STUDIES ON MIXING AND MASS TRANSFER ACROSS A SEPARATED SHEAR FLOW

By

MD. MUJIBUR RAHMAN

A THESIS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

The Department of Civil Engineering
University of Adelaide
Australia
June 1988
Contents

Statement of Originality ... i

Acknowledgements ... iii

List of Figures ... xi

List of Tables .. xvii

Abstract .. xix

Principal Notations ... xx

1 Introduction ... 1

1.1 General .. 1

1.2 Description of the Separated Flow 2

1.3 Objectives of the Present Study 6

1.4 Scope and Method .. 7
Contents

1.5 Organization of the Thesis 8

2 Literature Review

2.1 General ... 9

2.2 One Dimensional Mixing ... 10

2.3 Mixing with Stagnation Zone Effects 14

2.4 The Separated Flow Field .. 21

2.4.1 Flow Pattern in the Recirculating Region 21

2.4.2 Measurements in the Flow Field 25

2.4.3 Separated Shear Layer vs Plane Mixing Layer 29

2.5 Large Coherent Eddy Structures in Free Shear Layers 36

2.5.1 Formation and Growth .. 40

2.5.2 Effects of Initial Conditions and Free Stream Turbulence 44

2.5.3 Effects of Three Dimensionality 47

2.5.4 Entrainment and Mixing 49

2.5.5 Coherent Structure Investigations 57

2.5.6 Coherent Structures in Reattaching Shear Layer 66

2.6 Mass Transfer in Separated Flow 67

3 Theoretical Considerations .. 70
Contents

3.1 General ... 70

3.2 Equations of Motion 71

3.3 Eddy Viscosity and Diffusivity Concepts 74

3.4 Plane Turbulent Mixing Layers 76

3.5 Solutions to the Equations of Motion 81

3.6 Taylor's Concept of Turbulent Diffusion 85

3.7 Theoretical Basis of Lateral Diffusivity 87

3.8 Coherent Structures Analysis 89

3.8.1 Decomposition of the Flow Field 90

3.9 Mass Transfer Across the Shear Layer 96

4 Experimental Investigations 101

4.1 Introduction .. 101

4.2 Experimental Objectives 102

4.3 The Separated Flow Model 104

4.4 Experimental Parameters 104

4.5 Phase I Experiments 107

4.5.1 Visualization Techniques 107

4.5.2 Experimental Procedure 111
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.3</td>
<td>Photo Analysis</td>
<td>113</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Problems and Precautions</td>
<td>114</td>
</tr>
<tr>
<td>4.6</td>
<td>Phase II Experiments</td>
<td>115</td>
</tr>
<tr>
<td>4.6.1</td>
<td>The Novar Flowmeter</td>
<td>116</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Measurements with LDV</td>
<td>117</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Associated Problems with LDV Measurements</td>
<td>121</td>
</tr>
<tr>
<td>4.7</td>
<td>Phase III Experiments</td>
<td>126</td>
</tr>
<tr>
<td>4.7.1</td>
<td>The Conductivity Probes</td>
<td>126</td>
</tr>
<tr>
<td>4.7.2</td>
<td>The Tracer Injection System</td>
<td>134</td>
</tr>
<tr>
<td>4.7.3</td>
<td>The Digital Data Acquisition System</td>
<td>138</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Experimental Procedure</td>
<td>140</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Problems and Precautions</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>Presentation and Discussion of Results - Phase I</td>
<td>146</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>146</td>
</tr>
<tr>
<td>5.2</td>
<td>Flow Visualization Results</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Discussion of Visual Observations</td>
<td>167</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Shear Layer Development</td>
<td>167</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Localized Rapid Mixing</td>
<td>171</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5.3.3 Mass Transfer in Separated Flow</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>6 Presentation and Discussion of Results - Phase II</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>6.2 Mean Velocity Profiles</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>6.2.1 Streamwise Mean Velocity</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Transverse mean velocity</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>6.3 Growth of the Separated Shear Layer</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>6.4 Similarity in Mean Motion</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>6.5 Turbulence Intensity Profiles</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>6.5.1 Streamwise Turbulence</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>6.5.2 Transverse Turbulence</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>6.6 Energy Spectra of Fluctuating velocity</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>6.7 Entrainment of Ambient Fluid</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>6.8 Discussion and Concluding Remarks</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>7 Presentation and Discussion of Results - Phase III</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>7.2 The Concentration Field</td>
<td>221</td>
<td></td>
</tr>
</tbody>
</table>
Contents

7.2.1 Iso-Concentration Contours .. 221
7.2.2 Short Time Average Concentration Decay 228
7.2.3 Spectra of Concentration Fluctuations 245
7.2.4 Spatial Average Concentration Decay 248
7.3 Mass Transfer Across the Shear Layer 253
7.4 Effects of Coherent Structures .. 260
7.4.1 Time Records of Concentration 261
7.4.2 Lateral Concentration Distribution 266
7.5 Concluding Remarks ... 269

8 Summary and Conclusions .. 271

8.1 Summary ... 271
8.1.1 Phase I .. 272
8.1.2 Phase II .. 274
8.1.3 Phase III .. 275
8.2 Concluding Remarks ... 277

Appendices ... 279

A Laser Doppler Velocimetry ... 279
Contents

A.1 Optical Arrangements .. 279
A.2 Basic Principle .. 281
A.3 Frequency Shifting .. 283
A.4 Fiberoptic Probe System 285
A.5 Signal Processing .. 286

B Computer Programs for Data Collection 290

C Synchronous Data Collection 298

C.1 Photo - synchronization System 298
C.2 Procedure of Data Collection 301

Bibliography ... 305
Abstract

The study was concerned to examine the mixing and mass transfer processes in a separated shear flow with a free surface. The results of the experimental investigation yielded information regarding the flow field which are of fundamental importance and show effects not previously reported. These will provide a deeper understanding of the basic physical processes involved in mixing and mass transfer across the separated free surface flow field.

The experimental programme was conducted in three separate phases. In phase 1, flow visualization experiments were undertaken to obtain a qualitative understanding of the flow field. The most striking result of this visualization study is the realization of a pulsatile motion in the recirculating eddy in the separated flow region which can cause considerable differences in the mixing and mass transfer rates of such separated shear flows. A localized rapid mixing region in the separated shear layer was identified which is believed to be due to an interaction between the shear layer and the recirculating eddy in the separated region. The development and growth of the separated shear layer structures were found to have similarities and differences from those in other free shear flows, e.g., plane mixing layers.

The second phase of this experimental programme was concerned to the measurements of velocity field in the separated flow using a single channel laser-Doppler velocimeter. The results of this phase of experiments supported the findings of the flow visualization experiments and also provided useful information regarding the behaviour of the mean flow pattern and the turbulent characteristics for the separated shear flow considered. Analysis of the growth rate, similarity behaviour and the entrainment in the separated shear layer showed significant differences from the plane free mixing layer.

In phase III, tracer concentration measurements were undertaken at vari-
ous points of the separated flow region using electrical conductivity probes. The results, showing the temporal and spatial variation of concentration at different locations, provided an insight into the mass transport processes in the separated flow region. Mass transfer analysis and the demonstration of the effects of large coherent eddy structures in the separated shear layer indicated that the calculation of mass transfer rates applying conventional gradient transfer theory could lead to an improper estimate.