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Abstract
Persistent object systems greatly simplify programming tasks, since they hide the
traditional distinction between short-term and long-term storage from the applications
programmer. As a result, the programmer can operate at a level of abstraction in which
short-term and long-term data are treated uniformly. In the past most persistent systems
have been constructed above conventional operating systems and have not supported any
form of distributed programming paradigm. In this thesis we explore the implementation
of orthogonally persistent systems that make direct use of fhe attributes of paged virtual
memory found in the majority of conventional computing platforms. These attributes are
exploited to support object movement for persistent storage to addressable memory, to
aid in garbage collection, to provide the illusion of larger storage spaces than the
underlying architecture allows, and to provide distribution of the persistent system.

The thesis further explores the different models of distribution, notably a one world
model in which a single persistent space exists, and a federated one in which many co-
operating spaces exist. It explores communication mechanisms between federated spaces
and the problems of maintaining consistency between separate persistent spaces in a
manner which ensures both a reliable and resilient computational environment. In
particular characterising the interdependencies using vector clocks and the manner in
which vector time can be used to provide a complete mechanism for ensuring reliable and
resilient computation.

The thesis concludes with a description of a new.operating system design in which
support for the mechanisms described earlier are intrinsic in the design. This operating
system is able to provide orthogonal persistence in a distributed environment with no
effort on the part of users of the operating system.
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Chapter L. Introduction

Orthogonal persistence allows all data to be treated in a manner independant of its

This thesis is about the implementation technology of persistent systems. Two interacting

aspects of persistent systems are attacked. These are: the utilisation of the paged memory

hardware provided in conventional virtual memory architectures, and distribution of

persistent systems across separate but connected machines.

1. Persistence

The notion of persistence as a separate notion in computer systems was introduced by

Malcom Atkinson [Atkinson 1978]. Persistence is defined as the length of time for which

data both exists and is useable.

Persistence of data can be categorised as follows [Atkinson, Bailey et al. 1983]:

. data that only exists with the evaluation of an expression,

. data that is local to a procedure instantiation,

. data global to a program or that outlives the procedure instantiation that created it,

. data that exists between instantiations of a program,

. data that outlives the program that created it, and

. data that outlives the creator program in all its versions.

Conventional system have managed these various forms of persistence using different

techniques. Typically the first three are under the control of the programming language, or

more accurately the language compiler. The forth and fifth points have usually been taken

care of by operating system controlled storage (typically files) or separate database

systems. The last point is often not adequately addressed in many systems at all, indeed the

problem of managing legacy systems and data is becoming more acute as time goes on.

By abstracting the notion of persistence away from any other attributes of data, the need

to explicitly take notice of, and program according to, these attributes of persistence, is

avoided. In particular, the need to take notice of the technologically imposed differences

between fast but volatile, and long term but slow storage, is avoided. A system which

completely abstracts the notion of persistence away from other visible aspects of data is

termed ortho gonally persistent.

The two basic principles behind orthogonal persistence are:

1



. that any object may persist for as long, or as short, a period as the object is

required, and

. that objects may be manipulated in the same manner regardless of this longevity.

The requirements of a system which supports orthogonal persistence can be summarised as

follows.

. Uniform treatment of data structures.

Conventional programming systems require the programmer to translate data

resident in virtual memory into a format suitable for long term storage. For

example, graph structures must be translated into a flattened form when they are

written into files or mapped into relations for storage in a conventional database.

These activities are both complex and error prone. Persistent systems free the

programmer from such encumbrances since data of any type with arbitrary

longevity is supported by the system.

. Location independence.

To achieve location independence, data must be accessed in a uniform manner,

regardless of the location of that data. In distributed persistent systems, location

independence may be extended to the entire computing environment by

permitting data resident on other machines to be addressed in the same manner as

local data [Koch, Schunke et al. 1990; Tam, Smith et al. 1990; Vaughan, Schunke

et al. 1990; Henskens, Rosenberg et al. 1991; Henskens 1992; Vaughan, Schunke

et al. 19921.

. Data resilience,

All systems containing long-lived data must provide a degree of resilience against

failure. Persistent systems must prevent the data stored in them becoming corrupt

should a failure occur. In addition, since one of the goals of persistence is to

abstract over storage, resilience mechanisms should not be visible at the user

level.

. Protection of data.

In any significant application some mechanism must be provided to protect data

from accidental or malicious misuse. Without such protection execution of

processes within the persistent system could result in erroneous processes

corrupting data owned by other users. In persistent systems this is typically

2



provided through: the programming language type system [Morrison, Brown et al.

19901, data encapsulation [Liskov and Zilles t974], capabilities [Fabry 1974],or

by a combination of these techniques.

To date, most persistent systems, with a few exceptions [Rosenberg and Abramson 1985;

Campbell, Johnston et al. 1987; Dasgupta, LeBlanc et al. 19881 have been constructed

above conventional operating systems. Unfortunately these efforts are usually

compromised by a mismatch between the abstractions provided by the host operating

system and those which would more naturally be useful in the implementation of a

persistent system. Two terms have been coined to express the most frustrating problems

encountered. These are:

. Impedance mismatch [Bancilhon and Maier 1989].

. Semantic Gap.

Impedance mismatch is an evocative term derived from engineering theory. Power transfer

systems are unable to transmit all the power available if the transmitter and receiver have

mismatched impedances, this is independent of the intrinsic power handling capabilities of

either. So too in the movement of data, systems in which there is a mismatch in the data

access and storage mechanisms (for instance, access to random small objects for an object

store in combintion with a stream based VO model such as provided by Unix) result in

poor perforrnance, despite highly optimised implementations of each data transfer system.

The semantic gap is a related term. Rather than relating to performance directly it

describes the difficulties and added burden shouldered by programmers when the sematic

models of data storage to not mesh. For instance a conventional database may represent all

data as relations. Such a model may be highly effective (and very efficiently implemented)

for the target users. However considerable effort is required io make such a storage

mechanism useful for more advanced programming paradigms, or simply for applications

in which a much less structured view of data is used.

Faced with such sematic mismatches, the implementors of persistent languages or their

support systems are invariably forced to construct an abstract machine above the

abstraction of the host operating system. Usually such efforts are unable to make much

headway in attacking the impedance mismatch. Indeed the extra layering of software is an

impediment to performance. Perfonnance is unlikely to be anything close to the intrinsic

performance of the hardware unless the implementors are afforded access to the lowest

J
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levels of the host system. When such access is granted they can attempt to build

appropriate abstractions, avoiding as much of the inappropriate design as possible.

Recently one of the areas in which such access has been allowed, and exploited, is in use

of virtual memory mechanisms. This thesis explores use of virtual memory as an

implementation tool in considerable detail.

2. Accidents of History

Current conventional computer systems have institutionalised the break between volatile

short term data storage and long term permanent storage. That such a division should have

occurred is arguably not intrinsic to the nature of computer system design. Indeed such a

break may be regarded as being the result of a series of historical accidents.

Some of the very early systems developed held within them most of the attributes of

orthogonal persistence. f)esigns using magnetic core memory were capable of retaining all

data (including, in many cases, register values) in the face of system failures or shutdown.

Indeed these designs are still in use in highly critical applications. However, the

applications supported were not very sophisticated and the machine themselves so

restricted in available storage that little use could be made of the intrinsic freedom

potentially available.

The Atlas machine [Fotheringham L96l; T Kilburn 1962] was possibly one of the most

influential designs, and offered one of the first architectures in which integration of volatile

and stable storage was provided. The Atlas allowed a running program to generate

addresses within a one mega-word address space. This space was partitioned into pages,

each of 512 words in length. A special hardware translation table, with one entry per page

of physical memory, mapped each generated address onto either physical memory or

caused a trap which caused operating system code to load the missing data into physical

memory, alter the translation table and allow the access to continue. Thus the programmer

was able to view the available stable storage as simply an extension of the machine address

space. The architecture was however limited by the need for an entry in the translation

table for each page of physical memory, making extending the architecture expensive.

The lasting contribution to computer system design was unfortunately not the notion of

the single level store, but rather the development of demand paged virtual memory, in

which rather then making stable storage an extension of the program address space, stable

storage is used to extend the volatile address space of the program. A subtle but crucial

distinction.
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Later architectures, in particular the IBM systems 38 [Bertis, Truxal et al. 1978],

RS6000 and 45400 [Malhorta and Munroe 1992] did carry the notion of one level store

fuither and integrated stable storage into an extended segmented addressing architecture.

3. Models of persistence

In general persistence is manifested to the user in three ways. These are:

. Specific designation of data objects. The programmer must designate persistent

data objects through some language or library function.

. Embedded persistence. The entire program and data space is embeded within a

persistent address space and is thus persistent.

. Reachability. Data items which are live by virtue of being reachable by programs

in the persistent systems are maintained on stble storeage.

3.1,. Speciallydesignatedobjects

Many systems provide a measure of persistence by providing some mechanism by which

the programmer can designate a datum as being persistent. The Amber language [Cardelli

19851 allows the programmer to inject a datum into a special data type (called dynamic). A

pair of special commands, export and import, save and restore individual data objects to

and from files. However the model does not preserve referential integrity, each time a data

object is imported, a new copy is made.

A different mechanism is often used in languages which provide some inheritance

mechanism in the type system. By inheriting from a "persistence" class, a data object

includes appropriate mechanisms to allow it to move to and from stable storage. The E

language [Richardson and Carey 1989] is an early example of this. Of particular note are a

large number of systems designed using the C++ language.

The C++ language [Stroustrup 1986] has engendered considerable interest since its

inception. A considerable number of implementations of systems that either provide for a

"persistent C++" or provide a C++ class library through which some level of persistent

programming can be achieved have been developed.
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C++ attempts to provide a system in which an object oriented program paradigm is

provided above the C programming language [Kernighan and Ritchie I978l..As such the

system attempting to provide a persistent programming paradigm suffer from some

unavoidable obstacles. These can be summarised as follows:

. lack of type security,

. lack of pointer control, and

. inability to make some data persistent.

C++ is based upon C, and at any time it is legal for a program to incorporate data structure

access with the same loose control as the C language. It is thus impossible for the ianguage

to guarantee the use to which any data will be put. Most importantly it is not possible to

prevent programs from manufacturing pointers or arbitrarily modifying data. Avoiding

such practices can only be managed as a matter of programmer discipline.

The majority of C++ based persistent systems distinguish between data resident within

the persistent store and data which is local to the program execution. Local data is

ephemeral and is lost upon program exit. It is thus critical that pointers within the

persistent data do not refer to objects within the ephemeral area. Such a distinction is

counter to the goals of orthogonal persistence. Implementations typically raise a run-time

error when such references are made [Campbell, Johnston et al. 1987] or attempt to impose

programmer disciplines to avoid the creation of code that creates such references. The

ODE (Object Database and Environment) system [Agrawal and Gehani, 1989] is another

example of the pitfalls in such a,design. ODE provides for persistent objects to be created

and deallocated from a persistent heap, whilst ephemeral objects are allocated from a

seperate heap. A special class of pointer (a dual pointer) is able to reference either

persistent or ephemeral objects as needed. However the language allows such pointers to

be placed inside both persisent and ephemeral objects, thus potentially allowing a program

to create a persistent pointer to an ephemeral object. Only at run time are such an errors

detected. The language claims to provide persistence as an othogonal attribute, and this

may be true from from the point of view of static language semantics, however when the

language cannot prevent a legal program from incurring a runtime error due the nature of

the peristence model, the true othogoanllity of the model must be questioned.

Persistent C++ systems generally do not provide the ability to make all forms of

program data persistent. In particular they are unable to make process state and program

6



code persistent. This greatly limits the utility of these systems and again violates the goals

of orthogonal persistence.

3.2. Embeddedpersistence

Another mechanism by which a persistent system can be created is to simply embed the

environment into an address space which is itself persistent. Thus, in a manner

independent of programming language, anything resident within the address space is

persistent. This model is essentially that pioneered by the one-level store of the Atlas

architecture.

Such designs ¿ìre a powerful, they are capable of endowini orthogonal persistence onto

any programming language (even assembly languages). However they limit the size of the

persistent space to that supported the host a¡chitecture.

3.3. Reachability

Many of the languages used in persistent systems provide for automatic storage allocation

and control. Automatic storage allocation and recovery naturally leads to a further model

of persistence. Recall that persistence of data is only required for as long as it is useful.

Clearly unreachable data, data that cannot be addressed from within the programming

language, is not useful and need not persist. Persistence of data can be defined in terms of

reachability from some distinguished root of persistence. By arranging to have a data

object reachable in some manner from the root of persistence the programmer can ensure

that the data both persists and is useable by other programs that navigate the store. Thus

persistence becomes a natural extension of programming in a large object space. Tools for

navigating and structuring this space naturally form part of the store itself and a rich

programming environment naturally evolves [Dearle 1988; Kirby, Connor et aL. 1992;

Farkas 19941.

Persistence by reachability can also be implemented within an embedded persistent

system. This approach is used by Thatte in the TI explorer [Thatte 1986] and in the

NapierS8 implementations using the Casper system described in this thesis. These

implementations decouple the action of language level garbage collection from the action

of the persistent storage mechanisms. The opposite approach has been pursued by Brown

[Brown 1994] in which the action of language level garbage collection is deeply enmeshed

within the storage mechanism, providing oportunities for optimisations to both.
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4. Distribution

The notion of distributed computation is very closely allied with that of concurrent

programming. Many of the same issues of protection and control must be addressed, often

with the same programming models.

There appear to be three basic models:

1. single unstructured address space,

2. single partitioned address space, and

3. fully partitioned address spaces.

4.L. SingleUnstructured

Initial implementations of persistent systems have mostly provided a single address space.

The construction of very large stores using this technique was not feasible on conventional

a¡chitectures until recently due to address size limitations. However, the move toward

machines that support such 64 bit address spaces (such as the DEC Alpha [Sites 1993] the

MIPS R4000 [Kane and Heinrich 1992] and SuperSparc) has invigorated interest in this

approach. The Angel fWilkinson, Striemerling et al. 1992] and Opal [Jeffrey Chase 1993]

systems have adopted this approach in the design of new operating systems. However,

there are some difficulties.

i. Establishing a consistent state on stable storage such as disk can become more

complex or costly. A single massive address space requires the stabilisation

mechanism to either capture the entire state of this space at each checkpoint, or

track interdependencies between processes and data in the store and checkpoint

interdependent entities together.

ü. If a single address space is shared by all processes, the ability to protect separate

a¡eas of the address space must be provided. Page protection mechanisms[Jeffrey

Chase 19931or specialised hardwa¡e systems [Eric Koldinger 1991] can be used

to provide some protection.

iii. Allocation of free space, garbage collection, unique naming of new objects and

the construction of appropriate navigation tools are all difficult to scale, and

become unwieldy as systems grow. Attacking these problems has guided the

design of the Mneme system described by Moss [Moss 1989].
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Distributed Shared Memory (DSM) [Li and Hudak 1989] has attracted considerably

interest as a mechanism in which single address spaces can be shared in a distributed

environment. However the above problems become more acute as the costs of

communication between users of the space become large. Control of these issues leads

naturally to some form of internal segmentation structure.

4.2. Structured single address space

In the second model the notion of a single address space in which all objects reside is

retained. However, this address space is partitioned into semi-independent regions. Each

of these regions contains a logically related set of data and the model is optimised on the

assumption that there will be few inter-region references. Providing that control can be

retained over the inter-region references it is possible to garbage collect and checkpoint

regions (or at least limited sets of regions) independently. The use of such partitioning

schemes was introduced by the ORSLA system [Bishop 1977] in the design of an

unimplemented hardware system. ORSLA did not identify persistence as an orthogonal

attribute explicitly, but did cover many of the requirements for orthogonallly persistent

object systems. ORSLA also examined the role of page-based virtual memory in the

provision of large addresss space object systems. Pa¡titioning is examined in the provision

of distributed access to a single NapierS8 store in chapter 6. Techniques for tracking and

controlling inter-region references are discussed in Chapter 2.

Different forms of partitioned spaces are used for PS-algol [Atkinson, Chisholm et al.

19811 and the Monads architecture [Rosenberg, Keedy et al. 1992], which uses specialised

hardware to control inter-region access and references. The Monads system utilises a form

of DSM [Henskens, Rosenberg et al. 1991] in the provision of distributed access.

4.3. Fully partitioned

In the third model the store is fully partitioned. Each region provides a complete and

independent address space; there is no global address space. At any time an individual

computation executes within a single region and can only access the data visible within

that region. There are many advantages to such a scheme. It permits logical grouping of

related data, this may improve performance thorough better structuring of disk access and

optimised garbage collection. Furthermore, partitioning may be used to provide structured

protection between different parts of the system. This can be especially valuable in

multilingual environments where type security must be enforced. A structured access
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scheme can allo'w type compatible regions to communicate freely, whilst quarantining

incompatible languages. Disadvantages are apparent because of the higher communication

costs between the now partitioned processes. In particular, direct addressing of logically

shared structures is no longer possible.

4.3.1. Federated

A special case of fully partitioned spaces arc federated spaces. These are groups of related

regions which suppoft the same type systems and are thus able to communicate with their

peers without compromising these type systems. If such a federated system supports a

suitably rich type system issues of protection can be controlled at the language level.

Communication between peers can occur at a high level; such communication paradigms

including Remote Procedure Call lBinell and Nelson 1984] and remote execution [Stamos

and Gifford 1990; Dearle, Rosenberg et al. 19911 in which elements of program code are

sent from one peer to another for local execution.

4.4. Difficulties

Distributed systems suffer from a number of peculiar maladies that do not affect simple

concurrent implementations. These are:

. conflicts in perception due to the inherent asynchrony of communication and

execution.

. Partial loss of the execution environment due to either loss of single execution

nodes or partitioning of the communication network.

Without extra care these failures will manifest themselves at the user program level. Such

manifestation will make visible the location of either processes or data and must

compromise the orthogonality of the persistence model. We would argue that one of the

goals in manufacturing a distributed orthogonally persistent programming environment is

to abstract over the locality of data with respect to distribution in the same manner as

locality of storage mechanism.

Replication of data and computation can provide a useful bulwark against some node

and network failures, however naive schemes result in loss of referential integrity, which is

also fatal to the programming model. To retain referential integrity the system must be able

to reconcile replicated data in a manner that is both transparent to the programmer and that

preserves the history of the data. Mechanisms which fully capture the causal history of
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data in a distributed system are available to do this. In Chapter 7 we examine vector time

which is one such mechanism.

A system which tracks the causal history of data can use this information to effect a

variety of distributed recovery mechanisms. These designs may make use of replay

logging and allow for asynchronous capture of system state on stable media. Such

mechanisms may therefore provide avenues for improved system performance. These

thoughts provide much of the justification for the discussion in Chapters 6 and 7 of this

thesis.

5. ImplementationMechanisms

'When providing a persistent environment the designers are faced with a choice of three

options. To implement the system using an existing operating system and its host

hardware, to design and build custom hardware, or to take an existing conventional

hardware architecture and build atop that, exploiting whatever features they can.

5.1. Specialised Hardware

Custom hardware to support an orthogonally persistent system is appealing. The designer

is free to create the most appropriate abstractions at the lowest implementation level. The

system provides the user with the desired model from the outset without any need to

emulate or synthesise using inappropriate abstractions. However a typical custom

ha¡dware implementation may have a design cycle of five years, leaving the researchers

with a system which is dramatically out-performed by even cheap conventional machines

at the end of the cycle.

5.2. Software

Software implementations have been the mainstay of research into persistent systems.

They have the advantage that they are very flexible, they can be ported to a wide range of

hardware platforms with little effort and that they can take advantage of improvements in

the speed of hardware with no effort on the part of their creators. However software

models suffer to some extent from inefficiencies in their implementation. This is somewhat

unavoidable since they seek to provide a new virtual machine atop a pre-existing virtual

machine (the host operating system).
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5.3. Conventional Hardware

Constant development driven by a large market and high levels of commercial-competition

have delivered and continue to deliver performance gains of nearly a doubling of

computation power each year. Conventional hardware platforms a.re com.monly available

through out the world; it is easy for other workers to reproduce, test and use the results of

research directed at such hardwa¡e.

Pure software systems do not, usually by choice, make use of specific hardware features

of their host operating environment. To do so would compromise their portability.

However some realisations of software architectures do use some of the more common and

benign features to improve performance. The two most coÍrmon features exploited are the

ability to directly map pages from fìles into the address space of a process, and the ability

to protect areas of virtual memory from access and then to subsequently handle access

exception violations in user code. These features are typical operating system

manifestations of the underlying demand paged virtual memory architecture supported by

modern architectures. A major thread of this thesis is an examination of the methods by

which page based virtual memory can be exploited in the provision of distributed

persistent environments.

5.3.1. Granularity

The architecture of page based systems is not ideal for the support of persistent systems.

The implementations typically lack flexibility, the grain size of data handled (the page) is

often inappropriate, and the efficiency of the mechanisms may be called into question

when compared to some optimised language specific software systems. This thesis

attempts to characterise the advantages and disadvantages of this approach and to yield

mechanisms that make best use of the paradigm. The inherent non-specificity to language

is a particular advantage of many of the page based designs presented.

Conventional architectures manage memory in terms of pages, not only for in-memory

addressing of virtual memory but also in storage of data on stable media. Strength lies in

the simplicity of management of data storage. A page will fit where any other page fits.

Allocation of management of memory in fixed size pieces is vastly simpler and more

tractable than management of variable sized pieces. Hardware control is simple and fast

and operating support is similarly simple and fast.
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Operating system support for variable sized data items in addressable memory is

possible, the Apple Macintosh [Apple Computer. 1986] is one example. However such

schemes require that the operating system is able to compact memory. To ensure that

compaction is possible the Macintosh operating system requires that all data under the

control of the operating system is addressed through indirection blocks (termed handles )

Owners of data are assured that handles are updated to reflect the new location of the data

when data is relocated.

Any design for a mass storage device supporting variable length data will suffer from

the same limitations, however due to the much larger amounts of data stored and the much

slower access times the problems of compaction and allocation become even less tractable.

In general systems in which data is managed in fixed sized units can be expected to be

implemented simply and perform better than variable sized.

5.3.2. Native code support

Many software architectures result in a system in which user level code does not directly

execute the native machine code of the host system, but rather is interpreted by a virtual

machine. As implementations advance it is often desirable to exploit the performance

advantages of generating native code. Doing so poses some difficulties since the native

machine architecture is usually unable to provide the appropriate abstractions of

orthogonally persistent memory and the native code is cut off from the support

environment available in a software architecture. This thesis will often return to the issues

of supporting native code in a way in which minimal impact is made upon the structure of

the code, allowing the fullest advantage to be taken of the possible performance benefits.

6. The Thesis

This thesis explores the implementation of persistent systems upon conventional page

based hardware. In particular it seeks to explore how a persistent system may be

distributed across a group of separate machines without compromising the goals of

orthogonal persistence, and the manner in which the attributes of conventional hardware

designs can be exploited to best effect in such systems.

In Chapter 2 we explore the manner in which language level mechanisms are

implemented using dedicated hardware, software virtual machines, and finally by

exploiting page based virtual memory paradigms. The issues examined include layout of

data in objects, how to find pointers within objects or pages, the manner in which inter-
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object pointers are found and managed, data movement to and from stable memory, and

the addressing mechanisms used. Chapter 3 completes the examination of language

implementations by examining the manner in which swizzling techniques can be used to

increase the size of the persistent space to greater then that supported by the host

architecture.

Chapters 4 and 5 examine the mechanisms by which persistent stores are implemented,

with a particular emphasis upon page based stores. In particular the implementation of the

stores used in the various Casper systems is examined in detail.

Finally we examine aspects of distribution of persistent systems. Chapter 6 explores the

implementation of the distributed Casper system. This design allows separate client nodes

simultaneous access to a single page based persistent store. It utilises many of the tactics

for control of page based systems described in Chapter 2, and introduces the notion of

tracking causal interdependencies between separate nodes to optimise the implementation

of generation of resilient copies of the system state. Chapter 7 continues the notion of

tracking causal links and examines the manner in which a new operating system design

(Grasshopper) incorporates causal tracking into its design. Grasshopper is intended to

provide orthogonal persistence as an intrinsic attribute and the manner in which the

interface between the presentation of persistent address spaces and its implementation by

user supplied management code is examined in detail.

6.1. Contributions.

This thesis investigates the manner in which page based virtual memory mechanisms can

be utilised in the provision of an orthogonally persistent programming environment, and

further investigates the manner in which distribution of such systems may be effected. As

detailed earlier, the work has formed part of a number of projects and has received

contributions from many people. The particular contributions of this thesis to this body of

work are in a number of a¡eas: These are as follows.

In Chapter 2 we introduce the Casper system, the particular contributions to this project

included the original concept and design. Also individual design and implementation

credit is claimed for the pointer quarantine mechanisms, the design of the extended

crossing map mechanisms and its integration into the stable store description tables.

In chapter 3 the issues of pointer swizzling is discussed. As described the origin of

pointer swizzling is uncertain, and was probably independently designed by a number of

workers at similar times. The invention of pointer swizzling at page fault time is due to
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Paul Wilson, the work described in Chapter 3 in extending pointer swizzling mechanisms

is an original contribution, as is the taxonomy used for comparison. The use of unaligned

access faults to trigger exceptions has been independently observed by a number of

workers.

Chapter 4 describes a number of implementation tactics for the provision of reliable and

recoverable stable stores. It introduces what we hope is a useful description mechanism

and taxonomy which builds upon and unifies a number of earlier taxonomies. Chapter 5

introduces the Casper page based stores, and an implementation of the NapierS8 language

over this system. The different store architectures and their implementation within both

the Mach operating system and under Unix are part of the authors contributions to the

Casper project. Chapter 6 describes the distribution of the Casper system, the notion of

associations and the use of causal tracking combined with the action of the page coherency

mechanism to improve performance of the stability mechanisms is a further contribution.

Other contributions are the use of the page coherency mechanism to block execution by

denying access to pages when atomic access is required. The author was responsible for

the original cache coherency concepts and design in the Casper system. The final version

of the coherency system owes much of its success to the efforts of the other members of

the project.

Chapter 7 describes the Grasshopper project. This project was conceived and designed

by an enthusiastic project team and owes much to many. The particular contributions

made by the author are the design of the initial exception handling mechanism and the use

of causality tracking mechanisms as an intrinsic part of the operating system design. It is

our belief that a persistent operating system, by its very nature, must have an

understanding of causal relationships built in from the outset. Much of the experience

gained from the Casper project has influenced the design of virtual memory handling

mechanisms of Grasshopper although the actual design of these sub-systems must be

credited to many project members.
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Chapter 2. lmplementation Tactics

2.1. Introduction

This chapter introduces the mechanisms by which an orthogonally persistent environment

is created. The implementation of such an environment can be achieved by pursuing a wide

spectrum of implementation mechanisms, for the purposes of this discussion these are split

into the following three categories.

. Dedicated specialised hardware, wherein the processor and support hardware are

specifîcally designed to provide appropriate additional functionality, possibly to

the extent of requiring no additional softwa¡e support.

o { software virtual machine, whereby a virtual machine providing the appropriate

abstractions is simulated by a softwa¡e interpreter.

. Exploitation of existing conventional hardware, in which the functionality of a

conventional hardware architecture is exploited to provide some of the

functionality provided by specialised hardware, the remainder being supplied by

software.

2.2. Issues

A persistent system provides an environment in which the locality of data is abstracted

over, thus one of the most important mechanisms we will examine is the movement of data

between volatile and persistent storage. In manufacturing a persistent system a further

important task is the management of inter data-item references, or pointers. We will devote

considerable time to examining the mechanisms by which pointers are recognised by

persistent systems. Also examined are how the generation of inter data-item pointers can
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be controlled to facilitate storage reclamation and distribution of objects between separate

machines. In the next chapter we will examine the problems of translating pointer

representations between the forms they take in persistent storage and the forms needed

whilst resident within addressable memory.

2.2.1. Data Movement

One important aspect of the abstraction over data locality is transparent movement between

different storage mechanisms. In particular the movement between stable storage, where in

conventional machine architectures it is not addressable, to addressable memory where it

can be used and mutated by a program.

2.2.1.1. Snapshots, Boot and Resume, and Undump.

In the history of object oriented systems such as Smalltalk and the various Lisp Machines

lies one of the earliest instances of a form of persistence. Smalltalk irnplementations on the

Xerox Alto architecture [Ingalls 1983] inco¡porated the facility to take a snapshot of the

running state of the system onto a demountable disk pack. During normal running the

system would periodically create snapshots. A programmer could remove the disk pack

and physically take their current environment with them when they moved. Upon re-

insertion of the disk pack the Smalltalk system would resume the environment at the point

of the last snapshot. This feature had some disadvantages however. Writing in [Ingalls

1983] Daniel Ingalls notes "it was necessary to act quickly when fatal errors were

recognised, lest they be enshrined forever in the mausoleum of a snapshot. In such

circumstances, the alert user would quickly reach around to the rear of the keyboard and

press the 'boot' button." Such behaviour became known as boot and resume.

Lisp machine environments also provided a mechanism to create an on disk image of

system memory from which the system could be reloaded. However it was not intended to

act as an everyday mechanism such as the Smalltalk system above. Rather it enabled the

large and complex base system to be created which would then provide a fast start up when

systems rebooted. Sattish Thatte [Thatte 1986] notes that a system image took of the order

of 20 minutes to dump onto disk and this made it unsuitable for general use.

This method (colloquialty known as undumping) for creating an on-disk copy of

complex and otherwise costly to reproduce initial program state continues to be used in

programs such as the Emacs text editor and the TeX document preparation system.
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2.2.1.2. Data Movement in Persistent Systems

Undumping and boot-resume systems only present a mechanism by which programs can be

effectively suspended and then later restarted in a manner which allows the saved state to

be preserved across operating system or power failures. Persistent programming is able to

offer this functionality, but has far greater scope and flexibility. The ability to share data

between programs and the ability of data to be useful beyond the lifetime of the creator

programs are some of the additional attributes that are addressed.

This thesis is mostly concerned with tactics which enable page based hardware systems

to be exploited to make this data movement as transparent as possible. In addition, this

chapter explores the use of specialised hardwa¡e support and also explores pure software

based solutions.

2.2.2. Address Generation

To access an object, some address must be presented by which the object is known. Thus

all useful objects require an address. When a new object is created it is necessary to

provide it with an identifier by which other objects in the system refer to it. Also, objects

resident within stable storage must be found through the presentation of some address.

Addresses within memory and within the stores need not be the same and many variations

exist for the management of addresses.

The three main techniques seen in the systems reviewed in this chapter are:

. coincident in-memory and in-store addresses where the address is some form of

object identifier or ordinal used to locate objects in the store,

o separate in-memory address and in-store addresses, and

. coincident in-memory and in-store addresses in which the object's location in

virtual memory is used for both.

In schemes with separate address representations provision of an identifier is effected in a

number of steps. Initially only an address in addressable memory is provided and a

persistent address created only if and when the object is moved to stable storage. These

schemes perform well because most newly created objects do not survive for very long and

are reclaimed before any need to move them to stable Storage occurs.

Simple page based persistent systems make addresses for objects within the store

coincident with virtual addresses. Such systems do not need to provide separate store
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addresses. They are limited to supporting only as many objects as will fit within the host

machine's virtual address space.

Page based systems which implement separate address schemes and provide automatic

address translation at page fault time [Wilson I99I; Vaughan and Dearle 1992] are also

able to extend the address range of objects. This mechanism is considered in detail in the

next chapter.

2.2.3. Pointer Representation.

An important aspect of object based system design is the mechanism by which pointers

can be identified within objects. In conventional object systems this is of most importance

for garbage collection. The mechanisms used in persistent systems need to also take into

account the creation of long lived persistent identifiers that may have a different

representation to in-memory pointers and may also need to allow the mechanisms that

move data to and from stable storage to identify pointers in objects. The method used is

usually determined by the languages supported, but may be divided into the following

categories:

. tagged pointers supported by software,

. tagged pointers supported by hardware,

. single self describing object format,

. multiple statically known object formats, and

. free form objects with compiler generated format maps.

In addition to simply locating pointers, many language implementations also require the

ability to determine the type of each data object. Object oriented languages often need to

dynamically determine the type of an object. This may be needed to observe the supported

languages type rules, or may be required in object oriented languages to determine the

appropriate method instance to apply.

2.2.4. Garbage Collection

Almost all the persistent language systems considered in this thesis utilise automatic

storage management. Objects are explicitly created as needed but no explicit deletion

mechanism is provided, nor needed. Instead, a separate garbage collection sub-system is

responsible for reclaiming space. Whilst programs are running the addressable memory

space will require garbage collection. Also the persistent store will require occasional
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garbage collection. This is very analogous to generational garbage collection discussed

below. It is often possible to continue computation for long periods without requiring

recovery of space in the persistent store, only requiring reclamation of the addressable

memory space; many systems implement garbage collection of the persistent store as an

offline activity.

A serious problem with garbage collection in stable stores is the need to maintain a

recoverable stable state. Compacting garbage collection often involves the modification of

almost the entire state of the store and may require almost the same amount of stable

storage to hold the modified state as the store originatly held. These problems become all

the more acute as stores increase in size. The nature of persistent systems is that they are

long lived and will continue to grow in size. Store level garbage collection remains an

important issue, but is not considered in detail in this thesis.

2.2.4.1. Generation GC

Generational garbage collection [Appel 1989, LeibeÍnan and Hewitt 1983] depends for its

success upon the observation that the majority of objects created do not remain reachable

(live) for long after their creation, and that the longer an object lives the higher the

probability is that it will continue to live. Further it is noted that older objects contain few

references to new objects, the converse being the dominant case. Generational schemes

attempt to exploit this distribution of lifetimes and references to implement a garbage

collection system that can collect the majority of garbage with very short, but frequent

garbage collection passes. The key to reducing the execution time of the garbage collection

passes lies in reducing the size of the area to be scanned. This is achieved as follows.

New objects are allocated within a small area of memory (termed a generation).

Keeping this area of memory small limits the time needed for space compaction and

reduces the time of the mark phase. When an object survives for some length of time it is

promoted to another (older) generation and copied to a separate area of memory holding

that generation. To achieve fast mark phases the location of all pointers to objects within a

generation from any older generations are recorded in a separate data structure (termed the

remembered set.) Maintaining the remembered set usually requires explicit tests upon each

pointer assignment to detect the creation of new references to objects in the younger

generation. When a generation is to be collected the mark phase uses the normal roots of

reachability into the generation plus the contents of the remembered set to find reachable

objects.
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If objects are moved during garbage collection the remembered set is used to update the

value of the referencing pointers (recall that it holds the location of the referencing

pointers.)

2.2.4.2. GC in Persistent Systems

It can be observed that the notion of young and old generations corresponds closely to that

of the volatile addressable memory space versus the stable store. Using generational

techniques when mediating the movement between volatile and persistent memory is, as

we shall observe, almost unavoidable. Generational garbage collection has been very

successful and has beeome essentially standard in most object systems. Many of the

optimisations that have been developed for generational garbage collection in conventional

systems are applicable to persistent systems.

By their nature persistent systems may require very large amounts of data storage.

Large stores are difficult to garbage collect easily and whilst generational schemes allow

the local context of executing programs to be easily garbage collected collection of the

entire store remains difficult. Partitioned schemes (such as the ORSLA design described

below) have been designed to improve garbage collection of such large stores. V/ork by

Yong, Naughton and Yu [Yong, Naughton et al (1994)] has evaluated a number of garbage

collection systems in the context of client-server systems and concluded that incremental

partitioned schemes show the best performance based upon metrics including scaleability,

reclustering capability and locality improvement. Further work by Cook, Wolf andZom

[Cook, Wolf et al (1994)] has shown that policies that select partitions for local garbage

collection based upon selecting those partitions that are referenced by pointers overwritten

during computation works very well and indeed is close to optimal. Whilst clearly of

importance in large scale persistent systems this thesis does not further consider general

partitioning designs but concentrates upon the relationship between generational schemes

and the nature of persistent data management and the opportunities for exploiting this

relationship.

2.2.5. Basic architectures.

The overriding problem in the design of all of the systems described below is the

management of data storage, and the abstraction of data location within that storage. A

common thread runs through all of these systems based upon the fundamental nature of the

hardware used in current machines. The most important of these is the division between
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fast addressable memory, which in current hardware technologies is volatile (stored data

will not survive loss of power) and high capacity storage which is. persistent. A system

providing orthogonal persistence must provide for transparent data movement between

these two. The issue of representing data addresses is the most noticeable difference

between the schemes we will cover. Systems can either maintain the same representation

of addresses within volatile memory as is used within the stable store, or elect to perform

some translation of addresses. The former are common with systems based upon virtual

memory primitives. However, the majority of systems use different representations for data

addresses (and indeed sometimes all data) within these storage systems. The use of

different address representations is so common that an initial appraisal of the most

coÍrmon generic architecture, utilising an object table, is useful before we begin a more

detailed study.

2.2.5.1. Object Tables

When an object is placed into addressable memory it will be accessed at the virtual address

to which it is copied.'When the storage system does not use virtual addresses for its own

internal addressing some translation mechanism must be provided to allow identifiers

(hereafter generically termed Persistent Identifiers or PIDs) within the store to be translated

to in memory addresses. Almost all of the systems reviewed below use some form of

translation table indexed by PID as depicted in Figure 1 below.
Addressable Memory

Table
Pointer relerence via Obiect Table.

Stable Storage

Figure 1 Describing objects in addressable memory using an Object Table.

The use of an object table varies considerably in the various language and support systems

to be described. Many systems require all references to objects to be performed via

indirection through the object table. This has the advantage of allowing arbitrary

re¿rrrangement of objects in addressable memory without requiring a traversal of all objects

Pointer

Pointer
contains PID

I
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resident in memory to update references to moved objects. This simplifies and speeds

garbage collection. Such freedom comes at the cost of extra work performed with each

pointer reference.

Persistent object management implementations can use the object table to control the

location and moment of objects between addressable and stable storage. The table performs

much the same function as page tables do in demand paged virtual memory systems,

holding the location within addressable memory of objects, modification information, and

miscellaneous object attributes. A critically important function of the object table is to

allow the system to preserve referential integrity, ensuring that multiple references to an

object do not result in multiple copies of the object data appearing in memory. In all

architectures, except those which provide a simple persistent virtual address space, with no

knowledge of objects, we will find some variation of the object table.

2.3. Hardware

A tempting solution to providing high performance realisations of computer systems is to

design hardware that is specifically targeted at a specific problem. V/e will examine four

separate hardware implementations that impact upon persistent object systems. These are

the Monads capability based architecture [Rosenberg and Keedy 19871, the Symbolics

3600 Lisp Machine [Symbolics 1984], the ORSLA object oriented architecture [Bishop

19771, and the Rekursiv machine lBeloff, Mclntyre et al. 1988; Harland 1988, Pountain

19881. Of these only the Rekursiv was specifically designed to support orthogonal

persistence, however the Symbolics and Monads provide insights into the utility of

hardware solutions, and the ORSLA design provides an example of an embeded single

address space solution.

In favour of hardware solutions is the ability to explicitly create hardware to support

aspects of the virtual machine, often performing the appropriate functions in parallel with

other computation. It is possible to create an architecture in which no explicit software

support is required to provide the desired abstraction.

Ha¡dware realisations have usually exploited the freedom associated with micro-coded

architectures, providing very complex machine instructions as part of the abstract machine

architecture. Such designs run counter to the rationale behind the majority of recent

architectures which embrace the RISC design philosophy (variously: Reduced Instruction

Set Computer, Rationalised Instruction Set Computer) in which an ofhogonal but minimal

instruction set is provided, instructions which in general execute in a single machine cycle,
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and are designed in such a way as to eliminate as many impediments as possible to very

fast clock rates and multiple instruction issue. Faced with such competition, micro-coded

architectures have faced an increasing performance deficit. Without the investment of

considerable effort it is very difficult to increase the speed of these micro-coded

architectures, and indeed there is some doubt as to whether it is possible to meet the

performance of the RISC architectures at all. As conventional RISC based architectures

continue to increase in speed, specialised architectures find that they are out performed by

conventional architectures even when the conventional architectures are required to

emulate in software the functionality provided by dedicated ha¡dware.

2.3.1. Monads

The Monads architecture encompasses two systems in which very large addresses are

supported. The Monads-PC supports a 60 bit address and the Monads-MM supports a 128

bit address. Virtual memory addresses encompas all stable and physical memory. The

virtual address space is partitioned into multiple address spaces. Each individual address

space maintains its own address to disk-address translation table. These tables can be of

different formats, as appropriate to the nature of data stored within the address space,

however the software in the kernel responsible for data movement must be able to interpret

these different fonnats. This flexibility allows the operating system to implement resilient

peisistent storage for address spaces that require it.

Monads provides a hardware capability for naming and protection. Programs do not

directly address memory relative to address spaces, rather addressing is performed relative

to segments which divide the address spaces at arbitrary points. Segments are described

and accessed through capabilities which, in addition to describing the location of the

segment, provide type and access information. Each segment may itself hold capabilities,

these may only reside within a segregated area of the segment which can only be modified

by a special machine instruction which can only load valid capabilities which the segment

has legal access to, thus preventing the forging of capabilities.

To use a segment, a capability referring to the segment must be loaded into one of a

number of special capability registers (again a restricted instruction similarly preventing

forgery of capabilities). Memory references are of the form:
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<capability register> <offset>

The special capability register load instruction will only load values from the segregated

capability storage area of a segment, thus the system can create a hierarchical system of

references with safety.

The Monads system builds modules from groups of segments. A module is used to hold

user level objects. The Monads programming model is one in which segments hold

programs or passive data, and programs gain access to data through holding capabilities for

the segments in which data resides. Capabilities can be regarded as an architecture

supported pointer, one which is unforgeable and identified by the hardware. No support is

provided for individual programming languages, no structure is imposed nor understood

for data resident within segments apart from capabilities. The architecture does not provide

special support for language level pointers.

The salient features of the Monads architecture are:

. Hardtvare support of protected inter-data-item pointers (capabilities referring to

segments)

. An integrated virtual memory architecture in which the operating system

maintains data on stable media and data is transparently moved from store to

addressable volatile memory.

2.3.2. Lisp Machines

The Symbolics 3600 fSymbolics 1984] was designed specifically to support the Lisp

language. It features a custom architecture which at the time of introduction provided

significant advances in the provision of high performance Lisp environments.

2.3.2.1. Data Format

Every memory word incorporates a set of tag bits that describe the contents of that word.

In particular words that contain pointers are differentiated from words containing scalar

data. Figure 2 depicts the layout of both scalar and pointer data.

coR
¡̂

Scalar Value

Data Type

CDR
Pointer

Data Type
of Referend

Figure 2. Symbolics 3600 Tagged Word Architecture.
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The Symbolics 3600 uses 36 bit words and suppofs a virtual address space 28 bits wide

(256MBytes.) Scalar words are 32 bits in size. Six bits are available-for the description of

the type of the object referenced by a pointer. Thus the architecture supports a fixed

number of internal data types.

A further feature is the use of CDR-coding, by which lists of objects can be represented

efficiently. Rather than represent lists of simple data types as separate objects, each

containing a pointer to the next element of the list, the list is represented as a contiguous

array of words, the CDR coding tag bits indicate whether the word is part of a CDR coded

list, and if it is, whether it is a internal element or the end of the list. This mechanism

effectively represents pointers by the use of an extra two bits in each word.

2.3.2.2. Address Generation and Data Movement

Like the Monads system above, the Symbolics 3600 pages to and from stable storage via a

system pager process. However, unlike the Monads system, this does not provide stable

storage. This movement is only used for demand paging to increase the apparent size of

addressable memory. The pager backing store is not resilient and does not survive between

machine bootstraps. Programs which require stable storage of data are required to perform

conventional flattening operations to explicitly create a canonical representation on disk

and provide code to reverse the flattening upon loading of data. Such schemes must

provide their own address generation and translation mechanisms, none is provided nor

mandated by the architecture. The system undump mechanism described earlier does

however provide a mechanism by which an initial system state can be constructed and

demand loaded from store without requiring format translation.

2.3.2.3. Garbage Collection

The Symbolics 3600 offers explicit support for garbage collection. Objects are allocated in

virtual memory, and it is only when space within VM is depleted that collection is

necessafy.

The Symbolics machine implements a form of ha¡dware assisted generation garbage

collection. Some areas of virtual memory are designated as ephemeral, and garbage

collection of those areas is optimised. An ephemeral space can be garbage collected

separately from the remainder of the virtual address space, however to do so safely, any

pointers outwith the ephemeral space referring to objects within the space must be

identifîed. The Symbolics 3600 does this by maintaining hardware tags for each page of
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physical memory. These tags are automatically set when a pointer to within ephemeral

space is written to a page. Tags for all of virtual memory are maintained in a special table

for use by the garbage collector. 'When garbage collection of an ephemeral space begins,

this tag information is scanned and any page potentially containing references into the

ephemeral space is scanned to locate these pointers. Since memory locations are tagged

only those words tagged as containing a pointer value need be checked. Garbage collection

of the entire virtual address space is still occasionally required. Collection is aided by the

architecture's ability to locate pointers in objects, but otherwise runs conventionally.

Anecdotal experience suggests that the virtual address space would fill up over a days

work and that allowing the system to garbage collect the virtual address space overnight

became a common practice.

