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Abstract.

This thesis is concerned with the development of self-tuning predictive controllers for both

deterministic and stochastic systems and assessment of their properties by analysis and/or

by simulation. Self-tuning controllers for both multivariable and scalar systems are proposed.

New cha¡acterizations, called left and right nilpotent interactor matrices, of the delay

structure of a multivariable linear system are introduced. Computational algorithms op-

erating on a numerical representation of polynomial matrices are proposed for the on-line

calculation of such characterizations. The algorithms are amenable to computer-based calcu-

lations using a matrix-oriented softwa,re. These results are employed in the development of

a new self-tuning, minimum prediction error controller which requires significantly less prior

system knowledge than other strategies.

Long-range predictive controllers (resulting from minimization of multi-stage cost func-

tions) are considered for application in self-tuning control. Among the new developments

presented are the self-tuning, long-range predictive, receding horizon controller proposed for

a multivariable deterministic system and the analysis of the closed-loop system resulting from

the long-range predictive controller for a scalar stochastic system.

The problem of utilization of additional system outputs for feedback in self-tuning control

is addressed. Self-tuning, minimum prediction error controllers for one output of multi-output

deterministic and stochastic systems are proposed. It is shown that utilization of additional

outputs for feedback is likely to improve the convergence rate of parameter estimates of self

tuners markedly and does modify certain assumptions about the controlled stochastic system.

Of particular significance is the removal of the strictly positive real condition required for

convergence of self-tuning controllers based on the feedback from the controlled output only.

The global convergence of self-tuning controllers with feedback from additional outputs is

established using edsting methods of convergence analysis.

Likewise adaptive prediction which is based on the measurement of additional system

outputs is considered. Adaptive predictors for one output of multi-output deterministic and

stochastic systems are developed. Possible benefrts resulting from measurement of additional

outputs involve, in particular, improvement in the convergence rate of pa,rameter estimates

of adaptive predictors and removal of the strictly positive real condition.
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Chapter 1

Introduction.

Subject coverage.

During the last two decades self-tuning controllers have become increasingly impor-

tant in a wide range of process control applications. This thesis is concerned with the

development of self-tuning predictive controllers for both deterministic and stochas-

tic systems, and an assessment of their properties by analysis and/or by simulation.

Both the multivariable and scalar systems are considered.

One of the essential problems is to relax prior system knowledge required by a

seif-tuning controller,, especially in applications involving multivariable systems. For

this purpose new characterizations of the delay structure of a multivariable linear

system are introduced; such cha¡acterizations can be determined on-line using a ner¡/

class of computational algorithms. These results are employed in the development

of a new minimum prediction error self tuner which requires significantly less prior

system knowledge than other strategies.

A self-tuning controller shouid stabilize a wide variety of plants (e.g., nonminimum

phase and/or unstable open-loop plants). Furthermore, the self tuner should be

robust to modeling errors (e.g., to model overparameterization). Moreover, it is

desirable for the control law embedded in the self tuner to have performance-oriented

tuning knobs r,vhich are meaningful in the time domain. In order to achieve these

features, a new long-range predictive self-tuning controller is developed.
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The convergence rate of self-tuning controllers is often insufficient for practical

applications. The probiem of improving the convergence rate of self tuners is ad-

dressed by utilization of additional system outputs for feedback. Possible benefits

resulting from such an approach are examined and compared with the conventional

approach based on feedback from the controlled output only. Not only is the con-

vergence rate shown to be superior to that of conventional self tuners, but also some

restrictive system assumptions, such as the strictly positive real condition associated

with stochastic disturbances, are removed.

Adaptive and self-tuning control.

Adaptive control theory is often described as the most recent phase in the develop-

ment of feedback control systems theory. An adaptive control system can be defrned

as follows [1]:

control systern, adaptive. A control system within which automatic

means are used to change the system parameters in a way intended to

improve the performance of the control system.

The task of improving the performance of the control system is accomplished by u,rr

adaptive controller, i.e., a controller which is capable of modifying its behaviour in

response to changes in the controlled system (plant) dynamics and the disturbances.

For this purpose a mechanism is needed for "learning" about the characteristics of the

system during its operation. Such a mechanism facilitates adaptation of the control

strategy not only to a changing environment, but also to the unknown characteristics

of the plant and disturbances.

Various approaches to adaptive control have been considered. (Surveys describ-

ing adaptive control schemes developed from stochastic control theory, gain schedul-

ing, model reference adaptive systems, and self-tuning controllers are presented in

[2,3,4,5].) For example, adaptive controllers can be developed within the framework

of optimai nonlinear stochastic control theory [2,3,5]. The solution is very complex

even for simple cases (see example in [6]). In general, the strategies resulting from
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optimal stochastic control theory perform the simultaneous tasks of realizing the

clesired performance (control) and reducing system uncertainty (estimation) [7]. Un-

certainty arises due to unpredictable stochastic variables (e.g., measurement noise)

and unknov¡n parameters of the system [7]. There are two methods of reducing uncer-

tainty [7]: passive observation of system variables, and active experimentation on the

system (probing). Controllers involving the latter method are called dual, and those

based on passive observation are referred to as non-dual l8l. The dual controller must

compromise between the conflicting tasks of control and estimation. The non-dual

controller is based on separation of estimation and control.

Non-dual controllers can be divided into two classes depending on the information

which is passed from the estimator to the controller [2]. If the information consists of

the estimates of un-lcnown parameters and the uncertainties of the estimates, then the

controller can talçe into account errors in the estimates to exercise cautious control

action; such a controller is called cautious. If the information consists only of param-

eter estimates, then the control signal is determined as if the estimates were the true

parameters, i.e., the controller does not take into account inaccuracy of estimates.

Such a controller is called a certainty equiualence controller [7,8].

The adaptive controllers which are considered in this thesis are usually referred to

as self-tuning controllers because they have facilities for tuning their own parameters

t5]. Self-tuning controllers are certainty equivalence controllers. The purpose of a

self-tuning controller is to control a plant the parameters of which are unknown.

A diagram which represents a self-tuning control system is depicted in fig. 1.1. In

order to design a self-tuning controller, the structure of a model of the unknown plant

is specifi,ed. If the self-tuning controller is to be implemented on a digital computer (as

are those considered in this thesis), it is convenient to choose a parametric, discrete-

time plant model. It is usually assumed that the plant is linear and time-invariant.

The next step in the design is to select the feedback control strategy (i.e., the control

law) as for the plant r,vith known parameters. One can also try to reparameterize the

plant model so that the model is expressed in terms of the parameters of the chosen

control law.
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ESTIMATOR

Estimates

CONTROLLER

PLANT

Disturbances
Outputs

Controls

Reference

signal

Figure 1.1: Block diagram of a self-tuning control system.

During the operation of the self-tuning controller, the unkno\Ã/n parameters of the

model are identified on-line, by u recursive parameter estimator, from measurements

of plant outputs and inputs. The estimated model is either that of the plant or that

of the control law if the above-mentioned reparameterization is performed. If the

parameters of the plant are estimated then the block labeled "controller" in fig. 1.1

performs two tasks. The first task is to calculate parameters of the control law from

.the estimated plant parameters. (This task represents an on-line solution to a design

problem for a plant with known parameters.) The second task is to calculate the

control signal given parameters of the control law, past control signals, measured

plant outputs and reference signal. Such a self tuner is cailed ind,irect or erplicit,

t5]. However, if the parameters of the control law are estimated then the design

calculations are eliminated and the controller performs oniy the second task. Such a

self tuner is called d,irect or implicit l9l.

Various plant models, control strategies and estimation methods can be combined

to yield a self-tuning controller [10,5]. Examples of (i) plant models are the differ-

ence operator and state-space models, (ii) control strategies are minimum prediction

errorT long-range predictive, pole-placement, LQG, and PID control laws, (iii) es-

4



timation methods are stochastic gradient, least squares, extended and generalized

least squa.res, instrumental variables, extended Kalman filtering, recursive maximum

likelihood. .

Self-tuning controllers were initially proposed to control time-invariant piants.

However, the strategies can be modified - or made robust - to cope with slowly time-

varying plants (see e.g., [11,12,13,14]). Recently self-tuning strategies have been

proposed for time-varying systems (see e.g., [15,16,17,18]).

Self-tuning controllers have found numerous applications despite initial criticism

following unsuccessful attempts to design adaptive controllers for high-performance

aircrafts in the 1950s [5]. The revolutionary progress in microelectronics, dating

from the early 1970s, has made it possible to implement seif-tuning controllers rel-

atively simply and cheaply using microprocessor systems. A number of commercial

self-tuning controllers is available on the market (e.g., Electromax V based on the

PID structure (1981), ASEA Novatune (1932) [5]); some self tuners are being devel-

oped at universitiet (e.9., UNAC [19]). As pointed out in [3], possible realizations

of self-tuning controllers range from single-loop PID controllers to self tuners capa-

ble of controlling complex industrial processes involving significant delays, muitiple

resonances, nonlinearities etc. The applications of self tuners involve control of au-

topilots for aircraft, missiles and ships, chemical reactors, distillation columns, glass

furnaces, heat exchangers, paper machines, power systems, rolling mills, ore crushers,

diesel engines, robots, biomedical devices, etc. (see 120,4,5] for further examples and

references).

Review of the state of the art and contributions of this thesis.

Considerable research devoted to the development and analysis of self-tuning con-

trollers has been carried out over the last two decades. The highlights of the main

contributions to the state of the art, which are relevant to the present work, will now

be reviewed. Furthermore? some contributions of this thesis will also be mentioned.

The first self-tuning controller (although not described as such) \,vas proposed by

I(alman (1958) who built a dedicated hybrid computer to implement an adaptive
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controller [21]. The strategy is based on ad hoc separation of identification and

control. Such a heuristic approach is often considered for the development of self-

tuning controllers [10].

A self-tuning regulator minimizing the variance of the measured output and em-

ploying the recursive least squares estimator was introduced by Åström and \Mit-

tenmark in 7973 1221. This self tuner is simple to implement, but is sensitiae to

nonminimum phase plant characteristics which often arises as a result of sampling.

Moreover, ercessiue control effort is often required and can only be decreased by

increasing the sampling period. This self tuner does noÍ facilitate tracking of the

reference signal.

In order to overcome the above-mentioned drawbacks of the minimum variance

self-tuning regulator, the generalized minimum variance self-tuning controller was

proposed by Clarlce and Gawthrop (1975) 123], (7979) 1241. This self tuner facilitates

control of nonminimum phase plants by weighting the control effort and is simple to

implement. Furthermore, this self tuner has a number of useful interpretations such

as, for example, a (detuned) model-reference adaptive controller, and a self-tuning

least-squares predictor in a Smith-type control configuration [25].

The single-stage cost functions postulated for the development of the above strate-

gies penalize the error between the controlled output and the reference signal k-step-

ahead, where k represents the plant delay of k sample intervals from the control input

to the controlled output. \Me shall call the controllers resulting from minimization of

such a performance criteriot minimurn prediclion error controllers.

Minimum prediction error controllers are highly sensitiue to the assumptions made

about the value of delay k and to time-varying delay. Furthermore, for nonminimum

phase systems the choice of the values of the tuning knobs which guarantees closed-

loop system stability is not straight-forward for plants with unknown parameters.

On the other hand, as pointed out in [26], for application in self-tuning control the

control strategy is required:

- to stabilize a wide variety of plants (e.g., nonminimum phase and/or unstable
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open-loop plants);

- to have performance-orienteil tuning lcnobs which are meaningful in the time

domain;

- to eliminate the effect of disturbances;

- to be robust to modeling errors (e.g., trnder- and overparameterization of the

plant model order, incorrect assumptions about delay).

In order to overcome drawbacks in minimum prediction emor controllers and to

fulfil the above requirements for the control strategy, long-range pred,ictiue controllers

were postulated for application in self-tuning control (see Peterka (1984) [27], Ydstie

(1984) [28], Clarke et. aI. (1984) [29]). These controllers are based on minimization

of multi-stage cost functions with an optimization horizon extending beyond the

plant delay. At the cost of increased complexity and computational burden, the

resulting self tuners have performance-oriented tuning knobs which føcilitate control

of nonminimum phase and/or unstable plants, are robust to unknown or variable

plant delay, and to model order under- and overparameterization.

One of the contributions of this thesis is the development of a new long-range

predictive self-tuning controller for multivariable deterministic systems. This strat-

egy possesses a number of features desirable in self-tuning control which are not

achievable for the minimum prediction error self tuners. Furthermore, a rigorous

closed-loop system analysis is presented for the long-range predictive controller for

scalar stochastic systems. Such an analysis is not available for the related strategies

which,v\¡ere proposed in [30,29j.

Both the minimum prediction error and the long-range predictive controllers will

be referred to as the predictiae controllers.

Self-tuning predictive controllers were originally developed for scalar systems.

Certain diffi.culties have been encountered, however, in the extension of self-tuning

schemes to multivariable systems. These difficulties are associated with the require-

ment of prior knowledge of the system delay structure.
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In early work on self-tuning control of multivariable systems only speciøl forms of

the delay structure u¡ere considered (see e.g., Borisson (1979) [31], Goodwin ef. aI.

(1980) [32]). The general delay structure of a multivariable linear system is charac-

terized by the interactor matrix introduced by \Molovich and Falb (1976) [33]. The

left interactor matrix rvas employed by Goodwin and Long (1980) [34], and the right

interactor matrix by Tsiligiannis and Sovronos (1986) [35], to develop self-tuning

minimum prediction error controllers for deterministic systems with the generai de-

Iay structure. Corresponding results for self-tuning minimum variance control of

multivariable stochastic systems were presented by Dugard et. aI. (1984) [36].

The above-mentioned self-tuning strategies for multivariable systems require prior

knowled,ge of the system delay structure. In the case of a general form of the delay

structure, prior knowledge of the interactor matrix is assurned. This is, however,

tantamount to the knowledge of the system transfer matrix, thus greatly reducing

the appealing features of self-tuning control.

The following approaches were proposed to relax the requirement of complete

prior knowledge of the interactor matrix (further references are presented in sub-

section 2.3.1). Dugard ef. al. (1984) [37] developed a self tuner in which a part

of the interactor matrix is estimated on-line. Long-range predictive self tuners for

deterministic and stochastic systems were introduced by Ydstie and Liu (1984) [3S]

and by Dugard et. al. (1984) [36], respectively; for these strategies knowledge of the

interactor (polynomial) matrix is reduced to an upper bound on its degree. It was

reported, however, that the long-range predictive strategy of [38] may fail to stabilize

open-loop unstable plants [29]. The indirect minimum prediction error self-tuning

controller of Elliott and Wolovich (1984) [39] involves the on-line calculation of the

interactor matrix; this scheme obviates the need for prior knowledge of the interactor

matrix.

One of the contributions of this thesis is a new minimum prediction error self-

tuning controller for which the requirement of prior knowledge of the interactor

matrix is elimi,nated,. The required prior system knowledge is reduced not only in

comparison with other predictive strategies, but also in comparison with the pole-



placement techniques which are discussed below. For the purpose of development

of this self tuner, new chatacterizations of the delay structure axe proposed as an

alternative to the interactor matrix (which has been so far the only such a charac-

terization). A new class of computational algorithms, which are employed in the self

tuner, is introduced for the on-line calculation of such characterizations.

As an alternative to predictive controllers, the pole placement method rilas con-

sidered for application in self-tuning control. Self-tuning controllers were proposed

which assign the poles of the closed-loop system ,10,4I,42,43], or both its poles and

zercs 144]. The advantage of pole placement self tuners is that they do zof require

prior knowledge of the system delay structure, can be made robust to variable de-

lays, and are not sensitive to nonminimum phase systems. However,, the ind,irect

self-tuning pole-placement controllers are computationally demanding due to the on-

line solution of a Diophantine equation, and are sensitiue to the plant model order

overpaxameterization (when a near-cancellation of a pole-zero pair is encountered).

Furthermore, for multivariable systems prior knowled,ge of the system observability

indexes and an upper bound on the controllability index is required [39]. The direct

pole-placement self tuners involve estimation of a large number of parameters and

are not robust to underparameterization [45]. Furthermore, for multivariabie systems

prior lcnowledge of the system controllability indexes and an upper bound on the ob-

servability index is required [a3]. The open-loop system is assumed to be controllable

which implies that some ad, hoc methods for elimination of the effect of deterministic

disturbances must be employed.

Self-tuning controllers have been also developed for linear state-space system mod-

els involving Gaussian noise processes and based on quadratic cost functions (LQG

self tuners) (see e.g., [46,26]). Generally, the LQG self tuners involve the following

operations [26]: plant parameter estimation, state estimation, solution of the Riccati

equation, and calculation of the control signal. Hence, such self-tuning controllers

are computationally involved, especially for multivariable systems. The LQG self

tuners are sensiti.ue to model overparameterization; fulthermore, the choice of appro-

priate control weighting may be difficult [29]. However, they are robust to incorrect
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assumptions about plant delay [26].

Self-tuning PID controllers have been proposed (see e.g., [a7]) mainly because of

a wide use of nonadaptive PID controllers. These self tuners can be applied to a

Iimited' range of systems (e.g., described by a second order transfer function), and

yield unsatisfactory performance for plants with significant detay [20].

In this thesis we shall consider self-tuning predictive controllers. Some of their

advantages and drawbacks in comparison with other approaches to self-tuning con-

trol were discussed above. Furthermore, for self-tuning predictive controllers the

desired performance of the closed-loop system is defined in terms of a criterion which

determines a lrad,e-of between output behaviour and control effort. Such an ap-

proach is especially useful if the plant is time-aarying, since then the requirement of

a fixed closed-loop behaviour (resulting for example from pole placement) may lead

to excessive control effort [48].

Another advantage of predictive control is that it is possible to use future values

of the reference signal (programmed control l27l) to introduce anticipatory control

action in order to improve the input-output performance of sluggish systems, possibly

with large delays [49].

Self-tuning control can be applied to nonlinear plants. The first approach is to

develop a self tuner for a linearized plant model. This approach relies on estimation of

parameters which are time-varying due to changes in the plant operating point. The

second approach is to develop a self tuner for the nonlinear plant model. Predictiue

controllers are well-suited for the latter approach [9]. Potential improvements in

the performance of self-tuning predictive controllers applied to nonlinear plants and

developed for nonlinear plant models in comparison with those based on linear models

are illustrated, for example, in [50]. This constitutes another reason to consid.er

predictive controllers for application in self-tuning control.

Let us now turn our attention to analysis of self-tuning controllers. Two impor-

tant aspects of such an analysis are stabililg (boundedness of the control signal and

outputs) and conuergence (in the sense that desired system performance is asymp-

totically achieved).
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It was shown for the self-tuning minimum variance regulator employing the least

squares estimator fhat if the parameter estimates converge to any limiting values,

then the resulting control law is optimal [22]. However, the problem of convergence

of parameter estimates remained unresolved; furthermore, the closed-loop system

stability was addressed in [51] only with a heuristic argument.

The next major step in the analysis of self-tuning controllers was due to Ljung

(1977) [52] who associated the asymptotic properties of recursive stochastic algo-

rithms with the solutions of an ordinary differential equation (ODE method). The

ODE method assunl,es closed-loop system stability. Using the ODE method, Ljung es-

tablished sufficient conditions for the convergence of the minimum variance/stochastic

gradient self tuner to the minimum va¡iance control law [53]. This analysis revealed

importance of the strictly positiue real condition which is related to the characteristics

of the stochastic disturbance.

The convergence results of [52,53] were obtained assuming closed-loop system sta-

bility. However, such an assumption is restrictiae for analysis of self-tuning control

systems [5a]. Therefore,, it is desirable to establish conditions f.or global conuergence

of self-tuning controllers. A self-tuning controller is said to be globally convergent if,

for all initial states of the system and the algorithm, the control signal sequence is

bounded, and (i) for a deterministic system, outputs track asymptotically the refer-

ence sequence [32], or (ii) for a stochastic system, the mean-square output tracking

error is minimized (with probability one) [55].

The breakthrough in the analysis of self-tuning controllers is due to Goodwin, Ra-

madge, and Caines. They established global conuergence of the minimum prediction

error self-tuning controllers for deterministic (1980) [32] and stochastic (1981) [55]

systems. Martingale method of analysis was employed to establish global convergence

of the strategy [55] for stochastic systems.

The minimum variance self-tuning controller of [55] employs the stochastic gradi-

ent estimator, i.e., a scalar gain algorithm. However, the convergence rate of scalar

gain estimators is inferior to that of estimators based on the least squares method,

i.e., matrir gain algorithms. Considerable resea.rch. has been devoted to improui,ng

11



the conuergence rate of (globally convergent) self tuners by employing matrix gain

cstimators. Therefore, the work of Kumar and Moore (1982) [56], and of Sin and

Goodwin (1982) [57], is of particular importance (further references are presented in

Appendix G). They proposed rnod,ifications to the matrix gain estimators required in

order to guarantee global convergence of stochastic self-tuning controllers based on

such estimation algorithms.

One of the contributions of this thesis is the development of self-tuning, minimum

prediction error controllers for both deterministic and stochastic systems for which

there some other outputs available for feedback apart of the controlled output. It is

shown that utilization of such aililitional outputs for feedback improues marked,ly the

conlergence rate of self-tuning controllers. The new self tuners employ matrix gain

estimators. Global convergence of the self-tuning controllers is established.

Convergence of self-tuning controllers for stochastic systems has been established

subject to the strictly positive real condition [53]. Such a condition appears in anal-

ysis of recursive stochastic algorithms using the ODE method, martingale method,

or combination of both. Only a few methods have been developed to overcome this

restrictive condition. For example, a sophisticated, globally convergent self-tuning

strategy, which overcomes the strictly positive real condition, was proposed by Moore

(1984) [58] (further references a;re presented in Appendix G). The methods of over-

coming the strictly positive rea^l condition are computationally demanding, involve

dither injection and therefore may lead to suboptimal performance, or require esti-

mator overparameterization which affects the conuergence rate, etc.

It is shown as one of the contributions of this thesis that utilization of addi-

tional outputs for feedback in self-tuning control is a sirnple arrd effectiue method of

overcoming the strictly positive real condition.

Outline of thesis.

Chapter 2 is concerned with system modeling in self-tuning predictive control.

A unified model of a system r,vith the outputs which are to be controlled and the

outputs which are availablefor feedbackis postulated in section 2.1. Both state-space
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models and difference operator models are defined; these models are commonly used

in self-tuning control, and are presented here for the completeness of exposition.

The requirements of an admissible control law are presented in section 2.2. Ftlr-

thermore, aspects of the output measurement configuration are discussed for self-

tuning control of systems with two groups of outputs (i.e., with the output variables

which are to be controlled and those which are available for feedback).

In subsection 2.3.1 a summary is presented of approaches to multivariable self-

tuning predictive control with respect to prior system knowledge required by the self

tuner. Such knowiedge involves the interactor matrices as characterizations of a mul-

tivariable system delay structure. An assessment of the requirements of an admissibie

control law and of the properties of the interactor matrices leads to the development

of new characterizations of the delay structure (subsections 2.3.2 and 2.3.3). These

characterizations are called the left ancl right nilpoten,t in,tero,ctor m,atrice.s. A new

class of computational algorithms, which operate on a numerical representation of

polynomial matrices, is proposed for the calculation of nilpotent interactor matrices.

The details and examples axe presented in Appendix C, reprinted from the IEEE

Transactions on Automatic Control.

In chapter 3, output pred,ictors are introduced for the development of self-tuning

controllers in the following chapters. Nilpotent interactor matrices are employed

in predictors for multivariable systems in section 3.1. New algorithms, which are

amenable lo cornputer-based, calculations using matrix-oriented software, are derived

for the calculation of predictor parameters. Furthermore, a predictor structure is

postulated which utilizes ad,d,itional systern outputs. Based on this structure, new

predictors are derived for one output of both a multi-output deterministic system

(section 3.2) and a stochastic system (section 3.3). Computational methods based on

a numerical representation of the Diophantine equations are developed for the off-line

calculation of predictor parameters for systems with known parameters. For systems

with unknown parameters, adapliue predictors are proposed. The properties of the

new predictors are discussed and compared with those of conventional predictors.

The resuits of sections 2.3 and 3.1 are employed in chapters 4 and 5. In chapter

13



4 a new self-tuning minimum prediction error strategy is developed for multivariable

deterministic systems, possibly affected by a deterministic disturbance. The novelty

of the strategy lies, in particular, in the application of the algorithm for the on-line

calculation of the right nilpotent interactor matrix from the estimates of the system

model. This approach is aimed at reducing the required system prior knowledge.

An example of application of such a self-tuning controller to a robot manipuiator is

described.

Self-tuning, long-range predictive, receding horizon control is proposed for both

multivariable deterministic systems (section 5.1) and scalar stochastic systems (sec-

tion 5.2). The left nilpotent interactor matrix is employed in the development of

the controller for multivariable systems. The self-tuning long-range predictive con-

trollers possess two time-oriented tuning knobs which facilitate control of nonmini-

mum phase and/or unstable open-loop systems. The influence of the tuning knobs on

the closed-loop system performance is established by simulation studies. An example

of application of such a self-tuning controller to a robot manipulator is described.

Furthermore, closed-loop system analysis, involving a stability criterion, is presented

for scalar stochastic systems.

The problem of utilizution of additional system outputs for feedback in self-tuning

minimum prediction error control of one output of a multi-output system is consid-

ered in chapter 6. The results of sections 3.2 and 3.3 are employed in the development

of self-tuning controllers for deterministic a¡rd stochastic systems, respectively. It is

shown that utilization of additional outputs for feedback is likely to improue the

conaergence rate of self tuners markedly in comparison with that of conventional

self-tuning controllers. This improvement is due to the reduction in the number of

estimated parameters in the case of deterministic systems, and due to the replace-

ment of the pseudo-linear regression estimators by the linear regression estimator in

the case of stochastic systems. Moreover, the utilization of additional outputs for

feedback modifies certain assumptions about the controiled stochastic system. Of

particular significance is the remoual of the strictly positiue real cond,iúion required

for convergence of conventional self-tuning controllers.
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Theoretical results obtained for self-tuning controllers with utilization of addi-

tional outputs for feedback are illustrated by simulation studies. Global conuergence

of these self-tuning controllers is established, using existing methods of convergence

analysis, in Appendix F. A survey of self-tuning control strategies developed for

stochastic systems and aimed at similar goals to those achieved by utilization of

additional outputs for feedback is presented in Appendix G.

In chapter 7 conclusions are drawn regarding the new results presented in the

thesis, and from these conclusions a number of suggestions for future research is

presented.

The computer software used in the simulation studies presented in chapters 4

and 5 forms a useful tool for assessment of the performance of self-tuning multi-

variable control systems. It consists of macro-instructions written in MATLAB (or

MATRIXx) commands and is included in Appendix D. Appendices A, B, ancl E,

contain material frequently used throughout the thesis.
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Chapter 2

Systern rnodeling tn self-tuninga

predictive control.

This chapter discusses modeling aspects of linear systems which a,re relevant to self-

tuning predictive control, in situations where the systems are affected by deterministic

or stochastic disturbances.

A unified model of a system with the outputs which are to be controlled and the

outputs available for feedback is introduced in section 2.1. Two feedback configu-

rations are considered for the model: firstly, a configuration in which the controlled

and feedback output variables are identical; secondly, a configuration in which some,

or perhaps none, of the feedback variables are the same as controlled variables. The

derivation of the difference operator system representation results in (i) the left dif-

ference operator (DARMA and ARMAX) models associated with the first feedback

configuration; (ii) the right difference operator models associated with the second

feedback confi guration.

The requirements of an admissible control law and the measurement configura-

tion of a system with two groups of outputs for self-tuning control are presented in

section 2.2.

In order to fulfil the requirements of the admissible control law, a characteri zation

of the delay structure of a linear multivariable system will be employed in the devel-

opment of predictive controllers. New characterizations of the delay structure, called

16



the nilpotent interactor matrices, are introduced in section 2.3. Given the right and

left difference operator rcpresentations of the system, algorithms for the evaluation of

the left and right nilpotent interactor matrices are developed. The material presented

in section 2.3 is the main contribution of this chapter.

2.L Systern rnodelittg.

In this section

o the structure of a system with two groups of inputs and two groups of outputs

is postulated for the development and analysis of self-tuning control algorithms;

o mathematical models of the system are introduced;

o a,spects of the mocleling of both deterministic and stochastic disturbances are

discussed.

Consider a plant with two groups of vector inputs, u(t) and un(t), and two groups

of vector outputs, y(ú) and VF(t), as shown in fig. 2.1.

Disturbances Controlled outputs

Controls Feedback outputs

Figure 2.1: Plant.

The / x 1 vector of inputs u(f) represents the control inputs, i.e., signals which

are applied to the plant in order to achieve the control system objectives. The

s X 1 vector of inputs "n(t) represents (unmeasurable) deterministic and/or stochastic

disturbances affecting the plant, i.e., signals over which one has no influence 1. The
lFor the discussion of elimination of the measurable disturbances, and for further references, see

[59, chapter 6]).

"o(t) y(t)

PLANT

"(t) yF(t)
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separation of output variables into groups of the outputs which are to be controlled,

aQ) @ x 1 vector), and the feedback outputs, aF(t) (/ x t vector), provides a means

for

- formalization of the control of outputs which are not fed back;

- inclusion in the control law of system outputs which are not strictly necessary

to achieve the control objective by the selected control method.

The above process structure has been postulated in linear system synthesis theory

[60,61,62,63,64] but, to the author's knowledge, has not been considered explicitly in

adaptive control theory, although its applicability tüas suggested in [9, pp. 232-234

and p. 458]. Furthermore, we shall classify system outputs according to the feedback

confi.guration in the following two rù/ays:

Feedback conftguration FI: the feedback and controlled outputs vectors are iden-

tical, i.e., AF(t) = y(t);

Feedback conffguration FD: some, or perhaps none, of the feedback outputs are

the same as controlled outputs, i.e., AF(t) * AQ),, but the number of the feed-

back outputs is not smaller than the number of ihe controlled outputs, i.e.,

dimy¡(ú) > dimy(ú).

The self-tuning control strategies have been developed for systems having the feed-

back configuration FI. The case FI is considered in section 3.1, and chapters 4 and 5.

The main reason for considering systems having the feedback configuration FD is to

develop for self-tuning control an approach which accommodates feedback outputs

others ihan only the controlled ones. The feedback configuration FD implies that

there are some add,itional system outputs which can be utiiized for feedback. The

case FD is considered in sections 3.2,3.3, and in chapter 6.

The system models, which are used in the following chapters, are introduced in

subsections 2.1.1 and 2.I.2.
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2.L.L System state-space models.

Consider a linear, tirne-inuariant, fi,nite-d,imensional, d,iscrete-time system described

by a state-space model

f 
ø,(r)l:r|.,,', l, ,>o (2.r)

L Y(t) I L u(¿) l

with initial state ø(0), where r(t) is the state vector, 7(ú) and z(t) are system out-

put and input vectors, respectively. The forward shift operator q is defined in Ap-

pendix A, S is a real matrix, and f : 0,1.,2. . .. Special cases of the above general

form of the state-space model are introduced below. The input variables included in

the input vector, Z(f), depend on the type of disturbances affecting the çystem. The

output variables included in the output vector, p(f), depend on the system feedback

configuration employed.

State-space rnodel of a system with deterministic disturbance.

Assume that the plant is subject to a deterministic disturbance only. The generator

of the deterministic disturbance can be considered as external to the plant model.

Alternatively, the model of the generator of the deterministic disturbance can be

incorporated in an extended plant model, leading to the system 2 structure shown in

fr,g.2.2. The latter approach will be assumed here for the analysis of deterministic

systems. Note that there is no disturbance input to the system shown in fr,g. 2.2.

The deterministic disturbances can be thought of as the solution to a set of lin-

ear differential equations, with nonzero initial conditions, describing the disturbance

generator [59, p. 127]. In order to incorporate the model of the generator of deter-

ministic disturbances in the system model, the plant state variables are augmented

by the state variables of the state-space representation of the disturbance generator.

The vector of the plant initial conditions is augmented by the set of initial conditions

appropriate to the disturbances. This approach to the modeling of the deterministic
2The model of a system with the incorporated model of the disturbance generator is sometimes

called exosystem [60].
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Nonzero initial conditions

Disturbance

SYSTEM

Figure 2.2: Plant with the model of a generator of deterministic disturbance incor-

porated in the system model.

disturbances allows us to set t(ú) : u(t) in the state-space system representation 2.1

since there is no disturbance input to the system. In relation io the feedback config-

uration, the following two cases are considered.

State-space model of a deterministic system having the feedback config-

uration FI.

In this case g¡(f) = A(t); hence, we set VQ) : A(t). The state-space system

representation is thus given by

l:l: îll;lll (2.2)

with initial state r(0). It is assumed that D : 0

State-space model of a deterministic system having the feedback conffg-

uration FD.

In this case only some, or perhaps none, of the feedback variables are the

same as the controlled ones. Therefore, we set VU) : [A(t)' Vr(t)']' (' denotes

transposition). The state-space system representation is thus given by

qr(t)

aþ)
t 0

I ,r,(t)

l,l;, i ilr
,(t)

"(t)

"o(t) aQ)
Plant

"(t) ar(t)

Deterministic
disturbance
generator
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with initial state c(0). It is assumed that D : 0 and Dp :0

State-space model of a system with stochastic disturbance.

Consider a plant which is subject to stochastic disturbance only 3. It is assumed

that the stochastic disturbance affecting the plant is generated by a linear, time-

invariant, finite-dimensional, casual, discrete-time dynamic system (stochastic dis-

turbance filter) driven by a sequence {t.l(f)}. Furthermore, {ø(t)} is a zero-mean,

covariance-stationary, vector white sequence [65, chapter 2], i.e.,

E{u(t)} : 0, (2.4)

^Ð{ø(*)ø(s)'} : Xó(ú - s), (2.5)

where the covariance matrix D is a positive-definite, real symmetric matrix, and

ó(t - s) is the Kronecker delta. Moreover, it is assumed that

dimcu(ú) : dim a(t) : m. (2.6)

The above assumptions for the stochastic disturbance are commonly used in self-

tuning control theory [31 j66,67,9].

A similar approach to that of modeling the deterministic disturbances is consid-

ered for stochastic disturbances. The model of the stochastic disturbance filter is

incorporated in the plant model, leading to the stochastic system structure shown in

fig. 2.3.

In the state-space representation 2.! of. a system which incorporates the model of

tlre plant and stochastic disturbance filter we set u(ú) : lu(t)' u(t)'l'. In relation to

the feedback configuration, the following two cases are considered.

3A more general case of a plant which is subject to both stochastic and deterministic disturbances

is discussed on p. 31.
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Disturbance

SYSTEM

Figure 2.3: Plant with the modei of a stochastic disturbance filter incorporated in

the system model.

State-space rnodel of a stochastic system having the feedback configura-

tion FI.

In this case gr(¿) =A(t); hence, we set VQ): y(ú). The state-space model 2.1

is thus given by

t)u(

A" I{ B"

CC,O
¿>0 (2.7)

*(t)

,(t)

"(¿)

with initial state z(0). It is assumed that the matrix C" is nonsingular and,

without loss of generality , C 
" 
: I* (I* is an rn x rn identity matrix) [68,56,69].

The state-space model of the system given by eqn. 2.7 is shown it frg. 2.4.

State-space rnodel of a stochastic systern having the feedback configura-

tion FD.

In this case only some, or perhaps none, of the feedback variables are the same

as the controlled ones. Therefore, we set g(t): ly(t)'yr(t)']'. The state-space

model of the system is thus given by

qr(t)

uQ)

yF(t)

KB"
c"0
Cs o

"(t)
,(t)

"(t)

A"

C

Cr

0t

uD(t) y(t)

Plant

"(t) ar(t)

Stochastic
disturbance

filter
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Figure 2.4: State-space model of a stochastic system having the feedback configura-

tion FI.

with initial state r(0). Again it is assumed that the matrix C, is nonsingular

and, without loss of generalily, C" - I*. Furthermore, we assume that the

number of the feedback variables is greater than the number of independent

noise sources n, i."., dimg¡(t) > dimø(ú). Hence, in view of eqn. 2.6, the

number of the feedback variables is greater than the number of the outputs

which are to be controlled, i.e., .f : dim aF(t) ) dim A(t) : m.

The state-space model of the system given by eqn. 2.8 is shown in fig. 2.5.

Cornrnents on the state-space rnodels of systerns with stochastic distur-

bances.

The state-space model of a stochastic system having the feedback configuration FI

(eqn. 2.7) is closely associated with the Kalman filter theory and is known as the

(steady-state) innouations model [70,9]. The model 2.7 f.orrns a basis for the de-

aThis assumption is required by the approach to optimal prediction and control developed in

sections 3.3 and 6.2 (see Comment 3.5, p. 105).
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SYSTEM

,(t) v(t)

"(¿)

Figure 2.5: State-space model of a stochastic system having the feedback configura-

tion FD.

velopment 168,77,72,73,74,69] and analysis [36] of many adaptive stochastic control

strategies.

The exclusive use of systems having the feedback configuration FI in stochastic

self-tuning control can be perhaps explained by the fact that many strategies for

multivariable systems were developed as extensions of the schemes introduced for

scalar systems. A typical example is the multivariable minimum variance regulator

[31]. Any scalar system implies the feedback configuration FI.

On the other hand, the system model 2.8 is introduced here to describe a more

general case than does model 2.7. In particular, we do not require the output vari-

ables, which are to be controlled, to be used in the calculation of the control signal.

However, the same control objective as for a system having the feedback configuration

FI can be formulated for the case FD.

Ur (ú)
I

I

I

J

I

I

I

L

Cp-4"B"

Cq-1K

c"

Cs
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2.L.2 System difference operator models.

An alternative to the state-space model, based on a set of first-order difference equa-

tions, is a high-order difference equation known as the general difference operator

representation [75,76,9,77). In this subsection, the difference operator representa-

tions, corresponding to the state-space models presented in subsection 2.1.1, are

introduced. The difference operator representations are used for the development of

the self-tuning control strategies in the following chapters.

There are two particular forms of the general difference operator representation

which are employed in the development of self-tuning control strategies. Firstly the

left difference operator (LDO) representation is given by

lr,,o,rll"(')l_lor.@.l,,(,), ¿>0 (2.e)

L o /jL7(ú)l L / j

with appropriate initial conditions on the partial state sequence 5 {"¿(¿)}. Secondly

the right difference operator (RDO) representation, is described by

f"tt' l:f DnQ)],",,,, ú>0 (2.10)

L Y(¿l I L lv"(q) I

with appropriate initial conditions on {ø¿(t)}. In these representations l/¿(g), D"(q),

Dn(q), and l[p(q) are polynomial matrices in the forward shift operator q, D7(q) and

Dn(q) are assumed to be nonsingular.

In the implementation of self-tuning controllers, the model which is to be esti-

mated is either that of a system which is to be controlled (indirect strategy), or that

of a control law which is to be implemented (direct strategy). The model, the parame-

ters of which are estimated by a recursive parameter estimation algorithm embedded

in the self-tuning control strategy, must be in the LDO representation form to be

suitable for estimation from the model input-output data u 
[39]. Therefore the LDO

sSee Appendix A for definition of a sequence.
6The parameter estimation algorithms are usually designed for the LDO model. The only exception

known to the author is the algorithm proposed in [78] for the estimation of parameters of a special

form of the RDO representation having a diagonal matrix Dn(q).
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representation of the system which is to be controlled is employed in the development

of indirect strategies. The development of the direct strategies evolves usually from

the system RDO representation and leads to the LDO representation of the control

law, the parameters of which are estimated in the self-tuning controller [39].

In this thesis the LDO and RDO representations of the system are used for the

development of the indirect and direct self tuners, respectively.

The indirect self-tuning strategies are proposed for systems having the feedback

configuration FI (see chapters 4 and 5). Consequently, the LDO representation is

used to describe systems having the feedback configuration FI.

The direct self-tuning strategies are proposed for systems having the feedback

configuration FD (see chapter 6). Therefore, the RDO representation is used to de-

scribe systems having the feedback configuration FD. On the other hand, the indirect

approach to self-tuning controi of such systems would involve complex computations

in order to determine controller parameters from the estimated system parameters.

Difference operator representations of a deterministic systern.

The transformations between state-space and difference operator representations of

deterministic systems are described in [75, section 4.3] [9, chapter 2]179, chapter 5].

The LDO and RDO representations of deterministic systems are defined below.

Left difference operator (LDO) representation of a deterministic system

having the feedback conffguration FI.

Consider the state-space model 2.2 with D : 0. Define the left coprime poly-

nomial matrices ,,î(q) and g"(q) satisfying the following polynomial equation

ÂG) n"k) -C
qI_4, -0. (2.11)

It is assumed ihat the system (a pair (C,A")) is observable. Then matrices C

andql -4" are right coprime [80, Theorem 6.2-6, p. 366], and the determinant
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of Á(q) satisfies

,î(q) ug det (q/ - A"): c det ÂG),

where c is a constant. Define polynomial matrix A(q) ". follows

ak): a.Q)B".

The LDO representation follows from eqns. 2.2 artd 2.9 as

(2.r2)

(2.13)

(2.14)
B(q) o

0L"
"(t)
aQ) I^

*"(t), ¿ > 0
(q)A

with appropriate initiat conditions ? on {c¿(t)}.

Assuming zero initial conditions and taking z-transform, the corresponding

transfer matrix can be found from eqns. 2.2 ar'd 2.I4 as

Ho,u(z) : C(zI - A,)-t B, : .+-tQ)AQ).

Since Ho,,(z) is strictly proper 8, the degree of the polynomial matrix n A1q¡ is

less than the degree of Âk), i.e., deg nG) . deg á(q) : n [80, p. 383]. Denote

A(p) : p"Â@), (2.15)

B(p) : p" B(q), (2.16)

where p is the backward shift operator defined in Appendix A. Furthermore, as-

sume that the polynomial matrix Á1q¡ ir monic to, i."., ,qQ) : Ao8" I Arq"-t l
... i An, where Ao :,[-. The LDO representation given by eqn. 2.14 is now

written in the Deterministic Autohegressiae Moaing-Aaerage (DARMA) form

as [9, chapter 2]

A(p)v(t):B(p)u(t)'' tln (2.17)

TThe problem of transforming a set of initial conditions associated with the state-space model to

initial conditions for the difference operator model in considered for instance in [77,9].

8A rational transfer matrix Hr,"(z) is said tobe slriclly properif lim,*- Ho,"Q) = 0 [77].

eSee Appendix B fo¡ definition of the degree of a polynomial matrix.
10If this is not the case, then the LDO representation can be transformed so that Á1q; i. monic

[39,81]. The resulting matrices Á(q) ana É(q;.t" not, in general, Ieft coprime.
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with appropriate initial conditions on {y(t)} (note from eqn. 2.74that x7(t):

aQ)).

If the system is subject to deterministic disturbance, the generator model of

which is incorporated in the state-space description (see discussion on p. 19),

the polynomial matrices ,4(p) and B(p) of the resulting DARMA model have

a common left factor (polynomial matrix) corresponding to the disturbance

description [9, chapter 2].

Right difference operator (RDO) representation of a deterministic system

having the feedback configuration FD.

Consider the state-space model2.3 with D:0 and Dp:0. Define the right

coprime polynomial matrices D(q) and &(q) satisfying the following polyno-

mial equation

r rl¿rnll
f -4" qI - A" 11 .".'.' . 1 

: 0. (2.i8)
' ¡ lr"(ø) J

It is assumed that the system (a pair (.4.", B")) is controllable. Then matrices

qI-A" and B" are left coprime [80, Theorem 6.2.-6, p. 366], and the determinant

of D(q) satisfies

j(q) og det(q/ - A"): cdet o(q), (2.19)

where c is a constant. Define polynomial matrices lf(q) ana Ñr(q) as follows

N(q)

ñ.(q)

CN"(rt),

ceñ,k).

(2.20)

(2.21)

(2.22)

The RDO representation follows from eqns. 2.3 and 2.10 as

"(t)
v(t)

ae(t)

D(q)

ñ(q)

ñ'(q)

,n(t), ¿ > 0

with appropriate initial conditions on iø¿(t)).
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Difference operator representations of a stochastic system.

The transformations between the state-space and LDO representations of stochastic

systems are considered for instance in [74,69,9]. The LDO and RDO representations

are defined below.

Left difference operator (tDO) representation of a stochastic system hav-

ing the feedback conffguration FI.

Consider the state-space model 2.7 with C" - I^. Let us determine the left

coprime polynomial matrices Á(q) ana A"(q) satisfying eqn. 2.11. It is assumed

that the pair (C, ,4.") is observable. Furthermore, define polynomial matrix ô(q)

as follows

c(q) : t(q) + n"Q)K. (2.23)

The LDO representation follows from eqns. 2.7 and 2.9 with the matrix É(q)

defined by eqn. 2.13, and is given by

c(q) aG) 0
,(t)

"(t)
v(t)

t(q)

I^
xr(t), ú>0 (2.24)

001^

with appropriate initial conditions on {r¿(ú)}

From eqns. 2.11 and 2.13, one has degB(q) ( deg A"Q) ( deg ÂG): n. Then

from eqn. 2.23, degCçq¡ : ". As for the deterministic system, it is assumed

that ,4(q) is monic, and it follows from eqn. 2.23 that Ó1q¡ ir monic as weil.

Denote

C(p) : p"C(q). (2.25)

Using eqns. 2.15,2.16 arrd 2.25,, the LDO representation given by eqn. 2.24 is

written in the AutoRegressiue Moaing-Auerage witl¿ auXiliary input (ARMAX)

form [9, chapter 7] as

s(p) c(p) "(t)
u(t)

tA(p)v(t) :

29

TI (2.26)



with appropriate initial conditions on {y(t)}

Right difference operator (RDO) representation of a stochastic system

having the feedback configuration FD.

Consider the state-space model 2.8 with C" - I,n. Let us determine the right

coprime polynomial matrices D(q) ana ¡f"(q) satisfying eqn. 2.18. Define ihe

right coprime polynomial matrices O,(q) and Cp(q) satisfying the following

polynomial equation

[ -,. qr - A"] I :'::l I : o (2 27)
' L c"(q) l

It is assumed that the pair (A",8") is controllable and the matrices qI - A,

and I( are left coprime. Then the determinants ot O(q) and D.(q) satisfy (cf.

eqn. 2.19)

â,@) þl det (q/ - A"): c det o(q) : z det D.(q), (2.2s)

whereZisaconstant.

Furthermore, define polynomial matrices ô.(q) and C-(q) as follows

ô.(q)

c.(q)

o.(q) -t CCp(q),

Ctn.Q) + CpCp(q¡

0

n.k)

"-(q)
c.(q)

i""tt'l, ú>o (2.s1)

L '".(t) I

(2.2e)

(2.30)

Then using eqns. 2.20, 2.2I, 2.29, and 2.30, the RDO plant representation

follows from eqns. 2.8 and 2.10

"(t)
,(t)
y(t)

ar(t)

D(q)

0

ñ(q)

ñ'(q)

with appropriate initial conditions on {[rp(ú)' ,^-(t)'l'].

Although the RDO representation has been used commonly to derive (direct)

adaptive schemes for deterministic systems [39], it has not been employed for
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the modeling of stochastic systems. The stochastic plants were restricted to

the feedback configuration FI and modeled by the ARMAX moclel.

Discussion of the approaches to modeling of plants subject to deterministic

and stochastic disturbances.

If a plant is subject to both stochastic and deterministic disturbances, then incor-

poration of the model of the generator of deterministic disturbance in the system

description leads to the ARMAX model with roots of the determinant of the noise

polynomial C(z-r) l¡ning on the unit circle [9, chapter 7] [59, chapter 6]. This, in

turn, implies that the predictors and predictive controllers developed for such a sys-

tem model are either optimal but time-varying, or time-invariant but suboptimal [9,

chapter 7, 10] [59, chapter 12].

It is often assumed that roots of the determinant of the noise polynomial C(z-L)

lie strictly inside the unil circle 17. Such an assumption permits derivation of the

optimal time-invariant predictors and controllers [83], but excludes the possibility of

incorporating the deterministic disturbance generator model into the system model12.

However, in many practical situations, deterministic disturbances (such as load dis-

turbances, nonzero mean of the noise, an offset due to the local linearization of a

nonlinear process) can be modeled by augmenting the ARMAX model with a con-

stant (or slowly time-varying) offset term å, as follows [84,85]

A(p)v(t): n(p) C(p) I^
u(t)

,(t)
b

(2.32)

The above approach corresponds to the model of the generator of deterministic dis-

turbance which is external to the model of the plant and stochastic disturbance filter.

It makes the assumption about roots of the noise polynomial C(z-r) Iying strictly
1lln the view of the Spectral Factorization Theorem, it can be assumed without loss of generality

that roots of the determinant of C(z-t)lie inside or on lhe unit circle [82, Theorem 10.1, p.47].
l2The corresponding LDO representation is sometimes called the Controllable AutoRegressive Mov-

ing Average (CARMA) model [74].
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inside the unit circle a reasonable one [9, p. 264].

So far the underlying assumption is that the stochastic disturbances are (covari-

ance) stationary (this assumption will be preserved in the following chapters). It is,

however, possible to generalize this assumption to random processes with stationary

increments 13 
[86, chapter 3l [87, chapter 8]. This approach led to the introduction

of the Controllable Autoregressive Integrated Moving Average (CARIMA) model

A(p)a(t) a(Ð I* "(t)

"(¿)

(2.33)

(1 - p)s(t) C(p),':(t), (2.34)

where s(t) is a rn x 1 vector. If a.'(t) is a zero mean white (gaussian) noise then s(ú)

is a Brownian motion process; if t,'t(t) is zero except at particular sample instants

then s(f) consists of a series of steps. The CARIMA model was employed in both

identification [88] aad adaptive control [89,90,91 ,29,921. A further extension of the

above model \Mas presented in [93] where a plant affected by both Brownian and

generalized Poisson processes was considered.

The argument given in favour of a process with stationary increments as a model

of stochastic disturbances in industrial plants is that step discontinuities in state

trajectories often occur due to component failures and switching of elements, e.g.,

load disturbances consisting of random steps at random times. On the other hand,

for a plant operating in its linear regime the effective disturbance resulting from a

large number of small independent sources is approximately gaussian 1a and may

be modeled more appropriately by the ARMAX model with gaussian input noise.

A model of a plant with stationary random process is appropriate, for example, if

the main source of stochastic disturbance is sensor noise. Examples of industrial

applications of self-tuning control based on the ARMAX model and outperforming

the corresponding strategies based on the CARIMA model are given, for instance, in

Ie4].

l3Every stationary process is also a process with stationary increments.

l4This observation is based on the Central Limit Theorem [87].
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2.2 Self-tuning closed-loop system structure.

In this section:

o the closed-loop system structure is described;

o the requirements of an admissible control law are presented;

o the requirements on the output measurement configuration for self-tuning con-

trol are introduced.

We shall consider discrete-time controllers resulting from minimization of cost

functions involving, in general, control inputs u(ú) and controlled outputs y(ú). The

controller is required to be linear, finite-dimensional, causal, and stable. It is applied

to the system as shown in fig. 2.6, where r(ú) is a reference signal and yp(ú) represents

outputs which are available for feedback (this covers both cases FI and FD).

,(t)
aQ)

u(t)

'(ú) ar(t)

Figure 2.6: Closed-loop system configuration

The LDO model of the controller is given in the form of the following general

linear control løu (GLCL)

a

I

I

v (p)u(t) : IUI(p) -I((p)
r(t + k)

yF(t)
(2.35)

where V(p), M(p) and /((p) are polynomial matrices in the backward shift operator

p. (It is often assumed in predictive control that future values of the reference signal,

i.e., r(/ f i) for i : I,. ..,k, are known or can be predicted at sample instant t 127]1.)

CONTROLLER

SYSTEM
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The controller given by eqn. 2.35 is causal if the coefficient matrix Vs of the poly-

nomial matrix V(p):Uo+Vp *...is nonsingular 177, Corollary, p. 3a3]. This will

be guaranteed by appropriate use of a characterization of the multivariable system

delay structure in the design of controllers in chapters 4 and 5. The characteriza-

tions of the delay structure are developed in section 2.3. Note from eqn. 2.35 that

the coefficient matrix I/o is associated with the value of the control signal, u(t), at

time ú. Therefore, the nonsingularity of Vs permits the unique determination of z(ú)

from eqn. 2.35.

Let us now discuss aspects of the output measurement configuration of the closed-

loop system.

The measurement of outputs VF(t) is required for the nonadaptive as well as

self-tuning control involving the control law 2.35.

A seif-tuning controller involves recursive estimation of the unknown parameters

O of the controlled system or of the control law. The update equation for the pa-

rameter estimate ô1t; "t a recursive estimator employed in the self-tuning controller

involves a regression vector and an equation error 15 (see Appendix E). Knowledge of

the controlled outputs y(f) is required for the regression vector or for the calcuiation

of the equation error. Therefore, the controlled outputs y(ú) must be measured for

the purpose of parameter estimation. The feedback outputs AF(t) are available for

the estimator since they are measured for the implementation of the control law.

A general closed-loop system configuration involving a self-tuning controller and

a system with two groups of outputs (9(ú) and AF(t)) is shown in fig. 2.7 (cf. fig. 1.1,

p. 4). Note that in fig. 2.7 the measurement of y(t) for the purpose of parameter

estimation is shown explicitly. However, for self-tuning control of systems having

the feedback configuration FI the requirement of measurement of g(/) is automati-

cally satisfied (since AF(t) = y(f ) is measured for the implementation of the control

law). On the other hand, for systems having the feedback configuration FD those

of the controlled outputs y(t) which are not included in yp(t) must be measured for

lsFor certain recursive parameter estimation methods the term oulpul error ts more appropriate

than equalion error [9, p. 82].
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Figure 2.7: Self-tuning closed-loop system configuration.

the purpose of parameter estimation. The total number of sensors required for the

implementation of the self-tuning controller is greater for the feedback configuration

FD than for the feedback configuration FL

2.3 System delay structure - interactor and nilpo-

tent interactor matrices.

In this section:

¡ a brief summary is presented of various assumptions in self-tuning predictive

control regarding prior knowledge of the characterizations of a multivariable

system delay structure;

o new characterizations of a multivariable system delay structure, called the (left

and right) nilpotent interactor matrices, are introduced;

o algorithms for the calculation of the nilpotent interactor matrices are developed.

CONTROLLER

vQ)ESTIMATOR

o(¿)

aF(t)SYSTEM

JÐ



The delay structure of a scalar system with integer delay of k sample intervals

can be characterizedby the polynorníal zk [9, p. 133]. The usual assumption in self-

tuning minimum prediction error (MPE) control of scalar systems is that the process

delag or more generaJly the delay structure, is known (e.g., [54,56] [9, chapters 6 and

11], see also Assumptions 6.1 (ii) on page 200, and 6.4 (ii), p.228).

One of the reasons for difficulties encountered in extension of adaptive schemes

developed for scalar systems to the multivariable case is associated with required

prior knowledge of the system delay structure. It is shown in [95] that the multivari-

able system delay structure is charact erized by the interactor (polynomial) matrix

introduced in [33]. Similarly as for the self-tuning predictive control of scalar sys-

tems, prior knowledge of the delay structure in the form of the interactor matrix is

often assumed in multivariable self-tuning control [67]. However, the interactor ma-

trix cannot be generally deduced from measurements of delays from system inputs

to outputs. Furthermore, the assumption of its knowledge is, generally, tantamount

to the complete knowledge of the system transfer matrix [96] and thus reduces appli-

cability of self-tuning techniques. Hence, there is a significant motivation to relax or

remove requirement of prior knowledge of the interactor matrix. This problem will

be tackled using a new characterization of the delay structure in chapter 4; such a

characterization is developed in subsection 2.3.3.

2.3.t various approaches to the multivariable system delay

structure in self-tuning predictive control.

Let us define the (left) interactor matrix as in [33].

Definition 2.L (Left interactor matrix) Giuen any rn x n1 pT'oper transfer rna-

trix 16 Ho,,Q) hauing full (normal) rank 17, lhere exists a rn x rn (unique) Iower

16A. rational transfer matrix nr,r(z) is said tobe properif limr*- Hr,,(z) = ?, where ? is a finite

(possibly zero) real matrl.< [77].
174 rational matrix (or a polynomial matrix) has norrnal ranlc r if r is the largest of the orders of

bhe minors that are not identically zero [80, p. 373].
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triangular polynornial malria e"Q), called, the Ieft interactor matrir, of the form

til") : Tr(")dn(z), (2.36)

where T"(r) is a lower triangular unimodular matrix with l's on the main diago-

nal and, with the off diagonal elements being zeros or iliuisible by z, anil d,1(z):

diaglzk, ". . "o^l), 
anil satisfying

)yg€r.(")Ho,u('): Mr, (2.37)

where M¡, is a nonsingular, real malriæ

Although the polynomial matrix túr) is known as the interactor matrix, we shall

call it the left interactor matrix,, because of its position as premultiplier in eqn. 2.37.

For the definition of the left interactor matrix for nonsquare systems see [33].

Recently the right interactor matrix was defined in [35] in a completely analogous

manner to the left interactor matrix.

Definition 2.2 (Right interactor matrix) Giuen any rnxn1, proper transfer ma-

trin Hu,.(z) hauing fuII (normal) ranlc, lhere exists ún'¿xrn (unique) uppertriangular

polynomial matrir €n(r), called the right interactor matrir, of the form

€n("): dn(z)Tn(z), (2.38)

where Tn(") is an upper triangular unimodular matrin u¡ith l's on tl¿e main diag-

onal and, uith the off d,iagonal elernenls being zeros or diuisible by z, and, dp(z):
diagfzk, ... tr^l), and satisfying

)yyHu,"Q)tn(") - NIa, (2.3e)

'where Mp is a nonsingular, real matrir.

The interactor matrix contains the structure of the system transfer matrix at

infinity and in particular the system zeros at infinity which reduce to the delay for

scalar systems 197 ,77,671.
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Cornment 2.t The triangular factor of the interactor matrir arises if certain linear

depend,encies occur iluring successiue calculation of the interactor from the transfer

matria usi,ng the algorithm deaeloped in [33]. Thus, it was argued, that in practical

situations the diagonal form of the interactor can often be assumed, since the eract

linear ilependencies are unlilcely to occur anil the near-linear d,ependencies can be

ignoreil [34,95]. Houeaer, it is shown in [95] that it is necessary to consider the

generøl triangular form of the interactor matrix for robust minimum pred,iction error

(or model follouting) control.

Discussion of assumptions regarding prior knowledge of the interactor

matrices in self-tuning predictive control.

The following assumptions, regarding prior knowledge of the system delay structure in

self-tuning predictive control, can be identified (representative rather than extensive

references are given):

1. complete prior knowledge of the left interactor matrix is assumed, involving

(a) diagonal interactor matrix with identical elements zk [31,66,99],

(b) diagonal interactor matrix with different elemenLs zk, [32,100,101],

(c) triangular (general) interactor matrix [34,95, 102,103,97,39,36],

(d) left nilpotent interactor matrix, introduced in subsection 2.3.2 (see sec-

tion 5.1);

2. complete prior knowledge of the right interactor matrix is assumed [35];

3. incomplete prior knowledge of the left interactor matrix is assumed: the diag-

onal factot d/z) is known

(a) and degrees of the nondiagonal elements of the interactor are known, with

nondiagonal elements T¡(z) estimated on-line [37],

(b) with nondiagonal elements (possibly overparameterized) estimated on-line

[10a];
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4. incomplete prior knowledge of the left interactor matrix is assumed: an upper

bound on the degree of the interactor matrix is known 18. This approach

involves

(a) introduction of a control signal weighting matrix to guarantee invertibility

of the coefficient matrix Vo of. the polynomial matrix V(p) in eqn. 2.3b

(p. 33) [105],

(b) long-range predictive cyclostationary control law for deterministic [38] and

stochastic [36] systems,

(c) long-range predictive receding horizon control law for a system described

by the CARIMA model with C(p) : I 1921;

5. no prior knowledge of the interactor is required for indirect self-iuning control

involving:

(a) the on-line calculation of the left inheractor matrix from the estimates of

the polynomials in the DARMA model [39],

(b) the on-line calculation of the right nilpotent interactor matrix (introduced

in subsection 2.3.3) from the estimates of the polynomials in the DARMA

model (see chapter 4).

Approach 1 is associated with direct deterministic and stochastic self-tuning con-

trol, approaches 2 and 3 with direct deterministic self-tuning control, approach 4

with direct and indirect stochastic self-tuning control, and approach 5 with indirect

deterministic self-tuning control.

The attempted classification includes also some other solutions, e.g., in [106] a

fixed precompensator is used to form a system with diagonal interactor matrix before

applying adaptive controller (the partial prior knowledge of the Hermite normal form

of the system transfer matrix is required which corresponds to partial knowledge of

the interactor matrix).
l8For a square system the degree of the interactor (¡(z) equals the largest infinite zero order of the

transfer matrix [97].
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Approach 1 represents an early stage in the development of self-tuning control

strategies for multivariable systems. In particular, strategies for systems with diago-

nal interactor matrix can be seen as direct generaiizations of strategies developed for

scala¡ systems [67]. If the interactor matrix is diagonal, then it can be determined

from measurements of delays from system inputs to outputs (see [9, p. 134]). The

approach based on the complete prior knowledge of the interactor matrix is consid-

ered in section 5.1. However, the delay structure can be characterizedby a nonunique

left nilpotent interactor matrix or by the unique interactor matrix €"(r).

It is shown in [35] that for systems for which the transfer matrix (with polynomial

elements rather than rational function elements) is column- but not row-reduced, the

right interactor matrix is diagonal, but the left is not. Therefore, for such systems

approach2requirespriorknowledgeof lessparameterc(€n(r) : dn(")) thanapproach

1 (€¡,(r) : T;(z)d;(z)).

Approach 3 presents a significant relaxation of the prior system knowledge. Only

the diagonal factor dr(") of the left interactor matrix must be known. The real coef-

ficients of polynomials in the lower triangular factor of the left interactor matrix are

estimated on-line. For a general triangular interactor matrix, however, its diagonal

factor cannot be determined from measurements of delays from inputs to outputs.

Again this makes the choice of d{z) difficult.

Approach 4 car' be seen as an attempt to overcome disadvantages of previous

approaches by considering various predictive control laws involving detuning or mul-

tistep optimization horizon. One would have to examine which control law is more

meaningful for a particular application, the computationai burden involved, etc.

As already mentioned, it is desirable to consider a generai triangular interactor

matrix in order to ensure robustness of controllers (see Comment 2.7, p. 38). On

the other hand, assumption of prior (complete or incomplete) knowledge of the in-

teractor matrix in self-tuning control is conflicting with lack of system knowledge.

The above two reasons stimulated the search for computationally efficient algorithms,

which would allow on-line determination of the interactor matrix (approach 5). This

approach is considered in subsections 2.3.2 and 2.3.3, and in chapter 4.
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The original algorithm developed in [33] for the calculation of the unique interac-

tor matrix operates on the system transfer matrix (i.e., matrix of rational functions),

and is not amenable to on-line, computer-based calculations. Furthermore, it is the

LDO representation, in the form of DARMA or ARMAX models, which is estimated

in indirect self-tuning control schemes. Thus it is desirable to develop algorithms op-

erating on the LDO system representation. There is, however, only one algorithm (to

the author's knowledge) which evaluates the left interactor matrix from the estimaied

DARMA model [39]. This algorithm involves division of polynomial matrices.

The lack of efficient algorithms for the calculation of the interactor matrix can

be, perhaps, explained by the requirements which interactor matrix satisfies. These

requirements are of two types: ensuring uniqueness of the interactor and ensuring

certain structural features.

