

Closed Set Logic in Categories

William James

Department of Philosophy at The University of Adelaide

August, 1996

Table of Contents

Introduction
PART I: Preliminaries
Chapter 1. Basic Category Theory 25
1. Categories and Morphisms
2. Yoneda
3. Adjoints
Chapter 2. Basic Topos Theory 49
1. Toposes
2. Topos Logic
3. Image Factorisation
Chapter 3. The HA Dual 58
1. Languages, Logics and Dual Algebras 60
2. Paraconsistent Algebras
3. Intuitionism's Dual
4. Individual Logics and Natural Duals
PART II: Categorial Semantics for Paraconsistent Logic
Chapter 4. The Complement Classifier 80
1. The Classifier
2. Complement Classifier vs. Subobject Classifier
Chapter 5. The Quotient Object Classifier 8
1. Quotient Object Lattices
2. The Functor QUQ

Chapter 6. A Functor Category	102
1. Component Algebras	106
2. Operator Arrows	110
PART III: Sheaf Concepts	
Chapter 7. Sheaves: a brief history of the structure	116
	127
1. Presheaves on Categories	130
2. Pretopologies and Topologies for Categories	133
3. Subobject Classifiers in Sheaf Categories	140
4. Closed Set Sheaves	147
Chapter 9. Brouwerian Algebras in Closed Set Sheaves	150
1. Component Algebras of the Classifier Object	152
2. Component Algebras and Natural Transformations	155
Chapter 10. Grothendieck Toposes	159
1. Pretopologies and Sheaves revisited	160
2. Subobject Classifiers in Grothendieck Toposes	162
3. Brouwerian Algebras in the Classifier Object	171
Chapter 11. Covariant Logic Objects	176
1. A Paraconsistent Logic Object in a Covariant Functor Category	177
Chapter 12. Covariant Sheaves	185
1. Co-topologies	186
2. Categorial Co-topologies on Closed Set Topologies	190
3. Sheaves on Co-topologies	194
Chapter 13. Sheaf Spaces on Finite Closed Sets	
1. Sheaves and Sheaf Spaces	21

2. From Presheaves to Sheaf Spaces	. 215
3. From Sheaf Spaces to Sheaves	. 220
4. Equivalence of Categories	
PART IV: Theories and Relevance	
Chapter 14. Inconsistent Theories in Categories	234
1. Many Sorted Languages	. 238
2. Geometric Logic, Sites and Language Algebras	
Chapter 15. The Omega Monoid	256
1. De Morgan Monoids	. 257
Chapter 16. Conclusions	261
Bibliographies	263

Abstract

In this work we investigate two related aspects of a dualisation program for the usual intuitionist logic in categories. The dualisation program has as its end the presentation of closed set, or paraconsistent, logic in place of the usual open set, or intuitionist, logic found in association with toposes. We address ourselves particularly to Brouwerian algebras in categories as the duals of the usual Heyting algebras. The first aspect of the program is that of external or ex-categorial dualisation of logic structures by interpretation of order. This appears in the work as an examination of the notion of a complement classifier. We also use ex-categorial dualisation as a tool to prompt the development of a categorial proof and model theory adequate to the task of modelling theories generated by inconsistency tolerant logics. We make an initial attempt to develop dual logic structures by considering quotient object classifiers in place of subobject classifiers. Ex-categorial dualisation of structure was always meant to act as an indication of the existence of categorial entities that directly satisfy dual descriptions, so the bulk of the work is concerned with the second aspect of the dualisation program: the discovery of logic objects within categories that exhibit paraconsistent algebras in their own right. Our investigation focuses on sheaves for their algebraic properties in relation to base space topologies. We define the notion of a sheaf over the closed sets of a topological space. We find essentially two things. First, logic objects in contravariant sheaf categories contain component Brouwerian algebras but are not generally themselves Brouwerian algebras within their categories. A corollary is that subobject lattices in Grothendieck toposes are Brouwerian algebras (but not naturally so). Second, paraconsistent logic objects do exist. We describe one such within a category of covariant sheaves. As a corollary we find that the original ex-categorial dualisation idea represented by the notion of a complement classifier has an instantiation in categories. Our paraconsistent logic object proves to be the object of a genuine complement classifier.