Electron Transport
in Photon and Electron Beam Modelling

Paul J. Keall, M.Sc.

Thesis submitted for the degree of
Doctor of Philosophy
in the University of Adelaide
Department of Physics and Mathematical Physics

Supervisors:
Dr Peter W. Hoban
Dr John R. Patterson

July 1996

Awarded 1996
Contents

Abstract ix

Statement xi

Acknowledgements xiii

Symbols and Abbreviations xv

Preface xix

1 Photon and Electron Physics at Therapeutic Energies 1

1.1 Introduction .. 1

1.2 Photon interactions ... 2

1.2.1 Introduction .. 2

1.2.2 Compton scattering ... 2

1.2.3 Photoelectric absorption 3

1.2.4 Pair production ... 4

1.2.5 Attenuation coefficients 6

1.2.6 Fluence .. 7
1.2.7 Kerma ... 8
1.2.8 Terma ... 9
1.3 Electron interactions I. Energy losses 10
 1.3.1 Introduction .. 10
 1.3.2 Ionisation and excitation energy losses 10
 1.3.3 δ-ray production 11
 1.3.4 Bremsstrahlung production 11
 1.3.5 Collisional stopping power 12
 1.3.6 Restricted collisional stopping power 14
 1.3.7 Radiative stopping power 15
 1.3.8 Restricted radiative stopping power 15
1.4 Electrons interactions II. Scattering 16
 1.4.1 Introduction ... 16
 1.4.2 Single scattering 17
 1.4.3 Multiple scattering 19
1.5 Absorbed dose .. 22
 1.5.1 Primary and scatter dose 23
 1.5.2 Measurement of absorbed dose 23
1.6 The main components of a linear accelerator 24
1.7 Clinical photon beams ... 26
 1.7.1 Introduction .. 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>The Effective Depth method</td>
<td>60</td>
</tr>
<tr>
<td>2.3.3</td>
<td>The Pencil Beam method</td>
<td>61</td>
</tr>
<tr>
<td>2.3.4</td>
<td>The 3-D Pencil Beam method</td>
<td>65</td>
</tr>
<tr>
<td>2.3.5</td>
<td>The Pencil Beam Redefinition algorithm</td>
<td>67</td>
</tr>
<tr>
<td>2.3.6</td>
<td>The Multi-ray model</td>
<td>72</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Perturbative theoretical methods</td>
<td>74</td>
</tr>
<tr>
<td>2.3.8</td>
<td>The Phase Space Evolution model</td>
<td>76</td>
</tr>
<tr>
<td>2.3.9</td>
<td>The Monte Carlo method</td>
<td>79</td>
</tr>
<tr>
<td>2.3.10</td>
<td>The Superposition/Convolution method</td>
<td>79</td>
</tr>
<tr>
<td>2.3.11</td>
<td>The Macro-Monte Carlo algorithm</td>
<td>83</td>
</tr>
<tr>
<td>2.3.12</td>
<td>The Voxel-based Monte Carlo method</td>
<td>87</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Superposition Incorporating Fermi-Eyges Theory</td>
<td>89</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Fermi-Eyges electron scattering theory</td>
<td>90</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Photon-Electron Cascade model</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>Method</td>
<td>91</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The Fermi-Eyges theory scaling method</td>
<td>91</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Superposition calculations</td>
<td>95</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Monte Carlo calculations</td>
<td>95</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Phantoms</td>
<td>95</td>
</tr>
</tbody>
</table>
CONTENTS

