MECHANICS OF GASTRIC EMPTYING
AND THE
INFLUENCE OF GASTRIC SURGERY

Thesis submitted in October 1996
for the degree of Doctor of Philosophy in the Faculty of Medicine, University of Adelaide

by

Mehran Anvari, MB BS, FRCSC,

Department of Surgery, University of Adelaide.
TABLE OF CONTENTS

page number

TITLE PAGE i
TABLE OF CONTENTS ii
ABSTRACT ix
DECLARATION OF AUTHORSHIP xi
ACKNOWLEDGMENTS xii
DEDICATION xiv

SECTION A - LITERATURE REVIEW

Chapter 1: introduction 2

Chapter 2: Electrical and Mechanical Properties of Gastric Muscle 4
 2.1 ELECTRICAL CONTROL ACTIVITY
 2.1.1 electrical properties of muscle strips
 2.1.2 Spinal patterns of electrical control activity
 2.1.3 control of ECA
 2.1.4 Interstitial Cells of Cajal
 2.2 ELECTRICAL RESPONSE ACTIVITY
 2.3 ELECTRICAL CONDUCTION ALONG THE STOMACH
 2.4 TRANSMISSION OF ELECTRICAL ACTIVITY ACROSS THE PYLORUS
 2.5 CONTRACTION PATTERNS OF GASTRIC MUSCLE

Chapter 3: Gastric Extrinsic Motor Neural Mechanisms 14
 3.1 VAGAL EFFERENT MECHANISMS
 3.1.1 Central projection
 3.1.2 Anatomy
 3.1.3 Composition
 3.1.4 Types of vagal afferents
 3.1.5 Neuropeptides
 3.2 SYMPATHETIC CONTROL
 3.2.1 Anatomy
 3.2.2 Composition
 3.2.3 Sympathetic afferents
 3.2.4 Neurotransmitters

Chapter 4: Gastric Intrinsic Motor Neural Mechanisms 18
 4.1 ANATOMY
 4.2 NEURAL PATHWAYS
 4.2.1 Descending inhibitory
 4.2.2 Ascending excitatory
 4.3 NEUROTRANSMITTERS
Chapter 5: Afferent Neural and Integrative Controls of Gastric Motor Functions

5.1 AFFERENT RECEPTORS
5.2 NEURAL REFLEXES
 5.2.1 Receptive relaxation
 5.2.2 Accommodation reflex
 5.2.3 Antral Reflex
 5.2.4 Enterogastric reflex
5.3 INFLUENCE OF CENTRAL NERVOUS SYSTEM IN HUMANS

Chapter 6: Humoral Control Mechanisms

6.1 CHOLECYSTOKININ
 6.1.1 In vitro action
 6.1.2 In vivo action
 6.1.3 Mode of action
 6.1.4 Physiological role
6.2 GASTRIN
6.3 SECRETIN
6.4 MUCIN
6.5 GLUCAGON
6.6 OTHER HORMONES

Chapter 7: Gastric Emptying Patterns

7.1 EMPTYING PATTERNS OF DIFFERENT INGESTA
 7.1.1 Non-nutrient liquids
 7.1.2 Nutrient-rich liquids
 7.1.3 Digestible solids
 7.1.4 Indigestible solids
7.2 INFLUENCE OF POSTURE ON GROSS PATTERNS OF EMPTYING
7.3 OTHER FACTORS WHICH INFLUENCE GROSS PATTERNS OF EMPTYING
7.4 SECOND TO SECOND TRANSPORTIC FLOW

Chapter 8: Mechanical Functions of the Stomach

8.1 GASTRIC RESERVOIR FUNCTION
8.2 GASTRIC TRANSDUCTION
8.3 GASTRIC MIXING
8.4 GASTRIC PUMPING MECHANISM
 8.4.1 Stomach as a dual mode pump
 8.4.2 Gastric pumping in the fed state
 8.4.3 Gastric pumping during interdigestive phase

Chapter 9: Mechanics of Transpyloric Flow Retardation

9.1 WITHDRAWAL OF PUMPING
9.2 ACTIVATION OF RESISTANCES
 9.2.1 Pyloric
 9.2.2 Intestinal
9.3 REGULATION OF THE MECHANISMS THAT RETARD EMPTYING
 9.3.1 Intraluminal nutrients
 9.3.2 Intravenous nutrients
Chapter 10: Effect of Surgical Disruption or Removal of Gastric Motor Control Mechanisms on Gastric Emptying 45

10.1 INTRODUCTION

10.2 EFFECT OF VAGAL INTERRUPTION
10.2.1 Effect on fasting and fed patterns of myoelectric activity
10.2.2 Effect on the duodenal motor function and reservoir capacity
10.2.3 Effect on corpus and antrum
10.2.4 Effect on the pylorus
10.2.5 Effect on intestinal regulation of stomach
10.2.6 Effect on the overall organization of gastric motor function and emptying

