Effects of Insulin-like growth factor-I (IGF-I) peptides on the growth and function of the gastrointestinal tract in adult and suckling rats

Corinna-Britta Steeb (BSc. Hon.)

A thesis submitted to the University of Adelaide, South Australia for the degree of Doctor of Philosophy in the Faculty of Medicine.

Child Health Research Institute
The University of Adelaide
South Australia

MAY, 1995
ABSTRACT

Growth and development of the gastrointestinal tract in mammals is regulated by the complex interaction of dietary, hormonal, neural and luminal factors. To investigate the effects of insulin-like-growth factor-I (IGF-I) peptide infusion on the growth and function of the gastrointestinal tract, adult and suckling rats (6 and 12 days old) have been treated with increasing doses of IGF-I or LongR^3 IGF-I (LR^3IGF-I), an IGF-I analog that shows greatly reduced binding affinity to several of the IGF binding proteins. Peptides were delivered via subcutaneously implanted mini-osmotic pumps. Control animals received vehicle carrier (0.1M acetic acid). Adult rats were maintained in metabolism cages throughout the treatment period for assessment of body weight gain, food and water intake and faecal and urinary output. Suckling rats were returned to their mother following pump implantation (9 pups/dam). At sacrifice, internal organs and the gastrointestinal tract were rapidly excised for subsequent histological, biochemical and autoradiographic analyses. Biological activities of Lactase-Phlorizin Hydrolase (LPH) and the alpha glucosidase sucrase-isomaltase were measured in tissue homogenates of suckling animals to assess IGF-I peptide effects on the maturation of GIT function. Distribution patterns of enzyme expression along the villus axis were determined in cryostat sectioned tissue samples.

In the adult rats, a dose-dependent increase in gut tissue weight and intestinal length was observed following peptide treatment for 14 days. Both mucosal and non-mucosal tissue components increased with proportional increments in proliferative cells within the crypt epithelium as indicated by proliferative cell nuclear antigen labelling (PCNA). Administration of IGF-I peptides rapidly induced proliferative activity as indicted by an increase in tritiated thymidine labelling following a 3 day peptide administration protocol to adult rats.
In 6-day old pups, treated for 6.5 days with LR³IGF-I but not IGF-I, increased body weight gain. However, both peptides increased the relative weights of organs, including the spleen and kidney. A selective action of IGF-I and the LR³IGF-I was indicated by the marked increase in gastrointestinal tissue components, so that total gut weight increased by up to 59% above control values following treatment with the highest dose of LR³IGF-I. Responses were particularly apparent in the small intestine and the stomach, and histological and biochemical analyses suggested that growth occurred through proportional increases of the mucosal and non-mucosal tissue mass. The thymidine labelling index increased in proportion to crypt population.

In the 12 day old pups, lactase activity, as measured in jejunal tissue homogenates, was significantly reduced following treatment with LR³IGF-I. Histocytochemical detection showed a significant reduction in surface staining for lactase along the entire length of duodenal villi. Conversely, in these animals, sucrase activity measured in either jejunal tissue homogenates or in cryostat sectioned tissue, was precociously induced.

The results of this study suggest that IGF-I peptides, in particular LR³IGF-I, significantly influence gastrointestinal growth in normal adult and suckling rats. IGF-I peptides stimulate intestinal proliferation and furthermore, influence the maturation and cytodifferentiation of enterocytes in the immature intestine. These findings indicate that IGF-I peptides may have therapeutic implications both in conditions of impaired gut function in the adult gastrointestinal tract and in the treatment of gut disease in the immature intestine.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Gastrointestinal growth and development in adult and suckling rats and its regulation by insulin-like growth factor-I peptides.

1.1 General aspects of gastrointestinal development and maturation
1.2 Foetal development of the gastrointestinal tract
1.2.1 Organogenesis and Histogenesis of the gastrointestinal tract
1.2.2 Formation of mucosal compartments
1.2.3 Continuous growth and maturation of the foetal intestine
1.3 Development of the gastrointestinal tract during the suckling period
1.3.1 Immediate perinatal period
1.3.2 Remaining sucking period
1.4 Maturation of the gastrointestinal tract during postnatal development
1.4.1 Macromolecular uptake
1.4.2 Brush border enzymes:
1.4.3 Intestinal disaccharidases
1.4.3.1 Lactase activity in the developing small intestine
1.4.3.2 Sucrase-isomaltase activity in the developing small intestine
1.5 Growth of the mature gastrointestinal tract
1.5.1 Renewal of the intestinal epithelium
1.5.2 Regulation of intestinal proliferation and mucosal growth
1.5.3 Dietary manipulation and endogenous secretions
1.5.4 Regulation of intestinal growth and maturation by peptide growth factors
CHAPTER 3

Effects of prolonged IGF-I peptide administration on the growth and function of the gastrointestinal tract in adult rats.

