THE MECHANISM OF ACTION
OF
TUMOUR NECROSIS FACTOR - α

Jeffrey AJ Barbara
M.B.B.S., F.R.A.C.P. (Renal Medicine)

Division of Human Immunology, Institute of Medical and Veterinary Science / Hanson Centre
for Cancer Research, Adelaide, South Australia

Department of Medicine, University of Adelaide, Adelaide, South Australia

A thesis submitted for the degree of Doctor of Philosophy of the University of Adelaide

March, 1995

Awarded 1995
ABSTRACT

The Mechanism of Action of Tumour Necrosis Factor - \(\alpha \)

J.A.J. Barbara

The \textit{in vivo} administration of Tumour Necrosis Factor - alpha (TNF-\(\alpha \)) as an antineoplastic agent has been severely restricted by dose-limiting side effects. Neutrophils, monocytes and endothelium are believed to be involved in the generation of these unwanted side effects. In the mouse, the administration of human TNF, which binds only to the murine p55 TNF receptor (TNFR55), is much less toxic than murine TNF, which binds to both murine TNF receptors. In view of this species specificity, human TNF mutants with selective binding to the human TNF receptors were employed to examine the role of these receptors in the mediation of TNF's cytotoxic and proinflammatory activities. The TNFR55-selective mutants stimulated proinflammatory activity which was markedly less than wild-type TNF. TNF-\(\alpha \)’s priming of human neutrophils for superoxide production and antibody-dependent cell-mediated cytotoxicity, platelet-activating factor (PAF) synthesis and adhesion to endothelium were reduced by up to 170-fold. Activation of human endothelial functions represented by adhesiveness for neutrophils, E-selectin expression, neutrophil transmigration and IL-8 secretion were also reduced by up to 280-fold. The TNFR75-selective mutant did not stimulate any proinflammatory activity implying that TNFR75 facilitates the role of TNFR55 in mediating these activities. However, the TNFR55-selective mutants exhibited similar potency to wild-type TNF in causing cytotoxicity of a human laryngeal carcinoma-derived cell line and cytostasis in a human leukaemic cell line. Therefore, the \textit{in vivo} use of TNFR55-selective mutants may result in reduced side effects whilst maintaining the antitumour activity of wild-type TNF.
The signal transduction mechanisms by which TNF-α elicits proinflammatory activity were examined in neutrophils and monocytes. Cytosolic phospholipase A₂ (cPLA₂), the rate-limiting enzyme in the production of eicosanoids and PAF, was selected for investigation. The rapid phosphorylation of cPLA₂ on serine residues by TNF-α was demonstrated and found to be coupled to the production of PAF in human monocytes. The TNFR55-selective mutants stimulated less cPLA₂ phosphorylation and PAF production than wild-type TNF and this is in keeping with the neutrophil and endothelial proinflammatory effects described.

The life span of the mature neutrophil in vivo is relatively brief (24 hours) and it is shown here that TNF-α shortens this time markedly. Apoptosis is induced by TNF-α in the majority of neutrophils within 3 hours as demonstrated by microscopy (light and fluorescent), DNA fragmentation gels and propidium iodide binding. The TNFR55-selective mutants induce significantly less apoptosis than wild-type TNF and implies similar TNF receptor biology for neutrophil proinflammation and apoptosis. Thus TNF-α, in stimulating neutrophil proinflammatory activities, induces an early noninflammatory death.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XII</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>XIII</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING</td>
<td>XVI</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 The historical background of TNF-α | 1 |
1.2 The TNF-α molecule | 2 |
1.3 Biological activities of TNF-α | 4 |
1.3.1 Cytotoxicity | 4 |
1.3.2 Proinflammation | 5 |
1.4 TNF receptors | 7 |
1.5 The TNF and TNF receptor superfamilies | 8 |
1.6 TNF signal transduction | 10 |
1.6.1 Cytosolic phospholipase A$_2$ (cPLA$_2$) | 12 |
1.6.2 Platelet-activating factor | 13 |
1.7 *In vivo* TNF-α (antitumour agent) | 13 |
1.8 Species specificity | 15 |
1.9 TNF mutants | 15 |
CHAPTER 2: MATERIALS AND METHODS

2.1 TNF-α

2.2 Cell lines

2.3 Cell purification
 2.3.1 Purification of human neutrophils
 2.3.2 Peripheral blood mononuclear cell preparation
 2.3.3 Purification of human monocytes
 2.3.4 Eosinophil purification
 2.3.5 Endothelial cell preparation

2.4 Microscopy
 2.4.1 Light microscopy
 2.4.2 Fluorescent microscopy
 2.4.3 Transmission electron microscopy of neutrophils

2.5 Flow cytometry

2.6 TNF cytotoxicity assay

2.7 Cytostasis of a human monoblastoid leukaemic cell line U937

2.8 Superoxide anion generation

2.9 PAF synthesis and bioassay

2.10 Antibody-dependent cell-mediated cytotoxicity

2.11 Neutrophil adherence assay

2.12 E-selectin (Endothelial Leucocyte Adhesion Molecule-1) expression

2.13 Neutrophil transmigration

2.14 IL-8 secretion by endothelium

2.15 Induction of GM-CSF in PC60-hTNFR75+ cells

2.16 Radioiodination of cPLA₂

2.17 cPLA₂ phosphorylation

2.18 Western blotting
2.19 Phosphoamino acid analysis 29
2.20 Extraction of genomic DNA from neutrophils and DNA laddering gels 30
2.21 Propidium iodide binding to DNA 31
2.22 Statistical analysis 31

CHAPTER 3: DISSOCIATION OF THE CYTOTOXIC AND PROINFLAMMATORY ACTIVITIES OF TNF-α

Introduction 32
Results 34
3.1 TNF receptor expression on cells 34
3.2 Cytotoxicity and cytostasis of tumour cells 36
3.3 Stimulation of function and inflammatory mediator production by human neutrophils 36
3.4 Regulation of endothelial cell function 39
3.5 Lack of proinflammatory activity by the TNFR75-selective mutant 42
3.6 Induction of GM-CSF in PC60-hTNFR75+ cells 42
Discussion 46
Summary 51

CHAPTER 4: TNF-α INDUCES CYTOSOLIC PHOSPHOLIPASE A2 PHOSPHORYLATION IN HUMAN MONOCYTES AND IS COUPLED TO INFLAMMATORY MEDIATOR RELEASE

Introduction 52
Results 54
4.1 Titration of polyclonal cPLA₂ antibody and initial phosphorylation experiments 54
4.2 Absence of cPLA₂ phosphorylation in human neutrophils 56

VIII
4.3 PMA-induced cPLA₂ phosphorylation in human monocytes
4.4 TNF-induced cPLA₂ phosphorylation in monocytes and coupling to PAF synthesis
4.5 TNF-induced serine phosphorylation of cPLA₂ in monocytes

Discussion
Summary

CHAPTER 5: TNF-α INDUCED NEUTROPHIL APOPTOSIS

Introduction
Results
5.1 Neutrophil apoptosis examined by microscopy
5.2 TNF-induced neutrophil apoptosis
5.3 Confirmation of TNF-induced neutrophil apoptosis by DNA fragmentation gels and propidium iodide binding to DNA
5.4 The roles of the TNF receptors in TNF-induced neutrophil apoptosis
5.5 Fas antigen expression on leukocytes and lack of modulation by TNF-α

Discussion
Summary

CHAPTER 6: GENERAL DISCUSSION

FUTURE WORK
APPENDICES
BIBLIOGRAPHY