Nociception in the Hypertensive Rat

A thesis submitted to the University of Adelaide in fulfilment of the requirements of the degree of PhD

in

The Department of Clinical and Experimental Pharmacology, University of Adelaide

by

Rodney James Irvine

April 1996

Awarded 1996
ABSTRACT

DECLARATION

PUBLICATIONS IN SUPPORT OF THIS THESIS

ACKNOWLEDGMENTS

ABBREVIATIONS

CHAPTER 1

GENERAL INTRODUCTION

1.1 Hypertension

1.2 Animal models of hypertension
 1.2.1 Renal
 1.2.2 Genetic
 1.2.3 Spontaneously hypertensive rat (SHR)
 1.2.4 Sub-strains of the SHR

1.3 Blood pressure mechanisms
 1.3.1 Baroreceptor-reflex-arc
 1.3.2 Sympathetic nervous system
 1.3.3 Renin-angiotensin system (RAS)
 1.3.4 Opioids
 1.3.5 Central mechanisms

1.4 Pain mechanisms
 1.4.1 Definition of pain
 1.4.2 Nociception
 1.4.3 Afferent pain pathways
 1.4.4 Opioids
 1.4.5 Endogenous pain control mechanisms

1.5 Pain perception in hypertension
 1.5.1 Animals
 1.5.2 Humans
1.6 Adaptation to stress
 1.6.1 Definition and occurrence
 1.6.2 Physiological mechanisms
 1.6.3 Behavioural factors

1.7 Introduction summary

1.8 Aims

CHAPTER 2

GENERAL METHODS

2.1 Animals
 2.1.1 Source of strains and housing conditions
 2.1.2 Surgical procedures
 2.1.3 Drug administration

2.2 Blood pressure measurement
 2.2.1 Indirect blood pressure measurements
 2.2.2 Direct blood pressure measurements

2.3 Nociception tests
 2.3.1 Hotplate measurements
 2.3.2 Tail-flick measurements

2.4 Locomotor activity measurement

2.5 Statistical analyses

CHAPTER 3

STUDIES ON TWO STRAINS OF RAT DERIVED FROM THE SHR AND THE INFLUENCE OF GENDER.

3.1 Introduction
 3.1.1 WK-HA and WK-HT rats
 3.1.2 Gender

3.2 Methods
 3.2.1 Animals
 3.2.2. Blood pressure, hotplate and LMA measurements

3.3 Results
 3.3.1 WK-HA and WK-HT strains
 3.3.2 Gender
CHAPTER 4

THE EFFECT OF ANTIHYPERTENSIVE DRUGS ON NOCICEPTION IN THE SHR AND WKY RAT.

4.1 Introduction

4.2 Methods
 4.2.1 Animals and drugs
 4.2.2 Blood pressure and behavioural measurements

4.3 Results
 4.3.1 Effects of injected drugs
 4.3.2 Drug doses consumed
 4.3.3 Effects of oral captopril
 4.3.4 Effects of oral hydralazine
 4.3.5 Effects of oral losartan
 4.3.6 Effects of oral verapamil

4.4 Discussion

CHAPTER 5

THE EFFECTS OF PERIPHERALLY ADMINISTERED ANGIOTENSIN II AND NOREPINEPHRINE ON BLOOD PRESSURE AND NOCICEPTION IN WISTAR AND WKY RATS.

5.1 Introduction

5.2 Methods
 5.2.1 Animals
 5.2.2 Drug administration
 5.2.3 Surgery
 5.2.4 Blood pressure, behavioural tests and water consumption

5.3 Results
 5.3.1 Angiotensin in WKY animals
 5.3.2 Angiotensin in outbred Wistar rats
 5.3.3 Norepinephrine in WKY rats
 5.3.4 Water consumption

5.4 Discussion
CHAPTER 6

THE EFFECTS OF CENTRAL ADMINISTRATION OF ANGIOTENSIN AND LOSARTAN ON BLOOD PRESSURE AND NOCICEPTION IN WKY AND SHR RATS.

