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Abstract

In this work we investigate two related aspects of a dualisation program for the
usual intuitionist logic in categories. The dualisation program has as its end the
presentation of closed set, or paraconsistent, logic in place of the usual open set, or
intuitionist, logic found in association with toposes. We address ourselves particu-
larly to Brouwerian algebras in categories as the duals of the usual Heyting algebras.
The first aspect of the program is that of external or ex-categorial dualisation of logic
structures by interpretation of order. This appears in the work as an examination
of the notion of a complement classifier. We also use ex-categorial dualisation as a
tool to prompt the development of a categorial proof and model theory adequate to
the task of modelling theories generated by inconsistency tolerant logics. We make
an initial attempt to develop dual logic structures by considering quotient object
classifiers in place of subobject classifiers. Ex-categorial dualisation of structure was
always meant to act as an indication of the existence of categorial entities that di-
rectly satisfy dual descriptions, so the bulk of the work is concerned with the second
aspect of the dualisation program: the discovery of logic objects within categories
that exhibit paraconsistent algebras in their own right. Our investigation focuses on
sheaves for their algebraic properties in relation to base space topologies. We define
the notion of a sheaf over the closed sets of a topological space. We find essentially
two things. First, logic objects in contravariant sheaf categories contain component
Brouwerian algebras but are not generally themselves Brouwerian algebras within
their categories. A corollary is that subobject lattices in Grothendieck toposes are
Brouwerian algebras (but not naturally so). Second, paraconsistent logic objects do
exist. We describe one such within a category of covariant sheaves. As a corollary
we find that the original ex-categorial dualisation i1dea represented by the notion of
a complement classifier has an instantiation in categories. Our paraconsistent logic

object proves to be the object of a genuine complement classifier.
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Introduction

When a set of sentences is closed under some consequence relation and under
uniform substitution of sentences for atomic sentences we have a sentential logic.
A paraconsistent logic is one which allows that sets of sentences contain a sentence
and its negation and be closed with respect to the logic’s consequence relation
without containing every other sentence. The logic is said to tolerate inconsistency.
It is rarely remarked that closed set topologies form algebras for exactly this sort
of logic while it is well known that their duals, the open set topologies, form the
algebras for the logics of Intuitionism. In as much as it is exactly the Intuitionism
algebras that are known to occur in and around topos theory it is perhaps surprising
that category theory, with its awareness of duality, should have so little to note on
the topic of paraconsistency. It is at least true that inconsistency toleration is
exactly the right sort of notion to use in the development of any type of machine
that requires input so with the emphasis of category theory tending toward useful
applications, particularly those computational, it is appropriate that we investigate

the underdeveloped area of closed set logic within categories.

The project of this thesis began with the study of closed set topologies as algebras
for paraconsistent logics. These were to be developed as the duals of the Intuitionist
logics. The background assumption for the usual formalisation of Intuitionism is
that any sentence is interpreted on some open set of a topological space. For a
sentence S, then, the negated sentence -5 is the largest open set for which SN -S
is empty. The dual position assumes that any sentence is interpreted on some closed
set. We can then interpret a set —S in relation to a sentence S by allowing ~ S to
be the smallest closed set for which S U S contains every other closed set. The
operators — and — are then formally dual; among other theorems we will have that

S NS need not be empty. This is to say that sentences S and ~S are such that
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they cannot both be false but that (given a big enough set of designated values)
they may both be true. The background assumption that any sentence is valued
on a closed set allows us to avoid the suggestion that ~ is a subcontrary operator
rather than negation operator. It follows that the logics that arise as the duals of
intuitionist logics are genuinely paraconsistent. With the introduction of Mortensen
and Lavers’ complement classifiers and complement toposes the idea of dualising
logics was linked formally with category and topos theory. The structures that most
obviously linked Heyting algebras (and so Intuitionism) and topos theory were the
sheaves defined over open set topologies. And so arose the idea of investigating
the effect on categorial logic of defining sheaves over topologies of closed sets. The
overall aim was and remains one of dualising the logics built into the structures of

toposes and categories.

The importance of paraconsistent versions of categorial logic is in terms of
categories as semantic objects for assignment functions that determine inconsistent
theories: the logic of the category provides the deduction relation under which the
modelled theory is closed; inconsistent theories require (and are generated by) a
paraconsistent deduction relation. Now clearly, categories are not the only seman-
tic objects that we might use in inconsistency model theory. Equally clearly there
has been little or no work on this type of model theory done for categories. Fur-
thermore, category theory is an important mathematical discipline; if we regard
paraconsistent logic as significant, then investigation of its place in category the-
ory i1s mandated. Some note of it has already been made. In the introduction to
Lawvere and Schanuel’s Categories in Continuum Physics, 1986, Lawvere notes in
connection with sheaves and categories that a property of complements in algebras
of closed sets is that the intersection of a closed set and its complement will not
invariably be the least element of the algebra; in other words. using closed set lat-

tices as logical algebras produces logics in which a formula and its negation have,

2



as a rule, truth values with non-zero intersections.

Just above I claimed that paraconsistent logic allows for the existence of in-
consistent theories. The idea is this: a theory is a set of sentences closed under a
deduction relation; if the deduction relation is paraconsistent, then the presence of
inconsistent sentences within the theory need not mean that the theory contain all
other sentences and be rendered trivial. We may think of paraconsistent deduction
as one that limits the (deductive) impact of contradiction. This is different from
being happy to have one’s theories loaded with inconsistencies. The paraconsistent
logics are, in this light, a way of dealing with problems that arise from otherwise
good mathematical and philosophical ideas. A good example is the case of a set
theory that adopts unrestricted set abstraction, that is, allows that for any property
there is a set of things with that property. Famously, this leads to the existence of
paradoxical sets, notably the Russell set, the set that both is and is not a member
of itself. But set abstraction is a valuable device so, if there is no theoretically
acceptable restriction that we can place on its use, we must tolerate the paradoxical
sets; the theory that contains unrestricted set abstraction requires a background
logic that is paraconsistent; in that way the details of the ordinary, non-paradoxical
sets are not lost in a flood of trivial sentences flowing from the contradiction of, say,
the Russell set (provided those ordinary sets are not deductively related to that
Russell set). Set theory, in practice, is workable but this is due to the imposition of
restrictions that are not in themselves valuable for more than denying the existence
of sets like Russell’s. Many writers have noted that this seems too ad hoc a solu-
tion. And any discussion that leaves us with unrestricted set abstraction also forces
on us paraconsistent logics defined as logics that have associated theories that are

inconsistent but non-trivial.

The idea that we may be required to accept inconsistency toleration is not

necessarily a “lesser of two evils” conclusion. The idea that we must require consis-
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tency when we talk about mathematics need not be true; that is, it might just be
the case that our meta-language has to be inconsistent. Consider an example not
from mathematics but from ordinary (English) language: “This sentence is false”.
This sentence provides us with a version of the famous Liar paradox: if the sentence
is true, then it is false, and if it is false, then it is true. Priest (In Contradiction,
1987) and Priest and Routley (On Paraconsistency, 1984) tell us that this sentence
generates a true contradiction by having semantic conditions that overdetermine
its truth value. The sentence has a subject, “This sentence”. and a predicate,
“is false”. In semantic terms the sentence is true if its predicate applies truly to
its subject. But just as in the case of the unrestricted set abstraction, this truth
making principle (in conjunction with ordinary sentence forming principles) is too
strong, 1t generates contradictory truth values for some sentences. And in the case
of this principle there are even fewer satisfactory methods for restricting its use.
That the Liar paradox exists is an argument for the relative messiness of language;
natural language semantics contains principles that are inconsistent. It may be
possible to cure this inconsistency, perhaps by discovering some theoretically ade-
quate restriction on the relevant principles or by reinventing semantics itself, but
in any case since there exists inconsistent principles in operation at present and in
the foreseeable future, we are called upon to make some philosophical comment.

Paraconsistent logic fills the void.

Paraconsistent logics also serve an epistemic purpose. Thinking machines need
a method for dealing with inconsistent data. The logical issuses generated by no-
tions of inconsistent databases and decision making on the basis of such databases
were discussed notably in Belnap’s “A useful four-valued logic”, 1977. The issue
essentially resides in the question “What is to be done when our thinking machine
discovers that it has inconsistent data but still must think?” The problem of in-

consistent data is ubiquitous; multiple sources of information can individually be
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consistent but together be inconsistent; even the idea of a single inconsistent source
of information is not unusual. We are called upon to form a method for dealing
with such problems, particularly if we are in the business of designing simulations of
reasoning in dynamic environments. Plainly a good solution is to be able to mark a
datum as “told both” or something of the sort rather than only one of either “true”
or “false”. But this is inconsistency toleration. It seems, however, preferable to
some solution that makes ad hoc choices over which of the contradictory data are
true and which are then false.

The notion of containing contradiction is valuable. The fact that it is formally

possible offers us the opportunity of understanding old problems in new ways.

There are some things to be said on the nature of the project of this thesis with
respect to principal content. It may be suggested that in essence, since the focus is
upon algebras, that this is a dissertation on sentential logic with respect to poset
theory. In answer to this I suggest that formally speaking the models for the logics
considered are indeed posets but that the project came into being by considering
the duality of open and closed sets in topology; in the terms of the project the
models are topological spaces, and we lose some part of the philosophical content
of the thesis if we speak only of posets. There are two questions to address with
respect to the suggestion that the thesis is more properly located in poset theory
than in topos theory: the first is the straightforward one and is why, if the subject is
sentential logic, get involved with topos theory at all, why not just content oneself
with posets, or even topological spaces; the second would be why, if the subject is
sentential logic, invoke topos theory which is known to provide for formally richer
logics, namely quantified logics. I consider both of these questions in what follows.

As to the first question, the issue of invoking topos theory is not one of advan-
tage. The thesis, in major part, is the working out of a hypothesis that topological

dualisation of (pre)sheaves, the replacement of closed set notions for open set no-
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tions in the definition of the (pre)sheaf notion, will produce structures that can be
collected into a category and that that category will exhibit a logic which is para-
consistent, which is to say, dual to the usual topos logics. This hypothesis is first
seen in the concluding remarks to chapter 11 of Mortensen’s Inconsistent Mathemat-
res, 1995. The motivation for an examination of this hypothesis was the expected
outcome for the modelling of inconsistent theories on categories. As Mortensen
puts 1t in Inconsistent Mathematics, “...deductive theories come with a logic in the
background” (p.1); and when the theories are generated by notions of modelling on
categories, the background logic is that of the category, which is to say, that of the
sets of subobjects of the category. Should the hypothesis have borne the expected
fruit, a topos like category with subobject lattices that were Brouwerian algebras,
then we would have (the basis of ) a theory of categorial semantics for paraconsistent
logic and inconsistent theories. The issue is not that the tools of topos theory would
act as some aid in the demonstration or otherwise of the hypothesis, it is that the
hypothesis was one about category theory. The project of category theory itself is
to provide insight into the nature of mathematics essentially by doing it over in a
new setting, one with a greater awareness of generalisation and structural issues. To
redo inconsistency model theory within toposes required something of mathemat-
ics that may or may not be there. That is, it is relatively clear that the notions of
“proof only through constructive methods” that come from the Intuitionist position
constitute a (reasonably) minimal description of what mathematics and logic are
capable of doing. The notions of inconsistency toleration and containment are rea-
sonably likely, if anything, to be part of a sort of maximal description of the reach of
mathematics and logic. I'm claiming here that Intuitionism and Paraconsistentism,
as philosophical positions, are dual (in a non-technical sense which is nevertheless
related to the actual duality of the formal developments of the positions). This is

a much grander idea than anything attempted in the thesis; the thesis is a starting



point, more technical than philosophical in bent but meant to provide facts with

which the philosophical duality idea could be considered anew.

As to the second question, why bother with a theory that provides for quantified
logics if the subject matter is only sentential logic, it follows from an understanding
of the project as the working out of a hypothesis related, at heart, to the duality
of open and closed sets that quantification, while interesting in itself, is a side is-
sue. The concern of the thesis is to develop formal structures for paraconsistent
logic exactly by “dualising” existing structures for the logic of Intuitionism in cate-
gories. Notice an important point: there are at least three separate formal notions
of dualisation (as opposed to duality) at work in the thesis. These are (1) stan-
dard categorial dualisation, the replacement of primitive categorial terms by their
duals in statements that describe categorial structures; (2) lattice dualisation, the
replacement of lattice notions of order with their duals; and (3) topological du-
alisation, the replacement of topological set notions with their duals. Along with
these notions of dualisation there is a notion of the dualisation of the logic structure
of a category which means the replacement of Heyting algebra subobject lattices
and classifier objects with their “duals”, Brouwerian algebra subobject lattices and
classifier objects. This is what is meant when I claim that the concern of the thesis
1s the production by dualisation of categories with paraconsistent logics. This “du-
alisation” of the logic structures of categories is meant to be effected by some act or
combination of acts of the three formal notions of dualisation within the thesis. So
we have two points to make: (1) the subject matter of the thesis is category theory
rather than sentential logic; and (2) the particular principal concern is with dualisa-
tion of logics with the raw material being structures that exhibit Heyting algebras.
The project takes on the appearance of a sentential logic treatise since the distine-
tion between intuitionist and paraconsistent logic appears at the propositional level.

I claim that it is not so much that I have ignored the quantificational possibilities
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of topos theory nor so much that I have used too strong a device by invoking topos
theory, but that my subject matter, in essence, is Heyting algebras and category
theory (and, of course, dualisation of logics) and therefore, topos theory.

The notion of a topos logic as we use it in this work requires some explanation.
The usual notion of a topos logic comes from the idea that we may use toposes as
semantic objects; this is the idea that we can use the internal structure of toposes to
interpret formal languages. In these terms, topos logic is the set of rules of inference
that the structure of a topos will support. We consider such systems in chapter
fourteen. However, for the bulk of this work we concern ourselves with the structure
of subobject classifiers and when we speak of topos logic we will be referring to the
internal algebras that arise with respect to these classifiers. Under the usual scheme
logical connectives are interpreted with respect to subobject algebras, so there is a
measure of justification for our minor misuse of the term “topos logic”. We should
recognise, too, the difference between Intuitionism, the position on the epistemology
of mathematics, and Intuitionistic logic, the logic formalised in terms of Heyting
algebras. Generally, whenever we use the word “Intuitionism” and its variants, we

will mean Heyting algebra logic.

Now, there are some things to be said of the project of this thesis with re-
spect to method. The various dualisation techniques at the heart of this thesis are
mathematically simple. The claim is, however, that, simple or not, these techniques
and the working out of the consequences of their use provide some philosophically
important insight. To back up this claim we ask the following question: When is it
that a mathematically simple technique can give a philosophically important per-
spective? In answer we say that the technique must lay open an area of mathematics
to discussion in terms of a new set of notions that are themselves philosophically
significant. An example of a mathematically simple notion is that of the duality

between open and closed topological sets. This notion is the basis of a mathemat-
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ically simple technique: topological dualisation, the replacement of topological set
notions in the definition of a mathematical structure with the dual topological set
notions. The duality of open and closed sets is philosophically significant for exam-
ple in the light of two rival empirical hypotheses about the world from the point
of view of physics, namely (1) that propositions are only ever true on open sets of
points, and (2) that propositions are only ever true on closed sets of points. These
hypotheses go to the issue of how we are to think of our claims in physics applying
to the world. Examples of how these hypotheses can be understood to come to
hold lie in possible claims like one that, from the point of view of the physics of
dynamical systems, subparts (that is, sub-bodies) of any body are sets of points of
that body and the set of subparts is (isomorphic to) some topological space. This
sort of claim is mentioned in the introduction to Lawvere and Schanuel [1986]. This
idea of the significance of open and closed set duality deriving from the existence of
these rival hypotheses need not be restricted to the realm of physics. The forms of
hypotheses (1) and (2) apply to any area where there is a notion of one type of thing
under discussion and a notion of classes and subclasses of things of that type. Now,
open and closed set duality being philosophically significant tends to suggest that
topological dualisation will provide philosophical insight should, say, hypothesis(2)
be true and we have before us a mathematics that relies on open set structures to
describe the world. In any case, allowing that hypotheses (1) and (2) are meaningful
suggests that any differences between the logic of open sets and the logic of closed
sets (for example, the differing accounts of negation) are philosophically significant.
It follows that differences in useful mathematics brought about by topological dual-
isation have a philosophical significance. It follows too that paraconsistentists have
an interest in open-closed dualities since closed set logic is paraconsistent. And it

follows that open-closed duality notions are central to the project of my thesis.

A further example of a mathematically simple but philosophically valuable
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technique is that of lattice dualisation of Heyting algebras. The technique is sim-
ple: it can be performed by replacing “less than or equal to” with “greater than
or equal to” (and “greatest lower bound” with “least upper bound” and vice versa,
but lub and glb are order dependent concepts and can be regarded as dualised when
the order is dualised). And the technique, while simple, is significant: it produces
algebras that, when taken seriously as logical algebras, produce paraconsistent log-
ics. This is significant in the terms of the philosophical significance of open-closed
dualities since an open set topology ordered by set inclusion is a Heyting algebra
and a closed set topology ordered by set inclusion is a Heyting algebra dual. Heyt-
ing algebra duals were named Brouwerian algebras by McKinsey and Tarski in their
“On closed elements in closure algebras”, 1946. McKinsey and Tarski did see that
the lattice dualisation notion was useful for developing the properties of the alge-
bras but did not see the significance with respect to logic: McKinsey and Tarski
allowed that Brouwerian algebras were algebras for the same logics that were found
assoclated with Heyting algebras; that is, McKinsey and Tarski dualised the the-
oremhood semantics as well as the algebras rather than develop the logics arising
from Heyting algebra lattice-duals together with standard theoremhood semantics.
I note this in the thesis in chapter 3 when discussing the significance of Brouwerian

algebras as productive of paraconsistent logics.

Notions of open-closed dualities are central elements of the project of my thesis.
The aim of the project was to find ways to exhibit Brouwerian algebra structures
within, or at least for, categories. There are two strands to the origin of this
aim. The first strand consisted in the simple fact that sheaves are defined in terms
of topologies. The second strand consisted in the well known fact that toposes
carry Heyting algebra structures. The two strands come together in the fact that
categories of sheaves are toposes. Another way of stating the project aim, then, is

that I was investigating the possibility of effecting some kind of dualisation for the
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logic of toposes by performing some version of a “closed” for “open” swap. In the
case of the sheaf categories the swap was literally that, a topological dualisation
of the sheaf notion. In the case of the complement classifier discussion the swap
in chapters 11 and 12 was not topological but categorial, however the result was
discussion of structures defined on closed sets rather than open. A feature of the
discussion in chapters 3, 4, 5, 11, and 12 was explicit proof of dual statements
of (more or less) familiar facts and theorems of category theory. In all cases this
reasoning technique was a tool to further basic discussion. This tool is technically
very simple but the details it revealled needed interpretation in the philosophical

terms of the thesis, the open-closed dualities.

All of these techniques, topological and lattice dualisation and the working
through of explicit categorial dualisations, are simple but they work precisely be-
cause they are being applied in situations of relative complexity: a simple change
at a fundamental level to a notion of a thing that stands in a relatively complex
relationship to other known things can, since the external relationships are (pre-
sumably) affected, lead us to understand the changed notion as that of a thing that
1s quite new. To make this valuable we need to have some new framework of ideas
into which the changed thing can be fitted. If we have no such new framework, then
the changed thing is merely the thing changed. In terms of the content of the thesis
the new framework of ideas are those of a program for the discovery of structures
that act as semantic objects for assignment functions that determine inconsistent
theories. Topological dualisation is easily understood as the effecting of “a simple
change at a fundamental level” to the notion of a sheaf. Explicit categorial dual-
isation calls for a wider interpretation of the idea of effecting such a change. The
principal “change” is merely a categorial dualisation. Now, it is entirely true to
say that once a theorem in category theory is demonstrated, then so is its dual.

