation, because it ignores a
slight dependency in the block sampling scheme. Since previously considered
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rules will have “used up” some of the stimuli in the current block, the proba-
bility of correct classification can be slightly dependent on the previous rules,
though this dependence disappears as soon as a new block begins. Thus, when
rules based on correlated dimensions “share” a block, Eq. 11 may be slightly
inaccurate. Examples of the lifetime distribution are shown in Figure 5.

————— Insert Figure 5 about here —————

3.2.4 Comments.

There are two more details worth discussing. Firstly, if a rule manages to
survive the test at the upper criterion, the rule is adopted permanently, and
RULEX begins a search for exceptions. Since the search for exceptions has a
different character to the rule search, it is useful to pretend that the lifetime
of the rule ends at µ, and define the probability f∗(t) of keeping the rule and
starting a search for exceptions on trial t. This is straightforward, since it is
equal to 0 for all t 6= µ + 1. At t = µ + 1, the probability simply corresponds
to the probability of surviving trial µ, yielding f∗(µ) = s(µ). The lifetime
probability at the upper bound f(µ) should then be redefined so that f is a
proper distribution over the interval between 0 and µ, yielding f(µ) = s(µ−1).
As a result, the probability mass that corresponds to the rule surviving and
RULEX moving to the exception search is passed from f into f∗. Nevertheless,
the distinction between f and f∗ is an arbitrary one in some ways, and more
a matter of computational convenience than theoretical significance.

The second thing to keep in mind is that the decisional error parameter ε
plays no role in defining the lifetime probabilities in the current analysis. In
the original RULEX papers, this parameter led to the occasional choice of the
opposite response to that predicted by the rule. In a perfectly faithful anal-
ysis, this parameter should affect the lifetime probabilities, which could be
expressed by assuming an “effective k” given by k′ = (1−ε)k+ε(n−k). How-
ever, this relies on the implicit assumption that people do not notice that their
response is inconsistent with the rule that they are testing. Since this seems
to be at variance with the spirit of RULEX, it is assumed throughout this
discussion that errors caused by ε do not influence the lifetime probabilities.

4 Learning Good Rules

The first source of learning in the RULEX model is the sequential search for
good rules. In the previous section lifetime distributions were derived that
precisely express the “goodness” of any particular rule. In this section I use
these lifetime distributions to find the probability that RULEX is considering
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any particular rule on any given trial.

4.1 Changing Rules During a Search Process

Recall the second observation about RULEX: within any given search phase
(e.g., exact, conjunctive), the candidate rules are sampled without replace-
ment. For instance, if stimuli can be described using v features, then there
exist a total of v unidimensional rules that could be applied during exact
search. When the search begins, one of these rules ri is chosen at random,
with probability proportional to αi, the saliency of the ith feature. Since this
is the first rule chosen, it is referred to as the “generation 1 rule”. The gener-
ation 1 rule lasts for some number of trials sampled from the corresponding
lifetime distribution, at which point it is discarded and a new rule is now
sampled from the remaining v − 1 rules, again with probability proportional
to saliency. This rule is referred to as the “generation 2 rule”. This process
is repeated until (a) all v rules have been tried and discarded, (b) one of the
rules is accepted and RULEX passes into the search for exceptions, or (c) the
number of trials allotted for the experiment is exceeded. The “generational
structure” of the transitions between rules is illustrated in Figure 6.

————— Insert Figure 6 about here —————

4.1.1 Rule Maintainance Expressions.

The lifetime distributions can be used to calculate the probability w(t | ri)
with which a rule ri is maintained as the candidate rule on trial t since the
beginning of the search process. With v different rules available, there are v
different “generations” in which the rule ri might appear. On trial 1, all the
probability mass is concentrated on generation 1 rules, with rule ri receiving
probability αi/

∑
y αy. On each subsequent trial, the probability of continuing

to maintain the rule diminishes according to the lifetime probability f(t | ri).
The “lost” probability mass corresponds to the probability of rejecting ri and
moving onto one of the other rules. Accordingly, the generation 2 probability
of some other rule rj increases by (αj/

∑
y 6=j αy)(αi/

∑
y αy). Given this, the

probability w(t | ri) that RULEX is using rule ri on trial t after the beginning
of the search process can be written as the marginal probability,

w(ri | t) =
∑

π

w(ri | t, π)p(π)

Where the permutation π = (π1, . . . , πv) indicates the order in which the rules
are considered, and the probability p(π) is easy to derive:
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p(π)= p(π1)p(π2 |π1) . . . p(πv |π1, π2, . . . , πv−1)