Clearly, the uniqueness of the interactor is not required for the controller design,

and has been omitted in a number of seif-tuning strategies. For example, in [104]

the uniqueness of the interactor is lost by overparameterization of the estimator of

Tr(r). Furthermore, for nonsquaxe systems the unique interactor may introduce

unstable poles into the closed-loop system (see example in the paper reproduced in

Appendix C, or example 4.23 in [33]), hence a nonunique interactor has to be involved.

In fact, it will be shown that a nonunique characterization of the delay structure

introduces a degree of freedom in the design of controllers which can influence the

closed-loop system performance (see Aside 5.1, p. 161, and example 5.1.1, p. 163).

The structural features of the interactor are given by eqns. 2.36 and 2.37 (or,

eqns. 2.38 and 2.39). In the references cited above, the interactor matrix is incor-

porated in the controller design procedure which involves (i) the property given by

eqn.2.37 (or eqn. 2.39) to guarantee causality of the controller and to determine the

control signal uniquely, and (ii) the fact that interactor matrix is stable 1e in order to

guarantee closed-loop system stability. The latter property of the interactor matrix

follows from its structure (see eqns. 2.36 and 2.38), which is triangular with diagonal

1eA polynomial matrix is said tobe stable if all roots of its determinant lie strictly inside the unit

circle.
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elements given by d/z) (or d,p(z)); hence det(/z): zk,(det{p(z) - ,k.). The

essential property of the interactor matrix in the design of predictive controllers is

that the interactor is a stable polynomial matrix irrespective of its structure, which

is determined by an algorithm used for its evaluation.

The above considerations concerning the application of the interactor matrix to

controller design, led the author to develop new characterizations for the multivari-

able system delay structure (see subsections 2.3.2 and 2.3.3).

Rernark 2.I Subsequently, the terrn interactor associated, with the unique polyno-

mial matrices {¡(z) or (p(z) will be preserued, for any stable polynomial matrices

R 
"(r) 

or K p(z) satisfying

]þ-Rt(")Ho,,Q) : ML, (2.40)

OT

!g*H.,'Q)R *(") : Mp', (2.47)

where real rnatrices M7 anil Mp haue fuII ranlc.

This is consistent with the approach of [39], where any polynomial matrix having

the properfy 2.37 (with M7 being the identity matrix) is called an identity interactor

matrix for the system defined by Hu,"Q). The properties of an interactor matrix

described in Remark 2.7 are more general than those of (¡(z) and (¡(z). In particular,

nothing is said about the structure of an interactor matrix. It is shown in the following

chapters that the properties of an interactor matrix described in Remark 2.1 are

sufficient for the design of multivariable controllers (see Comments 4.1 (p. 124),

and 5.1 (p. 160)).

So far, the properties of an interactor matrix in the field of polynomial matrices

were emphasised. However, to develop methods of evaluation of an interactor matrix

r,vhich are amenable to computer-based calculations, a link betlveen a polynomial

matrix and its numerical representation must be established. For this purpose a

polynomial matrix is represented by a block-matrix of polynomial coefficients (see

Appendix B). Therefore, calculations involving polynomial matrices become opera-

tions on real block matrices. This approach avoids the complexity of dealing rvith
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polynomial matrices and was undertaken in optimal control and filtering problems

[107], and recently in development of computational methods for multivariable pole

placement design [79]. Furthermore, the numerical equivalence of the generic ex-

pression for the product of two polynomials introduced in [108] [79, chapter 3] (see

Appendix B) will be useful in the implementation of algorithms.

2.3.2 The left nilpotent interactor matrix and an algorithm

for its calculation.

In this subsection a ne\il characterization of the system delay structure, called the left

nilpotent interactor (LNI) matrix and corresponding to the left interactor matrix, is

introduced.

The algorithm for calculation of the LNI matrix is covered by reference [109]

which is reproduced in Appendix C. Some more details on the implementation of

the algorithm, which are not considered in the original paper, are also given in Ap-

pendix C. A sum¡nary of the results follows (subscript ('¿" is introduced below to

differentiate the left nilpotent interactor from the right one).

Deffnition 2.3 (Left nilpotent interactor (LNI) rnatrix) If a rn x I transfer

matrix Hu,"Q) has full (normal) ranlc a,nd, is proper, then any rn x n'¿ polynomial

rnatrir Kr("), hauing the properties

l:rn I{{z)H,,,(z) - Mr, (2.42)

wh,ere M7 is a full-rank, real matriæ, and

det I(7(z): ctzkt, (2.43)

will be called the left nilpotent interactor (LNI) matrir for the system defined, by

Ho,"Q) (c¡ is a constant).

The term "nilpotent interactor" arises from the property 2.43 and from the algo-

rithm presented in Appendix C which evaluates the interactor matrix as a product
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of first degree, nilpotent polynomial matrices 20

I{t(") : sflç,¡sf-')("). ..st)Q), (2.44)

where

stte): uf)ç¡qf). e.45)

The matri" U!ç"¡ is a rn x ,r¿ ro\¡¡ shifiing polynomial matrix (r.s.p.m.) of order k¿

uP Q) : ul') 
" + uÍr) -

Ho,,(z) :

ffL:r¡llc¿, (2.46)

(2.47)

0 r,,

2f*; 0

"nd' Ql) is a nonsingular real matrix. The determinant of the r.s.p.m. of order k; is

aetuflQ): (-1)Ài';zÀ,. Note that det sflQ): (-1;É;'r zk, detQf) : ,orr,.

The algorithm presented in Appendix C evaluates matrix K"(") from the numer-

ator polynomial l/(r-t) of the right matrix fraction (RMF) description of the system

transfer matrix Hu,,(z) : N(z-r)D-t(z-t). The RMF description results from the

system transfer matrix Hu,.(z), or from the system RDO representation 2.22 by *-
suming zero initial conditions and taking z-transform. Since the algorithm operates

on the numerical representation of polynomial matrices, it is irrelevant whether the

RMF or RDO representation is considered.

The macro XLNI, which is written in MATLAB commands and implements the

algorithm for calculation of the LNI matrix with QR factorization, is given in Ap-

pendix D.

Exarnple 2.1.

Consider the following transfer matrix (see [33, Example 3.33] [9, Example 5.2.5])

1

z*7
I

z*2
11

z*3 z*4

204 first order polynomial matrix V(z) = VozlVt is said to be nilpotent if det V(z) = czk, where c

is a constant. This is a generalization of the definition of a nilpotent real matrix W 180, p. 662], i.e.,

such a matrix that 3"W' =0, which implies that det V(z) = zfr where V(t) - I¡z -W.
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The LNI matrix, calculated with QR f.actonzation using MATLAB software package

[110], is given by

I o.s"' r o.5z -0.522 + o.5z 
'l

Ii¡(z):l l, Q.48)
| -o.szt t o.5z2 0.523 -r o.5z2 )

with its determinant det K¡(z) : zo (for details see example in Appendix C, p. 285).

For the comparison the unique interactor matrix 2.36 is given by

z0
(2.4s)

_r3 -L Ðr2 ,3
-l4t

2.3.3 The right nilpotent interactor matrix and an algorithm

for its calculation.

In this subsection a ne\M characterization of the system delay structure, called the

right nilpotent interactor matrix and corresponding to the unique right interactor

matrix [SS], is introduced.

Definition 2.4 (Right nilpotent interactor (RNI) matrix) If a m x I transfer

rno,trir Ho,"Q) has full (norrnal) runk and is proper, then any I x I polynomial matrix

I{n("), hauing the properties

)'sHo,"Q)Kn('): Mp, (2'50)

where Mp is a full-rank, real matrit, and

det KP(z) : crzk', (2-57)

wi,ll be called, the right nilpotent interactor (nNI) matrir for the systern def,ned by

Ho,"Q) þ, is a constant).

The term "nilpotent interactor" is used here (as for the LNI matrix) to stress the

property given by eqn. 2.51 which is satisfied even for nonsquare systems, Ho,.(z).

This property is guaranteed by the algorithm for calculation of the RNI matrix. For

the unique right interactor matrix tn(") the property 2.51 may not be satisfied for

nonsquare systems.

45

€tQ):



A proper transfer matrix Hu,,(z) can be factorized into the left matrix fraction

(LMF) description with monic denominator matrix

Ho,"Q)

t(")
aQ)

Â-'çr¡açz) : (2" A(z-'))-'(""8(r-')) - ¡-tç"-t)BQ-\, (2.52)

I^z"lAtzn-r +...+ An:z"A(z-r), (2.53)

Boz" * Bt"n-r + ... + Bn: z^B(z-r). (2.54)

Alternatively, the LMF representation with monic denominator matrix results from

the DARMA model 2.I7 (p. 27) by assuming zero initial conditions and taking z-

transform. Since the algorithm presented below operates on numerical representation

of polynomial matrices, it is irrelevant whether the LMF or DARMA representation

is considered.

Using eqns. 2.50,2.52,2.53, and 2.54, one has

;yg H u,"Q) K n(r) :,tå ¡-t ç"-t ) B (z-r) N p(z)

)ÆA-'(r-'),Uå B(z-L)Kp("): ;51-a!-')r{n(") - Mn. (2.55)

Hence, the RNI matrix can be evaluated from the numerator polynomial matrix

B(t-') of the LMF description. The algorithm presented below operates on the

matrix of coefficients B of the polynomial matrix B(r-t) (see eqn. 8.1, Appendix B)

B("-t): [Bo Br ... B*](Z^ø/¡) : B(Z,SI). (2.56)

The algorithm developed for calculation of the LNI matrix in subsection 2.3.2

can be used for evaluation of the RNI matrix, as it is discussed in subsection 2.3.4.

However, the RNI matrix can be calculated directly with a dual algorithm presented

below. The original version of the algorithm adopted here for evaluation of the RNI

matrix \Mas proposed for the transformation of a polynomial matrix into a monic or

comonic form in [81].

Let us define a column shift polynomial matrix (c.s.p.m.) as follows.

Deffnition 2.5 (Column shift polynomial rnatrix) Th.e I x I fi,rst degree poly-

nomial matrir Un(") will be called, a column shift polynornial rnatrir of ord,er k¿,
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wl¿ere

un("):(Joz**: I o "h']|, t:r;
lr", o I'

* lc¿ (2.57)

(2.58)

The coefficient matrices [/o and [/r are defined through the matrix of coefficients

Un Uo Ur 0r¡ L 0t¡

in which Uo, Ut are of dimension I x I, -I¡ is the / x / identity matrix, md 0,, is a

r¿-column matrix of zeros. The determinant of the c.s.p.m. of order &¿ is given by

detUp(z) : (_l)k;'i 
"k;.

(2.5e)

The algorithm is given in the form of the proof of the following result.

Theorern 2.L For a nt x I full (normal) rønlc, proper transfer rnalrir Ho,,(z) there

erists a right nilpotent interactor rnatrix consisting of t factors:

K n(,) : s$)(,) . . . sg-t) e)sf)(,), (2.60)

ult ere

s|e): qfi)ufi)ç"¡, (2.61)

o"d, U$)Q) is a c.s.p.rn. of ord,er k¡ and, Qß) ¡t a nonsingular I x I real matrix.

Proof.

The proof consists of two parts: firstly, the factors of I'f¡(z) in eqn. 2.60 are deter-

mined; secondly, it is shown that the number of factors is finite.

Part 1-.

Set i: 0,6@)(z-r): B(z-t), and Iip(z): It to start the algorithm. Consider the

i-ih iteration in the evaiuation of I{p(z) based on eqn. 2.60.

- If. r¡ : rank ßU-t) : min(m, /), the algorithm terminates and the right

nilpotent interactor matrix is Itp(z): t{fi-\)çz), set t: i -7;

step 1.
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- if. r¿ < rnin(m,,l), factorize Bt-r) (using QR, LDU or SVD matrix factor-

ization Itf f]) into

Bt-'¡: lo*, BÁ? ](oH))-', i."., B{-tqo: Io*, B{A). e.6z)

where 8$) ir alxl nonsingular (usually unitary) matrix, Ic;:l -r;, and

0¡r, is a k¿-column zero matrix.

step 2. Postmultiply BG-r)(2-t) by matrix Q$)

Vti)çr-t) : 6(;-r)1 ,-\eg), (2.68)

(the coefficient matri*F[t) otdj)Q-l) is nowequal to the right hand side of

eqn.2.62).

step 3. PostmultiplyB()ç"-r) by the c.s.p.m. of order k¿

s\\çr-r¡:fl¿)ç"-t)uß)Q), Q.64)

(this multipiication shifts the matrix of coefficients otdj)Q-l), left by k¿

columns of zeros, see eqn. 2.56,2.62,2.63). Update the matrix

xß)e): yç$-L)çz)sfi)(r). (2.6b)

This ends the i-th iteration.

Combining eqns. 2.62 to 2.65, the i-th iteration of the algorithm results in

6Ø e-L ) : 6G-t) ç"-\q9 u #) (, ) : 6u-t) ç"-t ) Sß) e) : B ("-' ) Kß) e),

where Sß) Q) and /f$)(z) are defined by eqns. 2.6I and, 2.65.

The final iteration (t: i - 1) yields

gu)Q-l) : B(z-t)I{n(z), (2.66)

where lip(z) defined by eqn. 2.60 is I{p(z): X$)ç"). Hence the property given by

eqn. 2.50 is satisfied arrð. Mp: B[t). Using eqn. 2.59, one has

det rcfi) Q): (-l)¿fr,' , fi rr, ð,et efi) , e.67)
í=7

which satisfies the property given by eqn. 2.51.
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Part 2.

The completeness of the algorithm will be established using the following result.

Lemrna 2.L If a n'¿xl polynomial malrix B("-') giuen by eqn. 2.56 is of full (normal)

ranlc then its rnatrix of coefi,cients B is of full ranlc (in the field, of complex numbers).

Proof. Lemma 2.1 is a direct consequence of [112, Lemma G-2, p. 615]. Q.E.D.

Using the above lemma, part 2 of the proof of Theorem 2.1 is given as follows.

From assumption that the transfer matrix Hu,"Q) has full rank, and from eqn. 2.52

it follows that the polynomial matrix B(z-t) has full (normal) rank. Hence (from

Lemma 2.1) it follows that the row block-matrix of coefficients B has full rank. Steps

2 and 3 of the algorithm (eqns. 2.63 and 2.64) do not change the rank of the resulting

polynomial matrix, i.e.,

rank B(z-t) : rank Vli\ ç"-t¡: rank 6(ÐQ-r): min(ræ, i ),

because S9 Q) is a / x / nonsingular matrix. It follows from the above lemma that the

row block_matrix of coefficients B(i) of the polynomial matrix pÍ)ç"-r¡ has full rank.

Note also that the algorithm extracts the linearly independent columns from matrix

B (step 1) bV searching sequentially through the columns of the matrix of coefficients

6(;) (modified at step 2 and 3). The rank of. BU) is a nondecreasing function of i and

the linearly independent columns are accumulated in 6['] until rank Bt\ : rnin(rn,l),

at which step the algorithm stops.

Q.E.D.

It follows from eqns. 2.59 and 2.61 that the constant k, in eqn. 2.51 is given by

t
k, : deg det I{p(z):Ðkn, le;: I - r;.

i=1

Summarizing, the algorithm described above operates on the row block-matrix B

of coefficients of the polynomial matrix B(z-1). The full-rank coefficient matrix 6[ú)

o¡ 3(t)Q) results from factorization of n[i) and shifting its columns left. The macro

XRNI, which is written in MATLAB commands and implements the above algorithm

with QR factorization, is given in Appendix D.
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Example 2.2. Calculation of the right nilpotent interactor matrix using

MATLAB software package.

This example illustrates calculation of the RNI matrix using MATLAB [110] (or

MATRIX¡ [113]) software package.

Consider the system of example 2.1 described by the transfer matrix 2.47. This

transfer matrix can be factored into the LMF description with the monic denominator

polynomial matrix, as follows

B(,-,):f tt2z-t r¡7-rl or.rr:f t*32-tr2z-2 t 
I

It++z-' r*Bz-r j L o L+Tz-t rr2z-2 )
(2.68)

The numerator matrix can be expressed as (see eqn. 2.56)

lo o 1 r 21.lB('-'): B(ZzØIz) : [Bo hBù(2"ØIr): I lØrø12). (2.69)
Lo o 1 1 4 Bl

The algorithm is implemented with QR decomposition defined by eqn. C.3 (Ap-

pendix C, p. 286).

Step 1 of the i-th iteration of the algorithm groups k¿ : / - rank BU-l) : I - ri

zero columns orl the left hand side of the postmultiplier of the decomposition of B!-tl
(see eqn. 2.62). In order to achieve this with QR decomposition defined by eqn. C.3

(p. 286), the matrix X : (Bti-t)¡r will be factorized as X : QR; then it is necessary

to reverse the order of columns of transpose of -R and rows of transpose of Q

x, : BQ-r) : (QR)' - R'Q' - R'J, rJtQ' : (R'Jò(JQ'' : 
I o*, 6Á? ] 

(gg))-t,

where .I¿ is the / x / standard involuntary permutation matrix defined by eqn. C.4

(Appendix C, p. 286).

Step 2 of the i-th iteration of the algorithm postmultiplies the 6(i-1)(z-1) matrix

Av Qß) : (JtQ)-t : (Q)-tJ,t : QJt (see eqn.2.68). Thus 8$) i" calculared

by reversing the order of columns of matrix Q resulting from QR decomposition of

(fÁo-t))'. The row block-matrix of coefficients of the polynomial matrix gU) çr-r)
resulting from step 2' has the following form

Bç) : 
þ-å" 

41" uf,] : 
I o*, r[] s\,) sla nr]. sf;l Q.70)
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In step 3 of the i-th iteration of the algorithm matri*dj)ç"-r) of d.egree n is

postmultiplied by a first degree matrix U#)Q)

6Øe-\:fli)ç"-')uÊ)e): [r!l BIù ... By\) (1, t .. "-")'* r,) .

Note that n9)r:0, because

t:

n['] o-, 
]

BY)l: 
[0",0*'

6u) : [nIì rÁ,)

n9\:Bf)v['t : st-\Qß)ujn) : I oo, uÁ? 
]

where 0¡, denotes k¿-columÍL zeto matrix. The row block-matrix of the coefficients

of the polynomial matrix BG\ ç"-t¡ resulting from step 3, has the following form (cf.

eqn. 2.70)

øtA sl') (2.7r)

The operation of multiplication of polynomial matrices is represented according

to eqn. B.6.

The algorithm is initialized *ith 6(o)( "-t) : B("-') 
"na 

ff[o)( z) : N[o) - 12.

Then

i:1: rr :0, Ict :2

step 1.

Since rr : rank6Áo) : rankBs : 0 a decomposition of Be yields ? : 0 (see

eqn. C.3) and Q$) can be chosen identity. Then

u#)(,):l' ol, 
uË):[uo{l){rr1 :lt o o o.l'

L0 z) L0 10 0.1

step 2.

BG BI B\1) : 6@ qo) : 6@) Jr: [Bo B, Br];

!'ì rÁ') Blt) 6{r¡: B(1)

0 01127 0

0 0114 3 0

step 3.

0

0

6Q)
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r<$) : [r<jl) ¡ç{t)1 : rcPeÊ)u$) : 1000
0100

-t.4L42 -7.4142

0 0

(2.72)

Since the system transfer function Ho,"Q) is strictly proper, we have Bo : 0

in eqn. 2.69. Hence, this iteration can be omitted and the algorithm initialized

with B(1)( ,-t): B(z)ufi)Q) represented by [n[1) 6{tl øL')],, und /{f,t) Q) : ,Ir.

i:22 rz : 7, Iez: 7,

step 1.

Q: -0.7071

-0.707L

-0.7071

0.707t
R-

-0.7077

0.7071
Qß) : QJz: -0.7071

-0.7071

Ug) : ¡U(2) U(2)1:
0100
0010

step 2.

g(z) , u,,, úrl: eÍ)qØ _

-1.4142

-t.4142

-0.7077

-0.707r

-2.1273 0 0

-4.9497 0 0

step 3.

6Q) tsgl nf\ s\2) s{z¡:B(2) (u8)1, :
0 0 -7.4742

0 0 -7.4142

-0.7077

-0.7077

-2.1213 0 0 0

-4.9497 0 0 0

r{g) fnj'?r ¡ç1zr tr|')] : xP qß) (u8)), :
0 -0.7071

0.7077

-0.7077 0 0 0

-0.7071 0 0 00
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i:3: ra : 1, ks : 1,

step 1.

UE)

step 2.

B-{tl

step 3.

Uf) : ¡U(3) U(3)1 : 0100
0010

0.9487 7.8974 0 0

2.2736 4.4272 0 0

Ra

Qß) : QJ,:

-0.8944

-0.4472

-0.4472

0.8944

1.5811

0

1.5811

0

-0.4472

0.8944

-0.8944

-0.4472

(")
0z
10

0 0 1.5811

0 0 1.5811

0 1.5811

0 1.5811
: þT'ul" 4''] : se)qfi :

BF') tB!3ì B[3) Bl3) s{e)1 :B@) (uÊ)), :
0.9487

2.2136

7.8974 0 0 0

4.4272 0 0 0

(2.73)

/(f) [/rj3) ¡¡{st /(j3) /{c)] : xPe,)(¿¡f;)), :

0

0.6325 0 0 0

0.6325 0 0 0

i:4¿ r+: 2 which terminates the algorithm and the right nilpotent interactor matrix

IS

0 -0.6325

0.6325

0.3162

-0.3162

0.3162

0.3162

I(p(z): /rlt) Q):

with its determinant det l{p(z) : ,a

0.316222 -t 0.63252

-0.316222 I0.63252

-0.632523 i 0.316222

0.632523 I0.376222
(2.74)
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2.3.4 Comments on the algorithrns for the calculation of

nilpotent interactor matrices.

An important feature of the class of algorithms developed in this section is that

the nilpotent interactor matrices are evaluated d,irectly from the matrix fraction rep-

resentation of the system transfer matrix or from the system difference operøtor

representation. This is in contrast to the original algorithm proposed in [33] for the

calculation of the unique interactor from the system transfer rnatrix (i.e., from the

matrix of rational functions). N" iliaision of polynomial matrices is required in eval-

uation of nilpotent interactor matrices. This is in contrast to the algorithm proposed

in [39] for the calculation of the interactor from the system DARMA model. Further-

more, an inherent feature of the new algorithms is that they operate on the numerical

representationof. polynomial matrices and thus are amenable to cornputer-based, cal-

culations. The above features become especially useful for the implementation of the

indirect, self-tuning minimum prediction error controller, with the on-Iine calcula-

tion of the RNI matrix from the estimates of the polynomial matrices of the DARMA

model (see approach 5 (b) on page 39, and chapter 4).

The implementation of the algorithms for calculation of the nilpotent interactor

matrices requires only the following operations; factorization of real matrices of di-

mension not larger than the dimension of the numerator polynomial matrix, shifting

and multiplication of real matrices. Various matrix factorization can be employed in

the implementation of the algorithms to calculate matrice" QY) "r Og), €.g., Gaus-

sian elimination LDU, QR, or singular value decomposition SVD [111]. The choice

of matrix decomposition involves a compromise between numerical properties and

computational effort. The factorization involving orthogonal matrices (such as QR

or SVD) is desirable since it makes computing of the inverse trivial, with no new

rounding errors introduced [114].

Note that for a strictly proper transfer matrix given by a matrix fraction rep-

resentation, one has deg ÑQ) < d"g bQ) and, degÉ(z) ( deg ÂQ).Then the first

step of the algorithm yields St)Q): S#)Q): zf . This implies another property of
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the nilpotent interactor matrices in corrunon with the interactor" €¡,(") and (¿(a)

Remark 2.2 For a strictly proper transfer matrix Ho,,(z) the elements of the nilpo-

tent interactor matrices K¡(z) and Kp(z) üre zeros or üre iliuisible by z.

Comment 2.2 Note that if r¿- 0 fori:1,2,...,i thenthe initial j iterations can

be omitted, and, the algorithms can be initializeil¡¿¡ ¡f?)çr-t): (Uflçr¡;i¡¡("-t)

ond, Kf)Q): "iI*, or 6Ø(z-t): B(r'tx¿¡f)(r))i and, xH)Q) - ziIt.

The algorithms presented in subsections 2.3.2 and 2.3.3 were introduced for cal-

culation of the LNI and RNI matrices from RMF (or RDO) and LMF (or LDO)

descriptions, respectively. This is represented by the vertical arrorus (2) and (2')

in fig. 2.8. However, it is possible to use the algorithm deveioped for evaluation

(1)

(2) (z',)

(3)

Figure 2.8: Algorithms for evaluation of the LNI and RNI matrices.

of the LNI (RNI) matrix for calculation of the RNI (LNI) matrix as well. This is

shown below for the RNI matrix calculated using the algorithm developed for the

LNI matrix.

We can write from eqn. 2.52lhat

Ho,u(z)' : (A-1(z-')B(t-'))' : N(z-r)D-'(r-t), (2.75)

where l/("-t) : B("-r)' and D(r-') - A(z-L)'. Then using eqn. 2.42 one has

lim,*oo K¡(z)N(z-t¡D-r(z-t) : Mr,, where Kt(r) is the LNI matrix calculated from

bb

RNILNI

RMF LMF



I/(r-t). Hence, by transposition one has

)fu(x rQ) N ( z -t ) D-t (z-r ))' : lim ( D ( z - 1 

)/) -1 ¡r Q-r)' K {z)'
:,8å A-t (z-1)B(z-1)t< p(z) : Mn, (2.76)

where K^(") : Kr(")' and Mp: ML. Thus the RNI matrix can be determined from

the LMF description using the algorithm for calculation of the LNI matrix in three

steps (see fig. 2.8): (1) calculate transposition of the numerator polynomial matrix

of the LMF description, i.e.,.ð{(z-t): B(r-t)'; (2) calculate the LNI matrix K7(z)

from I/(z-1) using algorithm of subsection 2.3.2; (3) calculate the RNI matrix by

transposition of the LNI matrix resulting from step (2), i.e., Kn("): Kt(")'.

It can be shown in a similar \May that the LNI matrix can be calculated from

the RMF description using algorithm for the calculation of the RNI matrix in the

following steps (see fig. 2.8): (1') calculate transposition of the numerator of the RMF

description B(r-t) : ¡l(r-t)'; (2') calculate the RNI matrix Kn(r) from B(z-1)

using algorithm of subsection 2.3.3; (3') calculate the LNI matrix by transposition

of the RNI matrix resultingfromstep (2'), i.e., K7(z)-- K*(r)'. (Note that step (1)

( (1') ) in fig. 2.8 denotes transposition of the matrix fraction description, not the

transformation from the LMF to RMF (RMF to LMF) descriptions of the system

transfer matrix.)

The above discussion explains duality of the algorithms and shows that only one

of them is required for calculation of the LNI and RNI matrices. However, the choice

of the direct calculation of the interactor matrix, i.e., (2) for the LNI a¡rd (2') for

the RNI matrix, can further reduce computational burden for particular applications

(see Aside 4.1, p. 127).
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Chapter 3

Output predictors for self-tuning

predictive control.

In this chapter problem of extrapolating a time series into future, i.e', prediction,

is considered. Prediction is an important topic in itself since it is encountered in

many engineering or scientific problems [115,83,116,117,118]. However, it is the ap-

proach to the derivation of self-tuning predictive control strategies, undertaken in

next chapters, which will characterize developments in this chapter. Nevertheless,

certain aspects of prediction techniques (in particular adaptive predictors for sys-

tems having the feedback configuration FD derived in subsections 3.2.2 and 3.3.4),

and of computational methods presented in this chapter, can be treated separately

from the developments in the following chapters.

For the derivation of predictors we assume knowledge of the structure of the model

of a system generating the time series the future values of which are to be predicted 1.

Furthermore, it is assumed that the prediction is a linear function of past and present

system outputs and (measurable or known) inputs.

The problem of developing a predictor for a time series, generated by a deter-

ministic system with known model structure, reduces to fi,nding the system model

in a predictor form; such a form of the system model permits prediction without

1An alternative approach is to postulaie the predictor form which does not necessarily correspond

to the actual structure of the system model (the so-called reslncled compleúly prediclors) [9, p. 110].
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error. For stochastic systems, perfect prediction is not possible. In the follolving, the

predictors are designed to minimize the variance of the prediction error.

The organization of this chapter is as follows. The predictors for deterministic

systems having the feedback configuration 2 FI and FD are introduced in sections 3.1

and 3.2, respectively. The predictor for a stochastic system having the feedback

configuration FD is derived in section 3.3 (case FI will be discussed briefly in sub-

section 5.2.1).

The development of predictors for multivariable systems in section 3.1 is related

to the results presented in [9,35]. New aspects involve multi-step-ahead prediction

and application of the nilpotent interactor matrices in the design of predictors. New

computational algorithms for predictor parameters are derived which are amenable to

computer-based calculations using any matrix-oriented software. The developments

of sections 3.2 and 3.3 are new.

3.1 Output predictors for a multi-input, rnulti-

output deterrninistic system having the feed-

back configuration FI.

The problem of predicting the output of a deterministic multi-input, multi-output

system is addressed below.

V/e make the following assumptions.

Assumption 3.1 A d,eterministic multiuariable systern is giuen h,auing the feed,back

configuration FI (see page 18), i.e., yF(t) = y(t), with the number of outputs y(t)

equal to the number of inputs u(t), i.e., dim A(t): dim z(ú) : rrl.

Such a system will be called a multi-input, multi-output square (MIMOS) system.

2In the context of prediction, the feedback outputs y¡(f) represent the system outputs which can

be utilized in the predictor for ihe output g(t) (cf. discussion on p. 18 and fig. 2.1).
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Assumption 3.2 The MIMOS system is described, by the DARMA rnodel (see eqn.

2.17, p. 27)

A(p)v(t): B(p)"(t), (3.1)

witlr, appropriate initial conditions on {y(t)}. The rn x rn polynomial m,atrices A(p)

and, B(p) are ilefined. using the polynomial matrix representation of Appendfu B (see

eqns. 8.1 to 8.3)

A(p) : lI* A, A"l(P" 6 /-) : A(P,8 I-), (3.2)

n(Ð : pl& Bz B^l(P*-t I /-) : pB(P,-r I /-). (3.3)

Note that A and B denote the rn x ("r+ 1)rn and Tnxnrn matrices of coefficients of

the polynomial matrices A(p) and B(p).

The DARMA model permits the description of a deterministic disturbance affect-

ing the plant (this corresponds to the generator of deterministic disturbance incor-

porated in the system model).

The system transfer matrix Ho*(z) corresponding to the DARMA model 3.1,

which is found by taking the z-transform and assuming zero initial conditions, is

Hu,,Q) : (2" A(z-'))-'(""8("-t)) : Â-tQ)aQ). (3.4)

Assumption 3.3 The system transfer rnatrir Ho*(z) ltas full normal ranlc and, is

strictly proper.

Note that Assumption 3.3 ensures output function controllability [75, Theorem 5.5.7,

p. 16a] [9, Lemma 5.2.2, p. 132], and guarantees existence of the interactor matrices

(see Definitions 2.7 (p.36),2.2 (p.37),2.3 (p.43), and 2.a (p. +5)).

The predictors developed in this section will be employed in the development of

the long-range predictive control law based on the minimization of a multi-stage cost

function (section 5.1), and of the minimum prediction error control law based on a

single-stage cost function (chapter 4). In order to guarantee causality and stability

of the controllers, the cost functions involve system output or input variables which

are frltered by the system interactor matrix (rather than the actual output and input
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variables). The choice of the left interactor matrix is associated with the cost function

involving filtered tracking error, i.e., involving filtered output variables (see eqn. 5.1,

p. 152). The choice of the right interactor matrix is associated with the cost function

involving filtered control signal, i.e., involving filtered input variables (see u¡(t) in

eqn. 4.1, p. 120).

For the purpose of minimizing the multi-stage cost function, the multi-step-ahead

predictor is needed; for the purpose of minimizing the single-stage fr-step-ahead cost

function, the k-step-ahead predictor is employed. The choice of the left or right

interactor matrix determines respectively whether the prediction of filtered system

outputs will be required, or whether the predictor will involve filtered system in-

puts. Therefore, the following approaches to multivariable predictive control can be

postulated (among many other possibilities [67]):

(i) the single-stage cost function penalizing both the filtered tracking error and the

control signal (the ,k-step-ahead predictor based on the left interactor matrix is

employed) [34,9,39];

(ii) the multi-stage cost function penalizing both the filtered tracking error and the

control signal, see section 5.1 (the multi-step-ahead predictor based on the left

interactor matrix is employed, see subsection 3.1.1);

(iii) the single-stage cost function penalizing both the tracking error and the filtered

control signal, see chapter 4 (the k-step-ahead predictor based on the right

interactor matrix is employed, see subsection 3.t.2) [35];

(iv) the multi-stage cost function penalizing both the tracking error and the filtered

control signal (the multi-step-ahead predictor based on the right interactor

matrix is employed) - not considered.

Approaches (ii) and (iii) will be explored below
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3.1.1 Multi-step-ahead predictor based on the left interactor

matrix for a rnulti-inPut, rnulti-output, square deter-

ministic system.

In this subsection:

¡ the multi-step-ahead predictor based on the left interactor matrix for a MIMOS

system is derived;

o algorithms are derived for both the direct and recursive calculation of the ma-

trices of coefficients which represent the polynomial matrices defining the multi-

step-ahead predictor.

In this subsection the approach (ii) in the classification on p. 60 is considered.

The idea of employing the unique left interactor matrix for the development of the

predictor was originally proposed in [34,9] for the k-step-ahead case (approach (i)).

Here a multi-step-ahead predictor is given by the following result.

Lemma 3.1 Consiiler a MIMOS systern satisfying Assurnptions 3.1, 3.2, and 3.3

(pp. 5S-59). For such a system lel us d,efine an auxiliary system as follows

ao(t):K"(q)a(t), (3.5)

whereKr(q) is the rnxrn left inleractor matrirs of the system 3.1. Then the multi-

step-aheail pred,iction of f,Itered system outputs, Ak(t + i), it giuen by the following

pred,ictor erpression

a*(t *i) : I d(i)(p) B{it@¡] 
| ,,î?r, 

1

(3.6)

3To be precise, the polynomial matrix IiL(q) is the matrix which results from the left interactor

matrix T{ t (t) by substituting q for z.
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The m xrn polynomial matriz4 o¿Q)(p) resulls from the follouing Dioph'antine equa-

tion s

qjKr(q): ¡{i)10; a¿Qt(p) (3.7)
A(p)

I^

and the n1 x rn polynornial matrix PQ)(ù is giaen by

7e)(p) : pt FQ\ço)B(p), (3.8)

wl¿ere

p{i)k)

o(j)(p)

gQ)(p)

(3.e)

(3.10)

(3.11)

k is the d,egree of the interaclor matrixKilù, ""d Pyl: ML, wherethe nonsingular

matrir M¡ is d,efined by eqn. 2.1¡0 (e. l¡2).

The proof of the above lemma is similar to that of [9, Theorem 5.2.4, p. 137] and is

omitted.

In eqns. 3.9 to 3.11, the representation of polynomial matrices given by eqns.

8.1 to 8.3 (Appendix B) is used, The following convention is chosen to denote

coefficient matrices 0[i) "t the polynomial matrix B{i)(p): the subscript i is positive

for coefficients associated with past values of the input signal u(ú) in the predictor

expression 3.6, i : 0 for the coefficient corresponding to the present value of the

input, i is negative for coefficients associated with future values of the input.

The above lemma is an extension of [9, Theorern 5.2.4, p. 137] where the predictor

expression for y¡(f) (i."., j : 0) was introduced for the auxiliary system 3.5 defi,ned

with the unique interactor matrix. Here, the left interactor matrix K r(rù may be

4The superscript (j) is used to denote polynomial matrices associated with the predictor expression

for sr(ú *r).
sRecall that p - q-1 ("q.. A..1, Appendix A).
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either the unique interactor matrix R 
"(q) 

: tn(q) or the left nilpotent interactor

(LNI) matrix K"(q): K"(q) (introduced in subsection 2.3.2).

It follows from Remark 2.2 (p. 55) and from Definition 2.1 (p. 36) that for a

strictly proper transfer matrix Ho,,(z) the coefficient matrix of the left interactor

matrix Kr(q) associated with go is zero. Thus the left interactor matrix can be

represented by

K L(q) : @o K, r(¡-r] (lno oo-' . . .ql' * t-)
/¡ ,- L-1 1, - - \: K, (lnr nr-' øl ø t^¡. (3.12)

The multi-step-ahead prediction y*(t *7) can be written as

yt(t+ j): qiak(t):Kt(ùa(t+ j):Koy(t+ j +fr)+. "tK*-ß(t+ j +1). (3.13)

Note from eqn. 3.13 that y¡(Í f j) invotves future values of the system outputs y(ú)

up to sample instant t + k +j. Therefore, the term "multi-step-ahead" prediction is

used to differentiate from the fr-step-ahead prediction involving system outputs up

to time t + k, where k is the degree of the polynomial matrix K r,(q).

The coeffi,cient matrices of. the polynomial matrices FU)('p) and a(i)(p) can be

found by equating coefficients in the polynomial equation 3.7 [9]. Alternativel¡ one

can equate matrices of coefficients of. polynomial matrices in eqn. 3.7, using the

numerical representation of polynomial matrices given in Appendix B. This leads to

a compact matrix equation Íor matrices of coefficients of polynomial matricet f'(i)(q)

and a(i)(p) as shown below.

Using eqns. B.4 to 8.6 (Appendix B), polynomial equation 3.7 can be represented

by

R"(n|'"*r+i Ø I*): pu) a(i)
(A)r+i-r

niffk+i ø t*
(3.14)

where matrices K7, FU\, o(r), and A, are defined by eqns. 3.72,3.9,3.10, and 3.2,

respectively. The structure of eqn. 3.14 allows it to be separated into two equations

as follows

R"çn|'n+i 6 /-)
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0 pØ (All*¡_, * o(i), (3.16)

where (A)"0*¡-, is a (k + i)m x (k * j)rn upper-triangular block Toeplitz matrix

f^ At A*+j-r

A*+ j-2(AlI*¡-,: 0I^
(3.17)

0 0I*
and (A)f*r-r is a (fr * i)* x nrn matrix

A*+j An 0 0

(A)f+¡-r: (3.18)

A1 Az A* An

(An :0 for i > n). The matrix of coefficients of the polynomial matrix ¡(i)(q) can

be evaluated from eqn. 3.15 as

¡(j) : K"(RÅ'u*j I /-X(-4)f;*¡-r)-', (3.19)

in which the matrix to be inverted, given by eqn. 3.17, is nonsingular.

Once matrix ¡(r) ¡" found, the matrix of coefficients of the predictor polynomial

a(i)(p) follows from eqn. 3.16 as

o/i) - _¡(j)(A)f*¡_,. (s.20)

Since (A)I*¡-, is a triangular block Toeplitz matrix, its inverse is also triangular

block Toeplitz given by

Eo Et En+ j-t

E*+ j-z
((A)f*,-,)-' : 0Eo

(3.21)

0 ... o Eo

The matrix -E¿ can be found from the following algorithm [119,120,121,79]

Eo: Al':I*,

E¡ Eo E¿-t

A¿
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fori:7r2r..-,k+j-I.
The expression for the matrix of coef,Êcients B(j) of the polynomial matrix PQ)(p)

follows from eqn. 3.8 using eqn. 8.6 (Appendix B) and noting that the first k - 1

coefficient matrices of the polynomial matrix resulting from eqn. 3.8 are zero

BQ) : rQ) (Bll*¡-r, (3'23)

where matrix B is given by eqn. 3.3, and the (k + i)m x (n * j)m matrix (B)f;*r-, is

B¡ Bn0

(B)l+¡-,: Bt B* Bn 0 (3.24)

0

0 .BtB*Bn

Let us now summarize the above results in the form of the following remark.

Rernark 3.1 The matrices of coeffi,cients of the polynomials of the j-step-ahead pre-

d,ictor 3.6 are giaen by

aet : _¡'(i)(A)f;+¡_r, (3.2b)

þ(i) 
,: 

FQ) (B)l*¡_r, (8.26)

wl¿ere

p(i) :R"çnï'r+i I /-X(A)fa¡-')-', (3.27)

can be calculated using eqn. 3.21 and, algorilhm 3.22. Note that for j :0 eqn. 3.27

reduces to

F(o):K"((Al"o)-'. (3'2s)

The macro XPRL written in MATLAB commands and implementing algorithm 3.25

and 3.26 (for 7 : 0) is given in Appendix D.

A recursive algorithrn for the calculation of the matrices of coefficients of

the multi-step-ahead predictor polynomials.

For the application of the multi-step-ahead predictor in the long-range predictive con-

trol, knowledge of the predictions over an extended range of the prediction horizon

oÐ
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j is of interest, rather than for one value of the prediction horizon. The polynomial

matrices aU)('p) and BQIçO) can be found using the algorithm of Remark 3.1 for each

value of 7. An alternative approach, considered below, is to develop a recursive algo-

rithm which evaluates (via matrices of coefficients) the polynomial matrices at?)(p)

and pU)çO) of the 7-step-ahead predictor from the polynomial matrl""r o(r-r)(p) and

p{i-rlçr, of the (j - 1)-step-ahead predictor. The idea of employing a recursive pro-

cedure for updating coefficients of a predictor for increasing prediction horizons was

introduced in [100] for multi-input, single-output systems.

Since (A)"¡*¡-t is upper-triangular Toeplitz, and matri*K"(ü'r+i 6I-) in eqn.

3.27 cont,ainsarn x jm nullmatrixonitsright-handside, itfollowsfromeqn. 3.27

used for j - 7 and for j, that the matrix of coeffici.tr¿. ¡(j) associated with the

j-step-ahead predictor can be expressed in terms of tr'(i-l) as

P(i\:[",,-',4?,-,], (3.2e)

where the coefficient matri* FÍ!]¡-, is given by

Ep+i-t

Ko K *-t (3.30)

E¡

Now the result relating the coefficient matri" FÍ!l¡-, to the coefñcient matrix

afi-tl of the polynomial o(j-t)(p) is established. It follows from eqn. 3.25 for j - 1

that
Ar+ j-t

afj-tl - -¡(j-t)
Ar

and substituting from eqn. 3.27 for FU-rl.., and using eqn. 3.21

Et Ez En+j-, A*+ j-t

F'Í?,-, : 
I

I^

lo
0 I* E¡-t

a[j-t) : - Ks K *-t
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and from eqn.3.22

E*+j-r

Ko K o-,

E¡

Finally using eqn. 3.30 one has

a[j-tr : Fl!]¡-, (3.31)

This result is used below.

The matrix of coefficients e¡ 4(j)1O¡ will now be evaluated in terms of matrix of

coefficients of d(i-l)(p) using eqns. 3.25,3.29, and 3.18 as follows

a(i)

"f-

-p0) (A)f*r-,

- [ .,,-', "Í1,-, ]

-¡(r-t)

-P(i-t\

00

-t¡(i-1) Ø)f*¡_,
I^0

I^

Ar+j A*+j+, An 0

At A2 An+j+t An

A*+¡ A*+j+, An0

A2 A*+j+, An o

A*+j-t A*+j 0

At Ax+j-r A*+j An

- r[:],-,1A,

00
I*0

An

An
0

0

00 I^

0

0

0

00
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and using eqns. 3.25 for j - 7 and eqn. 3.31 one has

o/i\ - a(r-l)

00
f^0

0

0

0
-An (3.32)

Let us introduce the following nm x nn'¿ block top-companion matrix

-Ar -42 -An
I^0

(3.33)A.:

I^

which has the column shifting property [80, 4.31, p. 660]. Then the equation for the

calculation of the matrix of coefficients of o¿U)(p) in terms of matrix of coeffi.cients of

aU-l)(p) can be written using eqns. 3.32 and 3.33 as

aU) - o6-t\ ¡".

The matrix of coefficients of the polynomial matrix B{i)çO¡ is now evaluated in

terms of the matrix of coefficients of PQ-L)(p). Eqns. 3.26,3.29 and 3.31 imply

B(il : pØ (B)l*¡_, : I r,(j-,) a[i-rr ] {a)f*,_,.

Using eqn. 3.26 for (7 - 1), and eqn. 3.3 one has

Be) : p1-r)1¡¿n+i-r'n*i g /_) + af -rl 
"rtr,n+i 

6l /_). (3.34)

Although eqn. 3.34 appears complex, it is only a compact way of expressing the

following operations: (1) shift the matrix PU-r) to the left by rn null columns, (2)

muitiply ofj-tl by B, (3) shift the matrix tg-t)B to the right by jrn rri.:il| columns,

(a) add the matrices calculated in steps (t) and (3).

Let us now summarize the above results in the following remark.

0 I* 0

+ a[r-rr | -o,

0

0

0

0
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Remark 3.2 The malrices of coefficients of the j -step-aheail preilictor polynomial

matrices can be calculateil recursiuely from the matrices of coeffi,cients of tlt.e (j - 1)-

step-ahead, predictor polynomial rnatrices as follows

o¿U) ou-L) ¡", (3.35)

B{i) p(i-r) og-r) B

A(p) : A(P, Ø Ir) : lI, A, Arl(Pr 8 /z) :

Ifr*i-r,n+i g ¡^

$'"+i Ø I^
(3.36)

(P, Ø h), (3.37)

wltere matrix A. is defineil by eqn. 3.33 (j > 0)

Hence, in order to evaluate the coefficients of the multi-step-ahead predictors for pre-

diction horizons j:Ir...,P, one can calculate the matrices of coefficients o¿Q), P(o)

using the algorithm given in Remark 3.1, and then calculu¿" o(j) and B$) recursively

using the algorithm 3.35 and 3.36 fot j - 1,. . . , P. This approach will be employed

in the implementation of the long-range predictive seif-tuning controller developed

in section 5.1. The algorithm of Remark 3.2 is embedded in the macro XAB written

in MATLAB commands (see Appendix D).

Exarnple 3.1.1. Calculation of the matrices of coefficients of the polyno-

rnial rnatrices deffning the multi-step-ahead predictor.

The matrices of coefficients of the polynomial matrices of the two-step-ahead predic-

tor (i.e. j : 2) for the system described by the transfer matrix given by eqn. 2.47 will

be evaluated (see example 2.7, p.44). The corresponding DARMA model is defined

by eqns. 3.1 to 3.3 with

10302 0

0107 072

lr r 21.l
B(p):pB(Prø/z) :plBt Brl(PrØ Ir)--pl I (P,ørr;, (3.38)

Ir r 4 3l
i.e., n :2. The delay structure is assumed to be characterized by the LNI matrix

(i.e., K1(q) : Iir(q)) evaluated in example 2.1 and is given by eqn. 2.48, p. 45
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(k : 3). The matrix of the coefficients of the LNI matrix is given by (see eqn. 3.12,

Rt : Kr,)

K7 - lKo I{, lfz): 0 0 0.5 -0.5 0.5 0.5

-0.5 0.5 0.5 0.5 0 0

The matrix A" (eqn. 3.33) is given by

A.: -AL -Az
0

The recursive algorithm will be initialized with matrices of coefficients of predictor

forj:9.

j:O: Calculate matrix .t'(o) from eqn. 3.28 using algorithm 3.22 to calculate the

inverse of matrix (A)r, as follows

I2

Eo: Iz, Et : -EoAr:

p(o) : tpÁo) p{')l : ,¡l(o) @)l :

0(1) : ¡a[r) otrl, _ o@) A" _

-30
0-7

, E, : -lÛo Etl
Az

Ar

70
037

and

¡(o) : [¡Ío) 4(o) rr(o)] : N"((A)!)_,

: I o o o.b -o.b -1 *.l.: 
L-or o.b 2 -B -b 15 

1

Now matrices of coefficients of the predictor polynomials follow from eqns .3.25

and 3.26 as

0(o) : [o[o) o{Ð1 _ _¡(o) Øll :
2 -22 2 -48

11 -69 10 - 180

227411
235040

(3.3e)

(3.40)

j:l: Matrices of coefficients of the one-step-ahead predictor polynomials follow from

eqns. 3.35 and 3.36 as

-4 106 -4 264

-23 303 -22 828
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p(L) IBL'I BtÐ p{')l : [B(o) ûÁo)B]
RÅ'" Ø I,

R?'' ø t'

22 -6 -9
23 -8 -18

-84 -64

-254 -196

j:22 Matrices of coefficients of the two-step-ahead predictor polynomials follow from

eqns. 3.35 and 3.36 as

dQ\ [a[2) otzll : 6,Q) ¡. -

BQ\ tB9) ø!"1 P[') P\')): IP(L) of)B]

8 -478 8 -1272

47 -7293 46 -3636

Rf,'3 ø Iz

Rl'3 Ø Iz

2 2 -6 -9 18 38 416 374

2 3 -8 -18 26 84 1166 886

Note that Py) : Pgl : BÁo) : M¡ -.Â/o(t) (."" eqn. C.7, p. 2s9)

3.L.2 The k-step-ahead predictor based on the right inter-

actor matrix for a rnulti-inPut, multi-output, square

deterministic system.

In this subsection:

o the k-step-ahead predictor based on the right interactor matrix for a MIMOS

system is presented;

o an algorithm is derived for the calculation of the matrices of coefficients which

represent the polynomial matrices defining the k-step-ahead predictor.

In this subsection approach (iii) in the classification on page 60 is considered. The

idea of employing the (unique) right interactor matrix (n(q) for the development of

the k-step-ahead output predictor (where fr is the degree of the interactor matrix)

rvas originally proposed in [35].

We have the following result.
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Lemma 3.2 Consider a MIMOS system satisfying Assumpti,ons 3.1 to 3.3 (pp. 58-

59). For such a system let us define an auriliary system as follows

u(t) : I{p(p)u¡(t), (3.41)

where tl¿e m x m polynomial matrix Kn(p) is giaen by

and,Kp(q) is the right interactor matrir of the system 3.f, anil k is the degree of

K n(q). Then the k-slep-aheail prediction, A(t I k), of system outpuls y(t) is giuen by

v(t+k): t(ù ó(p)
aQ)

"n(t)

(3.43)

The m x m polynomial rnalrir 1(p) results from the following Diophantine equation

I*: P(p) t(p)
A(p)

pk I*
(3.44)

(3.45)

and the rn x rn polynomial matrix ó(p) is giuen by

6(p): F(p)B(ÐKp(q),

where

F(p)

t(p)

6(p)

: trrF'
: llo lt
: [óo ó,

. .F'¡-t] (P¡-t I /-) : F (Pçt Ø I*),

. .y,-t)(P^-r 8 I-) : 'y (P^-t Ø I, ),

ô,+*-t] (P^+k-t 6 /-) : 6 (P.+*-r I /-) ,

(3.46)

(3.47)

(3.48)

and,6s: M¡7, where the nonsingular matrir Mp is def'ned by eqn. 2.ll (e. 12)

The proof of the above lemma is similar to that of [9, Theorem 5.2.4, p. 137] and is

omitted.

The right interactor matrix in eqn. 3.42 is the unique right interactor matrix

Kn(q):6n(q) (as in [35]) or the right nilpotent interactor (RNI) matrix I{p(q):

I(nk) (introduced in subsection 2.3.3).
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The ,b-step-ahead predictor given by eqn. 3.43 with the auxiliary system 3.41

was introduced in [35] using the transfer matrix plant description. The resulting

predictor was employed in the development of. ilirect self-tuning MPE controller. In

this thesis, the k-step-ahead predictor will be employed in the development of an

iniJ,i,recï self tuner which involves estimation of parameters of the DARMA model

(see chapter 4). Therefore, the predictor polynomial matrices 7(p) and ó(p) must

be calculated from the DARMA model; the polynomial matri" 'y(p) is calculated by

solving the Diophantine equation 3.44, and ó(p) from eqn. 3.45. This approach allows

us to consider a plant which is subject to deterministic disturbance, the generator

model of which is incorporated in the system model.

The coefficient matrices of. the polynomial matrices .F (p) and 7(p) can be found by

equating coefficients in the polynomial equation 3.44 as in [9, Lemma 4.2.I, p. 107].

Our approach is based on equating matrices of coefficients of. polynomials in eqn. 3.44,

using the numerical representation of polynomial matrices given in Appendix B.

Using eqns. 8.4 to 8.6 (Appendix B), polynomiai equation 3.44 can be represented

by

R!o'"+t' Ø I*: F^l
(A)*-r

Ri,*+k Ø I*
(3.4e)

(3.50)

(3.51)

where matrices F, ^1, and A, are defined by eqns. 3.46,3.47 and 3.2, respectively

The structure of eqn. 3.49 allows it to be separated into two equations as follows

RLþ ø I^

0

: F(All-,,

: F(A)f-, + 1,

where (A)"0-, is a lcrn x km upper-triangular block Toeplitz matrix given by eqn. 3.17

(f.or j : 0), and matri" (A)f-, is a lcrn x nrn matrix defined by eqn. 3.18 (for J : 0).

The matrix of coefficients of polynomial matrix .F'(p) follows from eqn. 3.50 as

r : (Rà,r 6 /-X Ø)"r)-', (3.52)

in which the matrix to be inverted, given by eqn. 3.17, is nonsingular. Eqn. 3.52 can

be rewritten using algorithm 3.22 for the inversion of an upper-triangular Toeplitz
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matrix as

F : lÛo .. . E*-1, (3'53)

where .E¿ is defined by eqn.3.22.

Once matrix -t' is found, the coefficients of the predictor polynomial l(p) follow

from eqn. 3.51 as

1: -F(A)I-' (3.54)

Matrix of coefficients of the polynomial 6(p) can be evaluated from eqn. 3.45. In

general, two polynomial multiplications are required. However, if Fn(q) : Kn(q)

and the algorithm for the calculation of the RNI matrix (subsection 2.3.3) is used,

then the second multiplication is performed in steps 2 and 3 of the final iteration

t : i - 1 of the algorithm for evaluation of the interactor matrix

á(p) : F(p)B(p)Kp(q) : F(p)ß(')(p), (3.55)

where n@@) : B(p)Kn(q) (see eqn. 2.66, p. 43) Thus only one polynomial multipli-

cation is required. It can be represented using eqn. 8.6 as

6 : p(fi(t))*_r, (3.56)

where matrix ó is defined by eqn. 3.48, and 6(t) : lUÁ" . . BPI is the matrix of

coefficients of the polynomial matrix n@@).

Let us no\'r¡ suûunarize the above results in the following remark.

Rernark 3.3 The matrices of coeffi,cients of the polynomials of the lc-step-alr,ead pre-

d,ictor 3./13 (for the auxiliary system 3.11 defined, with the right nilpotent interaclor

matrir) are giuen by

^r : -F Ø)r_r, (3.57)

6 - F(B@¡o-r, (3.58)

'where matrir F is giuen by eqn. 3.53.

The macro XPRR written in IvIATLAB commands and implementing the algo-

rithm 3.57 and 3.58 is given in Appendix D.

'14



Example 3.L.2. Calculation of the matrices of coefficients of the polyno-

mial matrices deffning the k-step-ahead predictor.

The matrices of coefficients of the polynomial matrices Z(p) and á(p) of the k-step-

ahead predictor for the system described by the transfer matrix given by eqn. 2.47

will be evaluated (see example 2.1, p. 44). The corresponding DARMA model is

defined by eqn. 3.37 and 3.38 (p. 69), and n :2. The delay structure is assumed to

be characterized by the RNI mairix, i.e., R"(q): Kn(q), evaluated in example 2.2

(p. 50) and is given by eqn. 2.7a þ.53); ,t : $.

The matrix -t' is calculated from eqn. 3.53 using algorithm 3.22 as follows

Fo: Iz, Ft: -FoAt -

1 : Wo 7rl : -F(Al+ :

], 
F2:-t*snl:',] : l; ,; ]

-30
0-7

The matrix of coefficients of .y(p) is calculated from eqn. 3.57 as follows

150
0 -175

5.3759

27.5778

0

-4440

6.6408

81.9030

-74

The matrix of coefficients of ó(p) is calculated from eqn. 3.58 using eqn. 2.73 (p. 53)

as follows

ó : [áo ù 62 h 6n]: p16@¡n

1.5811

1.5811

0.9487

2.2136

-2.8460

-6.6408

-2.8460

-75.4952

13.2816 0 0 0

163.806 0 0 0

Note that 6o : Mn: Bf) and thus is nonsingular (see eq,.. 2.73, p. 53)

3.1.3 Discussion of computational aspects of the multi-step-

ahead and k-step-ahead predictors.

For the prediction 3.6 a¡rd 3.43 to be correct for all sample instants, the initial condi-

tions for the predictor must be chosen appropriately. However, the initial conditions

on {y(t)} may be unknown. In order to analyze the effect on the output prediction

of arbitrary initial conditions, it is convenient to interpret prediction as an output of
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a linear filter driven by system outputs E(ú) and system inputs z(t). lt can be shown

from eqns. 3.6 and 3.43 that all poles of the transfer matrices of such filters lie at

the origin of z-plane. Therefore, the predictions calculated from eqns. 3.6 and 3.43

with arbitrary initial conditions converge to the predictions which would result if the

actual initial conditions were used.

Some computational aspects involved in evaluation of the polynomial matrices

which define predictors 3.6 and 3.43 are discussed below. As already mentioned,

the predictors will be employed in the development of self-tuning controllers. The

polynomial matrices which define predictors will be evaluated at each sample instant

from the new estimates of parameters of the DARMA model.

The expressions for matrices of coeffi,cients of the polynomial matrices, which

define predictors, were introduced in this section (see Remarks 3.1, 3.2, and 3.3).

These expressions can be viewed as closed or contracted forms of iterative algorithms

which yield coefi,cients of polynomial matrices instead of matrices of coefficients. For

example, algorithm given in Remark 3.2 can be written in the iterative form which

yields coefficients of polynomial matrices rather than matrices of coefficients. For

7 > 0 the following algorithm results from eqn. 3.35

o\ù : -oÍi-t)A,*.+ajf;l), i:0,,...,n-2 (3.b9)

"y!, -o,g-') A^,

and from eqn. 3.3ti

(j)
-1,

p
'J,

(3.60)

p[t)

o0\
Pn-l

/:0,...rn-2

The choice between the contracted and iterative form of the algorithm depends on

the application and computational tool. If the interpretive software is used (e.g.,

NIATLAB [110]), then multiplication and addition of matrices (of arbitrary but con-

formable dimensions) are the elementary operations (i.e., operations which require

a single command). The update of polynomial matrices using the above iterative
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algorithm involves 2n multiplications and 2(n - 1) additions, in comparison with

three multiplications required by the algorithm given in Remark 3.2 (not counting

Kronecker products, since these operations can be performed in advance). For the

interpretive software, the most significant portion of the machine time is required

to interpret the com¡nands. Therefore, the contracted forms of the algorithms are

likely to reduce the machine time since the amount of code is reduced. If the non-

interpretive software is used (as it is usually the case for real-time applications), then

the iterative form of the algorithms is appropriate, since the unnecessary operations

(such as multiplication by null elements impiicit in matrix ,4.", eqn. 3.33) are elimi-

nated. The iterative algorithms can be readily obtained from the contracted forms.

The expressions given in Remarks 3.1 and 3.3 can be written in an iterative form in

a simila¡ way to that presented above for the algorithm of Remark 3.2. For example,

eqns. 3.53 and 3.54 are equivalent to eqns. 4.2.9 ar.d'4.2.70 in [9, p. 108] for the

coefficients of polynomial matrices .F (p) and f (p) in eqn. 3.44.

3.2 The k-step-ahead predictor for one output of a

single-input, multi-output, deterrninistic sys-

tern having the feedback configuration FD.

In this section:

o the k-step-ahead predictor for one output is derived for a single-input, multi-

output, deterministic system which has the feedback configuration FD and is

described by the RDO representation;

o the relationship between soiutions to the ,b-step-ahead prediction problem based

on the RDO and state-space system representations is established;

o the corresponding adaptive k-step-ahead predictor is introduced.

The problem of prediction of one output of a deterministic system having the

feedback conflguration FD (see p. 18) is addressed in this section. A special case
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of such a system is considered in the form of a single-input, multi-output (SIMO)

system. A new predictor for the future value of the output y(t) is developed which

utilizes available system outputs AF(t). The output A(t) may or may not be an

element of. yp(t). Such a predictor will be referred to as the SIMO-type output

predictor. The SIMO-type predictor will be employed in the development of the

MPE direct self-tuning controllers for sIMo systems in section 6.1.

The feedback configuration FD implies that there are some ad'ditional system

outputs which can be utilized in the predictor. Although the idea of utilization of

additional system variables for the purpose of prediction is not new (see e.g., [9,

pp.232-234]), the problem formulation and its solution is, to the author's knowledge,

original.

On the other hand, conventional predictors have been developed for systems hav-

ing the feedback configuration FI, i.e., yp(t) = y(t) (see p. 18). The conventional

predictor utilizes only the output the future value of which is to be predicted. The

problem of prediction of one output of a SIMO system having the feedback config-

uration FD is considered in this section; therefore, the corresponding problem for a

system having the feedback configuration FI involves development of the predictor

for a single-input, single-output (SISO) system. The predictor for a SISO system rvill

be referred to as the SISO-type predictor.

The following assumptions are made.

Assurnption 3.4 (Feedback configuration assumption) Giaen is a single-inptú,

multi-output (SIMO), deterrninistic system lr,auing the feedbaclc configuration FD,

such, that

I - dimu(t) :1,

n1,: dimy(t) :1,

f : dimE¡(f)à1.

The state-space model of a system having the feedback configuration FD is given

by eqn. 2.3, p. 20.
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Assumption 3.5 (System assumption) The system (A",B",Cp) is controllable

aniJ obseraable; the obseruability inder6 is up'

The RDO representation (in the backward shift operator) of a system satisfying

Assumptions 3.4 and 3.5 follows from eqn. 2.22 (p.28)

"(t)
aQ)

vr(t)

d(p)

¡rþ)
Nr(p)

x n(t), (3.61)

with initial conditions on {rp(ú)}. Polynomials d(p) and N(p), and / x 1 polynomial

vector ¡{r(p) are expressed using the polynomial representation of Appendix B (see

eqns. 8.1 to 8.3) as follows

d(p) : p" det(qI - A") : p"D(q): [1 dl ... d^]P, - dPn, (3.62)

¡fþ) : p"ÑG): [0 ...0n* ...nn]Pn- J,{Pn, (3.63)

¡rr(p) : p"Ñrk): [0 ¡r1 ... N,)P,: NFP', (3.64)

where Pn:ltp ...p"f'.Ineqn.3.63it is assumed that n¡ f 0,i.e., k represents

the delay from the system input z(t) to output g(ú). The pair (l/¡(p), d(p)) is right

coprime since the pair (Cp, A") is observable.

3.2.t The k-step-ahead SIMO-type predictor for a system

with known parameters.

We have the following result.

Lernrna 3.3 Consid,er a SIMO system sati,sfying Assumptions 3./¡ and,3.5. Tl¿en

there exist a 7 x f polynomial aector a(p) and' polynomial þ(p) of degree n, ) up - 1,

defi,ned as

a(p) : [oo o, ... ..nof(¿" * Ir) : o (P^,* ri) , (3.65)

0@): 10o0r...0no1P,,:/Pno, (3'66)

6See 
[80, p. 357] for the definition of the observability index.
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wherea¿ is of dimension 1x,f fori:0,...,n, anda is aIx(nr+1)/ aector,

anil B is a I x (np ! !) uector. These polynornials satisfy the following Dioph'anline

equation

p-k N(p) :
"(p) þ(p)

¡r"(p)

d(p)

a r(t)

"(t)

(3.67)

(3.68)

(3.6e)

The output y(t + k) is giuen by the following pred,ictor erpression

aQ+k): a(p) þ(p)

Proof.

