THE UNIVERSITY OF ADELAIDE

DEPARTMENT OF MECHANICAL ENGINEERING

THE ENHANCED MIXING BURNER

submitted by

Graham Jerrold Nathan, B.E.(hons)

for the Degree of Doctor of Philosophy

March 1988
Summary

A new type of enhanced mixing nozzle has been developed, which generates extremely strong mixing and a very rapidly spreading jet. The mechanism is investigated using high speed schlieren photography, surface flow visualisation within the nozzle, dye injection in water, acoustic frequency spectra measurements, smoke visualisation and hot wire anemometry.

It is postulated that the enhanced mixing is generated by a precessing asymmetric jet which is instantaneously directed at a large angle from the nozzle axis at the exit plane, but on average produces a rapidly spreading, symmetric jet. This instantaneous jet does not occupy the whole of the exit plane of the nozzle, and highly three dimensional secondary flow patterns are established as ambient fluid is drawn into the nozzle through the remainder of the exit plane.

The precessing motion is generated within the nozzle without any mechanical parts or acoustic coupling. The fluid is passed through an abrupt expansion, with a large expansion ratio, and reattaches asymmetrically to the nozzle wall downstream from the expansion. The pressure imbalances within the nozzle cause the resulting precession, and a small lip at the exit plane of the nozzle causes the jet to leave the nozzle at a large angle to the nozzle axis.

The postulate is supported by the experimental evidence, and is compared with the findings of other researchers who have investigated flow through abrupt expansions, and with acoustic, mechanical and fluidic means of jet excitation. The precession is found to occur at constant Strouhal Number based on the velocity at the throat, the step height at the upstream expansion and the precession frequency. The Strouhal Number is approximately 5×10^{-3} which is much lower than that typical of acoustic excitations, but is similar to those for two-dimensional mechanically and fluidically excited jets.

Half jet spreading angles of the order of 70° have been observed which indicates that very strong mixing is occurring. To provide quantitative measurement of the characteristics of the jet, an "entrainment shroud" was used to directly determine the rate of entrainment in cold flow, and flame stability was assessed in a combustion rig.
In order to sensibly compare the characteristics of the present nozzle with a simple nozzle, it was necessary to introduce "equivalent" exit diameter and velocity scales, defined as the mean velocity and diameter of the instantaneous jet at the exit plane. Using these scales, the present nozzle has an entrainment appetite of approximately five times that of a simple nozzle and produces a flame with one fifth of the standoff distance and four times the blow-off velocity. This indicates a definite improvement in flame stability, which is consistent with the increased rates of mixing and spread angles observed in the cold flow experiments.
Contents

