Preprocessing Issues in High Resolution Radar Target Classification

by

Anthony Zyweck, B.E. (Hons.), B.Sc.

Thesis submitted for the degree of

Doctor of Philosophy

The University of Adelaide
Faculty of Engineering
Department of Electrical and Electronic Engineering

March, 1995

Awarded 1995
TABLE OF CONTENTS

Table of Contents .. i
Abstract .. vi
Declaration ... vii
Acknowledgments ... viii
List of Figures .. ix
List of Tables ... xiii
Glossary .. xiv
Abbreviations .. xvi
Publications .. xviii

1 Introduction .. 1
 1.1 Motivation .. 1
 1.2 Dissertation overview and organisation 1
 1.3 Original contributions .. 4

2 Survey of radar target classification 6
 2.1 Introduction .. 6
 2.1.1 Radar cross section .. 6
 2.1.2 Radar target classification 7
 2.2 Target classification using resonance techniques 8
 2.2.1 The E-pulse technique 9
 2.2.2 Ohio State University 9
 2.3 Target classification using structural features 9
 2.3.1 High resolution range profiling 10
 2.3.2 Inverse synthetic aperture radar imaging 10
 2.4 Target classification using dynamic features 10
 2.5 A comparison of promising radar ATR techniques 11
 2.5.1 HRRP .. 11
4.4.1 Collecting the data ... 59
4.4.2 Difficulties with the data collection 59
4.4.3 Processing ... 63
4.4.4 Discussion ... 63
4.5 Discussion ... 71
4.5.1 Broadside aspects ... 71
4.5.2 Engine cavity scattering 73
4.5.3 Doppler modulation .. 77
4.5.4 Target classification using high resolution data 77
4.6 Summary ... 78

5 ISARLAB: A simulator for high resolution radar data 79
5.1 Introduction ... 79
5.1.1 Chapter purpose and motivation 79
5.1.2 Chapter overview .. 80
5.1.3 Modelling in ISARLAB 80
5.2 ISARLAB system overview 81
5.3 Radar backscatter modelling 84
5.3.1 Scattering assumptions 84
5.3.2 The single scatterer model 85
5.4 Radar and target motion modelling 89
5.4.1 The global coordinate frame 89
5.4.2 The local coordinate frame 89
5.5 Radar waveform modelling 93
5.5.1 Level of simulation .. 93
5.6 Radar signal processing .. 95
5.7 Implementation of ISARLAB 96
5.7.1 Display of results .. 96
5.8 ISARLAB demonstrations 98
5.8.1 A simulation example with ISARLAB 98
5.8.2 The Boeing 727 scatterer model 98
5.8.3 Discussion ... 98
5.8.4 ISARLAB modelling of ship imagery 105
5.9 ISARLAB extensions .. 108
5.10 Summary ... 109

6 Target classification using HRRPs 110
6.1 Introduction ... 110
6.1.1 Chapter purpose ... 110
6.1.2 Chapter overview .. 110
6.2 HRRP preprocessing issues .. 111
 6.2.1 The quality of a HRRP .. 111
 6.2.2 The need for HRRP preprocessing 112
 6.2.3 Target localisation ... 117
 6.2.4 HRRP alignment .. 121
 6.2.5 HRRP variation with aspect 122
 6.2.6 Averaging .. 127
 6.2.7 Thresholding .. 128
 6.2.8 Normalisation ... 133
 6.2.9 Sidelobe reduction .. 133
6.3 Data collection .. 134
 6.3.1 Subdividing the data into training and testing sets 134
6.4 HRRP preprocessing ... 137
 6.4.1 HRRP averaging .. 137
 6.4.2 HRRP normalisation 137
 6.4.3 A position-invariant transform 138
6.5 Dimensionality reduction 141
 6.5.1 The generalised linear discriminant 141
6.6 Classification .. 143
 6.6.1 The Bayes classifier 143
6.7 Summary of processing for the classification experiment 144
 6.7.1 HRRP preprocessing 144
 6.7.2 Offline processing .. 144
 6.7.3 Online processing ... 145
6.8 Results and discussion ... 147
6.9 Summary ... 150

