Variability in the Accumulation of Amino Acids and Glycinebetaine in Wheat and Barley under Environmental Stress

by

Bodapati Purushothama Naidu
B.Sc.Ag., M.Sc.Ag.(Agronomy) (APAU, India)

Department of Plant Physiology,
Waite Agricultural Research Institute,
The University of Adelaide,
South Australia

Thesis submitted for the degree of Doctor of Philosophy

December, 1987
TABLE OF CONTENTS

Page

SUMMARY .. xi
STATEMENT .. xiii
ACKNOWLEDGEMENTS ... xiv
LIST OF FIGURES .. xvi
LIST OF TABLES ... xix

CHAPTER I: GENERAL INTRODUCTION ... 1

CHAPTER II: REVIEW OF LITERATURE ... 4

1. Environmental stress ... 5
 1.1 Introduction ... 5
 1.2 Definition ... 5

2. The physical status of plant tissue during environmental stress 6
 2.1 Water status ... 6
 2.1.1 Measurement ... 6
 2.1.1.1 Water content ... 6
 2.1.1.2 Energy status ... 6
 2.1.2 Effect of water shortage .. 7
 2.1.3 Effect of temperature extremes 9
 2.1.3.1 High temperature .. 9
 2.1.3.2 Low temperature ... 10
 2.2 Tissue temperature .. 11
 2.2.1 Measurement ... 11
3. Biological responses to stress .. 12
 3.1 The accumulation of solutes .. 12
 3.1.1 Amino acids .. 12
 3.1.1.1 Proline .. 12
 3.1.1.2 Other amino acids 16
 3.1.2 Betaines .. 17
 3.1.3 Sugars and polyols .. 19
 3.2 The metabolism of proline ... 20
 3.2.1 Biosynthesis .. 20
 3.2.1.1 The glutamic acid pathway 21
 3.2.1.2 The arginine and ornithine pathway 21
 3.2.2 Utilization of proline in turgid tissue 23
 3.2.3 Regulation of proline levels 24
 3.2.3.1 In turgid tissue 24
 3.2.3.2 In stressed tissue 25
 3.2.3.3 During stress relief 26
 3.3 The metabolism of glycinebetaine 27
 3.3.1 Biosynthesis .. 27
 3.3.1.1 The pathway of glycinebetaine biosynthesis 28
 3.3.2 Regulation of glycinebetaine levels 30
 3.3.2.1 In turgid tissue 30
 3.3.2.2 In stressed tissue 31
 3.3.2.3 During stress relief 32
4 Evaluation of the significance of selected biological responses to
stress in relation to plant resistance to stress 33
4.1 Drought stress... 33
 4.1.1 Osmotic adjustment... 34
 4.1.2 Protection of biopolymers or enzymes 36
 4.1.3 Alternate roles .. 38
 4.1.3.1 The conservation of energy and amino groups 38
 4.1.3.2 The sink for soluble nitrogen 39
 4.1.4 Solute accumulation and resistance to water stress 39
 4.1.4.1 Intra specific variation in solute accumulation and
 drought resistance ... 42
 4.1.5 Criticism of the postulated roles of solute accumulation in
 stress resistance ... 45
4.2 Temperature stress.. 48
 4.2.1 Protective roles of solutes ... 48
 4.2.2 Resistance to temperature stress 50

5. Conclusions .. 50

CHAPTER III : MATERIALS AND METHODS 52
1 Material .. 53
2 General methods ... 53
 2.1 Environmental control .. 53
 2.1.1 Growth conditions ... 53
 2.1.2 VPD control ... 53
 2.2 Plant culture .. 54
 2.3 Imposition of water stress ... 55
 2.4 Imposition of cold stress .. 55
 2.5 Harvesting the tissue .. 55
2.5 Measurement of water status of plants ... 56
2.6.1 Water potential ... 56
2.6.2 Osmotic potential ... 56
2.6.3 Turgor potential ... 56
2.6.4 Relative water content ... 57
2.7 Estimation of solutes ... 57
2.7.1 Extraction .. 57
2.7.2 Determination of amino acids - IIPC 58
2.7.2.1 Standard solutions of amino acids 58
2.7.2.2 Preparation and composition of the reagents and standard solution ... 60
2.7.3 Proline estimation ... 64
2.7.4 Glycinebetaine estimation ... 64
2.7.4.1 Purification on columns .. 64
2.7.4.2 NMR measurements ... 65
2.8 Statistical approach ... 65

CHAPTER IV: RESULTS AND DISCUSSION 67

Section I: Variability in amino acid accumulation pattern 68

1.1 Introduction .. 68

1.2 High temperature during water stress and amino acid accumulation in wheat ... 69
1.2.1 Methods ... 69
1.2.2 Results .. 71
1.2.2.1 Water status ... 71
1.2.2.2 Amino acid and glycinebetaine content 73