From eqn. 3.61 one has a(t + k) : p-kN(p)r*(t). Using eqn. 3.67

v(t + k) - a(p)l/p(p)*n(t) + 0(ùd(p)"n(ú),

and eqn. 3.68 follows using eqn. 3.61. The existence of polynomials a(p) ard B(p)

of degree n, ) vp - 1 and satisfying Diophantine equation 3.67 follows from [112,

Theorem 9-!2, p.466] since the pair (¡fr(p), d(p)) is right coprime.

Q.E.D.

The predictor 3.68 will be referred to as the le -step-aheød, SIMO-type predictor.

In order to solve the Diophantine equation 3.67 for a(p) and þ(p), its numerical

representation is considered. This translates the problem of solving a polynomial

equation into a problem of solving a set of linear algebraic equations. Such an ap-

proach to solving the Diophantine equations was considered for example in [107,112].

Using the method of resultants, the polynomial equation 3.67 can be represented

by the following set of linear algebraic equations (see eqns. 8.4 to 8.6, Appendix B)

¡trsor?ä+t'nlnr*r - a, p
(l/r)'"

(d)",
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where ,SÈ is the k-th power of the (n + 1) x (n * 1) shift matrix defined as

(3.70)

1

Eqn. 3.69 is of theform ó : nA where matrix,4 is of dimension (/+t;1tr* 1) x

(, I ,, * 1). The existence of a solution u for any b is guaranteed by coprimeness of

the pair (lfr(t) d(p)) and the choice of. n, 2 ur - 1 [112, Theorem 9-12, p. 466] ? 
-

For a particular ó: N5fr-R¿*1'¿*np*1, however, the solution r may exists for a degree

smaller than zp - 1 (see example 3.2.I, p. 83) t.

Furthermore,

Comment 3.1 It follous from eqn. 3.69 that þo: r* # 0 (ro is defined in eqn.

3.63 ).

Cornparison of predictors for systems having the feedback configuration

FD and FI.

It is desirable to compare the properties of the SIMO-type predictor developed for a

system having the feedback configuration FD with those of the SISO-type predictor

for the same system within the feedback configuration FI.

The RDO model of the system having the feedback configuration FI is given by

eqn. 3.61 with yp(t) : v(t) (/ : 1). Then the SISO-type predictor follows from

Lemma 3.3 and is given by the following expression s

0

1

0

0

s

0

0

0

0

0

0

aQ + k): a"(p) þ"(p)
aQ)

"(t)

(3.71)

TRecallthatgivenarnxnmatrix.4,foreverylxnvectoró,thereexistsalxrnvectorrsuch

that ò = r"4 if and only if rank.A = n l1l2l.
ERecall that given an1 xn matrix "zl and given a 1x n vector å, there exists a 1x rn vector ¿ such

l¡l
that ö = rA if and only if rank,4 = rank | | [112].

Ló.I
eAlternatively one can develop the SISO-type predictor from the system DARMA model, see [9,

Lemma 4.2.1, p. 1071.
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where the polynomials o"(p) and B"(p) have degree r¿p ) ur - t : n - 1 and satisfy

Diophantine equation 3.67 for N¡(p) : N(p).

The SISO-type predictor involves measurement of the output y(t) the future value

of which is to be predicted, whereas the SIMO-type predictor does not require mea-

surement of y(t) 10. Hence the SIMO-type predictor offers flexibility of the output

measurement configuration; this becomes especially important if the measurement of

the output y(f) is costly or inaccurate but some other outputs VF(t) can be measured

at a lower cost or more accuratelY.

Comment 3.2 Note that if the degree of polynomials of the SISO- antl SIMO-type

preilictors is chosen as nr: ur -!, then the d,egree of the SIMO-type predictor poly-

nomials is smaller than that of the polynomials of the SISO-tgpe predictor prouid'ed

.f :rankCr)I (recallthatupln-rankC¡ +L [112, p' 199]).

The number of coefficients of polynomials of the SIMO-type predictor may be

smaller than that of the polynornials of the SISO-type predictor (see example 3.2.1).

For example, if f : rank Cr : n then np: 0 and, the number of coeffi,cients of the

SIMO-type pred,ictor polynomials is n * I in comparison with 2n for the SISO-type

preilictor.

Finally, note that if it is required that the output prediction equals to the system

output for all sample instants, then the appropriate initial conditions for the predictor

must be considered. If, however, arbitra.ry initial conditions are assumed, then the

effect of incorrect initial conditions on the output prediction dies away aftet no sample

instants (cf. discussion for MIMOS systems, p. 75).

l0Possible benefits resulting from the separation of the output y(l) from the outputs gr(f) are

illustrated in example 6.1.2 (p.210) for the application of the SIMO-type predictor in self-tuning

control.
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Example 3.2.L.

Let us consider a single-input, two-output system given by the state-space model 2.3

(p. 20) in the controller form 1r 
[80, p. 434]

A":
-a1 -a2 -CLg

100
010

B

1

0

0

Cp
ctt

czt

ctz

czz

crg

cze
I

C_ CtL CtZ ctS

(3.72)

where at : -2.7L24, a2: 2.6636, ¿s : -0.9572, c¡ : 0.0008128, c12 : 0.0031708,

cr3 :0.0007927 ,t c2t : ct2¡ c22: -0.0099728, and c2s : -0.001377. The observability

index is up :2. The corresponding RDO representation is given by eqns. 3.61 to 3.64

with d(p) - dPs - [1 ot az asf P",, Nr(p) : .f/rPs : [0 Cr]P3, and If (p) : NPg :

[0 C]Pr, i.e., n: 3 and k : 1.

Let us now determine the (k : 1)-step-ahead SIMO-type predictor for the output

a(t): u{t): Cr(t) in terms of outputs vF(t): [y1(ú) ar\)]' : Crx(t) 6 :2).

Choosing Dp : t/F - 1 : 1, and solving eqn. 3.69, we have t' oo : laro 0] and

ar : [arr 0]. This suggests that a solution may exists for n, - 0 ( ur - 7. In this

case one has from eqn. 3.69

r r l¡r"lNS: I a1o 
",zo 

p" ll' ' I .

L JI
The above equation is of the form ó : rA and is found to be consistent; a general

solution is r: bAI + P(I - AAI), where "4t is the generalized inverse of matrix A,

and P is a parameter of the solution 1122, chapter 2]. Since the matrix "4 has full

row rank the solution is unique [112] and is given by

I o,o .'zo orl:lr.rt n 1 o.ooo81ru ] (B.zB)

llThere is no loss of generality in assuming that the system is given in the conbroller form since the

pair (A' Br) is said bo be controllable (see Assumption 3.5, p.79).
l2Recall that a(p) is a 1 x / polynomial vector having coefficient vectors a¡ for i = 0,..,,n0 of

dimension 1 x / (see eqn. 3.65); each coefficient vector a¡ has / elements o¡j (o¡j is associated with

bhe system output y¿(f)).
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If the only output which can be measured is the output the future value of which

is to be predicted (i.e., the system has the feedback configuration FI) then the SISO-

type predictor 3.71 is empioyed. The matrices of coefÊcients of poiynomials a'(p)

and B"(p), calculated from eqn. 3.69 for np: tu - I : 2 ar'd ly'r : -lü, are given by

o¿s : [d"o a"r a"z): l-ot - az - az], G.74)

p" : lþ,o þ¡ g"zl : [c11 c12 c13] . (3.75)

Note that for the SIMO-type predictor, the polynomials are of degree zero and involve

3 coefficients; the SISO-type predictor polynomials are of second degree and involve

6 coefficients.

Relationship between solutions to the k-step-ahead SIMO-type prediction

problem based on the RDO and state-space system representations.

The predictor polynomials a(p) and B(fl can be found simultaneously from the Dio-

phantine equation 3.67 which is based on the system RDO representation. It is

shown below that coefficients of the polynomial o(p) can be evaluated independently

of those of 0@) in terms of the system state-space model.

Remark 3.4 Consider o, SIMO system satisfying Assumptions 3./¡ aniL 3.5. Then

for the predictor 3.68 and for the system state-space model 2.3 (p. 20)

(i) th,e 1 x (no + 1)/ uector a of coefficients of the polynomia,l uector a(p) satisfies

aû : C A!+"o, (3.76)

where

C pAln

ú- (s.77)

Cr

(ii) the coefficients of the polynomial 0(ù are giuen by

þo : C A!-18,,
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CpAi-r B"

þ¿ : CA:-t+, B" _ 0¡ oti-t (3.78)

CpB,

fori-1,...,frp.

Proof.

Considering the property of Markov parameters for a system with delay k one has

CA!"-[B":0 for j:7,,...,lc -1 [80]. Then the output vQ) at time t+k f no is

given in terms of the system state-space model 2.3 by

vU + k t np): CAktn,ø(t) + ï"or*",-r-iB"u(t + i). (3.79)
i=O

Alternatively, from the predictor expression 3.68 one has

a(t + k + np) : a,(p)aF(t I np) + 0(Ð"(t * nr),

and substituting for yp(t I np) form the state-space model 2.3

nP

Ðo,crA?'-n"(t) +
=O

np

+ I o¡[ t cpA!n-i-t-i B"uçt + i)] + Ð p^,-,u(t + i). (3.80)
j=O i=O i=O

Eqns. 3.76 and 3.78 follow form eqns. 3.79 and 3.80 by comparison of terms associated

with r(f ) and u(t * i) for i : 0, 1,. . .,np.

Q.E.D

Note that vector o can be evaluated from eqn. 3.76 independently of B. Further-

nore, since the paft (Cp, A") is observable the existence of solution to eqn. 3.76 is

guaranteed by the choice nr) up - 1 which implies that matrix d has full (column)

rank. If nr: uF - 1, then tl is the system partial obseruability matrir [80, p. 357].

3.2.2 Adaptive k-step-ahead SIMO-type predictor.

In subsection 3.2.1 the fr-step-ahead SIIvIO-type predictor was introduced for systems

with known parameters. If the system parameters are unknown, then the adaptive

ð,tl

y(t+lc+.r¿p):

np-l np-l-i



predictor can be employed. Such predictors, for systems having the feedback con-

figuration FI, are discussed for instance in [9, chapter 4] for deterministic systems

and in 1123,724,125,126] for stochastic systems; examples of applications of adaptive

predictors are given in [117,118,,1271.

We will make use of the separation of estimation and prediction to develop the

SIMO-type ,b-step-ahead direct adaptive predictor. For this pu{pose let us rewrite

the predictor expression 3.68 as

v(t) : @'Ó(t - k), (3.81)

where the (/ * l)(no * 1) x 1 parameter vector O and regression vector þ(t) are

defined as

O : lo þl', (3.82)

ó(t) : lrr@' a'.(t - np)' u(t) u(t -',) ] . (3.83)

The vector of parameters O in model 3.81 is estimated on-line by a recursive parame-

ter estimation algorithm. This involves calculation of the equation error (see eqn. E.1,

Appendix E), and therefore knowledge (i.e., measurement) of. y(t) is required. Hence,

the following assumption is made (cf. discussion on pp. 3a-35)

Assurnption 3.6 (Output ûreasureûrent configuration assurnption) For the

pur.pose of estimation of predictor pararneters, th,e present ualue A(t) of th'e output

wlticlt, is to be pred,icted, is known.

Furthermore, it is assumed that the system delay k is known and that nr) up - 1 is

chosen. Then the direct ad,aptiue SIMO-type pred,ictor consists of the following steps

which are performed at every sample instant ú:

step 1. calculate the predictor parameter estimates

61t; : lat ) gfÐl' (8.s4)

using, say, the RLS algorithm (see eqns. E.1 to E.4, Appendix E), with the

equation error defined as

e(t) : y(t) - 6(¿ - 7)'ó(t - k); (3.s5)
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step 2. calculate the prediction of y(t) as follows

û(t): ô(¿- k)'ó(t-k). (3.86)

We have the following convergence result

Lemma 3.4 Let the output sequence {y(¿)} be generated by the system satisfying

Assumptions 9.f , 3.5, anil 3.6. If the sequences {u(f)} and, {yp(t)} are bounileil, the

d,elay k is lcnown, and no) up -!, then for the SIMO-type a'ilaptiue RLS prediction

Ç(t) resulting from eqn. 3.86 one has

J!Atv(t)-i(¿)l :0.

(It is assumed, that the RLS estimator with no forgetling is employed-)

Proof.

The existence of the predictor 3.81 follows from Lemma 3.3, p. 79. Then the proof

of [9, Lemma 4.3.I, p. 112] applies mutatis mutanilis to Lemma 3.4.

Q.E.D

The above lemma shows that the adaptive output prediction f(ú) converges to the

actual value of the system output gr(ú). No persistent excitation condition is required

for the input sequence {"(¿)}. However, nothing is said about the convergence of

estimates â(f) and pçt¡ t" their true values [9].

Implementation of the adaptive predictor requires selection of n, based on the

observability index up. If. the observabitity index is unknown then the choice of n,

can be based on the upper bound oî uF', i'e', no: n' - rankCr' Alternatively' the

methods for the on-line identification of the order of the estimated system model can

be applied to search for n, [128]. The recursive method proposed in [129] involves

a model order testing criterion based on the sum of squares of the prediction error

y(t) - f(f ) and is amenable to predictor applications since the prediction error can

be readily obtained.
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There are two properties of the SIMO-type predictor which are especially impor-

tant in its adaptive implementation. Firstly, the degree n, of predictor polynomials

a(p) and þ(p) i" likely to be smaller than that of the SISO-type predictor polyno-

mials. This implies that n't ore recent d,ata is used in the regression vector /(ú) of the

estimator which is especially desirable if the system is time-varying. Secondly, the

number of estimated parameters is likely to be smaller for the SIMO-type predic-

tor than for the SISO-type predictor provided sufficient number of outputs yF(¿) is

available. This improves the conaergence rate of the estimates (see example 3.2.2).

Example 3.2.2.

Let us consider a single-input, two-output system given by the state-space model 3.72

(p. 83) in example 3.2.1. This is a simplified linearized model of a single joint of the

robot manipulator POLAR 6000 of COMAU S.p.A. [130]. The input z(f) represents

servovalve excitation current of the hydraulic motor [*A]; the output Vft) is the

angular position of the robot arm in the horizontal plane [rad]. 13 The system delay

:^ l^ _ 1lò to 
- 

I.

The SIMO- and SISO-type adaptive (k : 1)-step-ahead predictors for the angular

position of the robot arm were simulated to compare the convergence rate of the

estimates of coefficients of predictor polynomials. The true values of those coefficients

are given by eqns. 3.73 to 3.75, p. 83.

The input was a pseudo-random binary sequence (PRBS) [131] generated by 10

stage shift register and of amplitude 50 [*A]. The initial parameter estimates of the

RLS aigorithm were all set to zero; no forgetting was used, and the initial covariance

matrix was P(-1) : 10,I (see Appendix E).

The coefficient estimates are shown in fig. 3.1. It can be seen that the convergence

rate of the estimates of the SIMO-type predictor was faster during the initial phase

of estimation than that of the SISO-type predictor, i.e., the estimates of the SIIVIO-

13The values of the model parameters assumed in example 3.2.1 correspond to the following set

of parameters of the second order (plus inbegrator) continuous time transfer function [130]: 1{ = 2,

ø = 50 rads-l, ( = 0.05; the sampling time is ?" = 0.01 s.
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Figure 3.1: Estimates and true values of parameters a and B of the adaptive

SIMO-type predictor (solid iines), and o" and B, of the SISO-type predictor (broken

lines) for the robot manipulator.

type predictor converged closely to the true values more rapidly than those of the

SISO-type predictor. This resulted in the performance improvement of the SIMO-

type predictor in comparison with that of the SISO-type predictor. As a measure of

performance of adaptive predictors, the cumulative sum of squared prediction errors

(CSSPE) was calculated as

cssPE(¿) : t la?) -t?)l'

E-r
tEl
m

o

r=l

for ú : 1, . . . ,100. The CSSPE is depicted in fig. 3.2. It may be observed that the

CSSPE achieves a constant level more rapidly for the SIMO-type predictor and its

!
I

I

I
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Figure 3.2: The cumulative sum of squared prediction errors for the adaptive

SIMO-type predictor (solid line) and SISO-type predictor (broken line) for the robot

manipulator.

final value is smaller than that for the SISO-type predictor.

3.3 Optirnal predictor for one output of a two-

input, multi-output, stochastic system having

the feedback configuration FD.

In this section:

o the optimal predictor for one output is derived for a two-input, multi-output,

stochastic system which has the feedback configuration FD and is described by

the RDO representation;

o the relationship between solutions to the optimal prediction problem based on

the RDO and state-space system representations is established;

o the corresponding adaptive predictor is introduced

o

SIMO

SISO
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The problem of optimal prediction of one output of a multi-output stochastic

system having the feedback configuration FD (see p. 18) is addressed in this section'

A special case of such a system is considered. Namely, it is assumed that there is

one measurable input u(f) and one unmeasurable stochastic input c,r(ú). Therefore,

we shall refer to such a system as the two-input, multi-output (TIMO), stochastic

system. A new optimal predictor for the future value of the output y(f) is developed

which utilizes available system outputs yF(t). The output y(t) may or may not be

an element of g¡(t). Such a predictor will be referred to as the TIMO-type output

predictor. The TIMO-type predictor will be employed in the development of the

MPE self tuner for TIMO systems in section 6'2.

The formulation of the optimal prediction problem for systems having the feed-

back configuration FD and its solution presented in this section is, to the author's

knowledge, original.

The feedback configuration FD implies that there are some additional system

oulputs which can be utilized in the predictor. On the other hand, conventional

predictors have been developed for systems having the feedback configuration FI,

i.e., y¡(t) = A(t). The conventional predictor utilizes only the output the future

value of which is to be predicted. The problem of optimal prediction of one output of

a TIMO system having the feedback configuration FD is considered in this section;

therefore, the corresponding problem for a system having the feedback confi,guration

FI involves development of the predictor for a two-input (z(ú), ,(¿)), single-output

(TISO) stochastic system. The predictor for a TISO system will be referred to as

the TISO-type predictor.

The following assumptions are made.

Assurnption 3.7 (Feedback configuration assurnption) Giuen is a two-input,

multi-output (TIMO), stochastic systern hauing th.e feedbacl; configuration FD, suclt

th,at

I - dimu(t) :1,

s : dimc,:(t):1,
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rn: dimy(t):1,

f : dimyp(f)>1.

The state-space model of a stochastic system having the feedback configuration FD

is given by eqn. 2.8 (p.22).

Assumption 3.8 (System assumption) The system (A,, 8", Cp) is controllable

and, obseraable. Furthermore, the pair (qI - A", K) is left coprime ta.

Let us now define the following (rot 1)/ x (n*n, * 1) matrix in terms of the

system state-space model

Cs CrK CIA"I{ CpAln-tY CpAn

0 Cs CeK CpAlo-zY CpATo-r

ú (3.87)

Cs CrI(

Cs

C rA"

Cr

where integer no ) 0 (if nr: 0 then Û-: lCs CrD.

Assumption 3.9 The matrix Ú, has full column ranlc, i.e.,

rankrg, -nlne+7. (3.88)

The RDO representation (in the backward shift operator) of a system satisfying

Assumptions 3.7 and 3.8 follows from eqn. 2.3i (p. 30)

u

0

0

0

0

"(ú)
,(t)

a(t)

a F(t)

d(p) o

o d(p)

¡r(p) c.(p)

¡rr'(p) C.(p)

(3.8e)

with initial conditions on {[up(t) rp.(t)]']. Polynomials d(p), lrr(p), c-(p), and / x 1

polynomial vectors ¡rlr(p) and C.(p) are expressed using the polynomial representa-

tion of Appendix B (see eqns. E}.1 to El.3) as follows

d(p) : p" det(qI - A") : p"D(q): p"D.(q): [1 d1 '.. d.]P,: dP"(3'90)

14Thi. guarantees that eqn. 2.28 on page 30 holds.
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¡r(p) :

".(p) 
:

¡r"(p) :
c.(p) :

p"ÑQ): [o . .. o nt nn]Pn - N Pn,,

p"ê-(q) : [1 cr ... cnfPn : c.Pn,

p"Ñrk): [o Nr . .. N^]P,: NFP',

p"C.(q) : lCo CL ... C^]P, : C'Pn,

(3.e1)

(3.e2)

(3.e3)

(3.e4)

where Pn- [1 p ...p"),.Ineqn.3.91 it is assumedthat n¡ t'0,i.e., k represents

the delay from the system input u(t) to output y(ú).

For the purpose of analysis presented in this section and in section 6.2, the assump-

tions about the noise sequence given by eqns. 2.4 and 2.5 on page 21 are formalized

in the following way (see 1132,\33,725,55,57,56,134,9] for similar assumptions).

Assurnption 3.1O (Noise assurnption) Letthe (scalar) sequence {r(¿)} be a real

stochastic process defined, in a probability space (Q., F, P) and ailapteil to the sequence

of increasing sub-sigma algebras (F¡, ¿ € N). The sequence F¿ is generateil by th'e

obseruations {yp(t),...,y"(0)} and,FoC Ft C...C Ft. Fo includesinitial condition

information. Furtherrnore,

E{t.t(t)lE¿-1}

E{u(t)2lE -t)

0 4.s., t>7;

t: o2 o,.s 1

(3.e5)

(3.e6)

(Symbot "o,.s." means "almost surely", i.e., save on a set having probability measure

zero. The sequence {.(¿)} canbe thought of as awhite noise sequence [9, p.324].)

3.3.1 optimal TlMo-type predictor based on the right dif-

ference operator system representation.

In this subsection the TIIVIO-type predictor for an arbitrary prediction horizon k, ) 7

is developed. Depending on the application of the TIMO-type predictor to predic-

tive control, three relations between the prediction horiz on lc, and delay k are of

particular interest. Firstly, if. ke > k then the predictor is referred to as the multi-

step-ahead predictor 15. Such a predictor can be employed in the development of

15The practical applications of various variants of the multi-step-ahead predictors are given in

[118,127,130,38,135] for systems having the feedback configuration FL For instance, a multi-step-ahead
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a long-range predictive control law 16. Secondly, the (ko : k)-step-ahead predictor

will be employed in the development of the MPE controller in section 6.2. Thirdly,

the (ko : 1)-step-ahead predictor for systems with delay k > l will be employed

in convergence analysis of the self-tuning MPE controller for TIMO systems (see

Theorem 6.2 (p. 230) and Comment F.4, P. 309).

Optimal TIMO-type predictor.

In the derivation of the optimal TIMO-type predictor it is convenient to consider two

cases ko à k and k, < k separately. \Me have the following result.

Lernma 3.5 Consiil,er a TIMO system satisfying Assumptions 3.'/, 3.8, 3'9, and 3.10'

Denote k¿ : Ie - k, for k, 2 k and, k¿ : ! for k, 1 k, where k, ) 7 is the pred,iction

l¿orizon. Then there exist a I x f polynomial aector a,(p) and polynomial 0,@)'

defi,ned as

(3.e7)

(3.e8)

(3.ee)

wlt,erea¿ is of il,imensionlx f fori:0,...,np, anda, is a7x(nr+1)/ uector, and,

0- it a 7 x (r, - k¿ * 1) uector. These polynomials satisfy the following composite

Dioph,antine equation

p -kP ¡r(p) c,(p) a,(p) þ.(p) F(p)

¡r"(p) C-(p)

pk'd(p) 0

o p-k'd(p)

'wltere the unique polgnomial F(p) ltas d,egree k, - 1

F(p) : lfo f, f r,-r] Pro-, : FPtp-tt fo: 7 ( 3.100)

predictor is used in the area of decision making, e.g., an operator-based control of a blast-furnace with

the multi-step-ahead predictor indicating if the planned control policy will be favourable or not [118].
l6The long-range predictive controller for systems having the feedback configuration FD is not

considered in this thesis. However, the long-range predictive control law is derived for systems having

the feedback configuration FI in section 5.2 using the corresponding multi-step-ahead predictor.
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Tlr.e optimal ler-step-ahead, preili,ction y'(t + krlt) of output y(t) is giuen by

y"(t + kplt) : a-(p) 0.(p)
vr(t)

u(t - k¿)
(3.101)

where

a"þ + /colt; 
dJ E{y(t + kp)lFt} : y(t i kr) - F(p)u(t * kr) (3.102)

The predictor given by eqn. 3.101 will be referred to as the TIMO-type predictor.

The following convention was chosen to denote coefficients B¡ of. the polynomial

g.@): the subscript j is positive for coefficients associated with past values of the

input {"(¿)} in the predictor expression 3.101, j :0 for the coefÊcient corresponding

to the present vafue of the input, and j is negative for coefficients associated with

future values of the input. Note that the constant k; determines the sample instant,

¿ - le;, up to which the values of the input {"(¿)} are required to be known.

Comment 3.3 Knouleilge of the ualues of the input {"(¿)} up to time instant t - k;

implies, in uiew of eqn. 3.101, that y"(t + kelt) is F¡ measurable.

The proof of Lemma 3.5 is divided into three parts. In part 1 it is shown that

the prediction calculated from eqn. 3.101 is the optimal prediction of output y(f ). In

part 2 (p. 98) the existence of the unique polynomial .F(p) (eqn. 3.100) is shown, In

part 3 (p. 101) the existence of the polynomials a.(p) arrd B-(p) (eqns. 3.97 and 3.98)

is established.

Proof of Lerr.- rna 3.5 (part 1).

Substituting from eqn. 3.89 for y(t) into eqn. 3.702 one has

y'(t + krltl : p-k'a(t) - p-k' F(p)r(¿)

: p-k,N(p)*n(r) + p-ko",(p)xn.(t) - p-k'F(p)a(t),

and using eqns. 3.99 and 3.89

io.(o)¡r"( p) + pk'\.@)a@)l rp(t) ty" (t + krlt)
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+ la, @) c,(p) + p- o' p (p) ¿@)] * p,çt¡ - p- k' F (p), (t)

: o,(p) [N"(p)""(t) + c.(p)r^-(t)] + pk'1.(p)d(flxp(t)

: o_(p)yr(t) + 0.@)u(, - k;).

This establishes eqn. 3.101. The optimality of the prediction 3.101 (i.e., that y'(t -l

kplt) : E{aU + kr)lFr}) can be shown in the usual way (see e'8., [9, p. 269]).

Q.E.D.

It follows from eqns. 3.102 and 3.100 that the prediction error is a moving average

of order ko

e(t + k) : y(t * ko) - a'(t + kelr) -- F(flu(t t kr). (3.103)

The variance of the prediction error is found using eqns. 3.100, 3'95, and 3.96 as in

[9, p. 268]

E {e(t * kr)'} : F F' o2 . (3.104)

Calculation of the polynomials o-(p) and þ-(p) of the TIMO-type predictor.

The composite Diophantine equation 3.99 can be solved for a(,(p), 0-@), and -F(p)

using elementa¡y operations on polynomial matrices [65, chapter 3]. However, in

order to avoid the complexity of dealing with polynomial matrices, the numerical

representation of the Diophantine equation 3.99 is considered below. This translates

the problem of solving a polynomial equation into a problem of solving a set of linear

algebraic equations.

The polynomial equation 3.99 can be represented by the set of linear equations

depending on the relation between ko and k as follows (see eqns. 8.4 to 8.6, Ap-

pendix B)

Case ko ) lcz

I l,rS*nä+ 7'n+nP+kp-k+t 
".Rl*''n*n"+oo+r ]
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otu P, F

(NFRi::r+t"-k*t)n,

(d) ,.r+*o-*

0¡o,n¡no¡ko-k*l

(C. Ri:t'"*oo*t ) n,

0no¡kr-klt,nlnp1.kplir

(dR!+t'"+'"o*') rr-,

(3.105)

(3.106)

Case lc, < Iez

I l,rSn'n6* L'n!np*r 
".R3*''n*nP+ke+1 ]

o¿u 0. F

(l/r)"o

1d,R!+t'n+2¡n,-,

0ko,n+no+7

ç.Ri:t'"**o*t ),,o

0np,n+np*kp+l

(d.I¡"*t'n+no*') ro-,

where ,5i is the i-th power of the (n + 1) x (", + 1) shift matrix defined in eqn. 3.70

(p. 81), and 0,," is a r x c zero matrix. Eqns. 3.105 and 3.106 are of the form b: tA'

The structure of matrix ,4 is shown in fig. 3.3 for the case ko > k.

0rro+fro-lr+t,n|lnpf.kp*l

0ko,n+no+ko-k¡t

A

r-t

L-T

1-

I

L

ßo-Æ columns ko columns

Figure 3.3: Structure of matrix A f.or k, > k

Note from eqns. 3.105 and 3.106 (or from fig. 3.3 for ko > k) that each of them

can be split into two equations such that vector -t' of coefficients of the polynomial

F(p) can be calculated independently of. a. and 8.. For this purpose let us define

the following vector

":: lr c1 cÈo-r] , (3.107)

(Nr)"o (C-) *o

(dl noa*o-*

\d) n,-t
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(put c¿ : 0 for i , ,),, and matrix

(d),1-, :

0 01

(3.108)

(3.111)

The first equation resulting from separation of each of eqns. 3.105 and 3.106 is

c!,: Fld)|,-r. (3'109)

Note that vector of coefficients tr' can be calculated from eqn. 3.109 as

F : c:(\d)l-.)-'. (3.110)

Proof of Lemma 3.5 (part 2).

The existence and uniqucness of the polynomial .F(p) such that the polynomial equa-

tion 3.99 is satisfied, is guaranteed in view of eqn. 3.110, where matrix (r/)f"-t is

nonsingular (see eqn. 3.108 for i : ko). Furthermore, ro : L (see eqn. 3.100).

Q.E.D

Let us now define the following vector f.or lc, 3 n

ckp cn

d,¿ d;+, dn o

Rcu

and matrix
0

(d)l-,: (3.112)
d2 dz dn-t dn0

dn-t dn

The second equation resulting from the separation of each of eqns. 3.105 and 3.106

is given for two cases ko )- k and ,ko < k.

Case k, ) kz The second equation resulting from separation of eqn. 3.105 is as fol-

lows

[ .nf S*n3* r,n]nprko-tc]r ó" 
]

dr dz
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I ^ l f tlr"n;*-t 
***o-k*L)n, (c,) InP 

l' (3'113): 
I o- P- J I (d)nr+*r-u O'o+oo-u+, ,n.'np+r f

where

b* :{ 
c}R3-*o+t'n!np}r - F@,)i,-1il['"+nn+t for ko 1n, 

(3.114)

[ -"t¿1f, -rÐl'"*"o*t tor k, > n.

Comment 3.4 It follows from eqn. 3.113 that B6 - ro t 0 for kp: lc (n¡ is

def,ned in eqn. 3.91).

The coefficients of predictor polynomials o.(p) and B,(p) can be found from

eqn. 3.113. However, for the case leo > k the above equation can be further

separated into two equations. For this purpose let us define the following vectors

of coefficients

P! : lþ-0,*r g-t"o+*+r þ-t] , (3'115)

0: : l0o 0, þ*,]. (3.116)

The coefficients of the polynomial þ,(p) which are contained in the vector B!

are associated with future values of the input {"(¿)}; the coefficients contained

in the vector p! arc associated with present and past values of the input {"(¿)}.

Note from eqn. 3.113 (or from fig. 3.3) that for k, ) k it can be split into the

following two equations

l"r ... nk,-t): 1|@)f;,-o-r, (3.117)

(Putn¿:0fo1 i>n),and

I tsuaS]r,n]no{1 - p",@f,-o-ril3n*no*' 6" 
]

: 
[". ,, ] [,îï"

where óR is defined by eqn. 3.114.

eqn. 3.117 as

(c,) 
^,

0np*l,n1.npll

The vector B

(3.118)

can be calculated fromL

0". : l"o ... nk,-r)(@)"r,-rì-'',

where matrix (d)"rr-*-, is nonsingular (see eqn. 3.108 for i : kr- k)
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Case lc, < Icz The second equation resulting from separation of eqn. 3.106 is

lows

I LrSo"nS* r'n]no!r 
G1nå-u'*r'n]np*r - F U)i,-r,?ä''*'o*t) ]

l*- " ] f 
**îfl:;,-*,^._, Y^:),:'_..,) (3 120)

Recall that our task was to calculate the TIMO-type predictor polynomials sat-

isfying the composite-matrix polynomial equation 3.99. This was translated into a

problem of solving a set of linear algebraic equations 3.105 or 3.106. These equations

were partitioned leading to reduced dimension equations.

Summarizing, in order to find the coefficients of polynomials a,(p) and B.(p) of

the kr-step-ahead TIMO-type predictor, one needs to calculate the vector of coeffi-

cients F of the polynomiat .F(p) from eqn. 3.110 and

if kp : k then solve eqn. 3.113 for the vectors of coefficients c, and B, using -F;

if kp > k then calculate the vector of coefficients B! from eqn. 3.119 and solve

eqn. 3.118 for the vectors of coefÊcients c. and B! using F and BL.;

if kp < k then solve eqn. 3.120 for the vectors of coefficients a., and B, using F

Eqns. 3.113, 3.118, and 3.120 have the form á : xA. The general solution is c :

bAt + P(I - AAI), where "4t is the generalized inverse of matrix ,4, and P is a

parameter of the solution 1722, chapter 2] (see example 3.3.1, p. 105). Existence of

the solution r is investigated in the following subsection.

3.3.2 Relationship between solutions to the optimal predic-

tion problem based on the right difference operator

and state-space system representations.

The existence of the TIMO-type predictor polynomials a.(p) and B.(p) is examined

below. For this purpose the optimal predictor 3.101 will be interpreted in terms of
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the system state-space model. It is also shown that coefficients of the polynomial

vector a.(p) can be found independently of those of the polynomial 0.(p) in terms

of the system state-space model.

Proof of Lemma 3.5 (part 3).

Let us establish the following relation between coefficients of the polynomial F(p)

(eqn. 3.100) and the system state-space model 2.8 (p. 22)

f¿--CAi,-rK, for i:I,...,ko-1. (3.121)

In order to prove the above relation note at first from eqn. 3.89 that the transfer

function relating the output A(t) to the noise input ar(f) is

Ho,-(z): c-("-l)ld("-t) - 1+ Ðh,t-',
oo

i=1

where the Markov parameters h; - CA'"-LK fot i: I,2,... are defined in terms

of the system state-space model 2.8 [80]. Using the relation between the Markov

parameters and coefñcients of the polynomials of the corresponding transfer function

f112, eqns. 6-27 to 6-30, p. 2a5l r¡/e can conclude that

c-(p) : d(p) + CCn(p): 1 + lù + CKlp t ldz + C(A, I dl,)Klp2 ¡
+... + ld^ + C(A:-' + ùA:-2 + "' + d^aI^)Klp^.

Hence, the vector of coefficients c!- (see eqn. 3.107) can be expressed as

",J:lr ú-fCK dxo-riC(A:,-'ic\Ak,-z +...+ dk,-2[òI{f . G.r22)

The inverse of the upper triangular Toeplitz matrix (d)Ir-, is given by the eqns. 3.21

and 3.22, p. 64. Thus it follows from eqns. 3.110 and3.722 that coefficients of F(p)

are

1fo

: CI{Ít 7 dt' + CK
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r, L dt + cK dz 4- c(A" + ú1")I{

d?-d,

-dr
1

: C A"I{,

+

and so on. This establishes the relation 3.121.

Let us no'ff express the output y(t+kr*np) in terms of the state ø(f), and system

inputs u(t) and a.r(ú) of the state-space model 2.8 as

aQ + k, + no) : Cx(t * k, * rò + u(t * ko + no) :
kplnr-l nP

: g¡ko+nn¡(¿) + t g¡ke*ne-r-¿B"uçt + i) + DcAro*^o-t-iKu(t + i) +
i=0 i=O

kp-l
+ t g ¡ke-t'-i hçu(t + n, t i)+ c,l(¿ + k, + nr).

i=L

Eqn. 3.123 can be written using eqn. 3.121 as follows
lcp+r"p-l

a(t + kr+nr) - CAko*n,r(t) * t g¡ko-tno-r-¿B"uçt + i) +
i=O

nP kP

+ÐCA:,+nn-r-iyr(¿ + i) +l f4-ru(t + no * i).
i=O ¿=1

(3.123)

(3.124)

On the other hand, the output y(t*ler+nr) can be expressed using the predictor

equation 3.101 and eqn. 3.102 as

aQ + Ic, + nr) : a-(p)ap(t + n) + þ.(p)u(t - k; * np) + F(p)a(t + k, + nr).

Using the state-space model one has

y(t + lc, + nr) : aolCpA!' r(t)+
np-l 

tn--r-in --l¡ , -.\ 
np-l 

?, .(+ r "'\ ,r 11 ^,.,(+-t - ,'l+ t cp/ne-r-¿B"uçt+i) + | crAT"-r-iKa(t +i)+ c|a(t
i=O 

A"' -Ds'u\L f t') 
i=0 

\w\ú -r þ) T vÞw\þ , '"r, 
)

+ . ..+ eno-rlCpA"r(t) i CpB"u(t) * CpI{u(t) + Csa(¿ + 1)l +
np-lci lçp

to,^,lCpx(t) + Csc.r(t)l + Ð p^o-¿u(r + i) + t fro-;u(t -f no* i)
i=o i=l

nPt
i=O

nP-

onlc,,r3,-,,(¿)l .:ä ", [:Ë;' 
c,¡no-i-r-'B"u(¿ + i)]

lno-j-t I
I t cp¡no-i-t-;rrcuit +;) 

|l;=o I

np-l

+ t 1no-;u(t+i)+ D",
j=o

Ie,p

*Ð on,-¿Cya(t + ,) + Ð f r,-or(t -f n, * i)

,lc r

i=0
n-

i=0 i=l
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The left hand side of eqns.3.124 and 3.125 is the output aO+kr+nr). \Me can

thus equate the right hand side of these equations. The comparison of the terms

associated with r(f) on both sides of such equation leads to
nP

ç¡kn*nn: t a¡Cp/nn-¿.
i=O

Next the noise terms are compaxed in eqns. 3.724 and 3.125

(3.126)

kP

¡ke*ne-r-i I{u1t + i) + | rx,_,r(t * np + i) :
np

DC
i=0
np-r

Ðo¡
j=o

kP

i=l
-j-r np

I Cp/"n-i-t-i Xu(t + t) + t an,-;Csu(¿ + i) +
i=O i-o

+lfn,-;a(t*n,*i).
i=1

This results in the following relation for i :0,. . . ,flp
i-1

g¡kn+i-ry: t a¡CpAi-l-iK +a¿Cs. (J.I27)
j=o

Combining eqns. 3.126 and 3.127 into a single equation, one has the following ex-

pression which involves the vector of coefficients c., of the polynomial vector a,(p)

defined by eqn. 3.97

r,vhere matrix 19- is defined by "r î'rl'^:'u' 

(3'128)

u lro C Afn-t Y C AkP+ne-L I{ ç ¡ko*ne (3.12e)

The existence of solution a. to eqn. 3.128 for each value of the prediction lnoÅzor' k,

is guaranteed by Assumption 3.9.

Now we shall find an algorithm for the calculation of coefficients of the polynomial

0-@) defined by eqn. 3.98. For this purpose, the terms associated with ihe input

z(ú) are compared on both sides of the equation resulting from equating the two

expressions 3.124 and 3.125 for the output y(t + lc, + nr). Thus

kplno-l

t ç ¡ke*np-r-, B"uçt + i) :
i=O

np-l np-l-j np - lrí

Do¡ t cp¡no-i-r-i B"u(t + i) + D þ^o-,u(t + i). (3.130)
j=o i=O
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Two cases are considered depending on the relation of the prediction horizon to the

deiay. Furthermore, we make use of the property of Markov parafil.eters for a system

with delay of k sample intervals, i.e., C Atr-rB": 0 for I : I,.. -,le - 1 [80].

Case ko ) k: Using the property of Markov parameters mentioned above, and sub-

stituting le¿ : le - Ic, or..e has from eqn. 3.130

np*kp-k

t g¡ke*ne-r-¿B"u7t + i) :
i=0

np-l np-l-j np*ko-lc

Io, D Cp!"o-i-t-i B"u(t + i) + t g*,-;u(t¡i¡.
j=o i=O i=O

The following algorithm for calculation of coefficients of the polynomial 0,@)

results from the above equation

þ¿ : CA!''r*iB, for i : Ic - ko,k - lce+ 1, -1,0; (3.131)

CpA!,-rB"

0¡ : C A!,-r+i Bs - 0g aj-t for i:1,...,flp.

CrB"
(3.132)

Case kp ( k: Using the property of Markov parameters mentioned above, and sub-

stituting k¿ : I one has from eqn. 3.130

np-l

D CA!,*"o-r-i9"u(t + i) :
i=0
np-l np-lt a¿j + t g*,-;u(t+i)
,=0 i=0

It follows from the above equation, that the aigorithm for calculation of coeffi.-

cients of the polynomial þ.(p) is given by eqn. 3.132. 17

ttEqrr. 3.132 explains the choice of Ic; - 1 for ,bo < k (see Lemma 3.5). The coefficient Bv -

CAy,B, - aoCpBs of the polynomial 0.(p) tn y be nonzero even if ko 1 k - 1 (in which case it

follows from the property of Markov parameters for a system with delay È that CA!'8, = 0) since

asCpBs may be nonzero.

f"o-t-j I
I f cp!nn-i-t-¿ a"uçt + t¡lL¿* I
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Therefore, the existence of the polynomials of the TIMO-type predictor depends on

the existence of solution to eqn. 3.128 which is guaranteed for an arbitrary value of

k, by Assumption 3.9. This completes proof of Lemma 3.5.

Q.E.D.

Comment 3.5 Condition 3.88 of Assumption 3.9 requires that the number of rows

of the tnatrir û. is not less that the number of columns, which can be satisfied only

if f :dimy¡(t) > dimø(t) : t (see Assumption 3.7).

Note also that condition 3.88 leads to the following requirement on the degree no

of the TIMO-type predictor polynomials

",>l-";/ltl,L J_I J

where for a real r, [ø] denotes minimal integer such that [r] I r. Furthermore,

implicit in condition 3.88 is the requirement that the matrix t9, consisting of the

last n columns of matrix d,, has full column rank. The latter requirement will be

satisfied if. n, ) up - 7, where zp is the observability index of the pair (C¡, A").

Hence, in order to satisfy Assumption 3.9, the degree of the predictor should be

chosen according to
/ - l"-f+11\n,)nnax (""-\lfrl) (3.133)

Condition 3.88 requires also that the upper triangular block Toeplitz matrix,

consisting of the first n, * 1 columns of matrix ,5., has full column rank. This implies

that rank Cs 10.

Exarnple 3.3.1.

This example illustrates calculation of the coefficients of polynomials a.(p) and B,(p)

of the TIMO-iype predictor 3.101.

Let us consider a third order system given by the state-space model 2.8 (p. 22),
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where a(t) : v'(t), ar(t) : lvr(t) sr3(ú)l', and

A":
1.5 -0.75 0.1

100
010

B

0.2

K - -0.1

0.3

Il

I

0.75

1

(3.134)

C 1 -0.2 0.5 Cp:

d(p)

¡rþ)

".(p)
¡rr(p)

c.(p)

: dfu: lL - 1.5 0.75 - O.rlPe,

: lúP, : l0 Cl h,
: c.P3: l1 - 1.13 0.51 0.1715] Pr,

: I/rPe :10 CF]h,

I r -r.445 i.o1o -o.ozro I: C-Ps-l lP3
I t -1.250 1.825 -o.srzr .l

0.5

0

0.1

-0.5
Cs:

The corresponding RDO model 3.89 is given by

(3.135)

The output the future value of which is to be predicted is y(f ) : At(t).The outputs

rvhich are available for utilization in the predictor are yp(t):lar(t) a"(t)\'.

Let us fi.nd the (k, :3)-step-ahead TIMO-type predictor for the above system.

The observability index is up - 2, f : 2, and n : 3; the degree of the predictor

polynomials is chosen according to condition 3.133 as np - max(1,2):2.

First, the coefficients of the polynomial vector o.(p) are calculated from the

system state-space model 3.134. From eqns. 3.729 and 3.87 one has

[0.4665 0.5005 0.4324 0.9650 - 0.8581 0.1368] ,U3

ú.

1 0.055

1 -0.250

0 1.000

0 1.000

00
00

0.3425

0.2500

0.0550

-0.2500

1.000

1.000

1.975

1.000

1.500

1.000

0.500

0

- 1.075

-0.750

-0.275

-0.500

0.750

1.000

0.15

0.10

0.05

0

0.10

-0.50
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and rank t. : 6, i.e., Assumption 3.9 is satisfied. The solution 18 to eqn. 3.128

yields le

ou) 

: ffi "'1,"!;':"]nî',n"1',rî^::1,, 
-010e2r (s136)

Since fro >

eqns. 3.131 and 3.732

0, -- lþ_, þ¡ 0o fu 0ù : l7 1.3 1.7 0.7709 2.70791.

Alternatively, the coefficients of both polynomials a,(p) ar'd B,(p) can be found

from the system RDO representation 3.135. Note from eqn. 3.107 that vector c, -

[1 - 1.13 0.51], and vector of coefficients of the polynomial f(p) follows from

ec1n. 3.110 as f' : [1 0.37 0.315] . The vector þt, ("qn.3.115) is found from eqn. 3.119

"" 0",: [1 1.3]. Now it remains to solve eqn. 3.118i kp: n, cl: 0.1715 (eqn. 3.111),

and the left hand side of eqn. 3.118 is

[(,nrs'nfiÉ - B"-ta>inïu) ("3nåu - rla¡fniÉ)]

: [1.7 -0.875 0.13 0 0 0 0.4665 -0.1992 0.0315 0 0 0] .

The matrix on the right hand side of eqn. 3.118 is of dimension 17 x 12 and is of full

row rank. Therefore, the solution is unique and yields a, given by eqn. 3.136 and

þo : 11.7 0.7709 2.10791 (see eqn. 3.116)'

3.3.3 Discussion of properties of the TIMO-type predictor.

It is desirable to compare the properties of the TIMO-type predictor developed for a

system having the feedback configuration FD with those of the TISO-type predictor

for the same system within the feedback configuration FI.

l8All .omputabions were performed using MATLAB package [110]'
leRecall thab a.(p) is a 1 x / polynomial vector having coefficient vectors a¡ for j = 0, ...,n0 of

dirnension 1x / (see eqn.3.97); each coefficient vector a¡ has / elements a¿j (a¡i is associated with

the system output g;(f)).
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The RDO model of the system having the feedback configuration FI is given by

eqn. 3.89 with yp(ú) : y(t). The corresponding state-space model is given by eqn. 2.8

(p.22) where Cr: C, Cs: 1, and f : L; hence, Assumption 3.9 is not satisfied

and Lemma 3.5 cannot be used. However, it can be shown following the derivation of

the optimal predictor for a TISO system given by the ARMAX model [83, chapter 6]

[9, Lemma 7.4.I, p. 268], that if all roots of the noise polynomial c.(z-L)Iie strictly

insid,e the unit circle, then the optimal fro-step-ahead prediction y'(ú + kelt) of output

9(f) satisfies

c,(p)y"(t + kplt) : a"-(p) þ".(p)
y(t)

u(t+ko-k)
(3.137)

The polynomials a".(p) : ots-Pn-r and f'"(p) : F"Pko-t satisfy the following poly-

nomial equation

c.(p) : F"(p) a".(p)
d(p)

pk,
(3.138)

and

9",(p) : p-k F"(p)¡r(p). (3.139)

The predictor 3.137 will be referred to as the TISO-type pred,ictor.

The first aspect to be compared is the "quality" of the TISO- and TIMO-type

predictions.

The relation between the prediction errors of the TISO- and TIMO-type

predictions.

The polynomial equation 3.138 implies that .4 : 
"r. 

(@,)"rr-r)-t , where c!. and. (d)tur-,

are defined by eqns. 3.107 and 3.108, respectively. Note from eqn. 3.110 that -t'- .F".

Hence, from eqns. 3.103 and 3.104 it follows that

Cornrnent 3.6 The prediction errors and their uariances are identical for th,e lcr-

step-ahead" TISO- and, TIMO-type optimal predictions.

This result can be explained as follows. Firstly, both predictors minimize the mean-

square prediction error. Secondly, the output data sequences, i.e., {yp(l)}, although
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different for both predictors, are not statistically independent. For the TISO-type

predictor the output data sequence is the sequence the future values of which are

to be predicted since y¡(ú) = VQ). For the TIMO-type predictor the output data

sequence {yr(¿)} is statistically related via model 3.89 to the sequence {y(t)} the

future values of which are to be predicted.

Similarity between the predictors for stochastic and deterministic multi-

output systems.

Note that calculation of the TISO-type prediction A'(t + kolf ) from eqn. 3.137 in-

volves output prediction filtered by the polynomial7 - c,(p). On the other hand, the

TIMO-type prediction 3.101 does noú involve past output predictions. In fact, the

same input-output sequences are involved in the TIMO-type prediction for stochas-

úic systems and the SIMO-type prediction 3.68 (p. 80) for determinisúic systems.

This sirnilarity between the predictors for stochastic and deterministic multi-output

systems implies that a number of features which are associated with predictors for

deterministic systems extends to predictors for stochastic systems. These features are

significant in both nonadaptive (see discussion below) and adaptive (see subsection

3.3.4) applications.

Comparison of assumptions concerning the noise polynomial c,(z-r) 
""-

quired for the TISO- and TIMO-type predictors.

Considering the Spectral Factorization Tl¿eorenz (SFT) [82, Theorem 10.1, p. 47]

[136], it can be assumed without loss of generality that the roots of the noise poly-

nomial ".("-t) lie inside or on the unit circle. However, it is commonly assumed

in the derivation of optimal time-invariant predictors (such as the TISO-type pre-

dictor 3.137) [83,724,725,137] [59, chapter 12] and optimal predictive controllers

[83,25,31,125,99,737,13S] [9, chapter 11] [59, chapter 12] that the roots of. c.(z-t)

Iie strictly inside the unit circle, thus excluding the possibility of roots lying on the

unit circle. Note that such an assumption is not required for the TIMO-type predictor

because the noise polynomial 
".(p) 

is not involved in eqn. 3.101, i.e.,
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Comment 3.7 Tl¿e TIMO-type predictor permits arbitrary location of the roots of

the noise polEnomialc,(z-L) (i.e., inside or on th,e unit circle in the light of the SFT),

in contrast to the TISO-type predictor (which constrains lhe roots to lie inside úå.e

unit circle).

If there are roots of the noise polynomial c.(z-t) lying on the unit circle, then it

is possibie to use time-aarying ot restricted contplexity TISO-type predictors [9, chap-

ter 7]. The time-varying predictor will converge asymptotically to the time-invariant

predictor (under some assumptions); on the other hand, the restricted complexity

(time-invariant) predictor will yield a suboptimal predictior 'o [9, p. 272].

It is known that there a¡e roots of the noise polynomial in the ARMAX model

lying on the unit circle if the system has uncontrollable modes lying on the unit

circle [9, chapter 7]. It should be noted, however, that roots of. c,(z-L) Iying on the

unit circle cannot arise due to the uncontrollable systems modes since the system is

assumed to be controllable (see Assumption 3.8, p. 92).

The effect of arbitrary initial.conditions on the TISO- and TIMO-type

predictions.

If it is required t}r'at y"(t + kelt) is an optimal prediction for all sample instants, then

appropriate initial conditions must be chosen for the predictors 3.101 and 3.137.

It is well known that if arbitrary initial conditions are chosen for the TISO-

type predictor, then the effect of incorrect initial conditions diminishes exponentially

provided c,("-t) has all roots inside the unit circle [9, Remark 7.4.3, p. 269]. This is

because znc.(z-r) is the characteristic polynomial of a filter, having inputs y(ú) and

u(f) and output y'Q+ kolf), which represents the TISO-type predictor [83, Remark 3,

p. 170]. Hence, the rate of decay of the effect of incorrect initial conditions depends

on the location of the roots of. c-(z-t).
2oThis property is illustrated in example 6.2.3, (p. 255) for the application of the restricted com-

plexity TISO-type predictor to self-tuning MPE control of systems having the noise polynomial rvith

roots on the unit circle.

110



On the other hand, note from eqn. 3.101 that the characteristic polynomial of a

filter representing the TIMO-type predictor is zno. Hence,

Comment 3.8 If arbitrary initial conditions úre a,ssurned, then the effect of incorrecl

initial cond,itions on the TIMO-type prediction A'(t+kelt) dies away after n, sample

instants regard,Iess of the location of the rools of the noise polynomial c.(z-l).

Output measurement conffguration.

The next property of the TIMO-type predictor is associated with the flexibility of

the output measurement configuration. The optimal TIMO-type predictor does not

require measÌrrement of the output y(ú), the future value of which is to be pre-

dicted ", i* contrast to the TISO-type predictor. Note, however, that measurement

of more than one output (/ > 1) is required by the TIMO-type predictor (see As-

sumption 3.7).

The optirnal TIMO-type predictor for a system with the stochastic input

only.

The system generating sequence {g(¿)}, the future values of which are to be predicted,

'n¡as assumed to be driven by two input sequences: the known (i.e., measurable) se-

quence {"(¿)} and (unmeasurable) white noise sequence {r(¿)} (see Assumption 3.7).

However, it is often assumed that the system generating the output sequence {y(¿)}

is driven only by the white noise sequence {r(¿)} [139, chapter 6] [116, chapter 3]

[123,137]. Such a system can be alternativeiy thought of as a TIMO system with

zero input u(ú). The corresponding predictor results from the TIMO-type predictor

by setting u(t):0, i.e.,

y" (t + kelt) : o.(p)ae(t).

2lThis property is illustrated for the application of the TIMO-bype predictor to MPE control of

TIMO systems in example 6.2.I, p.224.
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The composite Diophantine equation 3.99 reduces to the following polynomial equa-

tion

p-koc.(p): Io",(o) rrp) ] lr:;',r;'r)
from which the polynomial o.(p) can be determined.

3.3.4 Adaptive TIMO-type predictor.

The problem of adaptive prediction for stochastic systems having the feedback con-

figuration FI has been considered in [123,124,125,126,137,9]. In this subsection the

d"irect adaptive TIMO-type predictor is introduced. For this purpose let us rewrite

the predictor eqn. 3.101 as

v'(tlt - kr) : O'ö(t - kr),, (3.140)

where the ((/ * 1)(no + 1) - k¿) x 1 parameter vector O and the regression vector

/(ú) are defined as

o (3.141)

(3.142)ó(t) ar(t - nr)t u(t - k¿) u(t - nr)

The estimation algorithm employed to estimate parameters of the TIMO-type

predictor is the recursive least squares with condition number monitoring (RLS-

CNM). The condition number monitoring (CNM) technique rvas introduced in [57]

for the recursive extended least squares (RELS) estimator and will be discussed in

subsection 6.2.2.

In order to calculate the equation error required by the RLS-CNM estimator',ve

need Assumption 3.6 (p. 86), i.e., y(t) is known.

The direct ad,aptiue TIMO-lype pred,ictor consists of the following steps which are

performed at every sample instant f:

step 1. calculate the predictor parameter estimates

ô1t¡ : lr,(r) 0.(Ðl'

772
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using the recursive least squares algorithm with condition number monitoring

RLS-CNM (see eqns. E.5 to E.7, Appendix E), with the equation error defined

as (see eqn. E.1, Appendix E)

e(t): y(t) - ô(¿ - 7)'ö(t - k); (3.144)

step 2. calculate the prediction of y(ú) as follows

û(¿) : 6(¿ - kr)'ó(t - kr). (3.145)

For the purpose of establishing the corì.vergence properties of the adaptive predic-

tion 3.145 we need the standard assumptions (cf. [125,126] [9, p. 372]).

Assumption 3.11 (Noise assumption) The noise sequence {r(¿)} is sarnple rnean-

square bouniled almost surely, i.e.,

limsup t)" ( oo o,.s (3.146)
N+oo

Furthermore

Assumption 3.12 (Input-output data assumption) The input sequence {"(t)},
and output sequences {yr(¿)} and, {y(t)}, a,re sarnple rnean-square bound,ed, almost

surely, i.e.,

.. 1NlimsuprÐ"(tl' <
t=7

1N
limsup; t lly.(¿)ll' <

N*co l t ¿=l

#å*

rimsuP # å r,
t)'

\Me have the following convergence result.

Lernrna 3.6 Let the output sequence {y(¿)} be generated, by the systern satisfying

Assumptions 3.7 to 3.10 (p. 91), 3.6 (p. 86), 3.11 anil,3.12. Then the adaptiae

TIMO-type predictio" û(t) calculated from eqn. 3.145 with the nLS-CNM estimator

(irnplemented with no forgetting) conuerges to the optimal linear prediction y'(tlt-kr)
of output y(t) in the following sense

1

¡tr
1im

N-oo I tg(¿l - a'Qlt - k,)l' : o
kP
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Proof. This lemma can be proved following 1125,126,91 and using a similar technique

to this employed in the proof of Theorem 6.2, p. 230.

Q.E.D

Note that no persistent excitation condition is needed for the convergence result

3.147. Nothing is said, however, about the convergence of the predictor parameter

estimates to the true values of parameters of the optimal predictor.

For the completeness of exposition, let us mention adaptive predictors, and asso-

ciated convergence results, developed for TISO systems. In [123] the direct adaptive

predictor employing the RLS estimator v¡as proposed for a system driven only by the

white noise sequence; it is shown that i/the predictor parameter estimates converge

to some values, then the adaptive prediction converges to the optimal prediction.

However, the problem of parameter estimates convergence was not addressed in [123].

The convergence in the sense of eqn. 3.L47, which does not depend on the esti-

mates convergence, \ilas firstly established for the adaptive predictor employing the

stochastic gradient estimator for TISO systems in [125]. Subsequently, corresponding

convergence results were established for adaptive predictors based on the variants of

the recursive extended least squares (RELS) estimator. In [126] the adaptive predic-

tor involving a bank of ko interlaced RELS estimators was introduced. The adaptive

predictor proposed in [56] employs lhe weighted RELS estimator. The CNM tech-

nique was applied to the RELS estimator employed in the adaptive predictor of [57].

Discussion of properties of the adaptive TIMO-type predictor.

The properties of the TIMO-type predictor which are relevant to the adaptive case

are briefly discussed below. We shall return to these properties in detail in subsec-

tion 6.2.2 (pp. 231-235) for the application of the predictor to self-tuning control of

TIMO systems.

Firstly, note that the parameters of the TIMO-type predictor are estimated by the

ordinary linear regression estimator, such as the RLS. On the other hand, the corre-

sponding adaptive TISO-type predictor involves pseudo-linear regressioz estimator,
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such as the stochastic gradient or RELS 1126,126,þ6] [9, section 9.3] (cf. discussion

on pages 237-234). (The RLS estimator can be employed in the adaptive predictor

for a TISO system driven only by the white noise sequence [123].) A significant im-

provement in the conuergence rate of the TIMO-type predictor parameter estimates,

and enhancement of the numerical robustness of the estimator, can be expected in

comparison with those of the TISO-type adaptive predictor; this is a consequence of

using the linear regression estimator instead of the pseudo-linear regression estimator

(cf. Comments 6.8, (p. 234), 6.9 (p. 234) ard example 6.2.2 (p.240)).

Secondly, the assumptions concerning the noise polynomial c-(z-t) and required

by the adaptive TISO-type predictor are modified for the TIMO-type predictor. In

particular, the adaptive TIMO-type prediction converges to the optimal prediction (in

the sense of eqn. 3.147) regardless of the location of the roots of the noise polynomial

".("-t) and for arbitrary initial conditions (cf. Comment 3.8, p. 111). On the other

hand, the adaptive TISO-type predictor requires roots of the noise polynomial to lie

inside the unit circle; alternatively, the restricted complexitypredictor can be used to

yield an asymptotically suboptimal prediction [9, Remark 9.3.2, p. 377]. Furthermore,

the convergence of the adaptive TISO-type predictor is subject to the so-called strictly

positiae reøl (SPR) condition [53] imposed on a transfer function involving the noise

polynomial c.(z-r) 1725,126,56] [9, section g.3]. No SPR condition is required for the

convergence of the adaptive TIMO-type predictor (cf. Comment 6.10 on page 235

and example 6.2.2, p. 2a0).

Summarizing, the adaptive TIMO-type predictor has a number of desirable prop-

erties. However, some of the assumptions which were made might be difficult to

verify (e.g., Assumption 3.9). Note also that Assumption 3.8 excludes uncontrol-

lable systems, which is not the case of the TISO-type predictor based on the system

ARMAX model [9, chapter 7].
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3.4 Concluding remarks.

In this chapter, the problem of prediction of the future values of outputs of de-

terministic and stochastic systems having the feedback configuration FI and FD is

considered.

In section 3.1, two types of predictors for a MIMOS deterministic system having

the feedback configuration FI are presented. They differ in the prediction horizon,

which is related to the degree of ihe interactor matrix associated with the MIMOS

system, and in the choice of the left or right interactor matrix, embedded in the

design. The idea of employing the interactor matrix in the development of predictors

\Mas proposed elsewhere. However, it is shown here that this idea can be generalized

to predictors with the multi-step-ah,ead prediction horizon. (The left interactor ma-

trix is employed in the present work for the multi-step-ahead predictor, but a parallel

analysis for the right interactor matrix could be performed.) Moreover, the nilpotent

interactor mal,rices, being nonunique characterizations of a multivariable system de-

lay structure, are employed instead of the unique interactor matrices. Furthermore,

the new algorithms are derived for the calculation of the matrices of coefficients of.

the polynomial matrices which define predictors. These algorithms are amenable to

computer-baseil calculations using any matrix-oriented software. In particular, a re-

cursiae algorithm is developed for the calculation of matrices of coefficients of the

predictor polynomials for subsequent values of the prediction horizon. The predictors

will be employed in the development of the MPE self-tuning controller in chapter 4

and the long-range predictive self tuner in section 5.1.

In the remaining two sections of ihis chapter, the problem of prediction for systems

having the f eedback conf,guration FD is addressed.

In section 3.2, the new SIMO-type pred,ictor for a SIMO deterministic system

having the feedback configuration FD is developed. The polynomials which define the

SIMO-type predictor are likely to be of degree smaller, and to involve less coeffi.cients,

than those of the SISO-type predictor. For systems with known parameters the

method for the off-line calcuiation of the coefficients of the polynomials defining the
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predictor is presented. This method is based on a nurnerical representation of. the

Diophantine equation. For systems with unknown parameters the adaptiue SIMO-

type predictor is proposed. T}re conuergence of the adaptive prediction to the actual

value of the system output is established without any persistent excitation condition.

An example illustrates improvement in the conaergence rate of parameter estimates of

ihe adaptive SIMO-type predictor in comparison with that of the SISO-type predictor

in application to a robot manipulator. Such an improvement is due to the reduction in

the number of estimated parameters of the SIMO-type predictor in comparison with

the SISO-type predictor. Faster convergence rate of parameter estimates improves the

performance of the adaptive predictor. The SIMO-type predictor will be employed in

the development of the minimum prediction error self-tuning controller in section 6.1.

