Quantitative estimation of islet tissue of pancreas in Australian mammals
(Comparative histological study)

by

Nalini Edwin, MBBS, M.Sc.
Department of Anatomy and Histology
The University of Adelaide

Thesis submitted for the Degree of Doctor of Philosophy
in the University of Adelaide
November 1986
CONTENTS

SUMMARY

ACKNOWLEDGEMENTS

INTRODUCTION AND HISTORICAL SURVEY

(a) General Introduction 4
(b) Silver impregnation methods 7
(c) Immunocytochemical methods 9
(d) Special identification and functional correlation of main islet cell types 10
(e) Review of literature on quantitation of islet tissue 18
(f) Comparative embryological aspects
 Introduction 21
 i) Embryological origin of tissue
 ii) Phylogenetic origin of tissue 23
 iii) Phylogenetic aspects of pancreatic development 23
 Phylogenetic review in vertebrates 25

AIMS OF PRESENT STUDY 38

MATERIALS AND METHODS 39

RESULTS 44

DISCUSSION

(a) Histology of pancreas 94
(b) Relationship between pancreas weight & body weight 95
(c) Islet distribution in regions of pancreas percentage 96
(d) Percentage islet tissue in the pancreas 97
(e) Islet mass in relation to body weight 98
(f) Relationship between islet tissue and sex 98
(g) Quantitative estimation of B cells 98
(h) Quantitative estimation of A cells 100
(i) Quantitative estimation of D cells 101
(j) Quantitative estimation of PP cells 101
(k) Discussion on total islet volume 103
(l) Comparative staining 104
(m) General discussion 104

CONCLUSION 108

REFERENCES 111

APPENDIX
SUMMARY

Quantitative estimation of islet tissue of pancreas in Australian Mammals

This is a comparative histological study of the islet tissue of the pancreas in selected prototherian, metatherian and eutherian mammals.

Six animals, three male and three female, of each of the following species were used

Prototheria - Echidna (Tachyglossus aculeatus)

Metatheria - Possum (Trichosurus vulpecula)
- Grey kangaroo (Macropus fuliginosus)

Eutheria - Hopping mouse (Notomys alexis)
- Water rat (Hydromys chrysogaster)

All animals were weighed either before or immediately after death.

The pancreas was removed and weighed and the relationship between the weight of the pancreas and weight of the animal calculated. No linear relationship was found in any of the species.

Estimations of islet tissue mass and of individual cell types were made on paraffin sections of Bouin-fixed tissue taken from head, neck, body and tail regions of the pancreas of each animal. Islet tissue mass was assessed using a linear scanning technique (Carpenter and Lazarow, 1962, J. Histochem. Cytochem. 101, 324-328) on sections stained with haematoxylin and eosin.

The relationship between percentage islet tissue and the weight of the pancreas was calculated. There is a clear relationship in possum (Trichosurus vulpecula), hopping mouse (Notomys alexis) and water rat (Hydromys chrysogaster).

The relationship between average islet mass and body weight was calculated. No linear association exists between them.

Specific cell types were assessed using a point-intercept method (Weibel et al., 1966, J. Cell Biol. 30, 23-38). Sections stained with aldehyde fuchsin were used for the assessment of beta (β) cells in all the species in the head, neck, body and tail regions.
For the assessment of alpha (α) cells the same procedure was employed using sections stained with Grimelius' silver nitrate stain (Grimelius, 1968, Acta Soc. Med. Upsal 73, 271-294) in echidna (Tachyglossus aculeatus) and possum (Trichosurus vulpecula), phosphotungstic acid haematoxylin in grey kangaroo (Macropus fuliginosus) and water rat (Hydromys chrysogaster), and an immunoperoxidase method for glucagon in hopping mouse (Notomys alexis).

For the assessment of delta (δ) cells, the same procedure was employed using sections stained by an immunoperoxidase method for somatostatin in echidna (Tachyglossus aculeatus), possum (Trichosurus vulpecula), hopping mouse (Notomys alexis), and water rat (Hydromys chrysogaster), and Epple's modification (Epple, 1967, Stain Tech. 42, 53-66) of the modified Davenport technique (Hellerstrom and Hellman, 1960, Acta endocr. 35, 518-532) in grey kangaroo.

For the assessment of the pancreatic polypeptide cells (PP), the same procedure was applied using section stained by an immunoperoxidase method for pancreatic polypeptide in echidna (Tachyglossus aculeatus), possum (Trichosurus vulpecula), grey kangaroo (Macropus fuliginosus), hopping mouse (Notomys alexis) and water rat (Hydromys chrysogaster).

Positive regional differences noted were a greater percentage proportion of islet tissue in the tail region in hopping mouse (Notomys alexis) and water rat (Hydromys chrysogaster) (Eutherian species) and also a lower proportion of alpha cells in the head region of the above Eutherian species. Alpha cells were peripherally situated in the islets in these species. A greater proportion of PP cells was found in the head region of echidna (Tachyglossus aculeatus), possum (Trichosurus vulpecula) and water rat (Hydromys chrysogaster).

Staining methods were compared in quantitating tissues, using immunoperoxidase techniques for insulin and aldehyde fuchsirn in water rat (Hydromys chrysogaster), immunoperoxidase technique for glucagon and phosphotungstic acid haematoxylin in grey kangaroo (Macropus fuliginosus), immunoperoxidase technique for glucagon and Grimelius' silver nitrate stain
(Grimelius, 1968, Acta Soc. Med. Upsal. 73, 271-294) in possum (Trichosurus vulpecula), immunoperoxidase for somatostatin and modified Davenport's silver technique (Hellerstrom and Hellman, 1960) using Epple's modification (Epple, 1962) in grey kangaroo (Macropus fuliginosus). The results were the same using both staining methods in each case where staining was successful.

These results show some elements of agreement with a previously proposed hypothesis (Bonner-Weir and Weir, 1979, Gen. Comp. Endocr. 38, 28-37) regarding the general pattern of arrangement of the mammalian endocrine pancreas.