NEURAL MECHANISMS OF ANAESTHESIA

Ahmad Hashemi-Sakhtsari

Thesis submitted for the degree of
Doctor of Philosophy
in
Faculty of Science
The University of Adelaide

Department of Physiology December 1994
CONTENTS

TABLE OF CONTENTS ... ii

ABSTRACT ... ix

DECLARATION .. xi

ACKNOWLEDGEMENTS .. xii

PUBLICATIONS .. xiv

RECEPTOR MECHANISMS – DEFINITION OF SOME COMMON TERMS xv

CHAPTER 1 – INTRODUCTION ... 1

1.1 GENERAL ANAESTHESIA ... 1

1.1.1 Definition of General Anaesthesia 1

1.1.2 A Brief History of Anaesthesia 3

1.1.3 Sites of Action of Anaesthesia 4

1.1.4 Mechanisms of Anaesthesia 6

1.1.5 Stereoselectivity of Anaesthetic Agents 11

1.2 POTASSIUM CHANNELS .. 13

1.2.1 An Introduction to Potassium Channels 13

1.2.2 Voltage-Activated K⁺ Currents 15

1.2.2.1 Delayed (outward) rectifier current (I_{K(V)}) 15

1.2.2.2 Fast transient current (I_{K(A)}) 15

1.2.2.3 Rapid delayed current (I_{K(Vr)}) 15

1.2.2.4 Slow delayed current (I_{K(Vs)}) 16

1.2.2.5 Muscarinic-inactivated current (I_{K(M)}) 16

1.2.2.6 Inward (anomalous) rectifier current (I_{K(IR)}) ... 16
1.2.2.7 Calcium-activated K⁺ currents 16
1.2.3 Ligand Activated K⁺ Currents 17
1.2.4 Other K⁺-Specific Channels 17
1.3 GABA PHARMACOLOGY 18
1.3.1 History of GABA 18
1.3.1.1 History of GABA_B receptors 19
1.3.2 An Introduction to GABA Receptors 20
1.3.2.1 GABA_A receptors 20
1.3.2.2 GABA_B receptors 22
1.3.2.3 GABA-autoreceptors 23
1.3.3 GABA-Receptor Distribution 23
1.3.4 GABA-Receptors and Excitatory Transmission 24
1.3.5 GABA_B Receptor Electrophysiology 25
1.3.5.1 GABA_B receptors and Ca²⁺ channels 25
1.3.5.2 GABA_B receptors and K⁺ channels 26
1.3.6 Absence Epilepsy 27
1.4 ANAESTHESIA AND EXCITATORY OR INHIBITORY TRANSMISSION 28
1.5 ANAESTHESIA AND GABA-RECEPTORS 31
1.5.1 Effects of Anaesthetics on GABA_A-Receptor Channel Kinetics 34
1.6 ROLES OF ION CHANNELS, TRANSMITTER RELEASE AND SECOND MESSENGERS IN ANAESTHESIA 35
1.6.1 Anaesthesia and Na⁺ Channels 35
1.6.2 Anaesthesia and K⁺ Channels 36
1.6.2.1 A novel neuronal K⁺ current 37
1.6.3 Anaesthesia and Metabotropic Receptors 37
1.6.4 Anaesthesia and Ca²⁺ Channels 38
1.6.5 Anaesthesia and Transmitter Release 39
1.6.6 Anaesthesia and Second Messengers 40
CHAPTER 2 - SPONTANEOUS EPILEPTIFORM DISCHARGES 42
2.1 ROLE OF NON-NMDA GLUTAMATE RECEPTORS IN
 EPILEPTOGENESIS ... 48
2.1.1 Kainic Acid .. 49
2.2 ROLES OF CALCIUM CHANNELS AND NEUROTRANSMITTER
 RELEASE IN EPILEPTOGENESIS 50
2.3 ROLE OF POTASSIUM CHANNELS IN EPILEPTOGENESIS 51
2.4 ROLE OF CYCLIC AMP IN EPILEPTOGENESIS 52