1.3 Amino acid changes during water stress and relief 75
1.3.1 Introduction .. 75
1.3.2 Methods ... 75
1.3.3 Results .. 76
1.3.3.1 Water status ... 76
1.3.3.2 Amino acid and glycinebetaine content 76

1.4 Rapidity of water stress imposition and amino acid changes in wheat 80
1.4.1 Introduction ... 80
1.4.2 Methods .. 80
1.4.3 Results .. 81
1.4.3.1 Water status ... 81
1.4.3.2 Amino acid and glycinebetaine content 81

1.5 Cold stress and amino acid accumulation in wheat seedlings 85
1.5.1 Introduction ... 85
1.5.2 Methods .. 85
1.5.3 Results .. 86
1.5.3.1 Water status ... 86
1.5.3.2 Amino acid and glycinebetaine content 86

1.6 Discussions ... 88

Section 2: Variability in the accumulation of proline and glycinebetaine associated with temperature during barley seedling growth environment ... 95
2.1 Introduction ... 95
2.2 Temperature during seedling growth and the accumulation of proline and glycinebetaine during subsequent water stress 95
2.2.1 Methods .. 95
2.2.2 Results .. 96
2.2.2.1 Proline content 96
2.2.2.2 Glycinebetaine content 96
2.3 Temperature during water stress and the time course of proline and glycinebetaine accumulation ... 98
 2.3.1 Introduction .. 98
 2.3.2 Methods ... 98
 2.3.3 Results .. 99
 2.3.3.1 Water status ... 99
 2.3.3.2 Proline content ... 99
 2.3.3.3 Glycinebetaine content ... 99

2.4 Proline and glycinebetaine accumulation during water stress at a range of lower temperatures ... 102
 2.4.1 Introduction .. 102
 2.4.2 Methods .. 102
 2.4.3 Results .. 102
 2.4.3.1 Water status ... 102
 2.4.3.2 Proline content ... 104
 2.4.3.3 Glycinebetaine content ... 104

2.5 Proline and glycinebetaine accumulation during heat stress at high or low vapour pressure deficit in well watered seedlings 106
 2.5.1 Introduction .. 106
 2.5.2 Methods .. 106
 2.5.3 Results .. 106
 2.5.3.1 Water status ... 106
 2.5.3.2 Proline content ... 108
 2.5.3.3 Glycinebetaine content ... 108

2.6 Proline and glycinebetaine accumulation during heat stress at high or low VPD in water stressed seedlings ... 110
 2.6.1 Introduction .. 110
 2.6.2 Methods .. 110
2.6.3 Results ... 110
 2.6.3.1 Water status .. 110
 2.6.3.2 Proline content ... 112
 2.6.3.3 Glycinebetaine content 112

2.7 Proline and glycinebetaine accumulation at a range of temperatures
 at low VPD in well watered seedlings 115
 2.7.1 Introduction ... 115
 2.7.2 Methods ... 115
 2.7.3 Results .. 115
 2.7.3.1 Water status ... 115
 2.7.3.2 Proline content .. 117
 2.7.3.3 Glycinebetaine content 117

2.8 Discussion ... 120

Section 3: Variations in proline and glycinebetaine accumulation
 associated with parent seed maturity temperature and
 seed size ... 123
 3.1 Introduction ... 123

3.2 Temperature during parent seed maturation and proline and
 glycinebetaine accumulation in wheat seedlings 124
 3.2.1 Methods .. 124
 3.2.2 Results .. 124
 3.2.2.1 Water status .. 124
 3.2.2.2 Proline content ... 124
 3.2.2.3 Glycinebetaine content 127
 3.2.2.4 Relationship between parent seed maturation temperature
 and seed weight .. 127
3.3 Elimination of seed size as the source of response to parent seed

3.3.1 Introduction ... 132
3.3.2 Methods .. 132
3.3.3 Results .. 133
 3.3.3.1 Water status .. 133
 3.3.3.2 Proline content .. 133
 3.3.3.3 Glycinebetaine content 133

3.4 Proline and glycinebetaine accumulating capacity associated with
parent seed weight in barley cultivars 137

3.4.1 Introduction .. 137
3.4.2 Methods .. 137
3.4.3 Results .. 138
 3.4.3.1 Water status .. 138
 3.4.3.2 Proline content .. 138
 3.4.3.3 Glycinebetaine content 138

3.5 Discussion ... 142

Section 4: Variability in the accumulation of proline and glycinebetaine
associated with seed sources in barley 145

4.1 Introduction ... 145

4.2 Seed sources and proline and glycinebetaine content in
barley seedlings ... 146

4.2.1 Introduction ... 146
4.2.2 Methods .. 146
4.2.3 Results .. 147
 4.2.3.1 Water status .. 147
 4.2.3.2 Proline content .. 147
 4.2.3.3 Glycinebetaine content 147
4.3 Seed sources and proline, and glycinebetaine content, in the absence of selection ... 150
4.3.1 Introduction .. 150
4.3.2 Methods .. 150
4.3.3 Results .. 150
 4.3.3.1 Water status ... 150
 4.3.3.2 Proline content .. 152
 4.3.3.3 Glycinebetaine content ... 152
4.4 Test of genetic similarity of different barley seed sources 152
 4.4.1 Introduction .. 152
 4.4.2 Methods .. 153
 4.4.3 Results .. 154
4.5 Discussion ... 154