6.1 Introduction

6.2 Methods
 6.2.1 Animals
 6.2.2 Surgical procedures
 6.2.3 Blood pressure and behavioral tests

6.3 Results
 6.3.1 Infusions of angiotensin in WKYs
 6.3.2 Infusions of losartan in SHR s
 6.3.3 Water consumption

6.4 Discussion

CHAPTER 7

RADIOTELEMETRIC BLOOD PRESSURE MONITORING IN THE SHR.

7.1 Introduction

7.2 Methods
 7.2.1 Animals and drug administration
 7.2.2 Surgery for radiotelemetric implants
 7.2.3 Transducer/transmitter
 7.2.4 Receivers
 7.2.5 Sampling parameters and data storage
 7.2.6 Baseline blood pressures
 7.2.7 Carotid blood pressures

7.3 Results
 7.3.1 Twenty four hour readings
 7.3.2 Influence of brief handling
 7.3.3 Unrestrained readings
 7.3.4 Readings in anaesthetised animals
 7.3.5 Telemetry vs tail-cuff in conscious animals
 7.3.6 Drug effects

7.4 Discussion
CHAPTER 8

PAIN PERCEPTION IN HUMAN NORMOTENSIVE AND HYPERTENSIVE SUBJECTS; EFFECTS OF DRUG TREATMENT.

8.1 Introduction

8.2 Methods
 8.2.1 Experimental subjects
 8.2.2 Blood pressure and heart rate
 8.2.3 Cold pressor test

8.3 Results
 8.3.1 Age and resting blood pressures
 8.3.2 Cold pressor test

8.4 Discussion

CHAPTER 9

ALCOHOL CONSUMPTION IN THE SHR

9.1 Introduction

9.2 Experiment 1: The influence of antihypertensive drugs
 9.2.1 Methods
 9.2.1.1 Animals
 9.2.1.2 Two bottle choice test
 9.2.1.3 Drug treatment and blood pressures
 9.2.2 Results & Discussion

9.3 Experiment 2: The Influence of age
 9.3.1 Methods
 9.3.2 Results

9.4 Discussion

CHAPTER 10

DISCUSSION

APPENDIX

BIBLIOGRAPHY
ABSTRACT

The relationship between nociceptive responses, blood pressure and locomotor activity was studied in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. No gender differences were observed and when two strains derived from the SHR were examined, the analgesic trait was linked to the hypertensive (HT) and not the hyperactive (HA) strain.

Administration of the antihypertensive drugs to SHRs showed that the pain responses could be returned to normal in the SHR by treatment with drugs which influence the renin-angiotensin-system (RAS), but not by antihypertensive drugs which work through other mechanisms.

Subcutaneous administration of angiotensin II to WKY rats increased blood pressure and nociceptive thresholds such that they were similar to untreated SHRs. This did not occur when blood pressure was raised with norepinephrine. Icv infusions of angiotensin did not influence nociception and icv angiotensin receptor blockade did not influence blood pressure.

Human hypertensives treated with beta blockers and with blood pressures identical to normotensive controls had a reduced sensitivity to pain. However, those treated with ACE inhibitors had identical pain sensitivity to normotensives which is in concert with the animal data.

Radiotelemetric blood pressure recording was investigated as an improved method in this area of research where the reduction of stress is important. Heart rates and blood pressures were lower in the telemetered animals compared to those tested via the tail-cuff method and the effect of antihypertensive drugs was altered.

In view of the role of opioids in hypertension, pain and consummatory behaviours, alcohol consumption was studied. Alcohol consumption in the WKY was lower than in the SHR and this difference was abolished by captopril treatment. This pattern was shown to alter with the age of the animal.

Overall, the studies showed that the SHR has a decreased sensitivity to nociceptive stimuli which is not directly linked to blood pressure or central angiotensin levels. Peripheral angiotensin, at an unknown site, modulates pain perception in the SHR.

Hypoalgesia in human hypertensives is influenced by ACE inhibitors in a manner similar to the rat model.

Radiotelemetry will be the method of choice for blood pressure monitoring in this area of research.

The SHR may provide a useful model for investigation of the self administration of drugs of abuse.