CHAPTER 3 - RECORDING FROM BRAIN SLICES 54
3.1 COMPUTER-BASED ELECTROPHYSIOLOGICAL DATA ACQUISITION
 AND ANALYSIS .. 54
3.2 POPULATION DISCHARGE (EXTRACELLULAR FIELD POTENTIAL)
 RECORDING .. 57
3.3 A GREASE-GAP RECORDING MODEL 58
3.3.1 Experimental Procedures 58
3.3.2 An Introduction to ASYST Version 2.1 65
3.3.3 Metabyte DASH-16F Board 67
3.3.4 Interface Circuit Box 68
3.3.4.1 Instrumentation amplifiers 69
3.3.4.2 Earthing and power supply arrangements for the
 interface box ... 70

CHAPTER 4 - EVOKED POTENTIAL RECORDING FROM RABBIT BRAIN 73
4.1 AN INTRODUCTION TO WHOLE-ANIMAL DATA ACQUISITION AND
 PROCESSING SYSTEM ... 73
4.1.1 Analogue Stimulator Output 76
4.1.2 Analogue-to-Digital External trigger Input 76
4.1.3 Digitimer ... 77
4.1.4 Gated Pulse Generator 78
4.1.5 Isolated Stimulator .. 78
4.1.6 Stimulating Electrodes 79
4.1.7 Recording Electrodes 80
4.1.8 Amplifier and Filter 82
4.1.9 Baseline Stabiliser ... 83
4.1.10 Data Acquisition and Analysis Software 84
4.2 EVOKED POTENTIAL RECORDING FROM STRUCTURES IN RABBIT BRAIN .. 85
4.2.1 General Anaesthesia ... 86
4.3 EXPERIMENTAL PROCEDURE 92
4.3.1 Perfusion and Sectioning 95
4.4 RESULTS AND DISCUSSION 96

CHAPTER 5 - EFFECTS OF POTASSIUM CHANNEL BLOCKERS ON EPILEPTIFORM DISCHARGESRecorded FROM RAT NEOCOR TICAL SLICES IN VITRO 110
5.1 SPONTANEOUS DISCHARGES WITH AFTER-ACTIVITY 113
5.2 EFFECTS OF NMDA ON SPONTANEOUS DISCHARGES 116
5.3 EFFECTS OF TEA ON SPONTANEOUS DISCHARGES 119
5.3.1 Phase-Plane Plot Study 127
5.4 EFFECTS OF CCh ON SPONTANEOUS DISCHARGES 130
5.5 EFFECTS OF CsCl ON SPONTANEOUS DISCHARGES 135
5.6 EFFECTS OF 4-AP ON SPONTANEOUS DISCHARGES 140
5.7 EFFECTS OF BaCl₂ ON SPONTANEOUS DISCHARGES 146
5.8 EFFECTS OF SrCl₂ ON SPONTANEOUS DISCHARGES 154
5.9 EFFECTS OF CoCl₂ ON SPONTANEOUS DISCHARGES 156
5.10 EFFECTS OF REDUCING EXTERNAL Ca²⁺ ON SPONTANEOUS DISCHARGES .. 158
5.11 EFFECTS OF CAFFEINE ON SPONTANEOUS DISCHARGES 161
5.12 BASELINE POTENTIAL SHIFT 164
CHAPTER 6 - POWER SPECTRUM ANALYSIS OF DISCHARGES WITH
AFTER-ACTIVITY RECORDED FROM RAT NEOCORTICAL
SLICES IN VITRO ... 167
6.1 INTRODUCTION ... 167
6.2 FOURIER TRANSFORM AS A CLASSICAL SPECTRAL ANALYSIS
METHOD ... 169
6.3 MODERN SPECTRAL ANALYSIS TECHNIQUES 171
6.3.1 Non-Parametric Methods 174
6.3.2 Parametric Methods 174
6.3.2.1 Yule-Walker method 176
6.4 RESULTS AND DISCUSSION 179
6.5 CONCLUSIONS ... 200