In section 3.3, the new optimal TIMO-type predictor f.or a TIMO stochastic sys-

tem having the feedback configuration FD is developed. A number of properties

of the TIMO-type predictor which are desirable in adaptive applications motivated

development of the predictor for the arbitrary prediction horizon. For systems with

known parameters the method for the off-Iine calculation of the coefficients of the

polynomials defining the predictor is proposed. This method is based on a numerical

representation of. the Diophantine equation. For systems with unknown parameters

the atlaptiue TIMO-type predictor is proposed. The adaptive TIMO-type predictor

employs the linear regression estimator (the RLS) in contrast to the adaptive TISO-

type predictors for stochastic systems having the feedback configuration FI which

l;rse pseudo-linear regression estimators. Consequently, superior convergence rate of

predictor parameter estimates, and enhancement of the numerical robustness of the

estimator, can be expected for the adaptive TIMO-type predictor in comparison with

ihe TISO-type predictor. The conaergence of the adaptive TIMO-type prediction is

established 'without the SPR cond,ition imposed on the noise polynomial in contrast to

the adaptive TISO-type prediction. The TIMO-type predictor, with the prediction

horizon set to the value of delay from the control input to the controlled output,

rvill be employed in the development of the minimum prediction error self-tuning

controller in section 6.2.
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Chapter 4

Self-tuning minirnum prediction

error control based on the right

nilpotent interactor matrix for a

multi-input, multi-output,

det errninistic systenr..

In this chapter a new self-tuning minimum prediction error (MPE) controller is de-

veloped for a linea¡ multivariable square (MIMOS) deterministic system having the

feedback configuration FI (see page 18). The design of this self-tuner involves charac-

terization of the multivariable system delay structure by the right nilpotent interactor

(RNI) matrix, introduced in subsection 2.3.3.

In section 4.1 the MPE controller, which minimizes the ,b-step-ahead single-stage

cost function for a system with known pa,rarneters, is derived (see approach (iii)

on p. 60). The design of this controller is based on the approach proposed in [35].

However, the RNI matrix is employed in place of the unique right interactor matrix.

Furthermore, the system DARMA model is used instead of the system transfer ma-

trix. These features facilitate development of the ind,í,rect self-tuning MPE controller

possessing properties desirable in adaptive control (see section 4.2).
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Firstly, the resulting self tuner does z¿of require prior knowledge of the interac-

tor matrix (but does involve more complex algorithms). Instead of assuming prior

knowledge of the right interactor matrix, the algorithm introduced in subsection 2.3.3

is employed for the on-line calcuiation of the RNI matrix from the estimates of the

DARMA model (see approach 5 (b), p. 39). Knowledge of the upper bound on

the degree of polynomials in the DARMA model is the only prior system knowledge

required by the self tuner. This is a significant relaxation of the assumptions concern-

ing prior system knowledge in comparison with the existing solutions to self-tuning

predictive control (see subsection 2.3.1). Furthermore, the only parameters to be

estimated are those of the DARMA model.

Secondly, a unifi.ed treatment of the MPE control of plants subject to d'eterministic

d,isturbances is facilitated by representation of the system by the DARMA model.

The application of the self tuner to control a robot manipulator is considered in

section 4.3.

In this chapter we shall use the results of subsections 2.3.3 and 3.1.2'

4.L Minirnum prediction error control based on

the right nilpotent interactor rnatrix for a sys-

tern with known parameters.

In this section:

o the MPE controller which minimizes a single-stage cost function is derived (see

approach (iii) on page 60);

o stability conditions for the closed-loop system are presented.

The developments of this section form a generalization of results presented in [35],

where the application of the (unique) right interactor matrix ("(r) in the design of

IVIPE controllers was originally proposed. In the derivation of the VIPE controller we

employ a nonunique characterization of the plant delay structure, namely the RNI
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matrix Kn("), rather than the unique right interactor matrix. The MPE controller

is designed for the DARMA model rather than for the transfer matrix representation

employed in [35]. The DARMA model describes, in general, the controlled plant

with the generator of deterministic disturbances incorporated in the system model

(see discussion on p. 19 and p. 28). The resulting controller eliminates the effect of

deterministic disturbances a,ffecting the plant.

Let us consider a MIMOS deterministic system satisfying Assumptions 3.1, 3.2,

and 3.3 (see pp. 58-59). Consider the following quadratic cost function proposed in

[35]

J¡: lly(t + k) - r(t * ¿)lli + lls(e)z¡(t)lll, (4 1)

where k is the degree of the right interactor matrix of the system, T and l\ are

positive definite and positive semideflnite matrices, respectively; the rn x rn weighting

polynomial matrix ^9(p) is defined as

5(p) : .9o * Srp+ "' + Sn"pn", det So I 0 and n" ) 0'

Signal uk(t), defined in Lemma 3.2 (eqn. 3.41, p. 72), wlll be called an auxiliary

control signal.

The first term in cost function 4.1 penalizes the tracking error; the second term

penalizes the auxilia¡y control signai (i.e., the control signal filtered by the inverse of

the right interactor matrix).

We have the following result corresponding to that obtained for the system trans-

fer matrix description with the unique interactor matrix in 135].

Lernrna 4.1 Consid,er a MIMOS system satisfying Assumptions 3.1, 3.2, and 3.3

(see pp. 5S-59). For such a systern the auriliary control signalu{t), which minimizes

cost function /¡.1, is giuen by

V(p)u¡"(t): M(p) -I((p)
r(t + k)

y(t)
(4.2)

(4.3)

wltere tl¿e rnxrn polynornial malricesV(p), M(p), and, I((p) are defined as

v(p) : uo+Vp+ "' - óiTó(p) +SiÂS(p),
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M(p) : 6LT, (4.4)

t{(p) : 6LT (p),, (4'5)

and, the n'L x Tn polynomial matrices 1(p) and, 6(p) are d,ef,ned in eqns. 3 ./¡7 and, 3.18,

p. 72. The control signal is then calculateil from eqn. 3./,1 (p. 72), i.e.,

u(t) : i{p(p)u¡(t), (4.6)

where i{"(p): pkl<R(q) (see eqn. 3.12, p. 72), and I{p(q) is the RNI matrix of the

MIMOS systern.

Proof.

Let us substitute the k-step-ahead predictor expression 3.43 (see Lemma 3.2, p. 72)

for y(f * k) in the cost function 4.1, which leads to

r¡ : lly(¿ + k) - r(t+ k)lli + lls(e)u¡(t)lll

: llr(p)y(¿) + 6(p)u¡,(t) -'(¿ + k)lli + lls(p)u¡(t)lll

: 
la(t)'^r@)' + u¡(t)'6'o r u*(t - 1)'p-'[ó(p)'- óå] - r(t -r,t)'] r x

lt@)a(t) * ósz¡(ú) * p-'to(p) - óslu¡(t - 1) - r(t * k)] +

+ fzr(r)'si *un(t -\)'p-'[s(p)'- sá]] n [^9ou*(r) +p-'ls(p) - ^96]z¡(t - 1)]

Then eqn. 4.2 follows from differentiation of the above cost function with respect to

z¿(f) and setting the result to zero. Eqn. 4.6 follows from eqns. 3.41 and3.42 (p.72)

Q.E.D

Note from eqn.4.3 that the coefficient matrix of V(p) associated with the value

of the auxiliary control signal at time t, u¡(t), is I/s : [ó6Tó0 + ,5ó^^90] This coeffi-

cient matrix is nonsingular because ás is nonsingular (see Lemma 3.2, p. 72). Hence

the controller 4.2 is causal and the auxiliary control signal u¡(t) can be determined

uniquely (for a given RNI matrix). The control signal u(t) is a function of past values

of the auxiliary control signal (see eqn. 4.6).
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Now we shall comment on the choice of the parameters of the MPE controller.

The second term in the cost function 4.1 is introduced to penalize the auxiliary

control signal to avoid excessive control effort. This leads to a well-kno\¡/n problem of

)-offset [S ] : if the controlled plant does not have integrating properties and S( 1 ) I 0 
'

then the steady-state auxiliary control signal z¡"", which minimizes J¡, introduces a

nonzero steady-state error between the constant reference sequence r"" and steady-

state output g"". The À-offset problem can be avoided by the choice of the weighting

polynomial matrix .9(p) such that S(1) :0, e.8.,

S(p): I^-PI^- (4.7)

In this case the cost function J¡, is independent of the auxiliary control signal u¡", in

the steady-state. Then it follows from eqn. 4.2 tlnat in the steady-state á(1)u¡"" :

r""-l(I)U,", and from eqn. 4.6 u"" : Kn(I)u¡",. Substituting for ó(1) from eqn. 3.45,

and for 7(1) from eqn. 3.44, and using A(I)V"" : B(l)u"" we have Uss : r"", i.e.,

there is zero steady-state error. Alternatively, deviations of u¡(f) from the steady-

state auxiliary control signal value can be penalized in the cost function to eliminate

)-offset, as in [35].

The choice of the weighting matrix Ä, may be crucial to ensure stability of the

closed-loop system. This is revealed by the following stability condition.

Lemma 4.2 For the closed,-loop system resulting frorn the control law giuen by er1ns. /¡.2

and /.6, the sequences of {V(t)}, {"(¿)}, and, {u¡(t)} are bound,ed proaided' that

(a) for polynorniøl malrices A(p) and' B(p) wh'ich are Ieft coprime

det

(b) for polynomial matrices A(p) and, B(p) which are not left coprirne

A("-')
0

6|T zk

-B(r-t)
I^
0

0

-i{*("-')
5ii\.9(z-1)

+ 0, l"l >- t; (4 8)
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(i)

det

A"on(r-t)

0

6'oT zk

- B "o^(r-')
I^

0

0

-lrn\p)
.Så^^S(e)

0

-k^þ-')
SiÄ^9(z-1)

a$)

"(t)

"r(t)

+ 0, lrl >- t; (4.9)

0

0

6'oT qr

r(t). (4.10)

wl¿ere lA*.(p), n"""(p)) is the controllo'ble part ol lA(p), B(p)l' and'

(ii) all uncontrollable mod,es of lA@), n(p)) Iie inside or on the unit circle and

those on the unil circle haue Joril,an bloclc of size 1.

Proof.

It follows from eqns. 3.1, 4.6, 4.2 and 3.43 (p. 72) t}rat the closed-ioop system is

characterized by the following LDO model

t(p)

0

6LTqo

-B(p)
I^

0

The LDO model is equivalent to an observable state-space model [75, chapter 4].

The common (polynomial matrix) factors of the pair A(p) and B(p) represent the

uncontrollable subsystem. The above stability conditions follow then from [9, Lemma

8.3.3, p. a86] which assumes boundedness of the reference sequence {r(t)} (see also

[140, Theorem 1.2, p. 49]).

Q.E.D.

The stability conditions of this type were introduced for the MPE controller based

on the left interactor matrix tt (z) in [102,9] and are sometimes referred to as the

"generalized minimum phase" conditions. Note that if .4. : 0, then condition 4.8

reduces to

det [n*(z) B("-')] + o for lrl> 1. (4.11)

Since det /i¿(e) : crzk" (see eqn. 2.51, p. 45), condition 4.11 becomes det B(z-1) I 0

for lzl > 1. \Me shall call systems satisfying this condition minimum phase systems.
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Note that in order to guarantee stability of the closed-loop system for a nonminimum

phase system, a nonzero weighting matrix Â. is required.

Finally, an interpretation of the MPE control law 4.2 in terms of the GLCL defined

by eqn. 2.35 (p. 33) is given. Note from eqn. 3.42 (p. 7Z) for Fp(q) : /{n(g), that

eqn. 4.6 describes a FIR filter, i.e., the filter transfer matrix is of the from

i{*("-t) : 
"-k 

Kn(z) : Ko * Ktz-r + . .. + K*-rr-k+t.

The control law 4.2 can be interpreted as the GLCL for a system augmented by

the filter i{*(r-t) which introduces poles at the origin of z plane into the open-loop

system (see fig. 4.1).

"Át) (r) v(t)

'(¿)

Figure 4.1: The MPE controller for the augmented system.

Cornrnent 4.L The properties which characterize an interactor matrix (see Remark

2.1, p. /¡2) were embed,ded, in the ilefinition of th,e RNI matrir (see Definition 2.1,

p. 4c ).

The f.rst property, giuen by eqn. 2.50 (p. f5), ensures that the coefficient m,atrir

Vo of V@) in eqn. /¡.2 is nonsingular. Hence, in uiew of [77, Corollary, p' 313], tlt'e

controller 1.2 is causal and, the control signal u(t) can be d,etermined uniquely (for a

giuen RNI matrix) as a function of past ualues of the auúliary control signal.

The second properly, giuen by eqn. 2.51 (p. /¡5), ensures that the poles introduced

into tl¿e augmented system are stable, i.e., thatlhe control sequence {"(¿)} is bounded.

I

I

L

-K("-')M("-')

v-r(z-t) controller

augmented system
L J

i{^("-') -r(z-t)B(z-r)
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4.2 Self-tuning minirnum prediction error control

with the on-line calculation of the right nilpo-

tent interactor matrix.

In this section:

o the motivation for development of indirect self-tuning controllers is presented;

o the indirect self-tuning MPE controller, employing the algorithm for the on-line

calculation of the RNI matrix, is introduced;

o the self tuner is compared with other self-tuning controllers;

o simulation studies illustrate the performance of the self tuner

The inilirect self-tuning MPE controller, involving lhe on-line calculation of the

RNI matrix from the estimates of the DARMA model, is introduced in this section.

This self tuner will be referred to as ST-MPE-RNI controller.

The reasons for development of the indirect self tuner are as follows.

Firstly, the algorithms developed for the calculation of the RNI matrix from the

DARMA model in section 2.3 can be employed for the on-line calculation of the in-

teractor matrix from the estimates of the DARMA model. Therefore, the assumption

of the prior knowledge (complete or incomplete) of the interactor matrix is removed.

Such assumptions are usually required in direct adaptive multivariable strategies

based on minimization of ihe single-stage cost function [67] (see approaches 1, 2

and 3 in classifrcation on p. 3S). The development of the ST-MPE-RNI controller

extends the classification of assumptions concerning prior knowledge of the interactor

matrices in self-tuning control (see approach 5 (b), p. 39).

Secondly [39]:

... indirect strategies are more likely to lead to a reduction in the number

of parameters to be estimated. Convergence properties for typical
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estimation schemes such as sequential least squares deteriorate rapidly

when more than 10-12 parameters are estimated.

The only parameters to be estimated in the ST-MPE-RNI controller are those of the

DARMA model.

Thirdly [3e]:

It is natural to expect prior knowledge regarding physical quantities in a

system to be more easily mapped into prior knowledge of parameters in an

input-output model I of the process than into prior knowledge regarding

controller parameters. Simptifrcation of the estimation problem by use of

the prior knowledge is critical to the practical application of multivariable

adaptive control.

The ST-MPE-RNI strategy is introduced below. For this purpose let us make the

following assumptions: Assumption 3.1 (p. 58), 3.3 (p. 59), and

Assumption 4.1 The stability conilitions of Lemma 4.2 (p. 122) are satisfieil.

Prior knowledge of the system is restricted to

Assurnption 4.2 An upper bounil ñ. for the d,egree n of the polynornial matrices A(p)

and. B(p) of the system DARMA mod'elis lcnown (see eqns. 3.1 to 3'3, p. 59)-

Then the indirect ST-MPE-RNI controller involving a recursive parameter esti-

mator consists of the following steps which are performed at every sample instant

t:

step 1. calculate estimates Ã0, Ê, of the coefficient matrices A¡, B; of the DARIVIA

model using, say, the simplified multivariable RLS algorithm given by eqns. E.18

to 8.22, Appendix E (i : 1,. . . ,ñ);

1i.e., DARMA model
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step 2. calculate the RNI matrix î"@) [ 2 ] from the estimate Ê@) of B(p), using

the algorithm for calculation of the RNI matrix from the DARMA model (see

Theorem 2.7, p. 47);

step 3. calculate polynomial matrices Fle¡ la"nned in eqn. 3.46) urrd î(p) (defined

in eqn. 3.47) from the polynomial equation 3.44, and 1(p) (defined by eqn. 3.48)

from eqn. 3.45; this is equivalent to calculation of the corresponding matrices

of coefficients .Ê, i, and ô using the algorithm given in Remark 3.3 (p' 74);

step 4. calculate the auxiliary control signal uË(i) from eqn. 4.2;

step 5. calculate the control signal z(ú) from eqn. 4.6.

The macro XSMP, which is written in MATLAB commands and implements the

ST-MPE-RNI controller, is given in Appendix D.

In step 2 of the ST-MPE-RNI strategy, the RNI matrix is calculated using the

algorithm presented in subsection 2.3.3.

Aside 4.L Alternatiuely, the algoritltm for the calculation of the LNI matrix can be

used, to d,etermine the RNI matrix, as d,iscusseil in subsection 2.5.4. Th'is approach

requires, lroweaer, ad,ilitional polynomial matrin transpositions (see frg. 2.8 and dis-

cussion on pp. 55-56). Furthermore, transposition of the matrir Nþ)@) resulting

from the t-th iteration of the algorithm calculating tr[t(q), is need'ed to obtain ma-

trir B(t)(p) : (¡f(¿)( p))' requireil for eualuation of the polynomial rnatrix E@¡ ¡ro^

eqn. 3.55 (p. ft).

Calculation of the auxiliary control signai z¡(f ) in step 4 involves inversion of the

matrix % : (âo)'T8o + (S0)'AS0 (see eqn. 4.3). This matrix is nonsingular for all

sample instants ú, since matrix Îs is nonsingular (see Comment 4.1).

Assumption 3.3 (p. 59) implies that the polynomial matrix B(p) of the DARMA

model is nonsingular. This, in turn, implies that the matrix fi : lBl B2 .. . B")

of coefficients of B(p) has full rank. However, the estimak Ê of B resulting from

2The symbol "^' is used to differentiate results of computations based on the estimates of param-

eters of the DARMA model from results which are based on true parameters.
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step 1 of the ST-MPE-RNI strategy is not necessarily of full rank. If rank B < m

then the correspond.ing polynomial matrix ÊQ-1) : Êtz-r * Êzz-2 + '" + Ên"-"

is singular [112, Lemma G-2, p. 615]. Hence, the estimate of the system transfer

matrix Êr,.çt¡: fr-tçr-r)Ê(r-') is singular and the RNI matrix is not defined (see

Definition 2.4, p. 45). Consequently, the algorithm for the calculation of ihe RNI

matrix will not terminate (see proof of Theorem 2.1, part 2). In order to guarantee

nonsingularity of .Ê fo. all sample instants ú, the constrained parameter estimation

algorithms can be used [9]. As an alternative approach, if the upper bound on the

degree of the RNI matrix is known, the algorithm evaluating the RNI matrix could

be terminated after number of steps equal to this bound, and the RNI matrix from

the previous sample instant could be used. (Note also that the ST-MPE-RNI scheme

must be started with the full-rank initial estimate FlO¡ "t the matrix of coefficients

B of the polynomial matrix n@).)

The ST-MPÞRNI strategy involves estimation of parameters of the DARMA

model. On the other hand, the self-tuning controllers proposed in [35,32,34] [9,

section 6.3.31) involve estimation of parameters of the ,k-step-ahead predictor. The

latter strategies require some modifrcations of the estimation algorithm to guarantee

that the estimate of the coefficient møtrir associated with the value of the control

signal (or the auxiliary control signal) at time f , is nonsingular. (This means that the

estimate ôo must be kept nonsingular for the strategy of [35].) Possible modifications

involve constrained parameter estimation algorithms [9] or the modified projection

algorithm [32] [9, Lemma 6.3.1, p.20a]. Heuristically, however, the reduction in rank

of the rn x n'¿n real matri* -Ê fo. the ST-MPE-RNI strategy at any sample instant

ú is less likely than a singularity of the rn x rn real coefficient matrix associated the

current value of the control signal (i.e., ôs for the strategy of [35]).

Some further aspects of the ST-MPE-RNI strategy will be now compared with

two other schemes.

The IVIPE self tuner proposed in [35] requires prior knowledge of the (unique)

right interactor matrix {n(q). This restrictive assumption is eliminated in the ST-

MPE-RNI scheme but more involved computations are necessary to calculate the RNI
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matrix. The algorithm of [35] estimates parameters of the k-step-ahead predictor;

the number of estimated parameters is greater than that of the ST-MPE-RNI scheme

by lcrnz, which possibly leads to a slower convergence rate than that for the ST-MPE-

RNI strategy.

The ST-MPF-RNI strategy requires the same prior knowledge of the system (As-

sumption 4.2) as the dead-beat self tuner introduced in [39]. Both strategies are

indirect, hence the number of the estimated parameters, and therefore the expected

convergence rate, are the same. The implementation of the dead-beat self tuner [39]

requires lwo polynomial matrir diuisions at every sample instant for calculation of the

interactor matrix and control law. On the other hand, the ST-MPE-RNI scheme in-

volves multiplication of polEnomial matrices in determination of the RNI matrix and

the control law. However, factorization of real m x rn matrices is required for caicu-

Iation of the RNI matrix. The operations on polynomial matrices are represented in

terms of operations on the corresponding matrices of coefficients.

The dead-beat controller of [aO] is based on the left interactor matrix; the closed-

loop system behaviour is described by €t(q)a!): r(Í). In terms of the cost function

it means that the squared norm of the tracking error defined a" {r(q)A(t) - r(Ú) is

minimized (cf. approach (i), p. 60). The ST-MPE-RNI scheme implies that y(t*k) :

r(t+k) for A : 0 (see eqn. 4.10) and minimizes the squared norm of the tracking error

defined as y(t + k) - r(t + k) (see eqn. 4.1). The difference between the two approaches

is not significant since the reference sequence could be prefiltered by the interactor

matrix tr(q) for the dead-beat controller [39] leading to perfect output tracking for

both strategies after the transient due to the dynamics of interactor matrix dies away.

Note that future values of the reference sequence are required for such a prefiltering,

i.e., (¿(q)r(¿) : (sr(ú * k) + ..' * {¡-rr(¿ + 1). The future value r(t * k) of the

reference sequence is required also by the controllaw 4.2 embedded in the ST-MPE-

RNI strategy. However,, future values of {r(t)i are not always known. In the latter

case, their predictions can be used, e.g., future values of the reference sequence can

be set equal to the current value r(t). Then the output responses resulting from both

controllers might differ significantly. The ST-MPE-RNI controller introduces the
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delay of k sample intervals in tracking (see example 4.1). On the other hand, changes

in the reference sequence produce not only delay in tracking, but also variations of

system outputs if the self tuner of [39] is applied to a system with nondiagonal

interactor matrix (see example 5.1.1 (p. 163) for the illustration of a similar effect).

The latter effect is due to the coupling introduced by the triangular factor of (¿(q)'

Finally, the effect of deterministic disturbances, for which the model of the Senera-

tor is incorporated in the system DARMA model, is eliminated by the ST-MPE-RNI

controller. On the other hand, both strategies [35,39] were designed for systems

without disturbances.

The performance of the ST-MPE-RNI controller is demonstrated in the foliowing

example.

Example 4.1.

The purpose of this example is to illustrate the performance of the ST-MPE-RNI

strategy applied to a system for which the interactor matrix is nondiagonal.

Let us consider a two-input, two-output (rn : 2) plant given by the following

transfer matrix:

Ho*(z):
11

z*O.l zIO.2

11
z*O.3 z*O.4

-23 + 0.122

z3

The corresponding unique right interactor matrix (see Definilíon 2.2, p. 37) has a

general upper triangular form:

Ëa('):
7

0

Prior knowledge of this interactor matrix would be required to implement ihe MPE

strategy of [35].

The DARMA model corresponding to the above transfer matrix Ho,'(z) is given

by (see eqns. 3.1 to 3.3, p. 59)

100.3 00.02 0

01 00.7 00.12
t(p) lr, A,, Arl(Pr 8 /z) :
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B(p) : plB, Brl(P, ø Ir): p
1 1 0.2 0.1

1 1 0.4 0.3
(P' ø lr;,

(lu "' ,l' ø r,) ,

i.e., n: 2. The RNI matrix, calculated for this plant from the above DARMA model

using the algorithm implemented with QR factorization (see Theorem 2.1, p. 47), is

Kn(r): [.I(o K, Kr) (lU ,' "]' ø n)

0

0

-0.7062

0.7062

0.0353

-0.0353

0.0353 0.7062 0

0.0353 0.7062 0

(4.r2)

i.e., the degree of the RNI mat¡ix is k : 3.

The reference signal r(ú) was chosen as square wave with amplitude 10 units and

period equal 20 sample intervals. The calculation of u¡(t) from the control law 4.2

requires knowledge of the value of the reference sequence k : 3 samples ahead.

However, it was assumed that future values of {r(t)} are unknown. The f,xed reference

sequence model was employed instead 3, i.e., the future values of {r(t)} were set

equal to the current value r(f ). Limits on the amplitudes for each component i of the

control and auxiliary control signal vectors were chosen as lz(f )l¿ < 17ó, l"¡(¿)li < 225

(i : I,2), to avoid excessive control effort during the initial estimation phase. The

weighting matrices of the control law were set to ^f : Iz, Â. : 0, which satisfies

Assumption 4.1 (p. 126). The simplified RLS algorithm was used (see Appendix E)

with the initiat covariance matrix P(-1) : 104/a and constant forgetting factor

a(t) :0.95. The initial parameter estimates were:

- f ^ 1lo(o) : I A1(o) AzQ) B'(o) Br(o) I :

10001000
01000100

i.e., the upper bound on the degree of polynomials of the estimated DARMA model

was chosen equal to the true degree, ñ: n :2.

The ST-MPE-RNI controller was implemented with the algorithm for the on-line

3For otlrer approaches to describe future values of the reference sequence see 127)
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calculation of the RNI matrix from the estimates of the DARMA model with QR

matrix decomposition (see macro XSMP in Appendix D).

The input-output behaviour of the closed-loop system is shown in fr,g. 4.2. It

can be observed that tracking of the reference sequence with delay of three sample

intervals is achieved after about 30 samples. The delay in tracking (equal to the

degree of the RNI matrix) results from the use of fixed reference sequence model.

The trajectories of the estimates .Â¿ and Êo ç; : 1,2) of the coeffi.cient matrices

of the DARMA model are shown in figs. 4.3 and 4.4, respectively.

The RNI matrix R^Q) was calculated on-line from the estimarc Ê.In the im-

plementation of the algorithm calculating the RNI matrix, the first iteration was

omitted and the algorithm was initialized with XPQ) - zlz (see Comment2.2,p.

55). The coefficient matrices îo, îr, and lz of RpQ) are shown a in fig. 4.5 (see

eqn. 4.L2 for their true values).

The estimator was initialized with a nonsingular coefficient matrix Êt(0) - Iz.

This resulted in the RNI matrix î*Q) - zIz during the initial estimation phase (up

to sample instant 15). During this phase the estimates were not accurate enough

to lead to the actual RNI matrix 4.I2; in fact, the estimates differed significantly

from their true values and as a result the RNI matrix remained fixed at its initial

value î"Q) - zIz.This, in turn, resulted in poor tracking, but without excessive

excursions of system inputs and outputs from their desired values.

The system estimates converged ciosely to the true values after 15 sample instants.

During the following period of samples 15 to 22, Lhe estimate .Ê, b"..-e singular

leading to the RNI matrix of degree greater than 1. The form "tîpQ) clepended on

tlre estimak Ê2 which was norv involved in calculation of the RNI matrix. The degree

of the RNI matrix changed u, i : I,3,2,3, 1,3, reaching the true value î : lc : 3

after 22 samples. These switchings of the degree of the RNI matrix resulted in the

undesirable performance of the closed-loop system between sample instants 15 to

25. Hence, the phase of the rvorst input-output behaviour was associated with the

4Note bhat only the values plotted at the integer sample instants are relevant
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estimates of parameters of the DARMA model being close to the true values, but not

sufficiently accurate to lead to the actual RNI matrix.

The algorithms developed in section 2.3 for the calculation of nilpotent interactor

matrices involve testing of the rank of a real (coefficient) matrix in step 1. In practical

self-tuning applications, it is unlikely that the singularity of the tested matrix would

ever occnr, everr if the true coeffi.cient matrix were singular. This is because an

estimate of the true coefficient matrix is used in calculations. Therefore, the question

arises whether to treat the near-singularity as nonsingularity or singularity.

The answer is provided by the analysis of robustness of controilers developed for
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systems having a nondiagonal unique interactor but assuming that the interactor is

diagonal, presented in [98] (see Comment 2.1, p. 38) u. Namely, for the design of

robust controllers, the near-singularity of the estimate of the coefficient matrix tested

in step 1 of the algorithm calculating the RNI matrix should be treated as singularit¡'.

This was achieved here by truncating the computer arithmetic rvith the MATLAB

command CHOP(P) with P:8, which sets to zero the P least significant hexadecimal

digits in the result of each floating point operation [110]. Thus the singularity of a

sThis is a very similar problem to that considered here since the question is whether the near-linear

dependency of certai¡ vectors, which is tested in the algorithm [33] for the calculation of the unique

interactor matrix, should be treated as exact linear dependency or ignored.
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matrix which would be considered nonsingular if full precision arithmetic were used,

is detected. (Furthermore, this command simulates a computer with a shorter word

length.)
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Figure 4.5: ST-MPE-RNI controller: coefficient matrices of the RNI matrix

î^Q) : Rozs * Rtz2 i Rzz calculated on-line.
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4.3 Application of self-tuning rninirnurn prediction

error control to robotics.

In this section:

o some background to the control of robot manipulators is presented;

o the ST-MPE-RNI scheme is applied to control a two-link planar robot.

With the growing interest in robotics, the problem of controlling mechanical link-

age systems has recently received considerable attention [141]. The dynamic control

of industrial manipulators involves determination of the input torques (or forces) such

that the (angular) positions and velocities of the manipulator joints track a desired

trajectory.

The dynamic behaviour of the r¿-lirrk, ru-joint robot tnanipulator is characterized

by a system of coupled nonlinear differential equations, such as the Euler-Lagrange

dynamic equations of motion [141]

MQ)ë + ¡/(e, it¡ + cçe¡ : r,

where 0, 0, 0 are the n x 7 vectors of joint angles, velocities, and accelerations,

respectively; furthermore, G(d) is the n x 1 gravitational torque vector, I'l(á, á) is

the n x 1 Coriolis and centrifugal torque vector, M(0) is the n x n inertia matrix,

and ? is the n x 1 vector of control torque. The elements of G, N, and M are highly

complex nonlinear functions of. g arrd è.

The problem of controlling such nonlinear dynamics (relating joint angles to mo-

tor torques), has been tackled using optimal control theory and leads to complicated

nonlinear strategies (see [142,143,50] for references). Alternatively, simpler linear

multivariable strategies were proposed 1144]. Such strategies often yield satisfac-

tory performance for stabilizing robot manipulators, but for the case of reference

following, they are not robust enough to ensure good tracking properties over the

operating range and variable loads. In this case, the linearized robot model and the

corresponding linear controller must be updated for various operating points 1144].
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Complexity of nonlinear controllers and unsatisfactory performance of linear con-

trol led to the application of adaptive techniques to enhance the performance, robust-

ness and decrease computational effort of digital controllers in robotics [142,143,50]

[145] (see also bibliography in [5]). One of the possible approaches to self-tuning

control of robot manipulators is based on the approximation of the nonlinear robot

model by a linear discrete-time model, assumed to be of the ARMAX or DARMA

form [142,9a]. This approach relies on the ability of the adaptive controller to track

time-varying process parameters. The variations of the process parameters corre-

spond to the changing operating points along the reference trajectory, thus consti-

tuting an approximation to the nonlinear model at various operating points. The

following simulation of robot control with the ST-MPE-RNI scheme is based on the

same approach.

We shall consider the problem of controlling a two-link planar robot, the schematic

diagram of which is shown in fig. 4.6. It will be assumed that the robot joints

02
v

I

T

Figure 4.6: Two-link planar manipulator in a vertical plane.

are frictionless and the robot links are uniform with centers of gravity located at

midlength. Furthermore, let us assume that the links depicted in fig. 4.6 correspond

to links 2 and 3 of the Unimation PUMA 560 robot. The lengths of the links are

h : lz : 0.432 m, and masses of the links are rT1,y : 15'91 k8, *r: 11.36 kg.

In order to determine the DARMA model representing the linearized discrete-

time model of the PUMA manipulator, let us consider the continuous-time linearized

state-space model derived in [1a ]. The state vector r(t) consists of the angular joint

positions 0(t) : [9r(¿) lr(t)]' (in radians), and velocities a1t;, ttt" vector of inputs
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u(t) consists of the joint torques [Nm], and the vector of outputs y(ú) consists of the

angular positions of joints [rad]

c(r) : I 1tt' l, u(t) :f to'u""'(t' l, y(t) : 0(t).
L B(¿) j L torquer(ú) I

We choose the sampling period T" : 0.25 s, and two operating points, for which the

linearization is performed, as

{or: -T, t, - àt: oz: o},Qt

Q, {0, : -0.2 - T, tr: 0.5, et : o, : g¡

(4.13)

(4.t4)

(Note ihat Q1 corresponds to the "arm-down" position.) Discretization of the state-

space models (see [112, Appendix D]) linearized at the operating points Qt and Qz

leads to the discrete-time state-space model2.2 (p. 20), where matrices A", B" and C

are given in table 4.1. The corresponding DARMA model 3.1 (p. 59) is found using

algebraic methods for transformation from the state-space model to the DARMA

model developed in [79, chapter 5]. The coefficient matrices of the DARMA models

corresponding to the operating points Q1 and Q2 are given in table 4.1.

The two-link manipulator was simulated using the DARMA model augmented

by the noise ø(ú) representing modeling errors (i.e., ARMAX model with C(p) : /)

[742]

A(p)v(t) : B(p)u(t) + u,'1t¡. (4.15)

The term a.'(t) is a (vector) zero mean white gaussian noise with covariance matrix

X : 10-6/z rad2 (see eqns. 2.4 to 2.6, p.21). The manipulatorwas simulated at the

operating point Q1 for the period 0 < ¿ < 9.8 seconds, and at Q2 for 9.8 < t < 37.5

seconds.
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-1, 1-1, 1Zzi

0.4989 + 0.8666i,

-0.5954 + 0.8034i

0.5082 + 0.8612i,

-0.8414 + 0.5403i
'pt

.0118

-.0244

0244

0868

01 18

0244

-.0244

.0868

.0129

-.0277

-.0277

.0964

0129

0277

-.0277

.0964
lB, Brl

-.6761

-r.0422

-.5764 10
.8690 0 1

-.6251

-1.2515

-.7278 1 0

1.2995 01lAt Arl

1000
0100

1000
0100

C

.0118

-.0244
.0630

-.L027

-.0244
.0868

-.7027

.3894

.0129

-.0277

.0540

-.0744

-.0277

.0964

-.0739

.2931

B"

.3381

.527r

-4.7436

1.6491

.2882

-.4345
.9721

-6.5886

.1896

.0551

.3381

.52IT

.0305

.1080

.2882

-.4345

.3126

.6257

-3.8577

.8960

.3609

-.6497

.5158

-5.2357

.1850

.0720

.3126

.6257

0415

0743

3609

6497

A"

at the operating point Q1 at the operating point Q2Model

Table 4.1: lVlatrices of the state-space and DARMA models of the robot manipulator

linearized at the operating points Q1 and Q, (7,: 0.25 s).
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The reference signal r(t) : lr{t) r2(t)l' (in radians) was defined as follows

"(¿) 
:

,r(t) :

0.2sin(ffi) for 0 ( t < I2.5,and 25.0 < ú < 37.5 s

0.asin(ffi) for 12.5 < ú < 25.0 s

0.08t for 0 ( t <6.25, and 25.0 < ¿ < 37.5 s

0.5 for 6.25 < t < 12.5 s

-0.16ú for 12.5 < ¿ < 18.75 s

-0.5 for 18.75 < ¿ < 25.0 s.

(4.16)

(4.17)

Assuming perfect tracking of the above reference sequence, the robot is at the oper-

ating point Qt at time ú : 0 and at Q, at time f : 9.8 s.

Note that the system poles (denoted by ze; in table 4.1) lie on the unit cir-

c1e (see fr,g. 4.7), hence the robot is not stable at the operating points Q1 ar'd Q2.

Furthermore, roots of the equation det B(z-1) : 0 (denoted by z¿ in table 4.1) lie on

(") (b)

Figure 4.7: Poles (denoted by discs) and roots of det B("-t): 0 (denoted by circles)

of the DARMA model of the two-link manipulator at the operating point' (.) 8r,

and (b) Q2.

the unit circle as well (see fig. 4.7). Hence, in order to satisfy the stability conditions

of the closed-ioop system with the ST-MPE-RNI controller, nonzero weighting of the

auxiliary control signal must be used (see Assumption 4.1, p. 126). Otherwise, if

A :0, the stability condition given by eqn. 4.11 (p. 123) is not satisfied.

The parameters of the ST-MPE-RNI control law were chosen as T : Iz, S(p) :

Iz - pIz and the auxiliary control signal weighting matrix

^

0.05 0

0 0.5

1.41

10-4



The simplified RLS algorithm was used with the initial covariance matrix P(-1) :

10a.[s and constant forgetting factor o(t) : 0.95. The initial estimates of the coeffi-

cient matrices of the DARMA model *"r" .Âr(0) : Ê1(0) - .Iz and ÂrQ): Êz(0) : 0.

The input-output behaviour of the closed-loop system is shown in flg. 4.8. (The

first joint angle 91(ú) is plotted around constant level of -f rad taken as a zero level

in fig. 4.S.) It can be observed that the system performance is satisfactory after the

initial tuning phase of about 30 sample periods. The second output 02(t) is disturbed

slightly after sample 38, i.e., after the change of operating points. Afterwards both

outputs follow the reference sequence closely. The future values of ihe reference

sequence are approximated by their current values in the calculation of controls,

i.e., the fixed reference sequence model is assumed. This explains the delay between

outputs and reference sequence. Note that the À-offset is eliminated: there is zero

steady state error for 02(t) for sample instants 75 to 100.

The trajectories of the estimates Á¿ and Ê, U : 7,2) are shown in figs. 4.9

and 4.10, respectively. The parameter estimates converged to their true values after

about 15 iterations. After the jump of parameters occured at sample instant 38 (due

to the transition form Q1 to Qz), the estimates followed the change and then drifted

around new true values. The most significant variations of parameter estimates were

observed for Ãr, for the true values of which there rras no change at sampie 38. The

input-output performance was not affected by those drifts. The estimates converged

again after about 100 iterations.

The forgetting factor was constant in this simulation. There is, h.owever, a number

of methods which improve the estimator capability of tracking time-varying parame-

ters by covariance matrix modification or variable forgetting factors [146,11,147,148]

[13] [9, chapters 3 and 6].

The RNI matrix R*Q) was calculated on-line from the estimate ,Ê of the matrix

B. In the implementation of the algorithm caiculating the RNI matrix, the fi.rst

iteration was omitted and the algorithm was initialized, with l$) G) : zI2 (see

Comment 2.2, p. 55). The estimal'r- Ê1of the nonsingular coefficient matrix .B1

rvas nonsingular during the whole simulation run. Hence, a correct RNI matrix
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Figure 4.8: ST-MPE-RNI controller applied to the two-link robot manipulator:

torques, angular joint positions d1(ú) arrd 02(t), and reference sequences (shown'with
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Figure 4.9: ST-MPE-RNI controller applied to the two-link robot manipulator: esti-

mates and true values of the coefficient matrices Ay and 42.

î"Q) - zIz was used. during the simulation. The calculation of îpQ) was not

affected either by the change of parameters or by the output noise.

It was pointed out in [6,5] that in order to avoid abuse of adaptive techniques

employed to cope with the variations of the open-loop dynamics over the operating

range) the possibility of robust nonadaptive control must be examined at first. For

this purpose the nonadaptive IvIPE-RNI controller was simulated to assess its perfor-

mance in application to control of the manipulator. The controller was determined

for the known robot model linearized at the operating point Q1. The parameters

of the control law were chosen to be the same as for the self-tuning scheme. The

-2

N

f¡.o
(n
E]
E{

ä
E-
tn
frl

1

5

o

5

1
o

\'-----'

744



.o5

-.o5
o 30 60 90

SAMPLE
L20 150

1

.o5

-.05
0 30 60 90

SAMPLE
t20 150

Figure 4.10: ST-MPE-RNI controller applied to the two-link robot manipulator:

estimates and true values of the coefficient matrices Bt and Bz.

coefficient matrices of polynomials 7(p) and ó(p) resulting form eqns. 3.57 and 3.58

(p. 7+) are 7 : [-Ar - Az], and á : IBL B2l. Then the MPE-RNI control law is

given by eqn. 4.2 with V(p): 1816 + nsl (a @-I2) where S :lIz - Irl, luI(p): Bl,

and /{(p) : Bh(4I /z), together with eqn. 4.6 with f{^(p) : Ir.

The input-output behaviour of the simulated closed-loop system is shown in

fig. 4.11. It may be observed that after the change of operating points from Q1 to

Qz at sample instant 38, the performance of the system deteriorates to a level which

might be unacceptable in many robot applications. This confirms results on the ap-

plication of linear (nonadaptive) controllers to the PUMA manipulator reported in

Fl
tr¡

tEo
(n
f¡l
E{

ã
E{n
f¡l

o

cu
g¡

f¡.o
(n
f¡l
E-

E
E{
(n
f¡l

1

o

ffi I

f¡t ¡
lt! I

745



5

5
30 60 90

SAMPLE
LZO 150

30 60 90
SAMPLE

L20 150

Figure 4.11: Nonadaptive MPE controiler based on the RNI matrix applied to the

two-link robot manipulator: d1(f), d2(ú) and reference sequences (shown with dotted

lines).

[1  ] which indicate the need to update the linearized system model and the cor-

responding controller to ensure satisfactory performance of the closed-loop system

under variety of operating conditions. Note that the self-tuning strategy yieids a

significantly better performance under the same operating conditions (see fig. 4.8),

despite drifts of parameter estimates after transition from Q1 to Qr.

4.4 Concluding rernarks.

In this chapter, the minimum prediction error (MPE) controller which minimizes ihe

Ã.-step-ahead single-stage cost function is considered for the development of the nerv

ind,irect self tuner.

The self-tuning MPE controller involves lhe on-line calculation of the righi nilpo-

tent interactor (RNI) matrix from the estimates of the DARNIA model. This increases
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the computational burden in comparison with strategies based on the assumption of

prior knowledge of the interactor matrix. However, the prior system knowledge re-

quired by the self tuner is reduced to the upper bound on the degree of polynomial

matrices of the DARMA model.

For the purpose of comparison, the strategy of [35], which minimizes the same

cost function, requires prior knowledge of the unique nght interactor matrix and in-

volves estimation of more parameters. The pole-placement (indirect) self tuner of [39]

involves estimation of the same number of parameters but requires prior knowledge

of the system obseruability indexes and an upper bound on the system controllability

ind,er. Furthermore, the above strategies assume that the system is not affected by

a deterministic disturbance, in contrast to the new MPE self tuner.

The only MPE strategy which requires the same prior system knowledge is that

of [39]. The cost function minimized by this strategy penalizes the tracking error

filtered by the left interactor matrix. On the other hand, the new MPE self tuner

minimizes the actual tracking error and the control signal filtered by the inverse of

the RNI matrix. Therefore, one would need to examine which performance criterion

is more meaningful for a particular application. Furthermore, the strategy of [39]

requires two divisions of polynomial matrices, in contrast to the new self tuner which

involves multiplication of polynomial matrices.

In comparison with ilirect self-tuning controllers, the self tuner based on the RNI

matrix estimates less parameters; therefore, superior convergence rate can be ex-

pected for the latter strategy.

The MPE self tuner has three tuning knobs: T, r\. and ,5(p). Appropriate choice

of lt l0 may be crucial to guarantee closed-loop system stability for nonminimum

phase systems. Such a choice is not straight-forward for systems with unknorvn

parameters. In order to overcome the above-mentioned drawback of the VIPE self

tuner, we shall consider long-range predictive control for application in self-tuning

control.
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Chapter 5

Self-tuning long-rarr.ge predictive

control.

In this chapter, the self-tuning long-range predictive control of systems having the

feedback configuration FI (see page 18), is considered.

The MPE control laws derived in chapters 4 and 6 minimize the ,b-step-ahead

single-stage performance criteria (see eqn. 4.1 (p. 120), 6.t (p. 197), 6.98 (p. 212)).

Although such controllers are simple, it may be difficult to choose the parameters

of the control law which yieid a stable closed-loop system for nonminimum phase

plarrts, especially in self-tuning applications (see Lemma 4.2 (p. I22), Lemma 6.1

(iii) on p. 197, and Theorem 6.1 (iii) on p. 218). Furthermore, the MPE self tuners

are sensitive to variable system delay [29].

Alternatively, a multi-stage performance criterion can be considered to overcome

some of the drawbacks of the single-stage approach. In this case, the optimization

horizon extends over a significant part of the plant response to the present control

signal (i.e., beyond the k-step-ahead horizon), thus expiaining the term "long-range"

[149]. The resulting long-range predictive (LRP) controllers appeax to possess prop-

erties desirable in self-tuning control at the cost of increased computational burden

in comparison with the MPE strategies. In particular, the LRP controller developed

in this chapter has a number of tuning knobs that give the user a wider choice in

the design of the closed-loop system performance than the parameters of the MPE
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control law. Simulation studies have illustrated desirable robustness properties of the

LRP controller against violation of modeling assumptions for a scalar plant [29,150].

Another advantage of the LRP approach is that it is possible to use known future

reference sequence values (the so-called programmed control l27l), a feature desirable

in robot control [94], for example.

There are many approaches to LRP control depending on the plant representation

and performance criterion [30,151,118,152,74,L27,27,130,36,38,149]. In this chapter,

however, we consider the approach based on the LDO system representation and

involving a cost function related to those of the control strategies known as Dynarnic

Matrh Control (DMC) arrd Generalized, Predictiue Control (GPC).

The DMC strategy was originally developed for multivariable deterministic sys-

tems using the step-response model [30]. The DMC was successfully applied to

petrochemical process control [30,151]. The comparison of the DMC with other sim-

ilar iong-range predictive control techniques based on the weighting-sequence plant

representation, revealed superior properties of the DMC in terms of the resulting

closed-loop system performance, and indicated promising properties for self-tuning

applications [152,149]. However, the number of the coefficients of the truncated

weighting-sequence model required for accurate piant representation may be large,

especially for poorly damped systems with high sampling rate [149]. This is undesir-

able in self-tuning applications due to a large number of parameters which are to be

estimated. Furthermore, it is known that only stable plants can be represented by

the weighting-sequence models, thus excluding systems which are unstable or pos-

sess integral action [149]. In order to overcome drawbacks resulting from the use

of the step-response model, the CARIMA model (see eqns. 2.33 and 2.34, p. 32)

of a scala¡ system was chosen for the development of the GPC strategy extending

the DMC approach [29,149]. The self-tuning GPC was found to possess superior

robustness properties in comparison not only with ihe LRP control methods based

on the weighting-sequence models (including DMC), but also the self-tuning MPE

controllers resulting from minimization of a single-stage performance criterion and

pole-placement self tuners [29].
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In this chapter the DMC approach is considered for the development of a LRP

controller for (i) multivariable square (MIMOS) deterministic systems described by

the DARMA model (see section 5.1), and (ii) scalar stochastic systems described by

the ARMAX model (see section 5.2).

With respect to the original DMC, a contribution of this chapter is in the de-

velopment of strategies based on the DARMA and ARMAX models. In comparison

with the DMC, the resulting LRP controllers possess the following properties (i)

the LRP control can be applied to unstable plants, (ii) in general, fewer parameters

are required for adequate process representation, hence the resulting control law is

more amenable to self-tuning, (iii) the LRP self tuner developed for the ARMAX

model possesses similar robustness properties to those of the GPC developed for the

CARIMA model. Furthermore, (iv) the incorporation of the generator of determin-

istic disturbances into the model of a deterministic system (see discussion on p. 19

and p. 28) allows for a unified treatment of elimination of the effect of deterministic

disturbances on system outputs. This is in contrast to the LRP techniques based on

the weighting-sequence models which involve some ail l¿oc methods for eliminating

output offset [149]. Furthermore, the DMC does not guarantee solvability for the

control signal for systems with arbitrary delay structure. In the following analysis,

the design of the controller involves characterization of the multivariable system delay

structure by an interactor matrix which overcomes the latter drawback of the DMC.

In particular, the left nilpotent interactor matrix, introduced in subsection 2.3.2, is

employed in the design. The LRP controller is also developed for a scalar system

subject to stochastic disturbance, which was not considered for the DMC.

\Mith respect to the GPC, a contribution of this chapter involves the follow-

ing aspects. Firstly, the LRP controller is developed for multivariable deterministic

systems, in contrast to scalar systems considered for the GPC. Secondly, the LRP

control law is derived for scalar systems subject to stationary stochastic disturbances,

in contrast to nonstationary disturbances assumed for the GPC. It has been found in

simulation studies that if the system is subject to stationary stochastic disturbance

modeled by the ARMAX model, then the closed-loop system performance deterio-
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rates significantly if the GPC strategr developed for the CARIMA model (i.e., for

a system with nonstationary random disturbance) is applied [a9] (see also exarn-

ple 5.2.1, p. 185). As pointed out in [94], in servomechanism self-tuning, such as

robot control, the predominant stochastic disturbance is senso¡ noise. Such a distur-

bance is stationary and the GPC results in unacceptable system performance [94].

Furthermore, the model of a closed-loop system involving the LRP controller is de-

veloped for scalar stochastic systems. The model facilitates (i) a rigorous stability

analysis of the closed-loop system, (ii) investigation of the influence of the parameters

of the LRP controller on the location of the closed-loop system poles, (iii) calcuiation

of the variance of the output regulated with the LRP controller. To the author's best

knowledge such results have not been presented either for the DMC or for the GPC

strategies.

5.1 Self-tuning long-range predictive control based

on the left interactor rnatrix for a multi-input,

rnulti-output deterministic system.

In this section

o the long-range predictive control law, which minimizes multi-stage cost function

for a lvIIlvIOS system, is derived (see approach (ii) on page 60);

o the self-tuning strategy, based on the long-range predictive control law, is in-

troduced;

o the application of this self tuner to the control of a two-link robot manipulator

is described.

The results of subsections 2.3.2 and 3.1.1 are used in this section.
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5.1.1 Long-range predictive control of a deterministic sys-

tem with known parameters.

Let us consider a MIMOS deterministic system satisfying Assumptions 3.1, 3.2 and

3.3 (see pp. 58-59). Consider the following quadratic multi-stage cost function 1

P C

JP,C I llKr(q)la1 + i) - ,(t + j)lll? + t lls(p)z(t + j)llî +
j=o j=o

+
Pt

j=C+
lla(p)z(t + j)llI^, (5.1)

where T and Â4 are positive definite rnxrn matrices, and Â. is a positive semidefinite

n1 x n-¿ matrix; the rn x rn weighting polynomial matrices ^9(p) and A(p) a¡e defined

AS

1

det,5s I 0 and

The first term in cost function 5.1 penalizes the squared norm of the error between

future filtered system outputs Kr(q)y(t f j) and future filtered reference signals

I{/q)r(t -l7) over the pred,iction horizon P. The left interactor matrix Ka(q) is

either the unique interactor matrix 4"k), or the left nilpotent interactor (LNI) matrix

K L(q) introduced in subsection 2.3.2.

The second term penalizes the control effort over the control horizon C, thus

allowing for a compromise between minimization of the tracking error (first term in

criterion 5.1) and cost of the required control effort.

The third term is introduced to ensure boundedness of the control sequence for

nonminimum phase systems when A, : 0. The control horizon C defines the sample

instant t + C after which increments of the control signal are penalized in the perfor-

mance criterion. Such an approach to guarantee boundedness of the control signal

lThe original DMC was developed as a least squares control problem without postulating any

specific cost function [30]. The corresponding cost functions were introduced for the purpose of

comparison of the DMC with other LRP control techniques for scalar systems in [152,149] . The cost

function postulated here is a generalization of the latter cost functions for multivariable systems.

s(p)

^(p)

'90*Srp+"'+ S,""pn",

I^ - I^P-

n")0,
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was originally proposed in 1153,,271to control scalar nonminimum phase plants, in

contrast to the minimum variance control without weighting the control effort and

based on the single-stage performance criterion [83].

The cost function 5.1 involves future values of the reference sequence r(f * k + j)

f.or j - 0,...,P (,b is the degree of the interactor matrix). If the future values of

{"(¿)} are known, then the optimal control law results form minimization of the

cost function. This approach is known as progr&n'tmeil control l27l (see examples in

subsection 5.I.2). If the future values of {r(t)} are unknown, then their predictions

are used [27]. The simplest approach is to set future values equal to the current value

r(f). This method is referred to as the fixeil reference sequence rnod,el.

The cost function 5.1 can be minimized with respect to the sequence of present

and future control signals [/, defined as

(5.2)

using for example the Lagrange multipliers method [154]. The resulting control law

involves inversion of a (P tI)m x (P * 1)rn matrix in order to determine U (see [30]

for a similar result obtained for the DMC). This may be unacceptable for the self-

tuning implementation of the LRP controller, which involves the on-line inversion of

such a matrix. However, the computational burden can be significantly reduced if it

is assumed that the infinite cost is placed on the changes in the control signal beyond

the control horizon C, i.e., Â¡ * oo. This implies that there will be no change in the

control sequence after time t + C. Therefore, the cost function 5.1 can be reduced to

the following performance criterion

P
rp,c : I llrr(q)[y(¿ + j) -,(t +r)]lli + D lls(p)z(f + i)ll'n, (5.3)

J=0 j=o

with the constraint on changes in the control sequence after time t i C, i.e.,

L(p)u(t+C+i) :0 for i:1,...,P-C.

The minimization of cost 5.3 yields the control sequence with no variations beyond

the control horizon. Hence, ii is sufficient to calculate the truncated control sequence

C
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vector [/2' consisting of the first C + t controls of U

Ur : ["(t)' . .. u(t + C)']' (5.4)

This is an important idea adopted here from the DMC approach which results in a

simplification of the LRP control law and reduction of the computational burden.

Before considering the minimization of the cost function 5.3, let us define the

foliowing vectors

u(t-rr*1)'Up

Us

u(t - t)' .

"(tu(t - r)' . )'In
)

(5.5)

(5.6)

(5.7)

(5.8)

Yp

0

pql 0

pg-')
a@\P-t

a@-t\
P_P+7

þ9)*, pY)

0

y(t)' . ..aG -,2 + r)' ]
(K¡(q)r(t))'.. . (K"(qR )r(f + P))'

where Up ardUs a;re (n-L)m x l and nsn'rx l vectorsof past controlsignals (n is

the degree of the polynomial matrices in the DARMA model 3.1, p. 59), yp is nrn x 1

vector of present and past outputs and .R is (P * L)m x 1 vector of future reference

signals filtered by the left interactor matri"Kt(q).

Note that the cost firnction 5.3 involves future values of the system outputs filtered

by the interactor matrix, i.e., y¡,(t+r) : Kt(q)y(t+ j). In the derivation of the LRP

control law we shall employ the multi-step-ahead predictor expression for V*(t * j)

introduced in Lemma 3.1 (eqn. 3.6, p. 61). Let us defi.ne the (P * 7)m x (P + 1)rn

and (P *L)m x (, - 1)rn matrices consisting of coefficient matrices of the polynomial

matrix B{i)çO¡ of the multi-step-ahead predictor f.or j - 0, . . . ,P (see eqn. 3.11, p. 62)

p(o)

p[')

0

0

0 0

0

a(o\
Po

p[')

a@-t) a@-2)Po Po

p[') þt'-'t

P[o) o

p[') p[o)

0

pto)

0

0

Bp

þ[-'t
p[o)
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p{ol

pÍ')

^9r ,9o

n@)
Pn-l

a(r\
Pn-l

^90 0

St ,90

pto)

pt')
Bp: (5.10)

The block Toeplitz structure of matrix Bp results from application of eqn. 3.60,

p. 76. Next define the (P + I)m x nn1. matrix consisting of coefficient matrices of

the polynomial matr¡* o(r)1O; of the multi-step-ahead predictor for j :0, . . . ,P (see

eqn. 3.10, p. 62)

Ap:

oÍol,

oÍ'1,
(5.11)

Next we introduce the (C t \)m x (C i 1)rn and (C + \)m x n,n'L matrices of

coefficients of the filter .9(p) (p"t S¿ : 0 if O , ,")

,50 0

olo)

ol')

o[o)

of)

0

0

0

0

Sp

Srr"-t Sn"

Sn" o

0

(5.12)

(5.13)Sp

Finally, let us defi.ne the following (P -f I)m x (C + 1)rn matrix

Ic+t

0 01
tT_
t- Ø I^,

Sc-t

Sc

^9r

s2

Sc-z

Sc-,

Sz .9s

53 54

Sc+, Sn" 0

0 ... 0 1

(5.14)

(I, is the i x i identity matrix)
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Now the LRP control law is given in the following result.

Lernrna 5.1 Consider a MIMOS systern satisfying Assumptions 9.1, 3.2 and 3.3

(see pp. 5S-59). For such a system lhe control signal sequence u(t -f i), i : 0,.. . ,,C,

wh,ich minimizes the costfunction 5.3 giaen the constraints L,(p)u(t*C +l):0 for

i : I,...,P - C, is giaen by

U7: B;] Bbrl, -B'F¡T pAp -B'p7T pBp -SbLcSp

E:ApYp*BprUrlBpUp-R.

R

Yp

Up

Us

(5.15)

where the (P -lL)m x (C + \)rn matrh Bp7: BrT, anil the (C +l)m x (C +I)rn

rnatrix 8,7 is defineil as

B,T : B'p7T pBpr * SÇltsSr, (5.16)

and T p : Ip+t ØT anilÄc : /c+r I A.

Proof.

Let us define the (filtered) tracking error as e(t + J) : T"(q)ly(t + j) - r(t + j)] ,

and the (P + t)rn x 1 vector tracking error as E : le(t)' e(t * P)'1' .The vector

(filtered) tracking error can be expressed in the matrix form using eqns. 3.6 (p. 61),

5.2, and 5.5 to 5.11 as follows

E : ApYp -f BrU + BpUp - R.

Note from eqns. 5.2, 5.4,5.9 and 5.14 that, using the constraint A(p)z (t + C * i) : 6

f.or i:1,..., P -C, one can write BpU : BrrrUr, where Bpr: BeT.2 Therefore,

the vector tracking error can be written as

(5.17)

2Note that postmultiplication by matrix ? leaves the first C block columns of Bp7 unchanged

lrom Br and the (C + 1)-th block column of Bp7 is a sum of the last (P - C * 1) block columns of

Bp.
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Next, using eqns. 5.12 and 5.13 one has (1"+t Ø S(p))U, : SrUr -¡ ^9pUs. Now

the cost function 5.3 with the constraint on changes in future values of the control

sequence, which is embedded in eqn. 5.17, can be written as

Jp,c : E'(Ir*t8 T)^Ð t (SrUr * SpUs)t(Ic+r I L)(SFUr * SpUs)

: (ApYp I BrrUr I BpUp - R)'Tp(ApYp i BrrUr i BpUp - Ã) +

*(S pUr * SpUs)'Ä c(S rUr * S pU s).

Differentiating the above cost with respect to Ur and setting the result to zero gives

the control law 5.15.

Q.E.D

It follows from Lemma 3.1 (p. 61) that the coefficient matrix ÉÁo) i. nonsingular.

It is also assumed that the coefficient matrix ,50 of the filter S(p) is nonsingular.

Hence, matrices Brr and .9r have full rank. Thus, matrix B,r is invertible (T and

Â, are positive definite and positive semidefinite matrices, respectiveiy). Therefore,

nonsingularity of the matrix B,y is guaranteed through the use of the left interactor

matrix in the multi-step-ahead predictor (see Lemma 3.1, p. 61) and in the choice of

the performance criterion 5.3 (see approach (ii) on p. 60).

On the other hand, the original DMC strategy involves inversion of a matrix

consisting of the coefficient matrices of the step-response model. This matrix is

not, in general, guaranteed to be nonsingular. This is a consequence of deriving the

multivariable DMC scheme as arr extension to its version for scalar systems [30]. (For

a scalar system, nonsingularity of the corresponding matrix can be guaranteed by the

choice of controller parameters P - C +L ) k, where k is system delay [149].)

We shall nolv comment on the computations involved in evaluation of the control

signal from the control law 5.15. Firstly, the dimension of the matrix which is to

be inverted in calculation of the control sequence, was reduced from (P + 1)ræ to

(C + 1)rn by putting 4.6 --r oo. For example, if C : 0 then the inverted matrix

is of dimension rn x rn. Secondly, evaluation of matrices Br, Bp and ,4p requires

calculation of the coefficients of the multi-step-ahead predictors f.or j - 0, . . . , P.
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The algorithm given in Remark 3.t (p. 65) can be used for this purpose for each j.
However, if P > 0 (which is usually the case) then the recursive algorithm given in

Remark 3.2 (p. 69) yields the matrices of coefficients of the j-step-ahead predictor in

terms of matrices of coefficients of the (j - 1)-step-ahead predictor. In other words,

the 7-th block row of matrices Bp, Bp and Ap is calculated recursively in terms of

the (7 - 1)-th block row of the corresponding matrix (for 7 > 1).

The C * 1 control rn-vectors,, Ur, are evaluated from the LRP control law 5.15.

These controls a^re applied at sample instants t,t+L,...,f *P. This implies that the

feedback control law (i.e., ihe GLCL 2.35 (p. 33) representing the LRP controller)

is time-varying. The LRP controllers introduced in [30,155,38,36,149] are other ex-

amples of the control laws which can be represented by the time-varying GLCL.

However, it was suggested in [155,38,749,92) that for the long-range predictive con-

trollers receding horizon strategy can be used.

For the receding horizon strategy, only the first rn-vector u(t) of the control

sequence U7 is calculated and applied to the controlled system at every sample instant

ú. At the next sample instant ú * 1 the calculation of the first control rn-vector of the

new control sequence U7 is repeated.

The receding horizon strategy implies that the most recent input-output data is

used in evaluation of control sequence Ur at every sample instant Í; otherwise, the

control sequence lfu, evaluated at sample instant ú, is not affected by system outputs

at time ú * 1, t 12, ...,t * P.

The receding horizon strategy reduces the computational burden, since only the

first (block) row of matrix B-,] is involved in calculation of z(f) from eqn. 5.15. For

the remainder of this chapter, the LRP control law 5.15 witl be used in the receding

horizon serì.se.

The LRP controller resulting from the minimization of cost function 5.3 has

the following tuning knobs: prediction and control horizons, P and C respectively,

weighting polynornial matrix .9(p) and weighting matrices T and A.

It rvas found in the simulation studies (some of which are described in subsection

5.1.2) that the prediction horizon P should be set to such a value thai (fr + P)7",
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where k is the degree of the interactor matrix and f is the sampling period, covers

a significant part of the plant step response (e.g., plant rise-time) [30,152]. Then

the choice of C comparable with P (but smaller) gives rise to a dead-beat type of

response with quick settling of the controlled outputs. For small values of. C, a more

sluggish output response results (see examples in subsection 5.1.2). In many cases

the choice of. C :0 leads to satisfactory closed-loop system performance. However,

the simulation studies performed for scalar systems [150] indicate that the choice of

the time-oriented parameters C and P may be more difficult for dynamically-complex

plants (see discussion on p. 184).

If future values of the reference sequence are known (programmed control), the

choice of P shapes the controller ability to react to the future change of the reference

sequence in advance (see example 5.1.1, p. 163). The controller anticipatory action

associated with programmed control can be helpful in improving the input-output

performance for sluggish systems, including systems with large delay [9a].

The weighting matrix r1, is a performance-oriented tuning knob which makes it

possible to damp the movements of the actuator. This is the main purpose of its use,

in contrast to controllers which minimize a single-stage cost function. In the latter

case, the control weighting matrix A plays a crucial role in ensuring boundedness of

the control signal for nonminimum phase plants (see Lemma 4.2, p. 122). For the

LRP controller, however, boundedness of controls for nonminimum phase systems is

achieved by setting C 4 P, for Â l0 (see examples in subsection 5.1.2). (Such a

choice of C and P prevents the unbounded growth of the amplitude of the control

signal by putting an infinite cost on changes in the control sequence after time t + C .)