10.3 EFFECT OF DESTRUCTION OF PYLORIC FUNCTION OR PYLORIC REMOVAL
10.3.1 Truncal vagotomy and pyloroplasty

10.4 EFFECT OF DISTAL GASTRECTOMY
10.4.1 Distal gastrectomy with vagotomy

10.5 PYLORUS PRESERVING DISTAL GASTRECTOMY
10.5.1 Potential benefits
10.5.2 Animal experiments
10.5.3 Clinical experience

Chapter 11: Objectives of this Thesis 60

11.1 PRIMARY RESEARCH QUESTIONS

SECTION B - COMMON METHODOLOGIES USED

Chapter 12: Introduction to Methods 63

12.1 USE OF HEALTHY VOLUNTEERS AND PATIENTS

12.2 USE OF THE KANGAROO ISLAND PIG AS AN ANIMAL MODEL
12.2.1 Training of Pigs
12.2.2 Surgical preparation of the pigs
12.2.3 Study procedures in pigs

Chapter 13: Manometric Assembly and Equipment

13.1 ADVANTAGES AND LIMITATIONS OF SLEEVE/SIDEHOLE MANOMETRY

13.2 DESIGN OF THE MANOMETRIC ASSEMBLY
13.2.1 Manometric assembly design for human studies

13.3 MANOMETRIC ASSEMBLY USED IN PIG STUDIES

13.3.1 Intubation in humans

13.3.2 Positioning of the catheter in pigs

13.4 OTHER ASPECTS OF THE MANOMETRIC AND RECORDING TECHNIQUE

13.5 ANALYSIS OF MANOMETRIC TRACINGS

Chapter 14: Measurement of Gastric Emptying and Transpyloric Flow 81

14.1 RADIOGRAPHIC GASTRIC EMPTYING TECHNIQUE IN HUMANS
14.1.2 Acquisition
14.1.2 Analysis
SECTION C - DEVELOPMENT AND EVALUATION OF METHODOLOGIES

Chapter 15: Topography of the Pig Pyorus
15.1 INTRODUCTION
15.2 METHODS
15.2.1 Animal preparation
15.2.2 Manometric assembly
15.2.3 Study protocol
15.2.4 Analysis
15.3 RESULTS
15.3.1 Pyloric zone generating isolated pyloric pressure waves
15.3.2 TMPD recording
15.4 CONCLUSIONS

Chapter 16: Validation of Duodenal Drainage Technique for Measurement of Gastric Emptying
16.1 INTRODUCTION
16.2 METHODS
16.3 RESULTS
16.4 CONCLUSIONS

SECTION D - STUDIES ON THE MECHANICS OF GASTRIC EMPTYING

Chapter 17: Mechanics of Transpyloric Flow and the Role of the Pylorus
17.1 CONCURRENT VIDEOFLUOROSCOPY AND MANOMETRY IN HEALTHY VOLUNTEERS
17.1.1 Introduction
17.1.2 Method
17.1.3 Results
17.1.4 Discussion
17.1.6 Conclusions
17.2 CONCURRENT MEASUREMENT OF GASTRIC EMPTYING, TRANSPYLORIC FLOW AND MANOMETRY IN PIGS
17.2.1 Introduction
17.2.2 Methods
17.2.3 Results
17.2.4 Discussion
17.2.6 Conclusions
Chapter 15: Influence of Posture on Gastric Distribution, Motility and Emptying

15.1 INTRODUCTION
15.2 METHODS
 15.2.1 Subjects
 15.2.2 Experimental Procedure
 15.2.3 Data Analysis
15.3 RESULTS
15.4 DISCUSSION
15.5 CONCLUSIONS

SECTION E - STUDIES ON CONTROL OF GASTRIC MOTILITY AND EMPTYING

Chapter 19: Effect of Division of Intramuscular Nerves on Antropyloric Motility, Transpyloric Flow and Gastric Emptying

19.1 INTRODUCTION
19.2 METHODS
 19.2.1 Surgical preparation
 19.2.2 Experimental procedure and recordings
 19.2.3 Data analysis
 19.2.4 Statistical analysis
19.3 RESULTS
 19.3.1 Intraduodenal Infusion of saline
 19.3.2 Intraduodenal Infusion of 15% dextrose
19.4 DISCUSSION
19.5 CONCLUSIONS