2.3.3. ORSLA

The ORSLA (Object References in a Single Large Address space) [Bishop 1977) is an

unimplemented hardware architecture design

2.3.3.1. Data Formats 
i

ORSLA provides for a capability based addressing scheme in which the machine hardware

utilises tag bits to identify object pointers and prevents the misuse of pointers and also

prevents the fabrication of pointers by user level code. Object references are not however

simple pointers they also contain other information. The fields of an object reference are

as follows:

. The data_type_info field (3-5 bits) is intended to convey information such as:

whether the object reference contains an address, whether reference counts are

being maintained and as yet undefined uses. An interesting use of the

data_type_info field is in the provision of monitoring of data. If a datum has a

special bit in the data_type_info field set any attempt to reference that datum will

result in the object referenced by the datum's address field being invoked. Thus

debugging aids may be implemented and sentinel objects created.

. The type fieß (9-16 bits) is provided into which the type of the referend is

encoded. The system provides an initial set of data types and additional types

may be added by the user. To avoid depleting the range of data types

representable, the designer suggests that those programs that allocate data types

incur a charge to be billed to the user ($1000 is mooted).
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. The High/Low bit controls whether the referend may have load and store

operations performed directly upon it (it is a low level object) or whether only

those operations provided by the object's data type definition (methods) may be

executed to mutate it (it is ahigh level object.)

. The size field (5-9 bits) allows range checking to be performed on access to

objects the object reference also encodes the size of the object. The size

encoding is effected using a grainy encoding similar in effect to using a floating

point number to represent the size. Thus large objects can only be allocated on

coarse boundaries.

. The address field (40-50 bits) contains the address in virtual memory of the

referend.

The motivation of this complex object reference structure is to allow parallel checking of

the referends size, and to avoid the need to store (and read) an object's type in the object.

headers. An alternative approach is described in discussion of the Rekursiv design below.

2.3.3.2. Garbage Collection

The particular contribution of the ORSLA design is the introduction of quarantine

mechanisms for garbage collection. ORSLA divides the address space into areas, which

may be individually garbage collected without recourse to traversing objects in other areas.

The mechanism predates generational garbage collection but has some strong similarities.

In particular ORSLA does not share the strict hierarchy of inter-area reference control

provided by generational schemes, but rather treats all areas symmetrically. Generational

schemes are only required to track references from older generations to younger and thus

allow younger generations to be collected independently. ORSLA allows any area to be

individually collected and thus must be able relocate objects in any area whilst preserving

the validity of references from any other area . To do this ORSLA uses indirection blocks

to mediate all inter-area references. The hardware is required to recognise indirection

blocks and automatically chain forward to the actual referend.

To improve performance, pointers between areas may be constructed without

indirection blocks. However some mechanism must be provided to ensure that an area

which contains references to a second area is garbage collected at whenever the second

area is garbage collected. ORSLA uses a construct termed a cable to describe such pairs of

areas. Cables are directional links and it is the transitive closure of areas referenced via
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cables that must be garbage collected when any particular area is garbage collected. The

manner in which such directional links can be used to provide a directional linkage of areas

provides a hierarchy of object location which is very similar to that provided by

generational designs.

The ORSLA system requires that the programmer indicate the area from which a new

object should be allocated. The garbage collector may be used to either explicate or

automatically move objects from one area to another in an attempt to cluster objects and so

improve system performance. It is envisaged that areas provide a similar structuring

mechanism to directories on conventional file systems. Users of ORSLA are allocated

quotas for storage space and are charged for its use. Areas may be explicitly or

automatically garbage collected to reduce the need for persistent storage and may also be

explicitly deleted. Explicit deletion of an area may result in dangling references, in

ORSLA such references are replaced by a reference to a sentinel object the deleted object.

2.3.3.3. Data Movement

The ORSLA system is designed above a relatively conventional demand paged virtual

memory system. Movement of data to and from the stable store is effected in the same

manner as other more conventional operating systems in response to page faults and

pressure on physical memory. It uses associative memory to implement a page table to

describe the current state of the system memory. The table is augmented with flags to

indicate whether the page is currently being garbage collected (useful when concurrent or

parallel garbage collectors are run) and a flag to indicate whether the area to which the

page belongs has been'deleted. Each page entry also contains the identity of the area to

which the page belongs.

V/hilst not providing for orthogonal persistence explicitly, ORSLA's use of a single

large address space model of programming would allow a trivial implementation of a

persistent system if coupled with a shadow page store (such as described in Chapter 5.)

The design of the system as presented does not consider the need for such mechanisms.

2.3.4. Rekursiv

The Rekursiv architecture provides intrinsic support for orthogonal persistence. This is

achieved through a custom micro-coded architecture. Within the Rekursiv architecture all

addressable objects are maintained in physical memory, and access to these objects is

mediated by specialised address translation hardware (described later.)
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2.3.4.1. Data Movement

V/hen an access to an object that is not resident within addressable memory is attempted,

the address translation hardware causes an exception which causes the current instruction

to suspend execution. Detection of an object's non-residency is followed by the invocation

of a micro-coded routine which mediates the copying of the object from persistent media.

This routine is called from within the user level instruction which incured the original

fault. This ability to call micro-coded routines recursively is the origin of the architecture's

name. Objects are fetched from disk by a separate sub-system using the object's ID as a

key. This sub-system is not part of the Rekursiv and in the only instance of the system

realised was implemented in software on a Sun 4/200 series machine which hosted the

Rekursiv hardware. This sub-system maintains its own object ID to disk address mappings.

A direct result of the recursive calling mechanism in microcode is the inability to

reschedule other processes to take advantage of any idle time available on the processor

whilst waiting for the storage sub-system to recover a required object. Indeed the Rekursiv

architecture has no notion of multiprocessing.

Once the required object is loaded into addressable memory and the appropriate

translation sub-system entries created, the faulting micro-code is allowed to resume

execution. Thus the Rekursiv provided an instruction set in which all notion of data

locality was abstracted over, and persistence was orthogonal. This is arguably the purest

implementation of orthogonal persistence achieved.

Objects within the Rekursiv system are maintained on disk with a description of their

size and type. V/hen resident in system memory objects are described by entries in an

object table. This table (curiously termed the pager table) contains the object's ID, its size,

type, location within addressable memory and also the first word of the object data. V/hen

placed into system memory, an object's size, type and identity is not kept with it, this

information only resides in the pager table. Keeping this data in specialised hardware

allows parallel operations to occur during execution. For instance a range check is

performed during each object access in parallel with the access itself, utilising the size field

in the pager table.
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Figure 3 Pager Table format

The pager table is indexed by the object's ID. However the mechanism used is curiously

flawed. Being smaller in size (and of fixed size) than the number of object IDs supported,

a hash mechanism is needed to fold the object IDs onto table indexes. Howcvcr the system

implemented simply truncates the high order bits yielding an index. No mechanism exists

for handling hash collisions, something which drastically compromises the design and

complicates the object manager. In particular the object.manager must ensure that no

objects that clash are ever concurrently resident in addressable memory. This can result in

thrashing behaviour if two objects needed for computation clash, since only one is allowed

be resident in system memory at once.

2.3.4.2. Object Format

Object representation within the Rekursiv architecture is similar to the that of the

Symbolics 3600 in that it uses tagged memory to identify the data type, but differs in one

important respect. In a manner similar to the Symbolics 3600 scalar values can be directly

encoded within pointers (these are teûned compact objects). Similarly a small number of

types of scalar data a¡e encoded into the lag area. However scalar values that form part of

complex objects do not require individual types, since their type is represented as part of

the complex objects type.

The Rekursiv also provides some hardware support for complex object types. The type

field is hetd in the pager tables depicted in Figure 3 above. It is not stored in addressable

memory and is thus only available to the microcoded support system. Data formats are

depicted in Figure 4 below.
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Figure 4. Scalar and pointer values in Rekursiv tagged v/ords.

2.3.4.3. Garbage Collection

The Rekursiv architecture implements a semi-space garbage collection algorithm for

reclaiming addressable memory. Objects are allocated contiguously through one half of

addressable memory. Once the allocation pointer (a hardware register) reaches the end of

the semi-space in use and a request to allocate more space fails, garbage collection is

triggered. Garbage collection is accomplished by a micro-coded routine called from within

the instruction that attempted to allocate space, this recursive call of microcode occuning

in a manner simila¡ to the invocation of the object loading system.

The garbage collection system maintains tag fields in the pager table to mark those

objects that may be safely reclaimed. Since all pointers are tagged they are identified with

little overhead and no explicit object format is needed. The system must also identify

machine registers which hold potential extra roots of reachability, however since the

architecture does not confuse data and pointer values, identifying such roots is

unambiguous. Once all resident objects are tagged the semi-space is compacted into the

unused semi-space. The references to objects in the pager table are updated as compaction

proceeds. No explicit support for garbage collection in the stable store is provided, this

requires a separate offline operation.

2.4. Software

The majority of existing persistent systems have taken the approach of implementing a

virtual machine above an existing conventional operating system and hardware base. We

will examine two software architectures, these are the Persistent Abstract Machine [Brown,

Canick et al. 19881, and the Smalltalk Virtual Machine [Goldberg and Robson 1983]

33



2.4.L. Smalltalk

The Smalltalk programming language [Goldberg and Robson 1983] and associated

programming environment was pioneering and one of the most influential. The original

system did not itself embody the ideals of orthogonal persistence, nor indeed persistence as

a separate abstraction at all. However, since its introduction considerable effort has been

expended in providing support mechanisms for Smalltalk that include varying levels of

persistence as an orthogonal abstraction. Further development of storage techniques for

object systems in Smalltalk has had considerable influence on techniques used in persistent

systems in general. It is a system whose contributions cannot be ignored.

Smalltalk is implemented above a byte code interpreter similar in design to the PAM

interpreter discussed next. The Smalltalk environment is provided as a binary image

containing the objects and compiled code that represent the environment. The

computational model in Smalltalk is one of method invocation in response to the reception

of messages by an object. When a message is passed to an instance of a class the message

type is used to index a method dictionary to determine the appropriate method to dispatch

for the class. Once found the code for the method is invoked and applied to the class

instance. In this manner computation proceeds. This mechanism is exploited to aid in

object movement in some of the implementations described later.

Beneath the interpreter an object manager is provided. It is with the different object

managers and the persistent stores that we are concerned. The original Smalltalk systems

were designed when 16 bit architectures were the most common. Accordingly the majority

of object systems and implementations were designed around 16 bit representations of

integer values and machine pointers. Apart from the LOOM system [Kaehler and Krasner

1983], which is of particular interest because of its efforts to provide a virtual machine

supporting 32bit pointers in a 16 bit environment, we will only concern ourselves with

later implementations which were directed at 32 bit architectures, in particular under

Mneme [Moss 1990].

The Smalltalk virtual machine has passed through a number of generations, taking it

through the Smalltalk -74, -76 and -80 language definitions. In all of these the basic

structure has remained the same, an addressable memory space containing objects which

are referenced through an object table. The original object manager (named OOZE [Ingalls

19831) organised the object table as a hash table. This design required computation of the
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hash in order to index the table for every object reference. Later versions replaced this with

a directly indexed object table, significantly improving performance. 
_

2.4.I.1. Recognising Pointers

In a purely software implementation one mechanism to distinguish pointers from scaia.

data is to reserve one bit from the word used to represent values. The original Smalltalk

implementations [Goldberg and Robson 1983; Kranser 1983] used such an artifice. As

described below the differentiation of pointers from scalar values was originally made to

optimise representation of scalars, however the effect is of tagging memory to indicate

whether a datum is a pointer or not.

In these systems all data is represented by 16 bit words. The system is capable of

representing 64k objects with pointers that use 16 bits. However logically all the

representable numbers are instances of the integer class (pedantically instances of the class

Smalllnteger.) An integer value should therefore be represented as a pointer to an instance

with the appropriate value. Instead, small integers are encoded within the pointer

themselves. One bit is stolen from the bits used to represent values and used to distinguish

between references to integers and references to other objects. Thus pointers are

distinguished from scalar values. Smalllntegers can represent the range -16,384 to

+16,383, and the system is able to accommodate 32k other object instances.

Arithmetic is complicated since it is necessary to convert numbers from the

Smalllnteger representation to the machine representation to perform a computation, and

convert back upon assignment. This approach also has the disadvantage of reducing the

value space that can be represented.

This software tag scheme has remained in implementations that utilise 32 bit

architectures. Figure 5 below depicts the Berkeley Smalltalk implementation [Ballard and

Shrirron 1983; Ungar and Patterson 19831 a system designed to.provide Smalltalk on the

VAX architecture. Figure 5 illustrates an entry in the Object Table referring to an object.

Objects may contain one of either 32bit tagged pointers, 16 bit or 8 bit scalar data.

Only 32 bit values need to be tagged. Therefore objects that do not contain 32bit values

need not use tagged data representations. This is especially valuable for code and for image

data. Each object header contains afTag that records whether the object contains pointers,

and the object table entry duplicates this flag. The object table also contains a flag that,

should the object not contain pointers, indicates whether the object is composed of l6 or 8

bit data.
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Figure 5. Object format in Berkeley Smalltalk

The Berkeley system utilises a form of generational garbage collection, the object tabìe

maintains a mark bit for use by the mark phase, and the objects themselves contain an age

field used to select objects for promotion into older generations.

2.4.2. LOOM

The LOOM system [Kaehler and Krasner 1983] is designed to support the Smalltalk

Virtual Machine and provide for pointers larger than those representable by the underlying

hardware. LOOM is implemented on hardware in which the machine word size is 16 bits.

To extend the range of object identifiers LOOM represents identifiers in a stable store

using 32 bits. When objects are moved to and from the store the object formats are

converted and the identifier fields are overwritten with identifiers of appropriate size.

The basics of the LOOM runtime data structures are similar to those of other Smalltalk

implementations and indeed many other object systems. An object table contains the in-

memory addresses of resident objects and pointers resident in memory contain an index

into the object table. Pointer dereference is performed via the object table. The LOOM

system is depicted in Figure 6 below.
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Figure 6. The LOOM system.

When an object is loaded form stable store the objects are translated in form,the32 bit (or

larger) object pointers are replaced by 16 bit indexes into the object table. Each in-memory

object is also prefixed by its 32 bit PID. Pointers cannot exist in memory in 32 bit form.

Thus in memory pointers to non-resident objects must be specially represented. There are

two special forms of in memory pointer provided for this purpose. These are the leaf and

¡he lambd"a.

An object can be represented by a leaf node which acts as a sunogate for the real object.

The leaf node only contains the real ID (32 bits), size (always 4), and reference count

information used by the garbage collection system. The object table incorporates a flag to

indicate if an object is represented by a leaf node. The method dispatch mechanism checks

the object table entry and activates the object fetching mechanism as required. When a

reference occurs, the real object is copied into memory and the object table entry

overwritten by a reference to the actual object. The leaf object is discarded. Since all

references occur through the object table all the pointers to the object will now be correct.

All leaf nodes require an entry in the object table, whether they eventually are

dereferenced or not. To conserve object table space, pointers may be replaced by a

distinguished pointer, the lambda. This is the value zero which indexes a special entry in

the object table. V/hen a reference to a pointer containing the lambda value occurs the

system must recover the real value of the pointer from the copy of the object in the store.

The object is copied from the store into a buffer and the 32bit pointer value extracted. The

object faulting system then loads the referend object and overwrites the Iambda pointer

with the appropriate index to the newly loaded object's table entry. Care must be taken

with lambda pointers: pointer assignment must ensure that lambda values Íue never written
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into pointers since there is no mechanism for later determining what the intended referend

was.

Checking for lambda pointers during execution slows down execution speed. To avoid

checking for lambda wherever possible, each resident object is tagged as to whether it

contains any lambda pointer entries. The run-time system ensures that those objects in the

immediate context of the program do not contain lambda pointers by eagerly replacing

entries by leaf or full pointers. Using the lambda pointer mechanism is only a gain when

these pointers are unlikely to be referenced. To help choose whether to create lambda or

leaf references when an object is loaded the system maintains hints within the images of

the objects in the store so that previous history can be used as a guide.

The LOOM system is of special interest as it is one of the first in which pointers are

represented in a different form in addressable memory to that in stable store. The

overwriting of pointer values with different representations has become known as

swizzling. The LOOM systems ability to represent a larger virtual address space than that

provided by the underlying hardware forms the inspiration of the systems described in the

next chapter.

2.4.2.1. Smalltalk and Mneme

Hoskings and Moss fHosking and Moss 1993] describe an implementation of Smalltalk

above the Mneme persistent store. This system is implemented on 32bit hardware, but has

considerable similarities with the LOOM system above. Its general operation is depicted in

Figure 7 below.

Objects are copied from the Mneme persistent object store. Mneme transfers data in

physical segments, which have arbitrary size. Clustering of objects within physical

segments causes an entire cluster to be fetched from the store at once, avoiding the

performance problems of single object faulting in LOOM. Representation of pointers from

resident objects to non-resident objects is achieved through two mechanisms akin to the

leaf and lambda of LOOM. A surrogate object may stand in for a non-resident object, these

are termed fault blocks, and the mechanism termed node marking.Fatlt blocks serve much

the same purpose as leaf nodes in LOOM. Since a 32 bit architecture is used and the

underlying Mneme store uses 28 bit PIDs only a single word is needed to hold a fault

block. This implementation does not perform dereferences through the object table, rather

pointers to resident objects contain the VM address of the object. This removes the cost of

indexing the object table, however it is no longer possible to simply discard the fault block
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since other pointers in memory may still reference it. Therefore when an object referenced

by a fault block is copied into memory, the fault block is overwritten with the address in

memory of the object. The overwritten fault block is now termed an indirection block.The

running system must be able to identify indirection blocks and transparently redirect

accesses to the real object. This adds a small cost to the running system. Indirection blocks

are eliminated when found by the garbage collector and are also eagerly removed at object

fault time.

Addressable Memory
Node Maft¡ng
pointet refers to lault block

Stable Storage

:>

Fault Block, holds PID

Edge Ma*ing
poìnter holds PID| --'\ ---"

Tagon pointer+
indicales edge
ma*¡ng.

Objects,32
b¡t words.

overwr¡nen fault
block rcters to
rcsident object

Pointer may be
overwitten to
d¡rectly rcfer to
resident object

Figure 7. Node and Edge marking to refer to non-resident objects.

Instead of referencing an indirection block, individual pointers may contain the Object

Identifier of the referend. This is termed edge marklng. This field requires a tag to

differentiate PIDs from valid pointers, again since PIDs only use 28 of the 32 bits

available, there is space for the tag.

It would appear that both edge marking and node marking are equivalent, since both fault

blocks and edge marked pointers hold the PID of the referend. The difference comes about

through the mechanisms used by the Smalltalk system to activate object fetching.

Objects are brought into memory when a dereference through either a fault block'or an

edge marked pointer is attempted. There are three mechanisms through which detection of

references to non resident objects may be achieved:

. explicit tests upon each dereference,

. folding the detection of such dereferences into the method dispatch mechanism,

and
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. placing the fault blocks in a protected memory region and using the resultant

exception to trigger object fetching.

To understand how method dispatch is used to load objects we need to review the internals

of the method dispatch mechanism.

The computational model in Smalltalk is one of method invocation. Messages are

passed to an instance of a class and the message type is used to index a method dictionary

to determine the appropriate method to dispatch for the class. Determining the appropriate

method is complicated by the inheritance structure. To improve performance a method

cache is used. This is indexed by method selector and class, and returns a reference to

compiled method code. To avoid the need to check whether the method code is resident in

addressable memory the system ensures that the class of any object is loaded when the

object is loaded

As described earlier, the Smalltalk system uses a tagged architecture to distinguish

pointers from scalar values. Scalars are termed immedíate since their value is always

immediately available. Upon method dispatch, the system must test each value to

determine whether it is a pointer or an immediate value. Edge marked pointer references

are marked as immediate values (although logically pointers they do not directly reference

an object) and are considered to be members of the special class null. There is only one

method in the class null and it responds to all messages by first loading the object

referenced by the pointer into addressable memory and forwarding the message to it. Thus,

in principle, objects are faulted with no run-time check for residency. Arguably the cache

lookup system must reflect the special tagging and mapping to the null class; it may

therefore be slightly more complex than a straight forward hash function. The additional

cost of this extra functionality is low, but probably not zero.

This mechanism can be seen to have distinct parallels with the lambda pointer

mechanism used by LOOM. In LOOM the lambda entry explicitly indexes the object load

method, edge marking uses the hash function to perform the same action.

When a fault block represents an object a mechanism essentially the same as that used

by LOOM is used. Fault blocks respond to all messages by loading the object which they

represent. However fault blocks only contain a PID and are not full objects, therefore they

do not contain a class pointer. The method dispatch mechanism must therefore test to see if

the referenced object is a fault block and explicitly invoke the object loading code. This

extra test adds to the normal running costs of the system.
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Moss and Hoskings also outline a method by which these tests can be eliminated by

utilising memory protection faults. By placing fault blocks within a protected memory

region any attempt to access the fault block will lead to an exception which is used to

trigger object loading. They present test results [Hosking and Moss 1993] which show little

difference in performance between these mechanisms. They conclude that little is gained

by using memory protection for their system. The test essentially balances the small extra

cost added to each method dispatch against the occasional but larger cost of the exception

handling. The issue of exception speed and alternatives is covered in detail in section 5 of

this chapter.

2.4.2.2. Garbage Collection

In a conventional generation scheme when an object is promoted to an older generation the

younger generations must be scanned to find and update any pointers which refer to the

moved object. Hosking [Hosking 1991] describes a generational garbage collection scheme

in which multiple chunks of objects are maintained in addressable memory. Hoskings

scheme avoids the need to update pointers when objects in a chunk are moved by

overwriting the moved objects with an indirection block. Thus a moved object will be

accessed transparently by a running program. Chunks are a coarse grained allocation

structure. New objects are always allocated into chunks, and the system actively reclaims

memory chunk by chunk. The system attempts to free all the memory in a chunk in two

stages.

First it closes a chunk so that no further objects are either created or copied into it. It

then proceeds to remove the objects resident within the chunk. Objects are lazily copied

either into other chunks, or back to the stable store. To ensure references to moved objects

remain valid, indirection blocks replace the moved objects. If the object has been returned

to the store, a fault block replaces the object.

Once all incoming pointers to a indirection and fault blocks in a chunk are bypassed the

chunk may be freed. The system bypasses references when it can. The generational

garbage collection system aids in this. The remembered set contains the identity of all

pointers from older generations referring to objects in younger generations, thus the system

can find all the pointers into a chunk from older generations without the need to traverse

the entire contents of memory. When the garbage collector runs it automatically bypasses

references to indirection and fault blocks from younger generations. Thus once a garbage
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collection pass has run within the younger generations, no pointers from younger

generations to a chunk will remain.

2.4.3. PS-algol and CPOMS

The language PS-algol is the result of original research on the integration of programming

languages and data-base management systems [Atkinson 1978]. Persistence as an

orthogonal attribute was added to the S-algol language [Morrison 1982]. Implementation

of PS-algol has been provided by three systems, namely: the chunk management system

[Atkinson, Chisholm et al. 1983], the PS-algol persistent object manager [Atkinson, Bailey

et al. 19831, and finally the CPOMS (Persistent Object Manager in C) [Brown and

Cockshott 1985; Brown 19881.

2.4.3,L. Computational model

PS-algol makcs persistence of data as transparcnt as possible, in particular:

. the programmer does not have to explicitly identify persistent data,

. all data may be used independently of whether it is persistent,

. all data types may be made persistent, and

. the language's protection mechanisms apply to all data.

The persistent store provided by the CPOMS is logically divided into separate databases.

Each database provides a root of persistence from which all objects within the database are

reachable. Databases may be separately updated using a transactional mechanism. This

mechanism allows the database to be used as a unit of sharing between different programs.

Before a database can be used it must be locked and the intention to modify data made.

Changes are made permanent in the database with an explicit call to the commit function.

2.4.3.2. Addresses in PS-algol and CPOMS

Utilisation of many databases complicates the creation of addresses in PS-algol. Although

each database is a separate entity, addresses of objects within each database must be

distinct to allow programs to use arbitrary combinations of databases at one time. The

CPOMS uses a large address space that is divided into relatively small fixed size partitions

and individual databases use as many of these partitions as they need.

A persistent store (database) address is divided into two parts: a partition number, and a

logical address within the partition. Each database maintains an indirection table which

maps the logical database address to the actual location within the database file. This

indirection is provided to ease store garbage collection, and is discussed later. Databases
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themselves are identified from the partition number through a further translation table the

PTODI (Partition TO Database Index).
Object Table

Local Heap

-)

Offset

Database

Figure 8. Address translation in CPOMS.

Objects resident in addressable memory contain pointers either in the store format just

described or contain the address in addressable memory of the referend. An object table

(termed the PIDLAM Persistent IDentifier to Local Address Map) is used to provide a

mapping from PIDs to addressable memory locations in the manner previously described

for other systems. The interpreter is responsible for checking the nature of the address

(with a runtime check performed prior to each dereference) and for initiating translation of

the address or fetching of the object from the store as appropriate. The address translation

structure is summarised in Figure 8 above.

Newly created objects are allocated PIDs when they are placed within one of the

databases. Allocating PIDs is performed as part of the commit algorithm described next.

2.4.3.3. Data Movement

'When a PS-algol program starts running the system has no means of directly addressing

the persistent store, it only knows the names of the databases. Access to individual

databases is achieved by the program opening them. A database directory is maintained

which maps the name of a database to the appropriate file name and also records a

password which can be used to protect access to individual databases. Once a database has
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been identified it is locked appropriately and the first PID address partition it contains is

placed in the PTODI table. Once this is effected the system can proceed to access objects

within the database.

Databases may contain references to other databases, to avoid run-time errors resulting

from an attempt to access an object referenced in a database that was not explicitly opened,

the system opens the transitive closure of databases reachable from the database which was

first opened. Each database maintains a table of databases which must be opened if it is

itself opened. These extra databases are opened for read-only access unless they do not

have explicit names (in which case it is impossible for a user program to name them and

hence open them for write) in which case they are opened for write access.

Objects are copied from their host database on demand when the running system

encounters a PID. Object copies are placed in the local heap and an entry made in the

PIDLAM. Modified objects a¡e written back to their home database as part of the commit

operation. Only objects from databases that were opened for write operations can be

written back. Not only must modified objects be written back as part of the commit

operation, but so must those newly created objects which are reachable from persistent

objects. PIDs for these new objects are allocated so that they will reside within the same

database as the persistent object that references them.

However more than one persistent object may reference a new object, and these objects

may have different home databases. When this situation ar¡ises an entry is placed into a

table in the second parents home database which lists those databases which must be

opened if this database is opened. Thus the new object will be accessible no matter which

database it is referenced from.

Since databases may be opened for read-only access the system will refuse to commit

any objects to any databases if it is found that an object read from a read-only database has

been modified.

2.4.3.4. Object Formats and Identifying Pointers

PS-algol does not provide a single canonical object format, rather it defines separate

individual object formats for each base type supported by the system. These include:

strings, structures, stack frames, code vectors and raster images. Use of separate object

formats requires that each of the sub-systems understand each of the formats. In particular:

. the compiler must be able to generate code to use each of the formats and create

objects in each format,

44



. the abstract machine must be able to create and mutate objects of each format,

. the garbage collector (both for in store and addressable memory object

representations) must be able to find the size of, and pointers resident within, each

format and,

. the store system (CPOMS) must be able translate each object format appropriately

on movement to and from the persistent store.

Any change to an object format, or the addition of a new object format, requires changes to

each of these sub-systems. This was identified as a significant disadvantage of individual

object formats [Brown 1988].

2.4.3.5. Garbage Collection

Like the other systems described in this chapter, PS-algol implementations provide

separate garbage collection for data in addressable memory (the local heap) and stable

storage (the databases).

Garbage collection of the local heap is performed in a conventional manner except that

the PIDLAM also acts as a root of reachability. This ensures that objects which are

reachable from objects which reside in a database but not from any object in the local heap

are not disca¡ded.

Garbage collection of the databases is performed by a separate program, and runs on

otherwise quiescent databases. Two mechanisms are provided for garbage collecting a

group of databases.

A fast mechanism is provided which uses the list of referenced databases held within

each database to build the closure of all reachable databases. It is possible that there exist

unreferenced anonymous databases which can then be reclaimed.

A full garbage collection system is also provided. This traverses the objects held in all

of the reachable databses and builds a single list of all reachable objects (by PID). Once

complete the list is used to compact each database in turn. A new list of referenced

databases is also generated for each database as part of the compaction phase.

2.4.4. Napier-88 and the PAM

The NapierS8 language [Monison, Brown et al. 1989] was built as a platform for further

experiments in persistence in languages. Its design is partly derived from experience with

shortcomings in the PS-algol language. In Napier-88 all data is persistent. A single root of

reachability (returned by the special function es) is provided and any object reachable from
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this root remains persistent. 'When a program instance terminates all data that is not thus

reachable is reclaimed.

2.4.4.1. PAM

In the course of this thesis we examine various implementations of the programming

language NapierS8 in considerable detail. Of particular relevance to the discussion of

software architectures is the software architecture that provides the mainstay of existing

implementations. This is the Persistent Abstract Machine or PAM.

The PAM [Brown, Canick et al. 1988] is a byte-coded interpreter, and was primarily

designed to support the Napier8S language. Due to the modularity of its design and

implementation, it may be used to support any language with at most the following

features: persistence, polymorphism, subtype inheritance, first class procedures, abstract

data types, block structure and assignment. This covers most algorithmic, object-oriented

and applicative programming languages.

One of the notable features of the PAM'is that it is constructed entirely upon a heap-based

storage architecture. This heap-based architecture was considered advantageous for the

following reasons:

. Only one storage mechanism is required, easing implementation.

. There is only one possible way of exhausting the store. This was considered an

essential requirement, in that applications can only run out of store when the

persistent store is exhausted, and not merely when one of the individual storage

mechanisms is exhausted.

. The PAM is designed to suppoft languages with first-class procedures, block

structure, free variables and assignment. A direct implication of this is that L-

values may persist after their names are out of scope. This property is known as

block retention lBerrl, l97I] and is not required for most languages.

Stacks are still used conceptually, with each activation record being implemented as an

individual heap object. Each of these records represent the frame (activation record)

required to implement a block or procedure execution. In the case of Napier88, the size of

each record may be calculated statically. A consequence of activation records being

allocated frorn a heap rather than a stack is that the heap is heavily used for allocating store

for short lived objects. These short lived objects may be garbage collected provided that

transient objects may be distinguished from persistent objects resident in the heap.

46



Beneath the PAM, a persistent object store is provided. The original implementations of

this object store used a layered architecture, each layer providing a specific abstraction, the

lowest directly managing stable store, through to the highest which presented an

abstraction of persistent objects. We will explore the implementation of this system,in

some detail. This thesis will also describe a new implementation of a persistent virtual

address space which takes advantage of the page based virtual memory and the exception

handling mechanisms provided by conventional hardware architectures.

2.4.5. The POMS Store.

The POMS (Persistent Object Management System) provides one implementation of a

persistent object system utilised by the PAM for the provision of a Persistent Store.

The POMS provides a procedural interface directly callable by the PAM. As programs

are executed by the PAM, it tests for object residency and invokes the POMS to mediate

the movement of data from stable storage to addressable memory. Addressable memory

used by the PAM is managed as a heap of objects and individual objects can be copied

from stable storage to the heap on demand. Since the PAM architecture is interpreted, tests

for residency are only performed once per PAM instruction even if the object is accessed

many times during an instruction, reducing the number of tests somewhat.

The POMS allows two separate representations of pointers to objects: the object's

virtual address in addressable memory and the object identifier (PID). These are

distinguished from one another by ensuring that all PIDs are negative numbers, thus a

simple sign test serves to determine which kind of pointer is being used. If it is determined

that a pointer is a PID, a further test is made to see whether the referend is resident, if not

the object is explicitly loaded. Once the object is resident within addressable memory the

instruction is restarted and proceeds normally.

2.4.6. Object Format

The POMS uses a single object format. The most important feature of this format is the

segregation of pointers from scala¡ data. No matter what the type of the object stored it is

always possible to find all the pointers in an object. Unlike the Smalltalk systems described

earlier, pointers are not tagged to differentiate them from scalar values and are not

intermixed with scalar data. The POMS object format is depicted in Figure 9 below.
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Figure 9. Object format in POMS

Flags are maintained in the object header and include a mark flag used by the garbage

collection system, a modification flag used by the persistent store manager and format

flags that can be used to indicate different byte addressing schemes for different hardware

a¡chitectures.

2.4.6.1. Data Movement

The POMS system is a layered architecture in which different strategies can be employed

in implementing each layer. The implementation by Dave Munro [Munro 1993] is of

interest as it utilises some of the attributes of page based virtual memory that will be the

subject of the next section. In this scheme the store is presented to the POMS as a memory

mapped file, a strategy which allows objects to be copied directly into the local heap as a

simple memory to memory copy, without recourse to the conventional Unix file

manipulation primitives. This is illustrated in Figure 10 below.
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Figure L0. POMS with memory mapped store.

The operation of the memory mapped store is described in Chapter 4. Objects resident

within the local heap are prefixed by their real PID, this allows the POMS to retrieve the

PID of any object referred to by virtual address pointer, allowing for fast replacement of in

memory pointers by PIDs. Should an object not have a PID the prefix contains a sentinel

value.
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e

4
l'leader
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2.4.6.2. Address Generation

As the PAM creates new objects they are created within the loeal heap (addressable

memory) and are referenced through the virtual address at which they reside. The majority

of created objects will be reclaimed before any action is taken to write the state of the

system back to stable storage. Those objects that survive until either they, or another object

which refers to them, are written back require the generation of a PID by which it will be

known in the persistent store. This is accomplished as follows. Vy'henever an object is

written back to the Persistent Store it is scanned to find any pointers referencing objects

that do not have PIDs. If any are found a PID is allocated and an entry made in the object

table. The pointer is overwritten with the PID before the initial object is written to the

store. If the object being written back itself has no PID, one is similarly generated and

entered into the store data structures. Thus objects within the store only contain references

in the form of PIDs. Notice again the similarities to generational garbage collection; the

movement of objects to the store closely corresponding to the promotion of objects to an

older generation.

2.4.6.3. Garbage Collection

The PAM system garbage collects objects in both the local heap and in the stable store.

Garbage collection occurs in a running program by collection of unreferenced objects in

the local heap. The local heap is only a cache of objects resident within the store and care

must be taken to ensure that all objects reachable from objects resident in the persistent

store are retained. In particular when an object is evicted from the local heap and copied to

the store all those objects referenced by pointers within that object still resident in the local

heap must not be reclaimed even if no references to them exist within the local heap. To

ensure that these objects are retained, the system ensures that all such objects are allocated

a PID and are marked as modified. The local garbage collector may not reclaim such

objects. These objects will migrate to the persistent store upon commit. A list of modifed

persistent objects serves a similar purpose as the remembered set in generational schemes.

However since objects in the store (the older generation) only refer to objects in the

younger generation (the local heap) by PID there is no need to overwrite these pointers

with the referends new location. Thus there is no need for the full functionality of the

remembered set of conventional generation garbage collection.
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The canonical object format of PAM objects allows the garbage collector to find all

pointers in objects without recourse to external information.

2.5. Page Based

This thesis is partly concerned with the use of conventional page based architectures to

support orthogonally persistent systems. The definition of conventionøl is essentially those

architectures which comprise the majority of available computer systems. Architectures

based around the commonly available hardware implementations such as Sparc, Motorola

68000, 88000 and 600 (PowerPC) series, Intel x86, MIPS and DEC Alpha AXP. The

features common to almost the entire spectrum of available hardware platforms of interest

in providing persistent systems are:

. paged based virtual memory

. exception handling mechanisms.

These two mechanisms are inextricably intertwined in most systems. The provision of

demand paged virtual memory being dependant upon the provision of a suitable exception

mechanism. Appel and Li surveyed the possible uses to which virtual memory primitives

can be put in the support of such systems [Appel and Li 19911. They identified the

following areas:

1. concurrent garbage collection, the garbage collectors of Ellis, Li and Appel

[Ellis, Li et al. 1988] utilise page protection to provide a barrier between the

mutator and garbage collector, allowing them to run concurently. Page protection

prevents the mutator from accessing memory ranges within which the garbage

collection process has not completed.

2. shared virtual memory, dist¡ibution of a shared memory execution model,

utilising page protection and access exceptions to trigger the coherency

mechanisms.

3. concurrent checkpointing,wherein page movement akin to demand paging is used

to create snapshots of the address space on stable media concuÍently with mutator

execution.

4. generation garbage collectíon, utilising page protection and resultant exceptions

to detect the creation of pointers between generations.

50



5. persistent stores, in a manner similar to demand paged virtual memory the virtual

address space is maintained as a resilient and recoverable store, providing a

persistent virtual address space.

6. extended addressing, an illusion of an address space considerably larger than that

supported by the underlying hardware is provided by translating the format of

pointers within data when pages of data are faulted from the persistent store.

7. data compression paging, in which pages of data are represented on disk in a

compressed form and compressed or uncompressed when the data is moved.

8. heap overflow detection, throtgh the use of guard pages to detect attempts to

reference past the allocated area.

This thesis will explore the implementation of all but the first and seventh issues on this list

in some detail.

2.5.1. Dat¿ Movement

Persistent implementations that take advantage of page based virtual memory are able to

exploit the ability of the system to transparently provide residency checks for pages of

data, and to provide ffansparent fetching of the required data. This provides some

considerable advantages:

. user code need not contain any checks for data residency,

. user code need not contain any code to mediate data movement,

. user code is therefore able to sxecute faster when data is resident,

. user code is smaller, further improving execution speed,

. creation of persistent environments for primitive languages (such as C, and

assembly languages), and

. compilers do not need to provide any support for the underlying persistent system.

It is therefore possible to provide an orthogonally persistent system using any

language and compiler.

This freedom is bought with two costs:

. The granularity of data and data movement is the page and is fixed by the choice

of hardware.
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. The cost of trapping the exception raised by non-residency can be high on some

architectures [Appel and Li 1991; Hosking and Moss 1993; Chand¡amohan and

Levy 19941.

2.5J.1. File Mapping

File mapping is a natural extension of demand paging mechanisms. Indeed the VMS ll-evy

and Lipman 19821and Mach [Acceta, Baron et al. 1986] pager systems use files within the

user file space to perform process paging and swapping. Almost no change is required to

these operating systems implementations to allow users to specify an arbitrary file from

which to perform paging for a section of a virtual address space. Recent versions of Unix

have also offered this functionality. Once a file is mapped into a process's virtual address

space, data within the file becomes visible and directly addressable. Data movement is

mediated by the operating system's normal page fault mechanism and occurs transparently

to the execution of user level programs. Data modified by a program's execution will be

returned to the mapped file as a direct consequence of the action of the paging mechanism,

and is automatically written back upon closure of the file. Thus data resident within the

address range served by the mapped file becomes persistent.

However simple files maps are unable to provide a resilient persistent store. In

particular, no control is afforded over when data is written to the store file, and at any time

the contents of the file on disk may contain pages of data that individually represent the

execution of the system at widely varying times. Thus it is very unlikely that the store file

contains a useable representation of the executing system. Should the system suffer a

failure during use of such a store the system would probably not be recoverable.

Mechanisms to manufacture appropriate resilient mechanisms using shadow paging

mechanisms are explored in Chapter 4.

2.5.2. Texas and ObjectStore

Newer implementations of persistent systems also use the memory map mechanism

provided though conventional operating systems. Both the Texas [Singhal, Sheetal et al.

19921and ObjectStore [Lamb, Landis et al. 1991; Object Design 1994] system utilise the

file map capabilities provided by the Unix [Ritchie and Thompson 1978] operating system.

Both the Texas and Objectstore systems provide an addressing environment larger than

would ordinarily be possible within the limitations of the host architecture. This is

accomplished by allowing PIDs to be larger than virtual addresses and overwriting them
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with virtual addresses when objects are copied into virtual memory. A full exploration of

this mechanism is provided in chapter 3.

2.5.2.1. ObjectStore

ObjectStore provides a persistent environment for the C++ and Smalltalk programming

languages. Of particular interest is the manner in which ObjectStore uses the host operating

systems virtual memory system to aid in providing access to stored data.

Object store provides a model of computation very akin to that of PS-algol. Users can

construct individual databases and an object becomes persistent by residing within a

database. Access to databases takes place during transactions. During the period of a

transaction the database is provided to a user program by supplying pages containing the

appropriate data from a store server and mapping these pages into the user's virtual address

space. Once the transaction has completed these pages are unmapped. However to improve

performance when a series of transactions may access the same pages, a cache of pages is

maintained in the client so that they may be remapped without the need to re-request them

from the server.

2.5.2.1.1. Data Movement in ObjectStore

Requests to load individual pages in ObjectStore are mediated by page faults. An attempt

to access a pointer that refers to data on a non-resident page causes an access exception

which invokes the memory management sub-system. ObjectStore's operation is illustrated

in Figure 11 below.

Client

User programs access the persislent object space
via an applicat¡on ¡nterface which defines obiect
formats.

Objects are accessable directly in addressable virtual memory

Data is mapped from the Cache to
v¡rtual memory as needed during a transaction.

User Programs

Applicat¡ons Program lnterlace

V¡rtuel

Cache

Server

oata is supplied 1o a cl¡ent cache manager as needed
by the database sever.

Figure 1L. Simplified view of ObjectStore operation.

ObjectStore may potentially map apage of data at any available address. This requires that

references to objects on this page be translated to refer to the correct virtual address.
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However the system designers claim that if it is possible to map a page at the address at

which the in store object identifiers match the addresses in virtual memory, it will do so.

The method by which ObjectStore allocates memory and translates pointers seems to very

similar to that described by Wilson for the Texas system and discussed in the next chapter.

However at the time of writing the mechanisms used have not been disclosed and a¡e the

subject of a patent application.

ObjectStore provides an application program interface which programs are required to

use in order to access and create persistent objects. Persistent objects must be created by a

call to a procedure in this API. When using C, calls to the API must be made explicitly, in

C++ the ability to overload operators and functions allows the operation new to correctly

call the API as appropriate, presenting the programmer with the textual illusion of

transparent object management.

2.5.2.I.2. Garbage Collection

C++ does not provide for automatic storage allocation or deallocation, and systems based

on this language do not provide intrinsic garbage collection. ObjectStore's database

mechanism provides persistence by reachability and as such some mechanism is needed to

recover space within databases, however from available documentation the mechanisms

used are unclear. It is apparent that in order to implement the translation of pointers

described above that some mechanism for locating pointers within pages does exist within

the system. It is possible that a mechanism similar to that used by Texas is employed.

2.5.2.2. Texas

W'ilson and Singhal [Wilson I99I; Singhal, Sheetal et aI. 1992] describes a system in

which C++ programs execute in a persistent virtual address space. Of particular interest is

the mechanism used to translate pointer representations between those used in the store and

those used in addressable memory. This topic and the Texas system is covered in detail in

the next chapter. Here we present a summary of the attributes of the Texas system.

2.5.2.2.1. Data Movement

Data movement in Texas is mediated by the virtual memory system, an attempt to access

data which is not resident in addressable memory triggers a page fault and the store

supplies the data. Texas translates the pointer representations between the store and

addressable memory in such a way as to provide the illusion of a larger virtual address

space than is actually supported by the machine hardware.
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2.5.2.2.2. Pointer formats

The Texas system provides support for C++ programs. C++ does not provide a canonical

object format and it is not possible to determine the location of pointers within an object by

examination of the object alone. However C++ objects contain the identity of their class

and from this it is possible to determine an object's format. Texas uses a post-processor

which extracts the object format from the debugger support information created by the

various compilers used. The debugging format descriptions are standard on most operating

systems and thus Texas is able to host programs compiled with different compilers with.no

change.

2.5.2.2.3. Address Creation.

Texas programs only ever use the virtual addresses supported by the host architecture. The

store system and swizling mechanism described in the next chapter ensure that store

addresses are never visible to the running program.

2.6. Casper

The Casper system [Vaughan, Schunke et al. 1992] was implemented by a research group

including the author to provide a distributed persistent system based upon a model of

distributed shared memory mediated by page based virtual memory mechanisms. This

chapter does not address the distribution of the system, this is covered in Chapter 6, but

rather describes the mechanisms used to provide support for the Napier88 language.

2.6.1. Integrated Store Management

The page based systems described above are implemented above existing commercial

operating systems. Systems which do not provide intrinsic support for orthogonal

persistence and in which the abstractions provided are far from ideal. A major limitation

with these systems is the inability to divorce the object movement from the management of

the demand paged swap space. Considerable advantages accrue if the virtual memory

manager is integrated with the persistent store.

2.6.2. Data Movement

The Mach [Acceta, Baron et al. 1986] operating system provides a mechanism by which

user level programs can directly access the internals of the demand paging mechanism. In

Mach it is possible to associate a region of a virtual address space with a service facility

termed an external pager [Rashid, Tevanian et al. 1987]. An external pager is a user level
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program which conforms with a system defined interface and provides the services

normally provided by the operating systems paging mechanism. That is, it is responsible

for the provision of data in response to page faults incurred within the region of virtual

memory it services, is responsible for data removed by the operating system from that

region (perhaps in response to pressure upon physical memory use), and is responsible for

the servicing of access protection faults within the serviced region. This mechanism is

close to ideal for the provision of shadow paging required to provide a resilient persistent

store.

The distributed Casper system was constructed utilising the external pager mechanism.

A significant advantage of this implementation is the integration of the persistent store

with swap space. Utilising the external pager Casper completely integrates persistent

storage with swap space.