=
απ1∑

y≥1 απy

× απ2∑
y≥2 απy

× . . .× 1

=
∏

i

απi∑
y≥i απy

To calculate w(ri | t, π), let g = π
(−1)
i denote the position of i in the permuta-

tion π, indicating the generation in which rule ri appears. Let q(g |π, t) denote
the amount of probability mass “arriving” in generation g on trial t (under
permutation π). It is trivial to note that q(1 |π, 1) = 1 and q(1 |π, t > 1) = 0,
since by definition the generation 1 rule can be adopted only on the first trial,
and conditional on π, all of the probability mass passes into that rule on the
first trial. In order to pass from one generation to another on trial t, a rule
must have appeared in the previous generation at some time t0, and failed on
trial t− t0. Thus, using the lifetime probabilities,

q(g + 1 |π, t) =
t∑

t0=1

q(g |π, t0)f(t− t0 | rπg )

Once we know how much probability mass “enters” a generation on any given
trial, it is straightforward to calculate the maintenance probabilities,

w(ri |π, t) =
t∑

t0=1

q(π
(−1)
i |π, t0)s(t− t0 | ri)

An example is shown in Figure 7.

————— Insert Figure 7 about here —————

4.1.2 Comments.

Conceptually, it is straightforward to calculate w(ri | t). In practice, the fact
that all v! permutations need to be evaluated makes the procedure difficult
for larger values of v. While none of the applications in this paper involve
large v, future work with RULEX will require more scalable algorithms. One
possibility might be to sum only over a “sufficiently rich” set of permutations
that grows slower than factorially. This extension is left open as a possible
direction for future research.

One last quantity needs to be calculated: the probability with which each rule
is permanently accepted on any given trial. Obviously, this can only happen for
the imperfect search and conjunctive search phases. Fortunately, this is exactly
analogous to the retention probability just discussed. All that is required is to
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use the lifetime probability function f∗. The overall transition (from rule to
exception) probability w∗(ri | t) is then found by substituting f∗ for f in the
previous discussion.

4.2 Switching Between Search Phases

The previous section only describes the probability of retaining some rule ri as
a function of the number of trials elapsed since the start of the current search
phase. With the exception of the search for exact rules, the onset of the search
is itself probabilistic. In this section, the discussion is expanded to incorporate
the probability that, on a given trial, RULEX changes search strategy. Using
the results derived in this section it is possible to find the probability that
RULEX is considering rule r on trial τ since the beginning of the experiment.

4.2.1 Phase Switching Expressions.

For exact search the complete retention probability for ri, denoted ζ(ri | τ ), is
the same as the probability derived in the previous section. That is,

ζ(ri∈E | τ ) = w(ri∈E | τ ). (13)

where the notation ri∈E is intended to refer to a rule ri that belongs to the
exact search process. When aggregating across the probabilistic onset of the
next search stage, it is useful to define

v(τ |E) =


∑

j

ζ(rj∈E | τ − 1)


 −


∑

j

ζ(rj∈E | τ )




and note that η(τ |E) = v(τ |E), where η denotes the probability of leaving
exact search on trial τ . RULEX may do one of two things when the exact search
ends. With probability β, the next search process is the imperfect search,
referred to as path p1. Alternatively, with probability 1 − β, the conjunctive
search comes first, referred to as path p2. For path p1,

ζ(ri∈I | τ, p1) =
τ∑

y=1

η(y |E)w(ri∈I | τ − y) (14)

ζ∗(ri∈I | τ, p1) =
τ∑

y=1

η(y |E)w∗(ri∈I | τ − y). (15)
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If we define v∗(τ | I, p1) and v(τ | I, p1) in the same way as v(τ |E), but using
choices of ζ(ri∈I | τ, p1) and ζ∗(ri∈I | τ, p1) instead of ζ(rj∈E | τ ), it is straight-
forward to calculate the probability that imperfect search ends on trial τ :

η(τ | I, p1) = v(τ |E) + v(τ | I, p1)− v∗(τ | I, p1)

To see this, note that the v(τ |E) denotes the amount of new probability mass
entering the imperfect search process from the exact search on trial τ , and
v(τ | I, p1) gives the amount by which the probability mass in imperfect search
decreases from trial τ − 1 to τ . Taken together, these terms give the amount
of probability mass leaving the imperfect search process on trial τ . However,
since we are interested in the mass going from imperfect to conjunctive search,
we must subtract the amount of the mass that enters the exception search from
the imperfect search on this trial, giving us the third term v∗(τ | I, p1).

Following the same procedure, one arrives at the following expression for the
retention probability for some rule during the conjunctive search:

ζ(ri∈C | τ, p1) =
τ∑

y=1

η(y | I, p1)w(ri∈C | τ − y). (16)

By applying the same logic, if path p2 is followed then the conjunctive search
precedes the imperfect search, and the expressions become:

ζ(ri∈C | τ, p2)=
τ∑

y=1

η(y |E)w(ri∈C | τ − y)

η(τ |C, p2)= v(τ |E) + v(τ |C, p2)− v∗(τ |C, p2)

ζ(ri∈I | τ, p2)=
τ∑

y=1

η(y |C, p2)w(ri∈I | τ − y).

