MECHANISMS OF MN EFFICIENCY IN BARLEY

by

CHUNYUAN HUANG

M. Sc.
Hangzhou University
Hangzhou, China

This thesis submitted for the degree of Doctor of Philosophy
of the University of Adelaide

Department of Plant Science
Waite Agricultural Research Institute
Glen Osmond, South Australia
February, 1996
Table of contents

List of abbreviations .. V
Acknowledgements .. viii
Thesis summary ... viii
Publications .. x
Thesis introduction .. xi

Chapter 1 Literature review ... 1
 1.1 Introduction .. 1
 1.2 Mn in plants ... 1
 1.2.1 Biochemical functions 1
 1.2.1.1 Photosynthesis ... 1
 1.2.1.2 Mn-containing superoxide dismutase (SOD) 2
 1.2.1.3 Other enzymes .. 3
 1.2.2 Mn deficiency .. 4
 1.2.2.1 Critical level and symptoms of deficiency 4
 1.2.2.2 Effect of Mn deficiency on growth and development 4
 1.2.3 Mn absorption and translocation within plants 5
 1.2.3.1 Mn absorption .. 5
 1.2.3.2 Mn translocation within plants 8

 1.3 Mn in soils .. 8
 1.3.1 Mn forms in soils ... 9
 1.3.2 Factors influencing Mn availability 10
 1.4 Genotypic differences in Mn efficiency 11
 1.4.1 Genotypic variation and genetic control of Mn efficiency . 11
 1.4.2 Screening techniques for Mn efficiency 13
 1.4.3 Mechanism of Mn efficiency 14
 1.4.3.1 Reduction of Mn oxides 15
 1.4.3.2 Mobilisation of Mn in rhizosphere 16
 1.4.3.3 Mn absorption ... 17
 1.5 Molecular studies of nutritional traits 19
 1.5.1 RFLP markers for nutritional traits 19
 1.5.2 Isolation of genes related to nutritional traits 21
 1.5.3 Analysis of gene functions 23

Chapter 2 Screening for Mn efficiency in soil under controlled conditions .. 24
 2.1 Introduction .. 24
 2.2 Materials and methods ... 25
 2.2.1 Experiment 2A: Effect of pot sizes on the expression of Mn efficiency .. 25
 2.2.2 Experiment 2B: Application of the results of Experiment 2A to a new screening procedure for Mn efficiency 26
 2.3 Results .. 27
 2.3.1 Experiment 2A .. 27
 2.3.2 Experiment 2B .. 31
 2.4 Discussion .. 31
Chapter 3 Genotypic variation in Mn accumulation by plants in solution culture..36
3.1 Introduction...36
3.2 Materials and methods ...37
3.2.1 Experiment 3A: Mn accumulation in plants of three genotypes with three rates of Mn supply........37
3.2.2 Experiment 3B: Effect of pH on Mn accumulation in plants of three genotypes........................39
3.3 Results..40
3.3.1 Experiment 3A..40
3.3.2 Experiment 3B..44
3.4 Discussion..48

Chapter 4 Assessment of Cu²⁺ and Fe³⁺ reduction by Mn-efficient and Mn-inefficient genotypes..............51
4.1 Introduction..51
4.2 Materials and methods ..52
4.3 Results..53
4.4 Discussion..55

Chapter 5 Differential expression of iron deficiency-induced genes in Mn-efficient and Mn-inefficient genotypes...57
5.1 Introduction..57
5.2 Materials and methods ..58
5.2.1 Plant growth...58
5.2.2 Mn and Fe analysis ...59
5.2.3 RNA gel blot analysis ..59
5.3 Results..59
5.3.1 Plant growth...59
5.3.2 Mn and Fe accumulation ..60
5.3.3 Expression of Hoxl...62
5.3.4 Expression of Hox2...63
5.4 Discussion..63

Chapter 6 Isolation and characterisation of Mne-1 cDNA clone...67
6.1 Introduction..67
6.2 Materials and methods ..68
6.2.1 Preparation of plant materials ..68
6.2.2 Construction of cDNA library ..68
6.2.3 Differential screening and RNA gel blot analysis ..58
6.2.4 DNA sequencing ..62
6.3 Results..69
6.3.1 Isolation of Mn efficiency related clones ..69
6.3.2 Sequence of Mne-1 cDNA and predicted properties of Mne-1 protein......................................72
6.4 Discussion..75
Chapter 7 Functional analysis of Moe-1 gene

7.1 Introduction ... 77
7.2 Materials and methods .. 77
7.2.1 Construction of expression vector 77
7.2.2 Expression and purification of Moe-1 recombinant protein 78
7.2.3 Production of anti-Moe-1 antiserum 79
7.2.4 Extraction of soluble barley root protein 79
7.2.5 Protein gel blot analysis ... 79
7.2.6 Metal content analysis .. 80
7.3 Results .. 81
7.3.1 Cloning of Moe-1 coding sequence into an E. coli expression vector ... 81
7.3.2 Expression and purification of Moe-1 recombinant protein 82
7.3.3 Immunoblot assay of recombinant Moe-1 protein and barley root protein .. 85
7.3.4 Metal content analysis of recombinant Moe-1 protein 89
7.4 Discussion .. 90