However, what is not true is the idea that once a theorem is demonstrated, we
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understand the philosophical nature of the structures associated with the dual of
the original theorem; that idea amounts to the claim that once a mathematical the-
orem is demonstrated we have a philosophical understanding of the importance of
its content (that is, for example, once we demonstrate that a Heyting algebra exists
we suddenly know why we should care that it exists, we are suddenly struck by
the worth of the Intuitionist program). But on the other hand philosophical under-
standing of the importance of a structure is undoubtedly shaped by demonstration
of mathematical detail. For these reasons there is merit in explicit demonstration
of dual claims to familiar theorems when it is used to provide detail for novel philo-
sophical developments, just as I assert is the intent of chapters 3, 4, 5, and 15.

Chapters 11 and 12 can also be understood as being of this nature.

We have considered the philosophical merit of the nature of the project and
now we should consider the question of the philosophical merit of the particular
content of this thesis. In other words, does the content of the thesis do justice to
the aspirations of the thesis? Under the terms of the thesis we are broadly engaged
in the task of developing paraconsistent logic within category theory. What in fact
we address ourselves to is the existence of Brouwerian algebras in the subobject
structure of toposes. Now it is clearly true that the philosophical merit of a concept,
say, paraconsistency, is not enough to establish the philosophical merit of a given
formal model for that concept, say, Brouwerian algebras in the subobject structure
of some category; further argument is needed. We note then that understanding
Brouwerian algebras to be algebras for paraconsistent logic is relatively novel in
category theory. We have the Mortensen and Lavers discussion in Mortensen’s
Inconsistent Mathematics. Also, as I noted above, Lawvere is aware of the logical
implications of using lattices of closed sets as logical algebras. But these authors
seem to be largely alone in this area, or at least, largely alone in their interest in

closed set logic as something significant in category theory. Goodman (“The logic
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of contradictions”, 1981) and numbers of other authors are aware of the nature of
the logic of closed sets in relation to the logic of open sets, however it seems that
only Lawvere and, independently, Mortensen and Lavers have discussed this in the
context of category theory. We should also note that the actual development of
structures within category theory as algebras for paraconsistent logic is extremely
novel. So, the notion of a Brouwerian algebra is far from new but what is new is the
idea that they should appear in categories (Lawvere’s prior discoveries in Springer
Verlag 1488 now acknowledged but at the time unknown to me). This makes for an
argument for the worth of finding any examples of Brouwerian algebras in categories,

and indeed for the worth of finding cases where the expected examples fail to exist.

On the other hand, there is some need to develop philosophical notions by see-
ing if there is technical room within the existing discipline. This, surely, is what
gives the notion of a “contribution to learning” its meaning. Admitedly there is
tension between the idea of existing theory being sacrosanct and the idea of new
discovery, however how are we to know if existing theory needs an overhaul unless
we check first for the workability within the existing scheme of our new ideas? This
calls for an initial philosophical investment, but one, surely, that is modified as
technical work progresses. The initial philosophical investment in the thesis is in
the substance of notions of paraconsistency and of category theory. The technical
investment is then the various investigations of the kinds of dualisations possible.
So there is an argument to the effect that (1) category theory is important and has
a known relationship to logic (viz. model theory with respect to subobject lattices),
(2) paraconsistency theory is important, (3) formalisations of paraconsistent log-
ics arrive most expiditiously by lattice dualisation of formalisations for Intutionist
logics, therefore (4) seek out Brouwerian algebras in categories in the terms of the

usual logic structures known in category theory (viz. subobject lattices). Plainly

this is, as above, a further argument for philosophic relevance of these particular
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formal models, as required; but it exists along with the idea that there is a sense in
which technical development modifies philosophical development so that there is at
least two notions of the merit of a formal model: the one that gives us a reason to
develop it and the one that is an assessment of its impact. This notion of impact is
the sort of thing alluded earlier in this discussion were I suggested that the technical
results of the thesis were a starting point from which we could consider anew the
idea of Intuitionism and Paraconsistentism being philosophically dual. The results
give us some context for the discussion of this philosophical duality just as, for
example, the development of Heyting algebras provide a formal context for discus-
sion of Intuitionism as a philosophical position. And in any case, surely the fact
that there were negative results to be found (the principal ones being the failure of
naturalness of the pseudo difference arrows and the failure of categorial dualisation
to produce Brouwerian algebras) answers some part of any triviality claim since it
demonstrates that not every dualisation results in an instantiation of the features

that make the original topological open-closed dualities philosophically valuable.

Finally, a note on a second aspect of our project. This was the concern to
formalise within category theory the ability to address an algebra by considering
its dual. In intent this part of the project has much in common with the original
complement classifier ideas. In terms of constructions we have chosen rather to build
the idea of dualising logics into category theory in the same way that we can build
in the idea of theories and models. Theories become categories, models become
functors, and the ability to address dual logics arises as a language dualisation
functor between theories and models. This ends up allowing us to use existing
Heyting algebra structures within categories as though the algebras were the dual

paraconsistent algebras.

14



A word on topologies and topological spaces and their properties as logical
algebras. Topologies on a set X are collections of subsets of X satisfying certain
properties. The set X, in recognition of the physical notion of topology, is usually
called a space. An open set topology © for space X is a collection of subsets of
X for which the intersection of any two members of © is a member of © and the
union of any subfamily of © is a member of ©, and as well both X and § are in
©. The sets of © are called open sets of X relative to © or just open sets. Notable
topologies are the indiscrete or trivial topology that has only X and 0 as members.
There is also the discrete topology which has all subsets of X as members. The
various topologies in between these extremes are identified relative to one another
as coarser or finer. A topology ©, is coarser than a topology O, if each open sef
of ©; is an open set of ©y; and then, also, topology O, is said to be finer than ©;.
Topologies can also be defined in terms of neighbourhood systems. A subset U of
X is an (open) neighbourhood of a point € X if U contains an open set V to which
z belongs. A subset U is open relative to a topology iff it contains a neighbourhood
for each of its points. Open set topologies have associated interior operators. A
point z of a subset U of a topological space X is an interior point for U iff U is a
neighbourhood of z. Thus we have the interior of U, denoted I(U), as the set of all
interior points of U. I(U) turns out to be the largest open subset of U and U is an
open set in a topology iff (U) = U. We speak of interior operations determining
open set topologies. Any open set topology © on a space X. when ordered by set
inclusion, is a Heyting algebra since there is a unit X and a zero § and since for

any U,V € O, we can define the characteristic operator = by
U:>V:I((X—U)UV)

where I is the interior operator that determines the topology: alternatively and

equivalently we can let U = V be the greatest element of {7 € O: U NW C V1.
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A closed set topology = on space X can be defined relative to some open set
topology © or by a set of conditions dual to those that define open set topologies
in general. In the first instance, a subset U of a space X is called closed iff X — [/
is open in ©. In the second instance we say that a set = of subsets of X is a closed
set topology for X if the union of any two members of = is a member of = and the
intersection of any subfamily of = is likewise a member, and as well both X and
0 are in Z. The usual notions of indiscrete and discrete, finer and coarser apply
and we can define a closed neighbourhood in the obvious way. However, where
open sets have interior points, closed sets have accumulation points. A point x of a
subset U of X is an accumulation point of U iff every neighbourhood of z contains
points of U other than z. Accumulation points can be called cluster or limst points.
A subset of a topological space is closed iff it contains the set of its accumulation
points. Associated with any closed set topology is a closure operator ¢/ where for
any U C X, cl(U) is the union of U with its set of accumulation points. A set
U is closed relative to a topology iff cl(U) = U. We speak of closure operations
determining closed set topologies. On any closed set topology Z we can define an

operator = relative to set inclusion so that for any U,V € =,
V=U=c(X-U)nV).
Alternatively and equivalently let V = U be the least element of
We=UuwCV}

When © is an open set topology on X and = is a closed set topology such that
UeOiff X —U € =, we have a duality relationship between operators = and -

following from the facts that

X-U=V)=(X-V)= (X -U)
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and that lattices (0, C) and (&, C) are dual isomorphs in the sense that
UCV if X-VCX-U.

In later chapters we shall formally identify the lattices associated with closed set
topologies and characterised by the ~ operator as Brouwerian algebras. For the
moment we point out that our interest in such lattices comes from the presence of
the derived operator — which we name, for want of anything else, “paraconsistent
negation”. We say that for any U in a closed set topology on X, rU = X ~ [.
This operator satisfies the characterisation of a paraconsistent negation described

in Mortensen’s Inconsistent Mathematics since for any U,V in a closed set topology,
vCuV=X iff +UCYV.

Closed set topologies, then, are paraconsistent algebras. In fact they form a signifi-
cant subclass of those paraconsistent algebras characterised by the existence of a r
operator. Related to the existence of the ~ operator is the concept of a boundary
of a set in a topology. The closure of a set U is in general bigger than U itself and
we can describe an operator B by setting B(U) = ¢l(U) — U. Since in general a set
U will have accumulation points = such that z ¢ U, B (U) is in general non-empty.
Plainly then cl(U) N cl(X — U) is also in general non-empty. This is what gives
us our paraconsistent negation. Closed set sheaf categories become interesting now
for the fact that the algebra of the base space topology becomes the algebra of the
sheaf section structure. By hypothesis, then, collections of sheaf morphisms will
reflect this algebra and produce morphism algebras with paraconsistent negations

within categories of closed set sheaves. The hypothesis proved to be correct.
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Our interest initially was in what is called a spatial topos. Where X is a topo-
logical space with topology ©, the category of continuous local homeomorphisms
over X with respect to © is a spatial topos. (Continuous local homeomorphisms are
defined explicitly in chapters thirteen and seven). The continuous local homeomor-
phisms are otherwise called sheaf spaces and are characterised by a behaviour of
sections condition. Firstly, where p: A — X is a continuous local homeomorphism
with respect to topologies ©' on A and © on X, a section of p is some continuous
function s:U — A such that U € © and p - s = idy. Then we find that wherever P
is a sheaf space and U € O is such that U = | J{U,:: € I} for a set of U; € O, we

have that if {s;:¢ € I} is a set of sections of p over each U; such that
si | UinU; =s; |U;NU; alli,jel,
then there is exactly one section s over U such that
s|Ui=s; alliel

Furthermore, as must no doubt be apparent, since sections are defined with respect
to elements of the topology on X, algebras of sections are exactly algebras of the
relative base space topologies. This turned out to be more compelling than ex-
pected as a reason to consider sheaf spaces over closed set topologies, since sections
admitted an interpretation as global elements of a sheaf space within the category
Top(X) of sheaf spaces over X, and furthermore Top(X) has a classificr object
whose global elements are exactly the “truth values” of the “logic” of the category.
The hypothesis was that an adequate definition of a sheaf space over the closed sets
of a topology would yield a topos whose logic was exactly that of the closed sets of
the base space. For a measure of simplicity, we investigated this hypothesis in terms
of sheaves. Sheaves over a topology © are contravariant functors F: ©°? — Set dis-

tinguished from other contravariant functors by exactly the property that defines
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sheaf spaces: if U = (J{U;:¢ € I} in © and {s; € F(U;):1 € I} is such that
Fliy, () = Fifiny. (s;) alli,j €1,
then there is exactly one s € F(U) such that
Fi(s)=s; allic L

In this context any contravariant functor ©°? — Set not otherwise identified is

called a presheaf. As such, the sheaves are thought of as a subclass of the presheaves.

In the early stages investigation of closed set sheaf spaces was confused by a
simple mistake in interpretation of the requirements of the behaviour of sections
condition. Since we were considering closed set topologies we wondered where we
would find enough arbitrary collections of closed sets whose union was in fact a
closed set. In particular we wondered how we would discern those arbitrary col-
lections whose union was a closed set from those whose union was not. This was
a simple mistake since, as we have written here, the condition on the behaviour of
sections 1s in conditional form. The condition applies only if a cover exists. There
1s no requirement that particular types of cover exist at all.

Discussion of the logical status and nature of classifier objects in presheaf and
sheaf categories forms the bulk of this work. We also address ourselves to the
question of the equivalence of closed set sheaf spaces and closed set sheaves, and to
the logical nature of classifier objects in more general sheaf categories. All of this
forms Part III of the present work.

At this stage it is important to point out that during the time of the develop-
ment and of the writing of the material on classifier objects, it was understood to
be of original content; but in fact in 1991 Lawvere reported the existence of his own
considerably more general result. The relevant report is Lawvere, F.W., “Intrinsic

co-Heyting boundaries and the Leibniz rule in certain toposes”, in Category Theory,
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Springer Verlag Lecture Notes in Mathematics, 1488, pp.279-281. In the note cited

Lawvere writes

“In any presheaf topos (and more generally any essential subtopos of a
presheaf topos), the lattice of all subobjects of any given object is another
example of a co-Heyting algebra (as well as a Heyting algebra). The co-
Heyting operations are in general not preserved by substitution (inverse

image) along maps...” (Lawvere, 1991, p.280).

This covers the results in my chapter 6 on the non-natural transformation
{=p:p € P} for any category Set®” where P is a poset. Now a topos of sheaves is a
subcategory of some presheaf category. So Lawvere’s result contains my own that
any Grothendieck topos has an in general non-natural BrA transformation on the
subobject classifier object.

My discussion is a great deal more detailed than Lawvere’s. Lawvere’s dis-
cussion, on the other hand, contains enough detail for an expert to recreate the
result and in fact has results relating to circumstances where the BrAs are natural
and partially natural. The virtue of my discussion is its attempt to outline why
the BrAs are not in general natural. This fitted in with my initial program for
discovering the implications of using closed sets in place of open sets in various con-
structions, particularly sheaves. The focus of the thesis became that of discovering
BrA logic structures and, broadly, that too is the focus of Lawvere’s note. However,
our method remained that of topological dualisation: the replacement of open sets
by closed in the notions of various structures; it is not clear that this is Lawvere’s
method. Philosophically speaking, the intention with chapters 6, 8, 9, and 10 was to
discover semantic objects for paraconsistent logic in categories. The implication of
my actual discoveries is that, along with standard categorial dualisation, topological
dualisation of sheaves is not an immediate source of natural semantic structures.

My emphasis, then, was different from Lawvere’s.
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The present work falls naturally into four parts. Chapters one, two, and three
form Part I where we describe such preliminary category, topos, and algebraic theory
as 1s needed for the rest of the work. A certain amount of specialist theory on sheaf
spaces, categorial j-sheaves, and Grothendieck toposes is saved until it is needed
in the relevant chapters. Chapter three is particularly important. There we give a
detailed development of those algebras we describe as dual to Intuitionism’s Heyting
algebras. We consider the nature of the logics that arise from these algebras, and
develop a notion of dual logics. Part II is formed by chapters four, five, and six.
With chapter four we provide an assessment of the categorial dualisation project
in terms of the notion of a complement classifier. In chapter five we investigate
straightforward dualisation of subobject logic structures by considering quotient
object classifiers. Our conclusions are that if we are to proceed with the project
it should be in terms of the development of extra operators for subobject lattices
in standard categories. A preliminary attempt is considered in chapter six. Part
ITT takes up where Part II finishes. Here we retain the idea that we are in search
of extra operators for subobject lattices. With chapter seven we provide a brief
history of the sheaf structure. This acts to motivate the hypothesis that sheaves on
closed set topologies will provide us with paraconsistent logic objects for subobject
lattices. With chapter eight we detail the generalisation of sheaf spaces to sheaves
over categories and from there to j-sheaves in toposes. We describe the appropriate
logic and categorial structure of closed set sheaf categories. The notion of j-sheaves
allows us to demonstrate that categories of sheaves over closed sets exist and have
subobject classifiers. Chapter eight as it appears here is a slightly revised version of
that written for Mortensen’s Inconsistent Mathematics, [1995]. It appears there as
chapter twelve. Part III continues with chapter nine. There we find that the sheaf
structure carries the algebras of closed sets of the base space into the subobject

structures only in part. With chapter ten we generalise the result to Grothendieck
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toposes and are able to show that subobject lattices in Grothendieck toposes are in
fact Brouwerian algebras, which is to say paraconsistent algebras, but not naturally
so; they do not yield Brouwerian logic objects within the category. The results of
chapters nine and ten (and six) are formally subsumed by the Lawvere [1991] result.
The difference is that in the present work we demonstrate the detail of the result.
This was independently developed and, in fact, not shown in Lawvere’s work. With
Chapter eleven we describe a genuine Brouwerian logic object in a category of all
covariant functors over a closed set topology. This is the result that shows us that
there is a genuine place in category theory for the consideration of paraconsistent
logic. With chapter twelve we elaborate on the nature of the object discovered in
chapter eleven. We find that it is a classifier object for a category of covariant
sheaves. The object in fact provides a genuine complement classifier for the sheaf
category in which it exists. In chapter thirteen we finish Part III by considering
the viability of the closed set sheaves as semantic objects for paraconsistent logics.
We describe a partial equivalence result for closed set sheaves and closed set sheaf
spaces. This chapter is a revised version of James,W., “Sheaf spaces on finite closed
sets” in Logique et Analyse, Contemporary Logical Research in Australia, 1996.
Part IV contains the last two chapters of the present work. In chapter fourteen
we are interested to use the duality of algebras described in chapter three to our
advantage. We develop a dualisation of the usual notion of a category as an object
on which to interpret theories. This dualisation allows us to develop the concept of
a refutation system, as opposed to a deduction system. We present this as a means
of understanding the notion of inconsistency toleration in a logic. The principal
contribution is a description of how to model inconsistent theories in categories.
With chapter fifteen we mark a beginning of an interest in further logic structures
within categories. We consider an aspect of monoids in categories as algebras for

relevant logics.
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A notion that has played a part in the conceptual development of this work
is that of co-exponentiation. This 1s just the dual of exponentiaition. In that
exponential objects in a topos play a part in the fact that subobject algebras are
Heyting (this is revealed by part of the working of the Fundamental Theorem of
Topoti), we speculate that properly developed co-exponential objects will if not give
us Brouwerian subobject algebras, then at least some structure on which to properly
interpret paraconsistent logics.

Co-exponentiation and its hypothesised relation to subobject algebras can be
described as follows: the condition that Sub(d) be a BrA is suggestive of the exis-
tence of an adjunction. Consider: for Sub(d) to be a BrA we require that for any

b>—>d, a>>d, z>>+d € Sub(d) there exist b+ a > d € Sub(d) such that
b—a>>d<z>>d iff b>>d<zUa>>d.

We can represent this condition in diagram form so that

zUa

T / commuting iff T / commuting.

Given, at least, that unions of subobjects are something like categorial colimits, the
vertical arrows suggest the condition that for any b,a € C there exists an object

b= a € C, and for any a, b,z € C there exists a bijection of morphisms
C(b=a,z) 2C(b,z + a).

This is a claim that any coproduct functor (- + a):C — C has a left adjoint. We
may represent this adjoint as (——a):C — C. Note that for a category to have
exponentiation any product functor (— x a) must have a right adjoint. So if C has
exponentiation, then for C°? any (- + a) functor has a left adjoint. Therefore we
call (—= a) the co-exponentiation functor. Any closed set topology poset category

has co-exponentiation since (- + a) becomes exactly (- U a).
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CHAPTER 1: BASIC CATEGORY THEORY

Introduction: This first chapter is an exposition of the basic notions of category
theory. There are two reasons for including this chapter. The first reason has to do
with part of the intended readership of this document, namely logicians and philoso-
phers. Since it is broadly true that logicians and philosophers are unacquainted with
the detail of category theory, it is appropriate that the thesis contain an exposition
of category theory in enough detail that a reader may follow the discussion in the
later, more technical, chapters. The second reason for including this first chapter is
completeness. The thesis can function as a largely self contained argument for the

various propositions and results established in later chapters.
1. Categories and Morphisms

A category C is a collection of items called objects together with a collection of
items called arrows satisfying an existence of associative composition axiom and an
existence of identities axiom (both axioms are given below). Such arrows as exist
within the category are understood as being between objects in that associated with
each C-arrow will be a domain and codomain both of which are C-objects. These
arrows, like functions, have a direction: they are from the domain to the codomain.
We represent an arrow ¢ for which the domain is object a and the codomain is
object b by g:a — bor by a -2+ b. If ¢ 1s understood we may use just a — b. We
will use dom(g) to denote the domain of g and use cod(g) for the codomain. Arrows
are also called morphisms. Collections of arrows will be called hom-sets.