Section 5: Variability in the accumulation of proline and glycinebetaine associated with vapour pressure deficit (VPD) during barley seedling growth and water stress ... 158
5.1 Introduction ... 158
5.2 Proline and glycinebetaine content of barley seedlings (cv. Clipper) at high (1.2 kPa) or low (0.12 kPa) VPD during growth and water stress ... 159
 5.2.1 Introduction .. 159
 5.2.2 Methods .. 159
 5.2.3 Results .. 160
 5.2.3.1 Water status .. 160
 5.2.3.2 Proline content ... 160
 5.2.3.3 Glycinebetaine content .. 160
5.3 VPD during the growth of barley cultivars and variability in the
 capacity to accumulate proline and glycinebetaine 166
 5.3.1 Introduction... 166
 5.3.2 Methods.. 166
 5.3.3 Results... 167
 5.3.3.1 Water status... 167
 5.3.3.2 Proline content... 167
 5.3.3.3 Glycinebetaine content... 167
 5.4 Discussion.. 171

CHAPTER V: GENERAL DISCUSSION.. 175
APPENDICES: ... 185a
BIBLIOGRAPHY: .. 186
SUMMARY

This investigation aimed to study (1) changes in amino acid and glycinebetaine content in response to the nature of stress imposition under laboratory conditions and (2) possible effects of environmental factors on variability in the content of proline and glycinebetaine in barley and wheat seedlings. Proline, asparagine, glutamine, glycine, valine, γ-amino butyric acid, and glycinebetaine accumulated in response to a reduction in leaf water status whereas glutamic acid, aspartic acid, and alanine levels declined; the overall effect was a net increase in amino acid content. However, the concentrations of accumulated amino acids varied markedly with the nature and rapidity of water stress. A rapid water stress imposed by withholding water or by PEG application at normal or high temperature resulted in the accumulation of amides to a level comparable to or more than that of proline. Progressive water stress resulted in the accumulation of proline and glycinebetaine while other amino acids accumulated to a lesser extent. The relief of a moderate water stress resulted in complete disappearance of the accumulated proline within 1 day. Most stress-induced metabolic changes returned to normal upon water stress relief with some exceptions, such as the metabolism of the accumulated glycinebetaine. Changes in metabolism induced by low temperature were independent of changes in RWC, Ψ, and Ψp, but resembled those induced by water stress except for the accumulation of aspartic acid and alanine.

Barley seedlings with different temperature histories showed different abilities to accumulate proline and glycinebetaine during subsequent water stress at a common temperature (20°C). The investigation to find the cause for this response revealed that both compounds respond to low temperature whereas glycinebetaine alone responded to high temperature in the absence of changes in leaf water status. The critical temperature required for the accumulation of glycinebetaine fell between 25 and 30°C. The rate of increase in glycinebetaine content was more than that for proline content with increase in temperature during water stress.
Wheat seedlings from two cultivars grown from seed matured at cooler temperatures generally accumulated more solute than seedlings grown from seed matured at a warmer temperature. Seed size also varied with parent temperature, and elimination of seed size differences by selection of similar size ranges eliminated the previously observed differences in proline content. The glycinobetaine content of the two wheat cultivars showed a residual effect of parent temperature, however. The proline and glycinobetaine content of 3 barley cultivars also varied with parent seed size. Excelsior seedlings grown from small seed accumulated more proline than Proctor grown from seeds of the same size but the opposite was true when the cultivars were grown from large seed. The glycinobetaine content of these cultivars showed no reversal in response with seed size.

Water stressed seedlings grown from two seed sources of barley cultivar Norbert, obtained directly from Canada (CN) or grown for two generations and subjected to selection pressure in Australia (AN*) showed differences in the ability to accumulate proline, but not glycinobetaine. This difference in response was the result of genetic differences due to selection pressure, in the absence of such selection no differences in proline content were found between the two seed sources.

A high VPD during seedling growth or water stress resulted in the accumulation of more proline and glycinobetaine. These effects of VPD during plant growth were independent of changes in leaf water status, an effect similar to 'hardening', but the effect of VPD during water stress may have been a result of the rate of water loss. Four barley cultivars grown at a high or low VPD and subsequently water stressed at a common VPD regime had different abilities to accumulate proline and glycinobetaine, such that the proline accumulating capacities of Excelsior and Proctor were in the reverse order in the two VPD regimes.

These results demonstrated the effects of experimental conditions on the metabolism of amino acids and glycinobetaine and offer an explanation for the conflicting responses of the two barley cultivars, Excelsior and Proctor, to proline accumulation when studied by two different groups (Singh et al., 1972; Hanson et al., 1977).