Conventional systems retain data in swap space when available physical memory

becomes depleted. Data may be required to migrate from swap space to addressable

memory before moving to the stable store, adding considerable cost to the implementation.

2.6.3. Object Formats and Pointer Detection

In page based systems, sub-systems may be presented with an arbitrary page address rather

than an object address . In general, in systems without hardware supported tags it is only

possible to determine the location of pointers within an object if we are provided with the

address of the beginning of the object. Therefore some further mechanism must be

provided to aid in the location of pointers.

One mechanism is the crossing map. Crossing maps have their origin in garbage collectors

[Appel 1989; Kolodner, Liskov et al. 1989]. To make use of crossing maps two

requirements a¡e made of object formats:

o I mechanism must exist so that the pointers within an object, and the size of the

object can be found once the address of the head of the object is found.

. Objects must be allocated through memory, in such a manner that once one object

is found, it is possible to chain forward to the next object in memory. Contiguous

allocation is a simple mechanism to achieve this.

To find the pointers resident in a page it is only necessary to find some object that is

located at an earlier address in memory and move forward from that object until the objects

in the designated page are encountered. The simple crossing map uses this mechanism by
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tagging each page with a single bit designating whether an object starts at the beginning of

the page or not. Such a mechanism is represented in Figure 12 below.
Object crosses
page boundary

Object starts on Object crosses
page boundary page boundary

I

0
Crossing map
bitmap values

0

To lind this obiect,
scanning must start
at the beginning of
the previous page.

Figure 12. Using a single bit per page to represent object crossing

A degenerate form of crossing map is to ensure that all page boundaries are coincident with

object headers. This is possible if a special padding marker is used that signals that the

reminder of a page contains no useful objects and that the next object can be found at the

next page boundary. Objects larger than a single page still require special treatment,

dramatically complicating such a scheme.

The use of a single bit to describe the crossing map has the disadvantage that the scan of

objects may need to begin some pages before the page of interest. In systems for which the

techniques were developed it is reasonable to expect that most of the pages are resident in

addressable memory since they form part of the active working set of the program. In

persistent systems, pages may require scanning for pointers when they are loaded from the

store. There is no guarantee that the intervening pages will be resident in memory, however

they must be brought from the store to allow the system to find the intervening objects and

thus find the pointers on the needed page. Significant cost may be attached to fetching

these extra pages from the store, pages which may otherwise be unnecessary for the

running computation. A scheme where object allocation is padded to page boundaries

helps considerably, but not for regions containing large objects.

A possible improved technique might be to maintain an array of pointers, containing

one pointer for each page in the system. Each pointer points to the first object header

before or aligned with the start of the page. In this way, at most two pages (the required

page and the page upon which the start of the first object resides) need to be examined

when a page is faulted.

If pointers are stored contiguously in objects, an improved scheme is possible. This is

the scheme introduced by the Casper system. Rather than an array of pointers, an array of

tags is maintained, with each tag corresponding to apage in the store. Each tag describes

any partial object which may overlap the start of the page. The tag consists of:
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. the offset of the first pointer in the partid object

. the number of pointers in the partial object on that page

. the number of scalar values in the partial object on that page

Objects constructed using the format used by the PAM may be easily encoded into a 32bit

word. Since a PAM object header is two words in length two bit suffice to encode all

possible offsets to the pointer fields. The remaining 30 bits allow 15 bits each for encoding

the number of pointers and number of scalars in the first object, this allows for systems

with pages of up to 64 kilobytes in length to use this format. The format and some possible

page boundary crossings and their encoding are illustrated in Figure 13 below.
Ob¡ect, starts on previous page
with pointersection cross¡ng page Large obiect, co¡nc¡dent with start
boundary. of page and cross¡ng into next page. Page Boundaries

I

EÐ Object Header

I Pointers

l-l Scalars

Offset
to
Po¡nters.

Number ot pointers
from f¡rst object on
this page.'

from tirst object on
this page.

Figure 13. Representations of different object crossings.

This mechanism requires that only the faulted page and its tag need be examined when a

page fault occurs. As desribed in Chapter 4, tags may be kept with the page translation

entries used to describe the page's location within the store, thus the tag will be available

when the page is read from the store.

When new objects are created or when objects are moved (such as when garbage

collection is performed) the system must check whether the object crosses a page boundary

and update the crossing map. As is described later, the Casper system maintains a distinct

address range (the local heap) in which objects are allocated and the majority of execution

occurs. To improve execution speed the system does not eagerly update crossing map

entries for the local heap, rather these crossing maps are only updated when the heap is

copied to the persistent store.

An important ramification of this optimisation is that native code generation is possible

within this system without the need to perform any crossing map operations. In the

NapierSS code generation system [Bushell, Dearle et al. 1994] generated code has no
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knowledge of the crossing map mechanism, and is not required to perform any action in its

support. This simplifîes the generated code reducing both its size and execution time.

2.6.4. Address Generation

In the Casper system, the address of an object is the virtual address at which the object

resides. These addresses remain the same in the store. Objects become resident through the

movement of, and are accessed upon, the virtual memory page that they are placed.

This limits the size of the system to that of the underlying machine architectures virtual

address space. Chapter 3 discusses how to extend this limitation through the use of

swizzling techniques. Chapter 5 discusses the internal operation of the Casper store.

2.6.5. Local Heaps and Pointer Quarantine

The Casper system provides each process in the system with a region of contiguous

memory in which to allocate objects, this serves to restrict computation to within this

region as much as possible, and also acts as the most volatile generation of a generational

garbage collection scheme. In the distributed version of the Casper system local heaps

provide segregation of pointers between processes, considerably simplifying garbage

collection. We term the mechanisms that segregate pointers pointer quarantine.

2.6.5.1. Distributed Casper

The distributed Casper system is described in detail in Chapter 6, however for the purposes

of describing the copy-out system the following will suffice.

The Casper system implements a distributed shared memory (DSM) model in which

individual clients share a single persistent virtual address space. A central server is

responsible for stable storage. Clients gain access to the data in the store by making

requests of ther server. Clients and the central server co-operate to maintain coherency of

the separate instances ofdata each client.

The distributed Casper system provides each separate process with a local heap. Each

local heap is a separate contiguous range of addresses taken from the shared persistent

virtual address space. When executing, each process resides within a different client. To

avoid greatly complicating garbage collection of local heaps, the system enforces a regime

in which only pointers within objects resident in a local heap may refer to other objects in

that local heap. The maintenance of this invariant is clearly deeply tied into the

maintenance of a generation garbage collection mechanism. This management system is
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known as the copy-out system. Legal and illegal pointers in the Casper system are depicted

in Figure 14 below.

+ LegalPointers

+ lllegal Po¡nters

Figure t4. Legal and illegal pointers in Casper.

2.6.5.2. Copy Out Implementation

If a client attempts to access a page which it does not currently hold a copy of, it will

request a copy from the central server. If the server determines that the most up to data

copy is held by another client it will forward the request to that client. This second client is

required to make available a copy (for read access) or yield the page (for write access) to

the client originating the request. Before supplying this page the yeilding client must

ensure that the page does not contain any pointers that refer to objects within its own local

heap. To achieve this, at least the immediate closure of such pointers must be copied from

within the local heap to some area of virtual memory outside any processes local heap.

Operation of the copy-out system has close links with the operation of generational

garbage collection systems, although the triggering mechanisms are different.

2.6.5.3. Eager Copy-Out

Initial implementations of the Casper system instituted an eager copy-out regime. As soon

as a pointer was created in an object outwith a client's local heap referring to an object

within the local heap, the support copy-out system would copy the entire transitive closure

of the pointer to a region outside of the local heap. This implementation was written partly

as a matter of expediency, however the ramifications of the policy are deserving of study.

Programming in the Napier8S system has evolved a style in which complex data

structures are assembled and then as a final act, linked into the persistent environment.

Such a style fits well with an eager copy-out system. Programs written to load the

persistent stores with the initial environment run with little performance penalty from an

eager policy.

¡ a

Local A Local Heap BObiects in Pers¡stent Space
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When running in an interactive system an eager policy fails spectacularly. The

interactive system and window manager links a large number of 4ata structures for the

representation of a session into the persistent environment. These structures are instantly

copied out of the local heap, the program essentially paying the cost of creating each object

twice. These objects include large data structures such as the persistent representations of

the user's frame buffer and each individual window. All these structures will become

unreachable when the interactive session is terminated and thus clutter the store, only being

removed by a store level garbage collection. Ameliorating this somewhat, interactive

sessions are persistent and may have a considerably longer lifetime than conventional

interactive sessions. Indeed a user could potentially keep the same session for their entire

lifetime, reconnecting to it whenever they need.

Another unfortunate habit of the eager system is to occasionally copy the entire closure

of the running process out of its local heap. This happens because procedure closures are

first class objects and it is quite reasonable to link one into the persistent environment.

Such an occurrence destroys all the advantages of the local heap.

2.6.5.4. Lazy Copy-Out

Clearly an eager policy is of only passing interest. Generation garbage collection systems

usually implement some form of tenuring policy in which an object must survive a number

of garbage collection passes before being promoted in to the next generation. This is not

possible in the Casper system since the need to move an object from within the local heap

is the result of the action of other clients in the system. However there is no need to

perform the movement of objects within the local heap until a request for a page containing

references to these objects is received.

Furthermore lhe copy-out system need only copy those objects directly referenced to

outside the local heap. These objects may themselves later cause further movement of

objects should the page onto which they are copied become shared.

When apage that has been used to receive copied-out objects itself becomes shared the

system attempts to fill any remaining space within the page with local objects reachable

from objects already resident in the page. This has the effect of naturally clustering objects

onto pages; locality of placement in memory follows reachability between objects. The

movement of objects from the local heap into shared pages provides the natural place to

effect clustering mechanisms, clearly more sophisticated tactics could be used than the one

described. Eager filling of shared pages also has the effect of making available some of the
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closure of the requested objects, so that further requests for pages containing these

referenced objects can be circumvented if they occur. Obviously the value of this tactic

depends upon the access patterns ofthe requesting client.

Upon the death of a program the system copies out those objects within the local heap

that are still reachable from outside the local heap. These also become clustered together.

2.6.5.5. Page/Card Based

Rather than maintain a remembered set through explicit test on pointer assignment it is

possible to utilise the page protection mechanisms to provide tracking of pointer

assignments [Appel and Li I99I; Hosking and Hudson 1993]. This mechanism is akin to

the hardware maintained page tags provided by the Symbolics 3600. It operates as follows.

Pages within the local heap are freely modified, those pages outside the local heap are

protected against write access.'Whenever an attempt is made to write to a protected page a

user level exception handler is invoked. This handler records the page's address and

changes the protection on the page to allow write access, then allows the excepting code to

continue. The list of modified pages forms a surrogate for the remembered set. Unlike the

Symbolics 3600 the system has no way of determining whether a write operation to a page

actually involved a pointer assignment or indeed whether the pointer referenced a younger

generation, the system pessimistically assumes that any write operation creates such a

pointer. When the local heap is garbage collected, all the recorded pages are scanned to

find any pointers that refer to objects within the local heap, thus building a remembered

set. A mechanism is needed to find pointers within the listed pages from only the address

of the page, the crossing map systems described earlier provide this ability.

A valuable result of using this mechanism is that the mutator code need have no

knowledge of the operation of the copy-out mechanism. There is no need for an explicit

test upon pointer assignment. This is especially valuable when generating native code as it

considerably simplifies the code generated, improving execution speed and reducing code

size. The native code generation for Napier-88 [Bushell, Dearle et al. 1994] is implemented

above this system and is able to execute oblivious to the operation of the copy-out system.

2.6.6. Store level garbage collection.

Store level garbage collection remains a taxing subject no matter what the implementation

chosen for data management. Garbage collection of persistent stores suffers from two

problems.
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. The sheer size of the store and data to be traversed.

. The overhead of extra storage needed to reflect the massive -changes that occur in

garbage collection.

Schemes to garbage collect a stable store will often need to traverse a data set many times

the size of their virtual memory working set and need to use large quantities of stable store.

Algorithms used need to take into account these extra constraints. The Casper system

provides two mechanisms for reclaiming space in the store.

2.6.6.L. Opportunistic memory recovery

A system which implements a page based persistent virtual address space can implement a

crude but useful mechanism to reclaim some space without requiring much effort. By

traversing the closure of the store it is possible to build up a list of all pages that contain

reachable objects. Those pages that contain no reachable objects are simply deallocated.

The opportunistic system traverses the transitive closure of the store marking objects.

However marking the objects themselves would require the creation of shadow copies in

the store and the allocation of extra storage, one of the costs we wish to avoid. Instead a

local mark table is maintained in volatile memory, implemented as a hash table indexed by

address of object. An in-memory copy of the virtual memory allocation map is updated by

removing each page from the table when any part of a reachable object is found upon it.

The remaining pages are candidates for deallocation.

At first sight this system would appear to offer only limited opportunities for the

reclamation of space. However the nature of the copy-out system maintains locality of

connected data and tends to cluster unreachable sub-trses within contiguous memory.

Furthermore the mechanism is able to free the space occupied by very large garbage

objects such as image data, persistent representations of windows, and frame buffers.

Freeing a single colour frame buffer alone reclaims one megabyte of store.

2.6.6.2. Full Garbage Collection

The second mechanism performs a complete compacting garbage collection of a Casper

store and will free all unreachable objects. The principle design objective of the system is

to reduce the number of times that random access to the store is needed, and wherever

possible to access stores in address order, or better, in file block order. It operates as

follows.
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2.6.6.2,L. Mark Phase

The mark phase traverses the closure of the store, similarly to the opportunistic collector, it

does not mark objects themselves but rather maintains an internal, volatile data structure.

This structure lists the address of each object found. This phase unavoidably results in

random access to the store as it traverses the closure. However as we shall see this is the

only time random access is required.

In the current version of the collector the list is maintained as a bit-map where each bit

in the map corresponds to a four byte word in the store. Since this bitmap is logically quite

large (one 32nd of the size of the memory space represented by the store) it is structured

heira¡chically, using a two level description, and only allocates memory for those areas of

the bitmap that are actually used. A bitmap is particually advantageous when the store

contains many small objects. If the average object size is 128 bytes then the bitmap will

occupy a similar amount of space as a hash table, once the average object size falls below

this the bitmap performs better. More importantly, the bitmap provides an iterator which

provides the reachable objects in address order. This feature is used in the next phase.

2.6.6.2.2. Translation Phase

Once the mark bitmap is complete it is travered in address order. As each reachable object

is found an allocation is made in the new store for the object. This is acheived by reading

the object size from the store and incrementing an allocation pointer; effectively this is a

simulation of the compaction phase. Although the store is traversed a second time, since

the traversal is performed in address order the virtual memory and file sub-systems can

make use of the access order to improve performance. Rather than copy the object

immediately, a translation table is constructed. This is an array of entries each containing:

the original address and, new address of each reachable object. It is constructed as the

translation phase progresses and thus entries a¡e inserted into the array in order of original

object address. Once the translation table is complete the compaction phase can proceed.

2.6.6.2.3. Compaction

The garbage collector does not compact into the existing store, but rather a new store is

created to receive the data. This has the advantage that the new store can be accessed in

linear order of physical pages (being empty, it is free to use any order of physical pages),

thus improving access speed. A new store stub is created utilising the store description data

in the header of the current store. As the compaction phase progresses the data storage for
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the store is allocated. Store structure and the mechanics of store creation are covered in

Chapter 5.

Once a new store is ready, the compaction phase can begin. The original store is

traversed in address order. Each object encountered that is present in the mark bitmap is

copied into the new store, allocating store space as it proceeds. The copy process translates

the pointers in the copied objects as it proceeds, utilising the translation table. Since the

translation table is ordered by original address, entries can be found using a binary search.

Thus the compaction phase proceeds with a linear address traversal of the original store

and writing of data to the new store in linear physical block order.

Once complete the original store can be discarded or cleared for reuse.

2.6.6.3. Summary of Garbage Collection

The garbage collection systems described are designed to avoid random access to the

underlying store where possible and to perform with a small working set. However, the

volatile data structures may require a significant allocation when stores become very large.

This is an ultimate limitation to the scaleability of the mechanisms.

The opportunistic collector is intended to free clumps of the persistent virtual address

space quickly. Since it neither compacts objects in the address space, nor is able to free all

unreachable object allocations its utility is limited. However it runs quickly relative to the

full collection mechanism, and does not require the allocation of extra stable storage.

The full compacting collector frees all unreachable objects and compacts the address

space. Since it creates a new store it is able to place data onto file blocks in block order.

This both improves the speed of writing whilst the mechanisms executes, but also acts to

re-cluster contiguous addresses in the persistent space onto contiguous file blocks, which

in general will improve the perfonnance of subsequent uses of the store.

2.7. Performance

Evaluating the relative merits and deriving metrics of performance of the systems

described above is a difficult problem. In almost all cases the systems are research

vehicles, often aspects of performance are considered peripheral, or the resources to create

optimised implementations is lacking. 'When efforts are expended in improving

performance it is hard to judge how much of a systems performance is due to the inherent

merits of the overall design versus the amount due to the specific performance

enhancements made.
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Whilst a depressing scenario, considerable work has been performed in attempting to

characterise the relative merits of some implementation strategies.

'When attempting to evaluate the relative merits of pure software implementations, as

represented by Mneme and the PAM versus implementations that seek to take advantage of

the features of the underlying hardware no simple relationships exist. In essence hardware

systems attempt to amortise the higher cost of handling page faults and data access

exceptions through the elimination of many smaller and lower cost run-time checks. Work

carried out by Hoskings and Moss has begun to characterise these trade-offs. Their work

[Hosking and Moss 1993] is based upon a DEC workstation utilising a MIPS R3000

processor and instrumented by a high resolution timer supplied by DEC. This has enabled

them to make very fine and accurate timing of the execution of the Mneme system, and

allowed them to compare the standard Mneme system with version that make use of some

aspects of page based exception handling instead of runtime tests.

2.7.1. Cost of exceptions

Both Appel and Li, and Hoskings and Moss identified the intrinsic cost of exception

delivery as a limiting factor in the utilisation of page based virtual memory architectures

for the roles described above.

The cost of exception delivery is, in general, very high in current systems. This expense

is not an intrinsic part of the processor architecture (although some are worse than others)

but rather a product of an operating system design wherein exceptions are considered to be

just that, exceptional; of sufficient rarity that highly general but expensive mechanisms are

appropriate.

2.7.1.1. Exceptions with CISC architectures.

Complex instruction set architecture implementations are complicated by the need to

handle exceptions. If an exception occurs in mid-instruction the instruction must be

restartable. This requires care in the design of the micro-code and the availability of

enough state information to perform the resta¡t. The 68020 for instance, places a 60 word

descriptor atop the processes kernel stack in response to an exception. This descriptor

contains the register state at the time of the exception, information relating to the nature of

the exception and the contents of internal registers. This descriptor block is reloaded when

the excepting process is resumed, allowing the process to resume correctly. Managing this
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state information is clearly a performance impediment. The cost of writing and reloading

can amount to some hundreds of machine cycles.

2.7.1.2. Exceptions in Berkeley RISC.

In a Berkeley RISC architecture (such as the SPARC) a stack of registers is maintained,

each function instance is allowed the use of a new set of registers (a window) allocated

from this stack. Parameter passing is achieved by overlapping part of the windows. A

function call is saved the cost of memory store and load operations to the in memory stack

and can reap significant performance benefits. However if the space of register windows is

exceeded (an overflow) a previously used window must be flushed to memory, freeing

space for a new allocation.

When an exception occurs on such an architecture the entire set of windows must be

saved to memory and reloaded after the exception is handled. 'When executing in user

mode flushing a single register set to memory takes about 60 processor cycles [Henessy

and Patterson 19901, however when handling an exception the task is significantly more

complex. Whilst flushing the register set to memory, the system must ensure that another

exception cannot occur. In particular this precludes flushing to virtual memory, since a

page fault could occur. Instead, the operating system emulates virtual memory explicitly,

adding greatly to the cost of handling an exception. Handling exceptions with the SPARC

architecture requires upwards of 1,000 machine cycles [Irlam 1992] before any operating

system functionality is added.

This added cost clearly limits the use of an exception model on such architectures.

2.7.1.3. Exceptions on conventional RISC architectures

'We term a RISC architecture without register windows as conventional. Exception

handling on such architectures is in general fairly straight forward. The kernel only need

save a small subset of the registers and then invoke the users exception handler.

These a¡chitectures may suffer a general performance penalty in comparison with those

endowed with register windows, Henessy and Patterson [Henessy and Patterson 1990]

noted that their DLX architecture required 1.6 times as many store operations as the

SPARC on simple C benchmarks. Compiler assistance in the form of inter-procedural

register allocation (whereby parameters are passed in registers between calls) helps to close

this gap. However because of the nature of the late binding and incremental construction

used in persistent languages inter-procedural register allocation is not always possible. It is
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not clear that register windows are of the same value in such languages, ameliorating the

deficit. Further, current realisations of Berkeley architectures appeæ to be unable to reach

the processing speeds provided by well designed conventional RISC a¡chitectures. This is

a highly volatile area and it is difficult to draw useful conclusions.

2.7.1.4. Exceptions in Unix implementations.

Unix presents an exception handling model which combines true exceptions (those that

occur synchronously with program execution) with an out of band signalling mechanism

and process control. A process receives an exception as a signal which is delivered by the

automatic instantiation of a function atop its current execution stack. The system is capable

of receiving recursive signals (that is a signal handler may itself incur exceptions) although

by default reception of the same kind of signal is blocked whilst handling the original

signal.

2.1.1.5. Exceptions in OSF and Mach.

The Mach operating system has proven to be an important vehicle in the implementation of

page based persistent systems. It also forms the basis for the implementation of OSF/I, a

commercially important Unix implementation. An important attribute is a very flexible

exception delivery mechanism. Exceptions may be delivered as a message to a separate

service program which can handle the exception whilst the original thread of execution

remains blocked. The virtual memory system is similarly handled in a flexible manner;

page faults and access exception faults may be handled by a separate handler at user level.

This flexibility comes at a considerable performance cost. When an exception is generated

the kernel manufactures a message containing a description of the exception. This message

is enqueued onto a message port for reception by the Unix emulation layer. This layer is

later activated and receives the message, synthesises the Unix signal delivery and when the

signal has been handled the process is reversed. Thus exception delivery requires the

delivery of messages, and a number of context switches to effect.

2.7.1.6. Measuring Exception Cost

The work by Appel and Li, and Hoskings and Moss has been directed at measuring the

cost of exception delivery and virtual memory sub-system under Unix. This is important as

Unix provides the operating environment for the majority of implemented persistent

systems. However it is equally important to notice that the cost of exception delivery under

these Unix implementations is considerably poorer than it need be. Hoskings and Moss
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noted that the effects ofprocessor caches can have a distinct effect upon exception speed,

exceptions occur very frequently having a significant advantage

When considering the utilisation of exception for the support of the mechanisms

described earlier four costs must be considered

. the intrinsic cost of an exception,

. the cost of delivery of the exception to the user,

. the cost of the kernel internals in interpreting the exception, and

. the cost of systems calls to set up appropriate page protection.

The first of these is limited by the machine architecture, the second by the operating

system design. The third item is for the purposes discussed, a measure of the kernel's

speed in interpreting the virtual memory description structures. The last item is partly a

combination of the f,rrst and third items.

Appel and Li measured the cost of protecting a page of memory, taking an access

exception upon that page and then reducing the protection upon the page. Their results

showed a variation of up to six times the number of machine instructions needed to

perform this task across different Unix implementations.

2.7.1,.7. Building Exceptions for Speed

The MIPS architecture is able to provide for the delivery of exceptions directly to user

code, bypassing entry into the kernel. (This is not strictly accurate for virtual memory

faults as will be noted below, however for other forms of exceptions this is true.)

Unfortunately this feature is not used in Unix implementations as it does not conform to

the Unix model. Recently Chandramohan and Levy [Chandramohan and Levy 1994] have

proposed fast exception handling mechanisms that do the majority of processing of the

exception delivery in user space and avoid one of the two system traps inherent in

conventional designs.

In Chapter 7 the architecture of a new operating system (the Grasshopper operating

system) will be described. One feature of the design of this operating system is the

provision of fast handling of exceptions, the design being tailored to make the

implementation of the features described earlier in this chapter efficient. Early figures from

implementation suggest that exception delivery to the user level is some 20 times faster

than that of OSF/I on the same hardware and remains considerably faster than other Unix

implementations on all platforms.
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2.7.2. Page Granularity

One of the most obvious differences between page based systems and those based upon

object movement is the granularity of data. This becomes important when the costs of

moving data to and from stable storage is considered. In principle object systems only need

move the precise amount of data needed to represent an object whilst a page based system

is constrained to move at least one entire page at a time.

In principle all stable stores are built using a block oriented device, all disk drives store

data in fixed length sectors. The majority of disks use sectors of 5I2 bytes, however the

use of intelligent controllers with local caches and track buffers makes it more efficient to

transfer larger amounts of contiguous data at a time. Indeed the current page sizes used in

virtual memory are if anything small compared to the most efficient data transfer sizes.

Those store architectures that do support individual object access put considerable effort

into clustering of objects on disk blocks. Systems that present a persistent virtual address

space achieve essentially the same gains by clustering objects in virtual memory

appropriately. However there remain significant differences in performance between

systems that provide for individual object movement and page oriented systems. A

particular area is in the nature of efficiency of transactions.

Hoskings and Moss measured variants of the Mneme systems that provided for either

individual object movement or page based movement. If transactions are small and

frequent only a small number of objects will require copying to stable store. If the store

supports logging of changes only a small amount of data need be transferred to disk. If
transactions are long and involve considerable modification of resident data the costs of

determining the modified data and preparing the log begin to dominate and page based

stores are superior. In the Napier88 systems described transactions are not supported

(although recently Dave Munro [Munro 1993] has described a page based store in which

transactions are supported for Napier88.) In general, in NapierS8 programming the nature

of computation is more oriented toward long periods between the generation of stable

states in the store.

2.7.2.1. Page cards vs. remembered sets:

Hoskings and Moss [Hosking and Moss 1993] produce figures which compare the costs of

managing pointer quarantine for generational garbage collection. They compare page

protection with software cards and a remembered set system. They also provide test results
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for a page based system in which the identity of the modified pages are known in advance

and thus can simulate a system in which the cost of exceptions is zero.

They presented two benchmarks, a destructive tree modification which generates large

amounts of garbage, and an interactive benchmark which simulates interactive activi,ty

with a Smalltalk system.

In a system implementing a remembered set system the destructive benchmark spent

about 7Vo of the time checking and entering entries into the remembered set. A page based

card system used about 8Vo ín servicing exceptions and marking pages. However the extra

work involved in traversing the pages to find roots of reachability (some 57o extra) reduced

the overall performance of the page card system. On the interactive benchmarks the overall

performance was very similar. It seems difficult to make any firm conclusions about the

relative merits of either scheme. Improvements in the speed of exception delivery can only

reduce the impact of an activity that currently only accounts for 5Vo of the running cost.

The above work was done on an interpreted Smalltalk system. Hoskings and Moss

suggest that when native code is used the costs of garbage collection will begin to increase

in importance as garbage collection will not increase in speed. Thus the costs of page

traversal will grow in importance, swinging the balance in favour of remembered sets and

run-time checks. In support of a page cards system we should note that when native code is

used the overhead of the interpreter is removed and the costs of the runtime checks will

also become more important. Native code generation is also considerably simplified when

it does not need to incorporate such tests. The current native code generation for Napier-88

[Bushell, Dearle et al. 1994] achieved significant speed improvements simply through the

removal of the interpretation control loop and overhead of parameter marshalling. A

doubling of performance through such improvements will double the impact of run-time

tests for pointer assignment on system performance.

2.7.2.2. Object Residency Test

Similar arguments can be made for the costs of object residency tests. However there is a

considerable amount of flexibility available to the designers of systems when object

movement is implemented. Earlier we have reviewed systems which use individual run-

time checks, utilise exceptions to trigger object fetching, use the method dispatch

mechanisms to short circuit the run-time test, use run-time checks but read from a memory

mapped store through to pure page based systems.
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Hoskings and Moss also gompared the relative costs of using exceptions to trigger

fetching with method dispatch. Their results confirm method dispatch as a highly efficient

mechanisms for those systems which can exploit it. They found that exception based

triggering performed significantly poorer. However this is in a system in which the store

system is distinct from the object residency management.

When a system utilising either explicit tests or method dispatch, fetches objects into

addressable memory it will often incur a page fault because the area of memory into which

the data is to be placed is, until then, unused and no physical memory is mapped. Fully

integrated page based systems, those in which the provision of swap space is integrated

with the stable store do not suffer from this since the provision of mapped physical

memory occurs as patt of the faulting mechanism. Such integration is possible using the

Mach External Pager mechanism described in chapter 4 and is also provided in the

Grasshopper operating system described in Chapter 7.

Similar arguments about the relative impact upon native code upon comparisons

between exception based systems and those employing run-time residency checks can be

made. As the code becomes more efficient the costs of run-time checks will become more

important.

2.8. Comparisons.

Table 1 below presents a comparison of the major issues described for the discussed

systems. The table compares the following design features:

Orthogonal PS: whether the system presented can be considered to provide

persistence as an orthogonal attribute.

PS Model: the model of persistence provided by the system.

R = Persistence by reachability.

VM = Persistent virtual address space.

File = Persistence through the file system.

Separate Addrs: whether the system maintains separate addresses in addressable

memory and the persistent store.

Object Format: The manner in which objects are described an recognised by the

various sub-systems.

M = Multiple, separately coded object formats.
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a

N4/P = Multiple separate formats plus pointer CDR coding.

C = Single canonical object format.

Sym = Object formats determined from complier symbol tables.

Crossing Map: whether the system uses a crossing map to locate the beginning of

objects.

Pointer Location: the manner in which the system identifies pointers.

Tag = The hardware provides segregated tag bits.

ST = The system implements softwa¡e tagging of pointers.

Obj = The system identifies pointers from the object format.

Sym = The system uses compiler generated format information.

Access Protection: the manner in which the system is able to protect data from

illegal or unsafe access, it the system is able to.

HW = The system provide hardware enforced access control.

SìW = The software enforces access control.

Object Table: the system utilises an object table to describe the contents of

addressable memory.

Auto Data Alloc: the system supports automatic allocation of data.

Data Moved By: the mechanism by which data is moved to and from the

persistent store.

M = Microcoded special instruction

OS = Data is moved by direct action of the operating system.

U = Data is moved by code executing in the user space.

Move Trigger: the mechanism which triggers the data movement system.

H = The system hardware directly causes the code to run.

E = A system exception mechanism triggers data movement.

UT = A user level test is required to begin data movement.

PID Bits: the number of bits available in a persistent object identifier.

HW Addr Bits: the number of bits notionally available on the host hardware to

address data.

a

a

a

a

a

a

a

a
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a Integrated Swap: whether the system is able to directly evacuate objects from

addressable memory to the persistent store to avoid pressure on physical memory.

Garb Coll: whether the system supports garbage collection to free either

addressable or persistent memory.

Page Cards: whether the system utilises a page protection mechanism to

implement generational garbage collection. (Opt = optional.)

Rememb Set: whether the system implements a remembered set to support

generational garbage collection.

ML = That the system effectively provides a remembered set through the

maintenance of a list of modified objects that must be retained.

Store GC: whether the system provides a mechanism to separately garbage collect

the persistent store.

Explicit Commit.: whether the system both provides and requires a special

function that copies the system state into the persistent store.

Language Spec: whether the system is specifically designed for the use of a

particular language.

Native Code: whether the system is currently able to support the use of code

generated native to the underlying hardware.

No Checks: whether, if native code were generated, the code could execute

without the need to check for constraints imposed by the support system.

a

a

a

a

a

a

a

a
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Orthogonal PS Y N Y Y N N N Y Y N N Y
PS Model R File VM VM R R R R R VM VM VM
Separate Addrs N N N N N Y Y Y Y N N N
Object Format M M/P M c c c M c Svm Svm c
Crossing Map N Y N N N N N N Y N Y
Pointer Location Tag Tag Tag ST ST ST ob¡ obi Svm Svm obj
Access Protect HW HW HW SW SW SW SW SW SW
Object Table Y N N Y Y Y Y Y N N N
Auto Data Alloc Y Y Y Y Y Y Y Y N N Y
Data Moved by M OS OS OS U U U U U OS OS U
Move trigger H E E E UT UT M UT UT E E E
PID Bits 38 32 128 50 15 31 31 31 31 64 32 32
HW Addr bits 38 32 128 50 16 16 32 32 32 32 32 32
lntegrated Swap Y N Y Y Y Y N N N N N Y
Garb Coll Y Y Y Y Y Y Y Y N N Y
Page Cards N Y N N N Opt N N Y
Rememb Set N N Y N N Y ML ML N N N
Store GC Y N N N N N Y Y N N Y
Explicit Commit N N N N N N Y Y Y Y Y N
Langage Spec Y* Y N N Y Y Y Y Y N N Y
Native Code Y* Y Y Y N N N N Y* Y Y Y
No Checks Y Y Y Y N N N N N Y N Y

Table 1. Comaprison of salient features.

2.8.1. Notes.

. The Rekursiv is considered to be language specifTc because it is necessary to

provide a completely separate microcoded instruction set to support new

languages.

. The Rekursiv is considered to support native code generation by virtue of its

microcoded instruction set, although the complexity of the environment provided

and the restrictions to a single language per instruction set make this classification

somewhat equivocal.

. The Napier8S POMS implementation is listed as supporting native code

generation since a native code generator is currently under construction.
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Chapter 3. Pointer Swizzling

3. I . Introduction

Most persistent and database prograÍìming languages are supported by an object store, a

conceptually inf,rnite repository in which objects reside. In order to manipulate these objects,

they must be fetched from the object store into directly addressable memory, usually virtual

memory. In systems which support orthogonal persistence [Atkinson, Bailey et al. 1983]

this is performed transparently. Thus in these systems, two different kinds of object

addresses may exist: those in the backing store (persistent identifiers or PIDs) and those in

directly addressable memory (virtual addresses).

Many researchers have argued that large pointers (anywhere up to 128 bits) are required

to support persistent systems lCockshott and Foulk 1990; Rosenberg 1991]. Persistent

pointers need not be the same size as those supported by virtual memory (usually 32 bits);

indeed persistent identifiers may be arbitrarily long. The persistent address of an object may

be mapped onto a virnral address in a number of ways:

. Dynamically translate from a PID to a virnral address on each dereference.

o Make an object's virn¡al address coincident with its persistent identifier.

o Perform a once only translation from a persistent identifier to virtual address,

overwriting the copy of the persistent identifier in the virtual address space with a

virnlal address so that all subsequent dereferences incur no translation penalty.

This last option has become known as poínter swizzling and is the subject of this chapter.

The first option, dynamic translation, is seldom more efficient than swizzling [Moss 1991].

The second option is only possible if persistent stores are small enough to be contained

within the virtual memory. All these techniques have been used to implement persistent

object stores [Kaehler and Krasner 1983; Cockshott, Atkinson et al. 1984; Vaughan,

Schunke etal.1992).

Pointer swizzling may be performed at a variety of times, the ea¡liest being when objects

are loaded or faulted into memory; this is termed eqger pointer swiuling. The latest time

swizzling may be performed is when a pointer is dereferenced, and is termed lazy pointer

swizzlíng. When swizzled objects are removed from virtual memory, virtual memory

pointers must be replaced by PIDs; this is often referred to as unswiuling or deswizzling.

Eager pointer swizzling has some advantages; in particula¡, if a data set may be identified

in its entirety, all the pointers may be swizzled at once, avoiding the necessity to test whether
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a reference is a PID or a virtual address prior to every dereference. However, this approach

has the disadvantage that pointers may be swizzled, involving some computational expense,

and never used.

Some systems use an ad hoc swizzling scheme; in these systems persistent pointers are

the same size as VM addresses and may be coincident with the virtual address space.

Whenever possible data is simply copied at the appropriate position into the virtual address

space from the store. However if the appropriate region has already been allocated, swizzling

is employed. It is believed that a variation of this scheme is also used by Object Design

[Lamb, Landis et al. 1991].

In persistent systems it is unusual to be able to identify a self contained data set and some

Iazy swizzling is unavoidable. As described in the previous chapter many persistent systems

that employ swizzling rely upon a software test to distinguish between PIDs and local

addresses. Recently, schemes have been described which avoid performing these tests by

performing pointer swizzling at page fault time [Wilson 1991]. This chapter describes a

hybrid technique which offers many of the advantages of both these approaches.

The remainder of the chapter is structured as follows: firstly we will describe a typical

software address translation scheme. This is followed by a discussion of Wilson's scheme: a

technique for performing pointer swizzling at page fault time. Next we introduce a new

scheme which is a hybrid and performs swizzling in two phases and an analysis of this

scheme is made. We also suggest some implementation techniques that may be utilised in

conjunction with such a scheme. The chapter concludes with a comparison of the three

architectures.

3.2. Software address translation

The first object systems to be called persistent [Atkinson, Chisholm et al. 1981; Atkinson,

Bailey et al. 19841 performed lazy pointer swizzling implemented entirely in software. In this

section, for illustration purposes, we will concentrate on one of these, the Persistent Object

Management System written in C, the CPOMS [Brown and Cockshott 1985]. The CPOMS

is the underlying system used to support implementations of PS-algol [PS-algol 1988] under

Unix.

The persistent store implemented by the CPOMS is a large heap with objects being

addressed using persistent identifiers (PIDs). PIDs may be arbitrarily large but in current

implementations PIDs are identical in size to the normal pointers used by the PS-algol run

time system [PS-algol 1985]. PIDs are distinguished by having their most significant bit set.
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Hence it is possible for the PS-algol run time system to distinguish between a valid address

in virn¡al memory and a PID.

PIDs are pointers to objects outside of the program's virtual address space, therefore the

objects to which they refer cannot be directly addressed by a PS-algol program. To ensure

that PIDs are not dereferenced, a test is made prior to the use of any object address; in the

PS-algol system this test is made using in line code. When an attempt to dereference a PID is

detected, the referenced object is fetched into memory and the PID is swizzled and replaced

with the appropriate virtual address. This process is shown in Figure 15 below in which

objects B, C and E have been fetched into directly addressable memory where they are

represented by objects B', C' and E'. Note that some references within virtual memory are

virn¡al memory addresses whereas other are PIDs.

V¡rtuol Memory

PID

Persistent Store

Figure 15. Swizzling in PS-algol

PS-olgol Object PIDLAM PS-olgol Object PIDI-AM

first time lookup
ond ¡nsert¡on

Figure 16. Looking up a PID in the
PIDLAM

Figure 17. Overwriting a PID by a
virnral address

The CPOMS maintains an Object Table (termed the PIDLAM (the PID to Local Address

Mup).When a PID is first used and the object to which it refers is copied into local memory,

the PID is entered into the PIDLAM along with the virnral address of the copy as shown in

Figures 16 and 17. Therefore, if another instance of the same PID is encountered, the
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address of the copy can be found from the PIDLAM. This is necessary to preserve referential

integrity in the running system.

Although relatively simple, this mechanism compromises performance in five areas:

1. all the address translation is performed in software,

2. all pointer dereferences must be checked using software to ensure that the pointer is

not a PID,

3. disk fetches occur on a per object basis,

4. large objects must be copied into virtual memory in their entirety, and

5. every unswizzled pointer to an object must be swizzled at the time of dereference,

even if the referend is resident in local memory.

The first, fourth and last of these problems may be eliminated if the hardware address

translation mechanisms can be exploited. As stated earlier, this is only possible if the

persistent identifier of an object is made coincident with its virtual address; clearly this

approach results in relatively small stores on32 bit architectures. The second problem may

be eliminated if persistent addresses are illegal virtual memory addresses since an access will

cause the ha¡dware to raise an exception. This is only more efficient if the operating system

provides a light weight exception mechanism. The CPOMS partially addresses this problem

by eagerly swizzling certain pointers and in so doing avoids some checks. For example,

pointers loaded onto a stack in the dynamic call chain are eagerly swizzled. The third

problem may be overcome by amortising the cost of disk access across many object fetches.

3.3. Address translation at page fault time

Wilson [Wilson 1990] describes an approach that employs both pointer swizzling and page

faulting techniques. The basic strategy is to fetch pages of data into virtual memory rather

than individual objects. As pages a¡e fetched, they are scanned and all (persistent) pointers

are translated into valid virtual memory addresses. References to non-resident objects cause

virtual memory to be allocated; these pages are fetched only if the pointers into them are

dereferenced. In Wilson's scheme, pages of data in virtual memory only contain valid virn¡al

memory addresses, never persistent identifiers.
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Virtuol Memory

Foult

PersisÌeni Store

B

Figure L8. Page faulting and allocation in'Wilson's scheme

Figure 18 shows Wilson's scheme in operation; in the diagram, a non-resident persistent

object on page A (i.e. an object on a page that has not been fetched into virtual memory) has

been accessed. This will cause a copy of page A, denoted A', to be fetched into virtual

memory. At this time, the page is scanned and all the pointers in it are swizzled into valid

virtual memory addresses. Since page A contains references to objects on pages B and D,

locations for pages B' and D'must be allocated in virtual memory and the pointers into those

pages swizzled to the addresses of B' and D' with appropriate offsets added. Virilal memory

must also be allocated for page E since objects from page D overlap that page. Note that the

loading and swizzling of pages B', D'and E'is performedlazily: only space is allocated for

them in virtual memory. This mechanism causes virnral memory which may never be used to

be allocated. Since pages B, D and E may have already been faulted into virtual memory, a

translation table similar to the CPOMS PIDLAM must be maintained to avoid loss of

referential integrity.

When a reference to a previously unseen page is encountered whilst scanning an

incoming page, three actions are required. Firstly a new translation table entry for the page is

allocated. Secondly, the store is interrogated to discover the page's crossing map (described

below). Thirdly, virtual memory space is allocated for the page. Interrogation of the store is

potentially expensive and since it is performed eagerly, at page fault time, is a potential

D

l
E
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performance bottleneck. A later version of Texas has eliminated the second of these steps. It

no longer uses a crossing map but instead ensures that page boundaries coincide with page

boundaries using padding to fill any resultant holes.

When apage is scanned, it is necessary to find all the pointers on that page. A single bit

crossing map mechanim is used to enable objects to be found when scanning a page.

In Wilson's scheme, page evacuation from virtual memory is convoluted. This problem is

exacerbated by the fact that virtual memory is eagerly allocated and hence the need to reuse

virtual memory addresses potentially more frequent. If a set of pages is written back to

persistent storage, the pointers in those pages must be deswizzled into PIDs by consulting

the translation table. However, if virtual memory is exhausted and a virtual memory range is

to be reused by another persistent page, all pointers which refer to the old contents must be

removed.

A translation table that contains an entry for each instance of a referend object can become

very large. V/ilson proposes a scheme in which the translation table provides a per page

rather than per object mapping. To implement this, PIDs are structured so that the offset

within the holding page of an object is encoded into thè object's PID. For example,

assuming 8k byte pages and word alignment of objects, eleven bits are needed to describe

the offset. This leaves 53 bits of. a 64 bit PID to identify the page. The structure of PIDs is

depicted in Figure 20 below.

This scheme has two advantages. First, it is only necessary to maintain a mapping from

pages within the large persistent address space to pages in the machine virtual address space.

This table is relatively small and of fixed size. Secondly, an object's offset is required in the

construction of a swizzled pointer. If the offset were not coded into the PID, further

interrogation of the store manager would be required, adding extra cost to the swizzling

process.

3.4. A hybrid approach

The CPOMS and systems like it require software tests prior to each object dereference to

check if the pointer being dereferenced is a persistent identifier. Wilson suggests that pointer

swizzling may be performed at page fault time. This implements a barrier that ensures that a

running program may never encounter a PID. However this is not achieved without cost;

space must be allocated in virtual memory for every page referred to by data resident in
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virtual memory. V/hilst this does not seem too onerous it has some unfortunate

consequences.

Firstly, space in virtual memory is allocated greedily, this may cause virtual memory to

become exhausted even although much of it has not been used. The counter argument says

that many programs will have a high degree of locality of reference. However consider an

array of large objects such as images - whenever the array is faulted into memory, enough

virtual memory must be allocated for all the referenced images. It is likely that such an

operation would be common in persistent applications although uncommon in traditional

database applications. Applications involving geographical information systems or

multimedia systems will suffer especially.

'We now describe a hybrid a¡chitecture which does not require software checks for pointer

validity and does not involve greedy allocation of virtual memory. The architecture is

designed to support PIDs which address a space much larger than virtual memory and makes

the requirement that PIDs a¡e at least twice as large as virtual memory addresses. From this

point on, to ease discussion, we will assume that a PID is 64 bits and virtual memory

pointers are 32 bits.

In this architecture, pointers a¡e swizzled in a two phase process: first at page load time to

refer to an entry in a translation table and secondly to a virtual address when the referend

object is first accessed. When pages are first accessed, they are copied from persistent

memory into the virtual address space and scanned to find the pointers contained in them.

Rather than allocating virtuat memory for every page referenced by the page being faulted in,

as happens in W'ilson's scheme, the long pointers contained in the page are swizzled to refer

to either:

. entries in a translation table if the referend object is not present in virtual memory

(p artially sw ialed), or

. a virtual memory pointer (fully swialed) if itis.