Suppose a collection of objects and a collection of arrows. Let us allow that

no arrow in our collection has a domain or a codomain that is not in our object
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collection. The arrow collection is closed under (binary) composition if whenever
there is an arrow f and an arrow g such that cod(f)=dom(g), there is also an
arrow k in the collection with dom(k)=dom(f) and cod(k)=cod(g), and which is
identical to the arrow made when f is followed by g¢; for example, if we suppose
arrows f:a — b and ¢:b — ¢, then k& would be the arrow a ol s im general
there will be many arrows a — b — ¢ and the sense to be made of the notion “f
followed by ¢” depends on the nature of f and g as entities. A useful example to
prompt intuitions is the usual notion of composition of functions. Following the
conventions of functional composition the arrow & that is the arrow of “f followed

by ¢” is denoted ¢ - f. We call g - f a composite (of f and g).

Our collection of arrows is closed under associative (binary) composition if it is
closed under (binary) composition and furthermore, when f, ¢, h are arrows of the
collection, if i - g- f is defined, then (h-g)-f = h-(g- f). Such a collection of arrows

is said to satisfy the ezistence of associative composition axiom of categories.

We recognise special arrows called identities with respect to composition or just
dentities. These are arrows with identical domain and codomain, though note that
not all arrows with identical domain and codomain are identities. To be an identity
an arrow must have two properties with respect to the collection of arrows within
which they exist. We say that an arrow f is an identity with respect to a collection
of arrows if whenever ¢ - f is defined, it is the same arrow as ¢, and in addition if
f - h is defined, then it is the same arrow as h.

Recall that we supposed a collection of arrows and a collection of objects. The
arrows were to have no domain nor codomain that was not a member of the object
collection. Suppose that we allow that the collection of arrows is closed under a
composition operation. We say that the collection of arrows satisfies the ezistence of
identities axiom with respect to that composition and the object collection if for any

object b, there is some arrow, denoted ids, in the collection that is an identity with
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respect to the composition operation. If that composition operation is associative,

then our collection of objects together with our collection of arrows is a category.

Owing to what are commonly perceived to be foundational difficulties associ-
ated with the practice of category theory there is a distinction made between small
and large categories. A category is smallif its collection of objects and its collection
of arrows are both sets. A category is large if its object and arrows collections are
both classes. As MacLane in Categories for the Working Mathematician, [1971]
notes the practice of category theory calls upon us to consider such things as a
category of all mathematical entities of some type. In particular, we will routinely
be wanting to consider categories of all set-based entites of particular types, for
example, all groups or all topological spaces or all monoids. and this amounts to
applying a naive comprehension principle: given a property, form a category of all
sets with that property. Within set theory the naive comprehension principles are
famous for generating paradoxical sets. This is usually understood to be inappro-
priate at least within set theory, and is likely to be inappropriate within, at least
mathematical, category theory. There have been various responses to this problem
ranging from the naive (“a category is a category, not a set”) to the paraconsistent
(“if we must found category theory on set theory, why not use an inconsistency
tolerant logic under which it is possible for, say, the category of all categories to be
both a member and a non-member of itself”). While we are interested in paracon-
sistent categories our concern is not so much with foundations as with internal logic
structures. Accordingly we accept the usual solution from set theory and make an
in principle distinction between sets and classes. We will make no special assump-
tion about what a class is other than to say that it is a ‘collection’ that is not a set.
As to what a set is, we hope likewise to avoid commitment by noting that there
are available various formulations for set theory. Intuitively our practice is to allow

naive comprehension for as long as it does not get us into trouble. To some extent
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this is the aim of all formulations of set theory.

A useful further notion is that of a locally small category, which requires only
that the collection of arrows between any two objects be a set. The adjective ‘small’
is sometimes applied to the intuitive notion of a set or collection. The intuitive or
naive notion of a set covers both the formal notion of set and of class, so a small
set will mean a set as defined by some appropriate system.

The concept of a commuting diagram is a valuable and basic one within category
theory. These are diagrammatic representations of equations that feature arrows
and operations on arrows. So, for example, the equations that describe the nature

of identities with respect to composition are represented in the diagram

f

a———b

l‘ l’ g
ey
f

b— ¢,

g
When the equations idy - f = f and ¢ - idy = ¢ hold, the diagram is said to be

commuting.

Remark: An example of a category is SET, the collection of all sets together with
the collection of all functions between sets. Note that SET is a large category. We
will denote by Set the restriction of SET to all small sets and functions between
small sets. Set, too, is a large category, but constitutes a useful restriction of SET
in that it does not contain elements that can cause difficulties for such mathematics
as we may attempt. Another example of a large category is GRP, the category of
all groups with all group homomorphisms. Grp will be the category of all small
groups. TOP is the category of topological spaces and continuous functions between
topological spaces. Top is the category of all small topological spaces.

In some sense categories of mathematical entities are universes of mathematical

discourse. We can, it is suggested, identify a set, say, and all of its useful properties
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by ascertaining its relative position within the category Set. A central intuition
in the development of the notion of categories was that it is possible to establish
all that it is mathematically necessary to know about an entity by establishing
that entity’s appropriate, which is to say arrow, relationship to entities of the same
type. As a simple example consider that in the normal language associated with
set theory we can look at a set and say that it contains another set which we call a
subset. However, in the general language of categories it is not so much that the set
contains a subset as there exists a particular type of Set-morphism, an inclusion
function, between two technically separate Set-objects. The feature of category
theory that has sustained it through this perhaps tortuous usurping of set theory
is the generality of its constructs over broader mathematical theory and the insight

this can afford.

Terminal and Initial Objects:

A terminal object or terminator in a category C is an object, denoted by 1,
such that for every C-object a there is exactly one C-arrow ¢ — 1. The dual is
an initial object denoted by @. The initial object is an object such that for every
object a € C there is exactly one C-arrow ) — a. Note that we speak (loosely) of
the terminal and the initial objects. In fact there may be many such ob jects within
a given category. The point however is that all terminal objects, if they exist at
all, will be isomorphic within the category and likewise that, if they exist at all, all
initial objects will be isomorphic. To speak of the terminal object is to use the idea
that, within a category, an isomorph is as good as the real thing. In general we will
be able to identify the canonical construction for an object or structure, but within
a given category any isomorph will behave in exactly the same manner and be just

as useful as the “original”.
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Monos, Epis, Isos:

We can identify useful or interesting structures in categories by generalising
definitions from more well known areas of mathematics and, in particular, from set
theory. A monomorphism is the categorial generalisation of an injective function.
An arrow f : b — ¢ is a monomorphism, or monic, in a category C, if whenever we

have a pair of parallel C-arrows g, h such that the following diagram commutes

g f
a T——3b— ¢

h

that is, f-¢ = f - h, then we have that ¢ = h. A monic f is denoted by b > ¢. Two
facts about monics that we make frequent use of are that if f and ¢ are monic, then
so is the composite f - g, and that if the composite f - ¢ is monic, then so is g.

An epimorphism is the categorial generalisation of a surjective function. An
arrow f : b — cis an epimorphism, or epic, in a category C, if whenever we have a

pair of parallel C-arrows ¢, j such that the following diagram commutes

b—f—éc ﬁ‘d
J
that is, ¢ - f = j - f, then we have that 1 = j. An epic f is denoted by b —» ¢. The
two facts we have about monics dualise (in a sense that we will describe later), so
that if f and g are both epic arrows, then so is the composite f - ¢, and that if the
composite f - g is epic, then so is f.

An isomorphism is the categorial generalisation of a bijective function. An
arrow f : b — c is an isomorphism, or iso, in a category C if it has an inverse, that
is, there is a C-arrow f~' : ¢ — b such that f- f~! = id. and f~'- f = idy. An
iso f is denoted by b = ¢. The objects b, ¢ of an iso arrow are, within the category,
isomorphic and are called is0 objects.

An isomorphism is always both epic and monic. However it is not always

true that epic and monic arrows are well behaved. For example it is not true that
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in all categories an arrow that is both epic and monic is an isomorphism. This
indicates only that there are more categories than are (intuitively) the image of
SET. The desire to identify categories for which intuitively set theoretic notions
like epimorphism, monomorphism, and set membership behaved as they did for
SET was at least part of the motivation for developing the theory of toposes. But

we are ahead of ourselves.

Limits and Colimits:

A natural concern arising from contemplation of the notion of a commuting
diagram has to do with the existence of limits and their duals, the colimits. It is
frequently useful to be aware of the existence or otherwise of a limiting (or colim-
iting) example of a commuting diagram. Such things feature heavily in the usual
development of what we might call the mathematics of such entities as we can collect
into categories. A simple example is that of the product and coproduct structures.
Most theories of the broadly mathematical type — set theory, group theory, the the-
ory of vector spaces, and so on — have particular notions of product and coproduct.
What these notions of product (or coproduct) share is a property of existence as
a limit (or colimit). In general, limits within a category are described in terms of
cones and diagrams. A diagram D in a category C is any collection of C-objects d;
together with any collection of C-arrows g between those objects. A cone for D is
a C-object ¢ together with C-arrows ¢ £, d; for each diagram object d; such that

. ) . 5
for any diagram arrow d; — d; we have a commuting triangle

fi

c ——

S

2

g
fi

QU
<.

We can denote a cone by {c i di}. A limit for D is then that cone {c iR d;} for
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which where {¢' R d;} is any other D-cone, there is exactly one C-arrow ¢’ BLIN

such that for every diagram object d; we have a commuting triangle

Products arise as lunits. Any two objects a,b in a category C constitute a
diagram (admitedly a diagram with no arrows, but a diagram nonetheless). A cone
for this diagram is any C-object d together with a pair of arrows f:d — a,g:d — b.
A limiting cone, where it exists, is a C-object ¢ together with a pair of arrows

prq:c — a,pry: ¢ — b such that there is exactly one arrow h:d — ¢ making both

\ N

axb—%b

commute in C whenever {a ML R b} is a cone for diagram {a, b}. And so we have
a definition: a product of two objects a,b in a category C is a triple (a X b, prq, prs)
where a x b is a C-object and pr, and pry are, respectively, C-arrows a X b — a and
a X b — b, and for any C-object d and any pair of C-arrows d =i, a,d —L5 b there is

exactly one C-arrow (f,g) : d — a X b making the following diagram commute.

/N

a <———a><b—>b

The arrows pr, and pry are called, respectively, the first and second projection maps.

The arrow (f,g) is called a product map. Notice the convention that morphisms
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that are unique in making a diagram commute are represented by broken or dotted

arrows.

Limits are defined only up to isomorphism. This means that for a diagram
D there can be more than one limiting cone, but that if this should be the case,
then the limiting cones are isomorphic in the sense that if {c LN di:i € I} and
{c (N d;:v € I} are both limiting cones, then there will exist an isomorphism

k:c — ¢ such that f] -k = f; for all 7 € I.

Colimits are described in terms of co-cones. For the diagram D in a category
C, a co-cone is a C-object e together with C-arrows d; ", ¢ for each diagram object

d; such that for any diagram arrow d; —— d; we have commuting

h;

di —— ¢

J %

dj

A colimit for D is then co-cone {d; = I} which has the property that if
h!
{di —> €':1 € I} is any other D-co-cone, then there is a unique C-arrow [ :e — &'

that makes all triangles

commute in C. Like limits, colimits are defined only up to isomorphism. And just
as we can develop the definition of a product in terms of limiting cones, so can we
develop the definition of a coproduct in terms of co-cones. In that case, a coproduct
of two objects a,b in a category C is a triple (a + b,14,¢;) where a + b is a C-object,
both ¢,:a — a+b and 74: b — a + b are C-arrows, and the following is true: for any

C-object d and any pair of C-arrows a Ko d,b 1, d there is exactly one C-arrow
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[k,1] : a + b — d making the following diagram commute.

7N

a+be———b
lq h

The arrows i, and i, are called, respectively, the first and second injection maps.

The arrow [k, ] is called a coproduct map.

Duality:

There is an important property demonstrated by the notions product and co-
product: they are categorial duals. The same is true of the notions monomorphism
and epimorphism. We define this in terms of dual, or “opposite”, categories. A cat-
egory is dual or opposite to a category C if it has the same objects and furthermore
there is a distinct arrow b — a if and only if there is a distinct C-arrow a — b; the
dual category is denoted C°? and for f:a — bin C, the corresponding C°P-arrow is
denoted f°P:b — a, and whenever f - ¢ is defined in C, (f - ¢)°? is defined in C°? to
be a composite g°? - f°P. We have, at least up to isomorphism, that (C°?)°? is C.

Consider now the definition of a C-monic f:b>— c. The arrow f is monic if
whenever we have a parallel pair of C-arrows g, h:a =3b such that f-¢g = f-h, we
also have that ¢ = h. Now f°P:¢c — b exists in C°P iff f exists in C, and a parallel
pair g°P, h°P: b —3a exists in C°? if g, h exists in C. Since (C°P)°? is C, we will have
that (f - ¢g)°? = (f-h)°? inC? iff f-g = f-h in C. Furthermore, since f and ¢
under these conditions are the same arrow in C, their duals, f°7 and ¢°?, are the
same arrow in C°?. In other words, f satisfies the monomorphism conditions in C
iff f°P satisfies the epimorphism conditions in C°?. Much the same discussion will
reveal that when f is an epimorphism in C, then and only then would f°? be a C°P-
monomorphism. We say that pairs of constructions are categorial duals if when &

1s the statement describing one of the pair in the basic language of categories (that
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1s, using reference only to objects, arrows, composites, domains, and codomains)
and X' is the statement describing the other in the basic language of categories,
then ¥ is (£')°? and ¥’ is £°P where for any statement Y in the basic language
of categories, the statement £°P is obtained by replacing any word “domain” by
“codomain”, any word “codomain” by “domain”, and any equation “f = ¢ - k" by

“f°P = h°P . g°P” (and by correcting dependent grammar as is appropriate).

More Limits and Colimits:
A very common and useful construction within categories is that of the binary
limit structure called a pullback. For a pair of arrows

b

g

with common codomain, the pullback is the pair of arrows 7, j of the limiting cone

W
gﬁ j
oo

Q
(9

e.

o

R—

*d
i
Jj g
A

—— C

f
The pair 7,5 is the pullback of the pair f,g if the inner square commutes, that is

g-t=f-J, and in addition whenever there exists ¢',j' such that the outer square

commutes, there is exactly one h:e — d making the whole diagram commute.
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Whenever we have a pullback {%,7} of {f,g}, it is common to say when i and j
stand to f and g as they do above, that j is the pullback of ¢ along f and that
¢ is the pullback of f along ¢g. This is in no sense a new definition for the notion
of a pullback; it is simply some terminology by which we may identify component
arrows in a pullback diagram in their role as parts of that diagram. The binary
colimit structure dual to the pullback is called a pushout. Similar terminological

conventions apply.

Pullback Lemma: if « diagram of the form

commutes, then

(1) of the top and bottom squares are pullbacks, then so is the outer rectangle
(made from the evident composites), and

(ii) of the outer rectangle and the bottom square are pullbacks, then so is the
top square. O

Here we have a demonstration of the usefulness of the notion of duality: once
the Pullback Lemma is demonstrated, we can regard the appropriate dual claim,
the Pushout Lemma, as equally demonstrated. The reasoning runs as follows: let &
be a statement in the basic language of categories giving the definition of structure
S; let T be a theorem cast in the basic language of categories and on the categorial
nature of structures S in any category C; in that case, theorem T°? will be on
the categorial nature of structures co-S in categories C°? where co-S structures are
defined by statement $°7. Now, if C°? is a category whenever C is a category and

vice-versa, then any category C is a category (C')°P for some category C'. And it
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follows that if T is proven for any category C, then so is T?P.
P
Another useful limit notion is that of an equaliser. For any parallel pair a "h
g
in a category C, an equaliser, if it exists, is a C-arrow e — « such that f -1 = ¢ -3

and whenever there is some C-arrow ¢ —= a such that f-h =g-h, there is exactly
one C-arrow c¢ L e such that ¢ - k£ = h. For fixed f,g¢,s, if there is a diagram as

follows for any h, then 7 is an equaliser of f and g¢.

Co-equalisers are the dual notion. It is readily shown that any equaliser in a category
is monic, and, by duality, that any co-equaliser is epic.

It is worth noting as an independent point that the concept of a monic is a
limit notion just as that of an epimorphism is one of a colimit.

A category is said to be complete if there exists within the category a limiting
cone for every diagram. A category is co-complete if there exists within the category
a colimit for every diagram. A finite diagram is one with a finite number of objects

and arrows. A category is called finitely complete if there is a limit for every finite

diagram. Dually a category is said to finitely co-complete.

Theorem 1.1: if category C has a terminal object and has a pullback for every
pair of arrows with common codomain, then C is finitely complete. a
And dually,

Theorem 1.2: if category C has an initial object and has a pushout for every pair

of arrows with common domain, then C is finitely co-complete. a

Functors and Natural Transformations:
An important feature of category theory is the constructions on and between

categories. The basic device is the functor. A functor is a morphism of categories

37



that preserves identities and composition structure. A functor F:C — D between
category C and category D can be thought of as a pair of assignment functions and
so be F' = {Fy, Fyy}. For any C-object a, F(a) = F,;(a) which is some D-object.
For any C-arrow f, F(f) is For(f) which is some D-morphism. There are two types
of functor, the contravariant and the covariant, and the difference is in terms of
the action of Fy,. For a C-arrow a 1, b, the image F,.(f) under a covariant
F is some arrow Fyp(a) — Fop(b). A contravariant F' will map f to some arrow
Fop(b) — Fyp(a). In other words, covariant functors preserve morphism direction
while contravariant functors reverse it. What further distinguishes functors from
simple assignment functions is their preservation of categorial composition struc-

ture. Any functor is required to preserve identities so that, for any C-object a,
F(idy) = idp(q)-

Any functor is required to preserve composition structure in the sense that for any

C-arrows ¢, h if g - h is defined in C, then for covariant F,
F(g-h)=F(g)- F(h)

while for contravariant F'

F(g-h)=F(h)- F(g).

In other words, covariant functors preserve composition while contravariant functors
preserve and reverse it.

Any contravariant functor F:C — D can be understood to be a covariant
functor F:C°? — D where F,; and F,; are the same functions, but for any C°P-
arrow f°P we let Fur(f°P) = Fy.(f). Recall that f°P:b — ais in C° iff f:a — b
is in C, and Fop(f) is a map F(b) — F(a). Given this, it is possible to ignore
“the notion of contravariance and speak only of covariant functors with no loss of

generality. Since, however, in following chapters we will be dealing in large part with
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categorial sheaf theory we will maintain the distinction. We will however adopt the
convention of representing contravariant C — D as covariant C°? — D. It is worth
noting a philosophical point: contravariance and covariance remain distinct notions;
the elimination of contravariance arrives solely as a result of the isomorphism of
categories of covariant functors C°? — D and categories of contravariant functors
C — D. (We shall shortly explain how functor categories exist).

Composition of functors is readily defined as composition of the associated
assignment functions so that for F:C — D and G: D — &, the composite G - F' is
the pair

{Gob : F067 Ga'r‘ : Fa’l‘}'

Given a category of categories we can identify those functors that satisfy the
usual epi-, mono-, and iso-morphism definitions. Other useful characterisations of
functor types include the full, the faithful, and the embedding notions. A (covariant)
functor F:C — D is said to be full if surjective on hom-sets; that is, F' is full if any
g: F(a) — F(b) in D 1s F(f) for some f:a — bin C. A functor is faithful if injective
on hom-sets; that is, if F(f) = F(g) in D, then f = ¢ in C. A functor is called an
embedding if the arrow function is injective in the sense that for each arrow ¢ in D
there is at most one arrow f in C such that F,,(f) = g. Note that the definitions
of faithful functors and embeddings are not necessarily equivalent. Useful notions
also include the hom and representable functors.

