"NUMERICAL MODELLING OF WELD POOL
CONVECTION IN GAS METAL ARC WELDING"

Mark H. Davies
B.E. Hons (Adelaide), 1992

Department of Mechanical Engineering
The University of Adelaide
South Australia 5005

Submitted for the degree of Doctor of Philosophy, 1st August 1995
2.1 INTRODUCTION ... 24

2.2 HEAT CONDUCTION SOLUTIONS 26

2.2.1 Introduction .. 26
2.2.2 Analytic Solutions 27
2.2.3 Heat Transfer: Numerical Solutions 33
2.2.4 Summary .. 44

2.3 WELD POOL FLUID FLOW 49

2.3.1 Introduction .. 49

2.3.2 Empirical Correlations and Experimental Investigations of Weld

Pool Behaviour .. 50

2.3.2.1 Gas Tungsten Arc Weld pools: related experimental

work ... 51

2.3.2.2 Gas Metal Arc Welding: related experimental work 55

2.4 NUMERICAL MODELLING OF WELD POOL FLOW 60

2.4.1 Introduction .. 60

2.4.2 Modelling The GTA Weld Pool 63

2.4.2.1 Interaction between the arc and the weld pool 66

2.4.2.2 The influence of plasma shear 67

2.4.2.3 The effect of evaporation at the pool surface 68

2.4.2.4 The role of thermo-physical properties 68

2.4.3 Modelling The GMA Weld Pool 77

2.4.4 Summary .. 80
Chapter 3

NORMALISED SCALE ANALYSIS OF CONVECTIVE DRIVING FORCES IN GMA WELD POOLS .. 87

3.1 INTRODUCTION ... 87

3.2 FRACTIONAL ANALYSIS ... 89
 3.2.1 Introduction .. 89
 3.2.2 Procedure for Normalisation 91
 3.2.3 Approximation Theory ... 92

3.3 DERIVATION OF NORMALISED DIMENSIONLESS COEFFICIENTS ... 94

3.4 ANALYSIS USING APPROXIMATION THEORY 102

3.5 CONCLUSIONS ... 107

Chapter 4

THE RELATIVE IMPORTANCE OF CONVECTIVE DRIVING FORCES IN GMA WELD POOLS .. 109

4.1 INTRODUCTION ... 109

4.2 MARANGONI (SURFACE TENSION GRADIENT) FORCES 112
Chapter 5

DROPLET IMPACT AND TURBULENCE ... 156

5.1 INTRODUCTION ... 156

5.2 DROPLET IMPACT ... 158

 5.2.1 Introduction ... 158

 5.2.2 Source Term Model for Droplet Surface Interactions 164

 5.2.3 Experimental Investigations .. 168

 5.2.3 Results .. 170

 5.2.4 Discussion ... 173

 5.2.6 Conclusions ... 175

5.3 TURBULENCE ... 177

 5.3.1 Introduction ... 177

 5.3.2 Accuracy Evaluation of Applicable Turbulence Models 179

 5.3.2.1 Numerical models ... 180

 5.3.2.2 Results ... 182

 5.3.2.3 Discussion .. 182

 5.3.3 Turbulence Boundary Conditions 187

 5.3.3.1 Introduction ... 187

 5.3.3.2 Experiment ... 188

 5.3.3.3 Computational model ... 189
Chapter 6

THREE DIMENSIONAL NAVIER STOKES SOLUTIONS 194

6.1 INTRODUCTION ... 194

6.2 THE EFFECT OF WELD POOL CONVECTION ON
WELD POOL SHAPE AND NEAR WELD THERMAL

HISTORY ... 197

6.2.1 Introduction .. 197

6.2.2 Computational Model With Droplet Represented as Mass Flow 198

6.2.3 Computational Model With Droplet Represented as a Momentum Source ... 203

6.2.4 Three Dimensional Conduction Only Solutions 205

6.2.5 Two Dimensional Conduction Only Solutions 206

6.2.5.1 Surface source ... 207

6.2.5.2 Volumetric source 207

6.2.6 Experimental Validation 209

6.2.6.1 Introduction ... 209

6.2.6.2 Weld Pool Filming 210
Chapter 7

MODIFIED THREE DIMENSIONAL CONDUCTION SOLUTIONS . 225

7.1 INTRODUCTION ... 225

7.2 EFFECTIVE THERMAL CONDUCTIVITY SOLUTIONS. . 229

 7.2.1 Introduction ... 229

 7.2.2 Calculation of Effective Thermal Conductivity 231

 7.2.3 Computational Model 234

 7.2.4 Results and Discussion 234

7.3 CONCLUSIONS .. 240

Chapter 8

SUMMARY AND CONCLUSIONS .. 241

8.1 SUMMARY AND CONCLUSIONS 241

8.2 FUTURE WORK .. 247

 8.2.1 Introduction ... 247
8.2.2 Pool Surface .. 247
8.2.3 Droplet Characteristics ... 248
8.2.4 Different Transfer Modes .. 249
8.2.5 Computational Fluid Dynamics of Turbulence and Free Surface

Flow .. 249

Appendix 1

FINITE ELEMENT COMPUTATIONAL FLUID DYNAMICS 251

A1.1 INTRODUCTION .. 251
A1.2 APPLICATION OF THE FINITE ELEMENT METHOD TO
FLUID DYNAMICS ... 252
A1.3 DISCRETISATION ... 253
A1.4 LINEARISATION SCHEME 254
A1.5 LINEAR EQUATION SOLVER 256

PUBLICATIONS ARISING FROM THIS THESIS 258

REFERENCES ... 260
NUMERICAL MODELLING OF WELD POOL
CONVECTION IN GAS METAL ARC WELDING

ABSTRACT

An investigation has been made into the development of numerical models of the Gas Metal Arc Welding (GMAW) process. Initial work focussed on furthering the understanding of fluid flow and convective heat transfer in GMA weld pools using theoretical, experimental and numerical techniques. Normalised scale analysis and simplified computational models have shown that the droplet impact forces are the dominant forces in driving weld pool flow. Induced electromagnetic forces are the next most significant, with forces due to surface tension gradients becoming unimportant at welding currents greater than 150 Amps. These results have been verified using flow visualisation experiments and parametric welding studies. The influence of droplet impact on turbulence within the pool has also been investigated and appropriate turbulence models and boundary conditions evaluated.

Further work concentrated on the development of weld pool convection models for the prediction of the weld pool shape and the near weld thermal history. This necessitated the development of 3 dimensional models that solve the Navier Stokes equations for the convection within the weld pool. These have been compared with traditional welding models which use empirically tuned heat source distributions and only consider heat transfer by conduction. This comparison demonstrated that numerical models must include the effects
of convective heat transfer within the pool if weld pool shapes and near weld thermal histories are to be accurately predicted.

Models that solve the full equations of motion within the pool are very computationally expensive and their accuracy is limited by the available turbulence and free surface models. An approximate heat-conduction only model has therefore been developed which uses enhanced thermal conductivity to simulate convection within the pool. The thermal conductivity enhancement is calculated from governing flow parameters using a semi-analytical technique, and the resulting model has been compared to traditional conduction solutions and to models which incorporate convection within the weld pool. This has shown that models using this enhanced thermal conductivity scheme predict weld pool shape and near weld thermal histories with the same level of accuracy as the full convection models and the best of the empirically tuned conduction models. However the enhanced thermal conductivity model requires several orders of magnitude less computational resources than full convection solutions and much less empirical tuning than the modified conduction solutions. As such it appears to be a valuable method for accurate practical prediction of near weld thermal behaviour.