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Abstract

This thesis considers several questions in the field of matrix-analytic methods. These
methods have been used extensively in applied probability to analyse a wide variety of
problems. However, there still appears to be scope for further development both in the
range of models that can be analysed, and in the type of analysis which can be employed.

The level dependent quasi-birth-and-death process (LDQBD) is an example of a
matrix-analytic model. The LDQBD is a generalisation of the level independent quasi-
birth-and-death process (QBD). QBDs are used frequently as a modelling tool when
applying matrix-analytic methods but the LDQBD is used rather infrequently. In this
thesis we develop theoretical results for LDQBDs as well as a number of algorithms that
can be used to analyse LDQBDs. We model a number of systems using LDQBDs and
provide numerical results.

The level independent M/G/1-type process and the level independent GI/M/1-type
process are two other matrix-analytic models. Both of these models can be thought of as
extensions of the QBD. Ramaswami developed a duality relationship for these two models.
We give a new interpretation of Ramaswami’s duality result and use this interpretation
to develop an alternative duality relationship. We also present a duality result for level
dependent M/G/1-type and GI/M/1-type processes which are generalisations of the level
independent processes.

The thesis also considers quasi-stationary distributions for QBDs. We present an
expression for the quasi-stationary distribution as well as algorithms for its numerical

computation.