If L + 0, then the weighting polynomial matrix S(p) can be chosen such ihat ,S(1) : ¡

(".S., S(p) : f*-pf^), so that there is zero steady-state error for a constant reference

sequence.

Now two special cases of the LRP control law are discussed.

Weighted one-step-ahead controller. If C : P :0 and 
^ 

> 0, then the LRP

control law reduces to the weighted one-step-aheacl controller introduced for
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Kt(q) : tr(q) in [9, chapter 5]. It follows from eqns. 5.15, 3.7, 3.8 and 3.1 that

the resulting GLCL, given by eqn. 2.35 (p. 33), involves

v(p) : @P)'r p@)(p) + (^ss)'A,s(p), (b.ls)

M(q) : 1B[o)¡'rFr,(ø), (b.1e)

r{p) : (Éáo)),rotor,o,. (b.20)

The outputs of the closed-loop system satisfy

@P)'tK "(ùa(t): lBjo)¡'tK {q)r(t)- (.so)'^.s(p)"(t). (b.21)

One-step-ahead controller. If. C : P (> 0) and Â, : 0, then the LRP control

law reduces to the one-step-ahead controller introduced forKTçq): €¿(q) it

[9, Theorem 5.2.5, p.138]. Note that in this case Ur: U, Brr: BF, and

B,T : B'FT pBF. The LRP control law 5.15 is

U : (Br)-tTp {Ã - ApYp - BpUp}

Because of the lower triangular block Toeplitz structure of. Bp, the control

signal u(t) is given by the GLCL defined by eqns. 5.18 to 5.20 for A : 0, i.e.,

the LRP control law reduces to the one-step-ahead controller.

Finally we shall comment on the significance of the properties of the left interactor

matrix in the design of the LRP controller.

Comment 5.1 Th,e properties wltich cltaracterize an interactor matrir (see Rernark

2.1, p. 12) were embedded in the d,efinition of the left nilpotent interactor (LNI)

matrix (see Definition 2.3, p. 43).

The first property, giuen by eqn. 2.42 (p. /¡3), ensures that rnatrir 8,7 in the LRP

control law eqn. 5.15 is nonsingular. Hence, the control signal u(t) (as well as the

control sequence U7 ) can be determined uniquely as a function of past and present

ualues of the controlled, outputs and, past controls.

Th,e importance of the second property, giuen by eqn. 2.43 (p. /¡3), is reuealed by

eqn. 5.21: stability of I{{z) is required, to ensure asymptotic reference tracking.
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The interactor matri"Kr(q) affects the closed-loop system output response (see

eqn. 5.21 for the choice of the parameters C : P - 0). Nonuniqueness of the LNI

matrix I{t(q) introduces a degree of freedom in the design of the compensator (see

example 5.1.1, figs. 5.1 and 5.2).

Aside 5.L It is the opinion of the author that the use of the LNI matrin in the design

of (weighteil) minimum uariance controllers (MVC) for systems affected by stochas-

tic ìlisturbt,nces will prouid,e an øilil,itional d,egree of freeilom in terms of infl,uencing

uariances of the ind,iuiilual outputs of the closeil-loop system.

Th,e problem of ilesigning a MVC for a sgstem described, by ARMAX model 2.26

with the delay structure characterized by the unique interactor matrix t¡,Q) wol con-

siilereil, in [36]. The resulting MVC d,oes not minimize the indiuiilual output uariances;

the unconditional minimum uariance control is achieaeil, only for the first element of

the output uector y(t), whereas aariances of the remaining outputs are rninimized

subject lo constraints (this is ilue to the triangular structure oÍ tt(")). Th,e use of

the LNI matrix in a sirnilar design should, lead, to a MVC which rninimizes aariances

of all outputs subject to constraints, i.e., the uncond,itional minirnum uariance con-

trol will not be achieaeil for any system output. Nonuniqueness of the LNI matrix

would, howeaer, introd,uce the possibility of achieuing more uniform minimization of

uariances of all outputs.

5.t.2 Self-tuning long-range predictive control.

The long-range predictive control law 5.15 can be combined with a recursive param-

eter estimator to yield the indirect self-tuning controller involving estimation of the

parameters of the system DARMA model. Such a self tuner will be referred to as

the ST-LRP controller.

It is assumed that estimates of the parameters of the system DARMA model are

evaluated at every sample instant f . Since the LRP control law is used in the receding

horizon sense, the most recent estimates are used in evaluation of the control signal

at every sample instant. However, in the self-tuning case, the cost function 5.3 is
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minimized under the simplifying assumption that process parameter estimates remain

constant within the prediction horizon P.

The LRP control law 5.15 involves the interactor matrixK¡,("). Therefore,

Assumption 5.1 The teft interactor matrirR"(r) is knoun.

This assumption means that the approach 1 in the classification on page 38 is in-

volved, i.e., "complete knowledge of the left interactor matrix is assumed". However,

we do not restrict the characterization of the delay structure to the unique left inter-

actor matrix t¡,Q) (approach 1 ("), p. 38); the LNI matrix Kt ("), being a nonunique

characterization of the delay, is considered as well (approach 1 (d), p. 38). On the

other hand, Assumption 5.1 can be removed if an algorithm for the on-line calcu-

lation of the interactor matrix is employed in the self tuner, as was done in the

ST-MPR-RNI strategy (see section 4.2). However, the algorithms for the calculation

of the LNI matrix cannot be employed since they operate on the RDO representation

(see frg. 2.8, p. 55), rather than the DARMA model which is estimated in the ST-

LRP strategy. Alternatively, the algorithm for evaluation of Ç,Q) from the DARMA

model via polynomial matrix division, proposed in [39], could be employed. This

corresponds to the approach 5 (a) in the classification on page 39.

Furthermore, the required prior system knowledge involves an upper bound on

the degree of the polynomial matrices of the DARMA model ñ (see Assumption 4.2,

p. 126).

The ST-LRP controller involves the following steps which are performed at

every sample instant ú:

step 1. calculate estimates Á¿ and Ê; of. the coefficient matrices ,4; and. B¡ of the

DARMA model using, say, the simplified multivariable RLS algorithm given by

eqns. E.18 to 8.22, Appendix E (i : 7,. . . ,ñ);

step 2. using estimates from step 1 in place of true DARMA model coefficient matri-

ces, calculate matrices of coefficients F(0), â(0), and p(ol [ 
3 

] using the algorithm
3The symbol (^ )' is used to diflerentiate results of calculations based on the estimates of parameters

of the DARMA model from results which are based on true parameters.

r62



given in Remark 3.1, p. 65;

step 3. calculate matrices of coefficie¡1¿s 6(j) and p(rl using the algorithm given in

Remark 3.2, p. 68 (j : 1,...,P);

step 4. form matrices Êp7, Êr, Ãr, S¡ and ,9p, and calculate control signal u(f)

from eqn. 5.15 (i.e., the first rn elements of the truncated control sequence [ft).

The macro XSLR, which is written in MATLAB commands and implements the ST-

LRP strategy, is given in Appendix D. The performance of the ST-LRP controller is

illustrated in the following examples.

Example 5.1.1.

In this example a nonminimum phase system is considered. It will be demonstrated

in a simulation study that the choice C < P ensures closed-loop system stability even

if Ä : 0. On the other hand, the closed-loop system stability condition for such a

system controlled by the MPE strategy requires a nonzero value of A, the choice of

which is related to the (unknown) system parameters (see Lemma 4.2, p. I22). The

influence of the values of C and P on the closed-loop system performance for both

the programmed control and the fixed reference sequence model is shown as well.

Furthermore, two different LNI matrices are considered for the design of the ST-LRP

controller.

Consider a two-input, two-output (rn, : 2) system given by the following transfer

matrix:

Ho,,(z) :

The corresponding DARMA model 3.1 (p. 59) is given by

100.2 0-0.24 0
A(p) lI, A, Arl(Pr 8 /z) :

z*O,2
(z{0.6)(z-0.a)

1

z*0.5

(P, Ø Ir),
01 o -0.2 0 -0.35

11 0.6

1 1 -0.4

0.2

-0.7
B(p) : plBt Bzl (r, ø Ir): p
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i.e., n: 2. Note that equation det B("-t ) : 0 has root at z -- 3.4, i.e., this system

is nonminimum phase.

The LNI matrix, calculated for this system using the algorithm developed in

subsection 2.3.2 wilh QR matrix decomposition, and denoted LNI-QR, is given by

K;(z) :

and det Kt("): -23. The LNI matrix calcuiated for this system with LDU decom-

position (Gaussian elimination), and denoted LNI-LDU, is the same as the unique

left interactor matrix (il2)

-0.70772

-0.707722

-0.707I2

0.707722

z2

Kn("): (¡(z): z

and det Kú"): det tt("):23. The degree of the LNI matrices is Ie :2.
For the simulation studies the reference sequence rÃ/as chosen as square wave with

amplitude 1 and period of 50 sample intervals. The simplified multivariable RLS

algorithm given in Appendix E was initialized with the covariance matrix P(-1) :
104.13 and ihe initial estimates of the coefficient matrices of the DARMA model

Ár(0) : Êr(0) - -I2 and Ã"Q): Êr1o; : 0; forgerting factor a(f) : 0.95. In all

simulations described beiow the DARMA model parameter estimates converged to

their true values after approximately 20 samples.

Prograrnrned control.

At first it was assumed that the future k + P values of the reference sequence are

linor,vn at every sample instant f so that vector -R can be evaluated accorcling to

eqn. 5.8 (programmed control).

For C : P : 0 the LRP controller reverts to the (r,veighted) one-step-ahead

controller; it would be thus necessary to choose a nonzero Â to ensure stability of

the closed-loop system with nonminimum phase system [9, Theorern 5.2.5, p. 138].

Instead, C < P and,A.: 0 is assumed: C :0 and P :7,5,3,1 changing every

50 samples. Furthermore? S(p) : 12 and 1 : Iz. (The open-loop system rise-time,
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defined as time needed for system outputs to reach 90To of their final values a,fter the

step inputs, is 3 sample intervals.)

The input-output behaviour of the closed-loop system with the ST-LRP controller

based on the LNI-QR and LNI-LDU matrices is shown in figs. 5.1 and 5.2, respec-

tively. Note that the decrease in the value of P (i.e., decrease in the difference

P - C) results in a more active control signal. This can be explained by the fact that

the LRP controller approaches the one-step-ahead controller (since P becomes closer

to C) which is unstable for a nonminimum phase plant. A bigger difference P - C

leads to a more sluggish input and slower output responses, which is useful during

the learning phase of self tuner since the controller is more "cautious". For all values

of. P, however, the performance of the self-tuner was satisfactory.

It was assumed that at time ú future values of the reference sequence up to sample

instant t + P * ,k are known to determine .R (programmed control). Hence the LRP

controller ttcan seett future change of the reference sequence and compensate for

it in advance. For bigger values of P the compensation process starts earlier but

the output response is slower. For smaller P, the compensation starts closer to

the reference change, the control signal is more active and results in increased output

overshoot. The overshoot decays slower for smaller P. Thus the overall time required

for outputs to reach new steady state is largely independent of the value of P.

Note that the structure of the LNI matrix influences the closed-loop system per-

formance. It can be observed ihat the overshoots in output responses are smaller and

die away faster for the LNI-LDU matrix than for ihe LNI-QR matrix. This illustrates

a degree of freedom in the design of the control system performance introduced by

nonuniqueness of the interactor matrix.

The next simulation study with programmed control illustrates the influence of

the value of control horizon C on the performance of the closed-loop system. The ST-

LRP controller based on the LNI-LDU matrix was simulated with C : I, P : 7,5,3

(changing every 50 samples) and A : 0. The input-output behaviour of the closed-

loop system is shown in fig. 5.3. The increased value of C permits more variations

in the control sequence since C can be interpreted as the control signal settling time
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(the control horizon C permits C + t changes in the control sequence [/). This can

be observed before and after the reference step, where two major changes in the

control signal occur. The influence of P on the ampiitude of control signal after

the reference change is negligible in comparison with the corresponding influence for

C : 0. The variations in control sequence, preceding the change in the reference

sequence, result in "ringing" of the outputs. This undesirable effect becomes less

significant for smaller P. The output responses are faster in comparison with those

associated with C :0.

Fixed reference sequence model control.

The next simulation study illustrates the effect of the fixed reference sequence model

on the closed-loop system performance a (see p. 153). For a nondiagonal interactor

matrix, the use of the fixed reference sequence model leads not only to the delay in

tracking but also to a degradation of the input-output transient performance. These

effects are seen by comparison of figs. 5.4 and 5.2 for the ST-LRP controller based

on the fixed reference sequence model and programmed control, respectively. The

undesirable transient performance, due to coupling introduced by the off-diagonal

elements in the interactor matrix, can be influenced by the choice of the controller

parameters and the choice of the interactor matrix. It can be seen in fig. 5.4 that,

the greater the difference P - C, the smoother are outputs. In fact, outputs reach

new steady-state values faster for P:7 than for P: 1.

It should be pointed out that a similar deterioration in output transient response

after a reference change can be observed for the MPE controllers based on minimiza-

tion of a single-stage cost function, if the reference sequence value k samples ahead

is unknown 5.

Let us now suÍr.rnarize the results of this example. For values of. C < P with

4This part of the example is referred to on p. 130 as an illustration of the effect of unknown future

values of {r(t)} on the closed-loop system performance with a controller based on the (nondiagonal)

left interactor matrix.

sSee discussion on p. 130.

169



0 50 100
SAMPLE

150 zoo

_D
0 50 100

SAMPLE
150 zoo

-5
0 50 100

SAMPLE
150 zoo

-2
o 50 100

SAMPLE
150 200

Figure 5.4: ST-LRP controller based on the LNI-LDU matrix with C : 0,

P :7,5,3, 1(changing every 50 samples), A:0: input, output and reference

sequences (frxed reference sequence model).

5

o

-5

E-l

-,
Ê.z
l-a

4

z

o

E{
Èt
0.
E{
Jo

5

o

N
F
Þ
0.
z

4

2

o

N

F.
)J
0.t{
È)o

ili\tL_l. il i\
i/-il in

I l--,

\ti\'{i\tt\i'n ir- i;n^

170



Â :0, the ST-LRP controller applied to a nonminimum phase plant led to a stable

closed-loop system. However, the choice C : 0 resulted in smoother output responses

and involved a smaller computational burden (inversion of matrix B,r). Larger

values of P yielded slower responses, but with lower control effort. The time-oriented

tuning knobs P and C ofret greater flexibility in the design of the closed-loop system

performance than the tuning knobs of the MPE controller. An appropriate choice of

C and P might improve the closed-loop system performance in comparison with the

MPE control for the case of u¡rknown future reference sequence values.

Example 5.L.2. Application of the ST-LRP controller to robotics.

The adaptive control schemes based on the long-range predictive approach have been

evaluated in applications involving slow sampling, varying from a few seconds to

hours. Examples of applications to control chemical processes (catalytic cracking

[30j, PVC plant (synthesis of vinyl chloride) and distillation column [156,157]), blast-

furnace process [118], speed control of a sinter strand [727], paper machine [158], and

other industrial processes [159] were reported. Examples of applications involving

fast sampling are rare [130]. It is demonstrated below that the ST-LRP strategy is

capable of controlling systems requiring high sampling rates.

In section 4.3 the problem of designing a self-tuning controller for a robot ma-

nipulator was considered. The ST-MPE-RNI controller was successfully applied to a

simulated two-link planar manipulator representing links 2 and 3 of the PUMA 560

robot. In the following example the same problem is addressed using the ST-LRP

controller.

As in section 4.3, it is assumed that the robot manipulator can be adequately

modeled by the DARMA model which approximates the nonlinear model of the

manipulator. The sampling period is now chosen to be T" : 25x 10-3 seconds, i.e., the

sampling rate is ten times higher than for the ST-MPE-RNI strategy and corresponds

to typical values assumed in digital control of robots [141]. The linearized, discrete-

time, state-space models and DARMA models corresponding to the operating points

Q1 and 8r (se" eqns. 4.13 and 4.14, p. 139) were found as described in section 4.3

L7T



and a¡e given in table 5.1.

The reference signal r(t) : [r1(t) rr(ú)]' (in radians) was defined as follows

"(¿)

O.2sin(a'f) for 0 ( t 12,and 4 ( t ( 6 s

O.4sin(zrt) for 2 ( ú < 4 s

0.5ú for 0 ( t 1I, and 4 ( t ( 6 s

0.5 forl(t<2s

-t for21t<3s

-0.5 forS(ú<4s.

rz(t)

The two-link manipulator was simulated using the DARMA model defined in ta-

ble 5.1, at the operating point Q1 for the period 0 < ¿ < 1.5 s, and at Q2 for

1.5 < Í < 6 s. Assuming perfect tracking of the above reference sequence, the robot

is at the operating point Qt at time t : 0 s, and at Qz at time ú : 1.5 s. The rate

of change of the above reference sequence is 6.25 times faster than that one specifi.ed

for the ST-MPE-RNI scheme (see eqns.4.16 and 4.I7,p.741).

Firstly, let us comrnent on the possibility of employing the ST-MPE-RNI strategy.

Note that the roots of the equation det B(z-t): 0 (denoted by z"¿ in table 5.1) lie on

the unit circle. Hence, the ST-MPE-RNI controller requires a nonzero weighting ma-

trix A, to satisfy closed-loop system stability conditions (see Assumption 4.7, p.726).

However, the choice of A is not straight-forward and, in fact, it was difficult to find

appropriate .4. for fast sampling, such as ?" - 25 x 10-3 s. Furthermore, elimination

of the )-offset by the filter ^9(p) introduces additional dynamics into the closed-loop

system.

Let us now consider the ST-LRP strategy. It is demonstrated below that the

ST-LRP controller yields satisfactory performance of the closed-loop system for a

high sampling rate and with A : 0 (S(p) : fz, T : Iz).

The interactormatrix I{{z) - zIz is assumed to be known (see Assumption 5.1,

p. 162). The following parameters of the ST-LRP controllerwere chosen: C : 0,

P : 3 and .4, : 0. (Step responses of the nonlinear robot model are presented in

[1a4] and show sustained oscillations.)
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.0165

-.0380

-.0380

.7377

.0165

-.0380

-.0380

.1377

.0205

-.0510

-.0510

.7719

.0205

-.0510

-.0510

.7779
lBt Brl

x 10-2

-1.9835

-0.0179

-.0099 10

-1.9569 0 1

-1.9813

-0.0256

-.0147 1 0

-1.9419 01lA, Arl

1000
0100

1000
0100

C

.0002

-.0004

.0131

-.0303

0004

0013

0303

1049

.0002

-.0005

.0163

-.0405

-.0005

.0017

-.0405

.1367

B"

.9917

.0090

-.6589

.7L2ó

.0050

-.9785

.3941

-1.7153

.0249

.0001

.9917

.0090

0000

0248

0050

9785

.9906

.0128

-.7474

1.0163

.0074

-.9710

.5861

-2.3103

.0249

.0001

.9906

.0128

.0001

.0248

.0074

-.9710

A"

at the operating point Q2at the operating point Q1Model

-1 J
1-1 ,, 1Zzi

0.9757 + 0.2190i,

0.9945 + 0.1046i

0.9620 +0.2549i,

0.9946 + 0.1036i
zpi

Table 5.1: Matrices of the state-space and DARMA models of the robot manipulator

linearized at the operating points Q1 and Q, (7" :25 x 10-3 s).

173



The simplified RLS algorithm was initialized as in example 5.1.1. The limit on

the control signal amplitude ril/as assumed to be 75 Nm.

Fixed reference sequence model control.

Firstly, the fixed reference sequence model was employed. The input-output be-

haviour of the closed-loop system is shown in fig. 5.5. (The joint angle d1(ú) is plotted

around constant level of -f rad taken as a zero level in fig. 5.5.) Both outputs track

the reference sequence closely after the initial estimation phase of 50 samples. Note

that there is a zero steady state error due to the choice of .4. : 0. The input-output

performance was not affected by the transition form Q1 to Q, at sample instant 60.

The trajectories of the estimates ,4; and Êt Q -- I,2) are shown in figs. 5.6 and 5.7,

respectively. The estimates of A¿ converged closely to their true vaiues after about 50

iterations, and those of B; after about 30 samples. There were difficulties in following

the step change oÍ. B; parameters after transition form Q1 to Q, at sample 60 (note

that the elements of B¿ are much smaller than those of A¡ due to fast sampling [160,

p. 571).

The input-output performance rñ¡as unaffected by the drift of estimates of. B¿ after

sample 220. Such drifts of estimates can be often observed if a constant forgetting

factor less then one is used (in this simulation a(t) : 0.95). Sometimes the "burst of

estimates", which is associated with exponential data weighting techniques, occurs

[6]. If the major excitation of the controlled system is due to the reference sequence,

there might be periods of poor excitation which often lead to the numerical insta-

bility of the estimator and possibly instability of the closed-loop system. There are

many methods to avoid the "burst of estimates" [6]. Va¡iable forgetting factors are

commonly employed as a facility for preventing burst without loosing the ability to

track va¡iations in system parameters [146,11,147,I48,I3]. It is also important to en-

hance the robustness of the estimator against the "burst" by improving the numerical

stability of the implemented algorithms. The square-root and U-D factorization tech-

niques are commonly used for this purpose [161,162,163,164,165]. In this example,

horvever, the RLS algorithm was implemented in the potentially ill-conditioned form
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given by eqns. E.21 and 8.22, Appendix E).

The simulation was repeated for P : 4 (C : 0, .4, : 0) leading to satisfactory

performance as well. For P : I and 2 the control effort was excessive, although it

could be decreased by appropriate choice of the weighting matrix L + 0'

- 1.9
Fl
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200 250
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0 50 100 150 200 260

Figure 5.6: ST-LRP controller applied to the two-link robot manipulator C : 0,

P : 3, Â. : 0: estimates and true values of the elements attt ã22 (top), and o12,

ø21 (middle) of the coefficient matrix Á1, and coefficient matrix ,4.2 (bottom) - fixed

reference sequence model.

Programmed control.

In robot control, future values of ihe reference sequence are often known [141] and

can be used in calculation of vector .R according to eqn. 5.8 (programmed control).
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Figure 5.7: ST-LRP controller applied to the two-link robot manipulator C : 0,

P :3, À : 0: estimates and true values of the coefficient matrices Br and 82 (fixed

reference sequence model),

In order to illustrate the effect of programmed control on the system performance,

the simulation was repeated for the same parameters of the ST-LRP scheme (C : 0,

P :3, Á, : 0) assuming knowledge of the k + P future values of {r(ú)} at every

sample instant ú. The input-output behaviour is shown in fig. 5.8. To facilitate the

comparison with the fixed reference sequence model, the same scale was chosen,in

fig. 5.8 as in 5.5 (the maximum values of joint angles were d1 : 1.15 ard 02 : 4.22

rad, the minimum values were d1 : -!.25 ar',d02: -2.36 rad). Note that the control

sequences (torques) are significantly smoother than those associated with the fixed

reference sequence model (see fig. 5.5). At the same time there is no degradation in
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output responses. In fact, the outputs track the reference sequence closer than those

for the fixed reference sequence model. The effect of programmed control on the

control sequence is very desirable since it reduces component wear without affecting

the output responses.

The effect of improving the control signal by programmed control seems to be

quite general for systems with diagonal interactor matrices 6. However, for systems

with nondiagonal interactor matrices, prograrnmed control leads to improved output

responses but not necessarily to reduced control effort in comparison with the fixed

reference sequence model (see example 5.1.1).

Summarizing, simulation studies presented in this example show that the time-

oriented tuning knobs of the LRP controller facilitate control of dynamically-complex

systems, such as robot manipulators. Furthermore, selection of values of the tuning

knobs, which lead to satisfactory closed-loop system performance, is easier for the

LRP controller than for the MPE strategy.

5.2 Self-tuning long-range predictive control of a

two-input, single-output stochastic system.

In this section:

- the long-range predictive (LRP) control law is presented which minimizes multi-

stage cost function for a stochastic scalar system;

- the stability analysis of the closed-loop system with the LRP controller is pre-

sented.

As already mentioned in the introduction to this chapter (see p. 149), the GPC

strategy was introduced for the CARIMA model in [29,149] as an extension of the

DMC strategy developed for the step-response plant model [30].

6A similar effect of programmed conbrol was recently reported for scalar systems [94]
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The GPC strategy has a number of properties which are desirable in self-tuning

control [29]. However, the author found in the simulation studies that the perfor-

mance of the closed-loop system under the GPC self-tuning controller deteriorates

if the system satisfres the ARMAX model, rather than the CARIMA model 7 (see

discussion on p. 32 and example 5.2.I, p. 185). Therefore, the corresponding LRP

controller was developed for the ARMAX model following the approach used to derive

the GPC [29] (see Rogozióski and Gibbard [150]). The summary of the results is pre-

sented in subsection 5.2.1. New results involve analysis of the stability and behaviour

of the closed-loop system resulting from the LRP control law and are presented in

subsection 5.2.2.

5.2.L Long-range predictive control of a two-input, single-

output stochastic systern.

Let us consider a two-input (/: dimu(f) : 1, s : dimc¿(ú) : 1), single-output

stochastic system having the feedback configuration FI (y¡(t) = y(t), ,, : f :

dimy(t) : 1). The system is given by the ARMAX model 2.26 (p.29) in which the

delay k > 7 is factored from the polynomial B(p) leading to the following form of

the model

A(p)a(t) : pkB(p)u(t) + C(p¡uçt¡, (5.22)

A(p) : [1 or annf Pno,

B(p) : [óo ó, . . . bn"f Pn, bo I 0

C(p) : [1 "t cn"l Pn.,

with initial conditions on {y(t)}. It is assumed that roots of. C(z-r ) lie strictly inside

the unit circle. The stochastic disturbance ar(t) is a zero-mean stationary white

gaussian sequence (see eqns. 2.4 and 2.5, p. 27).

The LRP control law is developed with the aim to minimize the following cost

TThis is confirmed by an article [94] published during the writing of this thesis
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function

P C

Jp,c : E I ty(¿ + k + i) -,(t + k + i)l' +!.r"(t + i)" (5.23)
j=o j=o

given the constraint on the variations of the control signal after time t * C, i.e.,

(7-p)u(t+C+i) :0 for i:1,...,P-C,

where the expectation operator ^Ð{.} is conditioned on data available up to time

ú. Note that cost function 5.23 is a stochastic counterpart of the performance crite-

rion 5.3 (p. 153) for a scalar system 8. Therefore, the LRP control law, resulting from

minimization of the cost 5.23, has the same parameters P, C, and control weight-

ing coefficient À, as its counterpart derived for a MIMOS deterministic system in

section 5.1.

The derivation of the LRP control law presented below for the ARMAX model is

based on that of the GPC for the CARIMA model in [29].

For the purpose of derivation of the LRP controller the optimal multi-step-ahead

prediction of the output y(t + kr) of the system 5.22, irtroduced in [127], is expressed

in the following form (k, > fr)

a"(t + kplt): o&)(p)a.(t) + pY,)(ùu(t *kp- Ð+ pg')(p)u.(t -r), (5.24)

where the filtered system output y"(ú) and input u"(f) are defi.ned by

C(p)y"(t) : a(t), C(p)u"(t) : u(t). (5.25)

The polynomial a¿&,)(p): [o[*"1 tf:)-r]Pn,,-t, satisfres the following Diophan-

tine equation

c(p) : F(k")@)A(p) * pk,a(rò(p), (5.26)

where pftù1o¡ is a polynomial of degree kr-t.The polynomials Bfù@) "n¿ P8ù@)

are defined as follows

Bfù @) : Bt*Ðço¡ ¡{xo-¡+')(p)
sThe cost function weighting increments in the control signal, rather than its magnitude, was

considered as wellfor the development of the LRP controller in Rogoziúski and Gibbard [150].
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B8ì@)

: lB!Íi:à Blloù pF(t'o)

: B{r'")ço¡n{r,-r+r)1o¡ : l\ftks

Pi:riì, -'] Pn 
" 

¡z k, - k - r t

. glÍ?I"*oo-r] P^"*nç{tcp-2t

where p(ke)@) : It&,\ço¡E(p), and the polynomials /(Èo-r+r)(p) ("f degree k, - k)

and g(frr-k*t)(p) (of degree ,c - I) satisfy the following Diophantine equation

I - ¡(xn-**t)(p)C(p) * pke-k+tn (/'p-'b+l)(p). (5.27)

If the initial conditions on {y(t)} are known and used in calculation of y'(t+krlt),

then the prediction 5.24 is optimal for all sample instants f . If the initial conditions

are unknown, then the prediction 5.24 is asymptotically optimal since the effect of

incorrect initial conditions diminishes exponentially. (This is because C("-t) has all

roots strictly inside the unit circle [9, Remark7.4.3, p. 269].)

The prediction 5.24 with kp : lc * I is substituted with the corresponding pre-

diction error e(f * kr) : y(t + kr) - a'(t + kplt) : pf*ù@)u(t + kp) for the output

y(t+k+j)in the cost function 5.23. It is assumed that ^Ð{u(t+i)e(t+k+i)}:0 for

j :0,...,P and i < j. The cost function is minimized with respect to the present

and future control signals [/¿, defined as

Ur: fu(t) u(t + C)l' , (5.28)

leading to the following LRP control law

Ut: B,t Ip+t -Ae -Bp -Bs

R"

Y.

ue

u"

(5.2e)

(5.30)

where

R"

Y

ue

u.
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The real matrices involved in the LRP control law 5.29 consist of coefficients of the

polynomials of the multi-step-ahead predictor 5.24 fot kp: lc,...,le -f P, and are

defined below. The (C * 1) x (C + t) matrix B,¿ is given by

Brt : (a'¡rBn + À/c+r)-r B'¡r,

where the (P * 1) x (C + t) matrix B¡7 : BrT (T is given by eqn. 5.14 (p. 155) with

m : 7), and the (P + 1) x (P + 1) matrix B ¡ is defined as

oF(*) o

TF(k+rl p{(o\

Bf:
pF(k+P-r\ pF(k+P-2) þF(*l 0

pF(h+Pl pF(k+P-r) pF(k+r) gF(t'l

Furthermore, the (P + 1) x (na+ k + P - 1) matrix B, is defined as

0

Bp:
âF(k+P-r)
Pn"+k+P-z 0

âF(k+P)Pnslk*P-l

and the (P+ 1) x (rn inc *k + P - 1) matrix Bn is givenby

0

Bn:

0

0

0

0

pF(k+P-r)

pF(k+P)

/2G(k+P-t)
Po

pG(k+P)

aG(k+P-r)Pns{n¿}k}P-3 0

aG(k+P)Pn6ln¿lklP-2

and the (P + 1) X n¿ matrix -40 is

Ap:

aft+rr "f::)
The coefficients of poiynomi¡" o(ro)1'), þ(r")(p), f(kP-k+r)(p), and g(ke-k+r)(p), rvhich

are required to determine the above matrices, can be calculated recursively using an
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algorithm similar to that given in Remark 3.2 (p. 69). This reduces the computational

burden required for solution of the two Diophantine equations 5.26 and 5.27 for each

prediction horizon kp : k,.. . rk + P.

The guidance based on the simulation studies for the choice of the LRP controller

parameters C , P, and À, was discussed in [150] and is presented below e. (Corresponds

results were obtained for the DMC [30,151,152] and for the GPC [29] strategies.)

Both C and P can be chosen on the basis of the step response of the process to

be controlled. It was found that for well-damped plants the choice C : 0 was

satisfactory. It may be necessary to set C ) 0 to obtain the desired performance

for more dynamically-complex plants, e.g., for a nonminimum phase plant having an

oscillating unstable mode. The second tuning knob P facilities the adjustment of

the speed of the response. The larger the value of P the slower is the response and

the more "cautious" is the control. For well-damped systems the choice of P is not

crucial and can usually be such that (k + P)7" is approximately equal to the open-

loop system rise-tim" (?: is the sampling interval). For nonrninimum phase plants

(k + P)7" should cover at least the rise-time of the open-loop system. For the control

of an oscillatory unstable system, (k + P)7" should not be less than the period of the

first oscillation. The choice of À is not crucial but provides a means for containing

excessive control effort.

The self-tuning LRP controller results by combining a recursive parameter es-

timation algorithm with the LRP control law 5.29. The recursive extended least

squares (RELS) algorithm [9, p. 319] can be employed to estimate coefficients of the

polynomiais A(p), B(p), and C(p) of the ARMAX model 5.22.

The simulation studies described in [150] demonstrate the superior robustness

of the self-tuning LRP controller to underparameterization in comparison with the

pole placement techniques of l4a], and to variable system delay k in comparison with

the generalized minimum variance strategy of l2al. Similar results were originally

reported for the GPC in [29].

eThe analytical results are presented in subsectíon 5.2.2
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It was assumed that roots of C(z-t) Iie strictly inside the unit circle. This is

required in view of eqn. 5.25, but excludes the possibility of describing a system

with a deterministic disturbance, the generator model of which is incorporated in the

ARMAX model (see discussion on p. 31) 10. However, the ARMAX model augmented

with the offset term (see eqn.2.32, p. 31) can be considered for the development of the

LRP control law. A number of methods of offset elimination suitable for self-tuning

control 'Ã/as proposed [10,84,85] and two of them (classified in [85] as offset estimation

and incremental estimation) have been incorporated in the self-tuning LRP controller

under discussion (Rogoziiski and Gibbard [150]).

Example 6.2.L.

Let us consider a stable, nonminimum phase system given by the ARMAX model 5.22

with a1 - -0.95, óo : 1, bt : 2, ct : -0.7, and lc : 2. This system model was

used in [23, example 3] to illustrate the performance of the generalized minimum

variance (GMV) self-tuning regulator based on minimization of a single-stage cost

function. In [23], the stability of the GMV regulator was gua,ranteed by selecting a

value of the control weighting coefficient À greater than a critical value; however the

ARMAX model coefficients must be known for the calculation of the latter value.

In the following simulation it is shown that the LRP self-tuning regulator leads to a

similar closed-loop system performance as that of the GMV regulator. Furthermore,

this is achieved by adjustment of two time-oriented controller parameters C and P.

It is also shown that the regulation performance resulting from the GPC technique

is unsatisfactory.

The same simulation conditions as in [23] were chosen: the RELS estimator [9,

p. 319] was initialized with the covariance matrix P(-1) : 100/, and initial pa-

rameter estimates were set to zero except for 1010; : t. Constant forgetting factor

was used a : 0.995. The control signal magnitude was restricted to avoid excessive

l0Alternatively the (suboptimal) restricted complexity multistep-ahead predictor could be consid-

ered for derivation of the LRP control law (the ,t-step-ahead predictor of this type was introduced in

[9, p. 27'2]).
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Figure 5.9: The sequences of the control signal z(f) and regulated output y(f ) result-

ing from the LRP self-tuning regulator: C : 0,L,2,3 (changing every 100 samples

and constant thereafter), P:4, À:0.

control action l"(¿)l S 10. The input noise variance was set to o2 :7.
For a prediction horizon P : 4, the control horizon was changed every 100 sam-

ples in the sequence C : 0,I,2,3, and remained constant thereafter. The control

weighting coefficient À was set to zero.

The input-output behaviour of the closed-loop system is shown in fig. 5.9. It

can be observed that all values of. C < P lead to stable control, and a significant

difference in the control signal amplitude exists only between two cases C : 0 and

C > 0. In fact it was found that the choice of C had a negligible effect on the output

variance provided C < P was selected (for C : P and À : 0, the LRP control law

becomes the MV control law leading to instability for a nonminimum phase system).

In order to assess the convergence of the self tuner, the difference cumulative loss

10

o

üt
-10
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Figure 5.10: The difference cumulative loss (solid line) and vector loss (broken line)

functions for the LRP self-tuning regulator: C :0,L,2,3 (changing every 100 samples

and constant thereafter), P:4, l:0.

function was calculated as

CL(t): t laî)' - a"(Ò'l ,

n
(n
o
Þl

o

¡=l

where y,(t) is the system output resulting from the non-adaptive LRP controller

designed for the true system parameters. This function is shown in fig. 5.10 together

with the difference cumulative vector loss function defined as

cv L(t) : Étå la("+i)'-y"(ra,)'J

In addition the output autocorrelation function was evaluated over the lasi 501

samples as

: i vQ)vQ + s), s : 0,"',10'
Ður ;õ

In fig. 5.11 the output autocorrelation functions are displayed (1) for the open-loop

system (symbol x), and for the closed-loop system (2) with a non-adaptive regulator

designed for the true open-loop system parameters (symbol o), and (3) with the LRP

self tuner (symbol *). Both difference loss functions and the output autocorrelation
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Figure 5.11: The output autocorrelation functions for the open-loop system (symbol

x), and for the closed-loop system with the LRP non-adaptive regulator (symbol o)

and self-tuning regulator (symbol *), with C :3, P : 4, À : 0.

function demonstrate satisfactory convergence of the self tuner. Good regulation by

the LRP self tuner is revealed by the output variance (calculated for the last 501

samples) being close to unity.

For the purpose of comparison, the GPC non-adaptive regulator developed for

the CARIMA model [29] was simulated for the same system. The difference in the

noise characteristics (recall that the CARIMA model assumes that the noise filter has

a pole on the unit circle) led to a significant deterioration of the closed-loop system

performance. For C:0, P:4 and ):0, the output variancewaso2:1.75; the

choice of C :3 increased the variance to 2.77.

5.2.2 Long-range predictive control - closed-loop system anal-

ysrs.

It should be noted that although similar LRP controllers (DMC and GPC) were

developed and proven useful in industrial applications, the closed-loop system anal-

ysis and stability conditions were not presented. \ /ith the application of the LRP
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controllers to nonminimum phase and/or unstable open-loop systems a means for

establishing stability is needed 11.

The ARMAX model 5.22 was assumed for the derivation of the self-tuning LRP

controller in subsection 5.2.1. However, for the purpose of the closed-loop system

analysis it is convenient to derive an equivalent LRP control law from the corre-

sponding state-space model given by eqn. 2.7 (p. 22). Let us consider the observer

form of the state-space model having implicit d,elay l74l

w(t)

au)

*(t)

,(t)

"(t)

(5.31)
A" Ii B"

c10

where

A":

-a1 1

-Q2 0

-an-t 0

-0,n 0

00

00

00
10

0

0

0

0

0

0

0

0

lc1

Icn

0

0

0

0

0

1

0

0

3

0

1

0

1

0

B K_
bo

bn

000
C_ 10 0

(5.32)

The dimension of the state space is n f ,k, where rL : max(n¡, nn,r',c), and k¿ :
ci- ai for i : 1,...,max(na,nc) (a¿:0, bj :0, kt: 0 fo1i ) nAt j > ,e,
/ > max(n t,nc)).

Let us derive the LRP control law for the system given by the state-space model

5.31. For this purpose we need the optimal multi-step:ahead output prediction ex-

pressed in terms of the system state-space model as follows 19, p. 2621

E{y(t + k")ly(0) . . . y(f)}
rlDifficulties encountered in attempts to stability analysis of the GPC strategy are pointed out in

[4e]
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where î,(tlt-1)istheestimateof stateø(ú)givendatauptotimeú-l,resultingfrom

the Kalman filter for the system 5.31 and ô(f ) : AQ) - C î(tlt - 1) is the innovations

sequence. The Kalman filter for the system innovations model 5.31 is given by [46]

î:(t + 1lú) : A"î(tlt - 1) + B,u(t) + Kù(t)

Furthermore, let us assume that the initial conditions on {y(t)} in model 5.22 are

known so that the multi-step-ahead prediction 5.24is optimal for all sample instants

t. The corresponding initial condition in the state-space model 5.31 is r(0). The

above Kalman filter is initialized with â(01 - 1) : r(0); then î)(tlt - 1) : 
"(¿)

and ô(ú) : u.:(t) for all ¿ [46]. Furthermore, considering the property of Markov

parameters for a system wiih deiay of k sample intervals one has C A!"-rB" : 0 for

j : L,. . . ,k - 1 [80]. Therefore, the optimal multi-step-ahead output prediction,

expressed in terms of the state-space model 5.31 for kr) k, follows from eqn. 5.33

ko-k

a"(t + krlt): cA!,r(t) + Ð g¡ke-t-;3"u(¿ + i) +cA:,-'xuçt¡. (b.84)
i=0

The prediction 5.34 is used in the derivation of the LRP control law instead of

the prediction 5.24. This leads to the following expression for the control sequence

I/, ("qr. 5.28) minimizing the cost function 5.23

Ut : B"t (R - Byr(t)) , (5.35)

where the vector of future reference sequence values -R" is defined by eqn. 5.30, and

the (C * 1) x (P + 1) matrix B"¿ is given by

Bst: (B'rrBr, * )Ic+r)-t B'rr,

where the (P * 1) x (C + 1) matrix Bsr : BsT (T is given by eqn. 5.1a (p. 155)

with rn : 1), with the (P+ 1) x (P * 1) matrix Bs and the (P * 1) x (n + k - 1)

kr-l
CA!,î(tlt - 1) + D cA:,-t-¿B"u(t + i) + cAk,-rK^ (t), (5.39)

i=O
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matrix B¡, defined as follows

c A!-r B" o

c AIB" C A!-r B 
"

0 CA!

C Ak+t0Bs: B

CAk+P-rB" CAk+P-zp" CA!-IB" ç ¡*+e

\Me assume that the LRP control law is used in the receding horizon sense. Hence

u(t): ¡,tU¡,wherethe 1x(C+1)vector¡.ris defined as¡-r: [1 0 0] . Substituting

from eqn. 5.35 for the control signal in eqn. 5.31, one has the following state-space

model of the closed-loop system resulting from the LRP control law 5.35

X

qr(t)

y(t)

Ãr{ B

c 10
"(r)
,(¿)

"n(t)

(5.36)

where the (P* 1) x l input vector u1(t): Ã": [r(t+,b) r(t-l ktP)]', and

: A" - B"p,B"tBx,

: B"FB"t'

(5.37)

The transfer function relating output y(t) to the noise ø(ú) can be found from the

above state-space model. Then the variance of the output regulated with the LRP

controller can be calculated using the algorithm introduced in [83, section 5.2]. The

influence of the parameters of LRP control law P, C, and À, on the location of the

closed-loop system poles can be examined by calculation of eigenvalues of the matrix

ã (r"" example 5.2.2). Furthermore, we can conclude that

Lemma 5.2 The closed-loop system resulting frorn the LRP conlrol law 5.29 (or

equiaalently from 5.35) useil in the reced,ing horizon sense, is asymptotically stable

proaid,ed, the (n+ k) x (" + k) slate transition matrir Ã (eqn. 5.37) has all its eigen-

ualues insiile the unit circle.

The above lemma establishes stability condition which can be easily verified for a

system with known parameters because of the direct relationship between the poly-

nomials of the ARMAX model 5.22 ard matrices 5.32 of the state-space model.

Ã

B
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Example 6.2.2.

For the system considered in example ó.2.L, the poles of the closed-loop system

resulting from the LRP control law will be calculated from eqn. 5.37. For various

values of. C, the closed-loop pole lies at the following locations: C :0, z:0.662I;

C : 1, z : -0.1925; C : 2, z : -0.4433; C : 3, z : -0.49L4. For C : P : 4,

the LRP controller reduces to the minimum variance controller, which assigns the

closed-loop poles to open-loop zeros [83], i.e., z: -2r leading to unstable closed-loop

system.

Let us now illustrate the relationship between the LRP and the generalized min-

imum variance (GMV) [23] controllers. For this purpose the values of the control

weighting coefÊcient À required by the GMV controller to assign the closed-loop sys-

tem poles to the positions resulting from the choice of P : 4, ), :0, and C : 0,lr2r3

for the LRP controller, were found to be À : 9.25; 1.5821; 7.7L7; 1.0465. The major

difference between the first and subsequent values of À associated with the GMV

controller corresponds to the cases C : 0 and C > 0 for the LRP controller. This

explains why the significant difference in the amplitude of the control signal produced

by the LRP controller was observed only between two cases C :0 and C ) 0 (see

fig. 5.e).

5.3 Concluding rernarks.

In this chapter, the long-range predictive (LRP) control based on minimization of the

rnulti-stage performance criteria is considered as an alternative to the minimum pre-

diction error (MPE) control based on minimizatior of the single-stage cost functions,

in application to self-tuning control.

The new LRP control iaws have been developed for multiaariable deterministic

systems arrd scalar stocltastic systems as extensions to the DMC and GPC approaches.

The LRP controllers facilitate control of a wide uariety of systems (in particular,

nonminimum phase and/or unstable open-loop systems).

The LRP controllers, derived for the DARMA and ARMAX system moclels, pos-
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sess features desirable in self-tuning control which are not available for the DMC

strategy based on the step-response plant representation. These features involve: (i)

the LRP controller can be applied to open-loop unstable systems, (ii) design of the

LRP controller is based on the characterization of a multivariable system delay struc-

ture by the left interactor matrix (this guarantees that the control law is well-defined

without ail hoc solutions to ensure invertibility of. B,y), (iii) loss of accuracy resulting

from using the truncated step-response model is auoiileil by using the DARMA or

ARMAX models (iv) the DARMA and ARMAX models involve, in general, fewer

parameters for adequate system representation than the step-response model (this

improves convergence rate of the LRP self tuners), (v) elimination of the effect of

deterministic disturbances) (vi) treatment of systems subject to deterministic (off-

set) and stochastic ilisturbances, (vii) rigorous stability analysis (presented for scalar

stochastic systems).

The LRP strategies are characterized by two time-oriented pararneters C and

P, and the control weighting parameter Â.. The choice of. C : 0 was found in the

simulation studies to result in satisfactory closed-loop system performance for many

systems. Furthermore, Â. : 0, and C 1 P, with P such that (k + P)7" covers

a significant part of the open-loop system step response, lead to stable closed-loop

system for nonminimum phase plants. On the other hand, the MPE strategies rely

on the choice of the control weighting parameter L + 0 for such plants. The choice

of A is not straight-forwa¡d in self-tuning MPE control since it is related to the plant

(unknown) parameters.

The LRP control law facilitates design of the input-output performance by the

choice of its time-oriented parameters, a feature not available for the MPE controllers

based on the single-stage cost function.

The computational burden of the LRP controller is greater than that of the MPE

controllers (based on the assumption of prior knowledge of ihe interactor matrix).

However, if. C :0 then the dimension of the matrix which is to be inverted at each

sample instant is the same for both the LRP and MPE controllers.

If future values of the reference sequence are known, then the LRP controller
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facilitates progro,n'tnxed, control, a feature desirable in robot control. For systems with

diagonal interactor matrices the programmed control reduces control effort without

degradation of output responses. If future values of the reference sequence are un-

known, then the input-output performance deteriorates for systems with nondiagonal

interactor matrices.

The main disaduantage of. the LRP controller for multivariable systems is the

requirement of prior knowledge of the interactor matrix. This drawback has been

overcome by another long-range predictive control strategy proposed in [38]. For the

latter strategy, only an upper bound on the degree of the interactor matrix must

be known a priori. However, the cost fu¡rction considered in [38] penalizes only one

future value of the output (similarly to the single-stage cost functions). As a result,

the strategy may fail to stabilize open-loop unstable systems, as indicated in [29] for

scalar systems.

The LRP control strategy for scalar stochastic systems modeled by the ARMAX

model was introduced following the approach proposed for systems modeled by the

CARIMA model (the GPC strategy). For systems which are adequately represented

by the ARMAX model, the LRP control outperforms the GPC strategy in elimination

of the effect of stochastic disturbance.

The developments not available for the GPC strategy involve description of the

closed-loop system involving ihe LRP stochastic controller. In particular, the influ-

ence of controller parameters, P, C, and À, on the location of the closed-loop system

poles can be easily investigated. Furthermore, the variance of the output regulated

by the LRP controller can be determined. The closed-loop system stability crilerion

is derived.

The LRP self tuner for scalar systems was found in simulation studies [150] to

possess superior robustness properties against model underpararneterization in com-

parison with self-tuning pole-placement controllers, and against variable system delay

in comparison with the self-tuning GMV strategy.
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Chapter 6

The utilization of additional

outputs for feedback I tf. self-tuninga

rninimurn prediction error control.

In this chapter the self-tuning minimum prediction error control of SIMO determin-

istic (seclion 6.1) and TIMO stochastic (section 6.2) systems having the feedbaclc

configuration FD (see page 18) is considered. Recall that the feedback configuration

FD implies that there are some additional system outputs, apart of the controlled

outputs, which can be utilized for feedback.

The utilization of additional system outputs for feedback have been recognised in

marry practical applications of nonadaptiue control. For example, the use of supple-

mentary signals, such as output porvr¡er, machine speed and angle, in the excitation

control of large a.c. turbogenerators has been found to improve markedly the damp-

ing of machine oscillations [166].

Self-tuning control was considered for, and found attractive in, application to

power system stabilization during the past decade (see IEEE Transactions on Power

Systems). However, self-tuning power system stabilisers, developed for a single-

machine power system (which can be embedded in a multi-machine po\¡/er system),

utilize only one output variable for feedback (e.g., the rotor speed [167]). Recentl¡',

another approach was proposed as a compromise between the design of a self tuner
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which involves one feedback output and benefits resulting from utilization of addi-

tional system variables for feedback. Namely, the (single) feedback variable is formed

by a weighted sum of the rotor speed and the terminal voltage [168]; however, the

choice of the weighting coefficient in the sum is somewhat arbitrary and its influence

on the system performance has not been investigated.

The above discussion reveals a need for the development of self-tuning controllers

which utilize explicitly additional system outputs for feedback. The purpose of this

chapter is to develop such self-tuning control strategies and to assess possible benefiis

resulting from this approach. The predictors introduced in sections 3.2 and 3.3 are

employed for the development of self-tuning controllers. To the author's knowledge

the approach to self-tuning control proposed in this chapter is original. The properties

of the new strategies developed in this chapter are compared with the properties of

conventional self tuners for systems having the feedback configuration FI.

6.1 Self-tuning minirnum prediction error control

of a single-input, multi-output deterrninistic

system having the feedback configuration FD.

In this section:

o the MPE controller is developed for a deterministic SIMO system having the

feedback configuration FD;

o the self-tuning MPE controller is introduced for a deterministic SIMO system

having the feedback configuration FD;

o simulation studies demonstrate improvements in the performance of the self-

tuning MPE controller within the feedback confrguration FD in comparison

with the corresponding self tuner within the feedback configuration FL
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6.1-.1- A rninimum prediction error controller in the feedback

configuration FD for a system with known parameters.

Let us consider a SIMO system satisfying Assumptions 3.4 and 3.5 (p. 78). Consider

the following quadratic single-stage cost function [9, chapter 5]

1l
J(t + t*) : ,la\ + k) - r(t -r k)l' + ir(r)', (6.1)

where the control weighting coefficient ) ) 0, k is system delay from the control input

u(t) to the controlled output a(t), and the auxiliary control signal ú(ú) is related to

the control signal z(f) via the following model

t@)aþ): s(p)z(ú), (6.2)

where

t(p) : \*te+.'.+tn,pn', n¿)0 (6.3)

"(p) : 1 * srp + "'+ sn"Pn", n" ) 0. (6'4)

The cost functions of the type of J(t + fr) have been commonly used for the

deveiopment of self-tuning controllers for SISO systems ,169,22,,23,25,24,91, i.e., in

such cases the feedback configuration FI has been assumed. A controller minimizing

criterion 6.1 for a SISO system will be referred to as ihe MPDSISO controller;

such a controller is presented, for example, in [9, Theorem 5.2.3, p. n ]. In this

section we shall develop the MPE controller minimizing performance criterion 6.1 for

SIMO systems having the feedback configuration FD. The resulting controller will

be referred to as the MPE-SIMO controller.

The k-step-ahead SIMO-type predictor introduced in subsection 3.2.1 (see Lemma

3.3, p. 79) is employed in the development of the MPE-SIMO control law. We have

the following result.

Lemma 6.L For a SIMO syslem satisfying Assumptions 3.1 and 3.5 (p. 78) and, for

the bounded reference sequence {"(ú)}
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(i) the control latn minimizing cost function 6.1 is giaen by

uþ) : I p pa(p) pî(p)+ Às(p) .l¿þ) 
]

r(t + k)

-v r(t)

-u(t - L)

ú(t - t)

/^ -\
' (o'ôJ

uhere the auxiliary control signal út(t) is calculated from eqn. 6.2, and polyno-

mials a(p) and þ(p), ilefined, by eqns. 3.65 and' 3.66 (p. 79), satisfy the Dio-

ph,antine equation 3.67

p-eN(p) : o(p) 0(p)

"(f )

EQ+K)

sp(t + k)

and

0o
ll:' P8+^'

î(p) : p-' lþ@) - þol,

s(p) : p-' ["(p) - 1] ,

î(p) : p-' [¿(p) - 1] ;

(ii) the closed-loop systern resulting from the control law 6.5 is d,escribed by

(6.6)

(6.7)

(6.8)

(6.e)

-(p) : t(p) r(t + k), (6.10)

where

.(p) : p-ß¿(p)¡r(fl +\s(p)d(p) (6.11)

and,

(6.12)

(iii) the closed-loop system has bound,ed serluences of th.e control signal {u(t)} and

'outputs {y(t)} and, {yp(t)} proaided

-(r-'): rkt(r-t)N("-t) *I-s(z-1)d(z-r) l0 for l"l> L. (6.13)

d(p)

p-k N (p)

p-e¡rr,(p)

À\_
tr 

- 
¡ I

lJo
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Proof.

The proof of this lemma corresponds to the proof of [9, Theorem 5.2.3, p. i24]. The

difference lies in the use of the SIMO-type predictor given by eqn. 3.68 (p. 80) instead

of the predictor for a SISO system, and the system RDO representation 3.61 (p. 79)

instead of the system DARMA model.

Q.E.D.

The control law 6.5 requires go * 0; this is guaranteed in view of Comment 3.1

(p. 81).

The MPE-SISO control law for the corresponding system having the feedback

configuration FI is given by eqn. 6.5 with y(t) in place of. yp(t) and with the poly-

nomials o"(p) and B"(p) of the SISO-type predictor 3.71 (p. 81) instead of a(p) and

0(p).

The stability condition 6.13 is the same for both the MPE-SISO and MPE-SIMO

controllers. Furthermore, there always exists a choice of À, f(p) and s(p) such that

the closed-loop system is stable; the guidance for this choice is given h 123,26,24] 19,

Remark 5.2.1, p. 125]. Moreover, the choice of s(p) such that s(1) : 0 ensures zero

steady-state error for the controiled output and constant reference sequence.

Comrnent 6.1 In aieu of Comment 3.2 (p. 82), the d,egree of the polgnomialt o(p)

and B@) of th,e MPE-SIMO controller rnúU be smaller than that of the polynomials

a"(p) and, B"(p) of th,e MPE-SISO controller. This shortens the controller m.enxory

and might lead, to the reduction in tl¿e number of controller coefficients. Boths fea-

tu,res of the MPE-SIMO control law become especially important in its application

to self-tuning control. In such an application, faster conaergence rate of parameler

estimates can be erpecteil for case FD than for FI d,ue to the reduction in the nurnber

of estirnated, parameters (see subsection 6.1.3). Furthermore) rnore recent data is in-

aolaed, in the estimator iJue to a sh,orter rnenxory of the controller for case FD. T'his

is especially desirable in self-tuning control of time-aarying systems.
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6.L.2 A self:tuning minimurn prediction error controller in

the feedback configuration FD.

In this subsection the direct self-tuning MPE strategies for a SIMO deterministic

system having the feedback configuration FD are introduced. These strategies are

adopted from the self-tuning MPE controllers developed for SISO systems having the

feedback configuration FI in [9, chapter 6] (ST-MPE-SISO controllers).

Let us consider a system satisfying Assumptions 3.4 and 3.5 (p. 78). The MPE

control law for a system with known parameters is given in Lemma 6.1. In order to

introduce a self-tuning version of the control law 6.5 we make the following assump-

tion

Assumption 6.1 (i) For the purpose of parameter estimation, the present ualue

AQ) of the controlleil output is lcnoun;

(ii) the time delay Ic from the control input u(t) to the controlled, output y(t) is

Icnoun;

(iä) an upper bound on the obseraabilitE ind,ex up is lcnoun;

(ia) w(z-r)+0 fo, lrl2l;
(a) the sign of Bs is known, signB6.

Assumption 6.1 (i) is required for the calculation of equation error E.1 (Appendix E)

of the parameter estimator employed in the self-tuning controller. Assumption 6.1

(ii) guarantees (in view of Comment 3.1, p. 81) that þo t 0; part (iii) is required

to ensure the existence of polynomials a(p) and B(p) (see Lemma 3.3, p. 79); pari

(iv) is required to ensure closed-loop system stability (see Lemma 6.1, part (iii)).

Assumption 6.1 (v) is required to implement the constrained parameter estimation

algorithm [9, chapter 3].
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Self-tuning MPE controller (ST-MPE-SIMO strategy).

Recall that the SIMO-type ,t-step-ahead predictor can be written as (see eqns. 3.81

to 3.83, p. 86)

v(t)

ó(t)

o

: o'Ó(t - k),

: lo gl' ,,

I: 
I ur(t)' ar(t - nr)' "(t) u(t - no)

(6.14)

(6.15)

(6.16)

Eqn. 6.14 defi.nes a system model the parameters of which are estimated in the ST-

MPE-SIMO strategy. Hence, denote the vector of parameter estimates of O resulting

from a recursive parameter estimation algorithm by

ô1r; : lafr> |fql' (6.17)

It is also assumed that

Assumption 6.2 A lower bound on the magnitud,e of Bs is known, lÉol,¡.

The ST-MPE-SIMO controller applied to a SIMO system satisfying Assump-

tions 3.4 and 3.5 (p. 78), under conditions of Assumptions 6.1 and 6.2, consists of

the following steps which are performed at every sample instant f:

step 1. calculate vector of estimates O(f) using, say, the RLS algorithm (see

eqns. E.1 to E.4, Appendix E), with the equation error defined as

e(t): u(t) - é(¿ - L)'S(t - k); (6.18)

step 2. set

Õ1t¡ : l"fr> BA¡f' : I(*o*r¡r,,"61t¡ * i@o+t)Í+rþo(t), (6.19)

where the (n, + 1X/ * 1) x (rr l tX/ + 1) matrix I(no+t)J,no is defined as

Iþo+t)! 0 0

000
00I,,p

f_r(np*'l)J,np -

207



and the (ro * tX/ + 1) x 1 vector i@o+r)¡¡r is the ((", * t)/ + 1)-th column of

the identity matrix of order (no I tX/ + 1), and

( ,,

.o(t): f 
ii^,*'¡t*'O(t) if i'6o+t)Í*'O(t) (signBo) 2 lÉol'¡" 

(6.20)

I lÉol*" (sisnBe) if i'1n,+t¡¡*rô(t) (sisnp0) < lÉol-t"

step 3. calculate the control signal

z(t) : þ,(t) þ(t)a(t,fl þ(t)P(t,p) + À3(p) Àr(p)

where

r(t + k)

-yr(t)
-u(ú - 1)

írL(t - 1)

(6.21)

p"(t)
þ(t)

þ(t,p)

Êo(t)'+ x'

n-'lg(t,n) - g"(t)],

and õ(t, p) : ã(t)P^o, and P(t,p) : þ(t)P,,, where pno : [f p . . . pn,f'

Step 2 of the ST-MPE-SIMO strategy eliminates the possibility that the estimate of

the coefficient Bs will become zeîo; for this purpose Assumption 6.2 is needed.

The above ST-MPE-SIMO strategy is a version for SIMO systems of the self-

tuning MPE controller developed for SISO systems in [9, Remark 6.3.4, p. 189]. The

self-tuning controller for the system having the feedback confi.guration FI (ST-MPE-

SISO strategy) results from the ST-MPE-SIMO scheme by replacing yp(t) by y(t),

and a and B by o" ard B, of the SISO-type predictor.

Note that the ST-MPE-SIMO strategy estimates parameters of the model given

by eqn. 6.14 and not the parameters of the MPE-SIMO control law 6.5. Consequently,

the implementation of the ST-MPE-SIMO algorithm requires further calculations on

the parameter estimates (step 3), and the control law 6.21 is nonlinear in parameter

estimates O1t¡. It is possible, however, to rearrange the self-tuning algorithm imple-

menting the MPE-SIMO strategy so that parameters of the control law are estimated

directly. For this purpose we employ the approach proposed in [9, pp. 192-194] for
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MPE self tuners for SISO systems. Since the resulting control law is linear in esti-

mated parameters, this self-tuning scheme will be referred to as the ST-MPE-L-SIMO

strategy.

Self-tuning MPE controller (ST-MPE-L-SIMO strategy).

Let us reparameterize the SIMO-type k-step-ahead predictor given in Lemma 3.3

(p. 79) as follows. Multiplying both sides of eqn. 3.68 by p and then addin g p\u(t)

to both sides leads to the model

u(t - k): @'ó(t - k), (6.22)

where p and f are defined by eqns. 6.6 and 6.12, and

o

ap

p,

ö(t)

t 
- 

at: looo0ol ,

: [e",o Pa^o],

- logt p\*,f ,

: 
fa(t + ft) + fu(r);

(6.23)

(6.24)

(6.25)

yF(t)' ar(t-n)t; -u(t-1) ... -u(t-rr)l'. (6.26)

Eqn. 6.22 describes a system model the parameters of which are estimated in the

ST-MPE-L-SIMO strategy. Hence, denote the (no + 1X/ * 1) x 1 vector of parameter

estimates of O resulting from a recursive parameter estimation algorithm by

^ f : It
o(¿) : lîu) a,G) ø,(t)l . (6.27)

The control law 6.5 can be written as

u'(t) : ø'6(t),, (6.28)

where the (no + lX/ + 1) x 1 regression vector þ'(t) is

f"1t + k) + I (T@)a(t- 1) - s(p)u(ú - r)) ;ó(t)

It is also assumed that
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Assumption 6.3 A lower bound, on the magnitud,e of p is lcnown, lpl*r, and, the

scalar\ is giuen, such that signl': signdo.

The above assumption implies that I- is specified for the ST-MPE-L-SIMO strategy,

which means that the cost function 6.1 is minimized with À : f,6o (see eqn. 6.12). It

is required that sign)-: signB¡, because I ) 0 [9, Remark 6.3.7, p. 199].

The ST-MPE-L-SIMO controller applied to a SIMO system satisfying As-

sumptions 3.4 and 3.5 (p. 78), under conditions of Assumptions 6.1 and 6.3, consists

of the following steps which are performed at every sample instant f:

step 1. calculate vector of estimates O(ú) using, say, the RLS algorithm (see

eqns. E.1 to E.4, Appendix E), with the equation error defined as

e(t) : u(t - ¿) - o(¿ - 7)t þ(t - k); (6.30)

step 2. set

Õ1r¡ : Io,(Í+t)np+tô1r¡ + irþ(t), (6.81)

where the (n, + 1X/ * 1) x (rr l tX/ + 1) matrix ,1¡¡r)netf is defined as

lo o I/0,(/+r)r,o+/:l I,
L 0 Iøo+t)¡+¡ l

and the (nr l tX/ + 1) x 1 vector i1 is the first column of the identity matrix

of order (rr l tX/ + 1), and

Þ(t) :
iíô(¿)

lPl'*' (signBs)

if iiô(¿) (sign Bs) ì lpl-,
if ii6(¿) (sign Bs) < lpl*..