CHAPTER 7 - EFFECTS OF GABA_A- AND GABA_B-RECEPTOR AGONISTS
AND ANTAGONISTS ON SPONTANEOUS EPILEPTIFORM
DISCHARGES RECORDED FROM NEOCORTICAL SLICES
IN VITRO ... 201
7.1 EFFECTS OF GABA AND 3-AMINOPROPYLSULPHONIC ACID ON
SPONTANEOUS NEOCORTICAL DISCHARGES 202
7.1.1 Muscimol, THIP, and Propofol as Notable GABA_A-
Receptor Agonists ... 211
7.2 EFFECTS OF BICUCULLINE METHIODIDE ON SPONTANEOUS
NEOCORTICAL DISCHARGES 212
7.3 EFFECTS OF BACLOFEN AS A GABA_B-RECEPTOR AGONIST ON
SPONTANEOUS NEOCORTICAL DISCHARGES 219
7.4 EFFECTS OF A MIXTURE OF BACLOFEN AND 3-APS ON
SPONTANEOUS NEOCORTICAL DISCHARGES 233
7.5 INVESTIGATION OF THE VALIDITY OF THE EQUATION
BMI - GABA - BACLOFEN - BMI 236
7.5.1 Effects of GABA on Spontaneous Neocortical
Discharges in the Presence of DABA 240
7.6 EFFECTS OF 4-AMINOBUTYLPHOSPHONIC ACID ON SPONTANEOUS
NEOCORTICAL DISCHARGES 252

CHAPTER 8 INTERACTION STUDIES BETWEEN BACLOFEN AND
POTASSIUM CHANNEL BLOCKERS 259
8.1 EFFECTS OF BACLOFEN ON THE RESPONSE OF A NEOCORTICAL
SLICE TO TEA ... 260
8.2 EFFECTS OF BACLOFEN ON THE RESPONSE OF A NEOCORTICAL
SLICE TO CCh .. 262
8.3 EFFECTS OF BACLOFEN ON THE RESPONSE OF A NEOCORTICAL
SLICE TO CsCl ... 264
8.4 EFFECTS OF BACLOFEN ON THE RESPONSE OF A NEOCORTICAL
SLICE TO 4 AP .. 266
8.5 EFFECTS OF BACLOFEN ON THE RESPONSE OF NEOCORTICAL
SLICES TO BaCl₂ ... 268

SUMMARY AND CONCLUSIONS 272

APPENDIX A.3.1 A Method for Chloriding Silver Electrodes 273
APPENDIX A.3.2 - Temperature Controller 274
APPENDIX A.3.3 - Low-pass and Notch Filters 275
APPENDIX A.3.4 - Instrumentation Amplifiers and Direct
Channel Connections to the DASH-16F Board 276
APPENDIX A.3.5 - An Instrumentation Amplifier AD625
Circuit Arrangement in the Interface Box 277
APPENDIX A.3.6 - Voltage Regulators and Low Level Ground
Line ... 278
ABSTRACT

Despite almost a century of research, the mechanisms of anaesthesia remains obscure. Stereoselectivity of anaesthetic agents supports interaction of anaesthetic agents with cellular protein targets rather than an indiscriminate perturbation of the lipid bilayer as was previously proposed. In general, at neural level anaesthesia is produced by reducing excitation or enhancing inhibition. In the 1990s, the hypothesis that anaesthetics in large part produce their pharmacological actions at specific loci on the GABA_A-receptor complex has become most favoured. In this thesis, possible neural mechanisms of action of general Anaesthesia are introduced.

Preliminary evoked potential recordings from the brain of anaesthetised rabbits are presented, before proceeding to report in vitro studies of a slice preparation from rat brain using a grease-gap recording model which allows detailed investigations in a relatively undisturbed, but controlled environment. Cellular excitatory mechanisms leading to spontaneous epileptiform discharges in the neocortical slices in a Mg^{2+}-free artificial cerebro-spinal medium are discussed.

Potassium channels control cell excitability and its firing properties. The study of effects of various classical potassium channel blockers on spontaneous discharges from neocortical slices has revealed that, as well as causing tissue excitability, each agent has definite signatory effects on individual discharges. Modern spectral analysis of the
after-activity of responses enabled numerical values for frequency and power density of control, and discharges in the presence of each potassium channel blocker to be obtained.

4-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, its actions being mediated through both GABA_A- and GABA_B-receptors. The effects of GABA_A- and GABA_B-receptor agonists and antagonists on spontaneous discharges in the slice model are presented and discussed. These studies suggest that agents acting on GABA receptors can intensely modulate neuronal activity, providing a conceivable basis for the actions of both analgesic and anaesthetic agents.

Finally interaction studies between baclofen, a GABA_B-receptor agonist, and various potassium channel blockers identifies baclofen as a potent agent in diminishing or abolishing spontaneous discharges. These studies show that, with the exception of Ba^{2+}, baclofen is capable of suppressing the hyperexcitability induced by potassium channel blockers.