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Abstract

In this work we investigate two related aspects of a dualisation program for the
usual intuitionist logic in categories. The dualisation program has as its end the
presentation of closed set, or paraconsistent, logic in place of the usual open set, or
intuitionist, logic found in association with toposes. We address ourselves particu-
larly to Brouwerian algebras in categories as the duals of the usual Heyting algebras.
The first aspect of the program is that of external or ex-categorial dualisation of logic
structures by interpretation of order. This appears in the work as an examination
of the notion of a complement classifier. We also use ex-categorial dualisation as a
tool to prompt the development of a categorial proof and model theory adequate to
the task of modelling theories generated by inconsistency tolerant logics. We make
an initial attempt to develop dual logic structures by considering quotient object
classifiers in place of subobject classifiers. Ex-categorial dualisation of structure was
always meant to act as an indication of the existence of categorial entities that di-
rectly satisfy dual descriptions, so the bulk of the work is concerned with the second
aspect of the dualisation program: the discovery of logic objects within categories
that exhibit paraconsistent algebras in their own right. Our investigation focuses on
sheaves for their algebraic properties in relation to base space topologies. We define
the notion of a sheaf over the closed sets of a topological space. We find essentially
two things. First, logic objects in contravariant sheaf categories contain component
Brouwerian algebras but are not generally themselves Brouwerian algebras within
their categories. A corollary is that subobject lattices in Grothendieck toposes are
Brouwerian algebras (but not naturally so). Second, paraconsistent logic objects do
exist. We describe one such within a category of covariant sheaves. As a corollary
we find that the original ex-categorial dualisation idea represented by the notion of
a complement classifier has an ‘nstantiation in categories. Our paraconsistent logic

object proves to be the object of a genuine complement classifier.
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