Since there is a probability β chance of the first path occurring and a 1 − β
chance of the second,

ζ(ri∈I | τ )=β ζ(ri∈I | τ, p1) + (1− β) ζ(ri∈I | τ, p2) (17)

ζ(ri∈C | τ )=β ζ(ri∈C | τ, p1) + (1− β) ζ(ri∈C | τ, p2) (18)

Figure 8 applies these expressions to a hypothetical experiment lasting 80
trials, in which each of the 15 stimuli possess four features. The four single
dimensional rules classify 9, 10, 11 and 12 stimuli correctly, while the six
pairwise conjunctive rules classify 10, 11, 12, 13, 14 and 15 stimuli correctly.
If RULEX is applied in this domain with parameter values of λ = 3, µ = 13,
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φL = 0.65, φI = φC = 0.85 and β = 2/3, then the probability distributions
over exact, imperfect and conjunctive rules are as shown. As a consequence of
the model’s architecture, the model starts in exact search with probability 1,
but since none of the single-dimensional rules provide a perfect account of the
category structure, this probability declines rapidly. Since β > 0.5, RULEX
has a prior preference for imperfect single-dimensional rules over conjunctive
rules, so the probability of imperfect rules rises faster than that of conjunctive
rules. However, since the conjunctive rules provide a better account of the
category (in particular, the rule that correctly classifies all stimuli correctly),
they eventually come to dominate.

————— Insert Figure 8 about here —————

4.2.2 Comments.

The probabilities just derived correspond to the probability that a particular
rule is under consideration. The other required quantity is the probability that
a rule has been accepted, denoted ζ∗(ri | τ ), and the search for exceptions has
begun. This is simple enough to do, by replacing w(ri | τ ) with w∗(ri | τ ), and
repeating the procedure outlined from Eq. 13 to Eq. 18.

Finally, observe that there is also some probability that the rule search pro-
cess ends without any rule being stored. Under such circumstances, RULEX
responds randomly until an appropriate exception is learned. This is equivalent
to assuming that a random rule r0 has been learned, for which the probability
of correct response is 1/2 (assuming that there are only two response options).
For this rule, ζ∗(r0 | τ ) is given by

ζ∗(r0 | τ ) = 1−
∑

j>0

(ζ(rj | τ ) + ζ∗(rj | τ )) , (19)

where the sum over j is taken across all rules except r0.

5 Finding Response Probabilities

The final aspect of the derivations concerns the probability that RULEX makes
the correct response on any given trial. Conceptually, this can be divided into
the probability of making the correct response during rule search and the
probability of making the correct response during exception learning.
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5.1 Responses During Rule Search.

During rule search phases (exact, imperfect and conjunctive), calculating the
probability of a correct response on some trial τ is denoted g(c | τ ). Each rule
ri classifies some number ki of the n stimuli correctly. Thus the probability of
making the correct response on trial τ given ri, denoted l(c | ri), takes on the
constant value ki/n. Aggregating across all candidate rules yields the value of
g(c | τ ),

g(c | τ )=
∑

j

l(c | rj)ζ(rj | τ )

= (1/n)
∑

j

kjζ(rj | τ ), (20)

where the sum over j is taken over all rules and all search stages.

5.2 Responses During Exception Learning.

The exception learning process makes the calculation of the response proba-
bilities g∗ with regard to the ζ∗-mass more complex. During the rule search
(ζ-mass), the probability of a correct response given some rule is fixed, at k/n.
During the exception search process, this is no longer true: learning a valid ex-
ception will cause this probability to increase over time. If the exception search
is constrained to include only single-stimulus exceptions, then the probability
correct given rule r at time t since the onset of ζ∗ is denoted l∗(c | r, t). At
t = 0, l∗(c | r, t = 0) = k/n. More generally, if mt exceptions have previously
been stored at time t, then

l∗(c | r, t) =
k + E[mt]

n
, (21)

where E[mt] =
∑n−k

v=0 v p(mt = v) denotes the expected value of mt. On any
given trial, the probability that the next stimulus will be an exception-worthy
stimulus (i.e., one that is incorrectly classified) is (n − k − mt)/n, and the
probability that it will be stored as an exception is σγmt. Thus, on trial t we
have the update rule

p(mt+1 = mt + 1) = σγmt

(
n−k−mt

n

)

p(mt+1 = mt) = 1− σγmt

(
n−k−mt

n

) (22)
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This update rule can be used to generate the expected values for m on trial t
by expanding the lattice shown in Figure 9 to level t and reading off the prob-
ability distribution over m to find p(mt). In this figure, each node corresponds
to a particular RULEX configuration, in which some number of stimuli are
correctly classified (indicated by the numbers inside the nodes) on some trial
since the beginning of exception learning (indicated by the depth of the node
in the lattice). Every path through the lattice corresponds to a sequence of
stimuli that are either stored as exceptions or not. The probability associated
with any path can be found by taking the product of the probabilities asso-
ciated with the edges in the path. The probability of any state is the sum of
these probabilities over all paths that arrive at the appropriate node. That is,
the value of p(mt) can be found by summing over every path in the lattice,
implying that,