A hom functor for a (small) category C is a functor that maps objects of the
category to sets of morphisms of the category. For object a € C the covariant
hom functor is functor home(a,—) : C — Set which maps any object b € C to
home(a, b), the collection of C-morphisms a — b, and maps any C-arrow b L to

home(a, f) : home(a,b) — home(a,b'), the composition function given by

(a—>b)r—>(a—>bi>b').
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For object a € C the contravariant hom functoris a functor home(—,a) : C°7 — Set
that maps any object b € C to home(b,a) and maps any C-arrow b b to

home(f,a) : home(b',a) — home(d, a), the function given by
(B —a)— (b5 ¥ = a).

Note that we can also use h, or C(a,—) to denote functor home(a, —), and that
we can use h? or C(—,a) in place of home(—, a). We will frequently use C(a,d) or
hom(a, b) with C understood to denote the collection of C-morphisms a — b. It is

useful to note that

hom¢(—, a) = homgos(a, —).

In keeping with the powerful idea behind category theory that we may make
categories of any mathematical entity, we will define morphisms between functors.
These are the natural transformations.

A natural transformation is a morphism of functors that have common domain
and common codomain. For functors F,G : C — D, a natural transformation 7,
denoted F' - G, from F to G is a collection of D-arrows 7, : F(a) — G(a) for
all objects a € C that are required to respect the arrow structure of the domain
categories as translated by the functors involved; this means that if f:a — b is an

arrow in C, then the following diagram is required to commute in D
Ta
F(a) — G(a)

; l P Jeen
b

F(b) —7_b—> G(b)

When this diagram commutes for any such f with domain a, the map 7, from F(a)
to G(a) is said to be natural in a. If F,G are both contravariant functors, then
{ra:a € C} is a natural transformation if for any f : @ — b in C, the following

diagram commutes in D
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b F(b) —2 G(b)

/ T F(f)l lam

a F(a) G(a)

Ta

Note that the fact that we can, in principle, replace any contravariant functor
with a covariant functor means that, in principle, we can have natural transforma-
tions between functors of different variance.

That natural transformations are composable amounts to the claim that the
components of the natural transformation are composable; that is, for functors
F,G,H:C — D and natural transformations 7: F - G and 0: G > H, the composite
o -7 is given by components a, - 7, which are composites of D-arrows F(a) — G(a)
and G(a) — H(a). Plainly this provides a composition operation suitable for the
definition of a category. We denote by D¢ the category of all functors C — D. We
can apply the usual definitions of epi-, mono-, and iso-morphism:; it is useful to note
that a natural transformation 7 is monic in D€ if each component 7, is monic in D.
A recognised sub-type of the natural transformations are the natural isomorphisms.
A natural isomorphism 7:C — D is a natural transformation where for every object
a € C, component 7, is an isomorphism in D. The natural isomorphisms 7:C — D
are exactly the isomorphisms in DC.

For a small category C, a representation of a functor K : C — Set is a pair

(r,¥) where r is an C-object and
U : home(r,—) = K

is a natural isomorphism. The object r is called the representing object. The
functor K is said to be representable when such a representation exists. It follows
that contravariant functors are representable if isomorphic to some home( —, r).

A functor F' : C — D is an equivalence of categories when there is a functor

G : D — C and two natural isomorphisms G - F' 22 id¢ and F - G = idp.
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For any two categories C and D the product category, denoted C x D, has as
objects all pairs (c,d) where c € C, d € D. A (C x D)-arrow is a pair (f,g) where
f is a C-arrow and ¢ is a D-arrow. The composite (f,¢) - (f',¢') is defined to be
(f-f',g9-9¢') and exists whenever f - f' exists in C and ¢ - ¢’ exists in D. With this

information in hand we can consider the Yoneda Lemma.
2. Yoneda

The Yoneda Lemma demonstrates a translation of structure; the internal be-
haviour of a functor G is manifest as a relationship between functors. Via this
lemma we can perform the traditional task of category theory of abstracting away
from an element based description of mathematical entities.

The Yoneda Lemma asserts that when D is a category with small hom-sets then,
for any covariant functor G: D — Set and D-object a, there is a bijection between
the elements of G(a) and the set of natural transformations from hom(a, —) to G.

The bijection in question
Y:Nat[hom(a, —), G] — G(a)

is given by
0 — 6,(2d,)

where §, is the a-component of natural transformation §:hom(a,~) — G. The

inverse of ), denoted ), is given by
G(a) >z — & ={&:be D},

where £ 1s a natural transformation hom(a, —) — G such that for all b € D and
all f € hom(a,bd), we have &(z) = G(f)(z). As a corollary, which we obtain by

substituting hom(b, —) for G, we have that for a,b € D, each natural transformation
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hom(a, —) - hom(b, —) has the form of contravariant hom(h, —) for a unique D-

arrow h:b — a.

For contravariant functors GG, the Yoneda Lemma describes the bijection
Y:Nat[hom(—, a), G] — G(a)

and has as a corollary the claim that for objects a,b € D, each natural transfor-
mation é:hom(—,a) — hom(—,bd) has the covariant form hom(—, k) for a unique
D-arrow h:a — b. By Yoneda, that arrow h is ,(id,).

The Yoneda Lemma can be rewritten in terms of two functors from Set? x D to
Set. These are the functors E and N. F is the evaluation functor (G, a) — G(a) and
N is what we can call the nat-trans functor (G, a) — Nat[hom(a, —),G]. In these
terms, the claim that ) is a bijection becomes the claim of a natural isomorphism
N - E; this includes the extra claim that ) is natural in both ¢ and G.

The contravariant Yoneda functor Y:D°? — Set” is defined by
a — hom(a, —)

and
f =g hOIIl(f, —)

Now, we know that Y acts bijectively on hom-sets (loosely, for sets of arrows in D
there are isomorphic sets in Set? picked out by Y') since it follows from the Yoneda

Lemma that for ¢,d € D, we have

hom(c,d) = Set? (hom(c, —), hom(d, —))

k]

Also, arrow 6 € Set? is Y (f) for some f in D only if é is hom( f, —) or isomorphic to
hom( f, —). So, suppose some arrow ¢ in D such that Y (g) = §; that is, Y (g) = Y (f).
Since Y acts bijectively on hom-sets, if g and f have the same domain and codomain,

then g = f. It is a further fact about Y that it is injective on objects; that is, for
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any object F' € Set?, there is at most one ¢ € D such that Y(e) = F. It follows,
then, that ¢ and f must have the same domain and codomain. In other words, Y
embeds D in Set”, and, in fact, does so isomorphically. The Yoneda functor is
otherwise known as the Yoneda embedding and is full and faithful.

The dual or covariant Yoneda functor Y': D — Set?”, given by
a — hom(—,a)

and
f = hom(—,f),

i1s an embedding for the same reasons; it thereby allows us to regard D as a full

subcategory of presheaf category Set?"”.

3. Adjoints

Adjoints are a means of describing universal properties that generalises the type
of discussion we have engaged in when we described limits and colimits in terms
of cones and co-cones. Universal properties in category theory are properties of
diagrams; in other circumstances we might call these sorts of properties fundamental
or perhaps archetypal. Amongst a collection of diagrams of (loosely) the same type,
one diagram (and its isomorphs) is universal with respect to that type if the other
diagrams factor uniquely through it; that is, given the diagram that is universal
with respect to the type and given another diagram of the type, a bigger diagram
can be made with unique arrows from the second diagram to the first. The idea
of diagram types here is vague but is meant to invoke the idea of a collection of
diagrams that have the same shape; they do not necessarily have the same arrows
nor the same objects, but they do have the same number of objects and of arrows
and the objects and arrows stand in the same relationships. A concrete example

of a diagram with a universal property is that of a limiting cone C for a diagram
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D. Amongst all the cones for diagram D, cone C is universal (with respect to
the property “is a cone for diagram D”) because any other cone factors uniquely
through C in exactly the same sense that we gave when we originally defined the
notion of a limit for D. Among diagrams of the same “shape”, the diagram with
the universal property is an exemplar, indeed a construction, of some property of
mathematical entities, for example, “is a limit”, “is a product”, or “is a subobject
classifier”. There is, therefore, some significance to establishing a general treatment
for the existence and description of universal properties.

Adjoints are functors in an adjunction. An adjunction between two (covariant)

F

functors C ——D is a bijection

G
© = 5,4 : homp(F(z),a) = home(z,G(a))

which is natural in ¢ € C and a € D. The bijection being natural in z and a means
that individual bijections ¢, , are the components of a natural transformation be-

tween the following hom bifunctors:
homp(F(-),—) and home(—,G(-)).

These bifunctors are not in principle more complicated than the usual hom functors,
though note that they are both, as one would expect, contravariant in the first
variable and covariant in the second. The object functions of both functors are

readily described: for any = € C and any a € D
(homo(F (), -)),, ¢ (z.a) - homp(F(z), )
and
(homc(—,G(—)))ob : (z,a) — home(z,G(a)).

We describe the arrow functions in two stages. Consider homp(F(—), —). For any

z € C and any D-arrow k:a — b, homp(F(z), k) is the usual composition function
F(m)—»aHF(x)—»ai»b.
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Also, for any C-arrow h:z — y and any a € D, homp(F(h),a) is

F(y) = a— F(z) s, F(y) — a.

So, for any h:z — y in C and any k:a — b in D, (homp(F(—).~)), is a map
homp(F(y),a) — homp(F(z),a) — homp(F(z),b)

given by

F(y) = a F(z) "% F(y) — a 45 b,

Similarly we can arrive at the arrow function for home(—.G(—)). Recall that
home(—, G(—)) is contravariant in the first variable and covariant in the second;

then, for any h:z — y in C and any k:a — b1in D, (homc(—,G(—)))ar 18 a map
home(y, G(a)) — home(z, G(a)) — home(z, G(b))

given by

y—)G(a)Hw—L»y—»G(a)CﬂG(b).

We are now in a position to recognise that an adjunction ¢ exists if and only if
for all objects ¢ € C, a € D and all arrows h:z — y in C and k:a — b in D, the

following two diagrams commute

a homp(F(z), @) — 2, home(z, G(a))
kl homp(F(z), k) home(z, G(k))
b homp(F (), b) ——— home(z, G(b))
and
Py,a

y homp(F(y),a) ————— home(y, G(a))
h/[ homp(F(h),a)l J/homc(hA G(a))

homp(F(z),a) ——— home(z, G(a))

z,a
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Diagrams of the first sort are the claim that ¢ is natural in a. Diagrams of the
second sort are the claim that ¢ is natural in z.

When we have an adjunction ¢ the functor F is called the left adjoint. In its
role as left adjoint of G, F' is denoted by F' 4 G. Functor G is called the right
adjoint and denoted by G - F'.

Adjoints are expressible in terms of their units and co-units. The unit of an
adjunction ¢ is a natural transformation n : id¢ — F - G given by components
Na = ¢(idp(q)); component 7, is that element of home(a,G(F(a))) that is the
image under ¢, p(q4) of 1dp(,). The unit has the property that for any object a € C

and any C-arrow a —— G(b) there is exactly one D-arrow F(a) L, b such that

« —5G(F@) o)
oy
A
a(v) ¢

commutes in C.

Dually, we have the co-unit of an adjunction. The co-unit is a natural trans-
formation e: F'- G — tdp given by components g, = L,oa%b)’g(idg(b)). The co-unit
has the property that for any b € D and any D-arrow F'(a) I, b there is exactly

one C-arrow a —— G(b) such that

€p

G(b) F(G(b)) —— b
9 F(g) [

commutes in D.

For functors F' and G the claim that natural transformations n and e exist is
exactly the claim that bijection ¢ exists. It is via the unit and the counit that

adjunctions reveal universal constructions.
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With this brief summary of the basic categorial concepts we will employ, we
proceed to the notion of a topos. In the next chapter we summarise basic definitions
and results from topos theory. These are needed as a preliminary to later chapters,
where we proceed to establish further results connecting the theory of sheaves,

toposes, and paraconsistent logic.
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CHAPTER 2: BASIC TOPOS THEORY

Introduction: This second chapter is an exposition of the very basic notions of
topos theory and topos logic. The reasons for including this chapter are very much
the same as those for including chapter 1, but in this case they apply with more
force. The bulk of the specific categories discussed in the course of the thesis are
toposes and the structures discussed in the course of the thesis are exactly those
that are at the heart of topos logic. Chapter 2 also contains a section on the basic
features of the technical device called image factorisation. This is simple exposition
and allows us to make simple uses of the device in later technical chapters without

comment.

1. Toposes

A topos is a category with some extra structure. The search for a definition of a
topos was originally motivated (in part) by the need to identify categories that were
sufficiently like SET that various generalised set-theoretic notions like mono- and
epi-morphism were well behaved in the sense that they maintained their analogy
as constructs with their original set based counterparts. The original toposes were
what we now call Grothendieck toposes, that is, categories of sheaves over sites.
Since these categories had many of the necessary features the name was appropriated
by Lawvere to describe the more general structure that is the elementary topos.

The notion of a topos is now standard within category theory and is so well
developed that it is appropriate to speak of toposes as being a subject matter in
their own right. Our exposition here is a summary of some standard facts and

constructions within this subject matter.

49



An elementary topos is a category & that
(1) is finitely complete,
(2) is finitely co-complete,
(3) has exponentiation, and

(4) has a subobject classifier.

We have seen how to understand the notions of completeness and co-completeness.
The third property, that of exponentiation, is the generalisation of the set notion
of the existence of exponential objects BA. (A set based object B4 is ordinarily
understood to be the set of all functions from set A to set B). The subobject
classifier is the generalisation to categories of the notion of subsets and, in particular,
subsets as described by characteristic functions. We will proceed to define these
notions in more detail, and we follow this with an exposition of the ides of logic in
a topos. We finish this chapter with a brief description of the technical device of
image factorisation.

A category C has ezponentiation if it at least has products and if for any C-
objects a, b there is a C-object b* and a C-arrow ev : b* x a — b such that for any
C-object ¢ and any C-arrow g : ¢ X @ — b, there is a unique C-arrow § : ¢ — b*

making the following diagram commute

Equivalently, a category C has exponentiation if for every object a € C there is a
right product functor (— x a) : C — C which has a right adjoint. A right product
functor (— x a) is given by b+ b x a and (ch)H (f xida:bxa— c¢xa). The
right adjoint to this functor will be (—)® : C — C. The arrow ev will be the co-unit

of the adjunction. Objects b* are called ezponential objects.
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The subobject classifier is the focal point for what can be understood as the
logic of the categorial structure. We can describe lattices of subsets of a set under set
inclusion and, in seeking a generalisation of this for categories, we find subobjects
and their classifier. In that subsets can be understood in terms of inclusions and
the lattices of subsets reworked as lattices of functions, we address ourselves, in
general categories, to monics. For an object d in a category C, let Monic(d) be
the collection of all C-arrows that are monic with d as codomain. We can define a
pre-order (reflexive, transitive order) on Monic(d) so that for f,g € Monic(d) we

say f C g iff there is a C-arrow k making the following diagram commute
2 g
k \’ 4
A

ie, iff there is some k such that f = ¢g - k. Since f is monic, so is k. This pre-order
will not in general be a partial order (reflexive, transistive, and anti-symmetric)
since there will, in general, be isomorphic, but non identical, monics: for such a
pair f,g we will have f C g and g C f, but not f = g. We can, however, establish
a partial order on Monic(d) under the obvious equivalence relation. We will say
that f,g € Monic(d) are in the same equivalence class if and only if we have both
f € gand g C f. Such an equivalence class is called a subobject of d. The collection
Monic(d) partitioned under this equvalence relation is denoted Sub(d). It will be
usual in what follows to blur the distinction between subobject and representing
morphism. In the relevant areas this is the standard practice and follows from the
fact that, for such constructions as we consider, all members of a given subobject
behave as though identical; in fact, members of the same subobject are usually
not 1dentical as arrows, but such differences as exist are not relevant in the usual
context of subobject evaluation. This is another example of the pervasive feature

of category theory that, in context, an isomorph is as good as the real thing.
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The subobject construction for a small category C can be presented as a con-
travariant functor SUB : C°? — Set which takes objects d of C to sets Sub(d), and
for C-morphisms h : d' — d, produces a function SUB(h) : Sub(d) — Sub(d') which

takes subobject (representative) f € Sub(d) to the pullback of f along A

SUB(R(/)

an’
l b
Q ——

i

Note that, as is plainly required, any pair of monics in the same subobject will
determine the same subobject when pulled back. When the subobject functor is
representable in a category C, the object that represents it is usually denoted by
Q. In fact, SUB being representable is equivalent to the existence within C of a

subobject classifier. Object € is called the classifier object.

A subobject classifier for a category C is a morphism true: 1 — ) which is from
the terminal object 1 to an object 2; in addition the arrow has the property that
for any C-monic f : a > d, there is exactly one C-arrow d — (2, denoted Xy, that
makes the following diagram a pullback
L 4

Xy

—e———— 2

S
— ()
true

The maps Xy are called classifying maps. In Set these are the characteristic func-
tions. When the subobject classifier exists in a category the assignment of X to f

for all arrows f in Sub(d) establishes a bijection

Sub(d) = hom(d, ).
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The forward looking reader will see that the next point of interest will be the
attempt to transfer any algebraic operators that exist for Sub(d) to hom(d, ?) and
from there to the structure of 2 itself.

Remark: When discussing categories, and in particular the structure of toposes,
there is a distinction to be drawn between internal and external constructions.
Recall that a topos is a category and as such is a collection of objects and arrows.
A construction for a category is called internal only if that construction is an object
or an arrow of the category. Any other structure will be called external to the
category. As an example, we have just noted that in a topos £ the collection
Subg(d) will be isomorphic to £(d,€2). There is in general no reason to believe
that Subg(d) exists as a collection within the topos, that is, there is no reason in
general to believe that the collection Subg(d) is an object or an arrow of £. This
makes Subg(d) an external construction. We know however that £(d, ) is always
represented within a topos by object Q4. We say then that Subg(d) is the external

version of Q¢; while Q¢, being an £-object, is the internal version of Subg(d).
2. Topos Logic

The logic objects of a topos are the classifier objects §2. These are focal points
for “topos logic” in the same way that two element sets are the focus (or locus)
of logic within set theory. Objects Q are developed as algebras within a topos
by developing those natural operators that exist on each Sub(d), and, in essence,
transfering these operators to 2. The technical device for this transference is the
Yoneda lemma for contravariant functors. The contravariant functor in question is
SUB. As an indication of how this works recall the bijection Sub(d) = hom(d, )
and so the existence of operators on hom(d, Q) whenever there are operators on

Sub(d, ?); there is an isomorphism

hom(d, 2) x hom(d, ) = hom(d, 2 x Q),

o3



and, in that operators on all Sub(d) are to be called natural if they correspond to a
natural transformation hom(d,Q x £2) — hom(d, ), the Yoneda lemma guarantees
us unique maps 2 X Q@ —  for each set of natural operators on lattices Sub(d).
For any object d in a topos &, Sub(d) ordered by subobject inclusion is a
bounded, distributive lattice. For f : a>~d and ¢ : b>— d in Sub(d), we have the

greatest lower bound, f Mg :a N b>—d, given by the pullback of f along g,
aNb—— b
[l
a —— d
and the least upper bound fUg:aUb >—>{i given by the image factorisation of the
coproduct map [f, g]. We will say more about image factorisation shortly. The unit
1s the identity morphism on d. The zero is the unique map from the initial object to

d. Furthermore, operations N and U are natural in d meaning that for any d’ *, d,

SUB(k)(f U g) = SUB(k)(f) U SUB(k)(g)

and

SUB(K)(f Ng) = SUB(k)(f) N SUB(k)(9).

Via the Yoneda Lemma, then, we have maps U,N: Q x @ — Q. Zeros and units are

natural in the same sense. We can define a natural order object, ), by equaliser

N
@— axQ——0Q
. pr

d

We use this to order sets £(d,{2) and find, as we would expect, that

where C is subobject inclusion and Xy < X, is defined to hold iff (X, X,) factors

through e (that is, k exists as in the diagram above).
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Since e is monic, we can define its character map and as we would expect
this is the intuitionist operator =:Q x @ — . The object £ is then revealed
as an intuitionist or Heyting algebra (HA). The arrow = is used to define the
characteristic Heyting algebra operator | for each £(d,2) and as a result for each
Subg(d), and then subobject lattices are revealed likewise as HAs.