Chapter 20: Role of CCK Mechanisms in Control of Gastric Motility and Emptying

20.1 INTRODUCTION
20.2 METHODS
 20.2.1 Animal preparation
 20.2.2 Experimental protocol
 20.2.3 Recordings and analysis
 20.2.4 Statistical analysis
20.3 RESULTS
 20.3.1 Gastric emptying and transpyloric flow
 20.3.2 Gastric and pyloric motility
20.4 DISCUSSION
20.5 CONCLUSIONS
SECTION F - EFFECT OF THERAPEUTIC GASTRIC SURGERY ON STOMACH MOTILITY AND EMPTYING

Chapter 21: Pattern of Antropyloroduodenal Motor Activity during Gastric Emptying of a Mixed Meal after Therapeutic Gastric Operations

21.1 INTRODUCTION
21.2 METHODS
21.2.1 Subjects
21.2.2 Study protocol
21.2.3 Recordings and data analysis
21.2.4 Statistical analysis
21.3 RESULTS
21.3.1 Gastric emptying
21.3.2 Antropyloric motility
21.4 DISCUSSION

Chapter 22: Gastric and Pyloric Motor Responses to Intraduodenal Lipid Infusion after Vagotomy and Pyloroplasty

22.1 INTRODUCTION
22.2 METHODS
22.2.1 Subjects
22.2.2 Study protocol
22.2.3 Recordings and data analysis
22.2.4 Statistical analysis
22.3 RESULTS
22.4 DISCUSSION
22.5 CONCLUSIONS

Chapter 23: Antral Compensation after Highly Selective Vagotomy

23.1 INTRODUCTION
23.2 METHODS
23.2.1 Subjects
23.2.2 Study protocol
23.2.3 Recordings and data analysis
23.2.4 Statistical analysis
23.3 RESULTS
23.4 DISCUSSION
23.5 CONCLUSIONS

SECTION G - DESIGN OF PYLORUS PRESERVING GASTRIC SURGERY

Chapter 24: Use of a Muscle Bridge to Maintain Intramural Connections after Antral Transection

24.1 INTRODUCTION
24.2 METHODS
24.2.1 Surgical preparation of pigs
24.2.2 Experimental procedure
24.2.3 Recordings and data analysis
24.2.4 Statistical analysis

24.3 RESULTS
24.3.1 Gastric emptying
24.3.2 Pulsatile transpyloric flow
24.3.3 Manometry

24.4 DISCUSSION

24.5 CONCLUSIONS

Chapter 25: Future Directions in Pylorus Preserving Gastrectomy

25.1 DISTAL GASTRECTOMY WITH PRESERVATION OF A MUSCLE BRIDGE
25.1.1 Surgical technique
25.1.2 Results
25.1.3 Discussion

Chapter 26: Summary and Conclusions

APPENDIX

Published Work Based on Experiments Described in this Thesis

A.1 PAPERS PUBLISHED
A.2 PAPERS SUBMITTED
A.3 PAPERS TO BE SUBMITTED
A.4 PUBLISHED ABSTRACTS

BIBLIOGRAPHY
ABSTRACT

Emptying of ingesta from the stomach is controlled by a complex mechanism which is affected by therapeutic gastric surgeries, and can lead to significant symptoms in patients following such surgery. The aim of this thesis was to identify some of the motor mechanisms involved in emptying of gastric contents, the effect of therapeutic gastric surgery on these motor mechanisms, and evaluation of new surgical techniques aimed at minimizing the effects of surgery on normal patterns of gastric emptying. The work has been carried out on human subjects and conscious pigs, using recently developed antypyloroduodenal manometric techniques concurrent with measurements of gastric emptying, transpyloric flow, and gastric wall motion or tension.

The studies performed found the following: Phasic contractions of the corpus and antrum are important in initiating pulses of transpyloric flow through pressurization of gastric cavity in a fluid-distended stomach. The pylorus acts as a major braking mechanism to regulate the volume of transpyloric flow pulses. The timing of gastric contraction in relation to ensuing pyloric contraction is a major determinant of the volume of gastric contents passing across the pylorus, this timing being in part regulated by antral intramural pathways which are often transected during surgery.

Posture was shown to influence gastric emptying through changes in gastric motility. And, CCK pathways were shown to be important in inhibition of gastric pumping and stimulation of pyloric braking mechanisms seen during delivery of lipids into the intestine.
Changes in antropyloric motility and gastric emptying were correlated in patients following vagotomy and pyloroplasty, highly selective vagotomy, and partial gastrectomy, confirming our earlier observations in pigs.

In a final series of studies, a one centimeter bridge of muscle was shown to be capable of preserving the relative timing of gastric and pyloric contractions, and a normal pattern of gastric emptying after otherwise complete antral transection, indicating that this bridge carries important control signals to the pylorus from the stomach.

The work presented in this thesis has helped to improve our understanding of the mechanics of gastric emptying and some of the control mechanisms involved in its regulation. Studies were also done on the disturbances to these mechanisms caused by various therapeutic gastric surgical procedures, and possible new techniques to minimize these.