E[mt]=
∑

S


mt(S)

t∏

j=1

(
σγmj(S)(n− k −mj(S))

n

)sj

(
1− σγmj(S)(n− k −mj(S))

n

)1−sj



where S = (s1, . . . , sn) is a binary sequence of length n where sj = 1 if an
exception is stored on trial j, and sj = 0 if no exception is stored. In this
expression mj(S) =

∑j
i=1 si denotes the number of successful stores in the

first j trials of sequence S. Although summing over every possible binary
sequence is infeasible, the lattice computation procedure shown in Figure 9
reduces the required calculations enormously. If the probability of starting the
exception search on trial τ is defined as

η∗(ri | τ ) = ζ∗(ri | τ )− ζ∗(ri | τ − 1),

then it is possible to aggregate across all rules and all onset times, yielding
the expression for g∗(c | τ ),

g∗(c | τ ) =
∑

j

τ∑

y=1

l∗(c | rj, τ − y)h∗(rj | y). (23)

The total probability correct measure is found by combining these two com-
ponents. Since ζ and ζ∗ are mutually exclusive, g and g∗ can be summed.
Therefore the probability p(c | τ ) that RULEX makes the correct response on
trial τ is

p(c | τ ) = g(c | τ ) + g∗(c | τ ). (24)
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However, Eq. 24 ignores the role played by the decisional error parameter ε.
Once this is incorporated, we obtain the expression for the response probabil-
ities,

p(c | τ ) = (1− ε) (g(c | τ ) + g∗(c | τ )) + ε (1 − g(c | τ )− g∗(c | τ )) . (25)

————— Insert Figure 9 about here —————

5.3 On Partial Exceptions

While the restriction to single-stimulus exceptions is unwarranted in a great
many contexts, it is important to note that the methods can be extended to
cover the more general exception process proposed by Nosofsky et al. (1994).
Depending on the context in which the model is applied, this extension would
involve two aspects. When predicting learning curves, one would need to derive
expressions for the expected improvement in performance that results when
an exception is learned. In the single-stimulus-only version, this improvement
is always 1/n, but this need not be the case when partial exceptions (which
encompass multiple stimuli) are allowed. Secondly, when predicting perfor-
mance on transfer stimuli, the distribution over the set of exceptions would
be required, in much the same manner that the distribution over rules is cur-
rently needed. However, given that this would be a substantial undertaking in
its own right, this extension is left open as a direction for future work.

5.4 Comments.

The interpretation of p(c | τ ) merits closer examination. A typical category
learning experiment yields measurements of the participants’ choices on every
trial τ1, τ2, . . . , τN . Given some parameter values (β, λ, µ, φL, φI , φC, σ, γ, ε),
the preceding results can be used to derive the probability that RULEX pro-
duces the correct response at each trial, p(c | τ1), p(c | τ2), . . . , p(c | τN ). The
interpretation of these values is a little more complex than is generally the case
for models of category learning. In ALCOVE, for instance, the probability of
making the correct response on any given trial is conditionally independent of
the probabilities on other trials given the parameters of the model. That is,
there is a single p(c | τ ) value that describes the performance on a particular
trial, and the performance of a single subject over a series of trials is predicted
to be a series of Bernoulli trials with the appropriate response probabilities.
In RULEX, however, the p(c | τ ) value is found by aggregating across all of
the different internal states (i.e. rules and exceptions) that are possible. Since
the internal state of RULEX on any given trial is heavily dependent on the
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internal state on preceding trials, the performance of any participant on a sin-
gle experiment does not constitute a series of independent Bernoulli trials. In
other words, there are strong dependencies between successive trials, due to
the persistence of the internal states over time. These dependencies imply that,
in order make inferences about individual participants’ behaviour one would
need to use their data to infer a distribution over rules and exceptions, even
if they all used the same parameter values. This does not pose any particular
difficulty for the algorithms developed here.

In any case, it is useful to be explicit about what the values of p(c | τ ) are useful
for. Firstly, they can be thought of as a priori expectations given the param-
eter values. That is, if some participant were known to be using a RULEX
strategy with some parameters, these RULEX probabilities are the best possi-
ble predictions that can be made before the experiment begins. Secondly, they
can be thought of as long run behavior of the model. If many participants per-
form the task using the same parameter values (or a single participant repeats
the experiment many times), then their pooled responses will eventually con-
verge to these values. Since measures of this kind are commonplace in the
category learning literature, it is useful to be able to find RULEX predictions
for them.