Since all details of the just described algebraic structure of 2 will exist as
objects and arrows of the topos, the object Q is described as an internal algebra.
The use of the term “internal” is something of an extension of the previously offered
definition, but does not seem to breach the spirit of that definition: whether it
does or not depends on whether or not one requires that the HA in question be
understood as the set of §) together with operator arrows and order object.

An alternative method of specifying the logical algebras of any topos is avail-
able. This new method produces the same structure but without (obvious) reference
to the Yoneda lemma. Given a subobject classifier true
(1) N: Q x Q — € is the classifying map for the product map (true, true);

(2) U: 2 x Q — Q is the classifying map of the image of map

[(trueq,idq), (¢da,trueq)]

where trueq is the map Q — 1 s Q:

(3) =: Q x Q — Q is the classifying map of the equaliser
N
e: > A xQ
PT1
(4) = : @ — Q is the classifying map of the arrow false : 1 — Q which is the

classifying map of the unique arrow ) — 1 from the initial object to the terminal

object.
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3. Image Factorisation

Lastly, a summary of some facts about image or epi-monic factorisation in a
topos. We follow the Goldblatt [1984] presentation. In a topos £, for any arrow

a L5 b we can form the pushout of f along f

f

a—— b

fl_ﬁlq

p

p
We can also form the equaliser of the pushout b 7. We denote this equaliser by

q
im f: f(a) — b. Since ¢- f =p- f, there is a unique f*:a — f(a) making

m p
Fa) Ly ———,
m q

S
'a
commute. It happens that im f is the smallest subobject through which f factors
and that f* is epic. This is the construction within a topos of what is called the ep:-
monic or image factorisation of the arrow f. In general, the image factorisation of
an arrow f is the production of an epic f* and a monic im f of which the composite
im f - f*is f, and of which it can be said that whenever there is an epic ¢ and a

monic h such that h - g = f, there is exactly one k making the diagram

wm f

f(a) — b

a ———¢C

g

commute. It follows from the availability of the construction that epi-monic fac-
torisations exist for any arrow within a topos. The notion may also be considered

in more general categories however in this text we will not need it.
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The idea of image factorisation is the generalisation to categories of the well-
known idea that any set function A 4, B can be factored into a surjection
f*: A — f(A) followed by an injection f(A) — B where f(A) = {f(z):z € A}
and f*(z) = f(z), all z € A.

This completes our presentation of such basic features of category and topos
theory as we need for later discussion. We will, in later chapters, introduce other
structures and constructions which, given the level of scrutiny they have been sub-
jected to over the years, should count as basic to category and topos theory, but
which, given our aims, do not count as introductory. Accordingly we leave our ex-
position of Grothendieck toposes and sheaves until Part III and particularly chapter
eight. With the next chapter we introduce such aspects of the study of logic, and
particularly paraconsistent and intuitionist logic, that we will need for the rest of

this work.
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CHAPTER 3: THE HA DUAL

Introduction: Heyting algebras are known to occur within and around the struc-
ture of toposes and in particular to occur as subobject lattices. In anticipation of
categorial constructions exhibiting dualised lattices, we consider the property of
Heyting algebra duals that they are algebras for paraconsistent logics. These are
logics that non-trivially allow that a sentence and its negation have overlapping
truth values by which we mean that the conjunction of a sentence and its negation
has some value other than false without the logic containing all other sentences.
The text from which we take our initial understanding of a paraconsistent logic and
logics in general 1s Mortensen’s Inconsistent Mathematics, [1995].

In a later chapter we give a detailed presentation of a system of rules of inference
which, following the conventions of the literature, we call a logic. That collection of
rules is better called a deduction system. In what follows we lay out what we mean
when we use the term logic in its technical sense. It should become apparent that
deduction systems and logics are closely related. We shall give a description of what
counts as a paraconsistent logic and a paraconsistent logical algebra in the sense
that we will use throughout the rest of this text. The systems we concern ourselves
with are essentially those that can be built using the closed sets of topological
spaces.

This chapter has four sections. The first is largely expository. Much of what
is presented in this section 1s well known. I provide a formal logical language, a
notion of a Heyting algebra (HA), a notion of a Brouwerian algebra (BrA), and a
demonstration that the HA and BrA notions are dual. Since the bulk of the thesis is
on the existence of algebras of this type, there is a need to be reasonably detailed in

the setting up of terminology and the presentation of definitions. I am concerned,
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too, to be able to make it clear that while a Boolean algebra is both a HA and
a BrA, an algebra may be both HA and BrA without being Boolean. In the first
section of the present chapter this is merely suggested but it follows from the results
of chapters 6, 9, and 10. In particular, since in chapter 10 I demonstrate that any
subobject lattice in any Grothendieck topos is both HA and BrA, then if any lattice
that is both HA and BrA has to be Boolean, then all Grothendieck toposes must be
Boolean toposes; and since there are Grothendieck toposes that are not Boolean,
there are lattices that are both BrA and HA without being Boolean. Alternatively
note that in part two of section one of chapter 2 I demonstrate that any [ )-complete
lattice with a unit is a BrA so, by duality, any | J-complete lattice with a zero is
a HA, and so if any lattice that is both HA and BrA must be Boolean, then any
bounded, complete lattice must be Boolean. In any case, the most we can say of
HA-negation () in relation to BrA—negation (=) on the same lattice (£,C) is that

~a C —a for any a € L. For (£,C) to be Boolean we require that ra = —a.

The second section reproduces Mortensen’s Inconsistent Mathematics [1995]
notion of a paraconsistent algebra. I demonstrate that BrA’s are paraconsistent al-
gebras in this sense. I reproduce some of Mortensen’s results on the algebraic nature
of paraconsistent algebras. Given the philosophical significance of paraconsistent
logic and the relative novelty of paraconsistency as a topic in category theory, the
section serves the purpose of making the reader aware of some of the significance of

finding BrAs in mathematical structures.

Section three exists to provide us with a notion of connection between logics
defined with respect to dual algebras. Notions of duality for operators on the
algebras are used to formalise a language dualisation and this is used to provide a
notion of dual valuations for (dual) logical languages. With these notions we can
provide some illumination for the nature of logics defined with respect to BrAs.

This way we can give some philosophical sense to the phrase “paraconsistent logic”

29



as I use it (and its variations) in the thesis. The fourth section continues this kind
of investigation with respect to slightly different notions of valuation. I also give
some discussion of dualisation of theoremhood semantics. Again this contributes
to a philosophical understanding of the kind of logic for which we will be seeking

categorial semantics.
1. Langugages, Logics, and Dual Algebras

1.1: A language of a logic is a collection of atomic terms, term forming operators,
predicates or relations, sentential operators, variables (for terms and for sentences),
and quantifiers. Atomic terms refer to individuals and can be considered names.
Term forming operators are functions. We use the standard notions of predicates,
variables and quantifiers. Sentential operators are connectives that make sentences
from sentences. We concern ourselves with the principal connectives ~ (not), -
(intuitionist negation), ~ (paraconsistent negation), & (and), V (or), = (intuitionist
implication), ~ (pseudo difference). We frequently use A in place of &. Just as
frequently we will use lattice operators M and U in place of & and V given that we use
lattices to interpret these languages. On the sense of the — connective Goodman, in
“The logic of contradiction”,[1981], has suggested the name but not. Qur preference
will be for the name pseudo difference after the name of the characteristic operator

of the Brouwerian algebras that we will use to interpret the connective.

Formulae are defined by induction so that

(1)(a) if f is an n-place term forming operator and #y,...,t, are terms, then
f(t1,...,tn) is a formula;
(b) if R is an n-place predicate and ¢;,. .., t, are terms, then R({,... Jtn) 18
a formula;

(2) if 9 and ¢ are formulae, then so are ~ ¢, =, ro, P&, @ V1, @ = P,
and ¢ = ;
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(3) if ¢ is a formula and v is a variable, then Jvyp and Vvy are formulae.

The formulae described by (1)(a) and (b) are atomic. The formulae described by
(2) and (3) are logically compound.

Sentences are formulae with no variables outside the scope of a quantifier or, in
other words, with no free variables. Uniform substitution for sentence variables is
the process of making new formulae from old by replacing all instances of a sentence
variable in a given formulae with a given sentence or formula. We also have the
notion of uniform substitution of terms for term variables. A rule of inference is
a specification that given any sentence of a particular form, we may derive some
further sentence of a further particular form. Finally, a logic is a set of sentences of
a given language closed under uniform substitution, and closed under a collection

of rules of inference, also called a consequence relation.

The semantics of a language are provided by some interpretation function that
associated well formed sentences with some more or less arbitrary value. One or
more of these values will be designated, and if on all valuations of a given sort a
sentence receives a designated value, then that sentence will be called a theorem.
We can specify a logic by describing a system of valuations and collecting together
all theorems. Semantic consequence relations are typically related to valuations by
the condition that if the value of a sentence ¢ is less than that of a sentence # in
an appropriate sense, such as that of a lattice order, then ¢ can be thought of as a
consequence of ¢. Given the right sort of valuation system, a collection of theorems
will be a logic.

One can alternatively specify a logic by listing some rules of inference along
with some subset of theorems which when closed under the rules of inference yield
the complete set of theorems. This is the axiomatic presentation and the theorems

of the given subset are the azioms.

A logical algebra is some systematic algebraic method for determining the val-
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uation of a logically compound sentence given valuations for that sentence’s con-
stituent parts. Certain types of lattice with the right sort of operators can be
understood as logical algebras. The elements of the lattice are used as sentence
values, and the lattice operators interpret the connectives. Certain elements of the
lattice will be distinguished as relating to theoremhood. Again the logic is the

collection of theorems.

With this chapter we will be concerned with developing logics in terms of the
Heyting algebras and their duals. We will shortly define both types of algebra and
indicate the sense of duality we are using. In the meantime, to prompt intuitions, we
note that any topology of open sets is a Heyting algebra, and any Heyting algebra
can be understood as some topology of open sets on some space. Likewise, the
Heyting algebra duals are the closed set topologies.

Formally, a Heyting algebra is a relative pseudo complemented lattice with a
zero. To explain, we note that lattices are a subclass of the posets. A poset or
partially ordered set is a set P together with a reflexive, transitive, and antisym-
metric binary relation R defined on P. Relation R is reflezive when, for all p € P,
(p,p) € R; R is transitive when, for all p,q,7 € P, if (p,q) € R and (¢,7) € R,
then (p,r) € R; and R is antisymmetric when, for all p,q € P, if (p,¢q) € R and
(¢,p) € R, then p = ¢. Such a relation R is commonly called a partial ordering
and is commonly denoted by C or some variant. We will write “p C ¢” in place of
“(p,q) € R”. For any p,q € P, the least upper bound (lub) or join for p and q is
an element of P, denoted p U ¢, such that p C pU ¢ and ¢ C p U ¢, and if there is
some z € P such that both p C z and ¢ C z, then plU ¢ C z. It will follow that
pU(gUr) =(pUgqg)Ur and that pUq = qUp. A greatest lower bound (glb) or
meet for p and ¢ is an element of P, denoted p 1 ¢, and 1s such that pM ¢ C p and
pMq C g, and if there is some z € P such that z C p and z C ¢, then z & plg. We

will have that pM(¢Mr) =(pMgq) M r and that pM g = ¢ M p. A lattice 1s a poset
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(P,C) where, for every p,q € P, there exists in P a lub and a glb with respect to C.
A lattice has a zero if there is some element §) € P such that, for all p € P, § C p.
A lattice has a wunit if there is some element 1 € P such that, for all p € P, p C 1.
A lattice with a zero and a unit is called bounded. A lattice is distributive if, for all

p,q,T € P, both

pM(gUr)=(pNg)U(pmr)
and

pU(¢Nr)=(pUg)N(pUr).

In a bounded lattice an element p has a meet complement if there is some ¢ € P
such that pM ¢ = 0. The element p has a join complement if there is some ¢ such
that pU g = 1. An element ¢ is a (Boolean) complement if it is both a meet and a
join complement for some p.

We change our symbols slightly and let £ be a lattice. For lattice elements a, b,
there is a pseudo complement of a relative to b in the lattice if there 1s some ¢ € £
such that

forallze L, zCc iff aNzCb

This element ¢ is denoted by ¢ = b. A lattice is said to have relative pseudo
complements or be relative pseudo complemented (rpc)if a = b € L for all a,b € L.
An rpc lattice will always have a unit since for any a,z € £, 2 C a = a. I the
lattice has a zero, §), we can define a complement operator — by allowing that for any
a €L, -a d:fa = (). In fact, — is a meet complement operator. When our lattice is
an open set topology ordered by set inclusion, —a proves to be | J{c € L:aNc = 0};
that is, —a is the greatest element ¢ € £ such that anc = 0.

The class of all rpc lattices with zeros are used to characterise the intuition-
istic propositional logic IL — see for example McKinsey and Tarski [1946] and the

references there identified. Consider a language as defined above but restricted to
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sentential operators ~, &, V,=-. Consider the set of all well formed sentences of this
language. An IL-valuation, v, is a function from the set of sentences to some rpc
lattice with a zero so that for sentence S

(1) if S is atomic, v(S) is some element of the lattice;

(2) if S is ~ S; where S7 is a sentence, then v(S) = —v(Sy);

(3) if S is S1&S; where S; and Sy are sentences, then v(S) = v(S1) M v(S2);

(4) if S is Sy V S, then v(S) = v(S1) Uv(S2);

(5) if S'1s S1 = S2, then v(S) = v(S1) = v(52).

If, for all rpc lattices with zeros and all possible valuations v on those lattices,
we have v(5) = 1 for sentence S, then that sentence is a theorem of IL. The logic
IL was developed by Arend Heyting; the IL-characteristic algebras, the rpc lattices
with zeros, have since become commonly identified as Heyting algebras.

There is an alternative and equivalent presentation of IL in terms of axioms
— see for example Heyting’s Intuitionism, [1966]. There are eleven axioms and one

rule of inference:
I. a = (a&a)
I (a&f) = (B&a)
ML (o= )= ((a&y) = (B&Y))
V. ((a=p&B=17)=(a=>7)
V. B = (a=p)
VI (a&(a = B) =B
VI. a=(aVf)
VIL (aVB)=(BVa)
IX.  ((a=N&PB=7)=((aVp)=7)
D& —a = (a = f)
XL ((a= B)&(a= -h)) = ~a

Rule of inference — Detachment: From « and « = 3, derive .
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Essentially, IL has all the axioms of classical logic barring (o V —a). When we
come to discuss paraconsistent logic further we shall avoid the axiomatic presen-
tation in that more variation on the specification of a logic is available simply by
changing the number and sort of valuations we consider for algebras. In particular

we shall consider the logics derived from individual algebras.

1.2: The dual of a lattice £ 1s a lattice L£°P which has the same collection of
elements, and has a reversed lattice order in the sense that a Tz b iff b Tror @
where C 1s the order on £ and Copr is the order on £°?. We will sometimes use
the phrases lattice dual or lattice dualisation to indicate this notion of reversing or
reversed lattice orders. We will also speak of the dual lattice of £ and mean £°F.
We shall also allow that any lattice £’ isomorphic to £°P be identified as the dual
of L. From the point of view of lattice theory (or at least within the category of
lattices) an isomorph is as good as the real thing. We shall distinguish that £°? for

which a € £ iff a € L°P by the title the canonical dual of L.

This notion of lattice dualisation is exactly categorial in the sense that since
any lattice £ forms a poset category L in which the objects are lattice elements
and the morphisms are the lattice ordering relationships, the lattice £°? forms the
poset category L°P which is the categorial dual of L. However we maintain the
terminology of lattice dualisation, since we will later want to identify structures
within categories that are in fact lattice duals but are not derived by dualisation

within the category.

McKinsey and Tarski in their “On closed elements in closure algebras”, [1946],
used the notion of a Brouwerian algebra to discuss algebras of closed sets. Using the
terminology of Rasiowa and Sikorski’s Mathematics of Metamathematics, [1963], we
understand a Brouwerian algebra to be a pseudo differenced lattice with a unit. A

lattice £ is pseudo differenced if for all a,b € L, there exists an element b~ a € L
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of which it is true that
forallz e L, b~alz iff bC alux.

Any pseudo differenced lattice has a zero since for all ¢,z € £, a~a T z.
When £ has a unit, 1, we can define a complement operator — by allowing that for
anya € L,ra :i__f 1= a. In fact ~ is a join complement operator.

When our lattice is a closed set topology ordered by set inclusion, ~a proves to
be (J{c € L:a U c = 1}; that is, a is the least element ¢ € £ such that a Uc = 1.
Since the lattice elements are closed sets, that least element exists and is unique.

There is a significant relationship between the Brouwerian algebras (the BrAs)

and the Heyting algebras (the HAs).

Theorem 1.2.1: The lattice dual of a Heyting algebra 1s a Brouwerian algebra
and vice versa.

Proof: let (H,C) be a Heyting algebra. Define (H,C,,) so that for ¢,d € H,
cCdiff dC,, c. Plainly (H,C) and (H,C,,) are lattice duals.

Consider some z € H. If z is the lub for some a,b € H with respect to C, it is
the glb for a,b with respect to C,p. Also, if 2 is a glb with respect to C, it is a lub
with respect to Cp.

Now suppose z is a = b for some a,b € H. We know, then, that for any = € H,
zC ziff a2 C b. If we use U,p to denoted lub with respect to C,,, then we can
say not only that ¢ C z iff z C,p, «, but that aMaz T biff b C,, a Usp . In other

“words, for any ¢ € H,

zCopz M bCop (U x).

So with respect to Cop, element z is the pseudo difference b a.
Now, a = b is defined for every a,b € (H,C) so b= a is defined for every

a,b € (H,C,,). This makes (H,C,,) an rpc lattice. Furthermore, since (H,C) has
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a zero, (H,C,;) has a unit, and it follows that (H,C,,) is a Brouwerian algebra.
The proof that where (H,C) is a BrA, (H,C,,) is a HA is performed in the same

way. O

It follows as a corollary that any topology of closed sets is a BrA, since such a
topology ordered by set inclusion is the lattice dual of some topology of open sets
ordered by set inclusion. We can, however, usefully prove this corollary directly.
Let X be a topological space with a topology = of closed sets. Any closed set
topology ordered by set inclusion is a BrA since for any A, B € = we can define
B = A = cl({(X — A)N B), where cl is the closure operator that defines the topology.
Alternatively, and equivalently, we allow that B — A is the smallest element of =
containing ((X — A) N B). Since = is a closed set topology, it 1s closed with respect

to intersections and the smallest superset of ((X — A) N B) will exist.

Theorem 1.2.2: Any closed set topology 1s a BrA.
Proof: suppose any B, A, Z € = which is a closed set topology on X.
Suppose (X — A)NB C Z. Then

(X —A)NB)UAC ZUA,
(X—A)UA)N(BUA)C ZUA,
BUAC ZUA,
BCZUA.
And on the other hand, if B C Z U A, then
BN(X —A)C(ZUA)N(X - A),
C(ZNn(X-A))U(AN(X - 4)),
CZn(X - A),
Bn(X -A)CZ.
So, (X—-A)NBCZ iff BCZUA.
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Since there will be a smallest such Z, there is an element in = that satisfies
the definition of B~ A for any B, A € Z. This makes (=, C) a pseudo differenced

lattice. Plainly, too, the lattice has a unit, since there is a largest closed set namely

X. a

Remark: Notice the historical point that Brouwerian algebras were investigated
in relation to 1L. Using the zero of a lattice to indicate theoremhood, it was discov-
ered that Brouwerian algebras characterise IL. Obviously, since we want BrAs to do
a different algebraic job, we will not be using these theoremhood semantics. The
guiding insight for our project is that to produce a paraconsistent algebra all one has
to do is reverse the lattice order on a Heyting algebra. Initially, then, we make no
dualisation of the standard scheme that theoremhood is associated with the lattice
unit. This is natural enough since theoremhood semantics are not formally part of

the notion of algebra.

