The Distribution, Pathogenicity and Population Dynamics of *Pratylenchus thornei* on wheat in South Australia.

Julie Margaret NICOL

B.Ag.Sc. (Hons) University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy in The University of Adelaide (Faculty of Agricultural and Natural Resource Sciences) Department of Crop Protection.

January 1996
Contents

Preface

Title i
Contents ii
Summary vi
Declaration ix
Acknowledgements xi
Abbreviations xiii

Chapter 1
Introduction 1

Chapter 2
Literature Review

2.1 Systematics and Distribution 3
2.2 Host Range and Distribution 3
2.3 Biology, Histopathology and Life Cycle 6
2.3.1 Biology 6
2.3.2 Histopathology 6
2.3.3 Life Cycle 10
2.4 Symptoms 12
2.5 Associations with Other Pathogens 13
2.6 Environmental Influences 15
2.6.1 Climate 16
2.6.2 Soil 17
2.6.3 Nutrition 18
2.7 Survival 19
2.8 Economic Importance 21
2.9 Population Dynamics and Control Measures 25
2.9.1 Chemical Control 30
2.9.2 Cultural Practices 32
2.9.3 Biological Control 34
2.9.4 Resistance and Tolerance 35

Chapter 3
General Laboratory Techniques

3.1 Nematode Inocula 38
3.2 Nematode Extraction 39
3.2.1 Soil 39
3.2.2 Root 39
3.3 Nematode Counting 39
3.4 Staining Nematodes and/or Fungi 40
3.4.1 Nematodes Only 40
3.4.2 Nematodes plus Fungi 40
3.5 Seed Sterilisation and Germination 40
3.6 Statistical Analysis 41
3.6.1 Statistical Designs 41
3.6.2 Analysis of Variance and Error Bars 41
3.6.3 Transformations 42
3.7 Classification of Soils used in Laboratory Experiments 42
Chapter 4
Statewide Survey for *P. thornei* and *P. neglectus* in the Cereal Regions of South Australia

4.1 Introduction 43
4.2 Materials and Methods 44
4.3 Results 46
4.4 Discussion 48

Chapter 5
Multiplication of *P. thornei* and Development of a Resistance Assay for Cereal and Non-Leguminous Hosts

5.0 General Introduction 51
5.1 Comparative Multiplication of *P. thornei* over time
 5.1.1 Introduction 52
 5.1.2 Materials and Methods 52
 5.1.3 Results 55
 5.1.4 Discussion 58
5.2 Relation between *P. thornei* and *P. neglectus*
 5.2.1 Introduction 61
 5.2.2 Materials and Methods 61
 5.2.3 Results 63
 5.2.4 Discussion 65
5.3 Development of a Resistance Assay
 5.3.1 Introduction 68
 5.3.2 Materials and Methods 68
 5.3.3 Results 70
 5.3.4 Discussion 74
5.4 Modification of a Resistance Assay
 5.4.1 Introduction 76
 5.4.2 Materials and Methods 76
 5.4.3 Results 77
 5.4.4 Discussion 79
5.5 General Discussion 79

Chapter 6
Population Dynamics and Yield Relations of *P. thornei* in the Laboratory

6.0 General Introduction 82
6.1 Population Dynamics and Pathogenicity of *P. thornei* on Machete at 25°C
 6.1.1 Introduction 82
 6.1.2 Materials and Methods 83
 6.1.3 Results 84
 6.1.4 Discussion 87
6.2 Soil Type Relations with *P. thornei* and *P. neglectus*
 6.2.1 Introduction 89
 6.2.2 Materials and Methods 89
 6.2.3 Results 91
 6.2.4 Discussion 95
6.3 Population Dynamics and Pathogenicity of *P. thornei* on Machete at 20°C
 6.3.1 Introduction 97
 6.3.2 Materials and Methods 97
 6.3.3 Results 98
 6.3.4 Discussion 103
6.4 Population Dynamics and Pathogenicity of P. thornei on Warigal at 20°C
 6.4.1 Introduction 105
 6.4.2 Materials and Methods 105
 6.4.3 Results 106
 6.4.4 Discussion 114
6.5 General Discussion 116

Chapter 7
Field Population Dynamics and Yield Relation of P. thornei
7.1 Introduction 117
7.2 Materials and Methods 119
 7.2.1 General Methods 119
 7.2.2 Sampling Device 120
 7.2.3 Field Trial Layout 121
 7.2.4 Sampling Methodology for Initial Density 124
 7.2.5 Plant and Nematode Characters Measured 126
 7.2.5.1 Plant Parameters Sampled 126
 7.2.5.2 Nematode Variables Sampled 127
7.3 Results 127
 7.3.1 Plant Parameters Sampled 127
 7.3.2 Nematode Variables Sampled 133
7.4 Discussion 137

Chapter 8
Plant Genetic Control and Possible Mechanisms of the P. thornei Resistance in Cereals
8.0 General Introduction 148
8.1 Initial Penetration of Resistant and Susceptible Hosts 149
 8.1.1 Introduction 149
 8.1.2 Materials and Methods 150
 8.1.3 Results 151
 8.1.4 Discussion 152
8.2 Inheritance of P. thornei resistance in the wheat cultivar, AUS4930 153
 8.2.1 Introduction 153
 8.2.2 Materials and Methods 154
 8.2.3 Results 155
 8.2.4 Discussion 159

Chapter 9
Nematode/Fungal Interactions
9.1 Introduction 163
9.2 Materials and Methods 164
9.3 Results 166
9.4 Discussion 179

Chapter 10
Final Discussion and Conclusions 185
Appendices

Appendix A Experimental Data for the Statewide Distribution Survey of *P. thornei* and *P. neglectus* in the cereal growing regions. 193

Appendix B Experimental Data for the Field Population Dynamics and Yield Relations of *P. thornei* on cereals for the 2 year trial at Tanunda. 201

Appendix C Preliminary Investigation into the Molecular Distinction of *P. thornei* and *P. neglectus*.