6 Application: The Shepard, Hovland & Jenkins Task

————— Insert Figure 10 about here —————

As an initial illustration of the methods developed in this paper, this section
reproduces and extends RULEX results pertaining to the classic “Shepard,
Hovland and Jenkins” task. Shepard, Hovland and Jenkins (1961) studied
human performance on a category learning task involving 8 stimuli divided
evenly between two categories. The stimuli were generated by varying ex-
haustively three binary dimensions such as (black, white), (small, large) and
(square, triangle). They observed that, if these dimensions are regarded as
interchangeable, there are only 6 possible category structures across the stim-
ulus set. This means, for example, that the category structure that divided all
squares into one category, and all triangles into the other would be regarded as
equivalent to the category structure that divided small shapes from large ones.
Empirically, Shepard, Hovland and Jenkins (1961) found robust differences in
the way in which each of the 6 fundamental category structures was learned.
In particular, by measuring the mean number of errors made by subjects in
learning each type to criterion, they found that what they had labeled Type I
was learned more easily than Type II, which in turn was learned more easily
than Types III, IV and V (which all had similar error measures), and that
Type VI was the most difficult to learn. The logical structure of the task is
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indicated in Figure 10.

————— Insert Figure 11 about here —————

6.1 Fitting the Learning Curves

The data for this task comes from Nosofsky, Gluck, Palmeri, McKinley and
Glauthier (1994), who replicated Shepard, Hovland and Jenkins’ (1961) task
using many more subjects, and gave detailed information relating to the learn-
ing curves. The left panel of Figure 11 shows the mean proportion of errors for
each category type, averaged across subjects over 25 blocks of 16 stimulus pre-
sentations, and the right panel shows the curves found using the analytic form
for RULEX, at the best-fitting parameters reported by Nosofsky, Palmeri and
McKinley (1994). Those parameters (or rather, an equivalent set) are β = 0.1,
λ = 1, µ = 4, φL = 0, φI = 0.75, φC = 1, σ = 0.8, γ = 0.4, and ε = 0.
Not only does the analytic form for RULEX capture the empirical data well,
it is reasonably close to the numerically estimated curves originally reported.
The major difference is that the current version learns slightly faster than
the original version, mainly due to the fact that exception learning is (rather
simplistically) treated as an all-or-nothing process. Given this all-or-nothing
rule, the manner in which γ has been interpreted is simply the probability of
storing the whole stimulus, which does not have a precise one-to-one mapping
onto the original version of the parameter. Nevertheless, more sophisticated
implementations of RULEX could easily address this.

————— Insert Figure 12 about here —————

At a finer grain, Figure 12 shows the learning curves for every single trial as
predicted by the algorithm developed here (dotted line), and by 1,000 simu-
lations of the RULEX model, this time assuming uniform sampling. Since the
purpose here is to provide a simple “check” of the equations, the simulated
version makes the same simplified assumption about exception learning as the
algorithmic version. When implemented as Matlab functions and run on a
1.5GHz notebook running Windows XP Professional, the RULEX algorithm
produces the curves in approximately 1 sec., about the same time required to
simulate the model 50 times. In other words, the noisy simulations shown by
the solid lines take 20 times longer to produce than the precise curves shown
by the dotted lines.

————— Insert Figure 13 about here —————

The algorithmic approach adopted here makes it simple to view the internal
workings of RULEX. Plotted in Figure 13 are the rule maintenance prob-
abilities for Type II (left) and Type VI (right). Consider Type VI first. In
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this case, all rules, whether single dimensional or conjunctive, will perform at
chance level, correctly classifying 4 out of the 8 stimuli. At the start of the
experiment, each of the three single-dimensional rules (solid circles) has a 1/3
chance of being adopted as a candidate during E-search. However, since all of
the rules quickly fail, these probabilities all fall quite quickly. Since β = 0.1,
the next stage is almost certainly C-search, reflected in the the rise in the
probability of conjunctive rules (hollow circles). Since φC = 1, there is only
a very small probability of one of these rules surviving past the upper bound
µ = 4, and so these probabilities also decline. Finally, the I-search is tried,
with similar results. However, since φI = 0.75, the chance of the rules sur-
viving is higher. Nevertheless, there is still a substantial chance that RULEX
will give up looking for rules entirely (dashed line). Now consider Type II (left
panel). In this task, a conjunctive rule based on dimensions 1 and 2 will lead
to perfect performance, while all other rules behave at chance (as in Type
VI). This is reflected in the retention probabilities, which initally look similar
to those in the right panel. However, this “good” conjunctive rule is never
rejected, and so comes to dominate the retention probability function.

6.2 Parameter Space Partitioning

This section provides an example of an analysis of the robustness of RULEX’s
behavior on this task that would not be possible using simulation methods, but
is straightforward using the methods developed here. The question we want
to answer is how well RULEX preserves the qualitative structure of human
performance across all of its parameter values 1 .