(6.32)

step 3. calculate the control signal

u(t): o1t¡'þ1t;. (6.33)

The above ST-MV-L-SIMO strategy is a version for SIMO systems of the self-

tuning MPE controller developed for SISO systems in [9, pp. 192-196].
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Step 2 of the ST-MPE-L-SIMO strategy eliminates the possibility that the esti-

mate of the parameter p will become zero; for this purpose Assumption 6.3 is needed.

Note that the ST-MPE-L-SIMO controller is a direct strategy, i.e., parameters of

the control law are estimated. Furthermore, the control law 6.33 is linear in O(t).

The global conuergence of. the ST-MPE-L-SIMO strategy is established below

using the technique introduced for the self-tuning MPE controllers for SISO systems

in [9, chapter 6].

Lernrna 6.2 Assume that future ualue of the bounded reference sequence r(t + k) is

Icnown (or is cornputable) attirnet. For a system satisfying Assumptions 3..( o,nd,3.5

(p. 78), anìl subject to Assumptions 6.1 and 6.3, the ST-MPE-L-SIMO stro.tegy (im-

plemented with the RLS algorithm with no forgetting) yields

(a) bound,ed sequences {u(t)}, {a(t)}, and {yp(t)};

(b)

[A [u(l) - u'(t)] : s, (6.34)

where u'(t) is lhe control signal minimizing cost function J(t + lc) giuen by

eqn. 6.1 with ) : fÉ0.

Proof: see Appendix F.

The above lemma shows that the control signal generated by the ST-MPE-L-

SIMO strategy converges to the control signal which would be produced by the control

law 6.5 for a system with known parameters and with À : ),0o. No persistent

excitation condition is required for the reference sequence {"(¿)}. However, nothing

is said about convergence of estimates of parameters of the controller to their true

values.
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6.1.3 Performance irnprovernents in self-tuning control of

deterministic systems by utilization of additional out-

puts for feedback: simulation studies of minimum pre-

diction error control of a robot arm.

In this subsection, simulation studies demonstrate properties of the ST-MPE-SIMO

strategy applied to a hydraulic industrial manipulator considered in examples 3.2.1

(p. 83) and 3.2.2 (p. 88).

In the simulation studies described in this subsection the ST-MPE-SIMO strategy

was implemented without the test on the lower bound of the absolute value of estimate

þoþ), i.e., step 2 (see eqns. 6.19 and 6.20) is omitted 1 and thus ó(t) : ô(¿) (see

eqns. 6'18 and 6.21). A number of simulation studies suggests that the situation in

which go1) :0 is unlikely to occur in practice.

The RLS estimator employed in both the ST-MPE-SIMO and ST-MPE-SISO

strategies was implemented with the U-D factorization method [164] (see also discus-

sion on page 174).

Exarnple 6.1.1.

The purpose of this example is to demonstrate the improvement in the performance of

the seif-tuning MPE controller resulting from utilization of additional system outputs

for feedback.

Let us consider the model of a single joint of the manipuiator POLAR 6000

described in examples 3.2.1 and 3.2.2 (see eqn. 3.72, p. 83). The task is to control

the manipulator joint y(ú) : 0(t): yr(ú) : Cr(t) along the X-axis [180].

For the purpose of implementation of the ST-MPE-SIMO strategy it is assumed

that there are three outputs available for feedback, i.e., ar(t): [y1(ú) y2(t) yr(t)l' :
lRecall that step 2 was introduced in the ST-MPE-SIMO strategy to prevent the estimate p6(t)

from becoming zero.
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Cpr(t) ar'd

Cr

ctt

czt

cat

ctz

czz

csz

ctz

czs

css

where c31 : cr3, c32 : c2B and ca3 : 0.0051275. The observability index is up - I

and no - vF - | : 0 is chosen. The coefficients of the polynomials a(p) and Bþ),

which are estimated in the ST-MPE-SIMO strategy, are found from eqn. 3.69 (cf.

example 3.2.1) as

ato o2o aso þo 2.7124 1 0 0.0008128

(Since d3o : 0 the MPE-SIMO scheme can be implemented without feedback from

the third output (cf. examples 3.2.1 and 3.2.2) but the more general case is considered

for the seif-tuning control.) Note that one of the roots of the polynomial l/(z-1) is

z : -3.6324, therefore À I 0 is required to satisfy the stability condition 6.13.

The following set of parameters of the MPE-SIMO control law was chosen: t(p) :

1- 7.6p I0.7p2, "(p) 
: 1+ 0.2p, and I : 2 x 10-6. The problem of À-offset

is eliminated due to the process integrating properties (d(1) - 0). The control

signal magnitude limit was set lu(l)l < 30 [mA] according to the specification of the

maximum excitation current in the servovalve of the hydraulic motor [130].

Alternatively, one can assume that the only output which is available for feedback

is the output which is to be controlled, i.e., the system has the feedback configuration

FI. The ST-MPE-SISO controller, minimizing cost function 6.1 for a system having

the feedback configuration FI, was simulated with the same parameters of the control

law f(p), 
"(p), 

À, and the limit lu(f)1. The coefficients of the polynomials a"(p) and

{)"(p) which are estimated by this strategy are given by eqns. 3.74 and 3.75 (p. 84), i.e.,

6 parameters are estimated in comparison with 4 parameters for the ST-MPE-SIMO

scheme.

For both ST-MPE-SIMO and ST-MPE-SISO strategies, the RLS algorithm was

initialized with P(-1) : 10¡, and all parameter estimates were zero except for

o.tol : Âo(0) : 1; a constant forgetting factor a(t) : 0.97 was used.
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The following cumulative loss (CL) function

cl,(r) : D lv?) -,(,))' ,
¡=\

was calculated for f : 1,. . . , 120 to compare the performance of the closed-loop

systems resulting from both strategies.

The input-output behaviour of the closed-loop system and the cumulative loss

function for both strategies are depicted in fig. 6.1.
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Figure 6.1: The input (current [*A]), output (á [rad]) with the reference sequence

(broken line) and the cumulative loss for the ST-MPE-SIMO controller (sotid lines)

and ST-MPE-SISO controller (dotted lines) applied to the robot arm.
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Figure 6.2: The estimates of the coefficients of the polynomials a(p) arld B@) of the

ST-MPE-SIMO controller (solid lines) and the polynomials a"(p) and B,(p) of the

ST-MPE-SISO controller (broken lines) applied to the robot arm.

It can be seen that the ST-MPE-SISO strategy produced a very oscillatory control

sequence, which resulted in poor output performance and increase of the loss function.

The differences in the performance of both self-tuning strategies (which aim at

the same objective) are due to the differences in the convergence rate of the param-

eter estimates. The benefit of estimating fewer parameters is clearly visible in this

example. The convergence rate of the estimates of the ST-MPE-SIMO strategy was

faster than that of the ST-MPE-SISO scheme (see fig. 6.2). Note that faster corì.ver-

gence rate is observed for the estimates of the ST-MPE-SIMO strategy despite the

fact that the undesirable input-output behaviour associated with the ST-MPE-SISO

E{
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controller provided "rich" data for the estimator in comparison with relatively less

exciting input produced by the SIMO-type self tuner. The estimates of a(p) and

B(p) converged close to their true values after approximately 25 samples; for o"(p)

arrd B"(p),45 iterations were required.

It is interesting to note that the SIMO approach led to a compromise between

a desirable input-output system performance (i.e., the achievement of the control

objectiue) and the requirement of sufficient excitation for the purpose of estimation.

The two goals are conflicting and form a dilemma in self-tuning control which is

sometimes solved by some aiJ hoc procedures (e.g., supervision of adaptation phase

and parameter estimation, input probing in open loop [170,10], etc. ) or analytically,

leading to dual adaptive control (see chapter 1). The self-tuning strategy for a SIMO

system was capable of ensuring fast convergence due to the reduction in the number

of estimated parameters while providing good input-output performance.

A number of simulation studies confirmed the superiority of the SIMO based self

tuners over the usual SISO-type design in terms of the performance of the self-tuning

control system.

Exarnple 6.L.2.

In example 6.1.1 the improvement in performance of the self-tuning controller ap-

plied to the robot manipulator was due to the reduction in the number of estimated

parameters for the feedback configuration FD in comparison with FI. In the follow-

ing example the self-tuning controllers for both feedback configurations FD and FI

involve the same number of estimated parameters. However, the benefits resulting

from the separation of the feedback and controlled outputs for a system having the

feedback configuration FD are illustrated in the application of self-tuning control to

a robot manipulator.

The feedback configuration FD allows us to select system outputs for feedback.

In the following example the controlled output V(t) is not selected as a feedback

variable. The measurement of. y(t) is required, ho',vever, for the purpose of estimation

(see Assumption 6.1 (i), p. 200). On the other hand, if the system has the feedback

210



configuration FI then the controlled output is the feedback va¡iable.

Let us consider the model of the single joint of the POLAR 6000 robot given

by eqn. 3.72, p. 83. The controlled output is y(ú) : yr(t) : Cx(t), where C :

lc11 c12 cral. It is assumed that the measurement of the controlled output g/(ú) is

contaminated with a zeto mean white noise c.r(f), so that the measu¡ed signal y*(t)

(observation of y(t)) is given by

v^(t):a(t)+o(r). (6.35)

Furthermore, assume that the feedback output is now given by Ar(t) : yr(t) :
Cyx(t), where Cp : lczt czz c6]; then the observability index ur : 3. Hence, a

complete separation of the output which is to be controlled and the feedback output

is assumed. The corresponding output measurement configuration for the implemen-

tation of the ST-MPE-SIMO strategy is depicted in fig. 6.3.

t+k (r) y(t) : y{t)f -?l

,(t)

Figure 6.3: The output measurement configuration for the ST-MPE-SIMO strategy

For the purpose of comparison let us now assume that the robot manipulator

is in the feedback configuration FI, i.e., the controlled output is the only output

available for feedback. In this case Cr : C : lc-,.t ctz cn]. The corresponding output

measurement configuration for the implementation of the ST-MPE-SISO strategy is

depicted in fig. 6.4.

Let us no\r¡ compare models the parameters of which are estimated by the RLS

method in the implementation of the ST-MPE-SIMO and ST-MPE-SISO schemes.

The ST-MPE-SIMO strategy involves estimation of parameters of the model given

by eqns. 6.14 to 6.16 with the equation error defined by eqn. 6.18 (p. 201). It follorvs

aF( Az (¿)f)
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tô
a,"(t)
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v, (t)
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,(t)

Figure 6.4: The output measurement configuration for the ST-MPDSISO strategy.

form eqn. 6.35 that the model becomes now

v^(t):o'Ó(t-k) +ø(t). (6.36)

The corresponding equation error is defined as

e(t) : y^(t) - ô(¿ - r)' ö(t - k),

where the parameter estimate vector O(ú) is defined by eqn. 6.17. Since the noise

term c.,'(ú) is uncorrelated with data of the regression vector /(ú) given by eqn. 6.16 in

the model 6.36, the RLS method yields unbiased parameter estimates [160, p. 370].

On the other hand, it follows from eqns. 3.71 (p. 8t) and 6.35 that the model

involved in the ST-MPE-SISO strategy is given by

v*U) : o'"ó"(t - k) + n(t)., (6.37)

where the noise term is n(t) : lt - o*o"(r)] ,1t¡, and. the vector of coefficients of

polynomials of the SISO-type predictor 3.71 (p. 81) is O" : lo" 0"1', and the regres-

sion vector is

t+k

d"(¿) :

"(t)
I I a(t)

Note that for the SISO case, the noise term n(ú) is no longer white noise and the
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Figure 6.5: The input (current [*A]) and output (9 [rad]) resulting from the

ST-MPE-SIMO controller applied to the robot arm with the controlled output mea-

surement noise.

RLS algorithm yields biased estimates '? [160]. The corresponding equation error is

e(t) : y*(t)- ô"(¿ - L)' ó"(t - k).

True value of O" estimated by the ST-MPDSISO strategy is given by eqns. 3.74

and 3.75 (p. 8+). For the ST-MPE-SIMO controller n, - uF - 1. : 2 and the solution

to eqn. 3.69 yields

d : lazo azt or"]: [-2.1809 2.7724 - 1.1155] ,

p : lþo þ, 0zl : [0.000812s 0.0722906 0.0016147] ,

2It should be noted that some other recursive parameter estimation methods (e.g., RELS and

RML, see Appendix E) can be applied to yield unbiased estimates of the model 6.37. It is known,

however, that the convergence rate of parameter estimates resulting form such estimators is slow in

comparison with that of the RLS method (when unbiased). Furthermore, some other conditions are

required to ensure convergence (we shall return to the corresponding problems in subsection 6.2.2).
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Figure 6.6: The estimates of the coefñcients of the polynomials c(p) and 0@) "f
ihe ST-MPE-SIMO controller applied to the robot arm with the controlled output

measurement noise.

i.e., both strategies involve estimation of the same number of parameters.

For both ST-MPE-SIMO and ST-MPE-SISO strategies, the parameters of the

control law (i.e., ú(p), "(p), À, lz(t)l) were chosen as in example 6.1.1. The RLS

algorithm was initialized with P(-1) - 103-f, and all parameter estimates were zero

except for po(O) : Âo(0) : 0.01; no forgetting was used. The dispersion of the

(gaussian) white noise a,'(f) in eqn. 6.35 was chosen a : 0.05.

The input-output behaviour of the closed-loop system resulting from the use of

the ST-MPE-SIMO strategy is depicted in fig. 6.5 (p. 213). It may be observed that

after the initial phase of tuning the control signal achieved its desirable form, and
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Figure 6.7: The input (current [*A]) and output (d [rad]) resulting from the

ST-MPE-SISO controller applied to the robot arm with the controlled output mea-

surement noise.

the controlled output followed the reference sequence closely after a few oscillations.

The estimates of the coefficients of the polynomials a(p) and B(p) converged close to

their true values after about 15 iterations (see fig. 6.6, p. 27a).

Next the ST-MPE-SISO strategy was simulated. The input-output behaviour of

the closed-loop system is shown in fig. 6.7. The control signal did not converge to its

desirable form and, in fact, was saved only by the limit on its magnitude. The reason

is that the estimator yields biased parameter estimates due to the measurement noise

(see fig. 6.8, p. 216).

This example demonstrated possible benefits resulting from the separation of the

controlled output from the feedback outputs for the system having the feedback

configuration FD and in the presence of the measurement noise on the controlled

output.
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Figure 6.8: The estimates of the coefficients of the polynomials a"(p) and B"(p) of

the ST-MPE-SISO controller applied to the robot arm with the controlled output

measurement noise.

6.2 Self-tuning rninirnum. prediction error control

of a two-input, rnulti-output stochastic systern

having the feedback configuration FD.
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In this section:
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o the weighted minimum variance (WMV) controller is derived for a stochastic

TIMO system having the feedback con-figuration FD;

o the self-tuning minimum va¡iance (MV) controller is introduced for a stochastic

TIMO system having the feedback configuration FD (ST-MV-TIMO strategy);

o global convergence of the ST-MV-TIMO strategy is established;

o properties of the ST-MV-TIMO strategy are discussed;

. a survey of stochastic self-tuning controllers for systems having the feedback

configuration FI is presented with respect to the methods of convergence anal-

ysis and required system assumptions (details are presented in Appendix G);

o simulation studies demonstrate improvements in the performance of the self-

tuning MV controller within the feedback configuration FD in comparison with

the corresponding self tuner within the feedback configuration FI.

6.2.L A weighted minimum variance controller in the feed-

back configuration FD for a system with known pa-

rarneters.

Let us consider a TIMO system satisfying Assumptions 3.7 to 3.10 (p. 91). The

control law developed in this subsection minimizes the mean-square error between

the controlled output g(t + k) and its desired value r(t t,b) with possible trade-off

between the minimized error and required control effort.

Consider the following quadratic single-stage cost function [83, p. 173] [160, p.2a9]

[9, p. all] [59, p. 285]

r(t + k) : E {iru+ k) - r(ú r k)1, + Lrtrrr,lr,\, (6.38)

where the control weighting coefficient À > 0, k is system delay from the control input

z(l) to the controlled output V(t), and the auxiliary control signal ú(f) is defined by

eqns. 6.2 to 6.4 (p. 197).
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The cost functions of the type of J(t+ k) have been commonly used to develop

self-tuning stochastic controllers for TISO systems 1169122,23,25,24,9,591, i."., in such

cases the feedback configuration FI has bpen assumed. A controller minimizing crite-

rion 6.38 for a TISO system will be referred to as the WMV-TISO controller; such a

controller is developed for instance in [9, Theorem 10.3.4, p. a18] [59, Theorem 12.4,

p. 301]. In this section, we shall consider the \MMV controller minimizing perfor-

mance criterion 6.38 for TIMO systems having the feedback configuration FD. The

resulting controller will be referred to as the \ ¡MV-TIMO controller.

The development of the \MMV-TIMO controller is based on the optimal k-step-

ahead TIMO-type predictor introduced in subsection 3.3.1 (see Lemma 3.5 on page 94

for ko: k). We have the following result.

Theorem 6.L For a TIMO system satisfying Assumptions 3.7 to 3.10 (p. 91), 3.11

(p. 113), and for the bound,eil reference seq%ence it(¿))

(i) the control law minimizing cost function 6.38 is giuen by

,þ) : I p pa,(p) pF,@)+ ÀB(p) .l¿þ) ]

¡rþ) c,(p) a.(p) 0,@) P(p)

r(t + k)

-vr(t)
-u(t - 1)

ú,(t - 1)

¡lr(p) C,(p)

d(p) o

o p-ud(p)

, (6.3e)

(6.40)

where the auxiliary control signal út(t) is calculated, from eqn. 6.2; polynomials

s(p) andî(p) are ilefineil by eqns. 6.8 and 6.9; polynomials a.(p) and B-(p),

which are def,ned by eqns. 3.97 and 3.98 (p. 9l), satisfy the polynomial equa-

tion 3.99 for le, - þ

-kp

p 0o:
P3+^'

: p-r lp.@) - þol;

(6.41)

(6.42)

and

î-(p)
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(ii) the resulting closeil-Ioop systern is ilescribed by

-(p)

u(t) l
aQ+k) |

d(p)yr(t+ å) l
t(p)d(p)

p-kt(p)N(p)

p-ot(p)d(p)Nr(p)

-pkt(p)a.çe¡C.(n)
p- o t(p) N (ù r @) a I-s (p)c, (p)

. (p)C -(p) - t(p)¡rr ( p) o.(p) C,(p)

where

w(p) : p-o¿(p)N( fl +\s(p)d(p), (6.44)

and,\: Lø;

(iii) the closed,-loop system sequences {"(¿)} and {y(t)} are sample rrleún-squl,re

boundeil, almost surely if

zkt(z-r)N("-') +\s(z-t)d("-') # 0 for l"l >_ \ (6.45)

furlherrnore, the closeil-Ioop system sequence {Vr(¿)} is sample rnean-square

bo'w¿ileil ulnost surel'y if cond,ition 6.15 is satisfieil and'

d(z-r) I o for l"l > 1. (6.46)

Proof.

Part (i). The optimality of the control law 6.39 can be shown following the derivation

of the \MMV controller for TISO systems (see e.g., [9, chapter 10]) using the k-step-

ahead TIMO-type predictor 3.101 (p. 95).

Part (ii).

The controi law 6.39 can be written using eqns. 3.101, 3.102 and 6.2 as

y(t+ k)+fu(¿):r(t+k) + F(p)u(t+k)

2r9

(6.47)



Multiplying both sides of eqn. 6.47 ï:y t(p)d(e) and using eqn. 3.89 one has

p- È 
r (p) N( p) d(p) * n(t) + n- 

k t(n) 
".(p) 

d(p) 
" 
n-(t) + Xd(ùt (e) û (ú ) :

: t(p)d(p) [r(¿ + k) + F(p),a(¿ + k)] .

Using eqns. 3.89, 6.2 and 6.44

u(flu(t) : t(p) façe¡rçt + k) + (p-r p(p)¿(p) - p-kc.(p)),,.:(t)f ,

and using eqn. 6.40 one has

u (p)u(t) : t(p) d(p)r (t * k) - t (p) a -(p) c.(p)u (t) . (6.48)

Multiplying eqn. 6.47 by p-kt(p)N(p) and using eqns. 6.2 and 3.89 one has

p-e¿(p)¡r(fly(t+k)+\p-ks(p)d(p)N(p)'"(¿):p-kt(p)N(p)lr(t+k)+F(fla(t+k)l

Using eqns. 3.89 a¡rd 6.44

u(p)a(t + k): p-Ét(p)N(p)r(t + k) +

+ p- k t (p) N (p) F (p), (t + k) * \p- k 
s (p) 

". 
(p) d(p) x a- (t),

and from eqn. 3.89

w(p)y(t+k) : p-ot(p)n(p)r(r+fr)+ þ-eú(p)¡r(p)F(p) + f"(p) ".@)lu(t+k). (6.4e)

Multipiying eqn. 6.47 by p-kt(p)Ne(p) and using eqns. 3.89 and 6.2 one has

p-t"4p)NF(r) 
þ-o,nr1 ù*n(t) + p-k ".(p)"-(¿)] i\p-k s(p)d(p)Nr(p)'a(¿)

: p-kqp)NF(p) ["(¿ + k) + F(p)u(t + k)].

Using eqn. 3.89

p-kt(p)N(ù lar-$ + k) - p-kC,(p)*".,(¿)]

+I-s(p)d(p ) lu r{t + k ) - p- o C,(p) ** (¿)] + p- k t(p) N r(p)..(p), 
^-(¿ 

+ k )

: p-kt(p)Nr(p) ["(¿ +,b) + F(flu(t + k)] ,
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and from eqns. 3.89 and 6.44

w(p)yp(t + k) : p-kt(p)Nr(p)r(t + k) +

+ln-kt(ùNr(p)F(p) + r'"(e)c,(r)] ,(t + r;

+p- k t(p) lN (fiC.(n) - Ne(p) ..(p)l æ p,(t ¡ k)

Multiplying the above equation by d(p), and using egns. 3.89 and 6.44 one has

d(p).(p)yr(t + r¡ p- k d@)t(p)N¡(p)r( t + l, ) + lw (tt)C.(p) +

+p-kt(p)wr(ù@(p)¿(p) - "."(p))] 
aQ + k),

and from eqn. 6.40

*(p)d(p)ar(t + t; p- k t(p) d(p)N¡(p)r(t + k)

+ltn(p)C-(p) - t(p)Nr(p)o-(p)C,(p)lr(¿ + k). (6.50)

Finally, eqn. 6.43 follows from eqns. 6.48, 6.49 and 6.50.

Part (iii).

The description of the closed-loop system, given by eqn. 6.43, relates "outputs" z(f),

y(t) and yr(t) to "inputs" ,(t) and ø(f ) via the LDO models. The LDO representation

is equivalent to an observable state-space model [9, p. 27]. Furthermore, the reference

sequence {"(¿)} is bounded and the noise sequence {r(¿)i is sample mean-square

bounded almost surely (see Assumption 3.11, p. 113). Hence, part (iii) follows from

[9, Lemma 8.3.3, p. 486] subject to conditions 6.45 and 6.46.

Q.E.D

The control law 6.39 requires Bs I 0; this is guaranteed in view of Comment 3.4

(p. ee).

It is particularly interesting to compare the \MMV-TIMO control law with its

TISO counterpart, i.e., the WMV controller for a system having the feedback config-

uration FI. The RDO model of the corresponding TISO system is given by eqn. 3.89

22r



(p. 92) with y¡(ú) : y(t). It can be shown using the optimal TISO-type predic-

tor 3.137 (p. 108) and following the derivation of the \MMV controller for a TISO

system given by the ARMAX model [83, Theorem 4.1, p. 175] [9, Theorem 10.3.4,

p. a18] [59, TheorernI2.4, p. 301], that the WMV-TISO control law is given by

,G) : I p pa,,(p) pp-r (p".(p) - þo)+ Às(p) )f(p) ".fr) - rf

r(t + k)

-y(t)

-u(t - L)

úL(t - 1)

y'(t + klt)
(6.51)

where parameter p is defined by eqn. 6.41 and polynomials a".(p) and 8".(p) result

from eqns. 3.138 and 3.139 (p. 108).

The optimality of the WMV-TISO and WMV-TIMO controllers.

The WMV-TISO controller is based on the optimal k-step-ahead TISO-type predictor

given by eqn. 3.137 (p. 108). The variances of the prediction errors for both TISO-

and TIMO-type predictors are identical (see Comment 3.6, p. 108). Hence, it is not

surprising that

Comment 6.2 Both the WMV-TISO and, WMV-TIMO strategies rninimize uari-

ance of tl¿e traclcing error identically.

This can be seen by comparing the relations between y(f ) and r(ú), and between y(t)

and ø(f) for the closed-loop system resulting from the WMV-TIMO control law (see

eqn. 6.43) and resulting from the \MMV-TISO control law (see [9, Theorem 10.3.4,

p. 418] for the corresponding result).

Cornparison of assurnptions concerning the noise polynomial c-(z-l) ""-
quired for the WMV-TISO and WMV-TIMO controllers.

The noise polynomial c.(z-l) is a factor of the characteristic polynomial of the closed-

loop system involving the WMV-TISO controller [83, Remark 4, p. 176) [59, p. 294].
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Therefore, it is required that ".("-' ) has its roots slrictly inside the unit circle, i.e.,

c,(z-t) l0 for lrl > r. (6.52)

For TISO systems wilh c-(z-l) having roots on the unit circle, a suboptimal con-

trol law can be derived using the (time-invariant) restricted complexity predictor [9,

Theorem 10.3.3, p.a16] (see also example 6.2.3, p. 255).

On the other hand, the noise polynomial c-(z-L) is not a factor of the characteris-

tic polynomial of the closed-loop system involving the WMV-TIMO control law (see

eqns. 6.45 and 6.46). Therefore, the \MMV-TIMO controller permits roots of. c.(z-t)

on the unit circle (cf. Comment 3.7, p. 110).

The effect of arbitrary initial conditions on the performance of the closed-

loop system resulting from the WMV-TIMO and WMV-TISO controllers.

The design of the \MMV controllers is based on the optimal predictors. To ensure

optimality of the prediction for all sample instants it is necessary to consider appro-

priate initial conditions for the predictor (see p. 110). Similarly, to ensure optimality

of the WMV-TIMO control law for all sample instants, the initial conditions must

be considered. However, if arbitrary initial conditions are chosen, then it follows

from eqns. 6.43,6.45, and 6.46 that the input and output sequences {u(t)}, {y(¿)},

{Ar(t)}, for the closed-loop system converge asymptotically to the input and out-

put sequences that would have resulted from the use of the control law 6.39 with

correct initial conditions. Hence, the WMV-TIMO strategy yields optimal perfor-

mari.ce asymptotically for arbitrary initial conditions. Note that this property holds

regard,Iess of the location of the roots of the noise polynomial c-(z-l).

On the other hand, the WMV-TISO controi law yields optimal performance

asymptotically for arbitrary initial conditions if. c,(z-I) has all roots strictly insid,e

the unit circle (cf.. [9, Theorem 10.3.2, p. 414]). In contrast to the \ /MV-TIMO

control law, the rate of decay of ihe effect of incorrect initial conditions depends

on the location of the roots of. c-(z-r) for the \ryMV-TISO strategy. If c,(z-l) has

roots on the unit circle, then the WMV-TISO controller based on the restricted com-
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plexity predictor yields suboptimal performance asymptotically for arbitrary initial

conditions [9, Theorem 10.3.3, p. a16].

Similarity between the MPE controllers for stochastic and deterministic

rnulti-output systerns.

Comment 6.3 Note that the WMV-TISO controllaw 6.51 inuolues the optimal pre-

diction y"(t + krlt) of tlt,e controlleil output fiItered by th,e polynomial 
",(p) - 7. On

the other hand, the WMV-TIMO control law 6.39 does rot inuolue pred,ictions. In

fact, the san'ùe sequences are inuolued in the WMV-TIMO control law for stochastic

systems and the MPE-SIMO conlrol lau 6.5 for deterministic systems. This sim-

ilarity between controllers for stochastic and determinislic multi-output systems is

especiøIly irnportant in self-tuning control, since ø number of properties of self tuners

for ileterministic systems eztends to the stochastic case (see subsection 6.2.2).

Output measurement configuration.

The feedback configuration FD permits implementation of the WMV-TIMO con-

troiler without feedback from the controlled output y(ú) (see example 6.2.1). There-

fore the controlled output need not to be measured. However, the measurement of

more than one output (/ > 1) is required (see Assumption 3.7, p. 91).

Example 6.2.L.

In this example the flexibiliiy of the output n"¿easuren"ùenf configuration offered by the

feedback configuration FD is illustrated. For this purpose we shall consider the MV

control law as a special case of the 'WMV controller. In particular, it is shown that

the MV control can be achieved without feedback from (i.e., without measurement

of) the controlled output.

Let us consider a three output, third order system (n :3) defined by the state-

space model 3.134 or by the RDO representation 3.135 (p. 106). The MV regulator

is designed to minimize variance of the output AQ) : Aít), (* : 7). The two
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PlantMV-TIMO

Noise
filter

remaining outputs are used for feedback, i.e., VF(t) : [V2(t) V"(t)]', U :2). The

block diagram of the closed-loop system is depicted in fig. 6.9.

,(t)

r(t + k) v{t)

yr(t)

Figure 6.9: The block diagram of the closed-loop system

The MV-TIMO control law is given by eqn. 6.39 with I : 0. The coefficients of the

polynomials a,(p) and B.(p) (of the (k : 1)-step-ahead predictor) required by the

MV controi law 6.39 were calculated from eqn. 3.113 (p. 99) using the RDO model

(cf. example 3.3.1, p. 105) and are given by

O¿u : IAZO o3O AZt o3t AZZ ASZf :

: [3.3928 -3.0228 -3.9392 3.3119 1.1879 -0.0831] ,

nPu : l0o þ, þrl: 17 _ 0.3964 1.60321 .

The variance of the noise u;(ú) was set to o2 : !. In fig. 6.10 the output y(t) : y1(t)

is shown for the open-loop and closed-loop system configuration. The control signal

z(l) generated by the MV-TIMO regulator is shown in fig. 6.10 as well.

Fsr the purpose of quantitative comparison of the effect of the regulation, the

variances of all outputs were calculated from the simulation data for the open-loop

and closed-loop system configurations. Number of samples was N:200 and N:1000

(cf. eqn. 6.67, p. 240). Furthermore, the theoretical open-loop system variances \Mere

evaluated using the method presented in [83, Theorem 2.3, p. 121]. These results are

presented in table 6.1. Note that the variance of the controlled output was reduced

close to the theoreticaily minimal value of 1. Furthermore, the MV-TIMO regulation

of th.e output AQ) : y1(t) had a desirable effect on the feedback outputs yp(t) as

"(t)

1

I

I

I

I

I
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Figure 6.10: The sequences of the open-loop output A{t), and the closed-loop system

controlled output A(t) : V{t), and control input z(ú) generated by the MV-TIMO

controller without feedback from the controlled output.
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Table 6.1: The output variances derived from theoretical and from simulation re-

sults for the open-loop system and closed-loop system using MV-TIMO controller

implemented without feedback from the controlled output.
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well, i.e., the variances of y2(f ) and y3(f) were reduced in comparison with the open-

loop system. The open-loop and closed-loop sequences of the feedback outputs are

depicted in fig. 6.11.
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SALIPI,E

150 200
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-5
o 50 100
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150 200

Figure 6.11: The sequences of the feedback outputs y2(t) arrd g3(ú) for the open-loop

and closed-loop system configurations (the MV-TIMO controller without feedback

from the controlled output).
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6.2.2 A self-tuning minimum variance controller in the feed-

back configuration FD.

In this subsection the self-tuning minimum variance strategr for a TIMO system

having the feedback configuration FD is introduced. The strategy illustrates possible

benefits resulting from utilization of additional outputs for feedback in self-tuning

control of stochastic systems. The MV control law is considered here, but the ueigltted,

MV self-tuning controller can be developed and analyzed in a similar way.

Self-tuning MV controller (ST-MV-TIMO strategy).

Let us consider a system satisfying Assumptions 3.7 to 3.10 (p. 9t) and 3.11 (p. 113).

The \MMV control law for a system with known parameters is given in Theorem 6.1.

In order to introduce a self-tuning version of the MV control law (À : 0 in eqn. 6.39)

for a system with unknown parameters, we make the following assumption.

Assurnption 6.4 (i) For the purpose of pararneter estimation, lhe present ualue

yQ) of the controlled, output is lcnown;

(ii) the time delay lc from the control input u(t) to the controlleil output y(t) is

lcnown;

(iä) zk N('-') + 0 and d(z-r) I 0 for l"l > I.

Assumption 6.4 (i) is required for the calculation of the equation error E.1 (Ap-

pendix E) of the parameter estimator employed in the self tuner. Assumption 6.4

(ii) guarantees (in view of Comment 3.4, p. 99) that 0o * 0; part (iii) is required

to ensure closed-loop system stability under the MV control (see Theorem 6.1, part

(iii) ).

The control objective of the ST-MV-TIMO strategy is to minimize the (condi-

tional) mean-square tracking error with probability one by applying a sample mean-

square bounded control sequence {"(¿)}. The feedback outputs sequence {yp(l)} will

be shown to be sample mean-square bounded with probability one.

228



In order to derive the ST-MV-TIMO strategy, recall that the TIMO-type k-step-

ahead predictor can be written as (see eqns. 3.140 to 3.142 (p. 112) and note that

le¿ : lc - kr: 0)

y"(tlt - k) : O'Ó(t - k), (6.53)

O : lo, þ-l', (6.b4)

ó(t) : [ ,"{r), ar(t - nr), u(t) u(t - rr)1. (6.55)

Equ. 6.53 clefines systern moclel the paraureters of which are estimar"¿ ir. the ST-

MV-TIMO strategy. Hence, denote the vector of parameter estimates of O resuliing

from a recursive parameter estimation algorithm by

ôqr¡ : [r.,(r) g.G)]' . (6.56)

The RLS estimator with the condition number monitoring (CNM) technique is

employed in the ST-MV-TIMO strategy (see Appendix E). The CNM technique

I ¡as proposed in [57] as a modification to the RELS estimator and it guarantees

boundedness of the condition number of the estimate error covariance matrix.

The ST-MV-TIMO controller consists of the following steps which are per-

formed at every sample instant ú:

step 1. calculate the vector of estimat"r ô1t; using the RLS-CNM algorithm (see

eqns. E.5 to E.7, Appendix E), with the equation error defined as

e(t): a(t) - o(t - 7)'ó(t - k); (6.57)

step 2. calcu-late the control signal

u(t) : t0,ftll-' I r ã.(t,p) n-' (0.{t,o) - pù 
I

"(t+r; l
-ae(t) I , (6.5s)

-r(ú - 1) j

where ã-(t,p) : ã.(t)P^o, and p,çt,o¡ : p,çt¡P^o (Pno : l! p .. . p"ol').

Comment 6.4 In order to elirninate possibility of the estimate poQ) becoming zero,

one can implernent the constrained estimation technique (as for the ST-MPE-SIMO

strategy, see step 2, eqns. 6.19 and 6.20, p. 201).
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Comrnent 6.5 The implementation of the RLS-CNM estima,tor requires calculation

of the mauimurn eigenaalue À-"*(P-(ú-k)) 
"Í 

the couariance matrix P^(t-k) at euerg

sample instantt (see eqn. 8.7, Appendix E). Since ),."*(P-(t-k)) <tr(P^(t -k)),
where "tr" denotes trace, the coaariance eigenualue in eqn. 8.7 can be replaced by

the trace of coaariance matrir, 0,s proposed in [57]. 3 Such a moilification reiluces

the computational burd,en. The simulation stuilies confirm the applicability of the

mod,ification (see subsection 6. 2. 3 ).

Convergence of the ST-MV-TIMO strategy.

The convergence analysis of the ST-MV-TIMO strategy is based on a Martingale

convergence theory [87, chapter 7] [171, chapter 2]. For the purpose of analysis, the

methodology developed in [55,57] [9, chapter 9 and 11] for establishing convergence

of stochastic self-tuning prediction and control algorithms for systems having the

feedback confi.guration FI is employed. This approach is applied here to establish

convergence of the stochastic self-tuning control for systems having the feedback

configuration FD.

\Me have the following global convergence result.

Theorern 6.2 Consiiler a system satisfying Assurnptions 3.7 to 3.10 (p. 91), 3.11

(p. 113), and 6./¡ (p. 225). Assume that future ualue of the bound.ed reference sequence

r(t * lc) is lcnown (or is computable) at time t. If þ"þ) I 0 for aII sample instants

t, then the ST-MV-TIMO strategy (implemented, with the RLS-CNM estimator with

no forgetting) ensures with probabilitE on

(6.5e)

, <*, (6.60)

limsup ( oo, (6.61)
N*oo

sThis method can be applied to the adaptive TIMO-type predictor as well (see eqns. 3.143 to 3.145,

p. 112).

( oo,f Ë"t'l'

#å weu

f Ëurtl'

)
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N

Dø{lv@ - r(t)1" lF,-*} : FF'o2. (6.62)
t=k

Proof: see Appendix F

Comment 6.6 The global conuergence of the ST-MV-TIMO algorilhm means thal

for all initial states of the system and the algorithm, the (conilitional) rnean-square

traclcing error (see eqn. 6.62) is minin¿ized with probabilitE one by applying a sample

rnean-squz,rebounileilinputsequence{"(¿)} (seeeqn.6.59),andtheÍeedbaclcsequence

{yr(¿)} is sarnple rne&n-squûrebound,eil (see eqn. 6.60). Furthermore, it follous from

eqn. 6.4t5 that FF'o2 is the minimal possible'mean-square traclcing er'T'or achieaable

uith any linear causal control law, incluiling that designed for a system uith lcnown

parameters.

Cornrnent 6.7 Th,e parameter estimates difference conuergence, i.e.,

ii* Ëllô(r) - ô(¿ - i)ll' < oo for t > i a.s,N_æfi, \ / \

for any f,nite i, can be read,ily establisl¿eil as in [57J. This ensures that the estimates

remain bounded with probability one for aII t.

The properties of the MV-TIMO control law (see eqn. 6.39 for À - 0) which are

relevant to self-tuning control are discussed below. These properties are compared

with the corresponding features of the MPE self tuners developed for TISO systems,

i.e.,, systems having the feedback configuration FI.

Comparison of the expected convergence rate of self-tuning controllers for

TISO and TIMO systems.

The (weighted) minimum variance control law 6.51 for TISO systems involves optimal

prediction of the controlled output, A'(t + klf ), filtered by the polynomial c,(p) - 1

(unless c.(p): 1). Therefore, in the self-tuning implementation of the WMV-TISO

control law (ST-WMV-TISO strategy) the coefÊcients of c.(p) must be estimated

(see eqn. E.!2, Appendix E). Furthermore, in the ST-\MIVIV-TISO strategy the
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(unknown) optimal prediction A'Q + klt) is approritnateil by lhe a priori output

prediction (see e.g., [55,125], and eqn. 8.14, Appendix E)

û(t+ fr) :6,(¿)'Ó"(t),

or by the ø posteriori output prediction if k : 1 (see e.g., [56,57,172,69.,134]) 
4

ú(t+1):6"(¿+1)'d"(t)

The regression vector d"(f) of the estimator employed in the ST-WMV-TISO strat-

egy involves output predictions (see eqn. E.13, Appendi* E), which depend on the

parameter estimate vector. Therefore, the regression vector depends on the param-

eter estimate vector. Such estimation algorithms are said to be of the pseudo-linear

regression type, due to the appronimation resulting from ignoring the dependence of

/"(ú) on O" [173] [9, Remark 8.4.2, p. 320]. The following pseudo-linear regression

estimation methods (or their variants) have been commonly employed in self-tuning

controllers for TISO systems: stochastic gradient (SG) [53], recursive extended least

squares (RELS), and recursive maximum likelihood (RML) (see Appendix E).

It is well known that the convergence rate of parameter estimates for the SG

algorithm, which is a scala¡ gain estimator, is inferior to the convergence rates for

the matrir gain estimators, such as the RELS or RML [56,57,69]. Therefore it is

desirable to employ the matrix gain estimators in self-tuning control, although they

are computationally more involved.

The RELS and RML estimators were developed using two different approaches

1174,7751. The RML is an approrimation to the nonrecu.rsive version [176] due to the

simplifications made in its derivation (see e.g., [175] [160, p. 376]). As pointed out in

[53], the relation between the RELS and RML estimators can be seen by comparison

of the calculation of the gradient vector r/(t) (see eqn. E.17, Appendix E)

D(t,p)tþ(t) : d"(¿), (6.63)

4The control law is sometimes formulated in such a way that a priori or a posleriori prediction

errors replace the corresponding output predictions 1172,134].
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where D(t,p) is a filter defined as

D(t,p) : 1 for the RELS algorithm; (6.64)

D(t,p) : î,(t,P) for the RML algorithm (6.65)

(õ,(t,p) is the estimate of c,(p)). The RELS method can be interpreted as approx-

imation to the RML method since the fixed filter 6.64 is used in place of 6.65 ll77l.

The convergence rate of the RML method is superior to that of the RELS at the

expense of additional computations [53].

The pseudo-linear regression estimators SG, RELS, and RML, involve the above

mentioned approrimations; it is therefore desirable to consider the linear regression

estimators, such as the RLS, for self-tuning control of TISO systems. As already

mentioned, the coefficients of the noise polynomial c.(p) must be estimated in a

general case of c.(p) + I157, Remark 3.1]. However, in the case of the minimum

uariance regulation, i.e., r(Í) : constant and ) : 0, some simplifications are possible.

Namely,

(i) if r(t) : 0, then the MV control law implies that û(t) : 0 and the output

predictions and coefficients of c,(p) can be removed from the regression and

parameter estimate vectors, respectively [22];

(ii) if r(t) : constant (+ 0), then it suffi.ces to replace past predictions in the

regression vector by a constant, and estimates of the coefficients of c.(p) by a

scaled sum of coefficients in the parameter estimate vector [9, p. aa5].

Hence, for TISO systems with c,(p) f I, the RLS estimator can be employed only

for self-tu nirrg rninimum'u uri o,nce r egulati o n.

On the other hand, for the ST-MV-TIMO controller the output predictions are

not includ,ed in the regression vector 6.55, and the coefficients of the noise polynomial

c,(p) are not estimated (see eqn. 6.56). (In fact, the same can be said about the self-

tuning weighted, NIV strategy based on the control law 6.39.) Therefore, one carL

apply t};ie linear regression estimator, such as the RLS, to obtain unbiased parameter

estimates for a slochastic systern with coloured noise (",(p) I 1) in a general reference
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traclcing (rather than regulation) problem. (F\rrthermore, in the case of the self-tuning

weighted, MV strategy for TIMO systems, the linea¡ regression estimator can be used

for I )0 ratherthanonlyfor ):0 as forTISO systems.) Thisis apowerfulresult

with signifrcant practical implications in terms of the convergence rate of parameter

estimates and modification of system assumptions required for convergence.

Comment 6.8 It can be expecteil that the conaergence rate of parameter estimates of

the ST-MV-TIMO strategy will be superior to that of self-tuning controllers ileaeloped

for TISO systems. This is ilue to the use of the linear regression estimator (RLS-

CNM) which is free of the approrimations inaolaeil, in the SG, ÈELS, and' RML

method,s, which are pseuilo-Iinear regression estimators.

The superior convergence rate of the ST-MV-TIMO strategy is confirmed by simu-

lation studies described in subsection 6.2.3.

Aside 6.L Note also that superior con'uergence rate is usually obserued for the plant

Ttarameter estimates, 1.e., Â,@) ana Ê@) (or estimates inuolaing plant parameters),

in comytarison with that of the noise polynomial estimates Ôçp¡ ;" the ARMAX mod,el

for the RELS or RML method,s [125J [160, p. 38/¡]. The difference in conaergence

rate results form th,e fact that Ô@) ie estirnated, by the pseud,o-Iinear regression terrns

in the regression aector [9, p. 445]. This supports Comment 6.8.

Furthermore, it is known that

Comment 6.9 In a practical situation, grouth of the cond,ition nurnber of the couari-

ance matrin of the estimate error might lead to numerical instability of the estirnator.

This, in turn, may result in instability of the closed,-loop syste* [6J. The pseud,o-

linear regression estirnators ûre susceptible to the growth of the condition number of

tlte couariance matrir [57]. Howeaer, the numerical robustness of th,e estimator in

the ST-MV-TIMO strategy is enhanced as a result of employing the ordinarg linear

regression algorithm (see erample 6.2.2, p. 240).

Finally, note that both the ST-MV-TIMO strategy for stochastic systems and

the ST-MPE-SIMO strategy of subsection 6.1.2 for deterministic systems employ the

RLS estimator (cf. Comment 6.3, p. 224)
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Comparison of assurnptions concerning the noise polynomial c.(z-l) in

self-tuning control of TISO and TIMO systems.

The next important aspect of the ST-MV-TIMO strategy is the modification of as-

sumptions required by self tuners developed for TISO systems and concerning the

noise polynomial c.(z-l).

The first modification was introduced for the nonadaptive case by permitting the

roots of the noise polynomial c,("-L) to lie on the unit circle, in contrast to the

TISO schemes, which require all roots of. c.(z-t) to be located strictly inside the

unit circle 5. In the light of the Spectral Factorization Theorem (SFT), however, the

assumption about roots of. c.(z-r) lying strictly insid,e the unit circle is a mild one,

especially if there are no uncontrollable system modes on the unit circle [139, p. 373]

[178] [9, p. 26a]. (Recall that the open-loop system is said to be controllable, see

Assumption 3.8, p. 92.)

The second modification of system assumptions is related to the convergence of self

tuners. It is well known that for the (global or parameter) convergence of self-tuning

controllers for TISO systems, certain transfer function involving the noise polynomial

",("-t) is required to be strictly positiue real l53l (see discussion on pp. 324-325,

Appendix G). For example, convergence of self-tuning controllers employing the

RELS estimator requires that
1 1

(6.66)

is strictly positive real (i.e., "-(r-t) has all roots inside the unit circle and c;\(eie)l

c;I(e-ie) - 1 > 0, for 0 < g 12tr [179,134]). On the other hand, note from Theo-

rem 6.2 (see also Comment F.5, p. 313) that

Comment 6.10 The (global) conuergence of the ST-MV-TIMO strategy does not

require any positiue real cond,ilion, in contrast to self-tuning controllers il,eueloped for

TISO systems witltout any special precautions being talcen (see Append,ix G)6.

sAlternatively, controllers based on the time-varying or restricted complexity predictors can be

used, see discussion on pp. 222-224 and [9, p. a50]

6This property is illustrated in example 6.2.2, p.240.

c,(z-r) 2
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The remoual of the strictly positiue real (SPR) conilitior¿ is the most significant

feature of the ST-MV-TIMO strategy apart of the replacement of the pseudo-linear

regression estimator by the linear regression estimator. Note, however, that the ST-

MV-TIMO strategy requires stability of the open-loop system (see Assumption 6.4

(iii), p. 228). For self-tuning applications such stability can be verified more easily

than the SPR condition which is dependent upon unknown parameters of the noise

polynomial.

A survey of self-tuning MPE controllers for TISO systems with respect

to convergence analysis and methods of overcoming the strictly positive

real condition.

In order to assess the significance of the global convergence of the ST-MV-TIMO

strategy and the significance of system assumptions under which it was established,

it seems desirable to present a survey of stochastic self-tuning controllers developed

for TISO systems. Such a survey, with respect to convergence analysis and methods

of overcoming the SPR condition, is presented in Appendix G.

The first self tuner which was shown to be globally convergent employs the scalar

gain estimator (stochastic gradient SG) [55]. It is known, however, that the conver-

gence rate of parameter estimates of the matria gain estimators is markedly superior

to that of the scalar gain estimators [56,57,69]. Therefore, considerable research was

devoted to the development of convergent self-tuning strategies employing matrix

gain estimators rather than scalar gain estimators, for the purpose of improving the

convergence rate. Three approaches to the development of such strategies are iden-

tifi.ed (see Appendix G): (i) estimator modification (method E), (ii) dither injection

(method D), and (iii) estimator modification with dither injection (method E-D).

The ST-IvIV-TIMO strategy relies on the method E (because of the CNM tech-

nique) to guarantee global convergence of the self-tuning controller employing a ma-

trix gain estimator. The CNM technique implies that a full least-squares step in

parameter estimate update is taken only if this is consistent with the convergence

criterion related to the condition number of the covariance matrix; otherwise, the gain
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of the algorithm is reduced (see eqns. E.8 and E.10, Appendix E). It was suggested

in [57] that the estimator could revert to a full least-squares update if temporary

convergence difficulties had been overcome.

Some authors have expressed their objections in relation to the matrix gain esti-

mator combined with the CNM technique as a means for improving the convergence

rate of a self tuner for TISO systems. In particular, it was pointed out in [69] that

the analysis of the CNM technique presented in [57] does not establish whether the

estimator approaches the full LS update asymptotically 7. Similarly, the superiority

of the matrix gain estimator with the CNM technique over the scalar gain estimator

was questioned in [180].

It should be noted, however, that the importance of the above comments on

the CNM techaique decreases in the application of CNM to self-tuning control of

TIMO systems. This is because a significant improvement in the convergence rate is

expected due to the replacement of the pseudo-linear regression estimators employed

for self-tuning control of TISO systems (i.e., estimators for which the objections about

the CNM technique were expressed) by the linear regression estimator. Nevertheless,

some other modifications to the matrix gain estimators proposed for TISO systems

(e.g., the weighted least squares estimator introduced in [56]) could be considered for

the development of a giobally convergent self-tuning controller for TIMO systems.

Furthermore, in comparison with other approaches to the development of glob-

ally convergent self tuners employing matrix gain estimators for TISO systems (see

Appendix G) we can conclude that

Comment 6.11 The ST-MV-TIMO strategy leads to an optimal closetl,-loop system

performance (see eqn. 6.62 and Comment 6.6). On the other h,and, the schernes

baseil on methods D anil E-D for TISO systems yielil suboptimal performance (i.e.,

with increased, traclcing error aariance) d,ue to white noise dither injected, into the

closed,-loop system.

In addition to the approaches to the development of strategies employing matrix

7Som" insight into these aspects of the CNM technique is provided in example 6.2.2, p.240
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gain estimators, the methods of ouercoming the SPR coniJition for TISO systems are

also discussed in Appendix G. Three methods relying on (a) dither injection (method

D), (b) model overparameterization (method O), and (c) model overparameterization

and dither injection (method O-D), are identified. \Me can conclude that

Cornrnent 6.L2 The utilization of aililitional system outputs for feedbaclc, which

forms the basis of the ST-MV-TIMO strategy, is seen aE ún effectiue method of ouer-

coming the SPR cond,itions. In particulør, such a methoil auoid,s ilraubacks of the

methods of oaercoming the SPR condition proposed for TISO systems, wh,ich inuolue

- adilitional computational effort which is required, by self-tuning strategies em-

ploying two estimators anil two controllers, on-line spectral factorization, pre-

fiItering of the input-output data, etc. (method D);

- d,ither injection into the closeil-Ioop system which leads to suboptimal closeil-Ioop

syslem performance unless sorne other precautions are being talcen (method,s D

and, O-D);

- moil,el ouerpúrarneterization uhich affects the conaergence rate of the estirnator

anil might leail to estimator ill-conilitioning (method, O);

- regulation about zero leuel (i.e., r(t) :0) as the only achieuable control objectiue

(method O-O);

- certain prior system knowled,ge concerning the noise polynomial (method,s O

and, O-D).

The survey in Appendix G reviews the considerable research effort involved in (i)

improving the convergence rate of self-tuning controllers (by employing the matrix

gain estimators), (ii) overcoming the SPR condition for TISO systems. Both goals

(i) and (ii) have been achieved in the present work by utilization of additional system

outputs for feedback.

EThis method of overcoming the SPR condition is not, as it might seem, based on the model

overparameterization because the nurnber of estimated parameters lor the ST-MV-TIMO scheme

may be the same as for the corresponding ST-MV-TISO strategy (see example 6.2.2, p.240).
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6.2.3 Performance improvements in self-tuning control of

stochastic systems by utilization of additional outputs

for feedback - simulation studies.

Simulation studies which illustrate properties of the self-tuning, minimum prediction

error strategr developed for TIMO systems are presented in this subsection. The

purpose of the simulation studies is to show benefits resulting from the utilization

of additional systern outputs for feedback in the design of seif-tuning controllers for

stochastic systems. Therefore, the results obtained for systems having the feedback

configuration FD are compared with those obtained for systems having the feed-

back configuration FI. In particular, the following aspects of self-tuning control are

compared for the ST-MV-TIMO and ST-MV-TISO strategies:

- convergence rate of parameter estimates (see Comment 6.8, p. 234);

- numerical robustness of the estimation algorithms (see Comment 6.9, p. 234);

- elimination of the SPR condition involving the noise polynomial c,(z-l) (see

Comment 6.10, p. 235);

- performance for systems with the noise polynomial, c.(z-r) having roots on the

unit circle

Furthermore, some insight is given into properties of the CNM technique and the

choice of ihe values of its parameters.

In order to eliminate any possible differences in the convergence rate due to the

number of estimated pa.rameters (cf. Comment 6.1, p. 199), models of the simulated

systems were chosen such that the number of the estimated parameters is the same

for both ST-MV-TIMO and ST-MV-TISO strategies.

The following measures of the convergence rate of the self-tuning strategy and

the closed-loop system performance rvere employed for the purpose of quantitative

comparison of results
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- tracking error va¡iance (or controlled output variance ol it rçt¡ : O¡

(6.67)

where -l/ is a total number of samples;

- on-line tracking error variance (or on-line controlled output variance if r(t) : g)

calculated at each sample instant f

7t
"3.G):;:la?)-,(")1',; (6.68)

- cumulative loss function

cL(ú):tly?)-,(,)l' (6.6e)

t)-a2..:#;tr, t)l' ,r(

¡=l

Moreover, the condition number of the estimate error covariance matrix P(ú) was

calculated. The condition number is defined as À*.*/À'¡r' where l-"* ()r..ir,) is the

maximum (minimum) eigenvalue of the covariance matrix.

All simulations were performed on VAX L11780 digital computer using FOR-

TRAN software and single precision arithmetic. The covariance matrix condition

number was calculated using the MATLAB package [110]. The RELS, RML, RLS

and RLS-CNM estimators (see Appendix E) were implemented with the U-D factor-

ization method [164] (see also discussion on page 174).

Example 6.2.2. Systern with a noise polynomial c,(z-l) not satisfying the

SPR condition.

The purpose of this example is to show that the ST-MV-TIMO strategy is convergent

for a system with a noise polynomial c,(z-t) such that ";t ("-t) - I l2 is not strictly

positive real.

Let us consider a second order (n :2) system given by the state-space model 2.8
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(p. 22), where vG) : y'(*) and ae(t) : lvt!) y2(ú)l', and

| -o.g -0.e5 I'":L , ol' B" :l;
1

l

C [' o],
0.8 -0.

The observability index of the pair (Cp, A") is uF : I. The corresponding RDO

representation is given by (see eqns. 3.89 to 3.94, p. 92)

d(p) : [1 0.e 0.e5]P2,

¡r(p) : [0 1 O]Pr,

"-(p) :

¡rr(p) :

c-(p) :

010
0 0.8 -0.4

Pz,

1 1.5 0.75

1 1.2958 0.4742

5l P,1.5 0.7[1

P2

The delay k : L (see eqn. 3.91, p. 93).

The problem of the MV control of the output y(t) : y1(f) is considered in the

following example. For the purpose of implementation of the ST-MV-TIMO strategy

it is assumed that outputs Ve(t) : [gr(¿) yr(t)]' are available for feedback ff : 2).

The ST-MV-TIMO strategy involves estimation of coefficients of the 1x 2 polynomial

vector o.(p) and polynomial þ,(p) (see eqns. 6.56 (p. 229) and 3.97,3.98 (p.g+)).

Assuming knowledge of the observability index up, the degree of the polynomials is

selected according to eqn. 3.133 (p. 105) ã,s Tt, :1. The coeffi.cients of the polynomials

o-(p) and B-(p), calculated from eqn. 3.113 (p. 99) for kr: k:1, are given by (cf.

example 3.3.1, p. 105)

(r.u) : foqs a,2s a,r o2tf : [7.7081 - 7.1081 4.3873 - 6.9338] , (6.70)

p. : [þo 0r]: l1 - 2.92161. (6.71)

On the other hand, if the only output which is available for feedback is the

controlled output (i.e., the system has the feedback configuration FI), then the RDO
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model of the corresponding TISO system is given by eqn. 3.89 (p. 92) with ye(t) =
y(t). Note that the model of this TISO system can be alternatively written in the

following ARMAX form

d(p)a1) : u(t - 1) + c.(p)u(t). (6.72)

The noise polynomial c-(z-r) does not satisfy the SPR condition required for conver-

gence of the RELS estimator (see fig. G.t (p. 325) and note that the point cr : 1.5,

cz : 0.75lies outsicle the shaded area). The above ARMAX model was considered

in [t81, example 1] to show that the RELS estimator is not convergent for such a

system e.

If only the controlled output is available for feedback, i.e., yp(t) : yr(t), then

the ST-MV-TISO strategy implementing the control law 6.51 (p. 222) can be em-

ployed. The parameters which are estimated in the ST-MV-TISO strategy are the

coefficients of the noise polynomial c.(p), and coefficients of polynomials a,u,(p) and

0".(p) resulting from eqns. 3.138 and 3.139 (p. 10S)

a,,(p) : a",Pt: [a"o a"r] Pr : [0.6 - 0.2) &,, (6.73)

0".(p) : þ",Pt : lþ"o p"tl Pr: [1 0] Pl. (6.74)

We shall consider the ST-MV-TISO strategy presented in [9, p. aaa]. This self tuner

employs the RELS method for estimation of coefficients of the polynomials a",(p),

þ".(p), and c,(p). Therefore, this strategy is referred to as the ST-MV-TISO-RELS

scheme. Alternatively, the coefficients can be estimated using the RML method (see

Appendix G p. 325, for the discussion of the RML estimator with respect to the

methods of overcoming the SPR condition). Then the resulting strategy is referred

to as the ST-MV-TISO-RML scheme (seeeqns. E.12 to 8.I7, Appendix E) to.

We shall consider two control tasks: regulation problem (r(t) : 0), and tracking

the reference sequence.

eSimilar examples were presented in [48,58,135].
1oThe ST-MV-TISO-RML strategy was implementeà wilhoul projection facility for the estimates

of the noise polynomial c,(p) into the stability region (see discussion on page 325). The estimated

polynomial 1,(t,p) was stable for all sample instants f .
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Regulation problem.

The variance of the noise c.r(f) was set to o2 : l. For the closed-loop system under

MV regulation the minimal variance of the controlled output is ol : 1, since delay

k:! [83, p. 175]. The limit on the control signal magnitude was set to lu(t)l < 10.

In the case of regulation by the ST-MV-TISO-RELS strategy with r(ú) : 0, the

coefficients of the noise polynomial 
".(p) need not be estimated (see case (i), p. 233).

However, for the purpose of this simulation the noise polynomial was estimated to

compare the results with those obtained with the ST-MV-TISO-RML scheme 11.

All estimators were initialized with P(-1) : 100/, the initial parameter estimates

were set to zero except for po(O) :0"o(0) : 1; no forgetting was used..

The sequences of the control input u(ú) and controlled output y(f) resulting from

the use of the ST-MV-TISO-RELS strategy are shown in fig. 6.12. The variance of

the controlled output (i.e., the tracking error variance, see eqn. 6.67 for l/ : 2000)

was ol : I.I2. The estimates of the parameters given by eqns. 6.73 and 6.74, and

estimates of coefficients of c-(p) are depicted in fig. 6.13. It can be seen that the

estimates converged to biased values. This is because the noise polynomial c.(z-1)

does not satisfy the SPR condition.

Next the ST-MV-TISO-RML strategy was simulated. The variance of the con-

trolled output was ol - !.!2,, i.e., the same as for the scheme based on the RELS

estimator. This is due to the fact that parameter estimates, which are depicted in

fig. 6.14, lv\¡ere very similar to those obtained with the RELS method. The estimates

of the noise polynomial were only slightly different from those of the RELS estimator.

Finally, the ST-MV-TIMO strategy was applied. Two cases were considered:

rvithout and with CNM. The parameters to be estimated are given by eqns. 6.70

and 6.71. The control input and controlled output sequences resulting form the

ST-MV-TIMO strategy without CNM are shown in fig. 6.15 and the corresponding

estimates in fig. 6.16. The variance of the controlled output was o2o : 1.02, i.e., it

was close to the minimal value which would have resulted if the controller for a system
11The RML based strategy requires estimation of c,(p) for calculation of the gradient vector (see

eqns. 8.15 to E.17, Appendix E).
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Figure 6.12: The sequences of the control input u(ú) and controlled output y(ú)

resulting from the ST-MV-TISO-RELS strategy wilh c.(z-l) not satisfying the SPR

condition (regulation).
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Figure 6.13: The parameter estimates and their true values for the

ST-MV-TISO-RELS strategy with c,(z-l) not satisfying the SPR condition (reg-

ulation).
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Figure 6.14: The para,meter estimates and their true values for the

ST-MV-TISO-RML strategy with c.(z-l) not satisfying the SPR condition (t"go-

lation).
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Figure 6.15: The sequences of the control input u(t) and controlled output

V(t) - Vr(ú) resulting from the ST-MV-TIMO strategy (wiihout CNM) with c."(z-l)

not satisfying the SPR condition (regulation).
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Figure 6.16: The parameter estimates and their true values for the ST-MV-TIMO

strategy (without CNM) wilh c,(z-l) not satisfying the SPR condition (regulation).

with known parameters had been applied. Note that the estimates converged close to

their true values after about 100 samples, thus overcoming the SPR condition. The

estimates remained close to their true values for approximately 300 samples, a,fter

which they drifted around true values for the rest of the simulation.

It will be shown now that the drifting of estimates after the initial convergence

phase can be effectively eliminated by the use of the CNM technique. For this

purpose, the CNM was initialized with X(-1): 10-z andC*:101a. The variance

of the controlled output resulting from the ST-MV-TIMO strategy with CNM was

ol:1.02, i.e., it was not affected by the CNM. Furthermore, the estimate drift was

eliminated, as shown in fig. 6.17. The initial convergence rate (first 100 samples) was

not affected by the CNM, and the estimates remained close to their true values for

the rest of simulation.

The estimate drift was eliminated by reducing the gain of the estimator (see

eqn. E.8, Appendix E) with the scaling factor ((¿) < 1 (see eqn. E.10, Appendix E).

The scaling factor is depicted in fig. 6.18. The scaling factor ((ú) became less than

one after 106 samples, i.e., after estimates converged close to true values (the corre-

sponding value of the condition number of the matrix P^(t) was 2038). After initially

small value of ((t) of about 0.95, it graduaily increased towards 1, remaining at the

ãæã aa
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Figure 6.17: The parameter estimates and their true values for the ST-MV-TIMO

strategy with CNM with c,(z-|) not satisfying the SPR condition (regulation).
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Figure 6.18: The scaling factor ((ú) for the ST-MV-TIMO strategy with CNM with

",("-') not satisfying the SPR condition (regulation).
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Figure 6.19: The on-line variance of the controlled output resulting from the

ST-MV-TISO-RELS and -RML schemes (upper curve), and from the ST-MV-TIMO

scheme without and with CNM (lower curve).

average value of 0.999 during last 1000 of iterations.

The performance of the simulated self-tuning strategies can be compared in terms

of the on-line tracking error variance (i.e., in the considered case of regulation, the on-

line variance of the controlled output), defined by eqn. 6.68 and depicted in fig. 6.19.