Contribution to the work

ABSTRACT

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS
 3.2.1 Recombinant IGF peptides
 3.2.2 Experimental Design
 3.2.3 Surgical procedure
 3.2.4 Tissue collections and gut measurements
 3.2.5 Histological and immunohistochemical analyses
 3.2.6 Assessment of intestinal proliferation
 3.2.7 Biochemical analyses
 3.2.8 Statistical analyses

3.3 RESULTS
 3.3.1 Body weight gain
 3.3.2 Gastrointestinal growth responses
 3.3.3 Histological parameters
 3.3.4. Proliferative parameters
 3.3.5 Biochemical parameters
 3.3.6 Nitrogen balance measurements

3.4. DISCUSSION
 3.4.1 IGF-I peptides stimulate growth without concomitant increase in food intake.
 3.4.2 IGF-I peptides stimulate gut growth and length
 3.4.3 IGF-I stimulates growth of mucosal and non-mucosal tissues
 3.4.4 Proliferative effects
 3.4.5 Proposed mechanisms of IGF-I induced proliferation
 3.4.6 LR3IGF-I is more potent than IGF-I
 3.4.7 Direct or indirect action of IGF-I peptides?
 3.4.8 Absorptive function
 3.4.9 Where to go from here?

CHAPTER 4

Administration of IGF-I peptides for a 3 day period stimulates proliferation of the intestinal epithelium in normal adult rats.

Contribution to the work

ABSTRACT

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS
 4.2.1 Recombinant IGF-I peptides
 4.2.2 Experimental design
 4.2.3 Surgical procedures
CHAPTER 5

IGF-I peptides stimulate gastrointestinal growth and intestinal proliferation in suckling rats during the early postnatal period.

Contribution to the work

ABSTRACT

5.1 INTRODUCTION

5.2 PRELIMINARY STUDY TO ESTABLISH PROTOCOLS, ANIMAL HANDLING AND PEPTIDE DOSE RESPONSE

5.2.1 Animal handling

5.2.2 Postnatal care of the dam and rat-pups

5.3 PRELIMINARY DOSE RESPONSE OF IGF PEPTIDES

5.3.1 Anaesthesia and pump implantation in 6 day old rats

5.3.2 Body weight response

5.3.3 Peptide dosage in suckling rat studies

5.3.4 IGF-I peptide effects on body weight

5.3.5 IGF-I peptide effects on gastrointestinal tissue weight

5.3.6 IGF-I peptide effects on organ weights

5.3.7 Concluding remarks on preliminary study

5.4 SYSTEMIC INFUSION OF IGF-I PEPTIDES TO 6 DAY OLD SUCKLING RATS.

5.4.1 Recombinant IGF peptides

5.4.2 Experimental design

5.4.3 Tissue collections and blood sampling

5.4.4 Analytical measurements

5.4.4.1 Histology

5.4.4.2 Autoradiography

5.4.4.3 Measurements of DNA, protein and disaccharidases in jejunal tissue homogenates

5.4.4.4 Histocytocchemical detection of sucrase and lactase

5.4.4.5 Plasma IGF-I radioimmunoassays
CHAPTER 6

Enhanced gastrointestinal growth and intestinal disaccharidase activities in 12 day old suckling rats treated for 6.5 days with IGF-I peptides

Contribution to the work

ABSTRACT

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS

6.2.1 Recombinant IGF peptides

6.2.2 Experimental design

6.2.3 Analytical measurements for the assessment of gut growth

6.2.3.1 Histology

6.2.3.2 Measurements of mucosal DNA, protein and disaccharidase activities in jejunal tissue homogenates.

6.2.3.3 Histocytotoxic detection of lactase and sucrase activities

6.2.4 Measurements of plasma IGF-I levels and insulin

6.2.5 Western ligand blot analysis

6.2.6 Statistical analysis

6.3 RESULTS

6.3.1 Plasma IGF-I levels

6.3.2 Plasma IGFBP profile in older suckling rats treated with and without IGF-I peptides

vii
6.3.3 Plasma insulin levels 216
6.3.4 Growth parameters 216
6.3.5 Gastrointestinal response to IGF-I peptides 220
6.3.6 Histological parameters 224
6.3.7 Biochemical estimation of gut growth 225
6.3.8 Biochemical estimation of disaccharidase activity 226
6.3.9 Histocytochemical detection of duodenal disaccharidases 228
6.4 DISCUSSION 233
6.4.1 IGF-I peptides stimulates growth and functional maturation of the gut 233
6.4.2 IGF-I peptide effects on lactase activity 233
6.4.3 LR3IGF-I precociously induced sucrase activity 236
6.4.4 Suckling rats are highly responsive to IGF-I peptide administration during the pre-weaning period 238

CHAPTER 7 242
7.1 The mature and immature gut respond differently to subcutaneously administered IGF-I peptides 242
7.2 IGF-I responses under different physiological conditions 245
7.3 Changes in IGFs. Role of IGF-II in growth during neonatal development 246
7.4 Therapeutic applications 247
7.6 Future directions 248

REFERENCES 250

APPENDICES 302