Consistent with the conclusions originally drawn by Shepard et al. (1961), it is
generally held that the theoretically important qualitative trend in these data
is the finding that there is a natural ordering on these curves, namely that
I<II<(III, IV, V)<VI. This kind of pattern is called a weak order, since we
allow for the possibility of ties. Recently, Navarro and Lee (in press) demon-
strated that there is strong statistical evidence that the empirical curves shown
in Figure 11 should be interpreted as reproducing the ordering I<II<(III, IV,
V)<VI. In other words, the intuitive judgements made by psychologists about
the qualitative structure of the data can be justified using rigorous statistical
methods. This ordinal constraint is particularly interesting in light of Feld-
man’s (2000) observation that this weak order reflects the amount of informa-
tion carried by each category structure, so it appears that the rate at which
humans acquire a category is well-predicted by the informational content of
the category. Given the obvious theoretical importance of this regularity, an
interesting test of the validity of category learning models is the extent to

1 In fact, the methods developed here were originally motivated by this problem.
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which they preserve this regularity across their parameter spaces. If different
parameterizations of a model are intended to correspond to different kinds of
plausible human performance, then they should not violate this ordering too
severely.

In previous work, Pitt, Kim, Navarro and Myung (submitted) tested this
proposition with regard to the ALCOVE model (Kruschke, 1992; Lee & Navarro,
2002). In order to search ALCOVE’s parameter space, they proposed a Markov
chain Monte Carlo (MCMC) algorithm proposed to find the different weak or-
ders predicted by the model. They found that there are only a small number of
stable orderings that occupy a substantial proportion of the parameter space,
one of which is the empirically observed order. Moreover Types III and IV
were always predicted to be learned at about the same rate, and Type V was
usually also about the same. Type VI, on the other hand, was mostly learned
slower than III, IV and V. Types I and II were usually faster than III, IV and
V. So, not only is the empirically-observed ordering among the most com-
mon predictions, but the other high-frequency predictions generally preserve
most of the pairwise relations implied by the empirical data. The exception
to this claim regards the relationship between Types I and II. In this regard,
the model predictions are ambiguous. It might be that I<II, or I=II, or even
II<I. In this case, ALCOVE does not make a strong prediction about the
relationship between informational content and category learning. See Pitt et
al. (submitted) for details.

This kind of analysis does not generalize well to the simulation form of RULEX.
Although Pitt et al.’s (submitted) MCMC algorithm is fairly efficient in its
ability to search the parameter space of the model, it still requires hundreds
of thousands of model evaluations. Since tens of thousands of model simu-
lations are required to reliably estimate predictions from the simulated form
of RULEX, this analysis becomes infeasible. However, since the algorithmic
methods developed here are both fast and precise, it is quite feasible to run
this analysis, the results of which are illustrated in Table 2. As with ALCOVE,
most of the parameter space is occupied by only a small number of weak or-
ders. Out of a total of 34 weak orders, the largest 10 take up 96.87% of the
space. Across those 10 patterns, Types III and IV are always (10 of 10) re-
garded as equivalent, and Type V is usually (7 of 10) the same. No category
structure is ever learned slower than Type VI, which is usually strictly slower
than Types I–V (with 9, 5, 8, 8 and 7 times respectively) rather than equal to
them. Similarly, Type I is always the fastest or equal fastest category struc-
ture, and is usually strictly faster rather than equal to Types II–VI (7, 8, 8,
8 and 9 times respectively). As with ALCOVE, the only genuine violations
occur with respect to Type II. However, unlike ALCOVE, the major difference
is that Type II can sometimes be slower than Types III, IV, and V (4, 4 and
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2 times). 2

————— Insert Table 2 about here —————

7 General Discussion

Formal models of psychological processes play an important role in under-
standing cognition, so it is useful to be able to calculate the predictions of
these models in an efficient and precise manner. This paper has outlined a
formalization of a version of the RULEX model using no more than basic
probability theory and simple combinatorics. In doing so, not only do we ob-
tain a faster method of calculating model predictions, but gain an insight
into the internal workings of the model. The approach naturally produces the
distribution over rules at any particular trial in the experiment, as well as
the inherent “lifetime distributions” that define how RULEX handles these
rules. Moreover, the simple act of drawing these distributions suggests possi-
ble refinements to RULEX. For instance, it is probably not useful to employ
the “test criterion” approach for evaluating individual rules. As it stands,
RULEX uses five parameters (λ, µ, φL, φI , and φC) to specify the lifetime
distributions associated with imperfect and conjunctive rule search, and these
densities are often very strangely shaped. In general, they consist of a set of
small point masses on the “test trials”, with two large point masses at λ and µ.
In practice, even if people do test rules against performance criteria, it seems
likely that the criterion would fluctuate from trial to trial, leading to much
smoother distributions. Accordingly, it may make sense to abstract away from
the “raw” RULEX heuristics, and specify the lifetime distributions directly as
a function of the “goodness” of each rule (currently operationalized as k/n).

