Selenium Mediated Cyclizations and Reactions of Selenones

A Thesis Presented for the Degree of
Doctor of Philosophy
by
Matthew A. Cooper
B.Sc. (Hons)

The University of Adelaide
Department of Chemistry
1994
Table of Contents

Abstract (v)
Statement of originality (vi)
Acknowledgments (vii)
Abbreviations (viii)

Chapter 1 An introduction to organoselenium chemistry. 1

Chapter 2 Selenium induced cyclizations of unsaturated N-protected hydroxy amines.
2.0 An introduction to polyhydroxylated pyrroldidine and indolizidine alkaloids 9
2.1 Synthesis and cyclizations of N-protected 4-hydroxy-5-pentenylamines. 13
2.2 Synthesis and cyclizations of N-protected 5-hydroxy-6-hexenylamines. 28
2.3 Conversion of alkyl phenyl selenides to alcohols and ethers. 43
2.4 Synthesis of polyhydroxylated alkaloids via nucleophilic displacement of the phenylselenonyl moiety. 54

Chapter 3 Intermolecular and intramolecular substitution reactions of alkyl phenyl selenones.
3.0 An introduction to the chemistry of selenones. 60
3.1 Intermolecular substitution reactions of selenones. 63
3.2 Hydroxyselenation of allylic alcohols and their conversion to epoxides. 66
3.3 Reactions of β-amido selenides 84
3.4 Miscellaneous reactions of selenones and proposals for future research. 99
Chapter 4 Selenium induced radical cyclizations of unsaturated amines and amides.

4.0 An introduction to radical cyclizations of organoselenium compounds.

4.1 Attempted cyclizations of N-acryloyl 2-phenylselenomethyl pyrrolidine.

4.2 Attempted cyclizations of N-alkylated 2-phenylselenomethyl pyrrolidines.

4.3 Cyclizations of N-alkylated β-amidoselenides

Chapter 5 Experimental

5.1 General experimental

5.2 Work described in Chapter 2

5.3 Work described in Chapter 3

5.4 Work described in Chapter 4

References

Appendices
Abstract

An investigation of stereoselective selenium mediated cyclizations of allylic alcohols was carried out. Cyclizations of N-protected 4-hydroxy-5-pentenylamines occurred under kinetic control with cis-stereoselectivity to afford N-protected phenylselenomethyl hydroxypyrrolidines in high yield. Selenium induced cyclizations of N-protected 3-hydroxy-6-hexenylamines occurred under thermodynamic control with trans-stereoselectivity to afford N-protected phenylselenomethyl hydroxypipеридines in high yield. A mechanism to account for these contrasting reactivities is proposed. Some of the piperidines formed stable hydrates and exhibited through space coupling to water in the 1H n.m.r. spectra. Some of the pyrrolidines were elaborated to biologically important diols via intramolecular substitution of the corresponding selenones with hydroxide ion.

The conditions required for formation of alkyl phenyl selenones from alkyl phenyl selenides using MCPBA were investigated using 77Se n.m.r. analysis. Several intermolecular substitution reactions of alkyl phenyl selenones by soft nucleophiles such as water, methanol and chloride ion were demonstrated to occur under mild conditions and in high yield. Treatment of β-benzamidodiselenides with MCPBA and base at room temperature afforded cis-fused 2-oxazolines, whereas treatment with excess phenylselenenyl bromide at 120°C afforded previously unreported trans-fused 2-oxazolines. Treatment of β-acetamidodiselenides with MCPBA gave lactones or esters.

Hydroxyselelenations of allylic alcohols generally occurred with high regioselectivity to afford β,β′-dihydroxyselelenides, which could be transformed to β-hydroxy epoxides upon treatment with MCPBA and base. The formation of trans-β-hydroxy epoxides from allylic alcohols using this methodology is in contrast to established methods which give cis-β-hydroxy epoxides.

Hydroxyselelenation of crotyl acetate or 2-acetoxy cyclohexene was regio- and stereo-catholic, in contrast to the regio- and stereo-specific addition of phenylselenenyl chloride to these compounds. Additions of phenylselenenyl chloride in the presence of zinc chloride to these compounds was also regio- and stereo-catholic. A mechanism to account for these differing reactivities is proposed.

Attempts to induce radical, reductive or oxidative cyclizations of N-acryloyl and N-alkyl 2-phenylselenomethyl pyrrolidines were unsuccessful, however N-acrylated or N-alkylated β-amidodiselenides could be cyclized to form five and six membered ring nitrogen heterocycles via radical abstraction of selenium.