The translation table used in this scheme may be similar to either the one used by the

CPOMS (a per object translation table) or by Wilson (a per page table). The table contains

the persistent and virtual address (if any) of all objects (or pages) referred to by objects

resident in virtual memory. For the remaining discussion we will assume a per page

translation table. Unlike the CPOMS, the table is protected from any access by the user

process, thus when a partially swizzled pointer is dereferenced an access fault occurs. This
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triggers the second phase of the swizzle in which the pointer (currently containing the table

entry address) is overwritten with the virtual address of the referend.

Wilhin o running progrom pointers moy be eifher
virtuol oddresses (fully swizled) or references to objects
vio the Tronslotion Toble (portiolly swizled.)

V¡rtuol Memory Tronslotion Íoble

Swizzled Non-Resident

Fully Swizzled

NO ACCESS

Persistent Slore

A B E

Figure 19. Partially and fully swizzled pointers

3.4.1. Exceptions

Using access protection of the translation table to trigger swizzling and page load has the

disadvantage that whilst the mutator must be denied access, the exception handler must be

free to read and modify the table. This situation is also found in some garbage collection

schemes [Ellis, Li et al. 1988]and the solutions are the same. If the exception and fault

handlers are implemented within the kernel they can make use of the full access accorded the

kernel to user address spaces. A simple implementation has the exception handler make

appropriate protection calls during its execution. These calls can add significantly to the cost

of the scheme and make it impossible to allow more than one mutator to run concurrently.

Alternatively it is possible to place the translation table within the user's virtr¡al address space

but to have a protected area of the same size at high memory to which all the partially

swizzled pointers refer. When interpreting pointer values during swizzling and deswizzling

the offset between the translation table and the protected area is subtracted from the pointers

Portiolly Swizled Resident D'

D
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to provide the actual address within the translation table. This allows the system to be

implemented without modifying the operating system kernel.

A different mechanism for trapping partially swizzled pointer access is available on many

newer architectures. This is the unaligned access fault. Many modern processor

implementations do not allow for access to data on arbitrary address boundaries [Sites

19931. This saves complexity in the memory controllers and significantly speeds up the

speed of the systems. If an access is attempted to a data item at an unaligned address an

exception is generated. Thus legal pointers in such systems may not have their least

significant bit set.

If a pointer is stored within the system referring to a translation table entr!, but with the

least significant bit set, any attempt to access using the pointer will result in an exception.

This is true even when access is made to fields within the object referred to by the pointer

since the low order bit will propagate through the address arithmetic. This scheme has two

advantages.

1. There is no need to protect the translation table from access, or to provide a

protected surrogate.

2. The cost of the exceptions are lower. As described in the previous chapter,

exceptions involving memory access protection require extra effort on the part of

the kernel to discover the precise nature ofthe exception before it is delivered to the

user level.

Thus the translation table may be placed in unprotected memory, and each partially swizzled

pointer contains the address of the appropriate table entry but has its least significant bit set.

When a partially swizzled pointer is dereferenced an unaligned access fault will result. After

masking out the least significant bit of the faulting address the table address can be

determined.

3.4.2. Data Load.

If the referend is not resident in virtual memory, the page containing it must be loaded from

the persistent store. To do this, the PID, which may be found in the translation table, must

be presented to the store manager. Using this the store manager can supply the appropriate

page containing the object or portion thereof. Once the page is loaded the partially swizzled

pointer is overwritten with the virtual address of the object and the object dereference can

proceed. The page load may result in new entries being created in the translation table. In
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contrast to Wilson's scheme it is only when an object is used that the store is interrogated to

discover how much virtual memory must be allocated.

V/hen a persistent pointer is fully swizzled half the space in the pointer is unused - this

space may be used to store the address of the corresponding translation table entry. This

allows the pointer to be easily deswizzled. h a partially swizzled pointer the space is used to

store the offset within the page at which the object begins. This offset, when combined with

the address at which the page is placed when it is faulted into virtual memory, forms the

object address of a fully swizzled pointer. The store formats for pointers and the translation

table entries a¡e shown in Figure 20.

Portiolly Swizled
This 32 b¡t field used for
mochine oddressing

Poge Offset Toble

Fully Swl¿ed

Toble Address

PD

Portiolly Sw¡zled for
unoligned occess

Tronslolion Toble Enfry

Leost significont bit
set, ensures unoligned
occess exception

Choin Pointer Poge
Ofüet

Toble
lndex

Poge ¡dentifier port of PID

Mork Flog

VM Address

Figure 20 Pointer and translation table formats

The translation table maps from page identifiers in the persistent store to pages within the

machines virtual address space. Each translation table entry holds the page identifier freld of

a persistent identifier, a virtual memory address, a residency bit and a mark bit. If the

residency bit is set the virtual memory address holds the address of the corresponding page

in memory, otherwise it may contains the head of a partially swizzled pointer chain which is

discussed next. The formats depicted in Figure 20 assume a32bitvirtual address space and

a page size of eight kilobytes.

3.4.3. Eager Swizzling

The eager swizzling technique described by Wilson has the advantage that when a page is

faulted into memory all the pointérs which refer to objects on that page are automatically

53 bits rl

l* rr oiir|-32bits+

32 blts 32 bits

20 bits l32 blts

53 bits + 30 bits +

l9 +ll bits-+
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correct (since those pointers already refer to the correct virn¡al addresses on that page). A late

swizzling scheme does not have this advantage, however this may be. simulated. A form of

eager swizzling can be provided by threading a linked list called the partiaþ swiuled pointer

chain through of all instances of pointers referencing objects on a page. V/hen an object is

faulted into memory the swizzling code not only swizzles the pointer that caused the fault,

but follows the chain and swizzles as many other pointers as it can. This is eager pointer

swizzling; as discussed earlier, this is only more efficient if some of these pointers a¡e used.

This very much depends on the nature of the system, programs and programming languages

being used and the marginal costs of creating and following the pointer chains versus the

cost of on demand per pointer swizzling.

As described the pointer formats do not provide space for the link field needed to

implement the partially swizzled pointer chain. The chain may be implemented by using one

of the following:

. Making PIDs large enough to accommodate the link. Expanding PIDs to 96 bits

also has the advantage of providing a much larger address space. It has the

disadvantage of increasing object size.

. Using a per object translation table. Using this technique the translation table

pointer field in a partially swizzled pointer uniquely describes the referend object.

The upper half of the pointer does not contain the page offset and is free to hold the

link field. However per object translation tables can become very large.

. By encoding the information. The problem is that 30 bits are required to implement

the chain (assuming word alignment.) The table address requires 28 bits (assuming

16 byte table entries), the offset requires 11 bits, Ieaving only 25 bits free.

Therefore another five bits are required. These bits may be stolen from the table

address if the translation table is made 32 times as large as normally required.

If implemented upon a system using unaligned access faults rather than protection

faults the encoding can be achieved without stealing bits. Since dereferencing a

partially swizzled pointer with the least significant bit set will always result in an

exception the pointer can hold whatever is needed in the remaining bits. To save

bits we hold the index into the translation table rather than the absolute address of

the entry. Thus only enough bits a¡e needed to hold the index, plus one to ensure

the address is unaligned. To cover a32 bit address space of 8 kilobyte pages this
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requires 20 bits, leaving twelve bits to store the within page offset. This leaves the

upper word of the pointer free to store the partially swizzled pointer chain. The

number of bits needed to store the within page offset increases as page size

increases. However the size of the translation table falls with increased page size at

the same rate. Thus this mechanism works for all page sizes.

Address Spoce Portiolly swÞled poinler choin Tronslotion Toble

swi¿ed poinlers
refer lo lronslotion Toble enlry

New
Poge

Figure 21 A pointer is inserted into the partially swizzled pointer chain

The partially swizzled pointer chain is formed as pages are loaded into virtual memory. If an

instance of a PID is encountered which is already in the translation table, the head of the

partially swizzled pointer chain is loaded into the unused space in the partially swizzled

pointer and the address of the new instance is copied into the chain pointer head stored in the

translation table entry. This process is shown in Figure 21 above.

During the execution of a program, some of the pointers in the partially swizzled pointer

chain may have been overwritten by the user making (64 bit) pointer assignments. Such a

break is simple to detect when the chain is being scanned since an overwritten pointer will

not refer to the expected table entry. If the chains are broken, it is not possible to find all the

instances of a partially swizzled pointer. However, the remains of the chain will continue to

exist and many of the pointers in it may be still be swizzled through the partial chains

referenced by the translation table entry and the pointer being swizzled. Also, future

dereferences of pointers in a partial chain will permit yet more pointers to be found and

swizzled at lo'w cost. It is possible to maintain intact pointer chains by requiring that code

doing pointer assignments perform list insertion and deletion as part of the assignment

process. We consider that this would be too expensive for the marginal gains.

3.4.4. Deswizzling

Virtual memory addresses may only be interpreted inside the address space in which they

'were created. Therefore the only meaningful addresses that can be used in pages outside of a

PID t
Choin
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virtual address space are PIDs. The necessity to make copies of pages outside of a virtual

address space arises for two reasons:

. to send pages to a process resident within another virtual address space,

. to send pages back to the persistent store.

This requires the pointers within the page copies to be fully deswizzled (PIDs). This is

performed by following the reference to the translation table entry contained within the

pointer and overwriting the pointer with the PID found in the table.

The management of pages within the virn¡al address space involves the allocation and control

of two resources:

. physical memory, and

. virtual memory.

Physical memory is a finite resource and is often not large enough to hold the working set of

pages used by a program. Pages will be removed from physical memory either to make room

for another page needed for computation to continue, or when data is shared between

separate virtual address spaces. 
'When 

a page is removed from physical memory, pointers

within it must be deswizzled as described above. A page which is not resident in physical

memory may still reside within the virtual address space of the process.

In a persistent system the integration of swap space and persistent storage provides

considerable advantages. We therefore assume that pages removed from physical memory

are either returned to the persistent store or to another persistent application using a coherent

DSM protocal such as that described in the next chapter.

Virtual memory is also a finite resource. Programs that use very large data sets or those

which are very long lived may eventually exhaust virtual memory. Indeed, the architecture

described in this chapter is designed to support such programs. 'When virtual memory is

exhausted, virtual address ranges require reuse in a manner analogous to the reuse of

physical memory. It should be noted that both Wilson's scheme and the hybrid design

require that virtual memory addresses be reallocated in such a way that the reallocated ranges

do not divide objects.

When a page is removed from the virtual address space, it must also be removed from

physical memory if resident. At this time all references to that page from within virtual

memory must also be removed. This involves ensuring that all references to objects in the
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removed page are partially swizzled pointers by deswizzling the appropriate fully swizzled

pointers.

3.4.4.1. DeswizzlÍng in Wilson's Scheme

Wilson proposes a scheme to reclaim pages of virtual memory that works as follows. First

all of virtual memory is protected from access. Whenever the mutator attempts to access a

page that is protected from access two actions are taken. First, the page protection is

removed. Next, the page is scanned to find all pointers on it and any referenced pages are

marked. Finally the mutator is resumed. As the mutator executes it constructs a new working

set of pages. At some time in the future any page that is neither open for access nor marked

as referenced may be reused. Once page reuse has begun it is possible that when a protected

page is scanned a pointer to a reused page will be encountered. \iV'hen this occurs a new

range of virtual addresses must be allocated and the pointer changed to refer to this new

location. This process is similar to the greedy allocation that occurs when apage is retrieved

from the persistent store described earlier.

3.4.4.2. Deswizzling in the Hybrid Scheme

The hybrid scheme provides greater flexibility in address space reuse. Since partially

swizzled pointers do not directly reference virtual addresses, fully swizzled pointers may be

replaced with partially swizzled. This allows address ranges within virtual memory to be

reused whilst references to objects that once resided within those addresses remain in virtual

memory. In the hybrid scheme page reuse occurs as follows.

During normal execution a candidate set of page ranges can be identified for reuse, using

conventional LRU techniques. This may be integrated with the LRU scan used to manage

allocation and reuse of physical memory. When it becomes necessary to reuse virtual address

ranges, access to virtual memory is denied as in Wilson's scheme. However, in the hybrid

scheme reuse can proceed immediately. Those address ranges considered as candidates for

reuse may be reused as soon as their contents are secure in the stable store. An exception will

occur on the first access to a page since reuse started, again the exception handler scans the

page in the same manner as Wilson's scheme. However rather than allocating new address

ranges for those pointers that reference reused addresses, pointers to objects within reused

address ranges may be replaced with their partially swizzled form. Thus partially swizzled

pointers serve two purposes: to permit virtual memory to be deallocated at low cost and as a

mechanism to avoid greedy allocation of virtual memory.
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In addition to the mutator causing pointers on pages to be deswizzled, it is advantageous

to provide a parallel sweep of virtual memory that eagerly scans pages and deswizzles

pointers. Once all virtual memory has been swept, all allocated pages will be open for access

and no direct references to deallocated pages will exist. The mutator can attempt to reference

a page that is tagged for reuse by dereferencing through a partially swizzled pointer. If this

page has not been reused and is still resident in memory it need only be removed from the

reuse set and scanned for pointers. The partially swizzled pointer is fully swizzled and

execution continues. It is not necessary to reuse all address ranges tagged for reuse. At any

time ranges can be removed from the reuse set and references to objects within them left

intact.

The ability to choose the number of pages to be reused ahead of time, which pointers to

deswizzle, and the rate of progress of the parallel sweep provide useful tuning parameters to

the memory management system. Setting the system to label all pages as reused, and to

untag any referenced pages upon page scan effectively reduces to Wilson's scheme.

Labelting all pages as reused, and deswizzling all pointers encountered effectively frees the

entire virtual address space. A complete spectrum of choices is available within these

extremes.

3 . 4.5 . Elaboration of detail

The above description glosses over a large number of important details namely:

. finding object addresses,

. pointer comparisons,

. large objects,

. management of the translation table,

. creation ofnew objects,

' exception handlers, and

. access to the translation table.

We will now proceed to describe these implementation details.

3 .4.5 .t. Finding object addresses

When an access is attempted through a partially swizzled pointer three actions are required:

1. find the object to which access is being attempted,

2. overwrite the pointer with the virtual address of the referend, and f,rnally,
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3. update the saved state ofthe executing code's register set to refer to the object.

None of these activities is straightforwald, and requires detailed study at the basic level of

the machine's operation. Consider the code fragment shown in Figure 22below, a$pe tuple

is declared to be a record and an instance of that type is created. Later in the program a field

of an instance of type tuple is dereferenced.

type tuple is record( a,b,c,e,f,g: Ínteger )
let an instance:= tuple( 1,2,3,4,5,6)

write an-instance.f

Figure 22Dereferencing a field of a record.

Consider the implementation of the program above. The pointer denoted by an-instance may

be partially or fully swizzled; an aim of the architecture is to avoid user code having to test

which of these it is. Fully swizzled pointers do not present a problem: the dereference is

performed without incident. A partially swizzled pointer will result in an attempt to access an

address within the translation table and this will cause an access fault. However, the address

that causes the fault will not be the address of an_instarzc¿'s translation table entry since an

offset will have been added to the object pointer in order to extract the field. Hence, although

an access fault will deliver the address of the fault to the exception handler, the address will

not directly resolve the identity of the required object. Similar problems occur in the other

two phases; the swizzling code must be able to find and swizzle the object pointer, but

ordinarily there is no record of the location of that pointer. If this swizzle is not performed,

the system reduces to a translation per dereference design.

In the hybrid system, the saved state of the executing thread is repaired by an exception

handler which must therefore be able to determine which machine registers contain the

addresses requiring change. This can be arbitrarily difficult; to make the problem tractable

steps must be taken to ensure that when an object reference is made, it must be performed in

such a way that allows the recovery of the information needed to complete the swizzle. This

requires a specification of the object access process at the machine code level.

All of the information required will ordinarily pass through the processor during the

execution of a dereference sequence. The difficulty is in keeping track of this information

and making it available to the exception handler. A similar sequence is executed whether the

access is a read or a write. In general a dereference takes place in three steps and is shown in

Figure 23 below:
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1. The address ofthe pointer to the head ofthe object being referenced is loaded into a

register.

2. Using that address, the address of the object is loaded into a register.

3. The offset within the object is added to the object address and the result used as the

address of the memory access.

For the mechanism described in this chapter to work, the only changes required to this

sequence are to ensure that the pointer address is not overwritten after the pointer value is

loaded (which ordinarily is a legal optimisation) and to ensure that the instruction sequence

always uses the same registers for this purpose, allowing the exception handler to find the

necessary addresses.

Address Spoce

Mochine registers

Pointer refers to
object heod.

Register holds oddress
of po¡nter to be
dereferenced,

rcr>

Accessed field is

€r> object heod + ofüet
Pointer + Ofüet

Figure 23. The three steps in pointer dereference

The result of these restrictions is a scheme in which during a dereference operation two

registers are reserved for particular purposes. Firstly a Pointer Pointer register is loaded with

the address of the pointer to the object being dereferenced. Next the Object Pointer register is

loaded with the value referenced by the Pointer Pointer register. This value is either the

address of the head of the object (for fully swizzled pointers) or the a reference to a

translation table entry (for partially swizzled pointers). Finally, the offset is added to the

contents of the Object Pointer register (with a single indexed addressing mode instruction)

and the result used as an address to effect the dereference. If the pointer is partially swizzled

an exception will occur. The exception handler will receive either an address within the

Poinler Address È
Pointer Volue

Offset

I
Offsel

ü
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translation table (when using protection faults) or an unaligned access (when using unaligned

access faults), allowing it to distinguish the exception from any others that may occur. In

processing the exception the exception handler places the fully swizzled value of the pointer

in both the location referred to by the Pointer Pointer register and into the Object Pointer

register, then the instruction that caused the exception is restarted. If the pointer is fully

swizzled then the instruction will execute without incident and with no extra cost. This

process is shown in Figures 24, 25 and 26 below. The Pointer Pointer and Object Pointer

registers are only special during the process ofa dereference, they are available for general

use at other times.

The access protection mediated mechanism relies on the translation table residing in

protected memory and an exception being raised when access to that memory is attempted.

When the offset is added to the Object Pointer it is possible for a legal memory address to be

generated. This may be avoided if the translation table is positioned with a guard area of

protected memory above it. This technique results in the need to restrict object size to be no

larger than the guard area maximum object size.

Address Spoce Tronslolion Toble
Portiolly swizled
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refers io TT entry.
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couses excepTion.

Offset wilhin o poge of on
is stored in the top port of
o port¡olly swizled poinler,

Tronslot¡on Toble enlry
contoins lhe oddress of
the poge conloining the object.

Figure 24. Pointer dereference via a partially swizzled pointer using address protection
exceptions.

An implementation utilising unaligned access exceptions does not suffer from this restriction,

nor is any guard area required. Instead the value ofthe pointer is an encoding ofthe index

into the translation table containing the appropriate entry, but with the least significant bit set.

The generated code must however never add any offsets to the base pointer except those that
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are multiples of the machine word length. This is not an onerous restriction, since under

normal circumstances it would result in code that would generate unaligned accesses. Here

we are utilising the efforts of the compiler to generate correctly aligned accesses to ensure

that accesses are unaligned. Some architectures do allow arbitrary alignment of accesses

when a single byte quantity is accessed. On these machines the compiler must not generate

such code sequences. However such sequences are usually no faster than providing for

machine word data movement since the memory controller usually fetches a full word

anyway, and provides a read, modify, write cycle for a byte write. Architectures such as the

Atpha AXP do not support byte accesses at all and always require the compliler to generate

such sequences.
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Figure 25. Pointer dereference through a partially swizzled pointer using unaligned access
exceptions.
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Figure 26.Dereference after the completion of swizzling

The scheme described above is directed at those processor architectures that only support

simple addressing modes and require a number of instructions to carry out a dereference.

Some processors are capable of executing the sequence described above in a single

instruction, on such architectures the exception handler can decode the instruction pointed to

by the saved PC. Such a scheme can be more flexible for two reasons. Firstly it may use

many different addressing modes and secondly, it is not necessary to designate particular

registers since the instruction will indicate unambiguously which registers are being used and

for what purpose. However, the complexity of the exception handler is higher. Most

a¡chitectures with more complex instruction sets allow for arbitary access alignments.

Therefore they cannot implement a system based upon unaligned access exceptions.

3.4.5.2. Pointer comparisons

Since a pointer can exist within the system in one of two forms, care must be taken with

pointer comparisons. Pointers can either be partially swizzled in which case they contain an

offset and a reference to their translation table entry, or fully swizzled, in which case they

contain a translation table reference and a pointer to the actual object. These two forms can be

differentiated since the translation table and object area occupy distinct address ranges. In

both formats a reference to a translation table entry, and the page offset is present, it is

therefore enough to compare these values when performing pointer comparison.
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3.4.5.3. Large Objects

Objects which cross page boundaries and more importantly very large objects which span a

large number of pages require no special treatment. When an object spans more than one

page it is not necessary for the whole object to be resident at one time. However it is

necessary to reserve enough virtual memory to hold the object in a contiguous span so that it

is possible to fault the rest of the object into memory as it is required. This preserves all the

advantages that a demand paged virtual memory space has for sparse access to large objects.

3.4.5.4. Management of the translation table

The scheme described uses a translation table similar in format to that used by Wilson.

Whereas translation tables in Wilson's scheme are of fixed size, only describing pages in the

machine address range, our scheme requires a table that provides entries for every page that

is referenced by pointers within virtual memory. Growth of the translation table takes the

place of greedy allocation of virtual memory in'Wilson's scheme.

The table has two major const¡aints placed upon its organisation: f,rrstly, translation table

entries a¡e referenced directly by objects, therefore table entries may not move. Secondly, the

action of swizzling pointers requires that it is possible to find entries from their PID quickly,

otherwise the swizzling on page fault becomes a performance bottleneck.

Since pages are removed from the virtual address space, the translation table will

eventually contain entries for pages which are not referenced from the virtual address space.

By a simple modification to the scan used to deswizzle pointers during reclamation of virrual

address ranges, these stale entries can be garbage collected. Any pointers found during the

scan may be followed and the ma¡k bit set in the referenced translation table entry. Once the

scan has completed, the translation table is scanned and those entries without a mark bit set

may be reclaimed. During this scan partially swizzled pointers for which the referend is

resident may also be swizzled. Thus the reclamation pass through memory results in all

references to resident objects being fully swizzled, stale entries in the translation table being

eliminated and the freeing of virtual memory.

3.4.5.5. Creation of new objects

Many objects are created during the execution of user code; many of those objects will be

short lived and therefore not require the allocation of a PID. Objects only require a PID when

they become visible outside of the virtual address space in which they were created. In

practice, this means an object that already has a PID acquires a reference to them.
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We now describe a scheme whereby the allocation of PIDs is performed at the latest

possible time. Pointers to new objects only contain the object's address; the field that would

ordinarily refer to the translation table address is set to a sentinel value that indicates that the

object does not yet have a PID allocated. When a page is deswizzled, pointers to objects

without PIDs will be detected. At this time, a PID is allocated and a translation table entry

created.

3.5. Comparison of the schemes

Table 2 below summarises the main design features and costs of each of the three schemes

described.

. Granularity is the size of the entity which the swizzling scheme manages.

. Code compatibiliryr lists those areas in which specific changes to the code running

on the system must be made.

. Dereference overhead is the extra cost (if any) of performing a dereference

operation.

. Assígnment is thrc size of the data assigned in pointer assignment.

. Object fault overhead lists the main activities that must be performed when a

reference to a non-resident object occurs.

. Recovery of VM lists what actions are required when virtual memory is exhausted.

. Recovery of Translation Table lists what actions are required when space for the

Translation Table is exhausted.

. VM space allocation lists the entities for which virn¡al memory must be allocated.

. VM space usedlists the entities for which virn-ral memory is used to hold data.

. Translation Table allocation lists the objects for which an entry in the Translation

Table must be made.

. Deswizzle action compares the costs of deswizzling a pointer.

. Stabilisation Action lists the actions required to stabilise the state of the system to

persistent storage.

. I-arge object overhead compares the use of virn¡al memory to hold large objects.

. Sensitivity to exception handler speed compares how performance is affected by the

exception handling mechanism.

. OveraII VM space compares the use of virtual memory of the systems.
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CPOMS WilsonFeature/System Hybrid
Object Page PageGranularity
Software check per
dereference

No implications Use ofdefined sequence
for dereference, and
pointer comparison

Code compatibility

Dereference
overhead

Software check per
dereference, possible
swizzle

None Usually none, possible
swizzle

Assignment Virtual address Virn¡al address Twice virtual address

Object fault
overhead

Copy single object
from store

Copy page from store
and swizzle internal
pointers. For each new
referenced page,
interrogate store and
allocate memory

Copy page from store,
swizzle internal pointers
and follow pointer
chains ifused

Rebuild system if VM
exhausted

Invalidate VM and
rebuild

Invalidate VM and
rebuild

Recovery of VM
space

Fixed size tableRecovery of
translation table

Rebuild system if
Object Table exhausted

Garbage collect
translation table

VM space
allocation

Accessed objects All referenced pages Accessed pages

Accessed pages Accessed pagesVM space used Accessed objects

Entry per page of VMTranslation table
allocation

Accessed objecæ Entry per page of VM

Follow pointers to PID
stored with object

Search translation table
for object entry

Follow pointer to
translation table

I)eswizzle action

Per modified page:
Deswizzle pointers,
write page to store

Stabilisation
action

Per modified object:
Deswizzle pointers,
write object to store

Per modified page:
Deswizzle pointers,
write page to store

Accessed pages kept in
virtual memory

Large object
overhead

Entire object kept in
virtual memory

Accessed pages kept in
virtual memory

Slight impact High, less when swizzle
chain is used

Sensitivity to
exception handler
speed

Little impact

Lowest Highest LowOverall VM space

Table 2. of schemes.

Each of the three systems described has particular strengths. The CPOMS design is the most

parsimonious in the use of virtual memory, but also the one with the highest run time

overhead. Wilson's design has the lowest running costs when not page faulting, but the

highest page fault costs. If the amount of virtual memory used becomes large Wilson's

scheme must incur the cost of rebuilding the working set and expense of an extra translation

table. Hence'Wilson's design is probably best suited to environments small enough for it

never to be necessa{y to recover allocated virtual memory. Applications with shorter lifetimes

and smaller data bases would be most suitable. The hybrid scheme has running costs simila¡

to that of Wilson's design, has lower page fault costs, and is able to recover virtual memory

99



and translation table space more easily. This is at the cost of forcing the use of a special

dereference instruction sequence, and double length pointer assignments.

Pointer swizzling may be cha¡acterised by the time at which: pointers to be swizzled are

encountered, translation table entries are allocated, memory for the object is allocated, an

object is loaded from the store, the initial pointer that refers to the object is swizzled. Further

characterisations are: whether other instances of the pointer to the same object are swizzled at

the same time, and whether pointers within objects newly faulted into memory are swizzled

to refer to resident objects. Each of these activities may be performed either eagerly or lazily,

Table 3 below summarises the characteristics of the three systems described.

Feature/System CPOMS Wilson Hybrid
Locate pointers Luy Eager Eager

Translation Table
allocation

Luy Eager Eager

Allocation of VM Luy Eager Luy
Object Loading Lazy Luy Lazy

Swizzle to VM
Address

Luy Eager Luy

Swizzle other
pointer instances

Luy Eager Eager/Lazy

Swizzle new
pointers

Luy Eager Eager

Table 3. Swizzling system charaterisation.

3.6. Conclusions

This chapter describes three architectures capable of supporting arbitrarily large persistent

identifiers and large object stores using conventional hardware. Two of these represent

opposite ends of a design spectrum; the third is a hybrid architecture which embodies useful

attributes of the other schemes and which has some useful attributes in its own right. The

hybrid architecture maintains the advantages of lazy swizzling found in the CPOMS and

simila¡ designs namely only allocating space for objects, and fetching objects, when they are

referenced. The hybrid design also maintains the advantages of page based designs,

requiring no runtime checking of pointers and allowing sparse references to large objects

without the need to copy entire objects into virtual memory. A design for machine level

dereferencing has been presented that allows exception handling code to swizzle pointers on

demand without requiring checking by user code.
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Chapter 4. Store Architectures

4.1. Introduction

In the previous chapters we have examined the mechanisms by which implementations of

orthogonal persistence manage the contents of volatile addressable memory and abstract

over the movement of data between addressable memory and persistent storage. In this

chapter we examine the mechanisms through which the persistent store is created and

managed.

Persistent systems provide a paradigm in which the programmer is freed from all

considerations of the locality of data. The distinction between the volatility of addressable

memory and the pefinanence of disk or other stable storage is removed. Further, a

programmer is encouraged to view the persistent environment as immortal, one in which it

is both reasonable and natural to place both processes and data.

Conventional operating systems only offer the most basic of mechanisms to maintain

such an abstraction. Persistent storage is either completely untyped (such as files under

Unix) or rigidly typed (such as in conventional data-base systems). Such systems have

considerable difficulty in capturing the full state of a programming system. This is partly

due to the semantic mismatch between the data structures used in the supported

programming language and the underlying storage mechanisms (consider for instance,

attempting to map a program into a relational database), and partly due to the inability of

these conventional systems to provide integrity guarantees that allows the programmer to

ignore the consequences of system failure (when for example maintaining free form data in

a Unix file).

Freed from these failings, and operating within a system in which the entire program

state is retained in a reliable manner, a free and rich programming style can evolve. Whilst

such are some of the goals of persistent systems, clearly the implementor shoulders

considerable extra responsibility in manufacturing such an illusion. This chapter is about

manufacturing that illusion and the burdens shouldered.

4.2. Basics

For a persistent store to be truly orthogonal it should provide a store of infinite size, speed

and perfect reliability. This frees the user level from any concern over perfoÍnance,

limitations on data and reliability. Clearly these are unattainable aims, however the

demands are important and shape the design of persistent stores.

I
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4.2.1. Size

The capacity of a store limits two things: the ability to store new things, and the ability

to modify existing things. Clearly if a user must keep track of the capacity of the store, the

persistence abstraction is no longer orthogonal. Limitations on modification occur because

the store must always be able to capture a new consistent view of the computation without

compromising the integrity of the store. This will inevitably require some extra storage to

hold the state of modified and new data (whether in separate logs or within the store itself).

If only some of the new state can be accommodated, or if the system makes an external

commitment that the program state is recoverable (such as might be required in a

transaction processing system) then later finds insufficient storage to meet these

commitments the system must be regarded as having failed.

4.2.2. Speed.

A system in which the speed of access to some data differs from others in a manner

related to the manner of its storage also compromises the orthogonality of the persistence

abstraction. It is clearly not possible to manufacture a store of infinite speed. However

implementations of persistent stores should add as little penalty in performance as possible

and not create any further unevenness in performance. This thesis is partly concerned with

attempts to make persistent stores perform as well as possible, and to at least make

persistent stores perform no worse than the mechanisms for persistent storage and data

access in conventional systems.

4.2.3. Reliability.

The persistence abstraction is compromised if the user of a system is required to

explicitly consider issues of resilience and recovery in the face of system failure. Again,

perfect reliability is never possible. This chapter only considers issues of recovery from

simple machine failure (often termed fail stop). Issues of loss of persistent media,

replication of data or computation and recovery from incorrect computation are not

covered.

4.3. Stability and Resilience

When considering persistent stores two terms are of particular importance; these are

stabíIity and resilience .
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. Stability means that data is stored within some persistent media and will continue

to reside there. It will survive system shutdown and restart, and will survive

cataclysmic failures such as system crashes and power failures.

. Resilience means that the stable data continues to be useful after any such

cataclysm. Stability covers the mechanics of storing data, resilience covers the

mechanisms used to manage that storage so that some internally self consistent

view of the persistent system is always recoverable no matter what calamity

befalls it.

When addressing these calamities two separate kinds of failure need to be considered,

these are usually termed soft and hard failures respectively.

4.3.1. Soft Failure

Soft failures can be characterised as those that do not result in physical damage to any

components. After such a failure the contents of the store are held on stable media.

Causes of soft crashes are essentially these: power failures, benign hardware failures,

operating system crashes and user software errors. A study by Tandem [Gray 1990]

showed that the vast majority of soft failures were due to software faults (some 807o), the

minority to hardware and power failures.

4.3.2. Hard failure

Hard failures are characterised by the loss of, or damage to, portions of the persistent

media upon which the system maintains the persistent store. Also included in hard failures

is com:ption of disk data. Tactics for dealing with hard failures are categorised as:

. Single Unit Failure

. Site Failure

Single unit failure addresses the probability of an individual device becoming defective

and failing. Failures include disk head crashes, controller failure, failures which may

randomly strike any one device at any time.

RAID (Redundant Array of Inexpensive Disks) is a generic term used to describe

techniques where an array of disks is used to provide a single highly reliable logical

device. Often the schemes used can also produce logical devices with greatly improved

performance. Chen et al [Chen, Lee et al. 1994] characterise RAID strategies into seven

categories, these they term level zero through to level six.
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Level0 is a system with no redundancy.

Level 1 is disk mirroring. Fault tolerance is achieved by duplicating each disk drive and

ensuring that all disk write operations occur to both disks. Writes may occur

asynchronously although some mechanism must be available to detect which disk

is the most up-to-date upon restatr from a soft failure. Read operations can occur

on either device and some performance improvements are available by splitting

read requests between disks.

Level2 is memory style EEC coding. The data is divided between the disk drives by

dividing each word of stored data into individual bits and allocating bits to each

drive. By supplying extra disks and applying Hamming error corecting coding

techniques it is possible to build an ¿uray in which the loss of a single disk drive

does not result in the loss of any data. Data must be read from all disks or written

to all disks for each disk operation.

Level 3 is bit interleaved parity coding. This is an improvement upon level 2 because

unlike memory systems, in general, disk systems are able to detect which disk has

failed, thus the same level of reliability is assured with only one extra disk. Like

leve|2 all disks must be accessed in each operation. Simultameous access to all

disks results in very large transfer rates but an access rate no better than a single

disk.

Level 4 is block interleaved parity. Rather than split data bitwise across disks, data is

split into blocks of arbitrary size. For reads smaller than the block-size only one

data disk need be accessed. Since data blocks are on individual disks parallel

accesses can be performed. Write requests must write the new data and also

update the parity disk. A read-modify-write cycle is, in general, needed to update

the parity blocks. Thus the parity disk is a bottleneck to performance.

Level5 is block interleaved distributed parity. This scheme eliminates the parity disk

bottleneck of level 4 by distributing the parity blocks across all the disks. Data is

also spread across all disks, therefore there is an extra disk across which to spread

requests above level 4. Modify requests must still perform a read-modify-write

cycle to update the parity blocks but this is now distributed across all disks and

ceases to be a bottleneck. Level 5 has become the mechanism of choice or most

RAID systems.
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Level 6 is termed P + Q redundancy and describes schemes in which Reed Solomon

coding [Lin 1970] is used to protect against multiple simultaneous disk failures

using a distributed parity mechanism similar to that used in Level 5 designs.

4.3.3. Site Failure

RAID techniques are directed at occasional random device failures. They are unable help

where large scale loss or damage occurs. At the other extreme of reliability issues is the

loss of an entire site. Loss can occur from catastrophic causes such as fire, flood or terrorist

attack or simply the result of power or communications failure that make critical data

unavailable

Applications that require tolerance of the loss an entire sites typically duplicate (minor)

the entire site. Should the primary site hosting the system fail for any reason, operation is

intended to resume transparently on a backup site. For the most part these techniques are

beyond the scope of this thesis although characterising the replication of data and

computation is explored in Chapter 7.

4.4. System reference model

We now introduce a reference model and terminology which will be used for the remainder

of this discussion. This model is applicable to the majority of conventional hardware

realisations.

Execution must occur through the mutation of data resident within addressable memory.

Current realisations of fast addressable memory are volatile, that is they will loose their

contents when power is removed. Persistent data in conventional architectures is not

directly addressable by the execution engine (processor) and as a consequence a copy of

the persistent data must be made in volatile addressable memory to enable persistent data

to be manipulated. Managing this movement in a transparent manner was the subject of the

previous chapters, managing the state of the store is the subject of this chapter.

To aid in discussion the following terms are introduced.

. Persistent Space: The conceptual environment in which programs execute.

Provision of this space is the goal of the systems described.

. Volatile Space: The combination of addressable memory and external state (as

viewed by VO operations) in which programs actually execute.
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. Persistent Store: The physical disks and other persistent media which, in

combination with their management software, provide storage for the persistent

space.

. Persistent State: A particular version of the state of the computation of the

persistent space resident and resilient within the persistent store. There may be

more than one Persistent State.

. External Guarantee: An assurance that some execution history has occurred and

that this history is reflected in the Persistent State. (For example a traditional

transaction.)

In a single process, single user, system only one volatile space is encountered and the role

of the persistent store manager is to ensure that the contents of the persistent store reflects

at least one internally self consistent view of the persistent space, that is at least one

persistent state. To create a persistent state the contents of the volatile space must be

combined with the current persistent store in such a way as to always yield an internally

self consistent new version of the persistent store, one that is in agreement with the

external perception of the persistent space. This action is variously termed commit,

stabilise or meld. Since the terms commit and stabilise are used in a great mâny contexts

and their use often causes misunderstanding we will follow Dave Munro [Munro 1993] in

using the term meld henceforth. In its simplest form melding can be modelled as a

synchronous copy, directly to the store, of those parts of the volatile space that have been

modified since the last meld.

However, the concept of meld becomes more complex when external perceptions of the

persistent state are considered. Often systems make certain guarantees about the state of

the persistent store. In particular, the notion of transactions require that the user level code

has some control over the exact time and nature of data melded with the store. As we

develop a model of persistent stores this will become increasingly important.

In a concurrent or distributed system there may be many volatile spaces, each reflecting

their own view of the persistent space. These views must be coordinated in such a manner

that the combination of the component stores is itself internally self consistent.

Characterising, modelling and implementing management schemes that provide this

guarentee is the ultimate aim of much of the remainder of this thesis.
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4.4.1. Self Consistency

Above we used the notion of self consistency in an informal sense. More formally we can

describe self consistency in a persistent store as requiring the store to represent the

execution of the persistent system either at some particular moment in time or representing

some particular correct execution of the persistent space. The latter definition becomes of

greater importance as we begin to discuss distributed and concurrent systems where no

single execution state is visible at one time. Indeed the state represented within the store

may never have existed at any one time. However if it represents a correct possible

execution history it is regarded as self consistent. 'We term this consistency of

representation of the persistent state internal consistency. V/e will return to the definition

of consistency in Chapter 7 when it will be treated formally in a discussion of distributed

systems.

V/hilst a realisation of a persistent system is able to control the representation of the

persistent space within its stores, often this state only makes sense in combination with

outside information, state information over which the store has no direct control.

Communication with this external state through appropriate VO operations must be taken

into account by the store mechanisms to ensure that the composite state of external and

internal state is consistent, we term such a composite state externally consistent. This

notion will become of increasing importance as the discussion proceeds.

4.4.2. Synchronous and Asynchronous Creation of Persistent State.

In many systems providing persistent storage, it is the store that provides the user level

program with the ability to make external guarantees. For example, using a store interface,

a user program can enforce any guarantees required by the higher level views of the

system. Often user level requests to meld the volatile state with the persistent state are the

only time new persistent states are created. However this need not be the case.

The relationship between external notions of recoverable state and the actual

implementation of persistent state is another place where tactics to improve the

performance of persistent store a¡e available.

In long lived computational intensive tasks (such as simulation) the creation of new

persistent states is useful to allow the computation to be able to recovered from some

intermediate state if a system failure interrupts it. Often such action takes place

asynchronously to the execution of computation within the persistent space.
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4.4.3. Modelling.

We introduce a method of modelling systems which present persistent views of data using

four abstractions. These are:

. The external views: the store guarantees the client level that some resilient self

consistent states are preserved and available within the store. A store must present

at least one such view, some stores may present more.

. The internal views: These are the resilient self consistent states which the store

contains. The store has not made any external guarantees about the availability or

permanence of these states.

o I baseline: this is a distinguished self consistent persistent state internal to the

store which fully captures the state of the supported client system. One of these

will always exist within a store, trivially a newly created, empty store is one such

baseline.

o d stable but inconsistent state: these a¡e the va¡ious pieces ofdata copied from the

persistent space which do not currently form part of any internally consistent state

representation.

The store is modelled as a single synchronous entity. Relative to the store a single

computation proceeds on a time-line of totally ordered events. The four abstractions above

represent state at specific instances of computation on this time-line. These can be

represented in what we term and BIES (from Baseline, Internal, External and Stable)

diagram.

Ex¡ernal

Baseline

Stable Inconsistent

Itme

Þ

ã

Figure 27. ABIES time line.

The componets of a BEIS diagram are depicted in Figure 27 above. The diagram represents

progress in time progressing to the right, individual aspects of the store state are placed on

the time line at the times for which they represent the history of the store.

In representing the state of a store with a BIES diagram rüe can note that any external

view must correspond to some internal view, although additional internal states that have

In¡emal
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not been associated with an external state may also exist. Stable but inconsistent state will

in general represent state information in advance of the external view, any such state

preceding the extemal view is of no use and subject to asynchronous deletion.

4.5. Mechanisms

A store viewed externally presents nothing but its external views, these are guarantees of

the availability of resilient states, states to which the store will be able to restore the state

of the persistent space. Internally the representation of data may be implemented using a

number of tactics. Maintaining the external semantics of a store whilst exploiting the

allowable gap between the volatile state and persistent state is the core of store

management techniques. This is the subject of much of the remainder of this chapter.

4.5J. Snapshots

The most basic mechanism in creating a self consistent view the persistent space is to take

a copy of the volatile space as an atomic action. This mechanisms has become known as

snapshotting.kt terms of the BIES representations, a new snapshot is a new baseline, and

both the external and internal views of the store are tied to the baseline. Once a new

baseline is created the old one is obsolete and whatever resources it used can be reclaimed.

Stable but inconsistent state only exists whilst the new snapshot is created, the mechanisms

of creation and the role of stable inconsistent data will be discussed later in this chapter.

In¡emal

Boseline

,ime

Extemal

Figure 28. Snapshot time-line.

Snapshots are a simple and valuable mechanism and are employed in the majority of

persistent store implementations. Since a snapshot captures a complete view of the

system's state without requiring any extra work to re-create this state when needed,

snapshotting schemes are often termed no-urtd.o no-redo [Bernstein 1987].

4.5.2. Increment¿l baseline generation

In systems in which data is asynchronously written to the store (in particular systems

which integrate swapping of virtual memory with the stable store operation) stable data is
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recorded which is inconsistent with the other data in the store. This data can be utilised in

the generation of new baseline states.

In Figure 29 below three data items (4, B & C) have been modified by the user level

program. These items are asynchronously copied back to the store where they are stored in

such way as their previous versions (those that form part of the baseline) are still retained.

When at some later stage all three data items have versions resident in the store that are

consistent with one another a new baseline can be created.

Cop¡- of volatile versions Volatile vetsion

of A & Bwrinen rc store of A nodifed.
New cop¡" of A
\9riilen ro s|orc

I

^ ã-']
tilriting of C to store completes the data set

required for a consistenl state.

time
', New baseline can

be creoted.
Stable and vola¡ile versions of dala
ore coìncident for length of arrow.

Figure 29. Asynchronous copies of data can be assembled to create a new baseline.

4.5.3. Logging.

The state ofthe persistent space need not be represented by a snapshot. Once one snapshot

exists within the store (the baseline) other versions of the persistent space can be

represented by a sequence of changes, commonly termed a log. Logs allow the external

view of a store to be derived from a baseline snapshot made at a different time to the

external view. Thus the persistent space is reflected in the store by a combination of

baseline and log. An important part of this notion is that the baseline snapshot may be in

aàvance of the guaranteed external view. In this case the log maintains a set of changes

which effectively undo computation and allow the store to present the required external

view upon recovery.

In order to make appropriate guarantees of recoverable state, the log must itself be

resident on, and recoverable from, persistent media. The balance between the frequency of

creating baseline snapshots, size of logged information and the frequency of writing logs to

the store allows tuning of implementations to best serve the demands made upon the store.

4.5.3.1. Modelling Logging.

Logging may be divided into two different mechanisms; both involve the recording of

changes to some baseline. Logs that describe changes to a baseline that existed earlier a¡e

B

c

Baseline
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known as a redo logs. Logs that record changes relative to a baseline that represents a later

time than the times represented by the individual log entries are known as undo logs. Both

kinds of log can be combined together allowing an external state to be regenerated either

side of a baseline.

Redo

Mosl rccent
internal

ltme

Baseline

Figure 30. Redo log. The external view from the time of the baseline to the endmay range
of the 1og.

Most recen¡
internal

ltme

-

Undo

+

Baseline

Figure 31. Undo Log. The extemal view may range from the time of the beginning of the
log to the time of creation of the baseline.

Logging can potentially provide extremely fine grained recovery. Each log entry may hold

arbitrarily small changes to the state of the store. However, in order to use such fine

grained recovery, log entries reflecting these changes must be written to the persistent store

with the same period as the granularity in time for which recovery is expected. Usually this

period will be coincident with the advancement of the external view of the persistent space.

Thus, no matter how fine grained the log entries are, they need not be written until the

external view advances. The opportunity therefore exists to batch together log entries and

improve performance.
Mosl recenl
intemal

Redo
New most recenî
intenal

îtme

Ex¡emal New External

Bæeline

Figure 32. Redo log. Log entries in interval ß can be written in a single operation, often
improving system performance.
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4.5.3.2. Undo and Redo in the one store.

Clearly a store can implement a combination of both undo and redo logging. Such designs

allow the external view to range over times both before and after the baselines creation.

Unsurprisingly such tactics are termed undo-redo.