Chapter 8 General discussion .. 92

Appendix A Analysis of variance tables 99

Appendix B GEOCHEM-PC calculation for free metals and ligands in chelate-buffered nutrient solutions 103

Appendix C Materials and methods for molecular biology 109
1 Materials .. 109
1.1 Enzymes .. 109
1.1.1 Restriction enzymes ... 109
1.1.2 Other Enzymes ... 109
1.2 Other proteins .. 109
1.3 Antibodies ... 109
1.4 Blocking membranes ... 109
1.5 Plasmids for probes ... 109
1.6 Primers for PCR and labelling 110
1.7 Vectors .. 110
1.7.1 DNA cloning vectors .. 110
1.7.2 Protein expression vectors ... 110
1.8 Bacterial strains .. 110
1.9 Nucleotides and radio nucleotides 110
2 Transformation of E. coli ... 111
3 DNA isolation ... 111
3.1 Mini-prep of plasmid DNA .. 111
3.2 Large scale isolation of plasmid 112
3.3 Small scale isolation of gDNA .. 112
3.4 Plant DNA isolation ... 113
4 Analysis and manipulation of DNA 113
4.1 Restriction digestion of DNA ... 113
4.2 Separation and analysis of restriction fragments 113
4.3 Purification of DNA fragments from agarose gel 113
The mechanisms of manganese (Mn) efficiency (genetic tolerance to Mn-deficient soils) in barley (*Hordeum vulgare* L.) were investigated at both physiological and molecular levels. The restriction of expression of Mn efficiency was observed in small pots. By using a pot of adequate size, genotypic differences in dry matter production and shoot Mn concentration were demonstrated in controlled conditions over a wide range of Mn supply. Thus, measurement of Mn concentrations of youngest expanded leaf blade or shoots was applied in soil-based pot screening as an index of Mn efficiency. This newly developed laboratory procedure has been proven to be robust, with low sensitivity to high seed Mn content and in variations in available soil Mn.

Soil culture experiments indicate that the basis of Mn efficiency is higher Mn acquisition from soil. Mn$^{2+}$ absorption was investigated further in a chelate-buffered nutrient solution. The results showed that unlike the soil culture, no clear genotypic differences in Mn accumulation of shoots were detectable over a range of Mn supply and over a range of pH. However, genotypic differences in Mn concentration of roots were observed at high pH in the same nutrient solution. These results show that the mechanism of Mn efficiency is likely to be a genotype ability in Mn mobilisation from soil. Thus, genotypic differences in Cu$^{2+}$ and Fe$^{2+}$ reductions were assessed, but no genotypic difference could be observed. Therefore, molecular aspects of Mn efficiency were explored to find genes which may be related to Mn efficiency. Two barley genes, *Idsl* and *Idsl2* from Japan, which are implicated in Fe acquisition, were tested for their connection with Mn efficiency. No genetic difference in *Idsl* expression was found between Mn-efficient and Mn-inefficient cultivars, but differential expression of *Idsl2* was found, which is inversely related to Mn efficiency. Attempts were made to isolate Mn efficiency-related genes. A root cDNA library was constructed from a Mn-efficient genotype and differentially screened with root cDNAs from a Mn-inefficient
More than one hundred putative clones were isolated. One of these clones, *Mne-1* was characterized because it appeared to be more abundant in the Mn-efficient plant under the low Mn conditions than in the Mn-inefficient plant by RNA gel blot analysis. DNA sequencing indicated that *Mne-1* encoded a zinc finger protein, novel in higher plants, showing a possible role in Mn efficiency through Mn binding or transcriptional regulation. For further insights into the functions of *Mne-1*, *Mne-1* recombinant protein was expressed in *E. coli*, and polyclonal antibodies to the recombinant *Mne-1* protein were raised. Protein gel blot analysis showed that the higher accumulation of *Mne-1* protein in roots of Mn-efficient plants was consistent with higher accumulation of *Mne-1* mRNA. Under low Mn conditions, the higher expression of *Mne-1* at both mRNA and protein levels is correlated to greater Mn efficiency. The analysis of metal contents showed that the recombinant *Mne-1* protein contained Zn but not Mn. This suggests that *Mne-1* may function as a transcriptional factor in adaptive response to low available Mn in soil to regulate genes responsible for Mn efficiency. Further applications of the *Mne-1* recombinant protein and anti-*Mne-1* antibodies will enable us to determine the transcriptional function of *Mne-1* gene, and thus increase the understanding of the role of the *Mne-1* in Mn efficiency. *Mne-1* is the first gene associated with differences in micronutrient efficiency traits, and a molecular marker for this gene may be useful for future breeding programs for South Australian soil conditions.