Note the improvement in performance of self tuners due to utilization of additional

outputs for feedback in the ST-MV-TIMO (without and with CNM) strategy, in

comparison with both ST-MV-TISO-RELS and -RlvIL schemes. There is also no

degradation in performance due to the CNM technique employed in the ST-MV-

TIMO algorithm. Although in this example the output variances tend to 1 for ail

self tuners, the convergence is guaranteed only for the ST-MV-TIMO with CNM

scheme (see Theorem 6.2, p. 230). In general, the estimates for the ST-MV-TISO-

RELS strategy may converge to biased values or may not converge at all (since

the noise polynomial does not satisfy the SPR condition), possibly leading to an

unstable closed-loop system. The convergence of the ST-MV-TISO-RML strategy is

not guaranteed due to lack of the appropriate projection method for the estimate of

the noise polynomial into the stabiliiy region (see p. 325, Appendix G).

The condition number of the estimate error covariance matrix P(f) must be

0

ST-MV-TIMO

ST-MV-TISO
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Figure 6.20: The condition number of P(f) for the ST-MV-TISO strategy with the

RELS and RML estimators (upper curve), and for the ST-MV-TIMO strategy with-

out CNM (middle curve) and with CNM (lower curve) with c-(z-l) not satisfying

the SPR condition (regulation).

bounded in order to avoid numerical instability of the estimator. The evolution in

time of the condition number of P(f) for all simulated strategies is shown in fig. 6.20

(upper curve for both ST-MV-TISO-RELS and -RML strategies, middle curve for

ihe ST-MV-TIMO without CNM strategy, and lower curve for the ST-MV-TIMO

with CNM scheme). It can be seen that the condition number grows rapidly for both

ST-MV-TISO strategies. However, for the ST-MV-TIMO scheme without CNM, the

condition number increases at a much slower rate than for both ST-MV-TISO strate-

gies. This is due to.the use of the linear regression estimator in the ST-MV-TIMO

scheme instead of the pseudo-linear regression estimator (see Comment 6.9, p. 234).

Further improvement is observed for the ST-MV-TIMO scheme with CNM, for which

the condition number increases at a very slow rate.

It can be seen in this example that the CNM technique eliminates drifts of esti-

mates and the rapid growth of the condition number of the covariance matrix, whiie

not affecting the closed-loop system performance. The latter feature is achieved by

a suitable choice of the initial values of the parameters of the CNM technique. Al-

though X(-1) : 10-7 and C" : 101a were selected in this example, the choice of

o
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Figure 6.21: The controlledoutput variance vs. C* with ¡(-1) as parameter for the

ST-MV-TIMO strategy with CNM with c-(z-l) not satisfying the SPR condition

(regulation).

these constants is somewhat arbitrary, as pointed out in [69]. In order to assess

the influence of the choice of ¡(-1) and C" on the closed-loop system performance,

the variance of the controlled output was calculated from data obtained with the

ST-MV-TIMO strategy for various choices of the CNM initial parameters: X(-1)
in the range from 10-a to 10-10, and C, in the range from 10e to 1016. The results

are shown in fig. 6.21 (output variance versus C", with X(-1) as a parameter). The

CNM technique was implemented with the test based on the trace of P^(t) rather

than on the maximum eigenvalue of P*(t) (see Comment 6.5, p. 230). Note that the

closed-loop system performance can be significantly affected by an improper choice

of X(-1) and C,. Furthermore, in this example for lower values of ¡(-1) the output

variance is more or less independent of C*.
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Tbacking problem.

Let us now consider the reference tracking problem. The reference sequence lr/as a

square wave with unit amplitude and period of 20 samples. The input noise variance

was set lo o2: 0.01.

In the regulation problem it was found that the use of the ST-MV-TISO-RML

strategy did not improve the closed-loop system performance in comparison with

the ST-MV-TISO-RELS strategy. Moreover,, the trajectories of parameter estimates

lvere very similar for both strategies. In the tracking case it was found out that in

order to highlight possible difference in the estimation for both schemes, a forgetting

factor a(t) :0.995 can be used 12. The remaining initial parameters of the estimator

were set as for the regulation problem.

In the case of tracking with the ST-MV-TISO-RELS strategy the noise polynomial

must be estimated, unlike in the regulation problem (see cases (i) and (ii), p. 233).

The tracking error variance (see eqn. 6.67) resulting from the ST-MV-TISO-RELS

strategy was ø1" : 7.4910-2. The corresponding estimates are depicted in fr,g. 6.22.

Note that only estimates of parameters B,s and B"1 corrverged to the true values (see

eqn. 6.74).

Next the ST-MV-TISO-RML strategy was simulated. The tracking error vari-

ance was o'", : 1.314 10-2, i.e., it was smaller than for the ST-MV-TISO-RELS

scheme. The estimates converged close to true values after about 1000 samples (see

fig. 6.23). This illustrates that the RML estimator employed for self-tuning control

n'LaA overcome the SPR condition.

Finally, the ST-MV-TIMO strategy was applied. Again, schemes without and

with CNM were simulated. For the case without CNM, the tracking error variance

was o!,: 1.115 10-2, i.e., it was smaller than for both ST-MV-TISO strategies. The

estimates converged close to their true values after about 500 samples (see fig. 6.24).

This illustrates the superior convergence rate of the ordinary linear regression estima-
12In the regulation case described above, the forgetting factor a(t) = 0.ggb did not improve conver-

gence rate of the RML scheme, and led to the divergence of estimates ("burst phenomenon") for the

RELS scheme.
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Figure 6.22: The parameter estimates and their true values for the

ST-MV-TISO-RELS strategy with c-(z-l) not satisfying the SPR condition (track-

i"s).
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Figure 6.23: The parameter estimates and their true values for the

ST-MV-TISO-RML strategy with c,(z-l) not satisfying ihe SPR condition (track-

i"s).
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Figure 6.24: The parameter estimates and their true values for the ST-MV-TIMO

strategy (without CNM) with c.(z-r) not satisfying the SPR condition (tracking).

tor over the pseudo-linear regression estimators. In fact, it was found by simulation

studies not reported here that an even more significant improvement in convergence

rate can be expected in comparison with the ST-MV-TISO-RELS strategy (apptied

for systems satisfying the SPR condition).

Certain fluctuations of parameter estimates for the ST-MV-TIMO strategy with-

out CNM can be observed after about 1000 samples (see fig. 6.24). These fluctuations

can be effectively eliminated by the use of the CNM technique, as shown in fig. 6.25.

The CNM was initialized with X(-1) - 10-10 and C" : 1018. After the rapid initial

convergence of estimates during first 500 samples, a period of smooth convergence

followed, due to the CNM which was invoked after about 600 samples. The CNM

technique did not affect the tracking error variance which was the same as without

CNM.

For the comparison of performance of all strategies, the cumulative loss functions

(see eqn. 6.69) are depicted in fig. 6.26. It may be observed that the cumulative loss

increases more rapidly for the ST-MV-TISO-RELS scheme than for the remaining

methods. The ST-MV-TISO-RML strategy, which overcomes the SPR condition in

this simulation study, leads to optimal performance (in contrast to the ST-MV-TISO-

RELS scheme) but at a much slower rate than both ST-\{V-TIMO schemes.
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Figure 6.25: The parameter estimates and their true values for the ST-MV-TIMO

strategy (with CNM) with c.(z-l) not satisfying the SPR condition (tracking).
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Figure 6.26: The cumulative loss functions resulting from the ST-MV-TISO-RELS

strategy (upper curve), ST-MV-TISO-RML strategy (middle curve), and from the

ST-MV-TIMO strategies without and with CNM (lower curve) with c.(z-l) not

satisfying the SPR condition (tracking).
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Let us nolvr¡ suûr.marize the results of the above simulation studies in which the

noise polynomial does not satisfy the SPR condition:

- the parameter estimates of the ST-MV-TISO-RELS strategr failed to converge

to parameters of the optimal control law;

- the parameter estimates of the ST-MV-TISO-RML strategy converged to pa-

rameters of the optimal control law for the tracking problem but not for the

regulation problem; in the regulation problem the performance of the ST-MV-

TISO-RML scheme rvvas as for the ST-MV-TISO-RELS scheme;

- the parameter estimates of the ST-MV-TIMO strates¡ converged to the param-

eters of the optimal control law for both regulation and tracking problems with

the convergence rate significantly superior to that of the ST-MV-TISO-RML

scheme (when the latter strategy converged);

- the CNM technique did not affect the performance of the ST-MV-TIMO strat-

egy (i.e., the minimization of the tracking error variance) provided the initial

values of parameters ¡(-1) and C, of the CNM were suitably chosen;

- the CNM technique eliminated undesirable drifts of the parameter estimates

observed after the estimates converged close to their true values when the CNM

was not employed;

- the numerical robustness of the estimator was enhanced firstly by using the

linear regression estimator instead of the pseudo-linear regression estimator,

and secondly by the CNM technique.

Example 6.2.3. System with a noise polynornial c,(z-r) having roots on

the unit circle.

The purpose of this example is to demonstrate that the ST-MV-TIMO strategy can

cope with systems with the noise polynomial c,(z-r) having roots on the unit circle

without sacrificing its asymptotic optimality (see discussion on pp. 222-224). For the
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(p. 22), where vQ) : yr(ú) and vF(t) : lat(t) yz(ú)l', and

purpose of comparison the ST-MV-TISO strategy based on the restricted complexity

(suboptimal) predictor will be considered for the corresponding TISO system.

Let us consider a second order (n :2) system given by the state-space model 2.8

lr.s -0.e5 I lrl ls.oo¿r'lA,:l l, B":l L K:l II r ol' -r Lol' lo.szral'
r r I r o.bI [r.lc:11 0.5 1, "":10., _orl, cs:Lrl

The observability index of the pair (C¡, A,) is uF : 1. The corresponding RDO

representation is given by (see eqns. 3.89 to 3.94, p. 92)

¿(p) : [1 - 1.5 0.e5]P2,

¡rþ) : [0 1 0.5]Pr,

".(p) : 17 2 Ll P2, (6,75)

lo 1 0.5 INr(p) : I lPr,
I o 0.3 -0.1 I

lr 2 11C.(p): I lPr.
I r -o.66ze o.b2be I

The delay le : t. Note that the noise polynomial c.(z-r) has a double root on the

unit circle at z : -I.
The problem of the self-tuning MV control of the output u(t) : y1(ú) is considered

in this example.

For this purpose one ca^n implement the ST-MV-TIMO strategy (feedback from

outputs ar(t) : lAr(t) Arþ)l) which involves estimation of coefficients of the 1 x 2

polynomial vector o,(p) and polynomial 0.@) (see eqns. 6.56 (p. 22g) and 8.g7,

3.98 (p. 94)). Assuming knowledge of the observabiiity index up, the degree of the

polynomials is chosen as ?zp : 1 according to eqn. 3.133 (p. 105). The coefficients of

the polynomials o.(p) and B.@), calculated from eqn. 3.113 (p. 99) for lcr: lc : I,

are given by (cf. example 3.3.1, p. 105)

uu : Io., o.zo an oztf : [0.6719 2.8287 - 0.6603 1.255b] , (6.26)
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p, l0o 0rl: 17 0.47971 (6.77)

On the other hand, if the only output which is available for feedback is the

controlled output (i.e., the system has the feedback configuration FI), then the RDO

model of the corresponding TISO system is given by eqn. 3.S9 (p. 92) with ar(t) :
y(t) : yt(t). Note that the model of this system can be alternatively written in the

following ARMAX form

d(p)v(t) : N (p)u(t) + c.(p)u(t) (6.78)

The ST-MV-TISO strategy for systems with the noise polynomial c,(z-L) having

roots on the unit circle proposed in [9, p. a50] will be considered. For this purpose,

the polynomial c.(z-r) is approximated by a first order, stable polynomial c¡(z-t)
(see [9, example 11.3.1, p. 450, and pp. 272-274])

ct(z-r) - 1 + coz-r.

The estimateõo of the coefficient co is restricted to le"l S c, 1I. If.î"> c, then the

estimate value is set toeo- c,, and if.e., < c" then it is set to co: -¿,.
\Me shall consider two control tasks: regulation problem (r(t) : 0) arrd tracking

the reference sequence.

Regulation problem.

The input noise va¡iance was set f.o o2 :1. Since k : 1, the minimal variance of the

controlled output is ol:1.
The estimators were initialized with P(-1) : 100/, the initial parameter esti-

mates were set to zero except for polO) : p"o1O¡ : t.

The choice of the initial values of the parameters of the CNM technique for the ST-

MV-TIMO strategy was X(-1) - 10-10 and C" : 1018 (trace of the covariance matrix

was used in ihe test in eqn. E.7 (Appendix E) rather then covariance matrix maximum

eigenvalue, see Comment 6.5, p. 230). No forgetting was used, i.e., a(l) : 1. The

control signal magnitude was limited to lz(t)l < 10. The sequences of the control
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input u(ú), the controlled output y(t) - n(t), a¡rd the second feedback output y2(f)

are shown in fig. 6.27.
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Figure 6.27: The sequences of the control input u(ú), controlled output g(ú) : Ur(t¡,

and the second feedback output Uz(t) resulting from the ST-MV-TIMO strategy with

c,(z-') having roots on the unit circle (regulation).

The variance of the controlled output (see eqn. 6.67 for lf : 2000) was o? : 7.1. The

estimates of the parameters given by eqns. 6.76 and 6.77 are depicted in fig. 6.28.

For the purpose of comparison the (suboptimal) ST-MV-TISO strategy [9, p. a50]

10

5

o

Fl

ll

3

o

-3

lr
l¡

Idrili illrf n 
lll 

qrl,I¡ttlr¡fil 
il il 

l|tilTtil 
t 

l

I llúll¡ I i III¡il¡ ül M I l[ I ill JÛflll! Íl r

Lll¡¡r ¿ n i. hu¡r* ¡r . r¡h, fur .[ltnt¡^¡ll.,l,.,dh.r.,rr J ¡nuJ

268



4

3

2

1

o

1

V)
f¡l
F{

=E{
v)
f¡¡

500 1000
SATIPLE

1500 2000

Figure 6.28: The parameter estimates and their true values for the ST-MV-TIMO

strategy with c,,(z-1) having roots on the unit circle (regulation).

was simulated. In order to observe the influence of the choice of the bound c, on the

closed-loop system performance, the simulation runs were repeated for the values of

c, from 0.4 to 0.95 with increment 0.05. For each value of. c,., four values of forgetting

factor were chosen o(f) : 1; 0.998; 0.996; and 0.994. The results are shown in

fig. 6.29, where the variance of the regulated output y(f) is depicted versus bound c,

with forgetting factor a(t) as a parameter. It may be observed that the influence of

the bound cr on the closed-loop system performance vÍas insignificant for the values

of the foriSetting factor *(ú) > 0.996. For the value o : 0.994 the performance

deteriorated and the increase of output variance is observed.

In comparison with the closed-loop system performance resulting from the ST-

MV-TIMO strategy (recall that ol: 1.1 for the ST-MV-TIMO scheme), fig. 6.2g

shows a significant increase of the minimized variance resulting from the ST-MV-

TISO scheme.

TYacking problem.

Let us now consider the tracking problem. The refererce sequence was a square

wave lying between t1 and with period 100 samples. The noise variance was set to

o2 :0.0L. The estimators were initialized with P(-1) : 100/, the initiai parameter

o
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Figure 6.29: The controlled output variance vs. bound c, for the ST-MV-TISO strat-

egy based on the restricted complexity predictor (regulation): a(t) : 1 (symbol ,,x"),

0.998 ("o"), 0.996 ("*"), and 0.994 ("+").

estimates were set to zero except for po(O): p"o1O;: f.

The choice of the initial values of the parameters of the CNM technique of the

ST-MV-TIMO strategy \Ã¡as X(-1) : 10-8 and Cr: 1010 (trace of the covariance

matrix was used in the test in eqn. E.7, Appendix E). No forgetting was used, i.e.,

a(t) : 1. The control signal magnitude was limited to lu(t)l < 10. The sequences of

the control input u(t), the controlled output y(t): yr(f) and reference r(ú), and the

second feedback output y2(t) arc shown in fig. 6.30. The va¡iance'of the tracking error

(see eqn. 6.67 for ll : 500) was o!, : 1.77 I0-2. The estimates of the parameters

given by eqns. 6.76 and 6.77 are depicted in fig. 6.81.

For the purpose of comparison the (suboptimal) ST-MV-TISO strategy [9, p. abg]

was simulated with the bound on the estimate of coefficient co of the polynomial

c¡("-t) set to c, : 0.95. In order to improve the convergence rate, the forgetting

factor was set to a(ú) : 0.99. The control signal magnitude was limited to lz(t)l < 1b.

The sequences of the control input z(t), the controlled output y(ú) and reference

r(f ) are shown in fig. 6.32. The variance of ihe tracking error lyr/as 03, : 2.TB I0-2 , i.e.,

greater than for the ST-MV-TIMO scheme (the difference in performance is actuaiiy

cr
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Figure 6.30: The sequences of the control input z(/), controlled output y(ú) : Ar(t)

and reference 
"(ú), and the second feedback output yz(t) resulting from the

ST-MV-TIMO strategy with ".("-t) having roots on the unit circle (tracking).

visible in output sequences, see figs. 6.30 and 6.32).

The polynomials o¿",(p) and þ",(p), which are estimated in the ST-MV-TISO

scheme, are of the form L3 a,,(p): [a,o a"tf Pt, and þ".(p) : lþ"o B"r]P1. The
13For the system with known parameters and for the given approximating polynomial c¿(p), poly-
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Figure 6.31: The paaameter estimates and their true values for the ST-MV-TIMO

strategy wilh c,(z-r) having roots on the unit circle (tracking).
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Figure 6.32: The sequences of the control input z(ú), controlled output y(ú) and

reference r(f) resulting from the ST-MV-TISO strategy based on the restricted com-

plexity predictor applied to a system with c.(z-l) having roots on the unit circle

(tracking).
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Figure 6.33: The parameter estimates for the ST-MV-TISO strategy based on the

restricted complexity predictor applied to a system with c,(z-l) having roots on the

unit circle (tracking).

estimates of. a"-(p), þ".(p), and c¿(p) are shown in fig. 6.88. Note that the estimate

âo approaches its bound c, : 0.95, thus approximating the true noise polynomial with

double root at z: -t by the first order (stable) polynomial with root at z: _,0.g5.

The performance of both self-tuning controllers can be compared using the cu-

mulative loss functions (see eqn. 6.69) depicted in fig. 6.34.

Finally, in order to compare the performance of the ST-MV-TIMO and ST-MV-

TISO strategies under various conditions, the simulation runs were repeated for the

input noise variance ø2 :0.0001; 0.0025; 0.01; 0.04; 0.0g; and 0.16. In the case of the

ST-MV-TISO strategy the forgetting factor was set to a(t) : 1; O.ggb; and 0.g9 for

each value of o2. For the ST-MV-TIMO strategy the forgetting factor was a(ú) : 1.

The results are shown in fig. 6.35, where the tracking error variance is depicted versus

the input noise variance ø2 with the forgetting factor as a parameter. It can be seen

that the ST-MV-TIMO scheme outperformed the ST-MV-TISO strategy regardless

of the noise variance and forgetting factor used to improve the convergence rate of

nomials o",(p) and B"(p) which define the MV controller of [9, Theorem 10.3.3, p. a16] for systems

with the noise polynomial having roots on the unit circle, result from eqns. 3.138 and 3.13g (p. 108)

with ca(p) substituted for c.(p).
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the latter scheme.

Let us nou¡ suûr.marize the results of the above simulatiòn studies in which the

noise polynomial has roots on the unit circle:

- the parameter estimates of the ST-MV-TIMO stratery converged to parameters

of the optimal control law;

- the ST-MV-TISO strategy based on the restricted complexity predictor leads to

a suboptimal control law, with possibility that the performance in comparison

with the ST-MV-TIMO scheme is significantly inferior.

6.3 Concluding remarks.

In this chapter the minimum prediction error, self-tuning control of deterministic

and stochastic systems having the feedback configuration FD is considered. The

predictors employed in the deveiopment of controllers were introduced in sections 3.2

and 3.3.

It is assumed that the system has one control input, and one output which is

to be contlolled. For a systerrr subject to the stochastic disturbance, it is assumed

that there is one white noise system input. If the only output which is available

for feedback is the controlled output, then the system is said to have the feedback

configuration FI. Such an approach has been commonly considered for the develop-

ment of self-tuning controllers. We assume, however, that there are some additional

system outputs available for feedback. The controlled output may or may not be

used for feedback. Such a system is said to have the feedback configuration FD. For

deterministic systems at least one output is required for feedback, and for stochastic

systems more than one output is required for feedback.

The concept of a system having the feedback configuration FD was introduced in

this thesis for the purpose of modeling systems with some additional output variables

available for feedback.

The new minimum prediction error controller is deveioped for determinislic sys-

265



tems having the feedback configuration FD. Such a controller is likely to involve /ess

coefficients and to be of. d,egree smaller than the corresponding controller (i.e., the

controller minimizing the same cost function) for the same system having the feed-

back configuration FI. Both features of the minimum prediction error controller for

case FD are desirable in its application to self-tuning control. In such an application,

faster conaergence rate of parameter estimates can be expected for case FD than

for FI due to the reduction in the number of estimated coefficients of the control

law. Furthermore, rnore recent input-oulput data is involved in an estimator due to a

shorter memory of the controller for case FD. The latter feature is especially desirable

in seif-tuning control of time-varying systems.

Two self-tuning strategies based on the minimum prediction error control law for

deterministic systems are considered. The first strategy (ST-MPE-SIMO) involves

some operations on the estimated parameters in order to determine parameters of the

control law; the performance of this strategy is assessed by simulation studies. The

second strategy (ST-MPDL-SIMO) estimates parameters of the control law directly;

global convergence of this strategy is proved. No persistent excitation condition is

needed for the global convergence of the self tuner.

Simulation studies performed for the ST-MPE-SIMO strategy demonstrate an

irnproaement in the conuergence rate of the self tuner for case FD in comparison with

case FI in the application to a robot manipulator.

For systems having the feedback configuration FD is possible to separate the con-

trolled and feedback variables. Simulation studies show that if the measurement of

the controlled output is contaminated with white noise, then such a separation im-

proves significantly performance of the selÊtuning closed-loop system in comparison

with that of case FI.

The new weighted minimum variance controller is developed for stoch,astic sys-

tems having the feedback configuration FD. It is shown that the noise polynomial

".("-t) is not a factor of the ciosed-loop system characteristic polynomial in case

FD, although it is in case FI. The variance of the tracking errors resulting from the

weighted minimum variance control law within the feedback configuration FD and
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FI is identical. However, for case FD it is possible to achieve the weighted minimum

variarrce control without feedback from the controlled output. In the nonadaptive

case this implies that the measurement of the controlled output is not required for

the implementation of the weighted minimum variance control law.

The minimum variance self-tuning strategy developed for stochastic systems hav-

ing the feedback configuration FD employs the linear regression estimator (the re-

cursive least squares with condition number monitoring). On the other hand, seif-

tuning controllers introduced for systems having the feedback configuration FI involve

pseud,o-Iinear regressior¿ estimators. A significant improaement in the conaergence

rate of parameter estimates of the self-tuning strategy can be expected for case FD

in comparison with case FI as a consequence of using the linear regression estimator.

Moreover, the use of the linear regression method enhances the numerical robustness

of the estimator.

Furthermore, some system assumptions concerning the noise polynomial c.(z-r)

are modified for case FD in comparison with case FI. Firstly, the roots of. c.(z-L) are

allowed to üe on the unit circle. On the other hand, self tuners for case FI require the

roots of the noise polynomial to lie strictly inside the unit circlq otherwise, suboptirnal

or time-uarying controllers must be considered for application in self-tuning control.

Secondly, it is known that the convergence of self-tuning controllers for case FI was

established subject to the strictly positiae reøl (SPR) condition imposed on a transfer

function involving the noise polynomial c,(z-l). There are only a few methods of

side-stepping the SPR condition. These methods are computationally involved, often

require dither injection into the closed-loop system, or require estimator overparame-

terization. On the other hand, the global convergence of the self-tuning controiler for

case FD d,oes nol require any SPR condition. Hence, the SPR condition is overcome

by utilization of additional outputs for feedback. Furthermore, the complexity of the

strategy for case FD is comparable with that of the strategies for case FI which are

subject to the SPR condition. It is assumed, however, for the strategy developed

for case FD that the open-loop system is stable. Furthermore, in the present work

it is assumed that the system is controllable. (Consequently,, the roots of the noise
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polynomial lying on the unit circle cannot arise due to the system uncontrollable

modes lying on the unit circle, as they do for the system ARMAX model [9, chapter

71.)

The remoual of the SPR conilition is regarded as the most significant feature of

ihe self-tuning controller for systems having the feedback configuration FD, apart

of the replacernent of the pseuilo-line&r regre$ion estimator by the linear regression

estimator.

Simulation studies demonstrate the improvements in the performance of the self-

tuning strategy for case FD in comparison with the strategies for case FI (convergence

rate, numerical robustness, optimality, strictly positive real condition, roots of the

noise polynomial on the unit circle). Furthermore, some insight in given into the

properties of the condition number monitoring (CNM) technique employed in the

strategy for case FD to guarantee boundedness of the condition number of the esti-

mator cova¡iance matrix. In particular, it is demonstrated that the performance of

the self-tuning strategy (i.e., the minimization of the tracking error variance) is not

affected by the monitoring if appropriate initial values of parameters of the CNM are

chosen. On the other hand, the CNM technique effectively eliminates the undesir-

able drifts of parameter estimates observed after the initial estimation phase when

the monitoring is not empioyed.

The global conaergence of the strategy developed for stochastic systems having

the feedback configuration FD is established using the martingale approach. No

persistent excitation condition is needed for the global convergence of the self tuner.
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Chapter 7

Conclusions and suggestions for

future research.

In this thesis two approaches to self-tuning predictive control have been considered.

The approaches are classified in terms of the feedback configuration of. the system.

The first and conventional approach assumes that only the outputs which are to,be

controlled are available for feedback (feedback configuration FI). The second approach

assumes that apart of the controlled outputs there are some other system outputs

which are available for feedback (feedback configuration FD); the controlled output

may or may not be used as a feedback variable.

Self-tuning control of systems having the feedback conffguration FI.

Two approaches to self-tuning control of multi-input, multi-output, square deter-

ministic systems having the feedback configuration FI have been considered in this

thesis. The first approach is based on minimizatiorr of the single-stage cost function

and leads to the minimurn predíction error control law. For this approach a sub-

stantial red,uction of the prior sEstern lcnowled,ge required by the self tuner has been

achieved in comparison with other self-tuning controllers. The second approach is

based on minimization of the multi-stage cost function and leads to the long-range

predictiue control law.

Design of the above-mentioned controllers involves a characterization of the sys-
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tem delay structure. Unique left and right interactor matrices [33,35] were commonly

employed as such characterizations for the development of self-tuning controllers.

However, an assessment of (i) the requirements of an admissible control law, and (ii)

the properties of the interactor matrices, led the author to develop new characteriza-

tions of the mulliaariable linear system delay structure called the left anil right nilpo-

tent interactor matrices (see subsections 2.3.2 and 2.3.3). The nilpotent interactor

matrices a,;re nonunique, haue a general, square rather than lriangular structure, and,

posse$ properties essential for the design of minimum prediction error controllers.

The nilpotent interactor matrix is evaluated as a product of first degree polynomial

malrices. A, new algorithm proposed in subsection2.3.2 calculates the left nilpotent

interactor matrix from the numerator polynomial matrix of the right matrix fraction

system description (or of the right difference operator representation). For the pur-

pose of comparison, the unique left interactor matrix can be calculated either from

the matrfu of rational functions [33] or from the two polynomial matrices, A(p) and

B(p), of the system DARMA model [39] (in the latter case, diuisionof. polynomial

matrices is required). Another advantage of the algorithm is that it operates on the

nurnerical representation of. the numerator polynomial matrix in the form of a matrix

of coefficients. Hence, the algorithm operates on a real matrir; however, it requires

decomposition (such as QR, SVD, or LDU) of real matrices of dimension of the sys-

tem transfer matrix. Since the algorithm operates on the numerical representation of

polynomial matrices it is amenable to computer-based calculations and can be easily

implemented with any møtria-oriented software (see Appendix D). Furthermore, the

algorithm can also be used for the calculation of ihe right nllpotent interactor ma-

trix from the polynomial matrix B(p) of the system DAnMA model; this involves,

however, additional transpositions of polynomial matrices as described in subsection

2.3.4.

The algorithms of the same type as the algorithm for the calculation of the

left nilpotent interactor matrix u/ere subsequently employed for other computational

problems in linear systems theory in [81]. The latter results were adopted in the

present work to introduce a d,ual algorithm for the calculation of the right nilpotent
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interactor matrix from the polynomial matrix B(p) of. the DARMA model; this ob-

viates the necessity of additional transpositions of polynomial matrices required if
the algorithm for the left nilpotent interactor is used to calculate the right nilpotent

interactor matrix (see subsection 2.3.3).

In this thesis, nilpotent interactor matrices have been employed in the design

of controllers for multivariable square deterministic systems. However, nilpotent

interactor matrices, and algorithms developed for their calculation, could be used in

self-tuning control of. nonsquare systems with the on-line evaluation of the interactor

matrix. This is facilitated by the stability of nilpotent interactor matrices which

is guaranteed by the proposed algorithms for nonsquare as well as square systems.

The nonuniqueness of nilpotent interactor matrices might also provi de a d,egree of

freedom in terms of minimization of the variances of individual outputs in the design

of controllers for stochastic systems for which interactor matrices are nondiagonal.

The right nilpotent interactor m,atrin has been employed in the design of the min-

imum prediction error controller using the approach proposed for the (unique) right

interactor matrix in [35] (see section 4.1). The advantage of the proposed minimum

prediction error controller in comparison with that of [35] is the elimination of the

effect of a deterministic disturbance, the generator model of which is incorporated in

the system DARMA model.

A new indirect self-tuning controller based on the above minimum prediction

error control law has been developed (see section 4.2). This self tuner involves the

on-line calculation of the right nilpotent interactor matrix from the estimates of

the DARMA model using the algorithm presented in subsection 2.3.3. The on-line

calculation of the interactor matrix increases the computational burden in comparison

with strategies based on the assumption of prior knowledge of the interactor mat¡ix.

However, the prior system knowledge required by this self tuner is reduced to the

'úpper bounil on the d,egree of polynomial matrices of the DARMA mod,el. This is

a uery signif'canl relaxation of the prior system knowledge required in self-tuning

predictive control, since no knowledge of the interactor matrix is needed. The prior

system knowledge is also relaxed in comparison with the indirect pole-placement self-
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tuning controller of [39], which involves estimation of the same number of parameters

as the new self tuner; for îhe pole-placement self tuner prior knowledge of the system

observability indexes and a.rr upper bound on the controllability index is required

[3e].

Another (and the only one known to the author) self-tuning minimum prediction

error strategr which requires the same (minimal) prior system knowledge $¡as pro-

posed in [39]. The first difference between the strategies is related to the minimized

cost function. The cost function of [39] penalizes the tracking error between the con-

trolled outputs and the reference sequence filtered by the (left) interactor matrix. On

the other hand, the cost function associated with the new strategy penalizes the ac-

tual tracking error; furthermore, it penalizes the control signal filtered by the inverse

of the (right) interactor matrix. One would need to examine which cost function is

more meaningful for a particular application. For example, if future values of the

reference sequence are unknown then, for systems with nondiagonal interactor ma-

trices, undesirable transient behaviour of the controlled outputs can be observed for

the self tuner of [39]. On the other hand, for the new strategy only delay in tracking

is observed if zero control weighting is assumed. The second difference between the

strategies is related to the operations performed on polynomial matrices in order to

synthesize the control law. The new strategy involves multiplication of. polynomial

matrices in contrast to the self tuner of [39] which requires two d,iuisions of. poly-

nomial matrices to be performed at each sample instant (one division is needed to

calculate the interactor matrix).

Note that as a result of employing in the new self-tuning controller a predictive

control law, which is robust to model overparameterization, (i) the upper bound, rather

than the exact value of the degree of polynomial matrices in the DARMA model is

required, (ii) the effect of. a deterministic ilisturbance (the generator model of which

is incorporated in the system DARMA model) is eliminated. On the other hand,

recall that the pole placement self tuners are sensitive to common factors resulting

from the model overparameterization; furthermore, it is assumed that the open-loop

system is controllable which implies that some ad hoc methods for elimination of the
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effect of deterministic disturbances must be employed [182,43].

Simulation studies demonstrate the applicability of the self tuner based on the

right nilpotent interactor matrix to robot control (see section a.3). However, it would

be desirable to investigate (i) the robustness of this strategy when estimation is

performed in a noisy environment, and (ii) the ability of the strategy to follow changes

in the system delay structure.

The left interactor matrix (in particular the nilpotent interactor matrix) has been

employed in the development of the new ir.dftect self-tuning, long-range predictive,

receding horizon controller (see section 5.1). The cost function, postulated for the

development of the long-range predictive controller, involves the tracking error filtered

by the interactor matrix.

The new long-range predictive control law generalizes the Dynamic Matrix Con-

trol scheme [30] and the Generalized Predictive Control strategy. The latter strategy

was introduced in [29] for scalar systems as an extension to the Dynamic Matrix

Controller and forms the basis for the long-range predictive controller developed in

this thesis for multiuariable systems. Furthermore, in relation to the Dynamic Ma-

trix Controller, the new long-range predictive controller (i) is applicable to open-loop

unstable systems, (ii) is applicable to systems with a general delay.structure (char-

acterized by the interactor matrix), (iii) has been developed for the system model

involving smaller number of parameters which improves the conuergence rate of esti-

mates in self-tuning control, (iv) eli,minates the effect of a deterministic disturbance,

the generator model of which is incorporated in the system DARMA model.

The long-range predictive strategy has, in particular, two time-orienúed tuning

knobs: the pred,iction horizon P and the control horizon C. The tuning knobs P

and C facilitate control of. nonminirnum phase and,/or unstable systems. Moreover,

the choice of their values is straight-forward in self-tuning control applications. The

control weighting matrix A may be used to decrease the excessive control effort. Fur-

thermore, this is its main role, in contrast to the minimum prediction error controllers

for which the appropriate choice of. lt l0 may be crucial to guarantee closed-loop

system stability for nonminimum phase systems.

273



The strategy relies on prediction of system outputs (filtered by the interactor

matrix) over the prediction horizon P. It is assumed that there are no changes in the

control signal beyond the control horizon C. The choice C : P and Â : 0 results in

the minimum prediction error (or one-step-ahead) control law which is sensitive to

nonminimum phase systems. The stabilizing effect for nonminimum phase systems

is achieved by setting C < P, which prevents the growth of the control signal, even

if A : 0 (since an infinite penalty is placed on changes of the control signal beyond

the control horizon). Furthermore, the choice of. C < P reduces the computational

burden.

It has been found in the simulation studies that P should be chosen such that

(k + P)T" (where k is the degree of the interactor matrix and f is the sampling

interval) covers a significant part of the open-loop system step response. Further-

more, the choice of. C :0 leads to satisfactory performance for many systems, even

nonminimum phase and unstable systems such as the robot manipulator considered

in simulation studies. In general, the greater the difference P -C is the more slugg.ish

is the output response and the less control effort is involved; furthermore, for systems

with nondiagonal interactor matrices the undesirable effect of unknown future values

of the reference sequence becomes less significant. A larger value of C permits more

changes in the control signal, which leads to faster output response.

The long-range predictive strategy is well-suited for prograrnrned control (i.e., if
future values of the reference sequence are known) since it introduces an anticipa-

tory control action which can improve the transient response of sluggish systems or

systems with large delay. It has been found in the simulation studies that for the

prograrnmed control the time required for the outputs to reach new steady-state

values, after a change in the reference sequence, is largely independent of P. Fur-

thermore, for systems with diagonai interactor matrices, programmed control reduces

the control effort markedly and without degradation of performance in comparison

with the fixed reference sequence model control (i.e., with unknown future values of

the reference sequence approximated by the present value).

The long-range predictive self tuner is robust to model overparameterization. Its
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drawback is, however, the requirement of the prior lcnouleilge of the left interactor

matrix.

New computational algorithms have been developed for the calculation of the

matrices of coeffi,cients of. polynomial matrices required to synthesize the long-range

predictive control law (see section 3.1). These algorithms can be viewed as closed

or contracúed forms of iterative algorithms which yield coeffi,cients of the polynomial

matrices rather than the matrices of coefficients. The new algorithms are amenable to

computer-based calculations using matrix-oriented software. In particular, a recursiue

algorithm has been developed for the calculation of matrices of coefficients of the

predictor polynomials for subsequent values of the prediction horizon; this reduces

the computational burden required to solve a polynomial equation for each value of

the prediction horizon.

Comparison of a number of properties of the long-range predictive and mini-

mum prediction error self-tuning controllers suggests that a combination of both

approaches (see approach (iv) on page 60) could be considered for the development

of a self-tuning stratery. These properties axe (a) the required prior system knowl-

edge, (b) cost functions penalizing outputs filtered by the left interactor matrix or

the control inputs filtered by the inverse of the right interactor matrix, (c) tuning

knobs and their effect on the closed-loop system performance, and (d) sensitivity of

the closed-loop system performance to the choice of the values of the tuning knobs

when applied to nonminimum phase and/or unstable systems. The resulting self-

tuning long-range predictive controller would involve the on-line calculation of the

right nilpotent interactor matrix from the estimates of the system DARMA model,

thus eliminating the requirement of its prior knowledge.

Self-tuning long-range predictive control for stochastic systems having the feed-

back configuration FI is considered in section 5.2. The long-range predictive control

law has been developed for systems modeled by the ARMAX model, using the ap-

proach proposed in [29] for the Generalized Predictive Control based on the CARIMA

model. The latter strategy was found in [29] to possess a number of properties de-

sirable in self-tuning control; however, no general closed,-loop system analysis has yet
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been presented. Such an analysis, involving llrre stability cri,terion, is presented in this

thesis for the long-range predictive control law. As a result, closed-loop system sta-

bility can now be verified easily for a system with known parameters. F\rrthermore,

the influence of the control weighting coefficient À and the two time-oriented tuning

knobs, P and C, on the closed-loop system pole locationcarL now be examined.

It was found in simulation studies that the time-oriented tuning knobs of the

long-range predictive control law facilitate control of dynamically complex systems.

Superior robustness properties were observed with respect to (i) variable delay in com-

parison with the generalized minimum variance self tuner, and (ii) with respect to

underparameterization in comparison with the pole-placement self tuner [150]. Fur-

thermore, the long-range predictive self tuner outperforms the Generalized Predictive

Controller in elimination of the efiect of stochastic disturbances which are adequately

represented by the ARMAX model. (In [9a] the ARMAX model 'vr/as reported to be

more suitable than CARIMA for self-tuning control of robot manipulators.)

Self-tuning control of systems having the feedback conffguration FD.

The second approach to self-tuning control concerns systems having the feedback

configuration FD (see chapter 6).

It is assumed that the system has one control input, and one output which is to be

controlled. There are, however, some aililitional syslem outputs which can be utilized

for feedback. For a system subject to a stochastic disturbance it is assumed that there

is one white noise input. Hence, single-input, multi-output (SIMO) deterministic

systems, and two-input, multi-output (TIMO) stochastic systems are considered.

For the development of minimum prediction error controllers for the feedback con-

figuration FD, the SIMO-type predictorfor deterministic systems and the TIMO-type

optimal pred'iclor for stochastic systems have been introduced (see sections 3.2 and

3.3). These new predictors utilize measurement of. aililitional system outputs. The

prediction error of the optimal TIMO-type prediction is the same as that of the cor-

responding optimal prediction for the same system within the feedback configuration

FI.
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Computational methods based on a numerical representation of Diophantine equa-

tions have been proposed for t};'e off-line calculation of predictor parameters for sys-

tems with known parameters. Such an approach translates the problem of solving

a polynomial equation into a problem of solving a set of linear algebraic equations.

Furthermore, the dimension of the set of linear algebraic equations is reduced by

separation into more than one set of equations.

For systems with unknown parameters, the adaptiae SIMO- and TIMO-type pre-

dictors have been introduced. The properties of adaptive predictors correspond to

those of the self-tuning minimum prediction error controllers discussed below.

New minimum prediction error control laws have been developed for deterministic

and stochastic systems having the feedback configuration FD.

The same control objective can be achieved for a system having the feedback

configuration FD and FI. However, the (physical) separationof. the controlled output

from the feedback outputs is possible for systems having the feedback configuration

FD. The separation implies, for instance, that the nonadaptive (weighted) minimum

variarrce control can be achieved uithout n'teasurernent of. the controlled output.

There are many advantages of utilization of additional system outputs for feedback

in self-tuning control.

For deterministic systems, the minimum prediction error controller developed for

the feedback configuration FD is likety to involve less parameters ar'd to be of d,egree

smaller than the controller aiming at the same control objective for case FI. Both

features of the control law for case FD are desirable in direct self-tuning control since

less parameters is to be estimated than in case FL Furthermote,, n"¿ore recent input-

output data is used for the estimation of controller parameters. As a result, faster

conuergence rate of parameter estimates has been observed in the simulation studies

for self tuners within the feedback configuration FD than for case FI.

For stochastic systems having the feedback configuration FI, the weighted min-

imum variance control law involves predictions of the controlled output filtered by

the noise polynomial, in contrast to the corresponding new controller for systems

having the feedback configuration FD. This difference implies a number of important
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features in self-tuning control.

Firstly, the linear regression estimator is used in case FD in place of the pseud,o-

linear regression estimators employed in self tuners for systems having the feedback

configuration FI. As a result, the conaergence rate of parameter estimates and the

numerical robustness of the estimator involved in the self tuner within the feedback

configuration FD are marlceilly superior to those of estimators in case FI.

Secondly, some system assumptions required by self-tuning controllers within the

feedback configuration FI are modified for case FD. Of particular benefit is the re-

moaal of the strictly positiue real conditioz involving the noise polynomial associated

with the controlled output. On the other hand, such a condition is required for con-

vergence of self-tuning controllers within the feedback configuration FI. The meth-

ods of overcoming the strictly positive real condition proposed for systems having

the feedback configuration FI involve significant computational burd,en, dither injec-

tion which leads to suboptimal performance unless some other precautions are taken,

estimator overparameterization which affects the conuergence rate of the parameter

estimates, or restrict control objective to regulation. On the other hand, utilization

of additional system outputs for feedback is a simple arld effectiue method of over-

coming the strictly positive real condition. Furthermore, in case FD the optimal and

time-inaariant control law is employed in self-tuning control of systems having the

roots of the noise polynomial lying on the unit circle. In case FI, for such systems

the time-invariant and suboptimal or optimal and tirne-uo,rying control laws must be

considered for application in self-tuning control.

However, it is assumed for case FD that the open-loop system is stable and

controllable; such assumptions are not required for self-tuning controllers for systems

having the feedback configuration FL

The global conuergence of the new self-tuning controllers for systems having the

feedback configuration FD has been established. The self tuner for case FD is the first
globally convergent strategy which employs the linear regression rather than pseudo-

linear regression estimator for self-tuning control (tracking problem) of stochastic

systems.
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In order to guarantee global convergence of the self-tuning strategy for stochastic

systems, the monitoring of the condition number of the estimate error covariance

matrix has been employed. The condition number monitoring technique l¡/as proposed

in [57] as a modification to the matrix gain, pseudo-linear regression estimator for

self-tuning control of stochastic systems having the feedback configuration FI. The

appiication of this technique to self-tuning control of systems having the feedback

configuration FD is even more feasible due to the enhancement of the convergence

rate by using the linear regression estimator. Nevertheless, other modified matrix

gain estimators, such as ihe weighted least squares method proposed in [56], could

also be adopted for case FD.

There is a number of ways of extending the results for self-tuning control of sys-

tems having the feedback configuration FD. Firstly, it would be desirable to develop

self-tuning strategies for systems subject to deterministic disturbances. Secondly,

self-tuning control of more than one output for systems having the feedback config-

uration FD could be considered. Since the number of estimated parameters grows

rapidly for control of more than one output, the reduction of the size of the parameter

estimation problem (or more generally an improvement in the convergence rate of

parameter estimates) becomes the critical issue for application of self-tuning control

[39]. The utilization of additional system outputs for feedback in self-tuning control

has been shown in the present work to provide a means for achieving the improve-

ment in the convergence rate of parameter estimates. Thirdly, self-tuning control of

stochastic systems having the feedback configuration FD with an arbitra¡y number

of independent noise sources (for example equal to the number of system outputs

rather than to the number of the controlled outputs) could be considered.

In the author's future research, the developments of chapter 6 will be applied in

the design of self-tuning power system stabilizers which utilize additional stabitizing

system variables.
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Appendix A

Forward- and backward-shift

operator.

Let us denote the forward, shift operator by q. Then

qx(t) dS r(¿ + 1), 0

where ø(ú) is the value of the sequence {"(¿)} 
di ø(0),"(1),... defined at discrete,

integer vaJues of time t e {0,1,. . .}. Furthermore, let Ls denote the baclcward, shift

(delay) operator by p, i.e.,

p : q-t. (4.1)

Then

p*(t) I ¿(¿ - 1), ú > o; pu(o) dS 
6.

The shift operator is defined for a semi-infinite sequence. (Sometimes it is defined

for doubly infinite sequences (i.e., ú e {. .. - 1,0, 1,. . .}) lTTl l5g, p. aTl.

Let us establish a ljnk between the shifi operator and the single-sided z-transform

of a sequence {r(ú)}, i.e.,

z {x(t)} 
ð! x e): Ë xe)z-t .

t=0

For this purpose let us consider z-transform of the shifted sequence {z(t + i)}

z {x(t + 1)} : z {q{"(t)}} : zx(z) - zx(O),

t
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where r(0) denotes the initial condition [183] [9, Appendix 4.2]. Thus, the z-

transform of the shifted sequence can be obtained by replacing the q-operator by

the complex variable e (with the appropriate change of time function r(t) to the

z-transform X(z) of ø(t)) if initiat conditions a;re zeto.

Although the z-transform is defined above for a semi-infinite time sequence, some-

times it is defined for doubly infinite sequences [77].
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Appendix B

Nurnerical representation of a

polynornial matrix and

multiplication of polynornial

matrices.

Let us explain certain aspects of the numerical representation of polynomial matrices

and multiplication of polynomial matrices as in [79, chapter 3]. Those results are

often used throughout the thesis.

Let us consider the following / x rn polynomial matrix e(ø)

Q@):Qo-fQp +"'+ Q"r".

The polynomial matrix Q@) can be expressed as a product of a numerical block

matrix Q containing only coefficients of polynomial elements of Q@), and a matrix

of powers of the indeterminate r of Qþ), as follows

Q@) : Q(X" ø /-) (8.1)

where

Qt Q" (8.2)

(8.3)r
la"

[' :x

a

sx"
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arLd Im is the rn x rn identity matrix, I denotes the Kronecker product, and / denotes

transposition. The / x (s -17)m matrix Q is called t}'e matrh of coefficienfs of the

polynomial matrix Q@), in contrast to the Ixrn coefficient rnatrir Q; Q - 0, . . . , s) of

the polynomial matrix Q(c). If r: z-r or r:p (p is the backward shift operator),

then vector B.3 is denoted Z" or P,.

It is said that the degree of a polynomial matrix Q(ø) is s, i.e., s : deg Q@), if s

is the highest pov¡er of the polynomial indeterminate for which the coefficient matrix

rs nonzero.

Let us now define the following r x c matrix

Ri 0rx; f, 0rx("-"-i)
def,c (8.4)

(8.5)

containing ones along the (i+1)-th diagonal and zeros elsewhere (" 2 ,,0 < i < c-r).
Let us consider the numerical representation of. a rn x n polynomial matrix D(x) of

degree t by the matrix of coefficients D : lDo...Di. Then the resultant (D)" of

ord,er s of the polynomial matrix D(z) is defined as a parallelogram block-matrix of

polynomial coefficient matrices

(D), E

D(R!o+r'"+t+t g /,,)

D(R!r+r'"+t+t 6I,,)

D(Rt+t'"+t+l g /,)

DsDt0 0

ODoDt0

0ODoDt

having the dimension (s t L)m x (" + t * I)n.

Finally, the multiplication of polynomial matrices can be represented by an equiv-

alent operation on numerical block-matrices. Consider the / x rn polynomial matrix

Q@) of degree s and the rn x n polynomial matrix D(x) of degree ú. Then the

/ x (s + ú + l)n matrix of coefficients M - lMo...M,+rl of the product M(r) :

Q@)D(r) is given by

tt[ : Q(D)". (8.6)

283



Appendix C

An algorithrn for the calculation of

ant lpotent interactor rnatrix for

linear rnultivariable systerns.

The following paper concerns a new characterization of the delay structure of a

multivariable linear system. Such a cha¡acterization is called the (left) nilpotent

interactor matrix. An algorithm for the calculation of the (left) nilpotent interactor

matrix is presented. This paper appeared in the IEEE Transactions on Automatic

Control in March 1987. Subsection 2.3.2 provides a brief summary of the main results.

Furthermore, an example of the calculation of the (left) nilpotent interactor ma-

trix is presented. The example deals with details of the impiementation of the algo-

rithm in MATLAB (or MATRIX¡) software package, which are not covered in the

paper.

The macro XLNI, which is written in MATLAB commands and implements the al-

gorithm for calculation of the left nilpotent interactor matrix, is given in Appendix D.

a
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Exarnple of calculation of the left nilpotent interactor rnatrix using MAT-

LAB software package (continuation of Example 2.L).

This example highlights details of implementation of the algorithm for the evaluation

of the LNI matrix using MATLAB [110] (or MATRIX1 [113]) software package, which

were not covered in the original paper [109].

Consider system given by the transfer matrix 2.47, p.44. This transfer matrix can

be factored into the RMF description with monic denominator polynomial matrix,

as follows

Hu,,(z) : Ñ ç"¡o-t (r) : (2" N (z-t))(2" D(z-r))-t : N (z-t)D-, ("-r),

where

l/(z-1) :
I + 3z-t

L+z-r

I * 4z-r

I I2z-r
D(z-t) :

I * 4z-r *32-2

0

The numerator matrix can be expressed using eqn. B.1 (Appendix B) as

I/(r-t) : N(Zz 6 /r) : [^Io Nr Nr] (ZzØ Ir): 001134
0 01112

(Zz Ø Ir) .

(c.2)

In the example given in the preceding paper the column block-matrix represen-

tation was chosen to illustrate the operations involved in the algorithm rather than

to demonstrate the computer implementation of the algorithm. If the column block-

matrix representation is used, then the result of premultiplication by the matrix

UP Q) at step 3 of the algorithm is represented by shifting the rows of the column

block-matrix upwards.

In this example the row block-matrix representation of the numerator polynomial

matrix is chosen as more convenient for the implementation of the algorithm in

MATLAB commands (see Appendix B). In the implementation of the algorithm, the

rows of blocks of the row block-matrix (rather than rows of column block-matrix)

representation are shified upwards-left as a result of premultiþlication by the matrix

UPQ), according to the pattern depicted in fig. C.1.
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t/ ¡/t
Figure C.1: The shift pattern of the rows of matrices of coefficients at step 3 of the

algorithm.

The algorithm is implemented with the matrix orthogonal-triangular decomposi-

tion QR which, for a rn-row matrix X, produces an upper quasi-triangular matrix T

of frrll row rank and a unitary rn x rn matrix I [110], so that

v _ ^ I r l¿.:Ql l:QR, (C.3)

Lo*l
where 0¡ is a l, : (m - rankX)-row zero matrix. Step 1 of the i-th iteration of

the algorithm groups k; : rn - rank ¡{i-l) : Tn - r; zeto rows at the top of the

postmultipiier of the decomposition of ,,\fji-t) (see eqn. 12 in the paper [10g])

Ifo(;-r): (8f))-'h 
]

Thus it is necessary to reverse the order of columns of Q and rows of .R resulting

from QR factoriza,tion C.3 of y\/o(i-t) in the first step of the algorithm

x : ¡1'u-r) : (eJ^)(J;, R) : (ey\-, I t:'. I
L ¡r;g j

The unitaty n'¿ x rn matrix ,/-, which performs the desired permutations of columns

and rows of matrices Q and .R, is defined as

1

0

0

0

0 0

J^- (c.4)

0 0

010 0

and is sometimes called the standard ìnvoluntary permutation matrix [184, p. 377],

or the exchange matrix [119,185]. Multiptication of a matrix by the matrix J^ on

the right or left side reverses the order of the matrix columns or ro\ry's, respectively.
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Step 2 of the i-th iteration of the algorithm premultiplies ¡6" ¡/(r-t) Q-t) matrix

av Qf) : (QJ^)-r - J-rQ-r : J^Q', (,I- and Q arc unitary anð, Jl: J^).

Thus 8f) i, calculated as a transpose of Q resulting from decomposition of ,,\/o(i-r),

and reverse of the order of rows of Q'. The row block-matrix of coefficients of the

polynomial matrix p(i)1r-r¡ resulting from step 2, has the following form

ñ,): þ1',r1', rf,l : l,h fÄ fr|; (cb)

In step 3 of the i-th iteration of the algorithm matrix p(t)1r-r) of degree n is

premultiptied by a first degree matrix Ut\Q)

N(ùç,-t¡:uflq"¡fl¿)ç"-r¡: [nr1'ì Nlù ... AÍ,ù] ([, r .. "-"]'*r*) .

Note that 
^f1'ì 

: 0 because

Nll :[njcr y1;r¡ 

l 

rr," 

] 
: u*,,0 b)yu-,): 

I i: l;: ] l rh ] 
: 

I :;, I 
: o,

where 0', denotes ri-row zero matrix. The row block-matrix of the coefficients of

the polynomial matrix Nfùç"-r¡ resulting from step 3, has the following form (cf.

eqn. C.5)

Nç') -FÁ! ryot'r . . .N:,)l: I 
o'' Aro:}. At::} l. (c.6)

L oo, Nii) o*¡ j
The operation of multiplication of polynomial matrices is represented according

to eqn. 8.6 (Appendix B).

The algorithm is initialized *ith I/(o)( "-t): l/(r-t) and, Kf)Q; : fjo) - Iz.

Then

fr : 0, kt:2

step 1.

Since 11 : rank.Â,ro(o) : rank-f/e: 0 a d.ecomposition of À/6 yields ?:0 (see

eqn. C.3) and Qf) can be chosen identity. Then

ut)("):l; :] uL'):ruJ',u{',1 :l

1l-

1000
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step 2.

step 3.

step 2.

¡r'
þ1" 11" Ft"] : Qt)¡l<o) : :r¡f(o): [^h ¡rr ¡rz] ;

1)

^f(1) 
: t¡Á'J ¡fJtl rVr(l) ¡¡r(t)¡ : UL\ (F(t)), :

ruár)uÍr)r lT" fr:] fr,] "î,]: l:
0113400
0117200

xt) [r<{1) 7ç{tt1 : ut) @? NP),:

fuju v{tr1
eP r[o) 0

e? N[')0

1000
0100

Since the system transfer matrix Hu,,(z) is strictly proper, we have Àh : 0 in

eqn. C.2. Hence, this iteration can be omitted and the algorithm initialized with

ArØQ-L) : ut)Q)w("-') represenred by [tr/o(') Ntrt y;rt1, and. NPe) - "Iz.

i:22 rz: I, Icz: t,

step 1.

Q:

p(z)

-0.7071

-0.7071

-0.7077

0.7071

-r.4142
0

-L.4142

0

þT' rl', r!',1 : qe) v(r) :

R

Qf) : JrQ' :

0

-1.4742

-0.7071

-0.7077

0.7071

-0.7071

Uf) : ¡r¡Ø s{2)1 : 0001
1000

0

-1..4142

-r.4142

-2.8284

-1.4142 0 0

-4.2426 0 0
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step 3.

NQ)

i:3: rs : 1, fr¡ : 1,

step 1.

: l¡l!'l ttr/;'¡ Nl'zt Y[zt1: uy) (F(')), :
: v['z) uÍ'z)l | 

tr' f," Ñ? o 
I-u 'L o ff) FÍ') r!" 
.J

I o o -1.4t42 -r.4142 o

-4.2426 0 0

000

KQ) g[2) 7ç1zt x[2)1: uP @? NP), :
q? KtÐ

¡u['t ¡¡¡zt,
r<{tl o

r<i'r efi t<l')

a

a

(2)
L

(2)
L

0

-0.7071

0

0

0.707r

-0.707r
0

-0.7077 0 0

000

Ra -0.7071

-0.7071

Qf) : J"Q' :

-0.7077

0.7071

22
00

-0.7071

-0.7077

0.7077

-0.7071

Uf) : ¡U(3) y{3)1 : 0001
1000

step 2.

step 3.

7r('): þT'rl"Fx''] : qf)¡r{z\ - 002300
222300

^f(3)
[¡Á? ¡ro('r Arl3t y[zt1 : uf)(F(')¡, :

[uj3r y1srl I 
o['' tÍ'' F!') o I

I o 43) r|" r,"l
00222300
0 0 23 0 0 0 0
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K@) [Ifj3) 6{s) /rj3) 6js)1 : uf) qqf) x{z)¡, :

lnj3) y1sr1 | 
ofi rc[Ð QP t<Í't qf) xlÐ o I

I o eP t<[') e? NÍ4 qf, KP ]
0 0 0.5 -0.5 0.5 0.5 0 0

-0.5 0.5 0.5 0.5 0 0 0 0

i:42 rs: 2 which terminates the algorithm and the left nilpotent interactor matrix

IS

Kt("): Xf)Q): 0.522 * 0.52

-0.523 i 0.522

-0.522 * 0.52

0.523 * 0.522
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Appendix D

Self-tuning control software for

sirnulation studies.

Simulation studies, presented in chapter 4 and in section 5.1, have been carried out

by means of matrix-oriented software packages MATLAB [110] and MATRIX¡ [113].

Some of the macros developed for the purpose of simulation studies are described

below.

MATLAB/ MATRIX¡ macros.

Globai va¡iables:

a - matrix A: lI^ A1 . . . Anl, (see eqn. 3.2, p. 59);

b - matrix B : lB, . . . Bn], (see eqn. 3.3, p. 59);

c - control hotizon C;

cov - covariance matrix P(t) of the simplified multivariable RLS estimator;

ea - estimate of matrix A, ea: lI^ Ar(t) . . . Â"U)];

eb - estimate of matrix 8,, eb: [É1(ú) ... Ê^U)] (except for XLNI);

est - matrix of estimat"r 61t¡ of the simplified multivariable RLS estimator;

m - number of inputs and outputs of the MIMOS system;

n - degree of polynomial matrices in the DARMA model;

nk - degree of the interactor matrix;

nos - number of samples for the simulation;
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par - matrix consisting of estimates of A and B;

p - prediction horizon P;

res - matrix consisting of control inputs, outputs, and reference sequence values;

rper- 2 x rper is the period of the square lvave reference sequerlce;

umx - limit on the control signal amplitude;

up - ("*1)m x l vectorof past inputs up: [u(ú- 1)' . ..u(t-r-l)')';
v - (rk * 1)m x 1 vector of past auxiliary control signals 

"n(t);
vmx - limit on the auxiliary control signal amplitude;

yp -("*1)rnx l vectorof outputsyp: [y(ú)' ... y(t-r)']'.

Macros:

XAB - matrices Br, Bp, -4.p (eqns. 5.9 to 5.11 (p. 154), and Remark 3.2, p. 69);

input: m, o, êê, eb, p (p: P* 1),

aI,be (from XPRL),

output: aI (aI : Ap),

be (be :lBp(Jp¡r I /,") Bpl, Jp+, is given by eqn. C.4, p. 286);

XCON - constants for simulation of the ST-LRP controller,

input: m, trk, k, p, c,

output: yr (reference sequence vector .R given by eqn. 5.8, p. 154),

cjp (cjp : (Jp+tØ I^)T, where ..Ip..1 is given by eqn. C.  (p. 286)

and ? by eqn. 5.14, p. 155);

XDIM - constants for simulations,

input: â,b,

output: m,n,

cuy (cuy : .9 8I*, where ^S is the (n + 1) x (t + 1) matrix given

by eqn. 3.70, p. 81),

cv (cv : ,9I .I-, where ,9 is the (nk * 1) x (nk f 1) matrix given

by eqn. 3.70, p. 81);
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XINI - initialization of simulations,

input: mrnrnkrnos, eareb,

output: up,Ip,v, res, est,par, cov ;

XLNI - left nilpotent interactor matrix Kilq)for arn x rn strictly proper transfer

matrix Ho,u(z) (see Definition 2.3 (p. +3) and Theorem 1, Appendix C),

input: m,n,eb ("b - N: l¡fr...¡f"] is the matrix of coeffi.cients of the

numerator polynomial matrix of the RMF dcscription of. Hu,,Q)

: N(z-1)D-t(r-'), with monic denominator matrix D-l(r-')),
output: k (matrix of coefÊcents of the LNI matrix ¡ : [.I(s...I(¡]);

XLRP - control sequence Ur of the LRP controller, P ) 0, T : I^, S(p): I*
(see eqn. 5.15, p. 156),

input: m,n,up,yp,cjp,p,c (p - P * 1, c: C +I),
I (^: II,,),,

yr (from XCON),

â1, be (from XAB),

output: xb (xb : Ur);

XMPE - control signal u(ú) of the MPE-RNI controller, nf : f^, r\, : 0

(see eqns. 4.2 and 4.6, p. 720),

input: m,n,nk,Ip,v,cv,vmx,k (k from XRNI),

yr (rn x 1 vector of the reference sequence value 
"(¿)),

ã1, be (from XPRR),

outpul: xb (xb: 
"(¿));

XPRL - matrices o(o), B(o) (see eqns. 3.10, 3.11 (p. 62), and Remark 8.1, p. 65),

input: m,n,nk,ea,eb,k (k from XLNI),

output: aI,be (al : o(o), be : p@\'

XPRR - matrices 7, ó (see eqns. 3.47, 3.48 (p. 72), and Remark 3.3, p. 74),

input: m,n,nk,ea,xp (*p : B@ - t6Át) . .6f)] is the matrix of
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coefficient" o¡ 3Ø(z-1), see eqn. 2.66, p. 48),

output: al,be (aI :7, be : á);

XRLS - simplified multivariable RLS estimator with forgetting factor a(t): 0.95

(see eqns. E.18 to 8.22, p. 301),

input: ß, n ¡ tlp r fp r

cov,est (cov - P(t -2) or P(-1), est : ô(t - 1) or ô(O)),

output: cov,est (cov: P(t - 1), est : ô(t));

XRNI - right nilpotent interactor matrix .Ilp(q) for a m x rn strictly proper transfer

matrix (see Definition 2.4 (p. a5) a¡rd Theorem 2.1, p. 47),

input: m,n, eb,

output; k (matrix of coefficents of the RNI matrix ¡ : [.I(o. . . /{¡,]),

xp (xp : B$) : [6Át) . . .BPl is the matrix of coefficients of

6@e-r), see eqn. 2.66, p. 4g);

XSAT - limit on the control signal amplitude 
1

input: m,umx,xb (xb is either [/r from XLRP, or u(f) from XMPE or XWPE),

output; xu (u(t) suchthat l"(¿)lr < umx, for i:1,...,m);

XSATV - limit on the auxiliary control signal amplitude,

input: m, vmx , xb (xb : zr(f )),

output: xb (u¡(f) such that l"*(t)l¿ ( vmx, for i : 1,. ..,m);

XSIM - simulation of the system from the DARMA model,

input: m,n,cuy,up,lp,â,b,xb (xb - Ur or u(t)),

output: up,yp (updated vectors of inputs and outputs);

XSLR - simulation of the ST-LRP controller, P ) 0, T : I^, S(p) : 1- (fixed

reference sequence model for the square wave reference sequence),

input: a, b , nk , p , c , umx , ea, eb , nos , rper,

k (from XLNI),

1 (A: II*),
outpul: res,par;
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XSMP - simulation of the ST-MPE-RNI controller, T : I^, Â : 0 (fixed reference

sequence model for the square wave reference sequence),

input: a,b,unx,vmx,ea,eb,nos,rper,nk (Note: nk is required only to set

up the simulation),

output: res,par;

XI'IPE - control signal u(f) of the MPE-RNI controller, T : I,n, L + 0,

S(p): I^ - pI^ (see eqns. 4.2 a;nd 4.6, p. 120);

input: as for XMPE,

1(1 :^),

output; xb (xb: u(f));

XXMP - resultant of a polynomial matrix (macro developed in [79]),

input: xn,xd (*tt - [s,ú] and xd: D,.see eqn. E}.5, p. 283),

output: xd (xd: (D)", see eqn. B.b, p. 288);

XXRU - right-upward shift block matrix (macro developed in [79]),

input: xr (xr: [i,f])
output: xr (xr : 5'8 /r., where ,5 is the i x i matrix given by eqn. 3.20)

Macro algorithms.