Redo

Most recen,
internol

Baseline

Undo

Exter4al

þ

time

Figure 33. Undo Redo Logs. The external view can range over a large range.

4.5.3.3. Recovering logs

Logs can potentially grow indefinitely. As execution continues some mechanisms are

required to recover the space occupied by logs. Such techniques usually involve building a

new baseline. 'Whenever a new baseline is generated any part of a redo log describing

changes ea¡lier than the time of the new baseline can be truncated. A new baseline can be

created in one of two ways.

1. A new baseline can be generated by snapshotting the current state of the volatile

space into the store. This results in a baseline that exactly corresponds with the

current state of execution. Care must be taken if this new baseline is in advance of

the external view. An undo log must be created from which the external view state

can be created from the new baseline, or the old baseline and log must retained

until the external view advances past the new baseline.

2. A new baseline may be constructed by applying the changes listed in the redo log

to the current baseline. Traversing the log can yield a new baseline at any of the

times for which log entries were made and still exist. Such a baseline is thus

independent of the current volatile state. Thus a baseline can be constructed that

corresponds to the external view without requiring the construction of an undo

log.

The first option has become known as immediate update, the second as deþted update.

The terms immediate and deferred rcfer to the relative times between the real time and the

time represented by the new baseline. Where immediate update is used often the creation

of the new baseline is done when the external view of the store is advanced (the users

program requests a meld) thus avoiding the need to create an undo log.
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4.5.3.4. Replay Logging

So far we have not considered logging beyond a simple notation of whether logs retain

either undo or redo changes. However the nature of the information logged has a great

bearing on the nature of the store system. At their most basic log entries may contain a byte

for byte description of changes that affect the raw data within the persistent store. (Such

descriptions are sometimes colloquially known as dffi, from the name of the Unix utility

that creates difference summaries.) However this is not the only possibility.

Often the higher level programs which operate upon a persistent space do not embody

any state of their own. A database engine is a good example. Such systems mutate the

persistent space in response to high level commands. If such a system does not include

extra state other than that within the persistent space and operates in a deterministic

fashion, logging of the external command stream provides exactly the same information as

a redo log which logs the changes to the persistent space. This technique is usually termed

replay. Since replay is usually impossible to construct in such a way that it can run

backwards, undo logs are rare.

Figure 34 below, represents such an equivalence. The units depicted respond to a high

level command stream. The system on the left represents the persistent store as a utilising

baselines and a redo log. The redo log lists incremental changes to the baseline state. The

unit on the right logs input commands. In both systems re-creation of an external view

involves traversing the log, the system on the right replays logged commands to the

compute engine. Both systems a.re externally identical.

High Level Command Stream

Changes lo slore
High level
commnds logged

made as transaclions.

chonges to Persislenl Onh mak¿s
Space logged of Persislent Space

Redo Log Replay Log

Figure 34. Equivalence between redo and replay logging schemes.

Deterministic computation does however require extra care in implementation. In general,

all outside communication must be logged and be capable of re-execution. Such

communication must include system calls and any other contact with the environment

external to the persistent space. For instance replay of a call to the system time function

Compute

Compute
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must appear to return the time of the original computation, not that of the replay. Secondly,

truly concurrent programs are prohibited. They may however be simulated by co-routines

in which scheduling is deterministic. Implementation strategies and operation system

designs to provide such a computation environment are covered in detail in Chapter 7

4.5.4. Nested Store Strategies

Schemes where high level logging is used can be described in terms of nested BIES

models. Figure 35 below, depicts the same scheme as that from Figure 34 above, now

revealing the BIES representation. In addition to the redo log used to implement replay, the

system depicted also uses a redo log, of changes to the underlying data base. In this

example the inner store may log coarse grained changes to the store whilst the external

view may log input commands at a much finer grain. The users view of the entire system is

one of very fine grained reliability.

External

Baseline

Retlo

Ex¡emal

Intemal

Intemal

Redo log of input events

time

Enemal v¡ew from existing store
provides baseling view for next

n:!:tiry-s.-s-tgrs---

Baseline

Redo log of changes to database.

time

Figure 35. Nesting of store models represents high level logging.

4.5.5. Output in replay systems

When a system reconstructs its state from logged information through replay, output

operations will also be replayed. Two options are available for dealing with replayed

output.

1. If output operations are idempotent they may be safely replayed. This may

involve unnecessary effort during replay, but requires no special action during

normal logging.

2. If output operations are not idempotent, or the extra effort involved in output

during replay is considered onerous, the system can employ a mechanism to

discard output. To do so requires that a stable counter is kept of the number of
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output operations performed in the original computation. During replay a count of

replayed output operations is kept and all output discarded whilst the replayed

output counter is less than the counter for the original computation. This requires

the extra effort of maintaining a stable counter of output operations. Update of

this counter must be atomic with the output operation.

Unfortunately such update is intrinsically impossible. However careful

implementation can make failures during such an atomic output arbitrarily

unlikely. Battery backed-up, or other non-volatile addressable storage is often

utilised to improve the reliability of such mechanisms. Some peripheral devices

are also designed with non-volatile storage and implement a transactional output

abstraction, further improving reliability of atomic output.

4.6. Concurent Access, Distributed Systems and Multiple stores.

Thus far we have only considered systems with a single logical store and a single user

process. When more complex systems are to be built we are faced with the existence of

many concurrent users of a store system, the use of many separately managed stores aûd a

combination of the two. The characterising of such systems and the manner in which they

operate is only described in general terms, detailed discussion will be left until later

chapters. Here we are interested in the demands these systems place upon the design of the

stores themselves and tactics which store implementations can use to aid the operation of

such systems.

'When faced with many stores we are faced with the possibility of many external views

of persistent state, each corresponding to a different time. The manager of the combined

store is responsible for coordinating these views so that there always exists at least one self

consistent globat view. This consistent view is know as a consistent cut [Schwarz and

Mattern 19921.

The simplest approach to the creation of a consistent cut is for the global store manager

to synchronously force each internal store to create a new external view. Thus each store

provides an external view at the same time and the global view is trivially comprised of the

component stores. However this is both heavy handed and usually unnecessary.

Three important tactics allow the global store manager greater freedom in maintaining a

consistent global view. Theses are:

. causality tracking[Schwarz and Mattern 1992),
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. replay ofoutput, and

. exploiting log granularity.

4.6.1. Causality Tracking

A component store of a multiple store system can individually meld so long as the

modification of data in the store remains independent of the modification of state in other

stores. If the global store manager has access to the communication between separate parts

of the system it can determine the causal interdependencies of its constituents and is only

required to force synchronous melds of interdependent stores.

Stores used in such systems can aid the management of the distributed persistent state

by providing more than one external view. This can be accomplished by allowing more

than a single baseline to exist in snapshotting stores or by exploiting the nature of logging,

discussed next (or indeed a combination of the two).

The distributed Casper system described in Chapter 6 implements a limited form of

causality tracking to achieve the opposite effect. By tracking the interdependencies of

individual concurrent user programs, a single store performs the minimum work needed to

take a snapshot of a subset of user programs at a time. It operates with a single central store

that implements a noundo-noredo snapshotting store.

4.6.2. Replay of Output.

Thus far we have described replay logs as requiring stable storage of their own. However if

a program is simply dependant upon the output of another program for its input we may be

able to dispense with the full contents of a stable relay log by recreating the input stream

through replay of the generating program. This places the some of the burden of reliability

upon the generator program and the store that holds its state. A simple chain of processing

can therefore be recreated without requiring full logging of input at each stage of

computation. However more complex patterns are possible. Programs may be mutually

interdependent upon one another for the creation of input events, thus potentially creating

unresolvable interdependencies. Mechanisms to control such computations are described

by Mattern [Mattern 1990], Sistla and'Welsh [Sistla and Welch 1989], Strom and Yemini

[Strom and Yemini 1985], and Johnson and Zwaenepoel [Johnson andZwaenepoel 1990].

Stores used by these schemes must provide a logging capability (although truncation of

the log is partially under the control of the distributed control mechanisms) and stores

utilising the Strom and Yemini algorithms must be able to maintain multiple snapshots.
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(Truncation of the history of baselines is also under the control of the management

algorithm.)

4.6.3. Exploiting Log Granularity

Logging provides the ability to regenerate the contents of the store at a fine grain. By

apptying only part of a log upon recovery a store is able to generate a continuum of

possible times, one for each log entry. This can considerably ease the constraints for

fïnding a consistent cut in a multiple store system. Logging stores therefore do not simply

provide a single external time at which they can provide a self consistent state, but rather

provide a set of times.

A system in which multiple persistent stores must be reconciled to maintain a consistent

global state can take advantage of this freedom. Such system can avoid synchronised

creation of external views when creating a global external view, and allow individual

stores managers to execute asynchronously. In Figure 36 below, a single global store

presents an external view that is composed of two separate stores. Both internal stores are

implemented using redo-logs. By making use of knowledge of the range of external views

possible from these stores the global manager can construct a consistent state. The

overlapping range of log times allows an external time to be created from a time starting at

the beginning of the log of Store B up to the end of the log of Store A.

Global Extemal View Range

Overlap in times at which stores
are able to recreate stale allows
both stores to be reconciled and
create a consistent global state.

Store A

Enemal A Extemal times for
stores conflict

Store B

l. Extemal B

+
îtme

Log Overlap

i Redo
Ex¡emal

Most recent
inlenal

i Redo
External

Mos¡ recent
intemal

time lime

Boseline Baseline

Figure 36. Logging creates greater freedom in reconciling stores.

117



This form of reconciliation of multiple stores is characteristic of those required by the

Johnson andZwaenepoel algorithm. It allows a single central coordinator to use baselines

and logs in individual stores to provide a single global time.

4.7. Trade-offs

Clearly the majority of implementations will aim for the highest possible performance.

However in general there is a clear trade-off between three competing store requirements.

These are the speed of:

. operation during normal running,

o recovery after a failure, and

. advancement to new external view.

The design aims of the user level system will largely dictate the strategy taken in store

implementation. For example a transaction processing system will probably aim for highest

performance in generating new external views, and thus may elect for a redo or replay

logging scheme. Systems which provide highly available critical systems may elect to

place highest priority on speed of recovery and may elect to use a noundo/noredo (for

example a snapshotting scheme), where a consistent persistent state is always available.

Persistent programming environments may elect to use strategies that emphasise

performance in general operation, and schemes which allow for integration with system

page swapping.

Logging systems provide the opportunity for creating hybrids of performance goals. For

instance aggressive truncation of redo logs can be performed asynchronously and deliver

fast transaction processing with very good failure recovery performance.

4.8. ImplementationStrategies.

A common denominator in store implementations is that at ieast one internally self

consistent and useable version of the persistent state is always available on stable media.

The exact manner in which the state is represented is open to considerable variation, but

like physicians obeying the creed "Do no harm" implementors of persistent stores heed a

similar maxim. At no time may any situation arise in which the stable state of the system

does not contain at least one consistent state" Two important steps are discussed below.

These are:
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. The mechanism by which a store atomically progresses from one external view to

another. The mechanism discussed is Challis's Algorithm.

. The mechanism by which persistent state is held whilst stable inconsistent data is

also stored and the manner in which the two are reconciled. The mechanisms

presented are generically termed shadowing stores, and we discuss two tactics for

implementation of shadow stores.

4.8.1. Challis's Algorithm

In all persistent systems there must be a stable fixed point from which the recoverable store

state can be found. The creation of this fixed point is complicated by the nature of the

hardware commonly used. Almost all persistent storage is implemented atop magnetic disk

drives. These have the common attribute that all data is stored in fixed sized sectors,

typically of 512 bytes, although some devices support other sizes. Thus the smallest datum

that can be written as an atomic operation is a sector in size. However when confronted by

all possible failure modes of a system it is not possible to guarantee that a sector write will

complete successfully. The problem of creating a new descriptor for a store is solved by a

mechanism described by Challis [Challis 1978]. The mechanism operates as follows.

f

f f

-First Root Page Second Root Page

Figure 37. Challis' Algorithm

The store maintains two separate sectors on disk each of which can each describe the state

of the store. These are often termed the root pages. At any time at least one of the two root

pages will describe a stable and self consistent state of the store. In Figure 37 the state at

time A shows the first root page describing some store state. 'When a new version of the

store state is created, it is performed in such a way that the current stable state is not

damaged. A new state superceeds the previous stable state when new description of the

store is written to the alternate root page (the page that does not describe the existing stable

state). State B in Figure 37 shows this. At this moment two self consistent versions of the

store exist. These states a¡e identified by time-stamps maintained in the root page. The root
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page with the most recent time-stamp is considered the current root page, the other is

ignored. Once the new root page is successfully written to disk the stable storage used to

represent the penultimate state may be reclaimed, as depicted in state C of Figure 37.

To detect if writing the root page to disk failed part way thorough, the time-stamp is

written at both the beginning and the end of the root page. Assuming that sectors are

written linearly we can assume that if the time-stamp is successfully written to both ends of

the sector the intervening data was also successfully written. Upon recovery the most

recent root page, with both time stamps in agreement, is chosen as the basis of the store.

Even if a failure occurred during the final writing of the new root page the previous stable

state will be available. Thus the store is resilient against any single failure of the system

during the creation of a new store state.

4.8.2. Shadowing

When the store system is required to move from one self consistent state to another it must

do so in such a way that there is never a window of opportunity in which a failure can

occur when there is not a self consistent persistent state available after recovery. Challis's

algorithm above describes how this can be acheived for the store's meta-data. Here we

describe the manner on which this is acheived for the stored data.

'Whenever data is written to the store that has been modified since the currently held

persistent state 'was built, it must be placed in the store in such a way that the existing

versions of the same data remain available. The mechanisms by which this is

acheived[Lone 1977] are termed shadow mechanisms. Shadowing is effected in one of two

ways. These ate termed beþre-look and after-Iook. Of the two, after look is the easiest to

describe and is covered first.

4.8.2.1. After-Look

An after look mechanism writes new versions of data to a new location in the store, leaving

the old version alone, and thus any existing persistent states untouched. When the new data

is to be melded into a new persistent state (a new baseline) a new version of the store meta

data describing the location of data in the store is created. Once this is performed Challis's

algorithm is used to atomically move to the new meta data is used. An after look store

always has the most recent persistent state available for immediate use after a failure. It is

therefore a noredo-noundo mechanism. After a new baseline is established the storage used

to contain obsolete data and meta data can be recovered.
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Since the after-look mechanism allocates new space for newly modified data, the

strategy has the effect of scattering data across the store as modifications occur.

Performance gains acheived by clustering data together within the store will therefore be

slowly degraded as the store operates.

4.8.2.2. Before-Look

The before-look mechanism writes new versions of data to the location in the store in

which the original version is retained, overwriting it. In order to avoid compromising the

resiliency of the store it must first ensure that the original data is safely retained elsewhere

in a manner that will allow it to be replaced should a failure occur before a new persistent

state is created. Writing of new data to the store is performed in three steps.

The otd version of the data is copied to a new location in the store (the shadow

location). Next a structure describing the location of the shadow entries is written. Finally

the new data is written to the location in the store the original occupied.

Should the store fail before a new persistent state is established the recovery mechanism

must recognise the existence of the shadow mapping structure, then use this structure to re-

establish the old contents of the persistent state. 'When a new baseline is created the

shadow map and shadow data is deallocated.

Clearly a before-look strategy is an undo system. The contents of the shadow space

have a strong similarity to an undo log. However whereas a log can be partially applied to

yield a system state at an intermediate time, a before look shadow cannot. Once the first

shadow is created for a modified datum, subsequent writing of further modifications

simply overwrite the datum in place, no extra shadow copies are made. Since data is

overwritten in place, any clustering of data within the store is preserved.

4.8.2.3. Shadow Paging

Shadow stores are a natural mechanism for the implementation of page based systems.

This is especially true for those systems which integrate system virtual memory swapping

into the store mechanism, since the shadow area naturally provides storage for swapped

data. In the next chapter a number of implementations of page based shadow paged stores

is examined.

Figure 38 below depicts the steps involved in creating both before and after-look

shadow entries in page based stores.
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Figure 38. Before and after look page map mechanisms.

4.8.2.5. Maint¿ining locality

After look schemes can recover much of the on disk locality of data they loose relative to

before look schemes. Two simple schemes are illustrative.

Modern disks often maintain alarge cache within the controller which holds the entire

contents of the just read track. Moreover, access to blocks of data is faster if the next data

requested resides in the same cylinder as the last read data, and the heads do not need to

move. Allocating data into cylinder groups is a technique used by the Unix Fast File

System that forms part of the Berkeley 4.3 release [Leffer, McKusick et al. 1989]. A

similar technique can aid performance in after look stores. Such a scheme requires that a

predetermined fraction of each cylinder is allocated for shadow use. This allocation will

shadow blocks in that cylinder group. As computation proceeds the actual identity of the

reserved shadow blocks will change, but the fraction of each cylinder allocated remains the

same. Choosing the fraction to pre-allocate is dependant upon the nature of the

computation. Clearly an allocation of one half of the cylinder will guarantee that shadow

blocks are always available, at the cost of halving the data that can be stored on a disk.

Allocating less than half requires that some form of overflow allocation mechanism is also

provided.

I
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A second mechanism to improve locality on disk is to use an asynchronous process to

move blocks of data. This is analogous to disk de-fragmentation tools used with some

operating systems. A stand-alone de-fragmentation tool must operate with the same care as

the store manager itself. It must always ensure that a self consistent store is available on

disk. Accordingly changes to the disk layout must take effect as atomic operations. A de-

fragmentation process can also be integrated into the store manager. Such a de-fragmented

may operate by modifying the volatile descriptions of the store. Later, during normal

operation, when the volatile store description is melded with the stable store all changes

will become persistent, including the results of any de-fragmentation of the store.

4.8.3. ObjectShadowing

Instead of shadowing pages of data it is reasonable to shadow full objects from the

language level. Such a scheme is used in Argus [Liskov, Curtis et al. 1987]. Shadowing of

objects rather than pages introduces a different set of trade-offs.

'When shadowing objects the entire object must be copied, this works in favour of small

objects, but becomes an increasing burden as objects become larger in size. Disk

mechanisms require a fixed size datum (block) to be written with each operation, typically

of 512 bytes but sometimes larger. For a before look scheme based upon objects, each

object modification will require this minimum transfer to effect the copy of data in the

store no matter how small the object. Furthermore the cost of initiating disk operations is

fixed (and high), no matter how much data is transferred. An after look scheme may cluster

modified objects together onto blocks and write them to the store in a minimum of

operations. However, such clustering will destroy any other clustering of objects that may

be attempted to improve performance.

4.9. Conclusions

We have described a spectrum of storage strategies and implementation techniques for the

provision of resilient stable storage. In the remainder of this thesis we will explore the

design and implementation of distributed persistent systems. Each of the store strategies

described witl be seen to have its own particular role to play in such environments.
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Chapter 5. Implementation Strategies

5.1. Introduction

In the previous chapter we have examined mechanisms for exploiting page based ha¡dware

in the provision of language mechanisms and abstraction over data movement in persistent

systems. In this chapter we examine implementation strategies for page based stores.

5.2. Related'Work.

5.2.1. Shrines

Possibly the first example of a store implementation utilising page based mechanisms was

the Shrines lRoss 1983] store. This system was implemented under the VMS operating

system and used the file mapping mechanisms provided by VMS. Shrines used an after-

look storage mechanism and operated by directly manipulating the page tables used to

describe the process virtual address space.

5.2.2. Page Based NapierSS Stores

Two stores have been constructed to support the NapierS8 system at the University of St

Andrews using page based techniques. These are the stores described by Brown and

Rosenberg [Brown and Rosenberg 1990] and Dave Munro [Munro 1993]. The system

described by Brown is implemented using a beforelook strategy, that by Munro an after-

look.

As described in Chapter 2 these NapierS8 systems manage their own area of

addressable memory within which objects are both created and mutated. Access to the

store is provided by mapping the store into a separate area of virtual memory. Objects are

copied to and from this mapped area as required by the NapierS8 run-time support system.

The method by which these stores are presented in virtual memory and the mechanisms by

which the stores are managed is described here.

5.2.3. Browns Before-Look Store

The before-look store described by Brown is presented in addressable virtual memory by

file mapping the entire store file as a single entity. The store file is divided into two areas,

one that represents the persistent virtual address space, termed the active space, and the

area in which shadow copies of modified pages are stored, termed the shadow space.

Because the shadow space is placed immediately after the active space in both the store

and virtual memory the store is unable to be extended in size once it is created.

125



Since a before-look mechanism does not change the mapping of pages in the persistent

address space to store locations, a one to one mapping of the entire store-file into the

process virtual address space can always be used and thus only requires a single call to the

mnap system call. This has the advantage of not requiring the creation of a large number of

individual file maps, each of which requires allocation of kernel data structures.

Furthermore, the store does not require a mapping table to describe the correspondence

between physical pages and logical addresses. However the store does require a shadow

map to record the mapping of modified pages to their original versions.

5,2,3,L. Operation

The operation of the shadow paging mechanism is depicted in Figure 39 below.

1. A running Napier88 program will occasionally copy objects from its local heap

back into the store. This operation modifies the data in the active space of the

mapped store.

2. When the first attempt is made to modify a page in the active space, the existing

data on the page must be copied onto a shadow page and the mapping from

modified active page to shadow page recorded within the store. Since both pages

are mapped into the processes virtual address space, copying of the data can be

acheived by copying from one address range to the other within VM.

3. The copied data is then secured in the store file using the msync system call.

4. When a page is shadowed, a new entry is made in the shadow map held within the

root block and the root block written to the store

Active page cop¡ed
to

Process Address Space

Shadow Map

Active Area Shadow Area

Modified act¡ve page may be
written to store at any time.

Root
Pages

Figure 39. Before look mechanism in Brown's memory mapped store.

Local Heap Y
One to one f¡le mapping

Store File

msync
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Melding the store is achieved by forcing the latest versions of any modified pages to the

active space in the store (again using the msync system call) and then writing a new root

block (using Challis's algorithm) with an empty shadow map to the store. This action

implicitly deallocates all those shadow pages previously in use.

V/hen recovering after a failure, the system is presented with a root block containing

valid shadow map entries. The system must restore the state of the store at the time of the

last meld using the mappings recorded in the shadow map. This is acheived by overwriting

those pages in the active area with the data in the shadow pages.

5.2.4. Munro's After-Look Store

Dave Munro describes an after-look store that supports the same NapierSS implementation

as that described above. The store provides the same interface to the NapierSS runtime

system, with objects being copied from an area of stable virtual memory presented in the

processes virtual address space, into a volatile local heap where objects are mutated and

created.

To effect an after-look mechanism a map describing the mapping from virtual addresses

to individual pages of file store must be kept. Since the mapping is arbitrary, rather than

the fixed one-to-one map of the before-look store, the store file is able to grow after

creation.

The page map is presented in virtual memory through mapping in the same manner as

data pages used for NapierSS objects. Indeed the pages used to hold the page map could be

taken from the same stock of free pages within the store. The page map is a persistent and

resilient structure, it must therefore be itself shadowed. The mapping of the page map is

maintained in a table (termed the secondary page table) kept within the root page. Thus

two versions of the page map exist, each described by the secondaly page table within one

of the two root pages that describe the store. As the root pages exchange roles (though

Challis's algorithm) the page map advances in time and through it, the data held in the

store. Operation of Munro's store is depicted in Figure 40 below.

An allocation list for pages used in the file is also kept. The information in this list is

also available by traversing the page map, but as an implementation optimisation, to

improve the speed of allocation of file pages, a separate list is maintained.
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the CACS mechanism of Morrison and Stemple [Stemple and Morrison 1992] which

provides a generic framework in which concunency control can be specified.

The store maintains a set of transaction mapping tables which allow separate th¡eads of

control to each have their own version of the mapped store. When a transaction commits,

the store melds the data in these per-transaction pages with the data within the store. This

is acheived safely through clever use oflogical operations.

Provided that two separate actions have not modified the same object (something

guaranteed by the higher level concurrency control) then the version of a modified page

may be melded with the store and the changes safely propagated to the other versions by

using a bitwise exclusive-or (XOR) operation. The XOR operator has the following

property. If the page as modified by an action A is termed P, the original page O, and the

pagè as modified by a second action B is termed Q. Then Q' may be set to Q XOR (P XOR

O). Q' will contain the modifications made by action A but will otherwise remain

unchanged. Thus it is possible for any one action to meld and the changes it has made to be

safely propagated to other, as yet unmelded actions.

5.2.5. Thatte

Sattish Thatte [Thatte 1936] introduced a variant upon after look shadow store design for

use on the Texas Instruments Explorer machines. These machines are similar to the

Symbolics 3600 in providing explicit support for the Lisp language. Unlike the Symbolics

3600 the TI Explorer provides a resilient persistent virtual address space in which

programs execute. Persistence of objects is provided through reachability from a

distinguished root object. A special context object which is automatically filled with the

contents of the machine registers when a meld is performed, by arranging to make this

object reachable a process can also be made persistent. The design of the persistent store is

a va¡iant upon after-look shadow paging and is deserving of study.

In the same manner as other page based stores, the contents of the persistent virtual

address space are described by apage table which maps pages in the virtual address space

to pages in the store. Since the TI Explorer is limited to an address space of l28MB this

table is of modest size.

In Thatte's store each page in the virn¡al address space is represented on disk by either a

single page (terme d a singleton) or by two pages (termed siblings .) Sibling pages provide

the functions of a current page and a shadow page, whilst a singleton page is used when the

represented data is not changed and does not require shadowing. Each page on disk is time-
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stamped when it is written. Time-stamps are derived from a reliable system clock that is

guaranteed to advance sufficiently quickly that consecutive pages written_to disk will

receive different time stamps. Thatte contends that 64 bit time-stamps will always be large

enough. Time stamps for individual pages are stored in the page table. 'Whenever the

system melds, the current value of the time-stamp counter is written to the store. It is

relative to this time-stamp that the state of individual pages in the store are determined.

This is achieved with the following rules.

. Singleton pages with a time-stamp less than the meld time. These pages belong to

the store state and contain useful data.

. Singleton pages with a time-stamp greater than the meld time. Such pages were

created after the meld and do not form part of the persistent state. They may be

overwritten when useful data is created.

. Sibling pages in which both pages a¡e less than the time-stamp. The page with the

greater time is the current page and contains useful data, the other is the shadow

page and may be overwritten with new versions of the page data.

. Sibling pages with one page earlier then the meld time and the other greater. The

page with the lower time is the current page, the other page was written after meld

and thus does not form part of the store state. This page is therefore used as the

shadow page.

These rules depicted in Figure 41 below.
Modified page is
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Figure 41. Thatte's shadow store.

The store design integrates the functions of demand paged virtual memory with the

persistent store and does not require use of a separate swap space. Pages of data are

therefore subject to asynchronous eviction from physical memory into the stable store.
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Modified pages a¡e written to their shadow page in the store. Those pages only represented

by a singleton page will require the creation of a sibling page to recçive the modified data

and thus avoid overwriting the current stable version. Pages that remain unmodified for

some time may be converted back from sibling to singleton form, thus releasing disk space.

To effect a meld the system writes all modified pages to the shadow pages within the

store (updating the time-stamps appropriately). It then writes the current version of the

timer to the store. It is the writing of the new timer which defines the atomic movement of

the store from one persistent state to another.

The design of the page table is essentially the same as one which incorporates both

versions of a conventionally shadowed page table intd the one entity. This is doubly

unfortunate. The design requires the use of time-stamps to label the entries in the table;

these triple the size of the page table. Secondly, because there is only one version of the

page table, the design is not resilient against failure during writing of the page table.

Comrption of the page table will leave the store unrecoverable unless the page table is

shadowed. However such shadowing obviates the need for the dual entry page table design.

Although an interesting aside, the design described is only of historical value.

Sattish Thatte also discusses the utility of adding a transaction management package to

the system. This is intended to provide a level of fine grained recovery through the use of

undo and redo logs that reflect changes to individual objects. It is unclear how his proposal

integrates into the persistent environment since it makes the resilience of objects dependant

upon explicit use of the package by the progr¿ilnmer. The persistence so created is thus not

orthogonal, and conflicts with the persistence supplied by the paging mechanism.

5.2.6. Logging Systems

Logging schemes have also been used in the provision of page based persistent stores. Two

such schemes, are the Recoverable Virtual Memory of Satyanarayanan et al

[Satyanarayanan, Mashburn et al. 1994] and the Texas system [Singhal, Sheetal et al.

19921. The Mneme [Moss 1990] system is also of interest in the manner in which it

provides a resilient persistent object based store utilising redo logging.

5.2.7. RVM

The design of RVM [Satyanarayanan, Mashburn et aJ.1994] grew out of work done in the

Camelot project [Eppinger, Mummert et al. 1991]. Camelot is a research system designed

to provide general purpose transactional support in an effort to simplify and encourage
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construction of reliable distributed systems. However after experience with Camelot, the

designers found problems in scaleability, maintainabliliry and a restrictive programming

paradigm. The authors of RVM found the most useful aspect of the Camelot system was its

provision of recoverable virtual memory. This experience led them to implement the

simplified and more efficient RVM system described here.

The RVM system is provided as a linkable library that may be used by programs

running under Unix. Individual applications remain responsible for any distribution and

serialisability of concurrent actions. The RVM layer provides an abstraction of memory

upon which atomic, recoverable actions may be performed. Data is stored in segments,

which are ranges of contiguous addresses up to the limit imposed by the system

a¡chitecture. More than one segment may be used by a program at any time; individual

ranges of a segment may be mapped into a processes address space at arbitrary locations.

This mapping is acheived through use of the Unix mmap system call, although the designers

also intend to use the Mach operating system and its external pager mechanism (described

in Section 5.2.8 below) in a future implementation.

The user is presented with a group of interface routines which allow transactions to be

performed upon designated ranges of memory. Internally the RVM system utilises logging

to reflect changes made to recoverable data. A noundo/redo mechanism is utilised for

logging. The system is capable of performing log truncation in parallel with execution of

the users program; that is, it will concurrently traverse the log applying the changes listed

in the log to the database, whilst allowing additions to the head of the log. It also provides

for incremental truncation by writing modified pages from addressable memory directly to

the original store. Such truncation must be controlled with extra locking of mapped data to

ensure that any pages which have been modified by uncommitted transactions are not

written to the store before the transactions actually commit.

5.2.8. Texas

In Chapter 3 we described the mechanisms by which the Texas store managed a page based

object system supporting the C++ language. Here we discuss the manner in which the

persistent store is maintained.

The original Texas store was provided with a redo-log, separate from the store itselt

into which copies of all modified pages were written. A log-structured store has since been

constructed to provide persistent storage. In a log-structured store the log itself acts as the

repository of data. The principal intent of a log-structured store is to reduce disk head
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movement as much as possible. This is acheived by writing updates to the store in linear

disk block order through regions of contiguous storage. The Texas log-structured store is

implemented above a raw Unix disk partition. In the log-structured store, blocks may be

written to any location, it is simply the last version written to the store that is the current

version. However the store's meta data, describing the location of stored blocks, is also

subject to change as logging proceeds. Rather than perform in-place updates of meta-data

on the disk (and hence destroying the locality of disk access) the blocks upon which the

meta-data is itself resident are treated in the same manner as nonnal blocks and written

sequentially through the log.

The Texas log-structured store uses a tree data structure to represent the locations of

blocks within the store. Once the top level node of the tree is written to the store a new

stable state is recorded and is recoverable.

The tree nodes are structured as a multi-way search tree (similar to a B-tree) with data

blocks as leaves. The tree structure is right-shallow, which means that the incomplete right

sub-tree of the whole tree is directly referenced by the top level node. Thus the top node

directly references recently modified intermediate nodes, reducing the number of nodes

that must be written to describe a new store structure. However when the top node fills, a

new node must be created to describe further updates. This becomes the new top node and

the old topmost node is pushed down one level. Thus the tree grows in depth over time and

become increasingly unbalanced. In [Singhal, Sheetal et aL. 1992] the authors note that

that the tree will require occasional rebalancing, and activity they note is "expensive."

Other difficulties in such a store are concerned with reclamation of the store space and

with compaction of the store. The store will eventually fill, this requires that unreferenced

blocks be made available for reuse. Texas uses a traversal of the store structure to find the

referenced blocks and thus free the remainder.

Compaction is required when the store become fragmented. If the store is allowed to

become overly fragmented it will become difficult to keep disk head movement low, and

thus will loose the main advantage of the store design.

5.2.9. Mneme

The Mneme store [Moss and Sinofsky 1988; Moss 1990] has been designed to be a

scalable system for the exploration of high performance provision of persistent storage. It

supports a number of languages including Smalltalk-80 (as described in Chapter 2) and

Modula-3 lKalsow and Muller 1991].
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The Mneme store provides access to persistent objects through a client library, which is

responsible for providing access to objects requested by a user program. The.library does

this by making requests of server modules. It is these server modules which provide

resilient persistent storage and are responsible for enforcing security and access control.

The client libraries make object data available to the user program in local buffirs, areas of

memory local to the client programs. User programs make requests of the client interface

in terms of individual object identifiers, whereas the client to server interface requests data

in terms of physical segments. The mechanism by which the appropriate physical segment

is located from the object identifier is one of the important aspects of the Mneme design.

Physical segments in general contain many objects and thus offer a means for clustering of

objects during storage and retrieval.

The persistent store is divided into a set of f/es. Files provide a means of dividing up

the stored data, and files may be individually compacted. Files may often be named

through the host operating system naming mechanisms. File names are not used for object

naming, nor are they visible to the programmer, and are thus different to the databases of

PS-algol.

Objects reside within pools which are logical grouping of objects within files. Each

pool is associated with a set of routines (a strategy) which determines object management

policies. The Mneme system allows for dynamic loading of new strategy routines.

Objects within files are physically located within physical segments. A physical

segment may contain many logícal segments. Logical segments are used as a partitioning

mechanism in the structured addressing system used by Mneme [Moss 1989]. Physical

segments used within the store a¡e the same as those transferred through the client interface

and are the basic unit of granularity of Mneme.

Changes to persistent objects occur as part of transactions in Mneme. Modified data is

returned to the users volatile buffer and thence to the persistent store as part of a commit

operation. The current system uses a redo log to record changes made to individual objects

within a segment, and it is these logs which provide resilience and crash recovery for each

segment and thus the persistent store. Mneme's transaction interface allows the store to

determine those objects that have been modified and hence generate appropriate log

entries. Hoskins, Brown and Moss [Hosking, Brown et al. 1993] also describe a

mechanism derived from the page-cards mechanism described in Chapter 2 for utilising

134



page protection faults to generate a list of modified objects and similarly generate log

int'ormation.

5.3. CASPER Bi-Phase

'We now examine the implementation of a direct mapped after-look paged based store. This

store provides a resilient persistent store which is intended to provide the underlying

support for the Napier88 language and its persistent heap architecture described in Chapter

2.

This store architecture has been implemented under Unix, making use of the file

mapping capabilities provided by some versions of that operating system, and also under

the Mach operating system [Acceta, Baron et al. 1986] taking particular advantage of the

external pager mechanism provided by Mach. The Casper store has also formed the basis

for a distributed coherent persistent address space system, the design of which is examined

in detail in Chapter 6. Further extensions are also described. The first allows the store to

create partial melds of subsections of the supported persistent space. The second allows the

store to maintain arbitrarily many versions of the persistent state, allowing its use in multi-

store distributed systems with external consistency control.

5.3.L. Basics

The Casper store provides support for the same Napier88 language system as that those of

Brown and Munro described above. It differs in a number of important respects.

The most obvious is that rather than supplying a separate stable virtual memory

abstraction from which objects are copied to a separate volatile local heap, the supported

NapierS8 system acts directly upon the stable virtual address space itself. This obviates the

need for an intermediate layer of support software to mediate object movement. As

described in Chapter 2, the notion of a local heap is still used, but local heaps reside within

the persistent address space. The techniques described in Chapter 2 are used to control

object movement and pointer assignment both within local heaps, and within the persistent

address space.

The second difference is the manner in which the page table is managed. In Munro's store

the page table is itself described by a separate table kept within the root page of the store.

The Casper page table is embedded within the persistent address space and is thus self

describing.
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The Casper store is also extended to provide two extra features. These a¡e:

. The ability to meld only a potion of the supported address space whilst retaining

internal consistency. This feature is exploited in the distributed version described

in the next chapter.

. The ability to retain more than one self consistent version of the supported address

space. This ability is needed when the store is used within a larger framework of

cooperating stores where external global management of consistent state in

provided. This design is directed at use in the Grasshopper system described in

Chapter 7.

These additional features wilt be described once the basi'c store mechanisms have been

covered.

5.3.2. Page Map.

In Casper, the mapping tables (henceforth known as the LPMap, from Logical to Physical

Mup) are able to describe an arbitrary sized address space (within the limits imposed by the

host architecture) and are themselves embedded within the persistent space they describe.

Casper can implement a single persistent store using a number of separate Unix files or

raw disks. Each LPMap entry encodes both the file (or disk) and offset within the file (or

disk) of the corresponding physical page. Earlier, in Chapter 2, we discussed the use of

crossing maps for the description of objects resident upon a page. A natural place to keep

crossing map data is in the translation map, the Casper store can be configured to include

crossing map information in the LPMap. The LPMap entry format is depicted in Figure 42

below.
Optional Crossing Map Ent, ¡^

Figure 42.Format of LPMap Entry.

The LPMap is a.large data structure that must be maintained in a stable and resilient

manner. It is therefore natural to embed the LPMap within the persistent address space that

it itself maintains (Figure 43). Once this is done the LPMap becomes self describing and

only a single reference to the page which holds the first page of the LPMap (termed the
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primary LPMap page) need be held. Only those physical pages actually required to

describe address ranges in use are allocated, thus small stores occupy very little disk space

whilst very large stores can be seamlessly maintained.

A B D

I
Ec

LPMap Range

F G H

Users Persistent
Address Space

-+
Primary LPMap First-Useful-Address

Secondary LPMap Poge

Figure 43. The LPMap is embedded within the persistent address space.

The size of the LPMap is dependant upon a number of choices:

1. Whether crossing map support is required.

2. The target architecture's page size.

3. The target architecture's address range.

4. User requirements for store size.

For 32 bit architectures the choices are not critical. For instance a store requiring crossing

map support and targeted toward machines with an 8k page size needs at most a 4M byte

LPMap to describe the entire 4G byte address space.

When used with machines supporting larger address spaces more care is needed. A 64

bit architecture using 8k pages and similarly utilising crossing maps requires an LPMap

spanning 254 bytes. This significantly exceeds the addressing limits of current

implementations of the Digital Alpha AXP architecture, which, whilst supporting 64 bit

addressing imposes an overall implementation limit of 243, or 242 on the user space alone.

However to support an address space of 242 bytes an LPMap need only span )23 bytes. It

should be emphasised that these allocations only reserve address ranges for use by the

LPMap and that no space in the persistent stores is actually required until the address

ranges described are actually utilised.

5.3.3. Store Structure

Each Casper store consists of one root file and may also include a number of secondary

files. The root file is distinguished by holding some of the special system data structures,

otherwise both the root and the secondary store files are identical. Each store f,rle contains a

pair of root blocks and a pair of allocation bit-maps sized to describe the individual store

file. This duplication of structures within the store f,rles, one acting as a shadow whilst the

other contains the current version (with the roles swapping upon meld) is used for all store
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data structures apart from the LPMap which is inherently shadowed. The root store

contains the following extra data structures.

o I secondary file table. This names each of the secondary files that form part of

the store.

. An allocation map for the persistent virtual address space.

The running store system maintains volatile versions of these structures as well as some

extra structures discussed in the following description of the store. The internal structure of

the running system is depicted in Figure 44 below.
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by the LPMap.

a
a
o!€
E

I

o
ø

I

q
!

LPMap entries
refer to file blocks
by file number
and offset pairs.

Delayed-Page-
Free List

Each open file mainta¡ns a
volat¡le version of its
allocation b¡tmap and
rootpage

Volatile VM
Page-state_table cooolD State

A hash table records whether
¡ndividual VM pages are
mapped, unmapped, protected

or modified.

File Neme

As VM pages are modified
the lD oÍ the physical page

containing the origonal data
is placed on this l¡st.

;l
ol
LI

+

o.o
E
iñ
c
.9
(ú
oo
a

o
o
tÍ.

=I

Each store file
contains a shadowed
allocat¡on map, this
is read on store stafiup

The root lile
contains a shadowed
allocation map for
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Figure 44. Casper page mapped store a¡chitecture.
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5.3.4. Store Creation

A store is created by a separate, specialised program which is responsible for creating both

new stores and augmenting a store with secondary stores. When a store is created, the two

root pages are built, however only one need contain valid information apart from the time

stamps, since the other will be initialised appropriately the first time the store melds. The

store building program is automatically configured with both the target architecture page

size and the disk block size. The disk page size determines the granularity of file space

allocation, whilst the architecture page size is required to determine the layout of the initial

LPMap entries. An initial store can optionally contain two extra pages. These are:

o { preallocated page. This allows a store to be initialised with a small amount of in

initial data, currently a preallocated page is zero filled.

r I zero pa5e, which is available for mapping to any location in the persistent

virtual address space which requires zero fill. This is currently only required when

the store is used with a Unix based file memory map implementation.

Store files are of fixed size, if a store is being created within a conventional file system the

size must be specified, if the store is to be constructed using a raw disk, the store must be

the same size as the disk. When created within a file system, the entire file must be built at

once. The Unix file-system has particularly poor performance when extending files, and

the creation of store files can be lengthy. A large part of this poor performance is due to the

mechanism by which files are extended in fragments. By default, fragments are one eighth

of a file system block in size and extending a file involves continual recopying of these

fragments. It has been found that configuring a file system with a fragmentation factor of

one (defeating the fragmentation mechanism) results in an order of magnitude

improvement in store creation speed. Stores which involve dynamic extension of allocated

space also benefit from this. When a store is first created the layout is as depicted in

Figures 45 and 46 below.

LPMap Range Persistent ..--->
Space

Primary LPMap First-Useful-Address

Figure 45. Initial Store Virtual Memory Layout.
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Figure 46. Initial Store Physical Layout.

5.3.5. Secondary Files

Secondary files are also created by the store initialisation program. This program is also

responsible for linking the secondary files to the root file. To do this the program must

open the root file and write the path name of the secondary file into the secondary file

table. This action must be performed in a reliable manner and therefore the update is

performed using the same mechanism as store meld.

5.3.6. Store Start-up

'When 
a persistent appiication begins, it first determines the store to which it must bind. In

common with many Unix utilities, the Casper store uses the Unix environment variable

mechanism to provide such configuration information. Two environment variables:

persistdir and roorf iIe, describe the location of the root file of a Casper store.

The first step after locating the store is to open the root file and build the volatile data

structures from the contents. First, the two root pages are read into memory. The time-

stamps are checked to determine which is the most recent, and to ensure that it is not

corrupt. If one root page is comrpt the system falls back to the alternative root page (if

possible.) The selected root page refers to the cuffent version of the other data structures in

the store, these are read and in-memory, volatile, copies made. Once this has been

accomplished the secondary files table is traversed and any secondary files located.

Secondary files a¡e opened in a similar manner, they are also described by dual root pages

and each contains its own allocation map which is read into volatile memory.

Once all volatile structures have been reconstructed it only remains to build the LPMap.

Earlier versions of the store constucted the entire LPMap as an in-memory data structure

when the store was opened. This proved to be a very expensive operation and was often the

dominant cost of running a program in the persistent environment. To eliminate this

process, the LPMap is itself mapped into addressable memory using the same mechanisms

140



as the rest of the store. However because of the self referential nature of this action care

must be taken that the recursive shadow mechanism used for the LPMap has a fixed point.

To ensure this the primary page is immediately shadowed when the store is opened. The

page is mapped, a copy made into a buffer, the page re-mapped to its shadow page and

finally the page copied back from the buffer. Since this page is now shadowed, its access

protection is read and write. Thus the page may be accessed by the page mapping

algorithms without the access itself requiring action by the mapping algorithm. All other

pages within the LPMap are mapped on demand during normal operation of the store.

The remainder of the virtual address range used for persistent storage must be protected

from all access to enable the exception mechanism to detect any access attempts. Under

Unix unallocated virtual addresses are already so protected, and no further action is

needed.

Since the store implements an after look mechanism no recovery action needs to be

performed. The store is always opened in the same manner no matter what its history.

5.3.1. NapierSS Implementation

When used in conjunction with the Napier8S implementation described earlier, the store

must be initialised to include the basic structures expected by the Napier run-time system.

These structures include the store root object, process table, process proxy table, and

predefïned constant values. These are installed by the Napier runtime environment during

the first use of the store. The Napier environment expects to find the store root object at a

distinguished address (the first_useful_address supplied by the store layer.) The presence

of an object is detected by looking for a valid object header. If no header is found the

runtime system automatically builds the default root object and its closure. This is

performed as follows.

The NapierSS compiler includes the majority of required objects in each code file it

generates. The runtime system copies the transitive closure of the root object in the code

file into the persistent address space, following all the pointers in the root object except for

the pointer to the code vector. The code vector and its closure is later copied to within the

local heap of a newly created process as part of the ordinary program start-up sequence, it

does not form part of the default environment. The process table and process proxy table

are not part of the compiler generated environment (they are peculiar to the Casper

implementations) and are explicitly created by the Casper runtime system. Once this basic

object set is resident, the store is able to host Napier8S programs.
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5.3.8. Runtime Actions

The store only provides access to areas of memory that have been explicitly allocated.