7 Coherent averaging of HRRPs 151
 7.1 Introduction .. 151
 7.1.1 Chapter purpose .. 151
 7.1.2 Chapter overview ... 151
 7.2 Coherent and non-coherent integration 152
 7.2.1 Comparing coherent and non-coherent integration 156
 7.2.2 Interpretation of coherent and non-coherent integration 161
 7.2.3 Integration loss ... 162
 7.3 Non-coherent averaging of HRRPs 163
 7.4 Coherent averaging of HRRPs 163
 7.4.1 The operational context in which coherent averaging is used 166
 7.4.2 An overview of coherent averaging 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.3 The target Doppler bandwidth</td>
<td>169</td>
</tr>
<tr>
<td>7.4.4 Extraction of the averaged HRRP</td>
<td>174</td>
</tr>
<tr>
<td>7.4.5 Estimating the HRRP noise level from the range-Doppler image</td>
<td>175</td>
</tr>
<tr>
<td>7.4.6 Checking that the coherent processing worked</td>
<td>176</td>
</tr>
<tr>
<td>7.4.7 CFAR processing for thresholding the averaged HRRP</td>
<td>180</td>
</tr>
<tr>
<td>7.5 An example</td>
<td>182</td>
</tr>
<tr>
<td>7.5.1 The scenario</td>
<td>182</td>
</tr>
<tr>
<td>7.5.2 Calculations for the simulation</td>
<td>185</td>
</tr>
<tr>
<td>7.5.3 Comparing the results of coherent and non-coherent averaging</td>
<td>187</td>
</tr>
<tr>
<td>7.5.4 Results and discussion</td>
<td>189</td>
</tr>
<tr>
<td>7.6 Summary</td>
<td>202</td>
</tr>
<tr>
<td>8 Thesis Summary</td>
<td>203</td>
</tr>
<tr>
<td>8.1 Future work needed</td>
<td>204</td>
</tr>
<tr>
<td>A Haywood’s algorithm for ISAR processing</td>
<td>206</td>
</tr>
<tr>
<td>B Calculations for ISAR imaging at Adelaide airport</td>
<td>209</td>
</tr>
<tr>
<td>C An example where ISAR imaging is not possible</td>
<td>212</td>
</tr>
<tr>
<td>D Radar imagery of the Mirage aircraft</td>
<td>215</td>
</tr>
<tr>
<td>E Publications</td>
<td>252</td>
</tr>
<tr>
<td>Bibliography</td>
<td>287</td>
</tr>
</tbody>
</table>
ABSTRACT

Research in the area of radar target classification has been active for at least 30 years. The bulk of the research effort has been directed at aspect-independent techniques which classify a target according to its resonant response. Recently there has been a renewed interest in radar target classification, particularly in techniques which provide target classification from high resolution radar imagery. This dissertation addresses preprocessing issues for radar target classification from high resolution radar imagery.

This thesis begins by examining radar backscatter from full-scale aircraft targets. High resolution radar imagery of real aircraft in flight and of a MIRAGE aircraft on a turntable is examined. Several important backscatter characteristics such as engine cavity backscatter and jet engine modulation (JEM) are highlighted. The observed radar backscatter phenomena are discussed in the context of preprocessing for radar target classification. A high resolution radar data simulator called ISARLAB (ISAR LABoratory) is created to produce data for target classification studies. The design of ISARLAB is based upon well established radar backscatter theory and the examination of radar backscatter from real full-scale aircraft. ISARLAB only models the essential target attributes which are likely to be useful for radar target classification.

Radar target classification from a high resolution range profile (HRRP) is required when other techniques such as inverse synthetic aperture radar (ISAR) are unavailable. This dissertation discusses the important preprocessing issues for HRRP target classification. In particular the issues of: aspect independent classification; target localisation; HRRP averaging and HRRP thresholding are highlighted. A classification experiment, using real data of fullscale aircraft, is conducted to further illustrate the preprocessing issues for radar target classification.

An algorithm to coherently average HRRPs is proposed. The algorithm is applicable when the target is at medium to long range or when the target rotation rate is small. The coherent averaging algorithm provides the best possible averaged HRRP, in terms of target scatterer detectability, for a given number of HRRPs averaged. The algorithm coherently processes a sequence of HRRPs and the target return is separated from the noise on the basis of Doppler frequency. The target return, which is localised in Doppler, is extracted to give a coherently averaged HRRP. The averaged HRRP is thresholded using constant false alarm rate (CFAR) processing.