1.3: One feature of the BrA operators as strictly dual to those of the Heyting
algebras is that — is not a good implication operator. The operators M,Ll,~ can
be interpreted as conjunction, disjunction, and (as we shall see) paraconsistent
negation. The operator =, however, suffers from the condition that b6 C a iff
b— a = (. For the present we take no position on implication other than to note a
solution suggested for just such a problem in chapter eleven of Mortensen [1995].
The solution is to define a simple implication operator and add it to the stock of
operators. For a lattice £, the simple implication operator, denoted —, is defined

so that

1 ffaC¥
beLl, a—b= { v
fora,be L, a 0 otherwise.

A BrA together with — will be denoted BrA™. As an alternative to the introduction
of — we could rely on the metalinguistic = related to C on the lattice. Specifically,

for sentences A,B we assert AEB iff v(A) C v(B), all valuations v.
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1.4: Boolean algebras will from time to time become part of our discussion. These
algebras are defined to be those bounded, distributive lattices that have a comple-
ment operator that describes both a meet and join complement. Any Boolean
algebra is both a Heyting algebra and a Brouwerian algebra. To see this suppose a
Boolean algebra BA with a complement operator denoted by —. For any a,b € BA,
there is a pseudo complement a = b, of a relative to b in BA, namely a = b = —allb.
There is also a pseudo difference b+ a, namely b—a = —a b

Of interest to us in later chapters will be the circumstances under which an
algebra that is both Heyting and Brouwerian is also Boolean. It is not immediate
that a lattice £ that is both BrA and HA ends up being Boolean; it is possible that
for some a € L, both —a and ra exist in £ without coinciding, that s without it
being true that ~a = —a. When such complements do not coincide, there is no claim
that — is more than a meet complement nor that — is more than a join complement
unless one or both of these claims were true to begin with. But when complements
do coincide for all lattice elements, we plainly have a bounded, distributive lattice

with a Boolean complement operator, and so a Boolean algebra.
2. Paraconsistent Algebras

With this section we define a notion of paraconsistent algebra. The definition
we give is exactly that found in Mortensen [1995]. Also found in Mortensen’s [1995]
are those properties of a paraconsistent algebra that we give here as P-theorems
one to six. We have introduced some minor modifications to the proofs of these
theorems. We find as a straightforward consequence of the definition that any
Brouwerian algebra is also a paraconsistent algebra.

A paraconsistent algebra is a structure (£;C,M,L,~,1,0) where £ is a lattice
ordered by C with meet and join operators 1 and U respectively; the lattice has

a zero ) and a unit 1; the lattice also has a complement operator, ., defined with
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respect to C so as to satisfy condition P that for all a,b € L,
alb=1 iff raC b

It follows as a result of this condition that
(1) alra=1; (2) rraCag; (3) r(aUb)CTranrb;

(4) r(aNbd)=ralrb; (5) r(afNra)=1; (6) in general, aMra # 0.

For a lattice £ to be a paraconsistent algebra, it will be sufficient that it be a BrA.

Theorem 2.1: any BrA < £;C, M, U, = ,r,1 > satisfies condition P.

Proof: by definition, 1-a £ b iff 1Callb. So, ral b if alUb=1.0

We now verify that results (1)-(6) apply given condition P. Presume a paraconsistent
algebra £ and a,b € L. Notice in particular that we are not restricting this part of

the discussion to BrAs.

P-Theorem 1: alra=1.

Proof: under condition P, raCra iff alra=1. a

P-Theorem 2: rraL a.
Proof: since £ is a distributive lattice, we always have that a U b = b U a, and

in particular we always have that a Ura = ~a U a. Then, by P-Th.1, rala = 1,

and by condition P, rra C a. a
P-Theorem 3: ~(aUb)C rallrb.
Proof: Using P-Th.1 and the properties of distributive lattices,
1 = 1Ua
= (bUrb)Ua (P-Th.1)
= bU(bUa)
= bu(In(-buUa))
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= 1Ua

= bU((aUra)N(rbUa)) (P-Th.1)
= bU((raNrd)Ua)

= (aUb)U(ranrb).

So, by condition P, ~(a U b) & ~a Mrb. a

P-Theorem 4: (aMb)=ralich.

Proof: by P-Th.2 r~r(aMb)C afb, and by definition of I, aMbLC a. So
r(ab) C a.

By condition P, ~(afb)Ua =1iff -~(aMbd) Ca so, r(allb)Ua = alr(alb) =1

which under condition P means that
~a Cr(alb).

In the same way we show that ~b C ~(aMbd) (the first step is to note that aMbC b

so, by P-Th.2, -=(a M b) C b). It follows, by definition of LI as a lub operator, that
ralUrbCr(alb).

Now, by the properties of a distributive lattice and by P-Th.1,
(anMb)U(raurbd) = (aU(~alirb)) N (bU (~alrb))
= ((aUra)urbd) N ((bUrbd)Ura)
=(Qurd)n(lura)
=1

which under condition P means that

~(aMb)Cralrbd.
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So
(aTb)=ralrb. O

Notice that in Mortensen [1995] we find only the claim that ~(a b)) C ~a L rb.

P-Theorem 5: ~(alMra) =1

Proof: By P-Ths4and1l, r(aMra) = ralUrca = 1L O

Lemma 2.1: for a paraconsistent algebra L to be Boolean, it 1s ¢ necessary and

sufficient condition that allra =10 for alla € L.

Proof: that the condition is necessary is trivial, so we prove only sufficiency.

Let aMra=0. Then

(aMNra)Urra = (QUrra,
(aUrra)A(ralUrra) = cra, (dist.latt.)
alrra = rra, (P-Th.1)
so, a L rra.
But rra C a (P-Th.2)

and therefore ra

(I
S
|

P-Theorem 6: in general, aMca # 0.

Proof: by definition, any BrA is the lattice dual of some Heyting algebra and
vice versa. As such, a BrA is Boolean if and only if its dual i1s Boolean. Since
Heyting algebras are not in general Boolean, neither are BrAs. So in general, for

elements of a BrA, and therefore of a paraconsistent algebra, aMra # 0. a

Remark: This last theorem encapsulates the idea that the algebras we are con-
sidering are indeed paraconsistent, which is to say represent toleration of inconsis-

tencies. While in general it will not be the case that a Mra = 1, it happens that,
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given an interpretation of ~ as a negation operator, sentences and their negations
will overlap in value. If nothing else this is a contradiction. We therefore describe
— as a paraconsistent operator. The forms of explicit contradictions will not appear
as theorems of the logics developed from these algebras until we come to describe
appropriate duals of the theoremhood semantics. Logics containing — and described
by the usual theoremhood semantics are interesting for their particular description
of the nature of negation. Logics containing explicit contradictions have a different

role. This usually is to formalise the claim that there just are real contradictions.

3. Intuitionism’s Dual

We have the opportunity to make use of existing results about IL to describe
at least one of the logics we can generate with BrAs. Our task here is similar in
spirit (if not in detail) to the (unrelated) project of Goodman [1981]. We shall
describe a logic that is dual to IL. We call this logic DIL (IL°? would be more in
keeping with our use of the op notation however we wish to avoid the suggestion
that DIL is merely derivative; as a logic DIL is formally independent of IL.) We
will have an infinite number of sentence letters, four connectives M, LU, -~ ,~, and
parenthesis devices “(” and “)”. The usual sentence formation rules apply. It will
be useful to establish that there is a bijection between sentences of the DIL language
and sentences of the propositional IL language. We do this by noting that atomic
sentences are common to the languages and that where and only where there is
an operator from the set {M,U,=-,—} in an IL-sentence, there are the respective
operators from the set {U,M, =~ ,~} in some DIL-sentence. Explicitly, for sentence
S in IL, we define sentence S°P in DIL so that

(1) if S is an atomic sentence, S°? is 5

(2) if S 1s =57 where S; is an IL-sentence, then S°P is = (S7");

(3) if Sis S1 M S, where Sy, 5, are IL-sentences, then S°P is S U S57;
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(3)if S is S; U S5, then S°P is S7P M 57,

(4) if S'is Sy = S», then S°F is S = S7P.
Plainly S is an IL-sentence iff S°” is a DIL-sentence. This process of “dualising”
sentences 1s one we will use frequently. We have already seen a useful variant of it

used in the proof of Theorem 3.1.2.1.

We will maintain a convention that IL-sentences be represented as S and that
DIL-sentences be represented as S°P?. We use a similar notation to denote dual
valuations. We shall say that where v is a valuation of a set of sentences {S;:¢ € I}
on an algebra L, the dual valuation, denoted v°?, is of the set of sentences {S{*:i €
I} on the dual lattice £L°P so that v(.S;) = v°P(S{P), all + € I. Note the important
point that while £ and £°P have the same (or isomorphic) underlying sets, the
elements of that set play different roles with respect to the orders defining £ and
L°P. For example, if £ € L is the unit of £, we have y C z for all y € £, but we
also have  C,, y where C,, is the order that defines £°P over the same set. In
other words, the same element z of the underlying set is the unit for £ iff it is the
zero for L°P. Likewise z is the zero for £ iff z is the unit for £°P. A consequence of
this is that for dual valuations v,v°? and dual sentences S, 5°?, we have v(S) = 1
iff v°P(5°P) = 0, and v(S) = 0 iff v°P(S°P) = 1. It is fair to say that the standard
usage of the generic 1 and §§ for unit and zero can be a little misleading here. To
be perfectly explicit about what we want to say, suppose that 1 and () are the unit
and zero of £ and that 1’ and (' are the unit and zero of £°P; when £°? is the
canonical dual of £, § = 1" and 1 = §'. To avoid confusing equations in the rest of

this section, we maintain this slightly non-standard usage.

Plainly there is a bijection between valuations v of a set of sentences using
connective set {I,U,=-, -} and valuations v°? of the dual set of sentences using

connective set {LI,1M, = ~}.
We will say that a well formed sentence S°? is a DIL-theorem iff for all valua-
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tions v°” on all BrAs we have v°?(5°?) = 1'. The sequence of symbols }T)IL SeP will
indicate that S°? is a DIL-theorem. Recall that an IL-sentence S is an IL-theorem
iff for all valuations v on all Heyting algebras we have v(S) = 1. The sequence of

symbols I?LS will indicate that S is an IL-theorem.

Th 3.1: 1 S, th -Ser,
eorem if |?L en %IL

Proof: suppose I:ILS. Then for any IL-valuation v we have v(S) = 1. By
definition, v(—S) = 0. The sentence dual of =S is ~S°P. So for the dual valuation
v°?, we will have v°P(~S5°P) = 1'. Since there is no Brouwerian algebra that is not

the dual of a HA and no DIL-valuation that is not the dual of an IL-valuation, we

have ~S°P, O
'?)IL

Notice that we cannot in general prove the converse of this theorem. Consider
the following counterexample to that converse: for any element a in a BrA, P-Th.5
tells us that ~(aMra) = 1, and P-Th.6 tells us that in general aNra # §; it follows
that b%ILr—(A"P MrA°P) for any IL-sentence A, and that for some DIL-valuations
v°? we have v°P(A°? MrA°) # §'; and so v(A U —A) # 1, so b%LA U —-A. In other

words, from |= ~S°?, it does not follow that = S.
DIL IL

Also, consider the converse of Theorem 3.1 in the following form: if not }?L ol
then not IZDILI_S °?_ The condition that %LS tells us only that there is some IL-
valuation such that s(.S) # 1. To establish that blé)ILrS"p, we need first to establish
that v(—S5) # 0 (in other words that v°P(~S°P) # 1'). For any element a in a HA we
have that all—a C 1, so we are in general denied the desired result. We are however
guaranteed the result if we assert that v is an IL-valuation on not just any HA but
on a HA that is also a Boolean algebra. In other words, if S is not a theorem of
classical logic, then ~S°P is not a theorem of DIL. Since classical logic is non-trivial,
there must be some sentences that are not DIL-theorems; so, DIL is not trivial as a

logic. Another proof of the non-triviality of DIL arises from the following theorem
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(together with the fact that IL is non-trivial).

Th 3.2: SeP g —S.
eorem %IL iff l?L

Proof: suppose |:DILS°”. Then for any DIL-valuation, v°P(S°?) = 1'. By
definition, v°P(~S°?) = {)'. The sentence dual of ~S°? is =S. So for the dual
valuation v, we will have v(=S) = 1. Since there is no HA that is not the dual of

some BrA, and no IL-valuation that is not the dual of some DIL-valuation, we have

'?L_‘S'

Suppose I?L—'S . Then for any IL-valuation, v(—=S) = 1. Now, for any element
ainaHA, aMN—a =0, soif ~a =1, then a = §. It follows that for any IL-valuation,
v(S) = 0. It follows, too, that for any DIL-valuation, v°?(S°?) = 1. So I?)ILSOP' O

IL and DIL are both sublogics of classical logic (CL). The algebras that char-
acterise CL are exactly the Boolean algebras used in just the same way as the HAs
for IL and the BrAs for DIL. Since the collection of HAs includes the collection of
Boolean algebras, any IL-theorem is a theorem of CL; and since the collection of
BrAs includes the collection of Boolean algebras, any DIL-theorem is a CL-theorem.
That IL and DIL are different logics can be demonstrated with respect to any sen-
tence ALl ~ A where ~ is a generic negation operator; the sentence ALl ~ A in DIL
would be A LI~ A, whereas in IL, it would be A L1 - A. For any a in a HA, it is true
that aM —a = 0, but it is not in general true that all—a =1, so bIéLA U —A; but for
any a in a BrA, a Ura = 1 by definition, so IT)ILA U/ —A. DIL and IL are formally
different sets of sentences. Note, too, that since both DIL and IL are sublogics of

CL, they are both consistent and non-trivial.

Theorem 3.3: for any well formed DIL-sentence S°P,

~(S°P =57,
|T)IL( B )

Proof: this follows from P-Th.5. 0
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4. Individual Logics and Natural Duals

To characterise a logic we need not address ourselves to all algebras of a partic-
ular type. It is an interesting project in itself to develop those logics characterised
by individual algebras. To develop an individual BrA logic we settle upon one BrA
and consider all valuations of a set of sentences on that one lattice; we assume a
consequence relation tied to the order on the lattice (this relation will have that
A = B iff v°P(A) C,p v°P(B) for all valuations v°? on the fixed BrA) and say that
the individual BrA logic is that set of DIL-sentences S°P such that for any valuation
v°? on the fixed BrA, v°?(S°P) = 1'. It is non-trivial but straightforward that such

a set of sentences is closed under |= and uniform substitution.

It should be easy to see that these individual BrA logics will in general be
consistent: for a given BrA if 1 # (), then whenever S°P is a theorem, ~S°? is not a
theorem, and whenever —5°? is a theorem, S°? will not be a theorem. Furthermore,
in general, these individual logics will not have contradictions as theorems since,
for any element a of the appropriate algebra both aMra C a and aMra C ra so
that if (a M r~a) = 1, then both a =1 and ~a = 1, which will be true only if 1 = {.

We can introduce a further variation on the characterisation of logics. This calls
for the notion of designated values. Up until this point we have given theoremhood
semantics that assume just one designated value, namely the unit of a lattice. In the
context of individual BrAs, we can allow that there be more than one designated
value. To maintain closure under the lattice order based consequence relation, we
usually require that any set of designated values be a filter on the fixed BrA. A
subset F' of the underlying set L of a lattice £°7 is a filter on £°? if when a € F
and a C,p b, then b € F; and in addition, if « € F and b € F, then a1b € F. We
need really only require that for D C L to be a set of designated values, if a € D

and a T,y b, then b € D; this allows, for example, a set of designated values D that
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contains all lattice elements other than the zero. Our theoremhood semantics, then,
whether the set D of designated values is a filter on £°P or not, are that sentence
S°P is a theorem of the individual logic if on all valuations v°? with the fixed BrA
as codomain, v°P(S°P) € D.

In terms of dualising logics associated with individual HAs, a natural dual-
isation of the usual unit-as-designated-value scheme is to allow the collection of
designated values for the HA-dual to be the set of all lattices elements other than
the zero. This is suggested in Mortensen [1995] (p.104; see also Mortensen and
Leishman, “Computing dual paraconsistent and Intuitionist logics”, [1989]). This
allows a simple duality between individual HA logics and individual BrA logics:
suppose a HA, £, and a logic, I, generated by considering all £-valuations with 1
as the only designated value; let P be the logic generated by all valuations on BrA
L°? with () being the only non-designated value; the relationship between the logics

is then expressed by
S aff 515
i "
This surely is a most natural idea of dual logics. We consider similar logics sim-
ilarly related when in a later chapter we come to discuss a logic which we call
co-GL, the dual of geometric logic. In the meantime we carry forward from this

chapter the essential idea that Browerian algebras and an adequate representation

of inconsistency toleration in logics go hand in hand.

With the next chapter we begin Part II of the present work. We address
ourselves to an existing attempt to describe within toposes such structures as would

give rise to BrAs in place of the usual HAs.
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Part 11:

CATEGORIAL SEMANTICS
FOR
PARACONSISTENT LOGIC



CHAPTER 4: THE COMPLEMENT CLASSIFIER

Introduction: The notion of a complement classifier was originally introduced in
Mortensen’s Inconsistent Mathematics, [1995], as a tool with which to discuss para-
consistency within topos theory. Essentially one took a topos and reinterpreted its
subobject classifier as a complement classifier. This had the effect of dualising the
Heyting algebra structure that was the basis of the topos logic: the usual construc-
tions for lub, and glb, frue, and false become constructions for what are essentially
their lattice duals. The discovery of what we here call a BrA associated with any
topos is strictly ex-categorial, that is, external; an act of interpretation of an exist-
ing structure is required. The point however is that the existing structure is itself
interpreted. The subobject classifier is a generalisation of a set-theoretic structure
associated with characteristic functions; this generalisation, however, subsumes the
structure associated with complement characteristic functions. In Mortensen [1995)
the reinterpretation of the classifier is motivated by an analogy with the specifica-
tion of topological spaces. There it is noted that it is as natural to specify such
a space by its closed sets as by its open. The claim then seems to be that with
respect to algebras £ (based in 2 in a topos), we might just as naturally speak of
algebras L£°P. Tt would seem that both algebras are just as natural in that they both
successfully describe the same subobject structures within the topos. Our view here
is different from that just described. Our preference is to find explicit internal con-
structions that demonstrate BrA properties. We recognise that the ex-categorial
dualisation of the subobject classifier does indeed produce (external) BrAs, but we
are unhappy with the fact that the dualisation is ex-categorial. Our concern 1s not

that the dualisation is wrong, for it is not. It is a tenet of category theory that
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elements of objects are less important than (arrow) relationships between objects,
so there is no category theoretic objection to renaming the true arrow false. Our
concern is that we do not reveal any new features of the contents of toposes. In
particular, as we shall see, the algebras of subobjects remain intuitionistic. These
concerns derive from the type of role we assert for the complement classifier. We had
hoped to use it as a tool to discover categories with subobject classifiers which, even
as standardly construed, gave rise to BrA subobject lattices. It was presumed that
such a classifier would reveal something on the nature of objects in the category. In
this we have placed a slightly different emphasis on the complement classifier than

was originally intended.

In this and the next chapter two negative results are obtained. The first is
developed in this chapter and is that a complement classifier is formally indistin-
guishable from a subobject classifier. It follows that the notion of a complement
classifier reveals the possibility of paraconsistent topos logic without acting as a tool
to reveal particular paraconsistency structures. We follow this line of thought in
chapters eleven and twelve. In chapter eleven we discover a genuine paraconsistency
object in a category of covariant functors. Then in chapter twelve we discover that
the object determines a complement classifier by being, on the one hand, a para-
consistency object, and on the other hand, the codomain of a subobject classifier.
The point is that we needed first to discover that the object was a paraconsistent
logic object before we could declare the existence of a complement classifier. In
the chapter following the present one we develop the second of our negative results.
We aim there at producing paraconsistent algebras by (accepting the usual inter-
pretation of the subobject classifier and) developing a classifier for the duals of the
subobjects, the quotient objects. We find that the quotient object classifier usually
does not exist in a topos, and that where it does, it does not provide adequate

algebraic structure for the development of its domain as a logic object. We leave
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open the question of such a classifier in more general categories. The search for
structures that reveal BrAs on subobject lattices as standardly ordered will occupy
the remainder of Parts IT and III. The idea of reinterpretation of lattices as inves-
tigated here will remain useful: we will use a related technique in chapter fourteen

when we come to interpret dual languages on the same algebras.