Although the user has use of the entire persistent address space, only those pages that have

been allocated from that space are useable. The store will signal an error if any access

attempt is made to an unallocated page. This convention is particularly important in the

distributed systems described later, but is also a valuable mechanism for aiding in

debugging since it immediately traps bad pointer dereferences.

Pages which have been allocated but have no associated page in the store are delivered

zero filled. Thus no store space need be allocated to address ranges until the appropriate

page in the persistent address space is modified.

5.3.8.1. Page States

The persistent store system maintains a representation of the state of each page in the

persistent address space. This is maintained in the page state table. The system is only

concerned with those pages that are in use by the running user level program, accordingly

the page state table is maintained as a hash table indexed by page address. This table

maintains the state of all pages including pages used by the LPMap. In the single client

system discussed here, there are few states, they are:

Page_Not_Resident: Pages in this state have never been accessed and have no

representation in addressable memory. Absence from the hash table represents

this state.

Page_Mapped_Read; Pages in this state are available for read only access. No shadow

space has been allocated.

Page_Mapped_Write: Pages in this state are available for read and write, they have

been modified (or are about to be on resumption of the user level code) and have a

shadow page allocated and are mapped to the shadow page.

Page_Read_Modiþd: Pages in this state have been modified but are mapped read only

to their shadow page. They have had write access denied to enable detection of

write access by a language level mechanism such as the page-card pointer

quarantine mechanism described in Chapter 2.

5.3.8.2. Read Access

When a read access is attempted on a non-resident page in the persistent address space the

following steps take place. This is depicted in Figure 47 below.
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1. The user program attempts to read a location on a page.

2. The attempt at access will result in the delivery of an exception by the Unix signal

handler mechanism. At this time the user code will be stalled. The exception

handler receives the address of the access exception as one of its parameters.

From this it derives the page identifier and retrieves the page state from the page

state table. As a consistency check it ensures that the page is not currently

mapped. Also the exception handler checks the persistent address space allocation

table to ensure that the page is allocated. If it is not, it signals an error and exits.

3. The location of the store page is read from the LPMap. If the appropraite LPMap

page is itself not mapped this must be done.

4. If the page has a file page listed in the LPMap the file page is mapped to the

virtual address space page using the Unix mmap system call. The mapping is

specified with read only protection.

If no file page is associated with the page, the page supplied zero filled. The page

is mapped read only to the zero pa5e provided by the store. Many persistent

address space pages can map this file page at once, since only read only mappings

are performed to this page.

5. The state of the page is updated in the page state table to be Page-Mapped-Read-

6. The exception handler returns and the operating system kernel allows the user

level code to resume execution.
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Figure 47. Read access in Casper.

5.3.8.3. Write Access

'When a write access is attempted for the first time to a page in the persistent address space

the following action is taken. This is illlustrated in figure 48 below.

1. In the same manner as read access described above, the write attempt is traped

and an access exception is delivered to a user level exception handler which

determines the identity of the page.

2. The page's state is checked from the page state table. If the page is listed as

Page_Not_Resident it must be flrst mapped for read. The handler calls the routine

Map_Page_For_Read which implements the steps 2 though 5 above. The page

either now is, or already was, mapped for read. If the page was already mapped

for write access a consistency error is signalled and the program exits.

3. The identity of the culrent file page is determined from the LPMap.

4. This page is entered onto the delayed¿tageJree list. Since this page must not be

reused until after the next store meld, it is not deallocated from the file page

allocation tables.

-
E

cf la'rv'r¡Je.t'I

LM



5. A new page is allocated from the volatile file page allocation table.

6. The contents of the page are copied to a volatile buffer.

7. The page is re-mapped to the newly allocated shadow page. This mapping allows

both read and write access.

8. The contents of the volatile buffer are copied to the page.

9. The state of the page is set to be Page-Mapped-Write.

10. The exception handler returns and the operating system kernel allows the user

level program to resume execution.
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Figure 48. Shadow paging action of the Casper store.

5.3.8.4. LPMap mapping

'When the page mapping system requires access to the LPMap, care must be taken to

ensure that the LPMap itself is appropriately mapped. V/ithout such efforts the system may

deadlock upon access to the LPMap. Two approaches can be taken in providing such

availability.
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. Recursive invocation of the page map system through the exception mechanism.

. Explicit checking of the state of each page before attempting each access.

Recursive use of the exception mechanism is an appealing choice since with care it can use

the same code as described above. However not all operating systems provide for the

delivery of multiple exceptions. Unix does, however Mach does not (except though the

Unix emulation layer). Furthermore, exception delivery is often implemented using a

kernel level stack, one that is held within a pre-allocated and usually small data structure.

Although limited in number there can be no guarantee that all the required data structures

needed to represent the nested exceptions will always fit. For these reasons recursive

exceptions are rejected in favour of explicit checks.

IVhen code that is run from within an exception handler needs to access the LPMap it

first calculates the address within the LPMap and checks the state of the appropriate page

from the page state table. If the page is not in an appropriate state for the required access a

further routine is used to perform the appropriate mapping.

Read access to an LPMap page requires the page to be mapped for read, but to achieve

this the intermediate LPMap pages (those that describe the required page) must themselves

be mapped for read. When modify access to an LPMap page the page must be shadowed if
it is not already. This requires that the intermediate pages are mapped for modify access

(so that they may record the shadowing). These intermediate pages will eventually lead to

the primary LPMap page. Since this page was explicitly mapped and shadowed when the

store was opened, traversal of the LPMap pages will always terminate.

5.3.9. Meld

Creation of a new stable store state is achieved by writing all modified volatile data

structures to their shadow locations in the store and then securing a new root page that

represents this new data. In practice the different data structures make their way to the

store in different ways.

Those data structures which reside in explicitly allocated regions of the store files are

written directly to their shadow loctions if they were modified. These structures include the

secondary page table and persistent address space allocation tables.

Recall that store pages that contained subsequently modified data are recorded on the

delayed¿tage;free list. Although logically free, these pages cannot be reused until the

stable state they form part of is discarded. During meld, this list is traversed and these
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pages deallocated in the volatile file page allocation tables. These tables now reflect the

page allocation of the new stable state. Once updated the allocation tables are written to

their shadow versions in each store file.

All those pages modified since the last meld must be written back to their shadow

pages. Unix implementations supporting file memory mapping provide the msync (memory

synchronise) system call which ensures that modified mapped data is forced back to the

mapped file. Some pages may already have been written back as part of normal operation

of the operating systems paging mechanism. Such pages will not require writing to the

store again, thus reducing the load during meld. The store mechanism relies upon the

operating system maintaining its own records of pages that have been written, and assumes

that only those pages that still require writing to the store actually will be.

Memory synchronisation requests are made for extents of virtual memory. However the

allocation of file pages to virtual memory pages is unlikely to be straightforward. Simply

traversing virtual addresses in order and writing their contents to the store is likely to result

in poor locality of access to disk blocks and subsequent reduction of disk performance. To

alleviate this, a list of all modified pages is sorted by physical file page and memory

synchronisation calls are made in this order. Although the list is sorted by file page,

contiguous runs of virtual addresses are still relatively common since large blocks of

memory are often allocated together. This results in contiguous blocks of virtual memory

associated with contiguous blocks of disk. Such contiguous runs of virtual addresses are

coalesced into single msync requests, which lowers the number of system calls made.

Once all modified persistent address space pages are written back to the store, it only

remains to write the root pages of each store file to their shadow root page locations using

Challis's algorithm. The root page in the store root files is written last. The Unix f sync

call is used to ensure that all pending disk writes are completed before continuing. At this

moment two self consistent versions of the state of the persistent address space exist in the

store. The system now allows the user level program to continue execution. As the user

program proceeds those pages released from the previous stable state will be reallocated

and overwritten, destroying the penultimate stable state.

5.3.10. Recovery

Since the store implements an afterlook, noundo-noredo mechanism no separate recovery

mechanism is needed. Whether the store is used after a normal shutdown of the system or
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after a system failure exactly the same actions are taken. Should the system start up after a

system failure it will find a self consistent state in the store which it can immediately use.

5.3.L1. Implementation Specifics

So far the description of the store mechanisms has been provided in terms of an

implementation using a generic version of Unix, and has avoided specific implementation

details. Here we address some of the specific details and problems of implementation

under Sun Microsystem's version of BSD Unix, SunOS, and a second implementation

under the Mach 2.5 operating system.

5.3.11.1. Placement in memory

The LPMap is logically placed at the beginning of the persistent virtual address space.

However this conflicts with the standard memory layout of a Unix process, which places

the user code and program state at the beginning of memory. To avoid conflict the LPMap

must be placed elsewhere, avoiding both the user program space and the persistent address

space.

Likewise the start of the useable persistent address space must be located to avoid both

the moved LPMap and the user program space. In current implementations the first useable

address is set at 8MB and the LPMap located at 4MB. The size of the persistent address

space is limited so that it does not overlap the area of virtual memory utilised by the C

language run-time stack (which grows down from high addresses.)

5.3.11.2. Page copy sequence

In the description of the page modification sequence above, a copy of each modified page

is made before re-mapping the page to a shadow location within the store file. This

copying is unfortunate, but is dictated by the lack of ideal support for shadow paging in

Unix. The need to copy the contents comes about because when the page in virtual

memory is mapped to the shadow file location, the operating system discards the current

contents of the page and replaces them with the contents of the file page. This is

unfortunate for a number of reasons.

1. The operating system has discarded the in memory copy of the page contents,

forcing the store mechanism to make a copy to avoid losing the data.

2. The operating system will use a disk read operation to retrieve the contents of the

shadow page at the first access to the page after the new mapping is established.
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This is wasted effort since the contents of the shadow page are of no interest and

the first action of the store system will be to obliterate this data.

3. To provide an appropriate system call is very simple and requires less effort on

the part of the operating system. Such a call was proposed during initial

specification of Sun Microsystem's System V derived version of Unix, Solaris 2.0

but was discarded.

This was the mremap system call, which would remap an already mapped page to

a different location within the file, whilst retaining the contents of the virtual

address range. Clearly this is the desired mechanism.

5.3.11.3. Memory Allocation and Swap Space.

'When memory is allocated from within a processe's virtual address space, the Unix kernel

automatically allocates space for demand page swapping on disk. Therefore it is not

possible to pre-allocate large regions of the processe's address space for use by fhe

persistent virtual address space without causing swap space allocation. This allocation

serves no purpose since the store mechanisms will actually perform the role of swap space.

Furthermore, attempts to allocate space for very large persistent stores will fail because the

system swap disk is too small to hold the required range.

Faced with this restriction great care is need to ensure that addresses within the

persistent address space are not accidentally used by parts of the runtime system or

operating system. SunOS version 5 allows the user to allocate space with a mmap system

call with the option of specifying that swap space should not be allocated, thus repairing

this problem.

5.3.11.4. Implementation under Mach

A second implementation of the store has been completed under the Mach operating

system. This implementation is directed at support of the Casper distributed persistent

environment discussed in Chapter 6, but some important points should be made here.

Rather than provide the file memory map mechanisms discussed above, Mach provides

a separate abstraction which allows the user considerable freedom in building virtual

memory based systems. This is the external pager. A user is able to provide their own

server code which will be activated in response to page faults occurring in a served region

of a virtual address space. The external pager interface also provides a mechanism through

which an external pager can protect regions of served memory from access and receive

r49



notification of access protection violations to pages separate to the access protection within

each virtual address space. In more detail the Mach external pager abstraction operates as

follows.

5.3.11.4.1. External Pager

Mach provides an abstraction termed a memory object. A memory object is an abstraction

over storage. Each memory object represents a contiguous range of memory which can be

accessed by mapping into a process's virtual address space. To a user process access is

similar to mapping a file. The operating system kernel is responsible for maintenance of

eaclt processes virl.ual address space ancl the attendant virl.ual ûremory control data

structures. The management and provision of the data visible in the memory object is the

responsibility of the external pager.

A memory object is identified by a communication port, and it is to this port that the

kemel will direct requests for the provision and management of data. The Mach system

uses a predefined interface specification by which the external pager and kernel

communicate. Communication is effected by the exchange of messages. The Mach system

supplies an interface library [Draves, Jones et al. 1988] which translates these messages

into an RPC based interface suitable for direct use by C programs. This interface provides

the following kernel to external pager messages:

. Requests to supply the data resident upon a given page,

. Notification of violation of access restrictions on a given page,

. Return of the data resident on a page,

. Notification of completion of manager request, and

. Sundry housekeeping notifications.

The manager may make the following requests upon the kernel, through a similar RPC

interface:

. Protection of a region of the memory object against access,

. Request for the return of data resident in modified pages, and

. Request to place data into memory visible to client processes.

The external pager mechanism offers some important differences from the file map

implementation described above, these are:
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. Splitting the memory access exception model. As described, Mach provides two

separate models of access exceptions: those relative to a process virtual address

space and those relative to a memory object. This splitting allows

implementations to avoid the intermingling of programming language level use of

exception (such as the page-card based garbage collection and pointer quarantine

systems described in Chapter 2) from the access detection used to manage the

shadow store. Thus the language mechanisms can be implemented independently

of the store mechanisms.

. Low level control of page state. Memory managed by an external pager is not

paged by the systems default paging system. Thus it is possible to integrate store

management with page srwapping and avoid the unnecessary extra work that

occurs in conventional sYstems.

5.3.11.4.2. Problems with Mach

The structure of the message passing mechanism used by Mach makes transmission of

pages of data to the kernel inefficient. 'When a page of data is prepared by the exte.rnal

pager (usually in response to a request from the kernel) it resides within the virtual address

space of the external pager. This data may not necessarily be page aligned and since it

forms part of the external pager's virtual address space would normally be expected to

remain visible to the external pager after it has been provided to the kernel. The kernel is

thus required to make a copy of the data onto a new page which it then links into the client

processes address space. Clearly if the manager guarantees to page align the requested data

a system could be designed in which no copy of data is needed. Such considerations have

guided the design of newer user level memory management systems in other operating

systems [Lindström, Dearle et al. 1994].

When faced with pressure upon allocation of physical memory the Mach kernel will elect

to flush the data resident on some physical pages. Modified data on pages associated with

memory objects will be asynchronously returned to the external pager. Unmodified data is

simply discarded. Lack of consultation with the external pager before carrying out these

actions can cause some problems, in particular they complicate management of a

distributed shared persistent space. Such problems are addressed more fully in the next

chapter.
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5.3.12. Partial State Meld

A version of the Casper store has been constructed that allows separate sections of the

persistent virtual address space to be melded with the store independently. This store is

designed to suppoft the distributed Casper system described in the next chapter. 'When

melding subsections of the address space it is important that no interdependencies exist

between the melded subsections and the other subsections. Controlling interdependencies

introduced by the user programs is described in the next chapter. Managing those that

occur through the store structure is described now.

The distributed Casper system allows independent clients to have access to the

persistent address space, each client may mutate data in the space and may allocate address

ranges from the space. The store system is modified to ensure that no interdependencies are

created during the meld phase. This is acheived as follows.

The file page delay list from the single user store is split into per-client lists of modified

pages. 'When 
a client melds only those pages within the store freed by that particular client

a¡e made available for reuse.

The allocation bitmap for pages in the persistent address space is handled differently.

The bitmap is duplicated, one version is termed the eager volatile the other the stable

volatile map. The stable volatile map is a copy, in volatile memory, of the allocation map

that is resident within the stable store state. These structures are illustrated in Figure 49

below.

The eager volatile map is used to allocate address ranges to running client programs. It

is pessimistic, in that it lists the allocation of pages by all clients but any release of address

ranges is deferred until the client melds. This ensures that if a client frees space and later

fails without making the release of space stable, another client cannot inadvertently

allocate that space and so lead to conflict. The store maintains a per-client log of both

allocation and release actions. When a client melds this log is traversed. All requests are

applied to the stable volatile bitmap (both allocation and release) thus ensuring that only

the changes to the allocation of the persistent address space made by the melding client are

reflected in the stable store. The changes are also applied to the eager volatile bitmap, thus

releasing address ranges for use by all clients. If all the clients were to meld together both

the stable volatile and eager volatile allocation maps would be coincident.
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Figure 49. Handling VM allocations in Casper.

The LPMap is also modified for similar reasons. Since the LPMap is placed within

ordinary pages, any single page may contain entries reflecting the action of any number of

clients. When one of these clients melds the system must ensure that the operation of the

other clients is not placed into the stable store in such a way as to result in an inconsistent

representation of the stores operation. The LPMap is modified to contain two physical page

references for each entry. In a manner similar to Thatte's store one of these will contain a

reference to the cunent pãEe, the other to the shadow page.

To determine which of the two entries is the cunent and which the shadow entry a

separate bitmap is maintained. It contains one bit per LPMap entry and its value toggles the

use of the entries in each individual LPMap location. When a page in the persistent virtual

address space is shadowed the location of current version of the page is not overwritten,

rather the alternate location is overwritten. Thus the LPMap will still retain the mapping

information appropriate to the previous time the particular client that is using the page

descibed by that entry last melded. The role of the entries in the LPMap for the running

programs is reflected by a volatile selection bitmap. When a client melds it is only those

entries in the selection bitmap which correspond to pages over which that client has

jurisdiction that have their selection bits inverted, thus reflecting the new roles the pages
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have. The inverted entries are identified by traversing the modified page list associated

with the melding client. Thus the LPMap can be written to the store safely and correctly

reflect the changed roles of only those pages pertinent to the melding client.

5.3.13. Multi-Phase

'When incorporated into a system of multiple distributed stores with external consistency

management it is valuable to be able to maintain more than one self consistent system state

within the store. The Casper store can be configured to provide this functionality with very

little change to its operation. The operating of this store is depicted in Figure 50 below.

The key to providing multiple states within the Casper store is in the integration of the

LPMap into the persistent data space. Because a self consistent store view is always

reached through the primary page of the LPMap, maintaining multiple views requires little

more than the ability to maintain a list of LPMap primary pages, rather than the two

maintained by the store described above. The operation of the shadow paging mechanism

results in a system where only the minimum of data is needed to represent each system

state through time in a seamless and natural manner. This is expounded upon below.

Root blocks refer to
shadowed version table

Version table
¡s extendable Physical Page

Identin^

Data in
paSe

2 3 4 5 6 'l

10

i; i

Persistent VM Space Addresses

t1
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lf the second version ¡s deleted the pages
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t4

Figure 50. Multi-phase Casper store
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5.3.13.1. Store ModifÎcations

Implementation of the multi-phase store is a natural extension of the existing bi-phase

design. In the multi-phase store the allocation bit-maps describing the allocation of file

pages and pages within the persistent address space are no longer kept in the store as

separate data. These structures do not represent any information that cannot already be

derived from the LPMap and retaining them would require that a new version be built for

each separate store state. Deletion of these structures increases the cost of store staft-up but

improves the speed of store meld.

However, once the persistent address space allocation map is removed it is necessary to

find another mechanism to indicate that a page is allocated but currently has no store

associated with it. Recall that this condition is useful to indicate that a page is to be

supplied zero filled without requiring the allocation of actual store space. Zero fill is now

indicated by placing a sentinel value into the LPMap entry associated with such a page.

5.3.13.2, Start-up

Start up of the multiphase store is effected in largely the same manner as the bi-phase store.

The differences centres on three main issues:

' identifying the appropriate version,

. lack ofin-store allocation tables, and

. recovery ofunneeded store.

The store is still described by a pair of root pages, and atomically moves from one version

to the next through swapping between these pages using Challis's algorithm. Thus the

latest version of the store meta-data is found in the same manner as the bi-phase store.

However there is no longer a notion of a single current store state, rather a multiplicity of

states. The store identifies each of these states using a discrete index number which

identifies a primary LPMap page. The store maintains a pair of tables (current and shadow)

which contain the index number, LPMap primary page pairs. Upon presentation of an

index the system reconstructs the associated stable state and presents it in addressable

memory.

Since the store no longer maintains copies of the virtual address space and file

allocation tables, volatile versions of these must be built by traversing the LPMap. In

principle this could be achieved by simply scanning the LPMap from start to finish. A

linear scan may be costly, especially for stores that support addresses of greater than 32
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bits. Rather than performing a linear scan, a more efficient method is to recursively

traverse the LPMap, beginning with the primary page, and only read those I,,PMap pages

that actually represent allocated pages in the persistent address space.

After a particular state has been loaded those states generated at a later time than the

selected one are of no further use. These states represent computations that must now be

considered to have never happened. Similarly those states generated at an earlier time are

also of no use, they represent earlier states that are now inconsistent with the current

system state. All pages that are part of these unneeded states and not part of the restored

state will not be referenced from the restored LPMap, hence these pages will not appear in

the volatile allocation structures and will be subject to reuse during subsequent

computation. Once the store is modified after start-up, the primary LPMap pages that

represent these states will potentially refer to pages overwritten by the proceeding

computation. The primary LPMap pages are therefore deleted from the version index table

and the table atomically melded with the store. To enable debugging of the store these

extra versions are not deleted if the store contents are only read (such as might occur when

performing an object level sanity check.)

5.3.13.3. Normal Running

During normal operation the store operates in precisely the same manner as the bi-phase

implementation. The volatile data structures, LPMap and operating principles are

unchanged.

5.3.13.4. Meld Protocol

When the store melds an index identifying the new version is generated by some higher

level control regime. This index is written to the shadow version of the index table along

with the page identifier of the primary LPMap page for the current version.

Data from the persistent address space makes its way to the store in the same manner as

the previously described store systems, through use of msync calls if implemented under

Unix, by the action of the external pager if implemented under Mach. Since there are no

longer any in-store allocation maps, no melding of the volatile allocation structures is

required.

Once the meld has completed a new shadow page must be allocated from within the

store file and immediately mapped to the in-memory LPMap primary page. This step is
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analogous to the eager creation of a shadow for the LPMap primary page at system start-up

and is performed for the same reasons.

5.3.13.5. Snapshot Deletion

Deletion of store states is initiated by some higher level control system which manages the

global state of the system and the inter-relation of the component stores. Such mechanisms

are discussed in chapter 7. Once some such control system has determined that a particular

store state is no longer useful, it requests the store manager to delete it. As described

earlier, store states are identified by an index number. The goal of the deletion mechanisms

is to deallocate all those pages associated with the indexed store state, whilst leaving those

pages coÍlmon to all other store states. A request to delete a store state can proceed in two

ways:

. If the store is not in use it is enough to delete the index, LPMap pair in the index

table. Modification to the root page must of course be performed in a resilient

manner and Challis's algorithm is again pressed into service.

. If the store is running, it is important that those store pages currently allocated to

the target store state be immediately made available for reuse. This will be the

only way in which a running store can reclaim store space.

State deletion in a running store proceeds as follows.

1. The store uses the index to identify the LPMap primary page that is the base of

the state to be deleted.

2. Two further store states are identified: the one that directly precedes the

indexed state, and the one directly following the indexed state. The LPMap

primary pages for these states are also found.

3. The closure of pages described by the three LPMap root pages are traversed.

Those pages that are coÍrmon to the target state and to either the preceding or

following states cannot be reclaimed. Those pages that are not common may be

reciaimed. Pages identified for reuse are added to a list of candidate pages.

Notice that since the LPMap is self describing, LPMap pages themselves also

form part of the set of potential reclaimed file pages, thus no separate action is

required to reuse LPMap pages. Since the LPMap primary page is never in

common with any other state it will always be reclaimed.
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4. The target state is deleted from the version table. The table must be committed

to the store ensuring that the deletion of the version is stable before reuse of the

released pages can proceed. Once this is done (through Challis's algorithm as

usual) the pages listed for reuse are deallocated in the volatile allocation bitmap

and become available to the running program.

5.4. Comparisons and Conclusions

In the store architectures discussed there is a clear progression in the nature of the data

structures used to map physical pages to addressable memory. Brown's store does not use

such a structure (although the shadow map structure is required, and thus it is not true to

say that no mapping data is kept at all.) Munro's store uses a separate mapping structure

which is shadowed through the action of a separate description mechanism. Thatte's store

uses an unshadowed map structure utilising time stamps to represent the use to which a

particular physical page is being put.

' The Texas log structured store provides a self describing map structure, however one in

which the map is structured as a search tree rather than a conventional page table. The bi-

phase Casper store provides a self describing shadowed page map, and the multi-phase

Casper store extends this to include multiple self describing maps which can share those

parts of the map and store which are common to individual versions.

5.4.I. Log structured versus shadowing

A comparison between a log structured store (such as Texas) and the shadow paging

schemes is interesting. The Texas store achieves locality of reference for physical blocks in

the store by writing to blocks chosen in sequential order on the disk. The map data

structures are also so written, preserving this locality. Shadow paged stores as described

thus fa¡, are not able to make use of such optimisations.

However, in Unix based implemetations of Texas, because each page of data must be

unswizzled before it is written to disk the system is unable to map the data referenced by

the user program directly to the store. The system is therefore unable to integrate the store

mechanism with paging by the virtual memory system to swap space. Thus a hidden cost

of the system is movement of data pages to and from swap space in response to pressure on

physical memory. This movement suffers from exactly the random disk head movement

that the log structured store is designed to avoid. This problem must severely limit the
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performance advantages found in practice unless the running system rarely exceeds its

physical page set size. Implemetations of Texas under Mach avoid this problem

The same effect of disk locality provided by the log-structured store can be achieved

with after-look shadow stores. The key lies in only allocating the disk block to which.a

page is mapped at the moment that the page is either evicted from addressable memory or

melded with the store. Store designs which use the Unix mmap mechanism are unable to do

this because the operating system performs evictions asynchronously, forcing allocation of

a store block as soon as the page data is modifred and the map performed. Implementations

which use an integrated store manager, such as the Mach external pager, are able to delay

the allocation of the page until it is actually written, thus allowing the allocator to pick the

page best able to preserve high locality on the disk. Since the Casper design integrates the

page map into the same paging mechanism as data pages, map pages can also take

advantage of the locality gains. The rest of the store mechanisms operate in exactly the

same manner as before. Unlike the Texas store there is no need to separately traverse the

store to find free space, nor does the store space used grow monotonically until such a

traversal is performed.

Care must be taken if the operating system chooses to evict an LPMap page from

memory. To write this page to disk would require that all the pages it references be

allocated immediately. Clearly it is better to avoid eviction of such pages whenever

possible. A Mach external pager can simply elect to write a different page to disk and

reinsert the LPMap page into physical memory. However virtual memory managemeút

designs which provide the pager code with some control over the choice of evicted pages

are clearly superior.
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Chapter 6. Distributed Casper.

6.1. Introduction.

This chapter examines the design and implementation of the distributed Casper system. This

is a persistent system designed around the paradigm of page based distributed shared

memory. It draws together the user level view of a persistent virtual address space as

discussed in chapter 2, above a page based stable store as described in chapter 5. It augments

these by allowing multiple programs to execute concunently within the persistent space and

allows these to execute on physically separate nodes on a network.

Casper supports the execution of NapierSS by clients which connect to a central persistent

store. The architecture implements a resilient page-based coherent persistent address space.

In this address space, any read operation will always read the result of the last write to the

object concerned, independent of the client on which the read or write operation takes place.

6 .2. Execution Environment.

The system described in this chapter is implemented using the Mach 2.5 operating system.

Mach [Acceta, Baron et al. 1986] provides some important advantages over conventional

operating systems. The major features a¡e:

. the external pager,

. inter-process communication

. multiple threads

Under Mach, the user is permitted to provide a process called an external pager which

services page faults. If an external pager is associated with a user process, the Mach kernel

will forward page fault exceptions to that external pager. One can arrange, for example, that

the required data will be supplied (in the case of a read fault) or written to some stable

medium (for pages removed from the client's physical memory). This external pager

mechanism implements most of the functionality needed to support the coherent persistent

address space described in this chapter.

The single inter-process communication (IPC) facility available in Mach permits a

transparent interface to be built, independent of the physical location of the communicating

parties.

Mach supports more than one thread of execution in a single virtual address space, an

aspect which is exploited by the architecture described. This is especially useful in building
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asynchronous communication protocols, such as the cache coherency protocol described

here.

6.2.1. Stability and Coherency

Database management systems require a sequence of update operations by a user process to

be contained within an atomic transaction. That is, either all modif,rcations are completed, or

none are made. Traditionally, such atomicity is achieved by locking portions of the database,

so that while a transaction is in progress, no other user process may view modified data

[Eswaran, Gray et al.1976].

Napier8S provides no language-level synchronisation primitives; however, suitable

language features have been proposed for the Napier family of languages [Morrison, Brown

et al. 1989]. This proposal does not force all data accesses to be serialised; instead, anarchic

access to the store is permitted. However, the persistent store itself must be kept consistent,

which presents two problems:

. it must be possible to roll back the effects of a series of updates during which a

failure occurs (either of a client or the server), and

. no process must view or act upon out-of-date data.

In the architecture described in this chapter, store stability deals with the f,rrst aspect, and the

cache coherency p¡otocol with the latter. These are discussed in Sections 6.4.1 and 6.6.

6.3. Overview of the Architecture

The architecture of the distributed Casper system is depicted in Figure 51. A number of

clients execute against a shared stable store using a coherency protocol that guarantees data

integrity; client code executes in an environment that is robust and guarantees correct

execution regardless of the failure of parts of the system.

A stable store is defrned to be a set of objects which move from one consistent state to

another atomically. In Casper, the stable store is provided via the Stable Store Server. The

Stable Store Server consists of four components: the Server Request Handler, the Stable

Store Manager, the Stable Store Garbage Collector and the stable medium. The objects

resident on the stable medium are managed by the Stable Store Garbage Collector, whilst the

physical pages are managed by the Stable Store Manager. Finally, the interface to the outside

world is provided by the Server Request Handler.
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In addition to the usual passive data found in traditional database and file systems, the

stable store contains active data including the state of all processes executing within it. This

provides the potential for restarting processes found in the persistent store should some

element of the system fail. This protocol includes the maintenance of structures needed to

correctly roll back the execution state ofinterdependent clients should failure occur in any

part of the system. Those parts of the system that can continue without jeopardising the

integrity of the stable store are unaffected. The stable store server is described in more detail

in Section 6.4.

Client 1 Client n

¡rt

Stable Store Seruer

Figure 51. The Casper distributed persistent architecture.

Each client has an interface to the Stable Store Server, which gives access to the stable

persistent store; this interface is called the Client Request Handler.In addition, each client

contains an interpreter for PAM code (such as compiled NapierS8 programs) and a page

cache which holds copies of those stable store pages required by the interpreter. Within a

client, coherency is maintained by the Client Request Handler and the external pager.

In Casper, object pointers refer directly to the addresses of objects within the persistent

address space, references to nonresident objects are handled as page faults. The external

pager services all page faults for nonresident pages; these are fetched from the persistent

object store under the control of the coherency manager.
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Garbage collecting a large object space such as the one supported by our architecture is

potentially an expensive operation; the implementation therefore uses tactics to make garbage

collecting the entire persistent store infrequent. One tactic is to maintain an area of locally-

created objects to which there are no external references and which can therefore be garbage

collected independently; this technique was described in chapter 2.

The coherency protocol is distributed and has been designed as two finite state automata

(FSA), one specifying the state of apage within each client, the other the state of a page in

the Stable Store Server. In practice, the coherency protocol is implemented by tables - an

Export Table in the Stable Store Servcr and an Import Table in each of thc clicnts. The cache

coherency protocol is discussed in Section 6.6, where the operation of these tables is

explained more fully.

6.4. Stable store server

6.4.1. Store Stability

As described in the previous section, all access to the persistent store is controlled by the

Stable Store Server. It has two main functions: managing the supply of pages upon demand

to clients, ensuring that coherent versions of the pages are supplied; maintaining the integrity

of the Stable Store. It also allocates ranges of the persistent address space to processes and

garbage collects the main heap.

Since the persistent store is used as the repository for all objects shared by clients, it is

imperative that the contents of the store remain stable (i.e., have the ability to survive

failures). This requires the use of a reliable mechanism to maintain consistency within the

stable store; in our case, this mechanism is called the stabilisation protocol.

The store architecture used is the bi-phase Casper store described in chapter 5. However

the store as described is only intended for a single user system. Here we describe additional

mechanisms used to allow the store to be used in a system of distributed concurrently

executing clients.

V/u and Fuchs [Wu and Fuchs 1990] describe a system whereby checkpoints a¡e carried

out on individual nodes (i.e., clients) as soon as another node requests the use of any

updated data; this prevents any sharing of data modified with respect to the Stable Store

Server. A major concern of their work has been to limit rollback propagation, so that the

failure of any client affects only that client. Other systems [Rosenberg, Henskens et a]. 1990;

Henskens, Rosenberg et al. 1991] allow sharing of modified pages; in order to ensure store
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consistency in such systems, the entire store must be stabilised in a single checkpoint

operation.

In contrast to the system of V/u and Fuchs, clients in our a¡chitecture may share pages

which have been modified with respect to the store. We adopt the solution whereby

interdependent subsets of clients must stabilise together, which may occur independent of

other clients in the system; these subsets are discussed in the next section. This is also in

marked contrast to the approach taken by Henskens, in which all clients must stabilise

together.

6.4.2. Associations

The architecture described in this chapter aims to reduce the frequency of checkpoints in any

one client by maintaining a record of those clients which must be considered dependent upon

one another due to the fact that they sha¡e modified pages. Only clients which are considered

to be dependent on one another in this fashion need be stabilised together.

The Stable Store Server maintains information regarding the distribution and modification

status of pages held by the clients; among this information is a record of which clientö are

dependent on each other. Dependent clients are termed associates and a set of mutually

dependent clients is called an association. Each association has a corresponding page list,

which identifies those pages modified by members of the association since their previous

stabilisation; this information is used to incrementally build the associations. It is important

to note that associations are dynamic in nature, with clients and pages being added and

associations merging over time.

Figure 52 gives an example of how associations expand as the result of read and

modification requests for various pages by different clients. Figure 52(a) conesponds to the

situation where Client A has modified page x (which is shown as x'in the figure to indicate

that it has been modified) and has read page ¿. Also, Client B has previously modif,red page

y. Thus, the associations in the Stable Store Server record that each client belong's to a

separate association and the page lists for the associations containing Clients A and B record

that each has a single modified page.

Next, as shown in Figure 52(b), Client B attempts to read page x and Client C attempts to

read page e. The result of these actions is shown in Figure 52(c): Client B now has access to

the modified page x, Client C has access to page z. The first two associations in Figure 52(b)

are now merged, since page.r must now also be present in the page list corresponding to the
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association containing Client B. Figure 52(d) shows that Client D then attempts to read page

y, resulting in the state shown in Figure 52(e). The associations containing Clients B and D

have now been merged into a single association because these two clients share access to the

modified pa5ey.

When a stabilisation is initiated by a client, only those clients belonging to the initiating

client's association need be included. Thus, if Client A stabilises, then Clients B and D must

also participate in this stabilisation; on the other hand, Client C may stabilise alone. All

modified pages held by stabilising clients must be returned to the Stable Store Server and

written back to the store as an atomic transaction. At the end of the stabilisation, thc stable

store will have moved into a nettr, consistent state. The association's page list can be used to

determine which store pages are to be returned to a free page list, since up-to-date copies of

those pages are stable and old versions are no longer useful. After stabilisation, the

association concerned again separates into singleton sets.
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6.4.3. Stabilistion

Stabilisation requires that a new consistent stable state be created from a set of pages

consisting of some newly created shadow pages and some existing stable pages.

Furthermore, it must be performed in such a way that it is always possible to recover the

state before stabilisation, even if a failure occurs during stabilisation. A complication is that if
the association stabilising its state is a subset of the entire system, care must be taken to

ensure that no state information associated with clients outside the stabilising association are

incorporated into the stable state created. In particular this affects the allocation of pages from

the persistent address space and the stable store. V/hilst being maintained within the stable

store server in a manner that reflects the allocation of space by all clients, the stable state

within the store must only reflect the allocations performed by the clients within the

stabilising association.

The stable store server maintains two in memory versions of both the virtual address

space allocation and stable store allocation maps. These are termed the curcent and stable

versions. The current version reflects the allocations performed by or on behalf of all of the

connected clients. The stable version reflects the current state of the stable store, and only

differs from the stable store version during the f,rnal stages of committing the stabilisation of

an association. The current and stable versions of these structures will only be the same if

and when all clients stabilise together as a single association.

The stabilisation protocol is as follows: the modified pages are first written from the

persistent address space to their shadow location on disk. In the normal course of events,

modified pages may also be delivered to the stable store by the coherency mechanism if there

is insufficient space for them within a client's physical memory. These pages are also written

to their shadow locations and are regarded as having been written back as part of this

stabilisation. After all modified pages have been written to their shadow sites, the remainder

of the stabilisation must be synchronised with any other stabilisations which have reached

the same stage. The stabilising association's page list is then traversed (recall that this holds

the list of all modified pages which are to be stabilised during the current stabilisation).

Pages found in the list have the appropriate shadow page allocated in the stable store

allocation map, thus reflecting the allocation of shadow space for the association. Notice that

the cunent allocation map will already hold knowledge of the allocation.
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Allocation of persistent virtual memory is recorded similarly, however since a client is

free to both allocate and deallocate ranges ofthe persistent space greater care is needed. To

ensure that exactly the correct allocation is recorded in the stable structures, the stable store

server maintains a log of all allocation and deallocation requests. To correctly represent the

allocation of virtual memory, this log is traversed to replay these requests, and update the

stable allocation map. Once updates of these allocation maps is performed they are written to

their shadow location within the stable store.

The LPMap is updated during traversal of the association page list, recording the new

location of data for these pages. Since the LPMap is self describing and embedded in the

persistent address space, these modifications will require shadowing and this will trigger the

allocation of other shadow LPMap pages recursively to reflect the creation of shadow space.

It is possible for several independent stabilisation operations to be in progress at any time

since, by definition, a client can only ever belong to one association. Consequently, pages

from more than one stabilisation may be written to the stable store concurrently. However,

care must be taken to ensure that the stable store moves from one stable state to another in an

atomic fashion. In practice, the final stages of stabilisation must therefore be serialised. In

particular, modification of the LPMap, and creation of the stable allocation structures is

considered an atomic action.

6.4.4. Stable Store Heap Management

The Stable Store Manager manages the stable virtual address space at the physical level; this

space must also be managed at the object level. When a client requests free space, the Stable

Store Manager responds by allocating unused pages. Object placement within these pages is

performed by clients.

All newly allocated pages are classed as modified, since the first operation on such apage

will always be a write. Consequently, they will be placed on the appropriate page lists, as

described in Section 3.2. Conversely, an association's page list is cleared if that association

rolls back.

From the above discussion, it would appear that the Stable Store Server understands

nothing of objects or the contents of the pages it is required to supply and secure. This is not

quite true, on trüo accounts:

. All internal information regarding the stable state of the heap of pages must be

persistent.
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. Garbage collection must, by necessity, be carried out at the object level.

6.5. Clients

As shown in Figure 51, a client is divided into three main threads: the PAM inteqpreter, the

Client Request Handler and the external pager. The PAM interpreter simply executes PAM

programs (compiled from Napier programs). Ideally, the interpreter should not be aware of

the existence of the other parts of the client, only perceiving a single, flat, virtual address

space. In reality, a few concessions must be made. The whole address range cannot be made

available to the persistent heap since a small area is required within which to place both the

interpreter and the coherence mechanisms. This area is reasonably small (a few megabytes)

compared to the entire add¡ess space and is demand-paged by the default pager since it is not

persistent.

The Client Request Handler handles all incoming messages to the client from the Stable

Store Server and from other clients. The extemal pager handles any page faults or protection

faults caused by the interpreter's attempts to access non-resident or protected pages. The

Client Request Handler and the external pager jointly implement the client's part of the cache

coherency protocol.

6.5.1. Externpl Pager

The abstraction of the persistent address space within a client is managed by the external

pager. The coherency protocol requires the ability to be able to detect and service page faults

and to selectively protect pages and handle attempts to violate those page protections within

the persistent address space. The external pager provides this functionality.

The external pager is divided into two parts: a thread which fields requests from the

kernel for maintenance of the persistent address space, and a routine library which is used by

the Client Request Handler to perform maintenance requests on the address space. The Client

Request Handler maintains coherency. This may be as simple as changing local state

information or may involve dialogue between the Client Request Handler and the Stable

Store Server.

All protection exceptions and page faults caused by the interpreter's attempts to access

pages are handled by the external pager. For example, when the coherency protocol requires

notification of an attempt to modify apage, the page is protected against modification. Any

subsequent attempt by the interpreter to modify the page will result in a page protection

violation, which will be delivered to the external pager. The external pager will translate this
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into a Client Modification (CM) request and forward it to the Client Request Handler. In

response to coherency management requests, the Client Request Handler will call the

appropriate routine in the external pager interface, which replies to the kernel; this, in turn,

reschedules the interpreter. The interpreter will retry and successfully execute the instructiòn

which originally caused the exception or page fault.

The external pager also handles the return of modified pages to the Stable Store (to relieve

pressure on local physical memory). If a removed page has been modified, an up-to-date

copy must be returned to the Stable Store. If a removed page has not been modif,red, the

Stable Store Server is notified that this client no longer holds a valid page copy, so as to

avoid the build-up of Export Table entries in the Stable Store Server.

However Mach 2.5, which was used to implement this system has some shortcomings.

Firstly, the kernel must, as part of its memory management duties, occasionally remove

pages from a user's memory cache. If the page has been modified, the kernel will return the

page to the external pager. In releases of Mach derived from Mach 2.5,the Mach kernel only

informs the external pager of the removal of a locally modified page. In this architecture,

although the page may be unmodified with respect to the client's kernel, the page may have

been modified with respect to the Stable Store by a different client. This means that the

system could potentially lose the only copy of a modified page. In order to receive

information on the removal of all pages (modified and unmodified), the external pager must

ensure that all pages are modified (non-destructively) when they are brought into the client.

This problem has been addressed in the new version of Mach (3.0) by allowing a page to be

tagged as "precious", essentially being considered as modified even if no modification has

occurred on that machine.

A further inconvenience is the kernel's removal of pages according to its own LRU

algorithm. It would be more useful if the kernel requested the external pager to remove one

or more pages, rather than sending its own choice of pages to the external pager for removal.

This is due to the fact that the pages selected may contain pointers into the client's local heap

area, in which case removal is a costly operation in this system, requiring copy-out of

objects so referenced. The external pager can determine more appropriate candidates for

eff,rcient page removal through the available state information.
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6.5.2. Atomic Access

The PAM requires that accesses to objects be atomic. This is necessary so that an object is

never left in a partially modified, and hence inconsistent, state. PAM accesses are made to

aligned 32-bit words, which are atomic at the machine level. However, there are some

occasions when the atomicity provided at this level is insufficient. Such cases include

accessing multiple word objects, such as ¡eal numbers (which are 64-bit quantities), bit-

maps and discriminated unions. A discriminated union is represented by a pointer to the data

and a tag field, and these may be stored non-contiguously. This requires a mechanism

capable of providing the intelpreter with atomic access to multiple data locations at arbitrary

addresses. This may be achieved using a structure which we call a latch. The semantics of a

latch is analogous to a door latch: it may be set before the door is closed, but once the door is

closed, the door will not open again until the latch is released.

Atomic access to multiple locations at arbitrary addresses may be implemented via

latching each affected page. Two latches are provided per page - a read latch and a write

latch. A latch, when set, prevents the release of the page to any other client for the pu{pose

indicated by the kind of latch. If a page is required for an atomic read operation, the write

latch is set and so a write operation by another client occurring part way through the read

operation is prevented. If an atomic write is desired, the read latch is set to prevent the page

from becoming shared part way through the write. The design of the latching mechanism has

aimed for efficiency, particularly for common cases, such as when only one page is needed

and the page is already resident.

Latching is implemented in each client through a data structure called the latch table. The

latch table is a fixed size array of address-range, latch type pairs. The architecture of the

PAM is such that at most four separate address ranges need ever be latched for the most

complex atomic action. Thus the latch table has four entries. Address ranges are represented

as either an individual page id, or a page id and a number of pages.

An instruction that requires atomic access to ranges of memory first places the address

ranges into the latch table, this requires that it know in advance all of the address ranges

required, again this is possible in the PAM interpreter. Once all the address ranges are loaded

a global flag is set to inform the client FSA that a latched operation is in progress. Then the

pages described in the latch table are loaded. This is achieved by simply touching each page.

The client FSA will load any pages not already present and will prevent the loss of any pages
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that are present. Once all pages have been touched the atomic operation may proceed. Once it

has completed the latch table is tagged as empty (by setting the number of entries counter to

zero) and the global flag is unset.

When the need arises to access more than one page, pages are latched serially and in a

defined order (in fact, ascending address order) to prevent circular dependencies with

competing clients, and hence avoid deadlock. A further rule is required to prevent deadlock if
a competing client already has some of the pages needed to complete an atomic operation

latched itself. If a client has some pages latched but does not have the complete set to allow it

to proceed, it will release the latched pages if the pages it does not yet have latched are of

lower address. The combination of defined order of acquisition and a pre-emption rule

prevent deadlock.

The need for the more expensive mutex locks is obviated, since latches are:

. only ever setby the interpreter,

. released by the interpreter or by the Client Request Handler only when the

interpreter is guaranteed to be blocked, and

. only read by the Client Request Handler.

6.5.3. Local Heap Management

Each PAM interpreter executing in a client maintains a local heap for local object creation;

this is a previously unused set of contiguous persistent pages. Local heaps are small enough

to always remain resident within the client's page cache during normal execution. Greater

locality of reference may be obtained in relation to other systems that do not use the local

heap model. This can result in improved performance from better iage fault behaviour and

improved processor cache utilisation.

