DEVELOPMENTAL STUDIES IN TIMED PERFORMANCE

Carlene Wilson
B.A. (Hons.) (Adelaide)

Thesis submitted in fulfilment of the requirements
for the Degree of Doctor of Philosophy

Department of Psychology
The University of Adelaide
November 1984
TABLE OF CONTENTS

LIST OF FIGURES ... (vii)
LIST OF TABLES .. (viii)
SUMMARY ... (xi)
STATEMENT ... (xiii)
ACKNOWLEDGEMENTS .. (xiv)

CHAPTER 1. INTRODUCTION
Developmental differences in the human information processing system.

1. The Development of Information Processing Speed
 (i) Timing Mental Events .. 1
 (ii) Reaction Time .. 2
 (iii) Localizing Developmental Differences in specific Temporal Factors 3

2. Perceptual Processing Speed
 (i) Display Dictated Demonstrations of Perceptual Persistence 4
 (ii) Critical Flicker Frequency and Dark Interval Threshold ... 6
 (iii) Backward Masking Technique
 (a) Background .. 7
 (b) The Nature of the Processing Controversy ... 9
 (c) Developmental Results .. 10
 (iv) The Inspection Time Technique
 (a) Background .. 11
 (b) Developmental Results .. 13

3. The Measurement of Input Processing Speed:
 Selection of a Procedure ... 18

Page

1
2
3
4
7
9
11
13
18
24
28
29
CHAPTER 2. EXPERIMENT 1
An investigation of the locus of target-mask interaction

1. The Functional Locus of the IT Measure
 (i) The Concurrent-contingent Model of Visual Processing
 (ii) Establishing the Nature of the Perceptual Processing Paradigm
 (iii) Developmental Results

2. Method
 (i) Subjects
 (ii) Apparatus
 (iii) Design
 (iv) Procedure

3. Results and Discussion

4. Conclusions

CHAPTER 3. EXPERIMENTS 2.1 and 2.2
A cross-sequential investigation of the developmental IT function; its validity and reliability

1. Experiment 2.1: A Cross-sectional Study of IT
 (i) Methods in Developmental Psychology
 (ii) Selection of a Design
 (iii) Validity of the IT Measure
 (iv) The Relationship between Speed and Intelligence

2. Cross-Sectional Study: Method
 (i) Subjects
 (ii) Apparatus and Design
 (iii) Procedure

3. Results and Discussion
 (i) The Relationship between IT and Age
 (ii) The Relationship between IT, the PPVT and the BAS Speed subscale
CHAPTER 3 (continued)

4. Conclusions

5. Experiment 2.2 : A Longitudinal Follow-up of the Cross-sectional IT Study
 (i) The Longitudinal Method in Psychology
 (ii) Practice Effects
 (iii) Reliability

6. Method
 (i) Subjects
 (a) Longitudinal study
 (b) Practice Control study
 (ii) Apparatus and Design
 (a) Longitudinal study
 (b) Practice Control study
 (iii) Procedure
 (a) Longitudinal study
 (b) Practice Control study

7. Results
 (a) Practice Control Study
 (b) Longitudinal Study

8. Discussion

9. Conclusion

CHAPTER 4. EXPERIMENT 3
The influence of procedural variables, attention and fatigue on group differences in IT

1. The Control of Methodology, Task Comparability and Attention
 (i) Methodological Considerations
 (ii) Task Equivalence Across Age
 (iii) Attention
 (iv) Summary
CHAPTER 4 (continued)

2. Method
 (i) Subjects
 (ii) Apparatus and Design
 (iii) Procedure

3. Results and Discussion
 (i) Methodological Considerations
 (ii) Task Comparability Across Ages
 (iii) Attention

4. Conclusions

CHAPTER 5. EXPERIMENTS 4 AND 5

The influence of intra-individual variability, registration and rate of processing on developmental differences in IT

1. Experiment 4 : The Influence of Intra-individual Variability on Age Differences in Input Processing Speed
 (i) Attention
 (ii) Noise
 (iii) Fatigue
 (iv) Summary and Conclusion

2. Method
 (i) Subjects
 (ii) Apparatus and Design
 (iii) Procedure

3. Results and Discussion
 (i) Intra-individual Variability
 (ii) Performance Accuracy

4. Conclusions

5. Experiment 5 : The Influence of Registration and Rate of Processing on Age Differences in Input Processing Speed
CHAPTER 5 (continued)

6. Method
 (i) Subjects
 (ii) Apparatus, Design and Procedure

7. Results and Discussion

8. Conclusions

CHAPTER 6. EXPERIMENT 6.
The relationship of IT to MA, IQ and impulsivity in response style

1. The Relationship of Inspection Time to Tests of Intelligence and Conceptual Tempo
 (i) The IT-IQ Relationship
 (ii) The Mental Age Deviation Hypothesis
 (iii) The IT-Conceptual Tempo Relationship
 (iv) Summary

2. Method
 (i) Subjects
 (ii) Apparatus and Design
 (iii) Procedure

3. Results and Discussion
 (i) The Mental Age Deviation Hypothesis
 (ii) The IT-IQ Relationship
 (iii) The IT-Conceptual Tempo Relationship

4. Conclusions

CHAPTER 7. CONCLUSION
The development of processing speed: The nature of the developmental function and its relationship to processing and general ability variables

1. Summary of Experimental Results

2. The Validity and Reliability of the Inspection Time Measure
CHAPTER 7 (continued)

3. The Developmental Inspection Time Function 193

4. The Relationship of Inspection Time to Intelligence and Conceptual Tempo 202

5. Conclusions 207

APPENDICES 209

REFERENCES 242
SUMMARY

The development of central input processing speed was mapped in the experiments of this thesis within the context of a procedure for measuring Inspection Time (IT). In the first experiment, the central locus of target-mask interaction was verified in a sample composed of 8 and 11 year old children and adults, the results suggesting a developmental increase in processing speed. Experiment 2 replicated this trend, with cross-sectional data confirming a significant decrease in IT between the ages of 6 and 11 years. Developmental change beyond this point was considerably less marked, with some suggestion of an asymptote in rate of processing at the onset of adolescence. These developmental differences were found to be reliable in a test-retest situation, despite a beneficial performance effect associated with practice in all groups. Cross-sequential analyses indicated that IT changes arose independently of cohort (i.e. differences in "life-histories"), while longitudinal change could not be explained purely in terms of practice since improvement over 1 year was significantly greater than improvement over 2 weeks.

Experiments 3, 4 and 5 attempted to ascertain the probable explanation for the developmental trend evidenced in Experiment 2. Experiment 3 indicated that the difference was not attributable to methodological considerations, and that task requirements did not differentially disadvantage younger children. In addition, comparability of performance on random unmasked trials suggested that differences in attention did not appear to significantly influence the results.

Experiments 4 and 5 indicated that at least part of the developmental trend was explicable in terms of age differences in intra-individual variability and, to a lesser extent, registration efficiency. Rate of processing from registration to a central location did not appear to contribute significantly to IT.
differences. In addition, a third factor, not successfully identified, appeared to contribute to age differences in IT, over and above the factors of registration and intra-individual variability. It was hypothesized that this factor represented a general "noise" variable which prevailed over the entire processing mechanism, thereby limiting its efficiency.

The final experiment (Experiment 6) indicated that the development of processing speed in a nonretarded sample related to maturation (as measured by MA) and efficiency in response style. The relationship between IT and Impulsivity was shown to vary with age, only reaching significance in children with a CA less than 8 years where longer ITs were associated with faster mean latency and higher total errors in the MFF. Within MA groups, IT did not correlate significantly with IQ.