XAB=' xd= [-ea( :,m+1 : (n+t) *¡) ; eye ( (n-1) xm) 0xones ( (n- 1) *m,m) ] ; . . .

xn=(diag(O*eye(p-1) ) ),, . * . eye(m) ; xp= [xn, eb] ; ¡s= [xn be] ; xb=al ; . . .

xn=be;xr=[n+p-1,mJ ;]XXRU[;xr=xrr, ; for x=1:p-1, . . .

¡çn=¡¡¡1{<¡ç¡*xb ( :, 1 : m) x:çp ; be= fbe ; xnJ ; xb=xb*xd ; al= [aI ; xbJ ;, ;

XC0N=' p=p*1 ; c=c+1 ; yr=diag(eye (p) ) . * . (k*diag(eye ( (nk+f ) *m) ) ) ; xp= . . .

eye(p) ;xp=xp(: ,p: -1: 1) ; cjp=xp( : ,c:p) *diag(eye(p-c+1) ) .*.eye(. . .

m);íf c)1,cjp=[xp(: ,1: (c-1)).*. eye(m) cjpJ ;' ;

XDIM=' n=size (b) ; m=n ( 1) ; n=n (2) / n(t) ;xr=síze(a) ; xr= [xr (2¡ / xr (I), . . .
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xr(1)l ;lXXnU[; cuy=xr" ;xr= [nk+1,rn] ;IXXRU[; cv=xr" ;' ;

//

XINf =' up=diag(O*eye ( (n+t ) *m) ) ; yp=up ! res= [O O*aiag(eye (g*m) ),, ] ; . . .

cov=10000*sy6(!*ni.¡n) ;est=[ea(:,m*1: (n+1)*¡) r r ;ebr,] ; . . .

par= [O*diag(eye (rn) ) est " ] ; nos=nos+l ; y=Q*diag (eye ( (nk+1) *m) ) ;, ;

//
XLNI=' *p=0 ;k=eye (m, 2xm) ; xj =eye (m) ; xj =xj ( :,m : -1 : 1) ; xr=rank (eb ( :, . . .

1:m));whiIe xr<m, [xd xn]=qr(eb(:,1:m));xd=xj*¡çdr r;k=xd*k; . . .

¡¡¿= [0*ones (xr,m) ; eye (2*¡-xr,n) ] ; *"= [xa( f : m, : ) xa(m+1 : 2*m, . . .

: ) I ; xd=xd*eb ; xn= [1, n-1] ; I XXMP [ ; eb=xa*xd ; eb=eb ( :, m+ 1 : m* (n+ 1 . . .

) ) ; xp=xp+1 ; xn= [1, xpJ ; xd=lç ; ] xx],tP [ ; k=xa*xd ; xr=ra:nk (eb ( :, 1 : m) ) ;, ;

//

XLRP='xa=be( :, 1 :p*m)*cjp ;xb=inv(xa,, *xa+eye(c*rn) *I) *. . .

xa" * (yr-be ( :,pi.¡+1 : (p+n-1) *m) *up ( 1 : (n-1) *n) -al*yp ( 1 : n*m) ) ;, ;

//

XMPE=' xb=inv(be ( :, 1 : m) ) * [yr-a1*yp (1 : n*m) -be ( :,m*1 : (n+nk) *m) * . . .

v(1 : (n+nk-1)*m)l ; lxstrv[ ;v=cv*v;v(1 :m)=xb ;xb=k*v;, ;

//

XPRL=r¡¡=[nk-1,n] ;xd=ea; ]XXMP [ ;xp=ntç*¡;be=k( :, 1 :xp) . . .

*inv (xd( :, 1 : xp) ) ; al=-be*xd( :, xp+1 : xp+n,r.¡) ; xn= [nk-1,n-1J ; . . .

xd=eb ; I XXMP [;be=be*xd( :,xp-m+1 : xp+(n-1)*m) ;, ;

//

XPRR=t¡n=[nk-1,n] ;xd=ea;]XXMP[;xa=inv(xd(: ,1:nkr.n) );xa=xa(1:m, : );aI. .

=-xa*xd ( :, nk*m+ 1 : (nk+n) *m) ; xn= [nk- 1, n] ; xd=xp ; ] xxMp [ ; be=xa*xd ;, ;

XRLS='xd= [-yp(m+1 : (n+t) xm) ;up(1:n*m)] ;xn=l+xd, , *cov*xd; est=est+. . .

cov*xd* (yp (f : m) r, -xd,, ¡.est) /xn ; cov= (cov-cov*xdxxd,, *cov/xn) . . .

/O.gS;ea=[eye(m) est(1:n*rrr :),,] ;eb=est(nxm+1 :2*n*m, :) t, ;, ;

XRNI=re=0;k=eye(m,2xm);jq=eye(m);jq=jq(:,m:-t:1);xp=[eb O*eye(m)];...
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xr=ra¡k(xp(:,1:rn)) ;while xr(m, [xd xn]=qr(xp(:, 1:m),, ) ; . . .

xa=xd* j q* [0*ones (m, xr) eye (m, 2*n-xr) ] ; xn= [n , 1] ; xd=xa; I XXMP [ ; . . .

xp=xp*xd;xp=xp( :,n+1 :n*(n+2) ) ; e=e+1 ;xn=[e, 1] ;xd=xa; . . .

lXXl,tp[;k=krtxd;xr=rank(xp( :, 1 :¡n) ) ;, ;

//

XSAT=' f or j =1 :m, if abs (xb(¡ ) ) >umx,xb (j ) =xb(j ) *umx/abs (xb (j ) ) ;, ;

//

XSATV=' for j =1 : m, if abs (xb (j ) ) >vmx,xb (j ) =xb (j ) *vmx/abs (xb (j ) ) ;, ;

//
XSIM='up=çuy*ìrp;up(1:n)=¡ç5(t:n);xp=-a(:,(n+1):(n+t)*m)xyp(1:nxm)...

+b*up(1 :n*n) ;yp=cuy*yp ;yp(1 :n)=xp;, ;

//

XSLR=' I XDIM [ ; ] XfUf [ ; ] XCOU [ ; v=ones ( t,¡n) ; for i=] : nos, I Xpnl [ ; ] Xlg t ; . . .

lxrnp[;]xslr[;*"=[i-t xu(1:rn),, yp(1:m),, v] ,. . .

res= [res ;xal ; ] XSfU[; ] XnfS [ ;par= [par; i*diag(eye(m) ) est,, ] ; . . . -

if round (i/rper) *rper=i , yr=-yr ; v=-v ; , ;

//
xsMp=,lxDrM[;]xrur[;yr=diag(eye(m));for i=1:nos,]xRNr[;xr=size(k);...

lç= [Q,r.ones (n, (nk+1 ) *m-xr(2) ) k] ; I xpRR [ ; ] xMpg [ ; ] xstr [ ; xa= ti-r . . .

xb" yp(1 :m) r' yr"l,res=[res;xa] ;lxsrM[;]XRLS [;par=lpar; . . .

i*diag(eye(m)) est,,l ; if round(i/rper)*rper=i,Tr=-yri, i

//
Xtr'lPE=' xb=inv(t+Ue ( :, 1 :m) r, *be( :, 1 :¡n) ) * [Ue( :, 1 :m) r r * (yr-a1* . . .

yp(1:n*m)-be(: ,m+1: (n+nk)*m)*v(L: (n+nk-1)*¡) )+Ixv(1:m)l ; . . .

I XSATV [ ; v=cv*v; v ( 1 : m) =xb ; xb=k*v ; , ;

XXMP= I *n= [xn, size (XD) ] ; x=xn (2) +1 ; xr= [xn ( L ) +x, roun (xn (a) /x) ] ; . . .

xB=[xD,o'r.ones(xn(s),xn(1)xxr(2) )] ;lxxnu[;xD=xB; . . .

for x=1 :xn(1),XB=XB,IXR;XD=[XD;XBJ ;, ;

XXRU='x=xr;XR=eye(x(1)+{);XR=XR(Z:x(1)+1,t:x(1));XR=XR.*.eye(x(2));,;
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Appendix E

Parameter estimation.

Recursive least squares estimator (RLS).

The recursive least-squares based estimator employed for adaptive prediction (sub-

section 3.2.2) and self-tuning control (subsection 6.1.2) is presented below.

Consider the regression model of a linear system x(t): O'ó(t - fr), where r(f) is

the system (scalar) output 1, O is a vector of (unknown) system parameters 2, and

Ó(t -,b) is the regression vector consisting of system inputs and outputs 3. Denote

the estimate of O Uy ô(t), and define the equation error as 4

e(t) : *(t) -ô(¿ - Ð'ó(t - k) (E.1)

The recursive least squares RLS estimator (with exponential data weighting) is given

by [9, chapters 3 and a] (for t > k)

o(r) ô1r-r)+ P(t-k-7 t-k)
t-k t), (E.2)a(t - 1) + d(¿ - k)'P(t - k - 7

P(t - k)

P(-1)

X 1",'-k-1)-
P(t - k - t)ó(t - k)ö(t - k), P(t- k - 1)

o(t - L) + ó(t - k),P(t - k - r)ö(t - k)
(8.3)

(E 4)eI; 0<e(oo,
lSee eqns.3.81 (p.86),3.140 (p. 112),6.1a (p. 20t),6.22 (p.208), and 6.58 (p.22g)
2See eqns. 3.82 (p. 86), 3.141 (p. 112), 6.15 (p. 201), 6.23 (p. 203), and 6.54 (p.22g)
sSee eqns. 3.83 (p. 86), 3.142 (p. 112), 6.16 (p. 201), 6.26 (p. 203), and 6.bb (p.229)
4See eqns. 3.85 (p. 86), 3.144 (p. 113), 6.18 (p. 201), 6.30 (p.204), and 6.bZ (p.22g)
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and ô(0) is the initial parameter estimate vector. The choice of the forgetting factor

(possibly time-varying) 0 < o(ú) S 1is discussed for instance in [146,17,747,748,73].

Recursive least squares estimator with condition number monitoring (RLS-

cNM).

The RLS based estimator with condition number monitoring empioyed for adaptive

prediction (subsection 3.3.4) and self-tuning control (subsection 6.2.2) is presented

below.

The parameter estimate update equation of the RLS-CNM estimator (with ex-

ponential data weighting) is given by eqn. E.2 with the equation error defined by

eqn. E.1. The following scheme, proposed in [57] [9, Remark 8.5.2, p. 333], is used

for the covariance matrix update

P^(t-k): ;o|Ð"
l^r _k _ 1) _ 

p(t - k - r)ó(t - k)ó(t - k),p(t - k - r)1," 
^,L-'-' o(t-1)+ ö(t -k)tp(t-k-t)ó(t-k) l\"'"/

xG-k) : x(t-ft -1)lL+ó(t-k),p(t_k _r)ó(t_k)1, (E.6)

P(t - k)
P,"(t - k) if. y(t - k) )*"*( P*(t - k)) S C"

*r--^#tt-ttt P*(t - k) otherwise

where the constants ¡(-1) ) 0, 0 1 C* ( €, and À,,'"*(P-(f)) denotes the maximum

eigenvalue of matrix P^(t). This algorithm is referred to as the RLS with condition

number monitoring because it ensures boundedness of the condition number of the

parameter estimate error covariance matrix P(ú) for all f [9, Remark 8.5.2, p. 333].

For the purpose of convergence analysis, the covariance matrix update given by

eqns. E.5 to 8.7 (with no forgetting) can be expressed as follows [57, Lemma 3.t (i)]

P(t -k) : ((r - r; frlt - k - L) - 
P(t k -1)Ó(!,=k)ö(t=- k):PU - f-- Ðl 

.,L-. . -/ r+ó(t_k)tp(t_k_r)ó(t_k) I'
(E.8)

p(t- k)-':c(¿- te¡-tleçt-k- r)-'+ ó(t-k)ó(t_ Ð,1, (E.e)

(E.7)

or
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where

(E.10)

or, for some z(f) such that 0 < z(t) < L

((¿-k): l*z t-k ó t-k)'P(t-k-r)ó(t-k)
(E.11)1+ó(t-k), t-k-1)ó(t-k)

Note that if C(¿ - k) :1 then the ordinary RLS estimator results; if, however, the

covariance matrix condition number becomes large, then the CNM scheme becomes

active and ((ú - k) < 1.

Recursive extended least squares (REI,S) estimator and recursive maxi-

murn likelihood (RMt) estirnator.

The estimation algorithm employed in the ST-MV-TISO-RELS and ST-MV-TISO-

RML strategies (see subsection 6.2.3), is a version of the Pseudo Linear Regression

algorithm [9, p. 319]. The parameter vector is defined as

O":lo"rþ".ct...cn)', (E.12)

where a", and 8". are vectors of coefficients of polynomials of the ,b-step-ahead TISO-

type predictor (see eqns. 3.137 to 3.139 (p. 108) for Ã;r: Ã;) and c¿ â,r€ coefÊcients of

the noise polynomial 
".(p) (eqn. 3.92, p. 93). The regression vector is defined as

ó"(t): [y(¿). ..a(t-n* 1) u(r) ...u(t-n* 1) -t(ú +k- 1) ... -tUik_n)],
(E.13)

where the ø priori output prediction f(t) is given by

î(t):6"(¿ - k)'ó"(t - k). (E.14)

Define e(t) : A(t) - f(f ). Then the parameter estimate and covariance matrix update

equations are given by (see 19, p. aaa] for D(t,p) : 1)

ô,(¿) : ô.(¿ - t) * "(r), (8.1b)

:

X

P(t - k)
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where the gradient vector r/(t) is calculated from

D(t,p)tþ(t) : d"(t). (E.12)

If. D(t,p) : 1, then the resulting algorithm is referred to as the RELS estimator 5; if

D(t,p):õ.(t,p), then the resulting algorithm is referred to as the RML estimator 6.

Simpliffed multivariable recursive least squares estimator.

The simplified multivariable reculsive least squares (RLS) estimator is used in sec-

tion 4.2 and subsection 5.1.2 for the estimation of parameters of the DARMA model

given by eqns. 3.1 to 3.3, p. 59.

Let us define the 2rnn x rn matrix of process parameters as

o A1 A, B1 Bn (8.18)

Tlne 2mn x 1 regression vector is defined as

ó(t): (E.1e)

The rn x 1 equation error is

e(t) : v(t) -O(ú - 1)/d(ú - 1), (E.20)

where O(f) is a matrix of parameter estimates of O. Then the simplified RLS esti-

mator (with exponential data weighting) is given by [9, p. 96]

ô(¿) : ô(¿-1¡¡ - - P\t-Ð!(!- ", o,(t - 1) + d(ú - Ð'P(t 
j¡6ç, - U"ft)" (E'21)

1 P(t - 2)ó(t - 1)ó(t - 7)' P(t - 2)
a(ú - 1)

P(t-2)-
d(t - 1) + d(t - 7),P(t - 2)ö(t - t)

(8.22)

with the 2mn x rn initial parameter estimate matrix O(0), the initial covariance

matrix P(-1) : €f2^n, (. > 0), and the forgetting factor 0 < a(t) < 1.

sThe RELS method is also known under the following names: Panuska's method, extended ma-

trix method, and RMLI [177]. Furthermore, if a posteriorl output predictions replace the a pnori

predictions in the regression vector, the method is called AML [133] .

6The RML method is also called the RML2 [175]. An interesting variant of the RML method rvith

a posteriori prediction errors in the regression vector and the filter D(f,p) modified to improve the

convergence rate was proposed in [186].

P(¿ - 1)
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Appendix F

Convergence proofs of the

self-tuning minimurn prediction

error controllers for systems

having the feedback configuration

FD.

F.1- Proof of LemrÍaa_ 6.2.

Comment F.1 The proof of Lemma 6.2 (p. 205)is based ontlte method,ology intro-

duced, in [32,3/¡] [9, Th,eorern 6.3.2, p. 197] to proae global conuergence of the MPE

self tuners for systems h,aaing the feedbaclc configuration FI.

In the proof we shall malce use of the so-co,lledKey Technical Lemma (KTL) [32,

Lernrna 3.11 [9, Lemma 6.2.1, p. 151]. In order to apply the KTL one needs to ueri.fy

its assumptions. This is done as follows.

Condition (1) ([32, eqn. 3.1] [9, eqn. 6.2.1, p. t8t]). The analysis presented in the

proof of [9, Theorem 6.3.2, p. 197] applies rnutalis mutand,is wiLH

, .' def
t (t) ": y(t) + 

^ú(t 
- k) - r(t). (F.1)
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Condition (1) of the KTL is satisfied with s(f) : p(t),, h(¿) : 7, br(t) :
)-"*(P(-1)), where À''"*(P(-1)) is the maximum eigenvalue of the initial co-

variance matrix P(-1), and a(t) : ó(t - k).

Condition (2): the uniforrn boundedness ([32, eqn. 3.2] [9, eqn.6.2.2, p. 181]).

This condition is satisfied since

0<h(ú) 1Ct1oo and 0<b2(t)1C2 1æ

forallt>7.

Condition (3): linear boundedness ([32, eqn. 3.3] [9, eqn. 6.2.3, p. 181]). Mul-

tiplying both sides of eqn. F.1 by t(p)d(p) one has

t(p)d(p)v(r) + Id(p)t(ùú(t - fr) : t(p)d(p) [p(¿) + 
"(¿)] 

.

Substituting from eqn. 3.61 (p. 79) for y(l) and from eqn. 6.2 (p. 197) for

t(e)út(t) into the above equation one has

t(fld(flN(p)*n(t) +\d(fls(p)"(t - k) : t(p)d(p)lp(t) + r(t)l

Using eqns. 3.61 and 6.11 (p. 198) one has

u(p)u(t) : p-kt(yt)d(p) [p(t) + r(t)] .

Similarly, starting with multiplication of eqn. F.1 by ¿(p)¡r(p) one can show

that

-@)a(t): p-kt(p)N(p)Ít @ + r(ú)l ;

and starting with multiplication by ¿(p)¡/r(p) one has

-(p)ye(t): p-kt(p)Np(Ðlt"(t) + r(r)l .

It follows from Assumptions 3.5 (p. 79), 6.1 (i") (p. 200), and [9, Lemma 8.8.3,

p. a86] that there exist finite nonnegative constants rrtul¡ ffiu2¡ myrt my2t ffiyp7,

and myoz independent of .fy' such that for all 1 < ¡tr < ¿

z(lr - ,b) <

y(¡ú) <

vp(N - k)¿ <
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where AF(t)i denotes the i-th element of the vector yF(t). Therefore, from

eqn. 6.26 (p. 203) one has

llóQ - k)ll < cs(mú * muz,qp:, þ(r) + r(z)l) +

(m¡ I *u, ftHrlp(") + r(")l) + cl(rnyil * rnup2rpg¿, lø(r) + r(z)l)

where cJ: flp*7, cs: (np + 1)"f, c5: czI ca*I, rnt: ffiuLlmat lrny¡t

and m2: max(rn¿2t my2t myrz). Furthermore,

lld(ú - k)ll <

since the reference sequence is bounded, i.e., lr(r)l 3 *" for 1 ( r 1t. Hence,

the linear boundedness condition of the KTL is satisfied.

We can now apply the KTL to conclude that the sequence {lld(t)ll} is bounded, which

establishes part (a) of Lemma 6.2. From eqns. 6.22,6.28 and 6.28 (p. 203) one has

"(t)-u'(t):pp(t+k),
and part (b) of Lemma 6.2 follows from the KTL part (i).

Q.E.D

F.2 Proof of Theorem 6.2.

Cornment F.2 The proof presented below is based, on tlte methodology introd,uced, i,n

[55'57] [9, chapter I and 11] for establishing the conaergence of stoch,astic self-tuning

control algorithms for sEstems h,auing the feed,baclc configuration FI. This approach is

adopted, here to proue the conuergence of tl¿e stochastic self-tuning strategy (ST-MV-

TIMO) for systems hauing the feedbaclc configuration FD.

Let us define some error quantities
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Prediction error for the k-step-ahead TIMO-type predictor, e(ú)

e(t) dS y(t) - v'Qlt - k).

From eqn. 3.103 (p. 96)

Furthermore, using eqn. 3.96 (p. 93) one has

Finaily,

E {e(t)'z1l,-t}: r 
{u, iå n-,,,¿ - i + 1)]

(F 2)

a.s.

lF,-¿]rlF,-* : FF'o2 a.s.

(F 5)

(F.6)

k

e(t): F(flu(t):t f;-*:(t -t+1). (F.3)
i=l

It follows from the smoothing property of conditional expectations [9, p. a9S]

using the fact Ft-n C Ft-; lor i : t.,...,k,and from eqn. 3.95 (p. 93) that

(F.4)E{e(t) fl-t}: 
" {å f¿-1r'{u(t - i + r) Ft-;} r,-o} : o

2

limsup
JV-oo

k
.iV*oo

rNtF
nrLJr t=l
rNts
N 

?,__1

e(t)z :rimsup #å [ån-,,,¿ - 
i + 1)]

k

Df?-'r(t - i +1)' < * a.s.,
i=1

using Schwarz inequality and eqn. 3.146 (p. 113).

The ø posteriori prediction error, 4(f)

?(¿) E yþ) - ú(t) : y(t) - 6çt¡, 6çt - r,¡, (F.7)

where y(ú) denotes the a posteriori prediction

The closed-loop system tracking error, e,(f)

e"(t¡ dJ y(t) - r(t), (F 8)

which can be also written using the ST-MV-TIMO control law 6.58 (p. 229) as

e,(t) : aO) -ô(¿ - k)'ó(t - k)
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The pararneter estimates error, O(t)

(F.10)

Comment F.3 In order to proue the global conaergence of the ST-MV-TIMO strat-

egy we sha,Il make use of úåe Stochastic Key Tech¡rical Lemma (SKf L) [9, Lemma

8.5.3, p. 3341. In order to apply the SKTL one needs to

' e..st'ablish certain relations between, and, decompositions of, th,e error quantitics

d,efineil aboue (see eqns. F.12, F.15, F.16, F.18, to F.L1);

- show that some quantities ûre rneasurable (see Lernma F.1, p. S0S);

- establish son'¿e conaergence results for the estimator (see Lernma F.2, p. 30g);

- proue the Norrnalized, PreiJiction Error Conuergence (NPEC) result (see Lemma

F.3, p. 31/r);

- establish certain bouniled,ness properties of some input, outputs, and error quan-

tities (see Lemma F.l, p. 315).

Let us define

r(r¡ dS 
-6çt¡'6çt - k). (F.11)

Subtracting g(t) from both sides of eqn. F.2 and using eqn. 6.53 (p.2zg) one has

aQ)-ú(t):o'ó(t -k) + e(t)-y(t).

This can be rewritten using eqn. F.Z as 7(ú) -.(ú) : Ø,ó(t - k) - 6çt¡,6çt - k), or

using eqns. F.10 and F.11

ó(¿) : r¡(t) - e(t). (F.12)

Now the decompositions of O-(t), 4(ú), and ó(ú) will be introduced. Subtracting O

for both sides of eqn. E.2 (p. 298) with the equation error e(ú) defined by eqn. 6.52

(p.229), and using eqn. F.10 one has

o-1t; :6(¿ - tl * lu|Ð -ô(¿ - 7),ó(t- ,(.)]

(F.13)
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Using eqns. F.2 and 6.53 (p. 229), output y(ú) can be expressed as

vQ): a'(tlt - k) + e(r) : ø'ó(t - k) + €(ú)

Thus

: 6-(t-t¡- P t-k-l t-k)ó(t-k)'
o-(r - r) +t+ó(t-k),P(t-k-1. t-k

L P(t-k-r)ö(t-k) $r.-,,r*_;r1\' r + ó(t - k),p(t - k -r)ö(t - k) ?=rr'-rw\u 
þ t Ltr (F.14)

(F.15)

(F.17)

(F.18)

(F.le)

(F.20)

using eqn. F.3. Let us now decompose õ(l) as follows:

k

61t¡ : Id"(r),
i=7

where from eqn. F.14

õ.n,(r) dg 
6{t)(¿ - 1) -

P(t-k-t)ó(t-k
1 + ö(t - k),P(t - k - L)ó(t - k)

t-k
õ{')(¿ - 1) +

P(t-k-7\ó(t-k\
¡-t*\, o f L). \r.,-rw,/' r + ó(t - k),P(t - k - r)ó(t - Ðr

Similarly, from eqns. F.7 and F.2 one has

q(t) : o'ó(t - k) +.(ú) - o(t¡'6çt - fr): --o(t)'ó(t - Ã.') + e(r)

: - (åtn"r'))
k

ó(t - k) + t f¡-p(t - i + 1),
i=l

using eqns. F.3 and F.15. Hence, denote

k

ry(¿): Ð
í=l

,t'tçld9 -g{c)i¿),ó(t - k) -t f;_ø(¿ - i + 1)

Finally decompose ó(ú) as

qç)(Ð,

where (from eqn. F.17)

where

b(t) : t b(i)(ú),
k

i=1

b(c)(¿) g _grr)1¿), ó(t _ k)

We shall now establish the following resuit.
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Lemma E.L For i : I,.. .,lc

(i) ó(t - k) is Ft-n rneasurable;

¡n¡ dt)çt- 1) is f¿-¿ rneasurable;

ftii) qfi)çt - 1) is Ft-¿ Tneasurable;

(iu) b{i)(t - 1) is F¡-¡ tneasurable.

Proof.

Part (i): follows from definition of /(t) (see eqn. 6.55, p.229).

Part (ü): it follows from eqn. F.16 that

6(n)1t - t¡ : 6{n)(¿ - z) - ôro)(¿ - 2) +

+
P t-k-2)ó(t-k-1)

f;_ru(t - i). (F.22)r+ó(t-k-r),P(t-k-2 t-k-r)
Note from eqns. F.2 and F.3 that

a(t - i) : y(t - i) - a'(t - ilt - i - 7), (F.23)

where A"(t - ilt - i - 1) is the one-step-ahead optimal prediction of output A(t - i).

If. Ic : 1, then the one-step-ahead optimal TIMO-type prediction can be expressed

asyo(t-ilt-i-L):Ø'ö(t-i- 1), where O: [a., B.],(see Lemma 4.5 (p.g4) for

kr:l* - 1). If fr > 1, then theprediction can be expressed as v"(t_ ilt-i -1) :
O\ó(t - i - 1), where Or : ["] 0 B!]', and a] and B! ate vectors of coeffi.cients of

polynomials of the one-step-ahead TIMO-type predictor (see Lemma 3.5 for kp : r <
Å;). (Note that zero eiement in vector 01 is introduced so that Or is conformable with

ó(t).) Substituting from eqn. F.23 for a(t - i) in eqn. F.22 with y'(ú - ilt - i - 1) :
ø'ó(t - i -1) if k : 1 or a'(t - ilt - i- 1) : O\ó(t - i -1) if k ) 1, one can see

-/ "'\that O'''(ú - 1) is F¿-¿ Írcasurable, because ó(t - i - 1) is Ft-;-t measurable, and

Ft-¿-t C Ft-¡'

Part (iii): from eqns. F.19 and F.23 one has

nØþ -1) : -dn)çt - t¡'6çt - k _1) + f-r lve - i) - y"(t - ilt -i - 1)1.
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Substituting for a'(t - ilt - i- 1) : O'ó(t - i - 1) if fr : 1, or y'(t - ilt - i- 1) :
O\Ó(t-i-1) if k > 1, one can see that 4(i)(t- L) is F¿-¡ measurable, because ö(t-i-I)
is Ft-¿-t measurable, and. Fr-¿-t C Ft-¿¡ "na 

dt)1t - 1) is .F¿-; measurable (from

part (ii)).

Part (iu): from eqn. F.21 one has

6Øþ -1) : -dt,(, _ r),d(t _ k _ r),

and /(ú - k - 1) is .F¿-¡-1 rn€âsurable, and Fr-*-r, C Ft-;,.rrd dn)1t - i) is F¡-¿

measurable (from part (ii)). Hence, 6(l)(t - 1) is f¿-¿ measurable.

Q.E.D

Comment F.4 Note that in lhe proof of Lemma F.1, the optimal one-step-ahead

TIMO-type pred,ictor u)as employed. The existence of th,is predictor for k > 7 is

guaranteed in uieu of Lemma 3.5 (e. 9/).

We need the following result in order to establish the NPEC

Lernrna 8.2 S'ubject to Assumptions 3.7 to 3.10 (p. 91), 3.11 (p. 113) and, 6./

(p. 228), the ST-MV-TIMO strategy ensures

lim
JV+æ

lim
N-oo

Nt
t-k
¡/
D
t=k

b(t\2
ê_ ( rC /r._e.

x(ú-k-I)

ó(t - k)' t-k-1)ó(t-k)
xQ-k-7 f)' < oo d.s., (F.24)

(F.25)

Proof.

\Me shall show at first that

lim
ÀI*oo

Nt ó(i - ky P(i - le - Ðó(i - k) 
n(r)1¡¡2 < oo a.s., (F.26)xu-k-1) 'I \¿/

h- S bØu)"
ñ':L?__kvírÇ1¡ < oo o"s'

j=k
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From eqn. F.7 and E.2 (p. 298) one has

aþ) - o(f - 1 t-k

ne) : a(t) - 6çt¡'6çt- k) : ae) -ô(¿ - r),ó(t - k) -
_ ó(t - k)' P(t - k - r)ó(t - k) t",r+r _ Â

1 + Ó(t - k)'P(t - k - 1)Ó(t - k) Lvvt -(ú - r)'Ó(t - Ðl

1 + ó(t - k),P(t - k - 1)ó(t - k)'

Substituting the above equation into eqn. F.13 one has

o(t¡ : 6(¿ - 1) + P(ú - k - L)ó(t - k)rt(t).

Using decompositions introduced in eqns. F.15 and F.18 one has for i: I,...,|e

6tn)(r) :d')(¿ - 1)+ p(t - k -r)ö(t - Ðrt{ùçt¡. (F.2s)

Multiplying both sides of the above equation Uy dn)1t¡'P(t - k - f ¡-r one has

O{o)qt;'r1r - k -r;-rg-{c)1¿; : dn)(¿)'p (t - k- 1)-16{¿)(ú - 1) +6rt)1r;,¿ (t - tc¡qu)çt¡.

Substituting from eqn. F.28 fot do)1t¡' in the first term on the right hand side of the

above equation and then for dt)1t - 1) from eqn. F.28, one has

Ort)1t¡'r1t - k -r¡-r@{i)1¿¡ : O{t)(* - Ð' P(t - k -r¡-r5{r)1¿ - 1) +

+ó(t- *;'dt)qt¡'7(')(r) - ó(t -k)'p(t -k -r)ó(t _ k),¡t(i)(Ð2 +

+6(t)1t¡',¿(t - r;r7{c)1¿;

: 6-(i)q¿ - r)' p(t - k -r¡-rg{t)1¿ - 1) + z61.o) çt¡, 6çt - Ðrtt¿\çt¡ -
-ó(t - k)' P(t - k - 1)ó(t - te¡q{¿)çt¡2.

Now substituting from eqn. E.g (p. 299) for P(t - k - t¡-t one has

((¿- r;oi')it;'r(t - r¡-r5<n)(t) : d')(¿ -I)P(t-k - r;-r5{')1¿- 1) +

+do)1r¡'¿(t - k)ó(t - r;'d')1t¡ + zo(n)1r)'ó(t - Ðq{i)çt¡ -
-ó(t-k)'p(t-k-r)ó(t-tc¡q{i)çt¡2. (F.2e)

Let us define the following (non-negative) Lyapunov function:

v(Ðþ) d9 
6ii)1¿¡' p(t - ¿)-'êlo)(¿). (F.80)
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Eqn. F.29 ean be written using eqns. F.30 and F.21 as

e(t - Qv{t)çt¡

v@(t - 1) + 6ØQ)2 -16{;)þ)n(i)(ú) - ó(t - k)'p(t - k -r)ó(t -k¡qt;\1t¡z

It follows from eqn. F.12 using decompositions given by eqns. F.18 and F.20, and

from eqn. F.3 that for i : 7,...,k

qØ(t):6(;)1r¡ * f;_p(t - i + 1).

Using the above equation one has

e(t - k)v{i)qt¡ : vu\e - 1) - 6{t)þ)2 -2fn_r6Øþ)u.t(t_ i + 1) _

-ó(t - k)' P(t - k - 1)ö(t - te¡qu)çt¡2.

Taking the conditional expectations for both sides of the above equation one has

((r - Qn {v<;tçllnt-;) : ø {y{;) çt - r)ln*o} - E{r{')1t¡, lF,-;} -
-2f¿_ta{a{')1r)ø(t - i + r)lr,_,i -
-n {Oft - k)' pe - k - r)ó(t - tc¡q{i)çt¡,1F,-,} .

We shall now use the following result [57, Lemma 3.2, (iii)]

n {t{ùçt¡u(t -i+t)lF,-,): - f¿-to2,

which leads to

((¿ - ÐE {vt'tçt)lnt-;) : n {y{;)çú - 1) lf,-t) - ø {u{t)çt)rln,-o) +
ô ö(t - k),P(t - k - r)ó(t _ k) 12 ''-1+ ó(t-k),p(t-k- 1)d(¿- k)h'-r"

-E {óA - Ð' p(t - k - r)ó(t - n¡rl{i)çt¡'lF,-n} .

Substituting from eqn. E.11 (p. 300) for ((ú - k) inio the above equation, divicling

the above equation by x(t - k - 1), and substituting for ¡(f - k - 1) from eqn. 8.6

(p. 299), one has

vØu)
l1+ z(t - k)ó(t - k)' p(t - k - L)ó(t - k)l E
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y{t)(t _ r) _E
xQ-k-1

ó(t-k)'P(t-k-r ó t-k
xQ - k - 1)

ó t-k)'P(t-k-r)ó(t-k)
_E ;)(l2lnt-t +

Let us now define

X t-k) r?_,o' (F.31)

(F.32)

for some constant I(, 0 < K < oo. Taking conditional expectations one has

n {xtùçt¡ F,-;} : ø [; ,!"'q)" ,,r,_n
\!rx(.i-k-1)'lFt-; +E

-k)

+

xU - k - 1)
(t)çf2lFt_; +E

t

Ðr(j - t')
j=k

Consider the last term on the right hand side of eqn. F.33

ó(i - k)'p(i .- k . _r)ó(i - k) y{;)ç¡)lFt_;
x?-k) \r'

.,{

."{

j=k

tt ö(j-k),P(j-k-r

(F.33)

v(,)(Ð Fr_,\

v(o)(Ð ,r_,\ *

'{

"{

Ð'(j - t-)
j=k

t-l

Ð,(j - n)
j=k

ó(j -k)'P(j -k-t)ó(j -k)
xU-k)

ó(j - k)'P(j - k - 1)ó(j - k)

xU - t')

+E
¿-1

"(t - Ð rroçq7,-t

Ð"(¡-t)
J= k

+z(t - k) ó(t - k)'P(t - k - 1)ó(t - k)

X t-k) n {v{ttçt¡ln,-r}, (F.s4)

using the fact that F¿-¡ C Ft-¿ and, þ(t - f ) ir F¿-¡ measurable, ..rd do)1t - 1) is

F¿-;rîeasurable (Lemma F.1 (ii)), i:7,...,k, and j - k,...,t-I.
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Substituting eqn. F.34 into F.33 and using eqn. F.31 one has

n {x<ttçt¡ltr-;) : ffir _ r¡* " Ft-¿ +

t-l ó(j -k),P(j -k-t)ó(j -k) {t)ç)21ñ-t +
x -k-7

,IC

+E t
j=k

.#.,-ï* "u-r v(ùu)+

, ,ó(t - k)'P(t - k - 1)ó(t - k) 
", _2

=t Ji_lu .

Now using the fact ,n., 6(;)(f - 1) and nï(t - 1) are F¿-¿ rÍÌeasurable (Lemma F.1

(iv) and (iii)), and using eqn. F.32, and since {x(¿)} is a monotonic sequence (see

eqn. E.6, p. 299), one has for i : I,. . . ,k

ø{x{ùçt¡l+,-;} < x@(t- 1)+ 2ÓQ-k)'P(t-k-1)ó(t-k) f?-ro, a,.s. (F.35)
XQ_K)

Furthermore, it can be shown that [57, Lemma 3.3]

îó(t-k)'P(t_-k:1)ó(t -k) f?_ro, 1* a,.s. for i:r,...,tc.
t=k Xþ - k)

Hence, one carr apply the Martingale Convergence Theorem in the form given in [9,

Corollary D.5.1, p. 501] (see also [171, p. 34] [133]) to conclude that the sequence

{X(c)(¿) } converges, i.e.,

XØG) -- X(i) < oo a.s. for i : I, (F.36)

Then eqns. F.26 and F.27 follow from eqns. F.36 and F.32. Finally eqns. F.24

and F.25 follow from eqns. F.26 and F.27 using Schwarz inequality.

Q.E.D.

Comment F.5 The essential difference in conuergence analysis of the ST-MV-TIMO

strategy and self-tuning strategies for systems haaing the feed,baclc configuration FI is

reuealed in th,e aboue proof of Lemrna F.2. Namely, the relations F.2/ and F.25 are

established, without anA assurnption concerning strict positiue realness of a transfer

function inuolaing the noise polynomial c.(z-L) (see also Comment 6.10, p. 235).
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Now the NPEC result will be proved.

Lernrna î.3 For the ST-MV-TIMO strategy, subject to Assumptions 3.7 to 3.10

(p.91), 3.11 (p. 113), and 6..4 (p.228), the follouing Nonnalizeil Prediction Error

Conuergence (NPEC) result holds

r ,- (¿) _ r(t)),J'*Ðffi.." d.s., (F'37)

where

TU-k):7e-k-r)+ó(t-k),ó(t-k), (F.38)

with/(-L) : (Cr)-'xGr), where C* and, x(-1) are the initial parameters of tlr,e

CNM scherne (see Append,ix E).

Proof.

The analysis given in the proof of [9, Theorem 8.5.1, p. 326] applies mutatis mutand,is

here. First, the following result is established

r ,-.(¿) _ r(t)1,J'*Ðffi."" a's'

using Schwarz inequality, triangle inequality and LemmaF.2. In order to establish

eqn. F.37 from the above equation, one needs the relation between f,(t) and X(f)

given in [57, Lemma 3.1, part (ii) and (iii)].

Q.E.D

Note that the NPEC result (eqn. F.37) verifies the first assumption of the Stochas-

tic Key Technical Lemma (SKTL) (see [9, eqn. 8.5.70, p. 383]). (It is the proof of

the NPEC which requires the boundedness of the condition number of the estima-

tor covariance matrix P(f) for all ú. This is guaranteed by the condition number

monitoring (CNM) technique (see eqns. E.5 to E.7, Appendix E).)

Finally we need to establish certain input, outputs and error boundedness condi-

tions given in the following lemma.
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Lemma F.4 There exist finite positiue consta,nts K1 to Ka, Nt to Ns anil N, such,

that

N-&t
t=1

1

N "(t)'
/(, s
N ?=o

¡f' S¡rLJv t=k

/{u S
N ?=o

r(, $
N ?=o

Kz, for I/ ) NrvQ)'+

[",(¿) - r(t)]'+ /18,

a's'¡ (F.3e)

[",(¿) - ,(t)]' * Kq, for N > ¡r2 a.s., (F.40)

u(t)2 * Ka, for N > 
^¡3 

e.s., (F.41)

for N>N a.s., (F.42)

$Ë,{'r'

#åttv"(¿)tt'
x(N - h)

¡r

where X(¡f - k) is defineil by eqn. F.38

Proof.

The boundedness of the control sequence {"(¿)} (eqn. F.39) and of the controlled

output sequence {y(¿)} (eqn. F.40) can be proved using Assumptions 6.4 (iii) (p. 22S)

and 3.11 (p. 113) as in [55,57] [9, Lemma 11.3.1, p.461].

In order to prove the relation F.41, let us consider the system state-space model2.8

(p. 22). Since the controlled system is asymptotically stable (Assumption 6.4 (iii)),

it follows from [9, Lemma 8.3.3, p. a86] using superposition that there exist finite

positive constants Kur, Kut, and .K62 such that
NNN

I llv"(¿)ll' I /(u, D"Q)' * K,"Ð,(t)' i Kaz,
t=l t=O ú=0

for Il > 0. Furthermore, since the noise a,'(ú) is mean-square bounded (Assump-

tion 3.11, p. 113), there exist constants -I(6 and.ô[3 such that (after division by ¡f)

# å Wr|)ll' = # Ë'(')' r Ka ror ¡r > ¡r3 a's',

which proves the relation F.41.

Next to prove the relationF.42,let us consider eqn. F.38

N

x(¡r - k) : D ó(t - k)'ó(t- k) +x(-1).
t=k

Using definition of the regression vector (see eqn. 6.55, p. 229) one has

N-Ë N-/c

x(¡r - k) : K^ D "(t)'* Ksr I lly"(¿)ll2 * r{sr,
ú=O l=1
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where K'rr,, Ker, and Ilsr are some finite positive constants. Dividing by I/ and using

eqn. F.41 one has

$4 = # E,r,¡,* #ä,,,,, * Ksz,

and from eqns. F.39 and F.40

H ='+Ëy(¿)'rKse =#Ët",(,) -,(t)l'+/(8 ú.s.,

for l/ > F - max(Nr, ¡f2, ¡f3).

Q.E.D.

Note that eqn. F.42 verifies the second assumption of the SKTL (cf. [9, eqn. 8.5.75,

p. $al).

Furthermore, eqns. F.4, F.5, 3.146 (p. 113), F.8, O.b8 (p. 2Zg), and F.38, im-

ply that the remaining assumptions of the SKTL are satisfied (cf. [9, eqns. 8.5.71

to 8.5.74, p. 334]. Then it follows from the SKTL 1 
[9, Lemma 8.b.8, p. BB4] that

1
lim-sup 

'X(¡r 
- k) < - o,.s. (F.49)

Thus eqns. 6.59 and 6.60 (p. 230) follow from the above equation and from eqns. F.38

and 6.55 (p.229).

In order to show that eqn. 6.61 is satisfied, let us consider the state-space model2.8

(p. 22). Since the controlled system is asymptotically stable (Assumption 6.4 (iii),

p- 228) it follows from [9, Lemma 8.3.3, p. a86] using superposition and Assump-

tion 3.11 (p. 113) that there exist finite positive constants Ks, I{n, and ly'a such

that
lN - l{^Nlim i DaG), ( .lim + t u(t)2 I Iío for t/ > Nn o,.s.N*oo Â ¿=r rv-æ 1ìy' ?=o-'-, ' --rv

Then eqn. 6.61 follows from the above equation using eqn. 6.5g.

Finally, eqn. 6.62 follows from the SKTL [g, eqn. 8.5.28, p. B3a] using eqns. 6.58

(p. 229) and 3.145 (p. 113).

Q.E.D.
lAlternatively, the relation given by eqn. F.43 can be established without referring to the SI(TL

using the Kronecker lemma [187, Lemma D.1.2, p. 236] as in [bZ].
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Appendix G

A survey of self-tuning control of

stochastic systenrs with respect to

convergence analysis and methods

of overcoming the strictly positive

real condition.

For the purpose of assessing the significance of the properties of the ST-MV-TIMO

strategy introduced in subsection 6.2.2, we shall discuss stochastic, discrete-time,

self-tuning, minimum prediction error (MPE) controllers for two-input, single-output

(TISO) systems 1. These self-tuning controllers were developed for TISO systems

described by the ARMAX model 2.26 (p.29). The ARMAX model of the control-

lable and observable TISO system having the feedback configuration FI follows from

eqn. 3.89 (p. 92) with A(p) : d(p), B(p): lr(p), and C(p) : c,(p).
1In this appendix the term "self-tuning controller" is used in the context of TISO systems unless

otherwise stated.
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Methods of convergence analysis of self-tuning controllers.

There are two methods (tools) of analysis of convergence properties of self-tuning

controllers: (i) the averaging method, and (ii) the method based on a Martingale

convergence theory.

The averaging method was used in [f+] to determine possible convergence points

for the parameter estimates of the self-tuning MV regulator. This method forms

the basis of the so-called ODE (ordina,ry differential equation) approach developed

in [52] for analysis of convergence properties of recursive stochastic algorithms. The

ODE method was used in [53] to establish sufficient conditions for convergence of

the minimum variance (MV) self tuning regulator employing the stochastic gradient

(SG) estimator to the MV control law.

The drawback of the ODE method is that it assumes boundedness of the input-

output data (i.e., stability of the system). This is not a severe restriction in the anal-

ysis of the open-loop estimation algorithms. However, in the analysis of self-tuning

control schemes any a priori assumptions regarding closed-loop system stabiliiy are

undesirable. The reason is that there might be periods of unstable behaviour of the

adaptive system since the parameters of the control law are estimated or are based

on the plant estimates. Certain combinations of parameter estimates, which are ob-

tained during the normal operation of the self-tuning system or during undesirable

behaviour of the estimator (such as "burst" of estimates due to the lack of persistent

excitation), might lead to the closed-loop system instability. Hence, in general, data

boundedness cannot be verified a priori.

The second method of analysis, which is based on a Martingale convergence the-

ory, overcomes the above drawback of the ODE method. The martingale approach

is used to establish the closed-loop system stability and convergence simultaneously

(global convergence), i.e., no a priori assumption is required about boundedness

of the control signal and system output sequences. Furthermore, the stability and

convergence can'be established under relatively weak assumptions; for example, no

persistent excitation condition is needed. The martingale method was firstly em-
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ployed in analysis of open-loop recursive parameter estimation algorithms [132,133],

and secondly in analysis of self-tuning control strategies, the initial one being that of

[55].

Sometimes, in order to strengthen the results, the ODE and martingale methods

are combined in the analysis of self-tuning controllers [172,188,134].

The martingale method is employed in analysis of the ST-MV-TIMO strategy in

subsection 6.2.2.

Types of convergence properties of self-tuning controllers.

The above methods of convergence analysis are usually employed to establish (i)

parameter estimates convergence, and (ii) global convergence (see Comment 6.6,

p. 231) of self-tuning controllers.

The analysis of the open-loop estimation algorithms using the ODE method

[53,52] or martingale method [132,133] concentrates on the parameter estimate con-

aergence (consistency of estimates) and asymptotic properties of the parameter esti-

mate errors. As pointed out by many authors, convergence of pa.rameter estimates

is desirable in self-tuning control [56,69,188]. This is because the input signal is gen-

erated by feedback and, therefore, it is likely that there witl be long periods during

which the system is not sufficiently excited. The lack of persistently exciting input

signal might lead to the divergence of estimates ( "burst" phenomenon) and instabil-

ity of the closed-loop system [6]. So far, in order to establish parameter estimates

convergence it is necessary to assume [68,56] ot ensure [189,188,134,190] some form

of persistency of excitation of the system (see also 1772,7341 for a review of various

persistency of excitation conditions).

Furthermore, it is claimed by some authors that the erponential rate of conver-

gence (of the parameter estimates and/or of the controlled output sequence to the

reference sequence) must be guaranteed for self-tuning controilers designed for time-

invariant systems [19i,14]. For example, according to [1g1]:

It is in fact doubtful that a proof of convergence without exponential
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convergence of an adaptive algorithm should be regarded as providing

justification in itself for use of the algorithm.

The reason for this is twofold [191,14,192]. Firstly, self-tuning controllers should cope

with slowly time-varying systems. It is rather doubtful that a convergence rate slower

than exponential for a time-invariant system can lead to satisfactory performance for

a time-varying system. Secondly, the exponentially convergent self-tuning strategies

are robust to modeling errors.

An alternative approach to that establishing parameter convergence was under-

taken in [55,125,57] using martingale method to focus on the overall system per-

formance (global conaergence) resulting from the estimated parameters, rather than

properties of the estimated parameters themselves. Such an approach to convergence

analysis is justified in practice since in applications of self-tuning control the param-

eter estimates convergence, although important, is not necessarily the most essential

aspect of the design. Furthermore, it is well known that self-tuning controllers often

yield satisfactory performance a,fter the iniiial phase of tuning, despite rather poor

parameter estimates.

Global convergence can be established withoul any persistent excitation condition.

The convergence of the parameter estimates difference can be readily established as

well (see Comment 6.7, p. 231).

Global convergence is established for the ST-MV-TIMO strategy in subsection

6.2.2.

Although our discussion is limited to time-invariant systems, it is perhaps worth

mentioning the convergence properties established for time-varying systems. In

[15,17] global convergence was established for the MPE control law combined with

the SG estimator for a system with converging martingale parameters. The mar-

tingale method of analysis \ry'as employed in [1S] to show that the minimum vari-

ance/stochastic gradient (MV/SG) self-tuning strategy is globally convergent for

systems described by a state-space model corresponding to a nonsteady-state innova-

tions representation. The latter result is of particular interest, since it illustrates the
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robustness of the MV/SG self tuner, which was originally proposed for time-invariant

systems in [55], when applied to a certain class of time-varying systems. This poses

an counterexample to the remark cited from [191] on page 319, relating exponential

convergence to robustness of self tuners developed for time-invariant systems but

applied to time-varying systems.

Development of globally convergent self-tuning controllers employing ma-

trix gain estimators.

Global convergence of a self-tuning controller was firstly established for the MV/SG

strategy (using martingale method) in the breakthrough article [55]. Initially two

special cases were considered: (1) delay k: ! and a general form of the noise poly-

nomial c.(p), and (2) a.rbitrary delay k > L and c.(p) : 1. Later this approach rvas

extended to cover the a¡bitrary delay and general noise polynomial case [125]. It was

pointed out in [56,69], however, that the performance of the self tuner [55] was inferior

to that of. l22l provided the latter scheme converges. The inferior performance \Mas

due to the use of the SG estimator in [55], the convergence rate of which was slower

(e.g., 100 times) than that of the RLS algorithm employed in [22]. Therefore, in order

to improue the conuergence rate of the (globally convergent) self-tuning controller, a

least-squares type estimator (i.e., a matrix gain estimator) could be employed.

However, certain difficulties were encountered in the extension of 
'convergence

results derived for the self tuner employing the SG estimator to the case of the least-

squares type algorithm. Of primary interest is the problem of self-tuning closed-loop

system instability resulting from unsatisfactory behaviour of the estimator (diver-

gence of estimates) in the absence of persistent excitation of the controlled system.

The problem of the parameter estimates divergence and self-tuning closed-loop

system instability is sometimes addressed by the following heuristic argument l5 ]. If
parameter estimates are accurate and the control law ensures stability of the closed-

loop system while being not sensitive to parameter variations, then a stable closed-

loop system results. On the other hand, if the estimates are poor, then an unstable

closed-loop system may result, and the input and output signals increase without
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limit. The stochastic disturbance becomes insignificant and the estimates of deter-

ministic part of the system (i.e., of polynomials A(p) and B(p) in the ARMAX model

2.26, p.29) converge to their true values. Then the closed-loop system becomes stable

again, and a period of satisfactory performarlce follows.

As pointed out in [f+], a potential problem associated with such an argument is

revealed in the situation when not all of the system modes become unstable. Then

only information about the unstable modes increases. As a result, only a certain

combination of parameter estimates converges to its true value. This may not be

sufficient to stabilize the closed-loop system or to change the unstable modes enough

to reveal other modes of the system. Therefore, it was suggested in [193] that

... the (self-tuning) algorithm itself must be modified to ensure stabiliiy

and convergence.

Such modifications proposed for self-tuning controllers can be classified as follows.

Estimator modiflcation (method E). The self-tuning controllers based on method

E rely on modification of the RELS estimator.

In the scheme of [56,69] a reduced weighting of the R,ELS performance inclex

is introduced if insufficient persistence of excitation is detected over a finite

period of time. The weightings are selected according to a scalar measure of

system stability. The resulting estimator is called the weighted least squares

(WLS) algorithm.

In the strategy of [57] a full RELS step is taken only if this is consistent with

the convergence criterion; otherwise the estimator has the maximum possible

gain for which boundedness of the condition number of the covariance matrix

is guaranteed. The estimation algorithm introduced in [57] is called here the

RELS with condition number monitoring (RELS-CNM). Its usual name is,

however, the modified LS algorithm [57,56,69,180].

Dither injection (method D). Method D provides a solution to overcome the lack

of persistent excitation in the closed-loop system by injecting a dither signal
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[15]. In order to enhance the convergence rate of the SG based scheme of [55],

a two-estimator strategy rvvas proposed in [189]. In this strategy white noise

dither is added to the control signal produced by the SG based algorithm of

[55], and the approximate maximum likelihood (AML) estimator 2 is used to

obtain consistent parameter estimates for the plant. The performance of this

scheme is suboptimal due to dither added to the control signal to produce the

so-called continually disturbed control (CDC). This means that the convergence

result similar to that for the ST-MV-TIMO scheme (see eqn. 6.62, p. 231) can

be established with asymptotic tracking error variance o' + o3,, where ol is the

dither variance (unit delay system was considered in [189], therefore tr' : 1).

Another example of the application of method D is the strategy of [1S0] involv-

ing the AML estimator. The bounded white noise "probing inputs" are intro-

duced into the closed-loop system whenever inadequacy of information content

for estimation is detected by a criterion based on the covariance estimate error

matrix. Although it is claimed by the authors that in terms of convergence

rate the latter scheme is superior to that of [57] involving the RELS-CNM, the

performance of the closed-loop system is suboptimal due to dither signal.

Estimator modiffcation and dither injection (method E-D). The above two

methods E and D are sometimes combined into method E-D. The self-tuning

strategies based on the CDC approach were introduced in 1772,7341. These

schemes involve the RELS-CNM estimator and dither added to the reference

sequence to ensure parameter consistency. Various two-estimator, self-tuning

strategies have been considered in [58,188]. For example, the self-tuning con-

troller of [188] involves a mechanism switching between the minimum variance

control law combined with the weighted RELS estimator of [69], and a "fall-

back" controller combined with the weighted RLS algorithm. Dither is added

to the control signal after switching to the "fall-back" controller to ensure pa-

2The AML algorithm is a version of the RELS algorithm with ø posleriori prediction errors usecl

in the regression vector [133] instead of a priori prediction errors [174].
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rameter convergence.

Methods E, D, and E-D, represent the state of the art in the development of con-

vergent self-tuning controllers involving the matrix gain estimators (see also Com-

ment 6.11, p. 237).

Methods of overcoming the strictly positive real condition involving the

noise polynomial c.(z-r).

Analysis of the SG and RELS estimators for open-loop system identification, pre-

sented in [181], revealed difficulties in convergence of parameter estimates for certain

systems. This led to formulation of sufficient conditions for the convergence of param-

eter estimates (with probability one) to true parameter values of systems described

by the ARMAX model in [53]. In particular, it was shown that the RELS estimator

yields consistent pa.rameter estimates if the transfer function 
";t 

(r-t) - I l2 is strictly

positiue real 17791.

T}ae strictly positiae reøl (SPR) condition is assumed in the convergence analysis 3

of recursive stochastic algorithms for open-loop parameter estimation [53,133,68,191]

1772,134,9,190,180] as well as for seif-tuning controllers developed for TISO systems

[53,56,189,,57,172,\88,134,9,190,18,180]. Furthermore, it appears in the convergence

analysis using the ODE or martingale methods, or for the combination of both. The

SPR condition is assumed for both convergence of parameter estimates and global

convergence of self tuners. Therefore [126]

The need for this assumption a is unfortunate, but represents the current

state of a¡t in the analysis of recursive estimation algorithms.

In fact it was suggested in [56] that the SPR condition is close to being a necessary

one for the tracking error convergence.

The question arises whether the SPR condition is restrictive in practical situa-

tions. The best answer is provided by the example in [53]. For a second order noise

3Heuristic explanation of the SPR condition is given in [53,194] [9, Remark 8.4.1, p. 319]

4i.e., the SPR condition
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polynomial c.(z-r) - 1 + ctz-r + .r"-2 the region which is admissible for coefficients

c1 and c2 in view of the SFT is the triangle depicted in fig. G.1. The shaded area

is the region for which the SPR condition for the RELS estimator is satisfied. This

means that for 50Yo of the combinations of values of coefficients c1 and c2 the conver-

gence of the self-tuning controllers employing the RELS estimator (or its variants) is

not guaranteed.

1 C2

1 C1

Figure G.1: The triangle represents the admissible region for coeffi,cients c1 and c2

of a second order noise polynomial c.(z-l); the shaded area is the region where the

SPR condition is satisfied.

Therefore, it is desirable to develop methods of overcoming the SPR condition.

The first method is based on the modification of the RELS estimator proposed

in [181,53] which leads to the RML algorithm. The RML estimator avoids the SPR

condition at the expense of fi.ltering the input-output data by a time-varying filter

D(t,p) : õ.(t,p), where î,(t,p) is the estimate of the noise polynomial c.(p) (see

eqn. 6.63, p.232) [53,177]. A potential problem associated with the RML estimator

is that the noise filter estimate î-(t,p) may become unstable. Therefore ô,(f , p) must

be kept within the stability region. This requires a stability test to be performed

at every sample instant t. If. ¿.(t,p) is unstable than some projection facility must

be invoked to map the estimate of the noise polynomial into the stability region.

Various methods for projection of the estimate e.(t,p) into the stability region were

proposed for open-loop estimation [195,196].

The RML estimator rvr¡as suggested for self-tuning controllers in many survey pa-

pers devoted to adaptive control [170,10,5] [160, p. 414]. The performance of ihe
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RMl-based self tuners was assessed by simulation studies [197] (see also subsec-

tion 6.2.3). However, to the author's knowledge, no convergence result is available

for such strategies. One of the reasons is that there is no general method of estimate

projection into the stability domain which would guarantee the closed-loop system

stability 5.

Let us restrict our attention to those strategies which overcome the SPR condition

and are shown to be convergent. Then the following methods of overcoming the SPR

condition can be identified 6.

Dither injection (method D). The first approach, proposed in [48], is based on

the direct on-line minimization of the performance criterion using the stochastic

gradient algorithm. To avoid the SPR condition, the coloured noise is ignored

and only the deterministic part of the system is estimated using the recursive

instrumental variables method ll77l. The convergence of the scheme to a local

minimum of the cost function with probability one is subject to convergence of

the estimates of the deterministic part of the system to true values. In order

to ensure the latter condition, white noise dither is added to the control signal

leading to suboptimal asymptotic performance.

The second approach, proposed in [58], relies on adding zero mean white noise

dither having variance o2o to the output of the controlled system. Let us define

the noise polynomial z.(z-r) as a spectral factor of. c-(z-t)c-(z) + "'¿. 
Then

¿,(r-t) describes the noise polynomial of the original system augmented with

dither. Furthermore, it is shown in [58] that c.(z-l) satisfies the SPR condition

provided øj is sufficiently large. The self-tuning controller employing the WLS

estimator [S0] is globally convergent when applied to the system with added

dither (the reference sequence r(t) is required to be persistently exciting). The

sThe first step towards development of a globally convergent self tuner based on the RML estimator

is, perhaps, a sophisticated strategy of [58] involving the RML algorithm as one of its two estimators

and obviating necessity of the projection of the noise polynomial estimate into the siabiliiy region

(see method D).

6All references known to the author are quoted in this classification.
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closed-loop system performance is suboptimal due to dither.

Subsequently, the above strategy was extended to recover asymptotic optimal-

ity. Namely, the estimate of the original noise polynomial c,(z-L ) (assumed to

have roots strictly inside the unit circle) can be calculated from the estimate of

¿-("-t) and estimate of the variance o2 of the stochastic disturbance t,'l(f ). \Mith

the converging estimates of E,("-t), converging estimates of. c.(z-t) can be ob-

tained and used in the calculation of the control signal; then dither injection at

the system output can be discontinued. The resulting technique involves two

estimators, spectral factorization and switching between two controllers. The

asymptotic optimality of the scheme is subject to the convergence of estimates

oTz.(z-1), i.e., it requires persistency of excitation of r(l); otherwise it may be

necessary to continue to apply some dither of arbitrarily small variance.

Further improvement in the convergence rate of the overall system is possible if

the prewhiting filter D(t,p) for the input-output data is introduced for the es-

timator. The filter is chosen to be the estimate of the original noise polynomial

c-(p).This implies that the RML estimator is asymptotically employed. 7

Model overpararneterization (method O). A method of overcoming the SPR

condition by overparameterization was proposed in [19a]. It has been shown

that for a noise polynomial c.(z-t) of order n and not necessarily satisfying

the SPR condition, there exists a polynomial õ.(z-1) of order ñ such that

the polynornial c.(z-t)õ-(r-') satisfies the SPR condition. The upper bound

on order ñ is determined both by the degree of. c-(z-t) and the maximum

modulus of roots of. c.(z-L) (ñ may be large if roots of. c.(z-l) lie close to

the unit circle). Therefore, global convergence of a self tuner employing the

SG or RELS estimator can be established for the overparameterized system

model, i.e., the SPR condition is overcome at the cost of ill-conditioning of the
TThe strategy involving switching between the WLS and RML estimators obviates the necessity

of the stability test and projection of the noise polynomial estimate into the stability region required

for the RML algorithm [58]. As already mentioned, such a projection method has not been developed

yet for closed-loop applications.
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estimator and slower convergence rate due to the increase in the number of

estimated parameters. Some prior knowledge of the noise polynomial c,(z-r)

is required to determine ñ.

Model overparameterization and dither injection (method O-D). This ap-

proach involves a special case of the multistep multivariable adaptive regulator

(MUSMAR) [130] based on minimization of. a multi-stage performance crite-

rion rather that a single-stage cost function. The multi-step-ahead predictor

employed in the development of the MUSMAR strategy represents a nonmini-

mal parameterization of the plant [135]. It was shown using the ODE method

that for a simplified version of the MUSMAR regulator combined with the RLS

estimator, the MV control law is a locally stable stationary point of convergence

of the self tuner, even if the noise polynomial does not satisfy the SPR condi-

tion [135]. Appropriate choice of the prediction horizon is determined both by

the degree of the noise polynomial "-(t-t) and the maximum modulus of roots

of. c,(z-r) (which are restricted to lie strictly inside the unit circle). Zero nirean

white noise dither is added to the control signal in order to ensure identifiabil-

ity of parameters. The drawback of this approach is that it is restricted to the

regulator case (r(ú) : 0) and requires some knowledge of the noise polynomial

in order to determine parameters of the control law.

Methods D, O, and O-D, represent the state of the art in the development of con-

vergent self-tuning controllers which overcome the SPR condition for TISO systems

(see also Comment 6.12, p. 238).
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