Local heaps may be independently garbage collected; to support such garbage collection,

all references into a local heap must be retained within the client. Any page containing

references into a local heap is not exported from the client until the referenced objects have

been removed from the local heap.

If transient objects are confined to a localised area, they may be distinguished from

persistent objects resident in the total persistent address space and hence may be garbage

collected locally at low cost. Local heaps may be safely garbage collected provided that no

external references (from other processes or the Stable Store Server) point into them.
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Fortunately, the creation and export of such pointers is easily detected, making this technique

tractable; these matters were covered in detail in chapter 2.

The implementation permits, and requires, a single external pointer into each local heap.

This pointer is to the process hea"der representing the process executing in the local heap and

is used as a root for local garbage collection. Process headers are reachable from the root of

persistence, making it possible to restart processes in the event of a failure. All objects

created locally are reachable from the process header at the time of their creation, because of

the manner in which stack frames are organised by the interpreter.

6.6. Cache coherency

The introduction of multiple clients which can concuffently access pages within the Stable

Store by operating over a local cache poses a major challenge for the design of a cache

coherency protocol. The bus-based multiprocessor hardware cache coherency methods (e.g.,

write-through, copy-back, etc.) [Archibald and Baer 1986] are inappropriate. For example,

the clients may be operating over a distributed network, where the communication costs are

greater than in a bus-based multiprocessor (especially for operations such as broadcasting

and snooping).

The coherency protocol has been specified as two finite state automata (FSA),

representing the states of a page within each of the clients and the Stable Store Server.

Client-server interaction is modelled by transition interactions between the two automata.

Client-client interaction is represented within the client's automaton. In the implementation,

these FSA are used as the basis for the code which maintains page coherency in the entire

system.

The general aim of the protocol is to allow multiple clients to read the most up-to-date

copy of a page, or a single client to write to a page without compromising the coherency of

the pages. All read and write requests are made directly to the Stable Store Server.

Depending upon the state of apage, read requests arriving at the Stable Store Server may be

forwarded to a client with an up-to-date copy of the page or the Stable Store Server may

service the requests directly. The aim is to maximise the freedom with which a client process

is able to run, and to prevent the Stable Store Server from becoming a bottle-neck for page

retrieval and supply.
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6.6.t. Client Finite State Automaton

A simplified version of the Client FSA is shown in Figure 53. This automaton represents the

set of states to which apage may belong while it is held in a client's cache. The transition of

apage from one state to another is initiated by the client's receipt of a message referring to

that page, from either the Stable Store Server, another client or the client's external pager

(due to the interpreter's attempt to access the page). The states and signals shown on the

diagram are explained in detail in Appendices A and B, respectively. Some aspects of the

FSA in Figure 53 will now be explained; it should be emphasised that this explanation will

not attempt to cover all the states of the FSA.
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Figure 53. Simplified Client FSA.
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The major points to note in relation to the operation of the Client FSA are the following:

o I page is considered to be modified if it has changed since it was last stabilised,

even if it was not the client currently holding the page that performed the

modification. If a modified page copy is held in the stable store, it is still classed as

modified until it is checkpointed during a stabilisation.

. 'When a page is shared, a modifying client must gain exclusive access to the page

before proceeding. It therefore requests modification permission from the Stable

Store Server and awaits the latter's acknowledgement before proceeding with the

modification.

. First-time modification of a non-shared page only requires the forwarding of a

modification (MOD) signal to the Stable Store Server. The client need not wait for

the Stable Store Server's acknowledgement before performing the modification on

such a page. This optimisation allows asynchrony, as the interpreter can continue

execution while the modification is still in transit to the Stable Store Server.

r { page returns to a non-modified state when it is stabilised; at this time, any copies

held by clients a¡e identical to the stable copy held in the stable store.

To give some appreciation of the client-related part of the coherency protocol, we illustrate

some of the more interesting aspects of the protocol below. Figure 54 shows the interpreter

of Client A attempting to read page z; the request goes to the page cache, where it is

discovered that the page is not resident. All non-resident pages are implicitly in the 'START'

state. As described ea¡lier, the extemal pager will field the page fault on page z and forward a

client read (CR) request to the Client Request Handler.

Client A

Figure 54. Client A attempting to read a non-resident page.

Thc Clicnt Rcquest Handler receives the request, and forwards an external read (XR) request

to the Stable Store Server, as shown in Figure 55. It also creates an entry for the page in the

r76

PAM interpreter
execulion status: attempling read

page cache

externalpager
Client

Request
Handler

page faull

z



local Import Table and records the page's state (Wait for Page Supply) in this table. At this

time, the interpreter is blocked pending the delivery of the page.

The page may arrive in the client under a number of different circumstances. If the page

was exported from the store since it was last stabilised, the Stable Store Server may forward

the read request to one of the clients which hold a valid copy of the page; this client will, in

turn, forward a copy of the page to the requesting client. In the case where the Stable Store

Server holds an up-to-date copy of the page, the page is sent directly from the server to the

client.

Client A

4:

NONSH NONMOD)

Figure 55. Client A forwarding an XR request to the Stable Store Server

Assuming that the page is not held by any other client, the Stable Store Server will send the

page copy directly to Client A using a supply page (SP) signal and the page will arrive

tagged for use as a non-shared, non-modified page. Upon receipt of the page, the state of

pa.ge z is updated in the Import Table by the Client Request Handler. This process is shown

in Figure 56 below. Once the page arrives, the Client Request Handler uses the external

pager to place the page in the client's cache; it is protected for read only access, because the

page is non-modified and the Stable Store Server must be informed of any modifications to

the page. The interpreter then continues execution.
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Figure 56. Once the page has been supplied by the Stable Store Server.

Pages in the non-shared, non-modified state may be tieely read by the PAM interpreter.

However, if the interpreter attempts to modify such a page, another exception will be raised.

The external pager again fields the access exception and forwards a client modify (CM)

signal to the Client Request Handler. Figure 57 illustrates the attempt to modify Page z.

Client A

Figure 57. Client A attempting to modify the page.

As a result of the page exception in Client A, three things happen: first, the page is opened

for write access; second, it is moved into the 'NONSH MOD' state; finally, a modification

(MOD) signal is forwarded to the Stable Store Server. The interpreter may resume execution

once these tasks have been performed, as shown in Figure 58. The Stable Store Server,

upon receipt of the MOD signal, will allocate a shadow page for this page. Furthermore, the

modification of this page may result in new interdependencies between clients and hence

expansion of associations. Under ordinary circumstances, the associations are kept up-to-

date as modifications proceed to pages in the system.
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Figure 58. The MOD request being sent to the Stable Store Server.

Complications may arise if page z is being manipulated by other clients while the MOD

signal is still in transit. If two other clients (Clients B and C) request a copy of page ¿, those

requests may arrive in the server ahead of Client A's MOD signal; this situation is shown in

Figure 59.
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Figure 59. Two other clients request copies of page z.

Upon receipt of Client B's XR request, the server will forward an XR signal to Client A,

indicating that an up-to-date copy of page z must be sent to Client B; this is depicted in

Figure 60. The XR request from Client C (recall Figure 59) is then received by the Stable

Store Server. At this time, the signal could be forwarded to either Client A or Client B; in

this example, the XR is again forwarded to Client A, as shown in Figure 60. When each of
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of an SP signal, to the requesting client. Once these SP signals have reached their

destinations, Clients A, B and C will hold Client A's version of page z in the shared,

modified state. If the MOD signal from Client A has not arived in the Stable Store Server,

the server will not be aware that page z is modified. Therefore, the associations containing

Clients B and C will not have been merged with that containing Client A.

Client A Client B

Client C

13: SP(z, SH

14:

12:

122

Figure 60. Clients B and C receive copies of page z.

Should Client B then attempt to modify page z, a MODXM (external modification of a

previously modified page) signal must be sent to the Stable Store Server. This indicates to

the server that Client B requires modification permission for a page which has already been

modified with respect to the stable store copy. Upon receipt of the MODXM, the Stable

Store Server will consult its state information for the page; in this case, the state of page z

indicates that it is unmodified. The Stable Store Server is aware, at this time, that a MOD

signal is in transit from the modifying client.

Since continuing to service the MODXM will result in a depletion of the record of clients

currently hotding a page, and since all the clients currently in this recorded list share a

modified page copy and are therefore interdependent on one another, the associations

containing these clients must be merged. The server can, therefore, correctly maintain the

associations of alt clients holding apage,despite the unpredictable ordering of the arrival of

signals. The MODXM signal is then treated as a normal XM signal and write

acknowledgement will eventually be sent to the original requesting client (Client B in this

case).

From the latter part of the above example, it should be clear that there are a number of

problems introduced when the interaction between multiple clients is considered. These

interactions account for the remainder of the simplihed diagram in Figure 53, which will not
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be discussed further here. An attempt has only been made to illustrate a small section of this

diagram and to mention some of the complications relating to that section.

6.6.2. Stable Store Server Finite State Automaton

The FSA for the Stable Store Server is shown in a simplif,red form in Figure 61. It describes

the various states to which apage held in the stable store may belong. Any page which has

not been exported from the Stable Store Server implicitly belongs to the 'START' state.

Transitions are initiated by requests from the connected clients. Appendices C and D give a

full description of the states and signals used in the Server FSA. As with the preceding

section and its discussion of the Client FSA, only some aspects of Figure 61 will be

discussed here.
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the modifying client. Upon receipt of a read request, the Stable Store Server either provides

the client with a copy of the required page, if it has a reliable copy available, or it consults the

page's Vlist to select another client capable of forwarding an up-to-date copy of the page

directly to the requesting client.

The operation of the Server FSA will now be illustrated by example. Consider the

situation in Figure 62, showing the modification of a shared page; a number of clients have

requested and received copies of a particular page (page x). Assuming that the clients have

not previously attempted to modify the page, it will be in the shared non-modified state in

both the Stable Store Server and the clients. If one client (Client A) attempts to modify the

paga, an external modification (XM) signal will be sent to the Stable Store Server and this

client will await write acknowledgement.

Client A Client G

Client B
lmport Table

x - SH NONMOD

Export Table

x: SH NONMOD Vlist={A,B,C} D-list=Ø

Stable Store Server

Figure 62. The page x is shared among several clients.

Upon receipt of the XM signal by the Stable Store Server, all clients belonging to the page's

V-list, except the requesting client, must invalidate their copies of the page. Invalidating XM

signals are sent to those clients by the server as shown in Figure 63. Once these signals have

been sent, the page's state in the server will change to the 'lvait for INVACK XRq=@' g¿1s,

indicating that the Stable Store Server is awaiting invalidation acknowledgement (INVACK)

signals from the notified clients ('V/ait for INVACK') and no further read requests have

been received for the page (i.e., the XR queue is empty, indicated by 'XRq=@'¡.

lmport Table
x - SH NONMOD

I

lmport Table
x - SH Waiting

foTWHACK
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Client A

lmport Table
x - SH Waiting

foTWRACK

lmport Table
x - SH Wailing

foTWRACK

Client B

lmport Table

x - SH NONMOD

Glient B

Client C

lmport Table

x - SH NONMOD

3
2

Stable Store Server

Figure 63. Invalidating XM signals being sent to clients.

Clients B and C will invalidate their copies of page.r as a result of receiving the XM signals

from the Stable Store Server. Records kept for the page will be deleted from their Import

Tables and the page will implicitly move back to the START state in each of these clients.

INVACK signals will then be sent to inform the server of the completion of the clients' page

invalidations. The result of the invalidations is shown in Figure 64.

Glient A Client C

5
K(x)4z

Export Table

x: Wait for INVACK XRq=ø V-list=(A,B,C) Dlist=Ø

Stable Store Server

Figure 64. Clients B and C responding to the invalidating XM signals.

As each INVACK signal is received by the Stable Store Server, the corresponding clients are

removed from the V-list. This process continues until there is only one remaining member in

the V-list, the client which originally requested modification permission, as depicted in

Figure 65. A write acknowledgement (V/RACK) signal is then forwarded to Client A, and

the page moves into the non-shared, modified state. As soon as the WRACK signal has been

sent to Client A, the client will be added to the D-list for page x recording Client A's

dependency on the modified page. Upon receipt of the WRACK signal by Client A, page x

will move into the non-shared, modified state and the interpreter will resume execution.

Export Table

n waitforlNVACKXHq=@ V-list={A,B,C} D{st=ø
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Client A Client C

lmport Table
x - SH Waiting

for WRACK

CIient B

lmport Table
x - SH NONMOD

6:

Stable Store Server

Figure 65. A WRACK signal being sent to Client A.

In a realistic environment, clients are likely to compete for access to the same page. Consider

a scenario where Client C also attempts to modify page x. This scenario is illustrated in

Figure 66, which replaces Figure 63 in the above sequence. If the XM request from Client A

reaches the Stable Store Server before the XM from Client C (recall Figure 62), Client A's

request will receive preference.

Client A Client C

Client B
lmport Table

x - SH Wailing
for WRACK

2t

2z
ã.

Stable Store Server

Figure 66. Client C also requesting modification permission via an XM signal.

Upon receipt of the modification request from Client C, the Stable Store Server is aware that

the client's interpreter is halted and that an invalidating XM signal has been sent to Client C.

The XM request can therefore be treated as an invalidation acknowledgement signal and

Client C is removed from the page's Vlist. This update is illustrated in Figure 67.

Export Table

x NONSH tritoD Vlisr={A) D_tisl={A)

x - SH Waiting
tor WRACK

lmport Table

Export Table

x: Waitfor|NVACKlXRql=Ø Vlist=[A,B,C] D-list=Ø
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lmport Table
x - SH Waiting

foTWRACK

Client A Client C

Client B

5:
4z

Export Table

x Wait for INVACK lXRql=Ø V-list={A,B) Dlist=ø

Stable Store Server

Figure 67. Client C's XM has been treated as an INVACK signal.

Since Client C's XM signal has been treated as an INVACK, the client need not respond to

the incoming XM with an actual INVACK signal. Consequently, when Client C receives the

invalidating XM from the server, it must simply invalidate its page copy. Since the

interpreter in Client C is blocked on an attempt to modify page x, the Client Request Handler

will send a request to the server (using an XR signal) for another copy of the page. This is

shown in Figure 67 and will result in Client C receiving the up-to-date version of the page

after the original modifying client (Client A) has received write permission, as shown in

Figure 68, and completed its modification.

Client A Client C

: lmport Table
i x-SHWaitino
I for WRACR

Client B
lmport Table

x - Wait for
Page Supply

6

Stable Store Server

Figure 68. Client C's XR being forwarded to Client A after the WRACK signal.

6.6.3. Interaction between the Automata

Section 6.6.1 described the operation of the Client FSA; the Server FSA was covered in

Section 6.6.2.In the latter section, some interaction between the two FSA was shown, since

the states of pages within clients were given as the behaviour of the Server FSA was

explained. In this section, the interaction between the Client FSA and the Server FSA will be

lmport Table
x - Wait for

Page Supply

Export Table

x SH MOD y.¡¡s1={A,C) p-lisl={A,C}
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further illustrated, to emphasise the manner in which both contribute to the maintenance of

coherency of the stable store.

A particular scenario, again involving three clients, will now be described. The first

snapshot, in Figure 69, indicates that the three clients have sent XR requests for the page p

to the Stable Store Server. The first request to arrive is that from Client A and this client is

placed in the page's V-list. The Stable Store Server has not previously exported a copy of the

page to any client; therefore, it can service the first request itself by forwarding a copy of the

page to Client A. Before the remaining two read requests arrive at the Stable Store Server,

page p is in the state 'NONSH NONMOD'. Client A, upon receipt of the SP signal, moves

its copy of the page into the 'NONSH NONMOD' state; this is the situation shown in Figure

69. Clients B and C have entries for the page in their respective Import Tables which indicate

the state of the page to be ''Wait for Page Supply'.

Glient A Client C

Client B

3:

2: SP(p,

Stable Store Server

Figure 69. Multiple clients requesting copies of page p.

Next, the other two XR signals are received by the Stable Store Server. As a result, these

clients are added to the page's V-list, yielding the V-list shown in Figure 70. When the first

of these signals is received from Client B, the page moves to the 'SH, NONMOD' state in

the Stable Store Server and the XR signal is forwarded to Client A. Client A makes a copy of

the page, changes the page's state to 'SH NONMOD' and forwards the copy to Client B via

an SP signal. Client C's request, when received by the Stable Store Server, may be

forwarded to either Client A or Client B. An arbitrary choice is made in an attempt to reduce

a potential bottleneck of page requests at a client. As can be seen from Figure 70, Client B

was selected to supply page p to Client C in this case and the XR is forwarded to Client B:

upon receipt of the XR, Client B makes a copy of page p and sends it to Client C via an SP

signal.

lmport Table
p-NONSH

NONMOD

Export Table
p: NONSH NONMOD Vlist=(A) D{ist=Ø

lmport Table
p - Wait for

Page Supply
lmport Table

p - Wait for
Page Supply
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@
lmport Table

P. SH
NONMOD

lmport Table

P. SH
NONMOD

Export Table

p: SH NONMOD V-lisl={A,B,C) Dlist=Ø

Client A Client C

Client B
lmport Table

p - Wait for
Page Supply

5: Client C)

Stable Store Server

Figure 70. Servicing the read requests from Clients B and C'

When the SP signal is received by Client C, it changes the state of the page to that arriving in

the signal; this is depicted in Figure 71. Client A then sends an XM request to the Stable

Store Server as a result of this client's interpreter attempting to modify the write-protected

pa1e p.This page has moved to state 'SH V/aiting for WRACK' in Client A, in preparation

for the arival of the expected V/RACK signal. Upon receipt of the XM signal, the Stable

Store Server must traverse the list of clients which hold current copies of the page and

request those clients to invalidate their copies; this is achieved by sending XM signals to the

clients concerned. The page moves into the 'wait for INVACK XRq=Q' state in the stable

Store Server.

Client A Client C

Glient B
lmport Table
p-sH

NONMOD

11

10:

Stable Store Server

Figure 71. Client A's modification request being serviced by the Stable Store Server.

The result of these invalidating XM signals is shown in Figure 72, whete the Clients B and

C have removed the copies of page p from their local caches, along with any internal records

held for the page. These clients then reply to the Stable Store Server with INVACK signals.

The page moves implicitly into the 'START' state in each of Clients B and C.

I

lmport Table
p-sH

NONMOD

9

p - SH Waiting
foTWRACK

lmport Table

Export Table

p: Waitfor|NVACK V-list=(A,B,C) D-lisl=ø
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Client A Client C

lmport Table
p - SH Wailing

for WBACK

Client B

13:

12:.

Stable Store Server

Figure 72.The invalidating clients acknowledging their invalidations of pagep.

Upon receipt of the INVACK signals by the Stable Store Server, Clients B and C are

removed from the Vlist for pagep; this is shown in Figure 73. Once the V-list is reduced to

a single member (the original requesting client), that client is added to the page's Dlist. A

IVRACK signal for page p is now sent to Client A and the page is moved to the 'NONSH,

MOD' state in the Stable Store Server. Upon the arrival of the V/RACK signal in Client A,

the page is moved to the 'NONSH MOD' state in that client.

Client A Ctient C
Client B

14: 't4z

Stable Store Server

Figure 73. V/rite acknowledgement being forwarded to Client A as Client C
requests another copy of pa5e p.

At the same time as the Stable Store Server is sending the WRACK signal to Client A, Client

C sends an XR request for page p to the Stable Store Server. As shown in Figure 74, this

request causes Client C to be added to both the V-list and Dlist for page p in the Stable Store

Server and the request to be forwarded to Client A. Another consequence of the XR request

is that the page is moved into the 'SH, MOD' state in the Stable Store Server. Client A, upon

receipt of the XR signal, moves the page into the 'SH MOD' state and forwards a copy of

Erport Table
p: Wailfor|NVACK V-lisl=(A,B,C) D-l¡sl=ø

lmport Table
p - Wait for

Page Supply

page p
¡mport Table

p - NONSH
MOD

Export Table
p: NONSH MOD Vlisl=[A] Dlisl={A}
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lmport Table

P. SH
MOD

Export Table

p: SH MOD y-¡¡51=(A,C) p-lisl=(A,C)

the page to Client C via an SP signal. When this page is received, Client C will also hold the

page in the 'SH MOD' state.

Client A
Client B

lmport Table
p - Wail for

Page Supply

15: ient c)

Stable Store Se¡ver

Figure 74. Client C's read request being serviced by the Stable Store Server
and Client A.

6.6,4. Omissions from the Simplified Automata

As already mentioned, the automata shown in Figures 53 and 61 are simplif,red versions of

the FSA used to implement the system. These simplified automata have been employed in

order to simplify the description of the essentials of the coherency management in the

system. At this stage, however, it is worth characterising the principal omissions which have

been made.

In the Client FSA, the main omissions a¡e:

(C1) XR requests which arrive from other clients, via the Stable Store Server, before the

client has received its copy of a page.

(C2) Invalidating XM requests arriving from the Stable Store Server ahead of SP signals

from another client.

(C3) As discussed in Chapter 2, copy-out space is required to allow locally created

objects to be garbage collected independently of overall stable store garbage

collection. The potential problem of copy-out space being unavailable when a read

request a¡rives for a page which contains pointers into the local heap.

(C4) The handling of an XR request forwarded from the Stable Store Server, and

a:riving in a client after that client has sent an XM signal to the Stable Store Server

for the page.

(C5) The complications introduced through kernel-initiated removal of a page from a

client's local cache, as part of normal virtual memory management'
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As for the Server FSA, the following are the principal omissions:

(S 1) Pages are never returned by clients - this follows from (C5) above.

(S2) Following from (S1), no indication is given of how to handle the receipt of

unexpected INVACK signals due to page removal signals being treated as

INVACK signals.

6.7. Conclusions

We have described in some detail the design of a single server distributed persistent system.

Of particular interest is the associations mechanism which tracks causal links between

separate programs executing on separate clients, ensuring that a self consistent state is

always represented within the stable store. This mechanism is a special case of the more

general problem of tracking causal relationships and generating consistent views of

computation in a distributed environment. This problem is the subject of the next chapter.

The Casper system has verified the utility of the external pager mechanism for the

provision of both conventional distributed shared memory, and for the creation of a

persistent virtual address space. The system could potentially have been implemented above

a conventional operating system such as Unix, using access protection exceptions to trigger

the coherency system, however the system would continually have been in conflict with the

operating systems page swapping operations and would be required to carry out unnecessary

copy operations as pages were transferred. The success with the external pager in the Casper

system has been a major influence in the design of the container manager abstraction in the

Grasshopper operating system. This system is described in Chapter 8.
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Chapter 7. Grasshopper

7.1. Introduction

In the preceding chapters we have described tactics for exploiting page based ha¡dware to

support orthogonal persistence. These tactics have often been compromised by the

inappropriate design of the host operating systems. This last chapter describes the design of

aspects of a new operating system (called Grasshopper) which suppofts orthogonal

persistence as an intrinsic feature. This new operating system includes specific support

intended to make the use of page based persistence mechanisms natural to implement.

Grasshopper is a joint project between the Universities of Sydney and Adelaide in

Australia and the University of Stirling, Scotland.

This chapter begins with an examination of why a new operating system has been built,

why current systems fall short, and some of the goals of the new design. A brief overview

of the basic abstractions and computational model of the system is presented.

We have seen in Chapter 6 how tracking causal interdependencies in the Casper system

can be exploited to reduce the costs of melding the volatile state with the stable store. In

this chapter we survey the general basis for tracking and characterising causal links and

how more general mechanisms can be constructed to allow consistent system states to be

captured without requiring gt'oUal synchronisation. The major thrust of the remainder of the

chapter is to describe the underlying mechanisms by which the Grasshopper operating

system allows individual parts of the system to maintain stable state, using locally optimal

mechanisms but coordinated to ensure global reliability.

7.2. Why a new operating system?

Tanenbaum [Tanenbaum 1987] listed the four major components of an operating system as

being memory management, file system, input-output and process management. The

nature of these four components is different in persistent systems. In a persistent system,

the functionality of the file system and memory management are replaced by the persistent

store. In many operating systems, input-output is presented using the same abstractions as

the frle system; clearly this is not appropriate in a persistent environment. Some persistent

systems require that the state of a process persists; this is not easily supported using

conventional operating systems. It is therefore to be expected that an operating system

designed to support persistence will have a different structure from a conventional

operating system and will provide a different set of facilities.
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In previous chapters we have described attempts to manufacture persistent

environments using conventional operating systems. All of these have been compromised

to some degree by the mismatch between the abstractions presented by the operating

system and the goals of orthogonal persistence. In all of these systems the implementor

expends considerable effort manufacturing a virtual machine abstraction on top of the

model presented by the host operating system. On top of this new virtual machine the

persistent system is implemented. Such a tactic produces systems with at least two

superfluous layers of abstraction and additional opportunity for errors.

Vy'e can summarise the principal requirements of a persistent operating system as follows

[Dearle, Rosenberg et al. 1992]:

i. The major requirement is support for persistent objects as the basic abstraction.

ü. These objects must be both stable and resilient. The system must reliably manage

the transition between long and short term memory transparently to the

programmer.

iii. Processes must be integrated with the object space in such a way that process state

is itself contained within persistent objects. Thus processes themselves become

resilient.

iv. Although the persistent store is uniform, there is still a requirement to be able to

restrict access to objects for the same reasons that file systems provide access

control mechanisms. Any operating system supporting persistence must therefore

provide some protection mechanism.

7.3. \ühy conventional Hardware?

Grasshopper is intended to run on conventional hardware architectures. In the previous

chapters we have examined tactics for, and implementations of, persistent systems that

exploit conventional page based hardware architectures. Grasshopper has been designed in

the belief that these tactics along with an operating system design specifically intended to

support them, will result in a system with considerable performance and useability

benefits. Other benefits of a conventional hardware approach are:

. The performance of these systems is increasing dramatically every year due to

competition between, and massive investment by, the hardwa¡e vendors.

. These alchitectures are highly available. It is easy to disseminate research results

by providing copies of the system to interested parties.
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. Should commercialisation become a possibility, a totally software implementation

is easier to market than a solution including specialised hardware

Using conventional ha¡dwa¡e, and in particular exploiting the page based virnlal memory

paradigm, has proven to be very successful in the designs studied in the ea¡lier chapters.

The major problem encountered with these systems has been the poor correspondence

between the abstractions for control of virtual memory provided by existing operating

systems, and the demands made in implementing orthogonal persistence. One of the clear

design goals of the Grasshopper system is the provision of a suitable abstraction.

7.4. Grasshopper

Grasshopper relies upon three powerful and orthogonal abstractions: containers, Ioci and

capabilities. Containers provide the only abstraction over storage, loci are the agents of

change (processes/threads), and capabilities are the means of access and protection in the

system.

Conceptually, loci execute within a single container, their host container. The data

stored in a container is supplied by a manager. Managers are responsible for maintaining a

consistent and recoverable stable copy of the data represented by the container. As such,

they are vital to the removal of the distinction between persistent and volatile storage, and

hence a cornerstone of the persistent architecture. It is the operation of the managers and

their inter-relationship with the kernel in the maintenance of a consistent recoverable

system state that is the major topic of this chapter.

7.4.1, Containers

In systems which support orthogonal persistence the programmer does not perceive any

difference between data held in RAM and that on backing store. This idea leads naturally

to a model in which there is a single abstraction over all storage.

Grasshopper adopts this model by implementing regions called containers. Containers

are the only storage abstraction provided by Grasshopper; they are persistent entities which

replace both address spaces and file systems. In most operating systems, the notion of a

virtual address space is associated with an ephemeral entity, often termed a process, which

mutates data within that address space. In contrast, containers and loci are orthogonal

concepts. A Grasshopper system consists of a number of containers, any of which may

have loci executing within them. At any time, a locus can only address the data visible in

the container in which it is executing: Each container is independent and not part of some
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larger structure, allowing different management techniques to be implemented for each

container.

Facilities must be provided which allow the transfer of data between containers. The

mechanisms provided in Grasshopper are mapping and invocation. These are described in

the following sections.

7.4.2. Capabilities and Protection

The protection abstraction provided by Grasshopper is the capability [Fabry 19731. The

capability provides both a referencing mechanism for entities within the system, and

protection of access to these entities. An operation can only be performed by the

presentation of a valid capability which references the entity upon which the operation is to

be performed and which permits the requested operation. An entity can be identified by

many capabilities, each individual capability may endow its owner with different abilities

to apply operations to the referenced entity.

Both loci and containers can own capabilities. Such capabilities are maintained in a

segregated space by the kernel, thus preventing capabilities from being forged or altered.

Capabilities can only be given to loci or containers through the action of the kernel. In a

manner similar to that implemented by the Monads system [Rosenberg and Keedy 1987]

the kernel enforces a strict protection regime in which capabilities can only be passed on to

other entities with the permission of the existing holder of the capability. Thus a structured

and safe referencing environment is built.

For the purposes of the remainder of this chapter, and in particular, discussion of

specific procedure specihcations, it is suffîcient to regard capabilities as kernel provided

and protected references. User level code is able to indirectly refer to those capabilities it

has access to by using a Capref. A Capref is simply an index into the kernel maintained list

of capabilities owned by an entity. Although Caprefs can be arbitrarily created or altered

they can only make use of those capabilities actually installed within an entity, thus

preserving safety in the system.

7.4.3. Loci

In Grasshopper, loci are the abstraction over execution (processes). In its simplest form, a

locus is simply the contents of the registers of the machine on which it is executing. Loci

are maintained by the Grasshopper kernel and are inherently persistent.
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Throughout its life, a locus may execute in many different containers. At any instant in

time, a locus executes within a distinguished container, its host container. The locus

perceives the host container's contents within its own address space. Virtual addresses

generated by the locus map directly onto addresses within the host container. A container

comprising program code, mutable data and a locus forms a basic running program. Loci

are an orthogonal abstraction to containers. Any number of loci may execute within a given

container; this allows Grasshopper to support multi-threaded programming paradigms.

Any container may include as one of its attributes a single entry point known as an

invocation point. When a locus invokes a container, it begins executing code at the

invocation point. The single invocation point is important for security; it is the invoked

container that controls the execution of the invoking locus by providing the code that will

be executed.

7.4.4. Container mappings

The purpose of container mapping is to allow data to be shared between containers. This is

achieved by ailowing data in a region of one container to appear in another container. In its

simplest form, this mechanism provides shared memory and shared libraries similar to that

provided by conventional operating systems. However, conventional operating systems

restrict the mapping of memory to a single level. Both VMS [Levy and Lipman 1982] and

variants of Unix provide the ability to share memory segments between process address

spaces, and a separate ability to map from disk storage into a process address space. The

Mach and Chorus operating systems [Acceta, Baron et al. 1986; Abrossimov, Rozier et al.

19891 providethenotion of amemory object, whichprovidesanabstractionof data. In

these systems, memory objects can be mapped into a process address space, however

memory objects and processes are separate abstractions. It is therefore impossible to

directly address a memory object, or to compose a memory object from other memory

objects.

By contrast, the single abstraction over data provided by Grasshopper may be arbitrarily

recursively composed. Since any container can have another mapped onto it, it is possible

to construct a hierarchy of container mappings as shown in Figure 1. The hierarchy of

container mappings form a directed acyclic graph maintained by the kernel. The

restriction that mappings cannot contain circular dependencies is imposed to ensure that

one container is always ultimately responsible for the data. In Figure 75, container C2 is
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mapped into container CI at location aI .In tum, C2 has regions of containers Ci and C4

mapped into it. The data from C3 is visible in CI at address 43, which is equal_to aI + a2.

ol
o3

cl

o2

C2

c3

".1
Figure 752 A container mapping hierarchy

7.4.5. Managers

Thus far we have described how all data storage in Grasshopper is provided by containers.

However, we have not described how data becomes visible within a container nor how

persistence of this data is maintained. When data in a container is first accessed, the kernel

must provide the concrete data that the container represents. Managers are responsible for

providing the required data to the kernel and are also responsible for maintaining the data

when it is not resident in addressable memory. In Grasshopper, the manager is the only

mechanism by which data migrates from stable to volatile storage. Rather than being part

of the kernel, managers are user level programs which reside and execute within their own

containers; their state is therefore also resilient. Managers themelves have their state

managed by another manager. The fixed point in this recursive managment is provided by

managers that are able to manage their own data. The concept of a manager is similar to

the Mach external pager. In common with Mach and more recent systems [Harty and

Cheriton t992; Khalidi and Nelson 19931, managers are responsible for:

o provision of the pages of data stored in the container,

' responding to access faults, and

. receiving data removed from physical memory by the kernel.

In addition, Grasshopper managers have the tbllowing responsibilities:
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. provision of stability for the container data, and

. maintenance of coherence in the case of distributed access to-the container

V/hen an executing locus attempts to access data at a virtual address for which no physical

page is mapped the kernel translates the resultant page fault into an invocation of the

appropriate manger. Making data accessible in a container takes place in two steps:

i. the manager associated with a particular address range is identified, and,

ü. the appropriate manager is requested to supply the data.

The kernel is responsible for identifying which manager should be requested to supply

data. This is achieved by traversing the container mapping hierarchy. Once the correct

manager has been identified, the kernel requests this manager to supply the data. The

manager must deliver the requested data to the kernel, which then arranges the hardware

translation tables in such a way that the data is visible at an appropriate address in the

container.

Managers are responsible for maintaining a resilient copy of the data in a container on

stable media. It is only within a manager that the distinction between persistent and

ephemeral data is apparent. Managers can provide resilient persistent storage using

whatever mechanism is appropriate to the type of data contained in the managed container.

Since managers are responsible for the storage of data on both stable media and in

addressable memory they are free to store that data in any way they see fit.

7.5. Resilience

Grasshopper needs to provide an intrinsic mechanism by which the system can always

recover a resilient state. In line with the goals of orthogonal persistence, this must be

achieved without requiring user code to participate in the mechanism, or indeed allowing

user code to perceive the mechanism at all. Users of containers should only perceive a

resilient persistent address space. Furthermore, Grasshopper seeks to provide this

mechanism in such a way that individual container managers may use their own optimised

stability protocols and still co-exist within the Grasshopper framework. In particular the

mechanism provides support for managers that:

. provide simple snapshotting mechanisms,

. provide incremental snapshot generation,

. utilise difference logs, and
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. utilise high level replay logging,

to maintain a resilient persistent state of the containers in their charge. It is also important

that the mechanism allows each manager maximum freedom for asynchronous action,

avoiding regimes where large numbers of managers are required to simultaneously meld

the volatile data in their charge. Support of logging aids this goal since logging allows the

manager greater freedom in the generation of stable states. It also allows the manager to

provide a large range of stable states , thus as described in chapter 3, the operating system

is afforded greater freedom in identifying and creating consistent global states.

Creating a design in which such freedoms are provided requires that the system is able

to accurately track and characterise the nature of interactions between the supported

computations.

7.5.1. Causality

A central problem is the impossibility of providing universal time in a distributed system.

The Casper system described in Chapter 6 is able to track interdependencies easily because

all communication is serialised through a single central server. In a system built from many

separate stores and independent computations, this is no longer feasible. Instead, the notion

of causality ís useful for reasoning about distributed computations. Causality can

intuitively be defined in terms of some entity being in some way dependant upon the state

of another. For this to happen, state information must be passed between entities.

More formally, causality may be captured using Lamport's happened-beþre rclation

[Lamport 1973]. Briefly, the happened before relation "+" is the smallest relation such

that:

If a and b are events in the same entity and a comes before b then a + b

If a is the sending of information from one entity and b is its receipt in another then

a+b
Ifa+bandb+cthena+c
If a 1> b and b -l> a then a and b are said to be concurrent.

Causality in distributed systems is very similar to relativistic effects in the physical world

caused by the finite speed of light. It is impossible for some action occurring at a distance

to affect an observer until results of the action traverse the space between the two. Often

the results of some event are represented as a light cone radiating out from the event

[Hawking 1988]. Similarly the domain of events that can affect a point may be presented

200



by a causal cone which expands backwards in time. In Figure 76 only those actions that

occur within the cone can affect the point represented at the apex of the cone. Action cr

occurs within the causal cone and its effect is visible at I. However B lies outside the

causal cone and therefore I cannot be causally dependant upon it. In a similar manner the

causal cone in a computational system may be modelled.

Bo

time

Figure 76. A causal cone in space time. cr can affect 1 but not p.

Figure 77 represents a distributed computation in which each horizontal line represents a

single node with time increasing to the right. Communication between entities is

represented by a directed arc between time lines. In Figure 77, entity N3 at time I is

affected by an action s in N 1, but action B is invisible to it. Thus 1 is causally dependant

upon 0 but not B.

Figure 77. A causal cone in a distributed system. Event cx, can affect f but not B.

An operating system that provides orthogonal persistence muSt provide some failure

recovery mechanism. In this discussion, as in the rest of this thesis, we assume that the

system is fail stop. That is, if a failure occurs, that component will cease to operate. Úpon

recovery, the system must find some consistent system state from the separately

checkpointed states of system components. The problem is how to generate and find a set

of these committed states that form a consistent global state; such a subset is known as a

consistent cut.

Upon recovery, a useful consistent cut is one that represents some possible correct

system state. This need not represent the system as it actually existed at some moment in

cl
Nl

N4
time
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time, indeed it probably does not. It must, however, represent a possible state; that is one

reachable through some colrect execution of the system components.

Formally a consistent cut is a subset of the events which comprise the system such that

for all events in the cut, if e is an element of the consistent cut and e' + e then e' is also an

element of the cut [Mattern 1990].

Graphically, consistent cuts are easily conveyed as a line drawn downwards through a

time diagram; dividing the diagram into two parts with the past on the left and the future

on the right. A cut is consistent if no arrow (a communication) starts in the future and ends

in the past, and thus no message is received before it is sent. The intersection of the cut line

and a node's time line represents the time at which a snapshot of the state of the node was

committed.

In order to maintain consistency, either outgoing messages must be recorded as part of

the state of a node or a cut may not cross any message ¿urorü. In either case, a message is

never lost. Figure 78 shows four possible cuts in which a and y are consistent cuts and ô is

not. If messages in transit are recorded, p is also a consistent cut otherwise it is not.

N1
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Figure 78. Consistent and inconsistent cuts.

7.5.2. Lamport Time

Lamport [Lamport 1978] describes a method of providing a global clock by which causal

retationships can be characterised. Each event is tagged with an integer and the happened

beþre relationship is implemented by comparing the tags for different events. As shown in

Figure 79, using Lamport time, each entity maintains a counter, initially zero. At each

atomic action, which includes the transmission and reception of messages, the counter is

incremented. Alt messages are tagged with the counter's value. Upon receipt of a message,

the local counter is set to the maxima of the local counter and the counter in the message.

I
t
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I
t
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¡l
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Using Lamport time, events with the same time in different nodes are arbitrarily ordered

using some secondary criteria such as entity identifìcation.

N1

Figure 79. Lamport Time.

In a distributed system, message passing occurs concurrently in separate parts of the

system; therefore the ordering of events is characterised by a partial ordering. However,

Lamport time presents a single total ordering of events which is one of many possible

correct total orderings. Extending Lamport time to express the partial ordering inherent in a

distributed system leads to vector time.

7.5.3. Vector Time

Vector time has been described by Fidge [Fidge 1988] and Mattern [Mattern 1989] and

may be viewed as an extension of Lamport Time. Rather than keeping a single counter,

each entity within the system maintains a time vector, in which each element represents

knowledge about other entities within the system.

Vector time is maintained as follows; each vector has as many elements as there are

entities within the system.VT¿t,rl denotes the ¡th element of the time vector for entity i.

Each element of every vector is initially zero.

On each atomic action (including message receipt and transmission), the entity

increments the element of its vector corresponding to itself, that is

Wtttl=VT¿[i]+1.

\ühenever a message is sent to another entity, the sender's vector is transmitted with

the message.

Upon receipt of a message, the receiving entity updates its own vector as follows. If

any element of its own vector is greater than the corresponding element of the vector

received, it is untouched. If an element of the received vector is greater than the
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corresponding element of the receiver's vector, the receiver updates that element to

equal the received value.

N1

<1 ,1,0,0 > <2,4,O,O >

< 1 ,2,1,0 >

N4

Figure 80. Vector Time.

Figure 80 shows a simple example of vector time. Using vector time, event c in entity Ni

happens before event B in entity N¡ iff,

VTø[i] < VTplil

In effect this says that entity i must have communicated with entity j, perhaps via some

intermediaries. In addition to the happened before relation, vector times also encompass

the notion of concurrency. Two events d and B are concurrent if

cx+pandpJ>a

For example, the nodes labelled <1,0,0,0> and <0,0,0,1> are concurrent events. Unlike

Lamport time, vector time captures the partial ordering of events within a system. Thus,

vector time captures the happens beþre relationship and the notion of concurrency in the

system. It therefore contains all the information needed to formulate a consistent cut.

<1 ,1,0,0

N1

>\ <2,4,0,0 >

\<1210

I

ô
I

v
)¡

p

Figure 81. Consistent cuts and vector time

Vector time may be used to cha¡acterise consistent cuts. Johnson andZwaenepoel [Johnson

andZwaenepoel 1990] show a method which involves the construction of a dependency

d
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matrix which is a matrix whose rows correspond to the vector times of all nodes in a

system. For example, the matrix for the cut õ in Figure 81 above is:

000
200

They show that a dependency matrix M represents a consistent cut iff,

vij Mij < Mjj.

In other words, the elements in the column j must be less than or equal to the diagonal

element. This says that no entity i depends upon an event that has happened after the

consistent cut was established. The cut denoted by ô is not consistent since entity three's

value for entity two (M[2,3] = 3) is greater than entity two's own value (Ml2,2l =2). This

represents the reception of a message by entity three without the corresponding message

send taking place.

7.5.4. Vector time in Grasshopper

Conceptually the Grasshopper kernel maintains a time vector for every container and every

locus in the system. This vector contains as many entries as there are entities within the

system. In reality, within the kernel, vectors ¿ìre represented by entity-id, time-stamp pairs.

Initially, each entity's vector contains a pair representing itself. Additional pairs are added

whenever entities interact.

The kernel implementation of time stamps is hidden from user level programs for two

reasons:

. Entity names are an implementation dependant construct, there is no reason for

their representation to be visible outside of the kernel.

. If user level code (such as in managers) has direct access to time stamps,

malicious code could alter or forge them. This could result in user level code

forcing the rollback of parts of the system over which they do not have authority.

The kernel therefore provides access to time stamps via capabilities which act as a proxy

for the time stamp.

An optimisation may be made by observing that whilst executing, a locus is so

intimately bound with its host container, that it makes no sense to distinguish between the

time stamp of the locus and that of the host container. Therefore whilst executing, a

separate vector for a locus need not be maintained. When the locus is not executing it

331
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ceases to be causally tied to the container. However, the maintenance of vectors during

scheduling and de-scheduling of loci is very expensive. 'We therefore consider the bond

between locus and host container to continue even when the locus is blocked. Once this

step is taken there is no need to maintain a time stamp for a locus. The only proviso is that

a locus must always have a host container (thus ensuring that it always has a time vector).

Invocation is therefore an atomic operation. This atomicity is similar to that used by

Clouds [Dasgupta, LeBlanc et al. 1988]. Since invocation is the only communication

mechanism provided by Grasshopper, once invocation becomes atomic, it no longer makes

sense for a consistent cut to cross a message send. This further simplifies the notion of a

consistent cut.

A container's vector time is updated whenever it is invoked by a locus. IVhen a locus

leaves a container it takes with it a copy of that container's vector time. The kernel updates

the invoked container's vector clock with this time vector using the normal vector time

update mechanisms described above.

7.5.4.1. Mapping

Containers may also become causally interdependent due to the results of mapping. The act

of mapping does not itself cause interdependence; interdependencies occur when mapped

regions are accessed by an executing locus. A locus becomes dependant upon the state of a

container by reading data from it, a container becomes dependant upon a locus through

being written upon by the locus. Thus containers become interdependent through the

execution of loci which have access to them. A range of techniques may be used to update

the vector clocks to reflect such interdependencies; these vary from simplistic coarse

grained to complex fine grained mechanisms. Some possible tactics include:

. Eøger merging time vectors upon mapping. As soon as a mapping is established

the kernel can elect to merge the vector times of those containers which ale now

visible within the same address space. Merging consists of creating a new time

vector by the update of one containers time vector by the other, and then making

both containers refer to this vector for all subsequent use. Eager mapping is a very

pessimistic approach, but one which requires a minimum of kernel effort.

. Lazy merging of vectors on map. An optimisation of the above, the kernel waits

until the first access to data in the mapped container before merging the vectors.

This requires that the kernel's virtual memory system is able to detect such
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accesses. This can be accomplished by either using the access protection

mechanisms of the virtual memory, or by detecting loading of translation

lookaside buffer (TLB) entries in those architectures which feature software

control of TLBs.

. Lazy merging with asynchronous unlinking. This is a further addition to the

previous tactic. Rather then leaving mapped containers with merged time vectors,

the system occasionally splits the time vectors, and resets the mechanism used to

detect access to a mapped container. Splitting creates two separate time vectors

each referred to by one of the separated containers. The more often splitting is

performed the finer grained and more accurate the representation of causal

interdependencies will become.

Further tactics exist for tracking interdependencies: at the most extreme the system can

maintain vectors, and track causal dependencies for each individual page of data in the

system. These tactics are the subject of vigorous ongoing research [Jatlili and Henskens

19951 and beyond the scope ofthis discussion.