The present chapter has two motivations. The first is that it was with the com-
plement classifier notion that the project of the thesis originally began. The second
is that with chapters 11 and 12 I claim to have produced a genuine complement
classifier; some discussion is required within the thesis to motivate the claim that

this is a discovery.

The chapter has two sections. In the first section Mortensen’s notion of a
complement classifier is described. The algebra associated with the complement
classifier is described as being a “true” for “false” dualisation of the algebra as-
sociated with the subobject classifier structure. As such a complement classifier
can be thought of as a subobject classifier under a new interpretation. I provide
a motivation for the legitimacy of this re-interpretation by making a case for the
claim that the subobject classifier structure as standardly known captures more
notions than just that of a subobject classifier. The subobject classifier structure
subsumes a structure for which the dualised subobject classifier interpretation is
the most natural. I take this to be by way of clarification of the original Mortensen
complement classifier notion. My notion, then, of a genuine complement classifier
is that of a subobject classifier structure whose natural interpretation is as a com-
plement classifier. My discussion brings out two points: there are no truly natural
interpretations of the classifier structure since all interpretations are essentially ar-
bitrary, but there is a philosophical distinction to be made between a truth arrow
interpreted as “true” and a truth arrow interpreted as “false™. Also. there are some

standard conventions on what kind of truth arrow will count as “true” and what will
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count as “false”. Thus I provide a motivation for an interpretation of the structure
I describe in chapters 11 and 12.

The second section of chapter 4 can be thought of as the technical version of the
discussion in the first section on the idea that the structure of a subobject classifier
subsumes the structure of a complement classifier: I demonstrate that a complement

classifier and a subobject classifier in the same topos will be isomorphic.

1. The Classifier

Definition: For a category C a complement classifier is a C-arrow false : 1 —
where for any monic f : a > d there is one and only one C-arrow d — ), denoted

X ¢, making the following a pullback in C,

L

a -
1

N
. Q

false

Using a complement classifier false in place of the subobject classifer true dualises
the usual topos logic constructions: where false was the classifying map of § — 1,
the complement classifying map of § — 1 is best described as a map true; in com-
plement classifier terms the usual constructions for N and U become, respectively,
U and N; the construction for the intuitionist = becomes the construction for a —~
arrow. The technique is to say that where, in a topos, we had a feature of the topos
logic described by X for some arrow f, we now say that we have a feature described
by Xy where f' is the arrow f with all instances of true replaced by false. For
example, N is usually constructed as X (¢rye,irue), 50 the replacement feature of the
algebra will be described by X(faise, fatse). The arrow X(irye sruey is N essentially

because the only time a claim aMb is true is when a and b are both true. The arrow
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Y(false,false) will be a binary operation that values a claim false only when its two

arguments are valued false; in other words, YUQ,%JM‘,C) 15 UL

As we have discussed, there is no bar to the act of renaming or reinterpreting
true as false and then developing the paraconsistent algebra of §2. It seems possible
indeed to go further and assert that there be actual topos-like categories that have
genuine complement classifiers, if only because the foregoing construction would
seem to supply a relative consistency argument for the existence of such categories.
It is appropriate however that we say more than that there is an analogy with
reinterpreted toposes, if we wish to claim that such classifiers exist. An important
point seems to be that with respect to functor SUB being representable, there is
no difference between complement and ordinary classifiers. We are left to pursue
intuitive (ex-categorial) requirements to make a distinction. As we see in later
chapters, for example chapter eight, it is possible to represent internal poset 2 as an
external poset with structure in the ordinary set-theoretic sense; we can examine the
external versions of true and false and make intuitive assessments. If the external
version of an arrow is the unit, or related appropriately to the unit, of external €2, it
1s usual to call that arrow true, and if the arrow is the zero of the poset, then it would
be usual to call it false. These, of course, are essentially arbitrary judgments made
intuitive by common usage. However, there remains the possibility that an arrow
that we would on this standard call false, exists as the universal arrow associated
with the representation of SUB. That is, there remains the possibility that there
are subobject classifiers that are in fact complement classifiers. In chapter twelve

we demonstrate the existence of just such a classifier.

A point worth noting about complement classifiers as reinterpreted subobject
classifers is that they really are classifiers of complements in the following sense.

When we accept the usual understanding of subobject inclusion we have that, for
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f,9 € Sub(d),

fCg iff X, <Xy

where C is subobject inclusion and X, < Xy holds whenever (X, X ¢) factors through
e: ) > Q x Q, the equaliser of N and pry. Recall that N is the complement char-
acter construction of what is usually U, so (X, Xy) factoring through e under the
ordinary constructions would mean that U- (X, Xs) = X, which is best understood
as Xy < X,. This actually is the point of the complement character construction:
1t reverses the usual order on 2. We note however that while Q2 becomes an inter-
nal BrA, all lattices Sub(d) remain Heyting algebras. It is reasonable to suppose
that a genuine complement classifier would work in the same way. It is possible to
re-order Sub(d) in the sense that we say ¢ C f iff by subobject inclusion f C g.
Our intention there would be to claim something like “having re-ordered Sub(d), I
am (by some implied dualisation functor) speaking now about some topos-like cat-
egory with actual BrA Sub(d) lattices under subobject inclusion”. This is less than
helpful in a subject that usually proceeds by actual construction. There is however
some value in this as a starting analogy. This, after all, prompted the search for
standard constructions where Sub(d) really was a BrA, and this search turned out

to be successful.
2. Complement Classifier vs. Subobject Classifier

Our concern with this section is to establish that whenever a subobject clas-
sifier and a complement classifier exist in the same category, they are formally
indistinguishable. Let us suppose that we have a topos £ with a subobject classifier
true:1 — Q and a complment classifier false’:1 — '. Goldblatt [1984] offers a
proof (pp.81-2) that subobject classifiers are unique up to isomorphism. We can
adapt this to show that the arrow true: 1 — Q and the arrow false:1 — Q are, up

to 1somorphism, the same. Consider the diagram
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true

éylrue
N v
1 —

false'
Xfalse’

A V
1 —— Q

true
The top square and the bottom square are, by hypothesis, pullbacks. By the pull-
back lemma, then, the outer rectangle is a pullback. By definition of the subobject
classifier, there is exactly one arrow making the rectangle a pullback. This arrow

must be X = idg. So,

Xfalse’ ) Ytrue . Zdﬂ

Replacing true with false' and false’ with true in the foregoing proof, we get
7true . Xfalse’ s ZdQ’ .

It follows that X fqise’ is an isomorphism between 2 and Q'. Now since false' =
Xirue - true and true = X false’ - false', we have that false’ and true are the same

arrow up to isomorphism.

The foregoing result is a consequence of the definition of the complement clas-
sifier. The point however is that this is not a flaw in that definition. The flaw lies in
the definition of the subobject classifier. It encompasses too much. The standard
definition of the subobject classifier does not allow, even in Set, for a distinction
between complement and ordinary classifiers; the flaw is akin to that of asserting
that there are no closed sets because their algebra works as a HA when dualised.
The conclusion in Mortensen [1995] is that the nature of the classifier as either

“subobject” or “complement” is a matter of interpretation. In fact, at the level of
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generality that allows us to speak of classifier structures in the absence of particu-
lar examples, this must be true. However, at the level of particular examples, we
may have some basis for distinction in some kind of examination of the external
correlates for the (appropriate) internal algebras. Our aim in later chapters will be
to avoid having to interpret structures to get dualisation results: we aim to present
structures that are dual rather than dual interpretations of the same structure. In

fact, we manage to do both in chapters eleven and twelve.

We should retain two ideas. Firstly, that paraconsistent logic is available in
ordinary toposes by fiat of straightforward ex-categorial reinterpretation of the clas-
sifier structure. Secondly, finding paraconsistent algebras within the structure of
a category is a matter of finding lattices that have the right properties under the
usual notions of internal order. With the next chapter we detail one such attempt.
In our search for paraconsistency semantic objects in categories we aim at finding a
classifier for quotient objects on the grounds that quotient objects and subobjects
are dual. We find that such structures as are available to us are inadequate to the
task of supporting a logic of the kind we desire. Our discussion will be valuable
for revealing the need to look less at straightforward categorial duality and more
at the representation of dual structures within the same category. The point of the
present chapter was that reinterpretation of structure within categories is available
as a tool for injecting paraconsistency into categories, but as a tool it is unsubtle
in the same way that the interpretation built into the definition of the subobject
classifier is unsubtle. Neither of the acts of interpretation allow for a distinction in
particular classifier constructions. There seems to be no obvious reason to accept
one interpretation over the other. The next chapter is a first attempt to develop

dual structures, rather than dual interpretations.
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CHAPTER 5: THE QUOTIENT OBJECT CLASSIFIER

Introduction: A quotient object is an equivalence class of epimorphisms with
common domain in the same way that subobjects are equivalence classes of monics
with common codomain. In our project of dualisation quotient objects come to our
attention 1n that where there are lattices of subobjects in C, there are lattices of
quotient objects in C°?. The prospect, then, is that where we have HA subobject
lattices, we have BrA quotient object lattices. We will find however that this does
not naturally hold. If we order subobject collections by subobject inclusion we
get Heyting algebras (at least for toposes) and if we order their duals by quotient
object inclusion we find that we have exactly the same algebra. This result provided
the first clue that the task of obtaining BrA structures in categories was less about
categorial dualisation than about straightforward representation of lattice dualities.

In what follows we address ourselves to the definition of a quotient object and
the relationship between lattices Sub(d) in a category C, and their duals, the lattices
Quo(d) in the dual category C°?. We find that such lattices are naturally isomorphic
rather than anti-isomorphic. This means that where lattices Sub(d) are HAs, for
example in a topos &, lattices Quo(d) are likewise HAs in the dual category. It
follows then that in investigating quotient object lattices with a view to finding
BrAs we are preferably interested in considering the relationship of lattices Sub(d)
and Quo(d) from the same category. In this context we find that a feature of lattices
Quo(d), as standardly constructed, is that they are not automatically BrA. This,
too, is indicated by our isomorphism rather than anti-isomorphism conclusion. The
following consideration is an elaboration. Quo(d) as a lattice with respect to a

category C is constructed so that its dual, Sub(d) in C°?, is a Sub(d) lattice also
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as standardly constructed. It follows, as we will demonstrate below, that Sub(d) in
C°?, which we denote by Sub¢er(d), and Quo(d) in C, which we denote Quog(d), are
naturally isomorphic rather than anti-isomorphic; that is, were Quo(d) to be BrA
in C, then Sub(d) must be BrA in C°?. But Sub(d) is not ever a BrA (other than
when Sub(d) is also Boolean) with respect to the standardly defined operators; the
operators, if they exist, always yield a HA. It follows that to find a Quo(d) that is
BrA, we need to be able to define a new operator. As a consequence we would be
defining a new operator for Subcer(d) lattices. This is our clue that the search for a
place for paraconsistent logic within the usual logic structures of a category is the

search for a new algebra of subobjects. We take up this search in Part III.

In the first section of this chapter we define quotient objects and establish the
relationship between subobject lattices for categories C and quotient object lattices
for categories C°?. With the second section we define the notion of a quotient
object classifier. We find that such classifiers are unlikely to exist for toposes, nor
indeed for any category with a strict initial object. For other categories there is
no obvious bar to the construction, so we note by analogy with the notion of a
complement classifier that there are dual interpretations available for the proposed

quotient object classifier.

Chapter 5 aims at two conclusions. The first comes from the demonstration
in the first section that simple dualisation of the subobject classifier notion does
not standardly yield paraconsistent logic for topos duals. In fact the logic does not
change through simple dualisation. The result extends to any instance of the dual of
a subobject classifier on the assumption that the only known operators for subobject
lattices are the ones that make the lattices Heyting algebras. Since the logic does
not change in the (simple) dualisation, the task of discovering BrAs in classifier
structures is not served by simple categorial dualisation of the classifier notion. This

argument has at its heart two simple technical results: the first. Proposition 5.1.1,
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is that Sube(d) = Quog.,(d); the second, Proposition 5.1.2, is that Sub¢(d) ordered
by subobject inclusion and Quog.,(d) ordered by quotient object inclusion are (up
to isomorphism) the same ordered set. Arguably Prop.5.1.1 follows immediately
from the construction of Sub¢(d) and the standard notion of categorial duality.
The result is perhaps trivial or at least in no need of explicit proof. This is less
true for Prop.5.1.2 but arguably still holds (assuming a reader with a firm grasp on
duality ideas and consequences). To emphasise this is to misunderstand the project
of chapter 5. With chapter § I am making an argument for the inadequacy of
standard categorial dualisation of the subobject classifier notion for the production
of BrAs in a category; my discussion goes beyond the simple demonstration of the
isomorphism of algebras Sub¢(d) and Quog.,(d). This first section is more discussive
than technical. The consequence of the argument in section 1 is that if we wish to
find BrAs in quotient classifier structures we must either find a way for a quotient
object classifier to be understood as a sort of complement (quotient object) classifier
or we must find new operators for subobject lattices. The second section of chapter
5 deals in part with the first of these two options. This is the second reason for
including this chapter in the thesis. In the second section I investigate the notion
of a quotient object classifier with a view to discovering whether or not some of
the ideas raised in the complement classifier chapter can be applied. This second
section has two parts. The second part contains the discussion related to chapter
4 notions. The first part contains a technical result on the existence of quotient

object classifiers.

The interpretation of a quotient object classifier as a truth value of some value
object is not determined by simple duality unless one decides to allow it to be so.
Some discussion is required to bring this out. In particular we are interested to
assure ourselves that there is a relatively natural interpretation of the quotient ob-

Ject classifier arrow in Set just as there is a relatively natural interpretation of the
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subobject classifier arrow in Set. I do use a technique that amounts to explicit
proof of dual claims but I do this to inform a discussion where the issue is interpre-
tation of arrows as truth values. That discussion is not settled by simple categorial
dualisation. My conclusion is that complement classifier notions apply to the inter-
pretation of quotient object classifiers if and only if they apply to interpretation of
subobject classifier interpretations. With this conclusion I close discussion of one
of the options left to us as a consequence of the argument in section 1 of chapter
5. This leaves us with the option of finding new operators for subobject lattices.
This I take up in the next chapter. (And since I leave behind the quotient object
classifier context, I am free to take up a third option in the search for BrAs, namely,
the search for a genuine complement classifier).

The negative results of this and the previous chapter play a significant role in
establishing the nature of the project of the rest of the thesis, in that they demon-

strate that not every attempt at dualisation will yield appropriately paraconsistent

results.
1. Quotient Object Lattices

Quotient objects are to epimorphisms what subobjects are to monomorphisms.
Consider an object d in a category C. Let Epic(d) be the collection of all C-
epimorphisms with domain d. We define a preorder (reflexive, transistive ordering)
on Epic(d) by allowing that, for f,¢ € Epic(d), f C ¢ iff there is some C-arrow
k from the codomain of g to the codomain of f such that the following diagram

commutes
c

/g‘”
d k
T,
That is, f C ¢ iff there 1s some k such that f = k-g¢. Since f = k-¢ and f is epic, we
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have k as epic. The sense then of the ordering can be seen in Set: since k is epic, b
is (at least isomorphic to) a subset of c. We say that this ordering 1s natural since it
reflects (in Set) a natural idea of an entity being less than or equal to another; that
natural idea is the one of subset inclusion. The order we have defined for Epic(d)
will not in general be a partial order (reflexive, transistive, antisymmetric ordering)
since, in general, there will exist isomorphic epics f and g with the same domain d;
that there can be iso but not identical epics means that f C ¢ and ¢ € f implies
only f ~ g and not in general f = g. We can however establish a partial order on
Epic(d) partitioned under the obvious equivalence relationship. We say that epics f
and ¢ with the same domain d are in the same equivalence class iff both f C g and
g C f. Such equivalence classes are called quotient objects of d. Epic(d) partitoned
under this equivalence relation will be denoted Quo(d). The partial order we define
on Quo(d) is also denoted by C, and will be called quotient object inclusion. We
say Quo(d), the collection of all quotient objects for d, is partially ordered so that

for [f],[g] € Quo(d), [f] C [¢] iff for f : d —» band g : d — c there issome k:c — b
such that

commutes. Where the category from which Quo(d) is drawn is not apparent we
attach a subscript to Quo that names the category of origin; for example, if Quo(d)
is a collection of equivalence classes of epics from category C, we may also denote

the collection by Quoc(d). We apply the same convention to collections Sub(d).

Proposition 1.1: Sub¢(d) = Quoc.»(d).

Proof: suppose [f] € Sube(d). By definition f is monic in C and has codomain

d. Tt follows that there is an epic f°P in C°? with domain d. Now ¢ € [f] iff g is a
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C-monic with codomain d and there is some k; and kg in C such that
f=g-k and g=f-h.

Where such a ¢ exists in C, there exists a C°P-epic ¢°” and C°? arrows k;” and k;"

such that

foP — (g . kl)op — k;’]’ . gop and gop — (f . kg)op — k;p . fop,

Y

in other words, ¢°? € [f°P]. In fact, the relationship between C and C°? requires that
g € [f] iff g°7 € [f°F], and that C-monic f exist iff C°P-epic f°P exist. So Sube(d)

and Quog.p(d) are isomorphic collections. a

Proposition 1.2:  for [f],[g] € Subc(d) and [f°7],[9°7] € Quog.r(d), we have

1Sl of (%) 2 (9]

where Cy 18 subobject inclusion and Cg 18 quotient object inclusion.

Proof: [f] Ci [g] iff there is some C-arrow k such that f = ¢ - k. But this is
true iff there is some C°? arrow k°P such that f°°? = (¢ - k)°? = k°P - g°?. And under
that circumstance [f°P] Cs [¢°?]. So if [f] Ci [g], then [f°P] C; [¢°P]. The converse

is established in the same way using the fact that (C°P)°P is C. a

These propositions establish that Sub¢(d) and Quocor(d) form isomorphic lat-
tices respectively under subobject and quotient object inclusion.

Since subobject inclusion amd quotient object inclusion both reflect a natural
idea of “less than or equal to”, that of subset inclusion, we will describe lattices
(Subeaic(d), C1) and (Quog.s, C2) as naturally isomorphic. Plainly quotient object
inclusion is the not the only ordering possible for the collection Quog.,(d), nor is
subobject inclusion the only one for Sub¢(d), but if we change the ordering, then we

change the lattice. Knowing then that subobject lattices, as commonly understood,
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are HAs when drawn from a topos £ obliges us to assert that quotient object lattices,
as commonly understood, are HAs when drawn from topos duals £°7; the operators
that we know to be definable on a lattice (Quo(d), C2) by virtue of the isomorphism
with (Sub(d), C;) will always yield a HA rather than a BrA. For collections Sube(d)
we can say that N exists if C has pullbacks, U exists if C has image factorisations
and coproducts, and | exists if C is something like a topos (this is vague, but
for the point we are making we do not need an explicit definition). On the face of
it Quogep(d) should be a dual lattice since the conditions under which the lattice
operators exist dualise; however, since the order on Sub¢(d) is defined by what
arrows exist, the conditions under which the order exists dualise as well. This is
just the point of Proposition 1.2 above. Since the known operators on Sub¢(d) with
respect to the usual ordering are lub, glb, and intuitionist implication, the known
operators on Quog.,(d) with respect to the usual ordering will be lub, glb, and
intuitionist implication. And since any C is C;¥ for some category Cy, it is a fact
that any collection Quoc(d) under quotient object inclusion is, at best, a HA. Note
well that we do not rule out the possibility of extra operators.