Statement of Originality .. xvi

Permission to Copy .. xvi

Acknowledgements .. xvii

Notation ... xviii

1 Introduction .. 1

1.1 Existing Methods of Producing Strong Mixing 2

1.1.1 Nozzles Which Generate Recirculation Zones 3

1.1.2 Nozzles Which Amplify Existing Flow Structures 6

2 Apparatus .. 9

2.1 The Cold Flow Rig ... 9

2.1.1 The Diffuser ... 11

2.1.2 The Calibration Nozzle 13

2.1.3 Calibrating the Orifice Flow Rates 13

2.1.4 Combustion Apparatus 15

3 The Family of Enhanced Mixing burners 18

3.1 Introduction ... 18

3.2 The Abell Nozzle .. 21

3.3 The Long Cavity Nozzle 23

3.4 The Mid Length Cavity Nozzle 26

3.5 Conclusions ... 34
4 The MLC nozzle and its Mechanism

4.1 A Qualitative Description of the flow patterns generated in and by the MLC nozzle .. 35

4.2 High Speed Schlieren Photography .. 41

4.2.1 Apparatus ... 41

4.2.2 Results ... 41

4.3 Total and Static Pressure Profiles .. 41

4.3.1 Apparatus and Experimental Techniques 44

4.3.2 Results ... 44

4.4 Measurement of mean flow direction by Static Pressure Yaw Meter 47

4.4.1 Apparatus and Experimental Techniques 47

4.4.2 Results ... 48

4.5 The Wall Pressure in the cavity ... 52

4.6 The influence of a Downstream Separation 55

4.7 The Strouhal Number of the jet precession 64

4.7.1 Frequency measurement using dye in water 66

4.7.2 Frequency measurement using hot wire anemometry 67

4.7.3 Results ... 69

4.7.4 The effect of insert position and geometry on Precession Frequency .. 73

4.8 China Clay flow visualisation .. 70

4.8.1 Apparatus .. 77

4.8.2 Results .. 78

4.8.3 Discussion of Results ... 80

4.8.4 Reattachment Lengths .. 80

4.8.5 Intermittency and the directions of Precession and Swirl 80

4.8.6 The effect of an Insert on the Flow Patterns 93

4.8.7 The Influence of Probes on the Flow 99

4.9 Visualisation using Dye in Water ... 102

4.9.1 Apparatus .. 103

4.9.2 Results .. 105

4.10 Mass Flow Rate – Driving Pressure Characteristics 106

4.11 Analysis of schlieren photography .. 110
5 The Mid Length Cavity Nozzle: Performance Characteristics

5.1 Selecting a length scale for the enhanced jet

5.1.1 Measuring d_{seg}

5.2 Entrainment Measurements

5.2.1 Introduction

5.2.2 Mathematical Description & Notation

5.2.3 The Validity of Shroud Pressure as an Indicator of Equivalent Entrainment

5.2.4 Apparatus

5.2.5 The influence of the shroud on the jet

5.2.6 Results

5.3 Combustion Characteristics

5.3.1 Introduction

5.3.2 Blow-off Velocity of the MLC nozzle

5.3.3 Stand-off Distance

5.3.4 General Characteristics

5.4 Conclusions

5.4.1 The equivalent diameter, d_{seg}

5.4.2 Rates of entrainment

5.4.3 Combustion results

6 The Optimum Geometric Configuration of the MLC nozzle

6.1 The Geometric configuration

6.2 Optimum diameter of the Primary Orifice

6.2.1 Results from Entrainment Shroud

6.2.2 Results from single point total pressure measurements

6.3 Optimum shape of the Primary Orifice

6.3.1 The Effect of Throat Conical Diffuser Angle on Entrainment

6.4 Optimum Diameter of Downstream Orifice

6.4.1 Results from Entrainment Shroud

6.4.2 Results from single point total pressure measurements

6.4.3 Smoke Visualisation using a Non-Precessing Jet
7 Comparison with other research

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>169</td>
</tr>
<tr>
<td>7.2 Comparison of the proposed mechanism with acoustic feedback</td>
<td>169</td>
</tr>
<tr>
<td>7.2.1 The characteristics of acoustic feedback</td>
<td>170</td>
</tr>
<tr>
<td>7.2.2 Apparatus</td>
<td>170</td>
</tr>
<tr>
<td>7.2.3 Comparing the characteristics of the MLC nozzle with the elements of an acoustic feedback loop</td>
<td>172</td>
</tr>
<tr>
<td>7.2.4 Comparing the characteristics of the MLC and acoustic nozzles</td>
<td>175</td>
</tr>
<tr>
<td>7.2.5 The characteristics of the nozzle in Water</td>
<td>176</td>
</tr>
<tr>
<td>7.3 Flow behind Steps and Abrupt Expansions</td>
<td>177</td>
</tr>
<tr>
<td>7.3.1 Expansion Ratio</td>
<td>177</td>
</tr>
<tr>
<td>7.4 Mechanically and fluidically excited jets</td>
<td>181</td>
</tr>
<tr>
<td>7.5 Conclusions</td>
<td>183</td>
</tr>
<tr>
<td>7.5.1 Comparison with acoustic nozzles</td>
<td>183</td>
</tr>
<tr>
<td>7.5.2 Comparison with flow behind steps and expansions</td>
<td>185</td>
</tr>
<tr>
<td>7.5.3 Comparison with mechanically and fluidically excited jets</td>
<td>186</td>
</tr>
</tbody>
</table>

8 The Long Cavity Nozzle

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Pressure Profiles of the LC nozzle</td>
<td>187</td>
</tr>
<tr>
<td>8.2 Optimum Cavity Length using Blow-off Velocity</td>
<td>190</td>
</tr>
<tr>
<td>8.3 Summary of optimum geometric ratios</td>
<td>190</td>
</tr>
<tr>
<td>8.4 The Mechanism of the LC nozzle</td>
<td>197</td>
</tr>
<tr>
<td>8.4.1 Acoustic Frequency Spectra</td>
<td>197</td>
</tr>
<tr>
<td>8.4.2 Flow patterns in the jet</td>
<td>197</td>
</tr>
<tr>
<td>8.5 Conclusions</td>
<td>199</td>
</tr>
<tr>
<td>8.5.1 Apparent Mechanism</td>
<td>199</td>
</tr>
<tr>
<td>8.5.2 Characteristics</td>
<td>202</td>
</tr>
</tbody>
</table>

9 Conclusions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Evidence for the Postulated Flow Patterns</td>
<td>204</td>
</tr>
</tbody>
</table>
9.1.1 Major experimental Results .. 205
9.1.2 Future Research .. 207
9.2 Potential Applications ... 207
 9.2.1 Combustion Systems .. 208
 9.2.2 Ejectors and Eductors etc ... 209
 9.2.3 Vectored Jets .. 209

A Detail Drawings: $D = 13$ mm Enhanced Mixing Burner 220

B Detail Drawings: $D = 90$ mm Enhanced Mixing Nozzle 227
 B.1 Cavity Pipe .. 228
 B.2 Pipes and Diffuser upstream of Cavity 229
 B.3 Upstream Swirl Vanes .. 230
 B.4 Orifice Plates ... 231
 B.5 Saw-Tooth Downstream Orifice Plate 234
 B.6 Bell-Mouth Throat .. 235
 B.7 Flared Diffuser at Throat ... 236

C Detail Drawings: Ancillary Equipment 237
 C.1 The Entrainment Shroud ... 238
 C.2 Schlieren Photography: Apparatus 239