 C1.0 General Introduction 204
 C1.1 Extraction of DNA from nematodes
 C1.1.1 Introduction 205
 C1.1.2 Materials and Methods 206
 C1.1.3 Results and Conclusions 209
 C1.2 RFLP Hybridisation Analysis
 C1.2.1 Introduction 209
 C1.2.2 Materials and Methods 211
 C1.2.3 Results 212
 C1.2.3 General Conclusion 213

Appendix D Morphometrics of South Australian populations of *P. thornei* and *P. neglectus* males and females.

 D1.0 Abstract 215
 D1.1 Introduction 216
 D1.2 Materials and Methods 217
 D1.3 Descriptions 217
 D1.4 Discussion 219

References 224
Summary

The root lesion nematode (*Pratylenchus thornei*) has been identified as a damaging pathogen on cereals worldwide and within Australia in Queensland and New South Wales. In South Australia, *P. thornei* and *P. neglectus* have been found, but their importance to the cereal industry has yet to be defined. Although the research reported here focused primarily on *P. thornei*, several experiments involved *P. neglectus*. The major objectives of the project were to determine the distribution of both *Pratylenchus* species in South Australia, to study the field and laboratory population dynamics of *P. thornei* in relation to wheat yields, to determine its host range on a variety of cereal and non-leguminous hosts and to identify possible sources of nematode resistant wheat cultivars/varieties. The involvement of root rotting fungi with the nematode in wheat disease was studied in preliminary experiments.

The statewide survey for *P. thornei* and *P. neglectus* in soil and plants from the cereal growing regions in South Australia showed that there was a 90% chance of finding one or both species of nematode in a given soil type. *P. neglectus* was more commonly found in sandy soils, while *P. thornei* tended to be associated with clay soils, although this distinction was not definitive. The survey confirmed that both nematodes had a wide host range.

An assay for screening cereal and non-leguminous hosts was developed. Plants could be effectively screened over two months instead of five, using plants grown in a sandy soil in small polyethylene tubes inoculated with a non damaging initial density of 400 *P. thornei*. From the plants examined, varying degrees of nematode multiplication were evident for both nematode species. The majority of commonly cultivated Australian wheats were highly susceptible to *P. thornei*. Triticale, rye, oats and durum were moderately susceptible to resistant, while the non-leguminous hosts showed suggested resistance to *P. thornei*. Similar results were obtained for *P. neglectus*. However, in some instances differences in nematode multiplication between some varieties/cultivars
within the *T. aestivum* species were evident. The variety AUS4930 was one of the least susceptible wheats tested for *P. thornei*, but the most susceptible for *P. neglectus*.

Laboratory studies on yield relations and population dynamics on wheat found that *P. thornei* significantly affected many growth variables. In general, low initial densities at early stages of growth (up to 5 weeks) were associated with a stimulus of many plant growth variables, possibly a host response to damage. However, higher initial densities significantly reduced many growth variables, verifying that *P. thornei* damages wheat in its own right.

The field population dynamics and yield relations of *P. thornei* were examined in a two year trial established in the Barossa Valley in South Australia. *P. thornei* caused significant yield losses up to 38% on commonly cultivated South Australian wheats, however the initial *P. thornei* density associated with yield reductions was seasonally variable. Two suspected resistant wheat varieties, AUS4930 and GS50A, were confirmed as resistant in the field, and a common South Australian wheat (Warigal) was found to be highly susceptible. The population dynamics of *P. thornei* followed the general pattern of nematode behaviour, with low initial densities associated with high multiplication and higher densities with reduced multiplication. However, the equilibrium density for *P. thornei* was approximately 10,000 *P. thornei*/200g OD soil, which was well above previously documented *P. thornei* thresholds on cereal crops.

Preliminary studies investigating the mechanism of *P. thornei* resistance showed that in both wheat varieties AUS4930 and GS50A the resistance acted post-penetration. Genetic inheritance studies with AUS4930 and a commonly grown South Australian wheat suggested further selection of both parents was necessary to define accurately the genetic basis of the resistance.

There were synergistic associations of wheat damage with *P. thornei* and *P. neglectus* and two commonly occurring South Australian root rotting fungi, *Fusarium acuminatum*
and Microdochium bolleyi. It will be necessary to further investigate such associations, particularly before adoption of resistant cultivars, because fungal infection might lower resistance.

From this study *P. thornei* is considered to be economically important in South Australia. The polyphagous host range and polycyclic nature of the nematode will make effective control of the nematode difficult, but not impossible. The two wheat varieties, field selections of GS50A from Queensland and AUS4930, originally from Iraq, offer potential sources of resistance to *P. thornei* in the field. The influence of root rotting fungi in combination with Pratylenchus on resistance needs to be carefully considered for successful nematode control, as well as the inherent differences in cultivar reaction to the two nematode species.