7.5.5. StabÍlisation

The key to resilient stable storage in Grasshopper is the interaction between the kernel and

the container managers. Managers are responsible for creating recoverable copies of the

contents of a container. It is the kernel that is responsible for the co-ordination of these

stable states, creating and maintaining a recoverable system state. In a distributed system

the separate kernel instances co-operate to maintain this recoverable state.

To this end the kernels must maintain in their own resilient stores enough information

to allow each container manager to recover the internal state of the containers in their

charge. This must be done in such a way so as to ensure that after a system failure a self

consistent system state can be rebuilt. A recovered system state need not be the same as

any state that actually existed before E system failure, but it must be one of the possible

system states, as might have been generated by some correct execution of the system.
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7.6. Maintaining Global Consistency

Many different methods for maintaining a globally consistent state for persistent systems

exist. These designs are guided by two orthogonal issues: the cost of failure and whether

deterministic execution is possible.

Methods that take account of the cost of failure can be characterised as optimistic or

pessimistic. Optimistic algorithms assume that failures occur with sufficient rarity, that it is

better to place the bulk of the work needed for system recovery in the recovery phase,

speeding up normal execution. Pessimistic systems place the main burden of work needed

to maintain a recoverable state into the normal execution of the system. This may be

because they take the view that failures are quite likely, or that the need to recover quickly

from failures is important. Systems which require the user view to be one of total reliability

also place a Ereater burden on normal execution and can also be characterised as

pessimistic.

Determinism of execution is important when systems recover through replay. In a

system in which all the components execute in a deterministic manner almost arbitrary

recovery may be performed. In principle, in a deterministic system, a program can be

restarted from an arbitrary point and it will recover to the point at which the system failed.

Even if a deterministic program interacts with non-deterministic external agents, replay

can still be used as a recovery mechanism. This may be achieved by logging all incoming

messages to stable media and keeping a stable counter of outgoing messages. Upon system

restart, the logged incoming messages are replayed and output is discarded until the

number of output messages equals the stable counter.

The manager of a container in Grasshopper must therefore be able to provide the

following fu nctionality.

. The ability to create a snapshot, recoverable from stable media, of the managed

container. This is the minimum required functionality.

. If the container is managed using replay logs the manager should be able to

inform the operating system which additional states it is able to recreate. This

allows the global consistency management algorithm greater freedom in

determining a global consistent cut'

However, if a prograrn does not execute in a dctcrministic manner, it is not possible to use

replay to recover from failure. The only recovery mechanism that may be employed is
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checkpointing. Tactics for providing deterministic execution in a manner as transparent to

the user as possible are surveyed in Section 7.8.

7.7. Stability and Resilience

Managers are responsible for the persistence of the data which they manage. The manner in

which this is achieved is at the discretion of the implementor of the manager. As described

above, the existence of a recoverable globally consistent state is the responsibility of the

Grasshopper kernel. To implement such a regime, the manager to kernel interfaces provide

functions to explicitly support recoverability. The design of this interface has aimed to

provide the managers with considerable freedom in the manner in which they maintain

stable state and in the manner in which they recreate stable state upon demand.

Initially discussion of the interface will be done in terms of coordinating simple

snapshots, we will then describe the manner in which logging and replay may be

integrated.

7.7.1. Initiation

A manager may at any time elect to take snapshot of the data in its charge, however for

this data to be useful it must cooperate with the kernel to ensure that the data is both good

and useful. For data to be good the kernel must ensure that no modifications to the

container data occur during the time in which the manager creates the snapshot. To be

useful, the data must be able to form part of a global consistent cut. This cut need not exist

immediately, the system may implement algorithms which lazily create new consistent

cuts.

The stabilisation sequence is initiated by any locus making a request of the kernel. It is

this request to the kernel that both allows the manager to be sure that the data it generates

is consistent and allows the kernel to track the times at which the managers have taken

snapshots. The request to the kernel takes the form of a snapshot_request call which has

the following signature:

snapshot-request( Capref cont id )

Often the locus making the snapshot_request call will be a locus executing within the

manager of the container, however this need not be so. External agents may also need to

initiate the creation of snapshots. When snapshot_request returns to the requesting locus a

snapshot will have been created. The kernel may also elect of its own volition to initiate
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snapshot creation, this may be in response to pressure on physical resources or the result of

a particular coordination strategy used by the kernel.

To effect the snapshot sequence the kernel first ensures that no loci may modify the

container until the snapshot is complete. This is achieved by ensuring that no loci are

scheduled in the container being snapshotted. Next the kernel instructs the manager of the

container to take a snapshot of the container.

7.7.2. Snapshotting State

The kernel requests a manager to take a snapshot of a container by making a call on the

manager's container_snapshot interface which has the ft-rllowing signatule:

container_snapshot( Token cont id ; Statelntervâl state interval )

The container to be stabilised is specified by cont-id. This is a previously agreed upon

token by which the kernel and manager recognise requests the specific container for which

a request is being made. Since many snapshots may exist, an unambiguous way of

identifying them is needed. This is provided by the kernel through the parameter

state_interval. The value of state-interval is essentially the containers own ordinal value

from the time vector maintained by the kernel for the container. When this call is made the

manager must create a snapshot of the container. However, this snapshot need not be stable

and may be implemented in any fashion the manager chooses. For example, the manager

may choose to protect from write access the entire address range and lazily make either

volatile or stable copies of individual pages as access violations occur. Furthermore, much

of the data required to form the snapshot may already be available within the manager. A

more eager approach is for the manager to make a volatile copy of all the container data in

main memory or a stable copy on disk.

'When the call returns, the kernel takes a snapshot of any kernel level data structures

associated with the container. Of particular importance a.re the loci that are running in the

snapshotted container. The kemel makes a snapshot of these by taking a copy of the saved

register sets and other kernel data structures associated with the loci. Upon recovery from

failure, those loci state snapshots associated with the container snapshot used for recovery

provide the state needed to reconstruct the loci. The provision of kernel stability is

discussed in detail in [Lindström, di Bona et al. 1994]

On return from the container-snapshot call, the kemel is assured that at least a volatile

snapshot has been crcated and the kernel is again free to schedule loci to execute in the

container. Use of volatile snapshots can increase parallelism and asynchrony in the system
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by providing the kernel with a greater choice of snapshots from which to construct

consistent states without the extra cost incurred in creating stable snapshots.

7.7.3. Co-ordination

To co-ordinate globally consistent stability the kernel needs knowledge of which container

states are stable and the ability to request that some currently volatile snapshot be made

stable. The following calls provide this functionality.

Once a snapshot is made stable, the manager may convey this information to the kernel

using the state-interval_stable system call. This call has the following signature:

state_interval_stable( Capref conüd ; Statelnterval state_interval )

However, managers are not obliged to make the state_interval_stable call when a state

interval has been made stable. To allow the kernel to discover the state of any state interval

for itself the call state_interval_query is provided. It has the following signature:

state interval_query( Token cont id; Statelnterval state_interval
StatelntervalSt¿te *interval-state)

The parameter interval_state allows the manager to return an enumerated type

(StatelntervalState) conveying whether the state is volatile, stable or non-existent. Like the

other calls, a container identifier and a state interval index is used to identify some point of

time in the history of the container.

When a manager receives this call it is not obliged to make the interval stable; it may

however be a good policy to do so since the kernel is likely to be trying to form a

consistent cut incorporating this snapshot. Generating a stable copy of a volatile snapshot

may aid the generation of a new recoverable global system state.

The kernel may also force managers to make a snapshot stable. This is provided to the

kernel through the container-stabilise_request call which has the following signature:

container_stabilise_request( Token cont id; Statelnterval state interval )

Following this call and before returning to the kernel, the manager is required to ensure

that the state of the container at the time denoted by state-intervøl is recorded on stable

media. However, it is likely that not all snapshots taken by a manager will be useful or will

exist indefinitely. A manager may choose to discard a snapshot to free space to enable a

new snapshot to be generated. Indeed this may be unavoidable in store designs which

implement a bi-phase policy, where at most two stable states exist for a store. The kernel

must be informed of the destruction of a snapshot in advance, preventing the kernel from
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using a stable snapshot that no longer exists as part of a consistent cut. To support this the

kernel provides the following call:

snapshot-discard( Capref cont-id ;Statelnterval state interval )

7.7.4. Progress

As the system executes the kernel will attempt to create ne'w consistent recoverable

versions of the system from the stable states made available by container managers. When

the kernel finds such a globally consistent state it must inform the managers of the state

intervals and containers that form part of that state. This is provided by the

snap shot -i s 
-re 

c ov e rabl¿ function provided by every manager:

snapshot is_recoverable( Token cont id ; Statelnterval state-interval )

When a manager receives this call it is free to discard all volatile, stable and recoverable

snapshots that occur before the time denoted by state-interval for the container denoted by

cont_id. The manager may not, under any circumstances, discard the state of the container

denoted by the state interval until it receives another snapshot-is-recoverable caJI with a

higher state interval. It is with this function that the global state of the persistent system

makes progress. The states of containers and their progress from a volatile to stable to

recoverable state is shown in figure 82.
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container-snapshot

state-interval-stable ot
container-snapshot-reques t
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Figure 82. Stable state transitions
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7.7.5. Failure Recovery

In a single node version of Grasshopper, failure recovery following a node crash is

relatively simple. The system will reboot and restore the state of the loci which were in

existence at the time of the last consistent cut. These loci will fault against pages visible

from their host container and the page faults are delivered to the appropriate managers.

However since managers may have stored several different versions of the state of a single

container on stable media, they require guidance regarding from which stable checkpoint

to fetch the pages. Managers provide the interface function:

confollback( Token contjd; Statelnterval state_interval )

This function is called by the kernel for each container following a reboot to instruct each

manager of the correct state interval of the container. This call also allows the manager to

tidy up stable data structures. When a manager receives this call it is assured that none of

the stable states stored on stable media, other than the state denoted by state_interval sewe

any purpose. The checkpoint denoted by state_interval forms part of the most advanced

consistent cut therefore earlier states are of little use. Similarly, checkpoints in advance of

state_interval are in the previous future and are also of little use. If a useful state existed

with a state interval greater than state interval the kernel would have used it.

7.8. Logging, Determinism and Proxies

'We have seen that the kernel can find consistent cuts by searching through the periodic

container snapshots made by managers. In practice, if inter-communication is common it

may be hard or impossible for the kernel to lazily find a consistent cut. The kernel can of

course, force consistency by use of the container_stabilise_request call. However, under

some circumstances, with more information, the kernel is afforded greater freedom in

finding globally consistent states.

Snapshots represent the state of a container at one moment in time. This makes their use

limited in the formation of a consistent cut. An otherwise useful consistent cut may have

existed just prior to a snapshot, or just after a snapshot. If a snapshot of a container has

been taken and the execution pattern within the container is deterministic, the state of the

container at any time after the snapshot is reconstructable from that snapshot using replay.

The kernel makes use of knowledge of such behaviour, giving it greater freedom in the

construction of consistent cuts.
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The interfaces described earlier are explicitly designed to support such algorithms. For

instance, a manager may log all invocations entering a container. Each time an invocation

occurs the container starts a new period of deterministic execution dependent upon the

reception of the invocation. This period is termed a state-interval following the

terminology of Strom and Yemini lStrom and Yemini 1985]. These are the state-intervals

used to tag container states in the above interfaces and are maintained by the kemel. Each

time a state-interval is generated it is a potential candidate for inclusion within a consistent

cut, so long as the manager can guarantee the kernel that the data extant at the generation

of the state-interval can be re-generated on demand after a system failure. The calls

state_interval_stable and state_interval_query allow the managers to make such

guarantees. The logging manager in the above example need only keep an initial stable

snapshot and periodically make stable copies of its log. It is able to assure the kernel that

the container state is stable up to the state-interval of the last entry in the stable log.

Managers inform the kernel of their respective abilities by use of a system call which

has the following form:

service_mechanism( Capref contjd; Service service )

Using this call, a manager may inform the kernel if it is snapshotting, transactional, or

logging. This informs the kernel that the container cont_id, can be recreated at times other

thanjust those represented by snapshots.

7.8.1. Deterministic Execution

Replay of events to recreate a containers state requires that execution within the container

must be deterministic. In Grasshopper non-deterministic behaviour can occur in one of

four ways:

1. Concurrent execution of more than one locus at a time within a container.

2. A locus may make a system call or invoke another container and return with

unreproducible data.

3. A new locus may invoke the container, bringing with it external state.

4. Concurrent sharing of modified data container through container mapping.

These activities are legitimate activities for user level programs, and should not be

prohibited if at all possible. Here we discuss mechanisms which provide such activities

without compromising deterministic execution and replay.
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To ensure deterministic behaviour, managers need to be in control of the behaviour of

the following:

. all loci entering, exiting and executing within a deterministic container.

. all mappings by which shared data may be seen within a deterministic container.

7.8.1.1. Proxies

Tracking of loci entering and leaving a container is achieved by setting a proxy through

which all incoming and outgoing locus movements are routed. Proxies are set using the

setJ)rory system call which has the following signature:

set-proxy( Capref cont-id ; Capref proxy-id )

Once this call has been made, any invocations incoming to cont_id are passed to the

container designated by proxy_id. Similarly any outgoing invocations (including system

calls) fromcont_id are sent to prory_id. To enforce deterministic execution a container

manager will insert itself as the container's proxy. Such a manager is informed of events

via the proxy-invoke call which has the following signature:

proxy_invoke( Token cont id ; Statelnterval state_interval ; Bool direction ;

invoke-paraml, invoke-param2.... )

This call specifies the proxied container in which the event occurred, the state interval at

which the event occurred, whether the event was incoming or outgoing, and the parameters

to the original call.

Thus managers are notified of a locus' intent to leave or enter a deterministic container.

In the case of outgoing invocations, the manager may choose to make a note of the fact that

the invocation has happened and the appropriate state interval. It can proceed with the

invocation on behalf of the managed container and record the results of the request. On

replay following a failure it can ensure that this event is sequenced at the same time

relative to other events in the history of the container, and if need be interpose the results

of the original request, ensuring that replay of invocations from within the managed

container always replay the same history.

7.8.1.2. Concurrency

Use of the proxy mechanism as described above allows a manager to ensure that all

invocations both incoming and outgoing occur in the same order and provide the same data

on replay. To provide the illusion of concurrent execution of a number of loci within a
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container, whilst maintaining determinism, is also possible through use of the proxy

mechanism. This is achieved in a number of ways.

. The perception of concurrent execution within a container by a number of loci can

be simulated if each locus is allowed to execute within the container for a short

period and then replaced by another locus, so long as the scheduling of these loci

is deterministic. Such a scheme may be implemented with the proxy mechanism.

The container manager acts as the proxy for the container (something which it

must already do to effect the replay of invocations described above.) However it

rctains each locus in a stalled state within itself. The manager allows these loci to

run in the managed container one at a time. Since the manager will also receive all

outgoing invocations it can use these requests to provide a dpterministic time at

which to remove one locus and allow another to continue execution. To guard

against starvation (if the running locus does not perform any invoke calls for some

time) the user code in the managed container should occasionally invoke a special

yield invoke call which allows the manager to deschedule the executing locus.

The need for this call does slightly compromise the transparency of the

mechanism.

. The second approach is for the manager to provide separate execution spaces for

each locus through surrogate containers. This approach is similar to that described

by Wu and Fuchs [V/u and Fuchs 1990] for hardware supported reliable shared

memory. Each locus perceives the contents of the invoked container using a read

only mapping. If this approach is employed read/write conflicts which would

violate determinism may be detected by trapping access exceptions. When

violations occur, the contents of all surrogate containers can be snapshotted to

form a snapshot of the base container and execution allowed to proceed once

more. Although apparently expensive this mechanism is no costlier than many

transaction models proposed for persistent systems, and since only pages modified

since the last such commit need be copied the expense need not be great.

7.8.1.3. Mapping

The final restriction (no sharing of modified data) may be provided in one of two ways:

. The manger can reject mapping requests which would allow modifiable data to be

shared with a deterministic container. This is an unfortunate tactic since it allows
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the implementation mechanism for persistence (deterministic replay) to become

visible to, and change the programming model of user code.-It therefore arguably

compromises orthogonal persistence.

o I regime similar to that described above utilising the V/u and Fuchs mechanism

cited above can be provided by the managers of any shared data. This is a greater

imposition on the managers since the manager of a container mapped into view

within the deterministic container must cooperate with the manager of the

deterministic container. This cooperation requires each manager to make a

snapshot of any container from which shared pages are mapped upon any attempt

to modify the data on that page.

7.9. Distribution

As described earlier, the Grasshopper system seeks to provide an environment which

abstracts over locality. For example, a locus may invoke, or map, any container for which

it holds a capability; regardless of the node on which the locus is executing. This has the

consequence that loci executing on many nodes may transparently and concurrently access

the data of a container.

The user model presents the illusion of a single container that is available wherever it is

required. In practice, this illusion is implemented by maintaining a representation of the

container on each node. Earlier we stated that each container is maintained by a single

manager. In reality, each local representation may refer to a separate manager. These

managers collude to present the illusion of a single container and may be thought of as a

single distributed manager. This coherent view is achieved by the managers exchanging

pages with each other as necessary.

Each local representation of a container has associated with it its own time vector.

'Whenever a page is passed from one manager to another, a time vector is carried with it

and the vector clock of the recipient local container representation is updated. Thus, causal

dependencies arising through distributed shared memory require no further infrastructure.

A local container representation may be checkpointed independently of other

representations. These checkpoints may only be used if the kernel(s) can f,rnd a consistent

cut through the individual checkpoints upon recovery.
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Alternatively the managers may cooperate to synchronously create a single coherent

checkpoint; in doing so they will unavoidably produce a single vector time.for all local

representations.

7.10. Putting it Together

A Grasshopper system is capable of hosting a diverse range of programming languages and

styles, and a diverse range of resilient persistent store implementation techniques. These

systems are coordinated into a global whole which provides an integrated model of system

resilience and reliability.

7.10.1. Simple progranrs

In Grasshopper even the most primitive language, for example C, may be provided with a

resilient, persistent execution environment without modification to the compiler or run

time system. This may be achieved in a variety of ways with varying amounts of

sophistication, However, the simplest is to execute each program in a Grasshopper

container with its orwn manager as shown in Figure 83 below.

Persistent C Process Contarner

Library Container

Figure 83. Running a C program under Grasshopper.

In this scheme, a C program is organised in memory in the same manner as under Unix,

with code followed by static data, heap and stack space. The managers provide both the

functionality of conventional demand paged virtual memory plus resilience. A manager

might use a store design such as the Casper system described in Chapter 5. The manager

can save the entire state of the running process on disk and restart it at any arbitrary point

in its execution in a manner that is totally transparent to the running process. Libraries may

be provided by mapping library code from other containers into the address space of the

L¡brary 'l;f-r code 
lsati. 

o"t"l H..o Stack

Manager

Manager
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process. Libraries provide both the usual Unix style libraries and code for communicating

with other processes and for binding to persistent data.

7.10.2. Persistent Languages

Implementation of persistent languages may be effected in the same manner as above,

simply by embedding the persistent environment inside the address of a container.

However the manager is capable of aiding implementation further. The tactics discussed in

Chapter 3 for expanding the apparent size of the persistent address space by pointer

swizzling at page fault may be implemented within the manager of a container.

Grasshopper allows user code to protect the pages within containers against access, and

provides a user level exception delivery system. Thus implementation of a language

system may take advantage of the tactics described in Chapter 2 to realise transparent

pointer quarantine and garbage collection.

The capability mechanism in Grasshopper allows individual containers to safely

distribute to other containers the right to invoke. By controlling distribution of these rights

it is possible to build a federated community of cooperating type-safe stores. Individual

containers support separate stores, and are provided with the right to invoke one another.

Communication through invocation can take the form of IPC, RPC [Birrell and Nelson

19841, remote evaluation calls [Stamos and Gifford 1990], orremote execution [Dearle,

Rosenberg et al. 1991], and may involve the transfer of code and data fragments from store

to store [Farkas 1994]. Type security is guaranteed by the controlled distribution of

capabilities, program security through the type-safe language implementation.

Invocation between separate nodes is handled by the respective machine kernels

transparently. Individual programs may communicate oblivious to the actual location of the

communicants. In a similar manner shared access to data may be distributed. Individual

managers can arrange to have access to containers made available throughout a network

utilising DSM techniques. Since the kernels track the causal links between containers due

to the transfer of data on pages managers do not need to track these links themselves. Thus

DSM in Grasshopper is simplified relative to the distributed Casper implementation

described in Chapter 6.

7.1L. Conclusions

Grasshopper provides an operating system design in which orthogonal persistence is an

intrinsic property. Programming languages of any kind are supported, from the most basic,
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which may be simply embedded into a persistent address, through to rich type-safe

languages which are afforded the security to establish distributed federated communities of

persistent stores.

In the introduction to the chapter we presented four criteria for a persistent operating

system Here we discuss the manner in which the Grasshopper design has met these criteria

and, in addition, consider the manner in which distributed programming is supported

within the persistent abstraction presented by Grasshopper.

i. Persistent objects as the basic abstractíon.

Grasshopper provides abstractions over storage (the container,) execution (the

locus) and protection (the capability.) Capabilities and loci are maintained by the

Grasshopper kernel as persistent entities. Containers a¡e maintained as persistent

entities through the action of container managers. Any programming paradigm

may be embedded within this environment and thus become intrinsically

persistent.

ä. Objects must be both stable and resilient.

Stability in the Grasshopper is controlled by the kernel and managers are

described above. Resilience is controlled by the kernel through its tracking of

causal relationships between entities. Both the kernel and container managers

maintain stable data in a such a manner that there is always a recoverable

consistent system state available on stable media. As described earlier, simple

"stop the world" bi-phase mechanisms can be employed to provide such

resilience, but at the cost of system performance and useability. By placing

tracking of causal relationships within the kernel and making the them an intrinsic

part of the kernel operation the system is able to reduce the effort of maintaining a

resilient state and to spread the effort through time yielding better useability.

äa Manage the transitíon between long and short term memory trdnsparently to the

proSrammer.

User level programs in Grasshopper exist with a space composed of containers,

which are transparently provided with stable data through the action of managers,

whilst the execution is effected by loci. The stabilisation protocol described

earlier is transparent to user programs as is the provision of data to executing code

by either the kernel (through the reactivation of loci) or container managers

220



(through the provision of data through the demand paging of data form the stable

stores.) User level programs are able to request that a current state be recoverable

(for example to effect external guarantees of transactions) but the actual transfer

of data to stable store to effect such requests is invisible. Grasshopper provides.a

framework in which individual managers may, if they wish, provide persistence in

different ways without the need to explicitly manage global consistency.

iii. Processes must be integrated with the object space.

Since loci are intrinsically persistent objects maintained by the kernel this

objective is trivially met.

iv. Provisíon of some protection mechanism.

Grasshopper uses a variant on Fabry's capabilities to reference all entities in the

system. These capabilities are unforgeable and maintained within protected

kernel space. This a secure and flexible protection system is an intrinsic part of

the Grasshopper design.

v. Maíntenance of the orthogonal persistence abstraction across distributed

platforms.

Since Grasshopper maintains consistent naming of objects across multiple

machines reference to entities is transparent in a distributed environment. The

intrinsic causality tracking extends from concurrent to distributed execution

naturally, albeit with some performance degradation. Thus programs may act

upon data oblivious to the location of the host machine upon which it is placed

whilst Grasshopper kernel continues to maintain a transparent abstraction of

resilient orthogonal persistence. To enable the container managers to operate in a

distributed environment Grasshopper provides some additional system calls that

enable managers to manipulate page sets held on remote machines.

The Grasshopper operating system delivers a design in which user level programs are

embedded in an orthogonally persistent environment; all user level entities are intrinsically

persistent. Indeed it is not possible for a normal user to write a program which is not

inherently persistent.

Interaction with the outside (non-persistent) world is the only area where the

orthogonally persistent programming paradigm ceases to be seamless. User programs may

become aware of the nature of IO when IO crosses failures of the system. The programmer
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is able to dictate a time in the execution of the program at which IO events generated by

the program are guaranteed to have taken place, and the internal view of program progress

coincident with an external users perception. Maintaining these guarantees is one of the

central responsibilities of the Grasshopper kernel. Implementation paradigms were

covered in Chapter 4, and may involve replay of output events for idepotent operations

after failure, replay of input events, or more complex chained recovery systems. 'Whatever

guarantees the programmer wishes to make are transparently coordinated by the

Grasshopper kernel.

The other area where user level code becomes aware of ephemeral data is in the

construction of containers. A design where container managers a¡e outwith the kernel has

mixed benefits. As a vehicle for resea¡ch such a paradigm has value. It is easy and

convenient to prototype new store architectures and memory management systems without

the need become an expert on the operating system internals, changes can be made without

he need to continually re-boot the host machine, and errors do not cause damage to other

users. In a production environment similar gains are available. Third party vendors are

able to construct specialised store systems, again without disruption or risk to the kernel.

However there is evidence that external handler designs suffer a performance penalty and

an initial enthusiasm for micro-kernel designs in commercial systems has waned [Welch

1991]. Also users may write container managers (through either intention or error) which

do not provide for resilient storage of container data. In principle such users only

compromise their own data, however if other users become causally dependant upon

incorrectly managed data, failure of the resilience mechanism could flow to other parts of

the system and cause uncontrolled roll-back or failure. This is the risk that any user takes

when trusting in another user for the provision of a service. In this case the risk is inherent

in communicating with the other user at all.

In general it is not envisaged that users will write their own container managers, rather

that a small number of custom written managers for specific purposes will be provided,

rather in the same manner as system libraries or third party software systems are supplied

in conventional systems.

Overall the decision to provide for external container managers, or to provide a fixed

management sub-system in the kernel is an engineering one and one that does not

otherwise change the nature of the Grasshopper design.
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The mechanisms we have described explicitly allow managers to exploit log based

recovery techniques, but also allow the kernel based recovery mechanisms to exploit the

extra freedom available from such techniques to create consistent recoverable system

states. Such log based recovery mechanisms require that execution be deterministic.

Rather than place special requirements upon the kernel, the use of a proxy mechanisms

allows managers to control execution within containers, allowing the managers to enforce

deterministic execution and to log external interactions with no impact on the structure of

the code within containers.

At the beginning of this chapter we also listed Tanembaum's four components of an

operating system, namely: memory management, file system, input output and process

management. The Grasshopper system design takes these four components and ties them

together into an unified whole. The container abstraction unifies memory management and

the file system, and the causality tracking and recover management ties process

management and VO into the fold as well. The cental theme to this unification is causality,

and the need to understand the temporal ordering of action with the system. Since the

distinguishing factor of persistent systems is abstraction over data lifetime this should not

be of any surprise.
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Chapter 8. Conclusions

8.1-. Summary

This thesis has examined implementation tactics for persistent systems and persistent

object languages. The major topics covered can be summa¡ised as the following:

. tactics for language level presentation oforthogonal persistence,

. tactics for store management, and

. tactics for distribution.

In particular we have focussed on the use of conventional page based hardware in each of

these topics. The topics above overlap, and in recognising the nature of overlap it is

sometimes possible to take advantage of it and create a hybrid with optimised

performance.

8.2. Page Based Systems

In the presentation of a specialised environment it has always been attractive to

manufacture specialised hardware. However this course seems flawed for a number of

reasons.

. The designs are complex and usually attempt to make use of micro coded

architectures. Current architectural practice suggests that such complex designs

are doomed to poor performance and are often outperformed by conventional

architectures that simply emulate them. 
t

. The designs are highly language specific and thus limited in application

. Pragmatically there is no commercial application likely, drastically limiting their

usefulness in propagating the results of research.

Clearly there is considerable merit in the provision of an orthogonally persistent system

with a software architecture. Such an approach can exploit any advances in processor

speed with no effort on the part of the implementor and is portable from one architecture to

another with relatively little work. Considerable success has been acheived in the

construction of such architectures, the PS-algol, Napier88, Galieo, and Smalltalk8O

languages have all been very successfully implemented above such softwa¡e architectures.

We have proposed a middle ground, one in which conventional hardwa¡e is used, with

its attendant benef,rts, but in which explicit notice is taken of the page based virtual
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memory ha¡dware. To ignore this part of current architectures seems a considerable waste.

Great effort has been expended in providing hardware which, although not always ideal

can provide signifrcant help in the implementation of persistent systems. This comes about

for a number of reasons.

. Implementations of persistent system under conventional operating systems will

always be involved with the virtual memory sub-system. Programs execute in a

virtual address space and are subject to the action of the demand pager like any

other program.

. The action of the demand paged virnral memory is very much akin to the needs of

a transparent mechanism for movement of persistent data to and from stable

media, there is clearly oppornrnity to turn its action to our advantage.

. The utilisation of page protection and exception delivery provides a mechanism

by which the actions of a program running within a persistent environment can be

transparently trapped. This provides a mechanism for implementing other

functions required for the language implementation, especially garbage collection.

It is through a synergy of these three points that the benefits multiply. By integrating the

management of virtual memory with that of movement of data to and from stable storage

we can eliminate the costs associated with managing a separate swap space.

8.3. Tactics for Language Level Presentation

lln 
approaching language level presentation the major topics covered were

. data movement,

. address generation,

r pointer representation and object formats,

. garbage collection, and

. address space expansion through swizzling.

These topics have proven to have deep interdependencies. In particular the relationship

between data movement and garbage collection is especially important when persistence is

a result of reachability. The value of techniques originally developed to support generation

garbage collection are especially applicable.
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8.3.1. Data movement

Abstracting over the location of data is one of the cornerstones of orthogonal persistence.

Implementations of persistent systems using pure software realisations of a virtual machine

have usually performed software residency tests, activating data movement as appropriate.

Alternatively, data movement may be entirely handled by page faulting, eliminating the

software residency check, this may be done in two ways.

. Providing a persistent environment that fits within the host machine virtual

address space and directly faulting pages from a page based persistent store

. Ensuring that pointers resident in addressable memory that refer to non-resident

objects are redirected to "fault blocks" that are protected from access.

Systems which embed the programming environment are able to allow executing code to

execute oblivious to the nature of the data movement support system. The restriction that

the persistent environment fit within the host architectures address bounds can be lifted

through the use of swizzling techniques (summarised below).

8.3.2. Swizzling and Addressing

Techniques in which the pointers are overwritten whilst resident in addressable memory

allow the persistent address space to be arbitrarily large. Pointers with the persistent store

can be larger than that supported by the host architecture whilst overwritten pointers refer

to objects resident in addressable memory. This technique (termed swizzling) may be used

eagerly, at the time that objects (or pages) are loaded into addressable memory or may be

delayed until the pointer is dereferenced. Eager schemes can guarantee that an executing

program only ever sees valid pointers. These schemes avoid any need for action by

running programs to deal with unswizzled pointers. However such schemes must allocate

address ranges for every object potentially addressed by in-memory objects. Further

utilising page protection, techniques a hybrid system can be built in which swizzling can

be delayed, avoiding such greedy allocation of address space and still avoid any interaction

with user code.

8.3.3. Pointer formats

When the support systems for data movement and garbage collection operate they must be

able to find the points within the data being manipulated. Most persistent languages use a

self describing object format which allows pointers to be found when an object is

presented. 'When manipulation is performed at the page level a further mechanism is
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needed. Crossing maps used by some garbage collection schemes can provide this but

often need to use the data on preceeding pages. V/hen used in a persistent system this data

will often require fetching from the store. A technique that encodes the structure of any

partial object at the beginning of the page aleviates this. The encoding fits within a single

3zbitword and may be naturally incorporated into the stable stores mapping tables.

8.3.4. Pointer Quarantine for Distribution and Garbage Collection

Use of page protection mechanisms allows the language level support to manage the

quarantine of pointer references without impacting upon the structure of the user code

itself. The is quarantine owes much to the mechanisms used to implement generation

garbage collection. The page-ca¡ds mechanism [Hosking and Hudson 19931allows native

code to run within a system supporting generational garbage collection without requiring

the user code to explicitly check for creation of inter-generational references.

Performance of programs which access a distributed shared persistent address space is

improved if each program uses a local heap area in which to perform the majority of its

computations. These areas may be separately garbage collected in a similar manner to

generation garbage collection schemes so long as inter-area pointers are strictly prohibited.

An integration of the action of the distributed coherency algorithm with a variant of the

page-cards mechanism allows these pointers to be controlled.

8.3.5. Persistence Orthogonal to native code

The particular strengths of the page based approach come about through the transparency

to user level code. User code can be written which is oblivious to the action of the store,

pointer quarantine, and distribution mechanisms.

This transparency is best illustrated in the production of native code. Considerable

performance gains are possible over a pure software implementation if, rather than produce

code for execution by a high level interpreter, code directly executable by the underlying

machine architecture is generated. Two approaches are possible when generating such

native code. One is to produce code which includes in-line code to manufacture the

illusion of orthogonal persistence. Such code includes explicit tests for object residency,

tests to ensure that store resiliency is not compromised, and code to maintain the structures

used by the garbage collection system. Alternatively, by utilising the techniques outlined

in this thesis, native code can be produced which contains no such tests. The illusion of

persistence being transparently effected in response to page faults, and maintenance of
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garbage collection structures in response to protection exceptions. The produced code is

smaller and is required to perform less computation to effect the same result. Arguably

these benefits are simply an example of reaping the rewards of orthogonal persistence.

These are strong claims, however the ultimate balance of performance between a pure

software implementation and one which is based upon page based mechanisms lies in the

answer to a simple question.

Which is the better approach?

. To perform a large number of simple tests and occasionally explicitly call support

functions that are optimised for the particular task.

or

. To perform no tests but to occasionally incur the cost of an exception and to call a

support function which due to the poorer fit of the page based model to the

language system may not be so optimal for the task.

The solution to this question is not clear and must wait for the production of suitable

bench-marking suites [Atkinson, Dirnie et al. 1992; Carey, DeV/itt et al. 1993]. The

answer must be dependant upon many individual features of the host architectures and

target languages.

8.4. Store Design

Persistent stores must provide a resilient, stable repository for the entire persistent state of

a system. Techniques for maintaining these goals include snapshots of the entire system

state at once, logging changes made to the store, and logging high level input to the user

program. Each is capable of recovering a consistent view of the persistent store in the face

of system failure. Combinations of these mechanisms allow multiple stores to be linked to

form large persistent systems. In particular, logging systems can provide valuable

flexibility to systems attempting to co-ordinate the actions of separate stores into a

consistent whole.

Page based store design has mostly been oriented around the shadow store mechanisms

of Lorie, although log based approaches are also used. The Casper system described

provides three different shadow store designs.

. The basic store provides a persistent virtual address space in which NapierSS

programs are supported. Its design allows complied native code NapierSS

programs to execute in a manner oblivious to the action of the store.
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. An enhanced design capable of allowing separate parts of the persistent address

space to meld independently of the remainder of the space. This requires special

ca¡e of the stores internal structures to avoid comrpting the store.

. Another variant allows an arbitrary number of versions of the persistent space to

be held. This allows the store to be integrated into higher level global consistency

mechanisms.

Efficiency of implementations is hampered by the inappropriate mechanisms provided by

host operating systems. In particular, utilising the Unix operating system's ability to map

files into the virtual address space although initially appealing choice has significant costs.

o { design limitation forces the store manager to copy each page into and then onto

a temporary buffer when that page is modified.

. An unnecessary page fault, and consequent read from disk is incurred.

. No control over the layout of the store on disk is available and thus only limited

action can be taken to improve store perfonnance by clustering disks writes is

available.

Implementations based upon the Mach operating system's external pager a¡e able to avoid

many of these problems, although the external pager is not ideal either. The external pager

incurs the cost of extra copying of data as it is transferred to the kernel, and only provides

limited control of eviction of data from physical memory.

Stores that utilise memory mapped files or extemal pager designs eliminate unnecessary

swapping of data between physical memory and the operating systems swap space.

Designs which utilise object based movement, or designs which modify the data before

presenting it in addressable memory to the user program are unable to avoid these costs.

To enable such integration without compromising the integrity of the persistent store

shadow paging mechanisms are used to ensure that a self consistent version of the

persistent state is alway available on stable media.

8.5. Distribution

Distribution of persistent systems is attacked on two separate fronts in this thesis. The first

in describing tactics for providing distributed access to a NapierS8 system can be provided

using page based DSM techniques. The second front is that of providing an environment in
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which concurrent and distributed systems can be implemented and coordinated to form a

consistent whole.

8.5.1. Distributed Casper

The Distributed Casper system allows individual client programs, perhaps on distributed

machines, to access and share a single persistent address space. Many of the mechanisms

described in the earlier chapters are utilised in Casper to make the provision of this space

tractable. In particular:

. Individual clients maintain a local heap which may be separately garbage

collected and to which they are guaranteed exclusive access. The distributed

shared memory coherency algorithms interact with the garbage collection and

stability mechanisms to ensure that the integrity of these local heaps is

maintained.

. The system tracks interdependencies generated through shared access to data and

allows subsets of the clients that are independent of the remaining clients to meld

together. This requires use of the previously described special Casper store.

The Casper system utilises the page based coherency system to implement a form of

atomic action without using potentially expensive mutex locking across a network. By

selectively denying. access to other clients of the shared space when the system is required

to perform a logically atomic operation, unnesessary communication with other clients can

be avoided.

Casper tracks interactions between individual clients of the persistent address space. To

improve performance of the store, only those clients that are interdependent by virtue of

having accessed modified data are forced to meld together. Independent clients continue to

execute independently.

8.5.2. Grasshopper

Grasshopper is intended to provide a new operating system in which persistence is

provided as an intrinsic attribute. In particular the Grasshopper design is intended to

provide an environment in which the page based techniques for the provision of language

level and store abstractions are natural.

Application programs only perceive a resilient persistent address space. Any

programming language or application system may reap the benefits of orthogonal

persistence without change. The persistence and resilience of individual address spaces is
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the responsibility of user level entities called managers. These work in conjunction with

the Grasshopper kernel to provide a global resilient system state which may be restored

when a failure occurs. This architecture provides a framework in which individual

managers may, if they wish, provide persistence in different ways without the need to

explicitly manage global consistency.

Managers may use logging, both of store changes and high level input as well as

shadow paging techniques. The kernel based recovery mechanisms are able to exploit the

extra freedom available from such techniques to create consistent recoverable system

states. Log based recovery mechanisms require that execution be deterministic. Rather

than place special requirements upon the kernel, the use of a proxy mechanisms allows

managers to control execution within containers, allowing the managers to enforce

deterministic execution and to log external interactions with no impact on the structure of

the code within containers.

8.6. Conclusions.

The abstraction of orthogonal persistence is a powerful tool in building programming

systems. Whilst attempts have been made to utilise specialised hardware and to build

software based systems above existing operating systems this thesis has described a

spectrum of techniques by which the peculiar attributes of demand paged virtual memory

can be exploited in the provision of orthogonal persistence.

These techniques allow language level mechanisms to be transparently supported, allow

for fast and efficient movement of data to and from resilient stable stores and provide

mechanisms by which distributed access to data by be provided. A logical cumulation of

these efforts is the delivery of an operating system whose design is tailored to support

these techniques and in which the provision of an orthogonally persistent programming

environment is natural.

8.6.1.. Status

The Casper project has concluded and has successfully demonstrated the utility of page

based techniques in the provision of distributed access to Napier88 programming

environments. Its legacy lives on in the Grasshopper system where it will be used to

provide a ready made Napier8S system.

The Grasshopper project is currently under intensive development on Alpha AXP

systems. At the time of writing, the kernel is itself persistent, contains device drivers, a
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scheduler supporting multiple loci and support for containers. Operation of the first

managers (based upon the Casper multi-phase design) is entering debugging. Great things

are expected.
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Appendix A.
This appendix provides explanation of the various states shown in the Client FSA
(Figure 53).

STATE EXPLANATION

START not held The START state represents the entry point for any page not held by the
client.

Wait for Page Supply A copy of the page has been requested by the client; a supply page signal is
expected to arrive containing an up-to-date copy of this page.

(XRM state)
Wait for Page Supply

XRM indicates that an external read request followed by an externat modify
request may be necessary for the client to gain the required access to the
page. This is a result of the interpreter attempting to modify a non-resident
page. A copy ofthe page has already been requested via an XR signal; upon
receipt of this page, modification permission must be sought. A supply page
signal is expected to arrive which will contain an up-to-date copy of the
Page.

SH MOD The page is shared with other clients and is modified with respect to the
stable copy in the store.

SH NONMOD The page is shared with other clients and has not been modified since it was
last stabilised.

NONSH NONMOD No other client holds a copy of this page. The page has not been modified
since it was last stabilised.

NONSH MOD This client is the only client with a copy of the page; the page has been
modified with respect to the stable copy.

LOCAL The page is a member of the client's local heap. It is implicitly non-sha¡ed
and open for read and write access.

SH
rWaiting for WRACK

The inte¡preter has attempted to modify a shared page; thus, write permission
has been requested. A write acknowledgement signal is expected in reply to
this request.
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This table provides explanation of the various signals used in the Client-FSA (Figure
53).

SIGNAL EXPLANATION

Incoming to the Client Request Handler

+CR An internal client read request from the client's own interpreter

+C\,I An internal client modify request from the client's own interpreter

+)(R An external read request from another client via the Stable Store Server

+XM An external modify invalidation request from the Stable Store Server, as a

result of another client's request to modify.

+WRACK A write acknowledgement signal from the Stable Store Server to indicate
modification permission is being granted.

+SP A supply page signal from the Stable Store Server or a client, in reply to an

external read request.

+STAB A stabilisation request from the Stable Store Server

Outgoing from the Client Request Handler

XR-> An external read request from this client to the Stable Store Server

)flvI-+ An external modify request from this client to the Stable Store Server

MOD)Ovf-r An external modify request for a previously modified page from this client to

the Stable Store Server.

INVACK-+ An invalidation acknowledgement from this client to the Stable Store Server,

in reply to an external modify invalidation request.

MOD+ A modification signal from this client to the Stable Store Server to inform the

Stable Store Server of this client's intention to modify the page'

SP+ A supply page signal, including an up-to-date copy of the page, from this

client to another client in reply to an external read request'
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This table provides explanation of the various states shown in the Server FSA (Figure
61).

STATE EXPLANATION

START No entry The START state represents the entry point for any persistent page which has
not been exported from the store.

Non existent A page moves from this state when it is allocated for local heap or copy-out
usage; apage belonging to this state would not hold any persistent objects.

NONSH NONMOD A copy of the page is held by one client only and it has not been modified
with respect to the stable copy.

NONSH MOD One client holds a copy of the page and this copy is a modified version of the
stable copy.

NONSH MOD
copy avail

Only one client holds a copy of the page, which has been modihed with
respect to the stable copy. An up-to-date copy ofthis page has been sent back
to the stable store.

SH NONMOD At least two clients hold copies of this page. The page has not been modihed
with respect to the stable copy.

SH MOD Two or more clients hold up-to-date copies of this page, which has been
modified with respect to the stable copy.

SH MOD
copy avail

This page is shared by two or more clients and has been modified since the
last stabilisation in which it was involved. An up-to-date copy of this page
has been sent to the stable store and is available for supply to further
requesting clients.

SH NONMOD
page avail

A copy of the page is held by more than one client.; this copy is non-
modified with respect to the stable copy. The Stable Store Server may safely
supply further copies ofthis page directly to requesting clients as the holding
clients will not attempt to modify the page without informing the Stable
Store Server of their intention to do so.

Wait for II.IVACK
XRq=@

A client has requested modification permission for a shared page. The Stable
Store Server has informed other holding clients to invalidate their copies of
this page. The Søble Store Server is now awaiting those clients' invalidation
acknowledgements. No further read requests have been received for the page.

Wait for Iln/ACK
lXRql > 0

The Stable Store Server is awaiting invalidation acknowledgements from
those clients which have been requested to invalidate their copies of this
page. Read requests for this page have since been received from one or more
other clients. Those requests have been delayed on the local XR queue. This
queue must be traversed after write acknowledgement has been forwarded to
the client which originally requested modification permission.
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This table provides explanation of the various signals used in the Serveq FSA (Figure
6l).

SIGNAL EXPLANATION

Incomins to the Stable Store Server

+XR An external read request from a connected client.

+)OVt An external modification request from a holding client.

+MOD)CvI An external modification request from a holding client which also indicates
that the page has been modified previously.

+INVACK An invalidation acknowledgement from a client which previously held the
page, in reply to an invalidating external modification request.

+MOD This is a modification notification from a client which holds or held the page

in a non-sha¡ed state to inform the Stable Store Server that page has been

modified.

+STAB A stabilisation request to move the page into a non-modified state as a ¡esult
of a stabilisation.

+STAB Reply This is a stabilisation reply from a holding client involved in a stabilisation
cycle; this reply includes the return ofan up-to-date copy ofthe page.

+PGREQUEST This is a page request from a client; it implies that the client requires more
free space for local heap or copy-out usage.

Outgoing from the Stable Store Server

XR-> Forwarding ofan external read request to a client which holds an up-to-date
copy of the page.

SP+ Send a supply page signal to a requesting client, in response to an incoming
external read request.

)ovI+ This corresponds to the forwarding of an invalidating external modification
request to all clients holding the page, except the one which requested
modification permission.

WRACK.+ Here, a write acknowledgement is being forwarded to the client which
originally requested modification permission.

NErù/PAGE+ The new page signal is sent to supply a new, empty page range to a client, in
response to the client's page request.

Miscellaneous

XRqueue[+Cl] This represents addition of a client to the local XR queue, since modification
permission is being sought for another client.
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