The approach developed in this paper can be extended in a number of ways.
Firstly, the major limitation of the approach is that it implements only a lim-
ited version of the exception search procedure. A completely faithful formal-
ization of RULEX should address this. Other extensions of the RULEX model
could include generalization to spatially-based rules, by viewing any “contin-
uous” dimension as a discrete ordered set, and modify the definition of rules
accordingly. More generally, it seems likely that other stochastic rule-search
models would be amenable to analyses similar to the one presented here. By
doing so, it should be possible to examine the predictions and performance of

2 A caveat attaches to these analyses: while the collection of weak orders indexed
by ALCOVE or RULEX is unaffected by the choice of parameterization or the
prior probabilities of parameters, the definition of what counts as a “substantial
proportion” of the parameter space does depend on this. See Pitt et al. (submitted)
for a discussion of this issue.
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these models in much more detail than is currently feasible.

References

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A Study of Thinking.
New York: Wiley.

Feldman, J. (2000). Minimization of Boolean complexity in human concept
learning. Nature, 407, 630-633.

Komatsu, L. K. (1992) Recent views of conceptual structure. Psychological
Bulletin, 112, 500-526.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of
category learing. Psychological Review, 99, 22-44.

Lee, M. D. & Navarro, D. J. (2002). Extending the ALCOVE model of category
learning to featural stimulus domains. Psychonomic Bulletin & Review 9(1),
43-58.

Navarro, D. J. & Lee, M. D. (in press). An application of minimum description
length clustering to partitioning learning curves. The 2005 IEEE Interna-
tional Symposium on Information Theory.

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., & Glauthier,
P. (1994). Comparing models of rule-based classification learning: A repli-
cation and extension of Shepard, Hovland, and Jenkins (1961). Memory &
Cognition, 22(3), 352-369.

Nosofsky, R. M. & Palmeri, T. J. (1995). Recognition memory for exceptions
to the category rule. Journal of Experimental Psychology: Learning, Memory
& Cognition, 21(3), 548-568.

Nosofsky, R. M., Palmeri, T. J. & McKinley, S. C. (1994). Rule-plus-exception
model of classification learning. Psychological Review, 101(1), 53-79.

Palmeri, T. J. & Nosofsky, R. M. (1998). A rule-plus-exception model for
classifying objects in continuous-dimension spaces. Psychonomic Bulletin &
Review 5(3), 345-369.

Pitt, M. A., Kim, W., Navarro, D. J. & Myung, J. I. (submitted). Global
model analysis by parameter space partitioning. Submitted to Psychological
Review.

Posner, M. I, & Keele, S. W. (1968). On the genesis of abstract ideas. Journal
of Experimental Psychology, 77, 353-363.

Rosch, E. & Mervis, C. B. (1975). Family resemblance studies in the internal
structure of categories. Cognitive Psychology, 7, 573-605.

Shepard, R. N., Hovland, C. I, & Jenkins, H. M. (1961). Learning and memo-
rization of classifications. Psychological Monographs, 75(13, whole no 517).

28



Author Note

Correspondence should be addressed to Daniel Navarro, Department of Psy-
chology, University of Adelaide, SA 5005, Australia. E-mail:
daniel.navarro@adelaide.edu.au, Tel: +61 8 8303 5265, Fax: +61 8 8303 3770,
URL: http://www.psychology.adelaide.edu.au/members/staff/danielnavarro/.
Part of this work was undertaken while the author was employed at Ohio
State University. The research was financially supported by NIH grant R01-
MH57472, ARC grant DP-0451793, and by a grant from the Office of Research
at OSU. The Matlab functions used in this paper are available from the au-
thor’s website. I thank Rob Nosofsky, Rich Shiffrin and an anonymous reviewer
for helpful comments.

29



Table 1
The RULEX parameters and their interpretations.

parameter interpretation

λ lower bound

µ upper bound

φL lax criterion

φI strict criterion, imperfect rules

φC strict criterion, conjunctive rules

β branching probability

σ storage parameter

γ capacity parameter

ε decisional error

Table 2
The 10 RULEX patterns that occupy the largest regions of the parameter space.
Collectively, they occupy 96.87% of the space.