3.3 Results ... 97

3.3.1 Single interaction site results 97

3.3.2 Depth dose results .. 98

3.3.3 Dose profile results 102

3.3.4 Computation time .. 103

3.4 Conclusion .. 103

4 Super-Monte Carlo for X-ray Beam Planning 105

4.1 Introduction ... 105

4.2 The Super-Monte Carlo photon beam dose calculation method 107

4.2.1 Calculation of the primary dose using pre-generated electron track data 107

4.2.2 Calculation of the scatter dose by superposition 113

4.2.3 Superposition calculations 114

4.2.4 Monte Carlo calculations 114

4.2.5 Phantoms ... 115

4.3 Results ... 117

4.3.1 Single interaction site results 117

4.3.2 Depth dose curves in a water-lung-water phantom 118

4.3.3 Profile curves at mid-lung in a water-lung-water phantom 119

4.3.4 Isodose curves in a two lung-block phantom 119

4.3.5 Computation time 126

4.4 Conclusion .. 126
5 Super-Monte Carlo for Electron Beam Planning

5.1 Introduction ... 129

5.1.1 The problems with electron beam superposition 130

5.2 The Super-Monte Carlo electron beam dose calculation method 132

5.2.1 Electron track data generation 132

5.2.2 Stopping power, scattering power and radiation yield ratios 133

5.2.3 Transport of electron tracks 136

5.2.4 Monte Carlo ... 142

5.2.5 Phantoms ... 143

5.3 Results .. 143

5.3.1 Pencil beam dose distributions in homogeneous phantoms 144

5.3.2 Broad beam dose distributions in water 149

5.3.3 Broad beam dose distributions in heterogeneous phantoms 150

5.3.4 Statistics and computation time 156

5.4 Conclusion ... 159

6 Conclusions, Discussion and Future Research 161

6.1 Conclusions ... 161

6.2 Extension of the current research 163

6.3 Application of the current research 164

6.4 Epilogue ... 165

A Users Manual for the Fermi-Eyges Scaling Convolution and Super-Monte
CONTENTS

Carlo Suite of Software C.CONVOLUTION 167

A.1 Introduction .. 168
 A.1.1 Fermi-Eyges scaling convolution 169
 A.1.2 Super-Monte Carlo 170

A.2 Description of programs 172
 A.2.1 c_input.h .. 172
 A.2.2 c_convolution.h 174
 A.2.3 c_main.c .. 174
 A.2.4 c_input_kernels.c 174
 A.2.5 c_elec_dens_grid.c 175
 A.2.6 c_calc_terma.c 175
 A.2.7 c_input_tracks.c 175
 A.2.8 t_calc_prim_dose.c 175
 A.2.9 t_calc_scat_dose.c 176
 A.2.10 c_calc_dose.c 176

A.3 Changes ... 176

B Using Restricted Stopping Powers to Vary Electron Step Length 179

C Changing the Electron Step Scattering Angle in Non-waterlike Media 181
Abstract

To address the deficiencies of currently available dose calculation algorithms for radiotherapy planning, two rigorous dose calculation methods have been devised.

The first method incorporates Fermi-Eyges multiple scattering theory into the primary dose calculation of the superposition method for external X-ray beam radiotherapy. The inclusion of scattering theory into the superposition technique accounts for the density distribution between the primary photon interaction and energy deposition sites, whereas conventional superposition methods only consider the average density between these two points. This method gives depth dose curves which show better agreement with Monte Carlo calculations in a lung phantom than a standard superposition method, especially at high energies and small field sizes where lateral electronic disequilibrium exists. For a 5×5 cm2 18 MV beam incident on the lung phantom, a reduction in the maximum error between the superposition and Monte Carlo depth dose curves from 5% to 2.5% is obtained when scattering theory is used in the primary dose calculation.

The second method developed is the Super-Monte Carlo (SMC) method. SMC calculates dose by a superposition of pre-generated Monte Carlo electron track kernels. For X-ray beams, the primary dose is calculated by transporting pre-generated (in water) Monte Carlo electron tracks from each primary photon interaction site. The length of each electron step is scaled by the inverse of the density of the medium at the beginning of the step. Because the density scaling of the electron tracks is performed for each
individual transport step, the limitations of the macroscopic scaling of kernels (in the
superposition algorithm) are overcome. The scatter dose is calculated by superposition.
In both a lung-slab phantom and a two lung-block phantom, SMC dose distributions
are more consistent with 'standard' Monte Carlo generated dose distributions than are
superposition dose distributions.

SMC can also be applied to electron beam dose calculation. Pre-generated electron tracks
are transported through media of varying density and atomic number. The perturbation
of the electron fluence due to each material encountered by the electrons is explicitly
accounted for by considering the effect of variations in stopping power, scattering power
and radiation yield. For each step of every electron track, these parameters affect the
step length, the step direction and the energy deposited in that step respectively. Dose
distributions in a variety of phantoms show good agreement with Monte Carlo results.

SMC is an accurate, 3-dimensional unified photon/electron dose calculation algorithm.