Pattern Volume

I = II = III = IV = V = VI 38.24%

I < II = III = IV = V < VI 25.85%

I < II = III = IV = V = VI 8.71%

I = II = III = IV = V < VI 6.18%

I < III = IV < II = V < VI 5.64%

I < II < III = IV = V < VI 4.86%

I < III = IV = V < II = VI 3.36%

I < III = IV < II = V = VI 1.65%

I = II < III = IV = V < VI 1.50%

I < III = IV < V < II = VI 0.87%
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Fig. 1. Flow diagram indicating the sequences of search strategies that are possible
in RULEX. In this diagram, E denotes exact search, I denotes imperfect search, C

denotes conjunctive search, and X denotes exception learning.
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Fig. 2. Lifetime distributions for exact search in a domain consisting of n = 15
stimuli for rules that classify k = 10, 11, . . . , 15 of those stimuli correctly, assuming
that the stimuli are sampled independently and with replacement.
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Fig. 3. Lifetime distributions for exact search in a domain consisting of n = 15
stimuli for rules that classify k = 10, 11, . . . , 15 of those stimuli correctly, assuming
a block sampling scheme. Note that these distributions are very similar to those
shown in Figure 2 but not identical.
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Fig. 4. Lifetime distributions for imperfect/conjunctive search in a domain consisting
of n = 15 stimuli for rules that classify k = 10, 11, . . . , 15 of those stimuli correctly,
assuming that the stimuli are sampled independently and with replacement, and
assuming λ = 3, µ = 13, φL = .65, φU = .85.
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Fig. 5. Lifetime distributions for imperfect/conjunctive search in a domain con-
sisting of n = 15 stimuli for rules that classify k = 10, 11, . . . , 15 of those stimuli
correctly, assuming a block sampling procedure, and assuming λ = 3, µ = 13,
φL = .65, φU = .85. As with the lifetime distributions for exact rules, the distri-
butions associated with block sampling very closely resemble those associated with
uniform sampling (Figure 4), but are not identical.
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Fig. 6. Three different paths by which RULEX could end up with rule r1 as the
candidate rule on trial 4. In panel (a), rule r1 is the first candidate rule (generation 1,
marked in light grey), whereas in panel (b), RULEX considered rule r2 first, adopting
rule r1 only after rule r2 was discarded (making rule r1 the second generation rule,
marked in medium grey). Finally, in panel (c) rule r1 is the third generation rule (in
dark grey), since both rules r2 and r3 were considered before rule r1 was adopted.
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Fig. 7. Probability of maintaing rules over the first 60 trials of an imper-
fect/conjunctive search in a domain consisting of n = 15 stimuli for rules that
classify k = 10, 11, . . . , 15 of those stimuli correctly, assuming a block sampling
procedure and λ = 3, µ = 13, φL = .65, φU = .85. Note that the rules are undiffer-
entiated until the first lower bound (trial 3), and that the differentiation increases
sharply at the upper bound (trial 13).
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Fig. 8. Probability distributions over the three search stages for the first 80 trials of
an experiment in which there are n = 15 stimuli assumed to have four features. The
four single dimensional rules classify 9, 10, 11 and 12 stimuli correctly, while the
six pairwise 4conjunctive rules classify 10, 11, 12, 13, 14 and 15 stimuli correctly.
Parameter values are λ = 3, µ = 13, φL = 0.65, φI = φC = 0.85 and β = 2/3.
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Fig. 9. Computational procedure for the exception learning process. Each node in
the lattice corresponds to a particular RULEX configuration, in which some number
of stimuli are correctly classified (indicated by the numbers inside the nodes) on
some trial since the beginning of exception learning (indicated by the depth of the
node in the lattice). Every path through the lattice corresponds to a sequence of
stimuli that are either stored as exceptions or not. The probability associated with
any path can be found by taking the product of the probabilities associated with
the edges in the path. The probability of any state is the sum of these probabilities
over all paths that arrive at the appropriate node.

Type

Stimulus Vector I II III IV V VI

1 0 0 0 A A A A A A

2 0 0 1 A A A A A B

3 0 1 0 A B A A A B

4 0 1 1 A B B B B A

5 1 0 0 B B B A B B

6 1 0 1 B B A B B A

7 1 1 0 B A B B B A

8 1 1 0 B A B B A B

Type I Type II Type III

Type IV Type V Type VI

dim 1 

dim 2 

dim 3 

(a) (b)

Fig. 10. The logical structure (panel a) and a graphical depiction (panel b) of the
Shepard, Hovland and Jenkins task, showing the feature vector representing each
of the eight stimuli, and the category (A or B) to which they are assigned in each
of the six learning Types.
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Fig. 11. Empirical learning curves for the Shepard, Hovland and Jenkins task (left
panel), and those found using the RULEX expressions derived in this paper.
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Fig. 12. A comparison between the RULEX approximation derived here (dotted
lines) and 1,000 model simulations that make the same assumptions (solid lines).
The algorithm applied here is 20 times faster than the substantially less accurate
simulations.
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Fig. 13. Rule maintenance probabilities for Type II (left) and Type VI (right). In
both panels, solid markers denote single-dimensional rules (either exact or imper-
fect), hollow markers denote conjunctive rules, and the dashed line indicates the
probability of maintaining no rule at all.
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