One avenue of investigation that remains open to us is that of interpreted
algebras associated with the natural quotient object lattice structure. This is the
idea that should a quotient object classifier exist, its role as a truth value would be
amenable to interpretation for the same reasons that we may vary the interpretation

of a subobject classifier.
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2. The Functor QUO

2.1: With this section we define a functor QUO:C — Set for categories C. The
functor is defined to represent the construction of quotient objects in just the way
that the functor SUB was defined to represent the construction of subobjects. Since
subobjects and quotient objects are dual, the details of the definition of QUO,
particularly the details of the definition of QUO(f) where f is any arrow in C, will
be dual to the relevant details of the definition of SUB. It foliows that QUO will be

a covariant functor.

Our principal concern with this section is to consider the nature, if any, of a
quotient object classifier in a category, and since the existence of such a thing is
equivalent to functor QUO being representable, we give some consideration to the
circumstances under which this occurs. We find firstly that if a quotient object
classifier exists, it is an arrow Qg — ) where Qg is the object of the representation
of QUO and § is an initial object. We find, then, that where a category C has a
strict initial object, for example if C is a topos, then it is unlikely that a quotient
object classifier exists. This does not rule out the existence of such a classifer for

categories whose initial objects are not strict.

For a category C, the subobject functor SUB:C°? — Set is a contravariant
functor from C to Set that takes C-objects a to collections Sub(a) of subobjects of
a, and takes C-arrows k:a’ — a to functions SUB(k): Sub(a) — Sub(a’) where for
[f] € Sub(a), Sub(k)([f]) is the collection of arrows ¢': b — a' where ¢’ € Sub(k)([f])
iff ¢' is the pullback in C of some g € [f] along k; in fact, SUB(k)([f]) is [f'], the
subobject of a’ represented by f', the pullback of f along k. The construction of
SUB relies on the fact that, in any category, if two monics determine the same
subobject, then their respective pullbacks along any given arrow in the category

also determine the identical subobjects. By duality, this fact gives us that, in any
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category, if two epics determine the same quotient object, then their respective
pushouts along any arrow in the catgeory also determine identical quotient objects.

It follows from this relationship bewteen pushouts and epics that we have a ready

definition for QUO.

We define functor QUO:C — Set to be a covariant functor with an object
function that takes and a € C to Quo(a), the set of all quotient objects of a, and an
arrow function which takes any C-arrow k:a — a' to QUO(k): Quo(a) — Quo(a’)
given by Quo(a) 3 [¢g] — [pushout of ¢ along k} € Quo(a’).

Suppose now that QUO is representable in a category C and Qg is the repre-
senting object; that is, suppose some natural isomorphism between QUO and a hom
functor hom(Qg, —). This is equivalent to the existence of an arrow ¢: Qr — Q, in
C of which it is true that for every b € C and every [f] € Quo(b), there is exactly
one arrow, Q{(Q r — b, which we call the “quotient-character of f”, such that
QUO(Q{()([g]) = [f]. Of ¢ this is equivalent to saying that for any epic f : b —» d

there is exactly one C-arrow, namely Q{(, making the following diagram a pushout

d «—— b
Q4

Q, «— Qr
q

We now give a demonstration on the nature of Q,. Our discussion here and
the following lemma and theorem dualise that found in Barr and Wells, Toposes,
Triples and Theories, [1985]. There Barr and Wells consider the nature of the
classifier arrows whose existence and classifying properties are equivalent to the
representability of SUB. They find there that the arrow in question has a terminal
object as domain. By exactly dualising their lemma and theorem we find that ¢ has

an initial object as codomain; that is, Q, is an initial object in C.
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Lemma 2.1.1: for any v: b — c and epic ¢' : a —» b, the diagram.

1,
f——————

c
v/|\ v-q
b

O

P—

o

!

q
18 a pushout.

Proof: consider for any ¢ and h the diagram

¢

Q

By definition v - ¢’ = id. - (v - ¢'), so the inner square commutes. Suppose the outer
square commutes, that is, suppose g-¢' = h-(v-¢'). Since ¢’ is epic and composition
is associative, ¢ = h - v. Therefore there is at least one ¢ *,d making the whole
diagram commute, namely k = h. But for the whole diagram to commute it must
be the case that k- id. = h. And this is true iff £ = h. So, there is exactly one k

making the whole diagram commute. O

Theorem 2.1.1: n any category Q, 138 an initial object.

Proof: for any given a € C, there is at least one map from Q, to a, namely the
map u given by the following pushout
id,

aq ————

Qi

2

Q&‘T Qr
Now suppose some further arrow v : Q, — a exists; then, by the lemma, the
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following is a pushout. id

Now, by the nature of ¢, there is exactly one arrow Qr — a, namely ;d“, making
the square a pushout; sov-q¢ = Q;d". But we have already seen that id, - Q’)'(d“ =u-q,
sov-q =u-q. It follows, by the fact that ¢ is epic, that v = u. So, for any a € C,
there is exactly one map from Q, to a. O

It is a corollary to this theorem that where the initial object of C is strict, for
example if C is a topos, that Qg is an initial object. This follows as a straightforward
consequence of the definition of a strict initial object: and initial object § in a
category C is strict if whenever there is an arrow a — §, then that arrow is an

isomorphism. If QUO is representable in a category with a strict initial object, the

representing object for QUO must be initial and ¢ must be iso to idy.

Theorem 2.1.2: QUO 13 not in general representable in categories with strict
wnstzal objects.

Proof: if QUO is representable in such a category, then Qp is an initial object.
It follows, then, that for any object a 1n the category, there is exactly one arrow
QRr — a. This entails that every epic f with domain a is (iso to) the pushout of idy
along just one arrow Qr — a. This entails that every object of the category has, at
most, one quotient object; in other words, every pair of epics with common domain
have isomorphic codomains. This is not impossible, but equally, it cannot hold in
general, not even for categories with strict initial objects. Consider any topos with
at least two objects, a and b, that are not isomorphic within the topos. Suppose
further that there are two epics, the first being f:a —» « and the second being

g:a —» b. Objects a and b are not iso in the topos, so ¢ is not an isomorphism.
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Arrows f and ¢ are epics with the same domain in a category with a strict initial
object, but f and g do not have iso codomains. The extent to which such epics
or similar pairs of epics are possible within categories with strict initial objects is
some measure of the extent to which QUO is not representable for such categories.
We assert that the range of categories with strict initial objects is such that pairs
of epics as described are more likely to exist than not; and so assert the theorem

demonstrated. O

Notice that when it is true that each object of a category (with strict initial
object) has exactly one quotient object, there is a one to one correspondence between
quotient objects and arrows with the initial object as domain. Trivially the latter

could be called “character” arrows.

2.2: Suppose now that we consider categories that do not have strict initial objects.
To support a quotient object classifer, a category requires some initial object so let
us consider categories with non-strict initial objects. To assure ourselves that there
are categories with non-strict initial objects in which QUO is representable note that
when £ is a topos, SUB is representable, so in £°P? QUO is representable; and if £°P
had a strict initial object, then all maps 1 — a in &, for any £-object a, would be
isomorphisms. So let us suppose a category with a non-strict initial object in which
QUO is representable. In that case we have a map Qr — 0 and no obvious reason
to suppose that Qg is an initial object. It is reasonable then to presume that Qg
is an internal algebra with operator arrows determined by the natural operations
on each Quo(d) = hom(Qr,d). The bijection Quo(d) = hom(Qrg,d) is described
by [f] — Q)Jz The natural operations on each Quo(d), that is, the operations that

determine components of natural transformations

hom(QR + QR7 —) . hom(QRv _)
are, when C is the category in question, exactly those whose duals are natural for
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each Sub¢er(d). As we have discussed above, the order C, on each Quo(d) together
with these operations will yeild HA Quo(d) provided that we understand Subcos(d)
to be a HA. It will follow that we may take Qg to be an internal HA in the same
way that we may take € to be an internal HA. The only relatively difficult part
of this is that where £ has operator arrow Q x Q@ — Q, Qg has operator arrows
Qr — Qr+Qr.

There 1s now a distinction to make: this is between the algebraic structure on
Qr and that on each Quo(d). We have seen that the standard ordering on Quo(d)
produces a HA. We have yet to see how this relates to an order on Qpg. Clearly, we
can impose an order on Q g that directly reflects the order on each Quo(d). Naturally
this would make Qg an internal HA. However, such an imposition of order amounts
to an interpretation of ¢: Qr — 0 as a particular truth value, namely as a value
true. We have yet to see that this is the intuitive interpretation. To do that we must
review what we expect the nature of ¢ to be in a know context. Consider Set and
Set®?. any quotient object classifier in a category C°P can be thought of as true°?
where true is a subobject classifier in C. This is just a consequence of the definitions.
In that case there is a quotient object classifier in Set°?. To get a sense of the arrow
true’® in Set°” we consider true in Set. The arrow true: {§} — {0, 1} characterises
any inclusion f:a C b by determining an arrow Xs:b — {0,1} described for any

z € bby
X (z) = {1 iff ¢ € f(a),

0 otherwise.

It follows that in Set’” the map true®? characterises any superset arrow f°P:b —» a

by determining an arrow (X )P = Q{COP: {0,1} — b where for any = € b

@) 0y ={} Ea € (Fr

0 otherwise.
This, and that fact that Xy = idq and therefore that Qi/”“f()p = 1dq,, give us

reason to believe that whatever interpretation we are given to applying to subobject
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L _—
classifiers is the same one we should give to quotient object classifiers; after all¥*#he™

usual subobject classifier in Set picks out 1 from {(},1} and is called true, and
the quotient object classifier true®® in Set®” is defined so that (true®) () = 1.
It should be apparent thought that just as there is no difficulty in interpreting a
subobject classifier as the truth value false, there will be no difficulty in interpreting
a quotient object classifier, likewise, as a truth value false. The effect in both cases

will be to dualise the algebraic nature of the usual operator constructions.

We can take two points from this discussion: firstly, straightforward duality
of categories does not yield the logic structures we are interested in and, secondly,
quotient objects and their lattices are not always immediate candidates as natural
logic bearers in the same manner as subobjects. In combining the ideas that come
out of this and the last chapter we see that to gain paraconsistent algebras in
categories we need a way of building them into the usual relationships between
categorial objects. The next chapter demonstrates an attempt to recognise such

paraconsistent algebras in a functor category.
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CHAPTER 6: A FUNCTOR CATEGORY

Introduction: With this chapter we begin our investigation into the existence
of extra operators for lattices of subobjects. Our concern in this chapter is with
those categories that are categories of set-valued functors over posets. These are
the categories Set® of functors C — Set where C is a poset category. It is a well
known result that when C is small, the category Set® is a topos. An example of
a small category C is a poset category P. When we have a partially ordered set
P, say the set of all subsets of a set P ordered by set inclusion, we can say that P
determines a category. The category determined by P is that which has as objects
all members p of P, and furthermore has, for any p,q € P, an arrow p — ¢ if and
only if p C ¢ where C is the partial ordering of P. We will use P to denote both
the poset and the category determined by the poset.

For categories Set® it is known that structure in C is related to subobject
lattice structure Set®. We note with interest then that where Z is a topology of
closed sets, then the lattice (£, C) of = ordered by set inclusion, is not a HA. In fact
(5, Q) is a BrA. Furthermore (=, C) is a poset. Since the category Set® must have
an algebra (£, ®), we offer the hypothesis that we may use those BrAs that we find
in (2, C) to construct a new operator for logic object 2. In fact this hypothesis fails,
but it is instructive to see why. In what follows we fix poset P as a set S of subsets
p of some set P. The partial ordering for P is set inclusion. For any topological
space X both the lattice of closed sets and the lattice of open sets form posets of
this kind. The categories we concern ourselves with, then, are Set”.

To begin with we had noted in investigation that while the subobject lattice
structures in categories Set® were related to the algebras and subalgebras of P,

they were not directly related in the sense that these algebras could be immediately
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carried over into functor constructions. The algebras that do reflect the subobject
structure of Set¥ can be constructed with reference to P in the sense that the
algebras have cosieves from P as elements. We will define cosieves shortly but the
net result is that while we can vary the algebraic properties of P (our P may be
based on a closed set topology and so be a BrA, or it may be based on an open
set topology and so be a HA), we do not vary the fact that the lattices of cosieves
of P that are used in the construction of the classifier object of Set® are always
bounded, complete, and distributive. The focus of our investigation moves, then,
from the properties of P to the properties of bounded, complete distributive lat-
tices. Knowing as we do that describing the logic of a topos amounts to describing
which arrows  x  — € exist within the topos, we varied our original hypothesis
on the origin of the extra operators. Any topos Set? has an intuitionist = arrow
essentially because any bounded, complete distributive lattice supports such an op-
erator. We noted that any such lattice will also support the characteristic operator
of a Brouwerian algebra; we speculated that we may use this fact to construct a BrA
arrow = :Q x Q — § for Set¥ in just the way that the usual = is constructed. The
speculation proves in general to be false. It was not that the requisite BrAs do not
exist, for they do. In fact we are able to construct a transformation {2 x 2 — 2. The
problem is that the transformation is not in general a natural transformation. This
means that the transformation is not in general an arrow in Set®. In chapter nine

we come across the same problem for particular extra arrows in sheaf categories.

What follows is a demonstration that the classifier object Q of a topos Set®
plays host to component lattices £2(p) for all p € P and that along with being HAs,
these lattices are BrAs. We follow this with a demonstration that the BrAs Q(p) are
not natural in p and so do not produce a BrA operator on 2 itself. So, in as much as
this operator does not exist, the slogan “the logic of variable sets is intuitionistic”

remains appropriate.
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This is the first of the chapters which investigate the possibility of describing
new natural operators for subobject algebras. The negative result presented here
serves as a prompt for the same hypothesis restricted to particular kinds of toposes
investigated in later chapters. With respect to chapter 6, presheaf categories Set?
were originally chosen for investigation on the grounds that they contained the
largest number of things on which we could reasonably perform a topological duali-
sation, these things being functors from topological spaces. The original discussion
was developed so that P would be a closed set topology. The idea was that where
Set? with P an open set topology, has HA subobject lattices, topological dualisa-
tion of the objects of Set® (that is, the consideration of Set” with P a closed set
topology) would produce some new structure for subobject lattices. It was quickly
noted that the construction of the classifier object for SetF is not especially influ-
enced in terms of the algebraic nature of 2 by the algebraic nature of the poset
P. I therefore considered Set® where P is any poset. In fact it would have been
relatively easy to extend the discussion to categories Set® where C is some small
category. Inasmuch as my concern was for topological dualisation and that the
preliminary investigation pointed to a negative result for the existence of natural

BrA structures, I decided to focus on the less general categories Set® .

Chapter 6 has two sections: the first section contains the positive result that
the subobject classifier has BrAs in its component structure; the second section
contains the negative result that the component BrAs do not produce a natural
transformation and so do not produce an operator arrow for the subobject alge-
bras of Set®. The discussion in the second section brings out the point that the
failure of naturalness can be closely linked to to the construction of the classifier
object and does not appear to be significantly linked to the algebraic nature of P.
The hypothesis that drove the research that led to the material of Part III of the

thesis was formed partly as a result of this. Since my method was to be one of
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topological dualisation, I needed to be working with structures defined with respect
to topologies and which, when formed into a category, had a subobject classifier
whose algebraic properties were relatively closely dependent upon the topologies
used to define the original objects. The obvious choice were the sheaves. An extra
advantage of working with sheaves was that their categories would be subcategories
of categories Set¥; this offered the possibility that whatever was causing the BrAs
to be non-natural in Set® could be, in a sense, left out, particularly when I came
to consider closed set sheaves.

The philosophical significance, then, of chapter 6 is relatively subjective. The
objective point of the chapter is that some manipulation (some restriction or extra
property) is needed in a category (particularly in a functor category) before we can
produce a category with a natural BrA structure. One assessment of the kind of
restriction needed led to the discoveries and discussions in chapters 8, 9, and 10.

At the time of research and then of writing the material of this chapter and
chapters 9 and 10 was understood to be original. In fact a result subsuming the
categorial results in these chapters was reported in 1991 in F.W. Lawvere’s “Intrinsic
co-Heyting boundaries and the Leibniz rule in certain toposes” in Category Theory,
Springer Verlag Lecture Notes in Mathematics, 1488, pp.279-281.

In the note cited Lawvere writes

“In any presheaf topos (and more generally any essential subtopos of a
presheaf topos), the lattice of all subobjects of any given object is another
example of a co-Heyting algebra (as well as a Heyting algebra). The co-
Heyting operations are in general not preserved by substitution (inverse

image) along maps...” (Lawvere, 1991, p.280).

This covers the results in my chapter 6 on the non-natural transformation { ~,:p €
P} for any category Set®” where P is a poset. Now a topos of sheaves is a sub-

category of some presheaf category. So Lawvere’s result contains my own that
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any Grothendieck topos has an in general non-natural BrA transformation on the

subobject classifier object.

My discussion is a great deal more detailed than Lawvere’s. Lawvere’s dis-
cussion, on the other hand, contains enough detail for an expert to recreate the
result and in fact has results relating to circumstances where the BrAs are natural
and partially natural. The virtue of my discussion is its attempt to outline why
the BrAs are not in general natural. This fitted in with my initial program for
discovering the implications of using closed sets in place of open sets in various con-
structions, particularly sheaves. The focus of the thesis became that of discovering
BrA logic structures and, broadly, that too is the focus of Lawvere’s note. However,
our method remained that of topological dualisation: the replacement of open sets
by closed in the notions of various structures; it is not clear that this is Lawvere’s
method. Philosophically speaking, the intention with chapters 6, 8, 9, and 10 was to
discover semantic objects for paraconsistent logic in categories. The implication of
my actual discoveries is that, along with standard categorial dualisation, topological
dualisation of sheaves is not an immediate source of natural semantic structures.

My emphasis, then, was different from Lawvere’s.

1. Component Algebras

When the poset P is a small category, the category Set? is a topos. Topos
Set? is a particular example of topos Set® where C is an arbitrary small category.
The topos structure of Set® can be described in terms of C-arrows in collections we
call cosieves. Note that while we are largely following Goldblatt’s [1984] discusson
of categories Set?, we have in later chapters adopted the dual definition of sieve
given in Johnstone’s Topos theory, [1977], So where Goldblatt has used “sieve” we

use “cosieve”.
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For category C and fixed C-object «, let
S* = {f : for some C-object b, a Lbin C}.

A subset S’ of S* satisfies the condition of closure under left composition if whenever
b-LscinCanda Nt S' then ¢g- f € S'. Any subset of S* that is closed under
left composition is called a cosieve. Such a sieve 1s sometimes called an a-coszeve. It
follows that for any C-object a, both S* and ) are a-cosieves. For poset P= (S, C),
any subset A C P is hereditary with respect to C if whenever p € A and p C ¢, then
q € A. For each p € P, the set [p) = {q : p C ¢} is called the principal hereditary
subset of P generated by p. Plainly there is a cosieve S’ in category P iff there is a

hereditary subset A in poset P; the bijection being given by:
p—)(_]ESI iff ¢e€ A

For this reason we identify cosieves with the appropriate hereditary subsets and
develop Set¥ in terms of the latter. The set of all hereditary subsets of P will be
denoted P®. The set of all subsets of a given [p) hereditary with respect to T will
be denoted by [p)®. Note that if A € [p)®, then A € P®. Set®, as a topos, has a
classifier object Q. The standard construction for 2 is the functor P — Set given

by:

for p C ¢ in P the maps QF: Q(p) — (q) are given by (P)® > A AN|q).

Proposition 1.1 (Goldblatt): P® ordered by set inclusion forms a bounded, com-

plete distributive lattice. O
When P is (S, C), the lattice (P®,C) is bounded by S and 0.

Proposition 1.2 (Goldblatt): for any p € S, [p)¥ ordered by set inclusion forms

a bounded, complete distributive lattice. O
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Lattice ([p)®, C) is bounded by [p) and 0.

Theorem 1.1: (P% C) is ¢ BrA.

Proof: we recall from chapter three the definition of a BrA as a pseudo-
differenced lattice with a unit. We note first of all that when P is (5,C), the
lattice (P®,C) has unit S. Secondly, to show that (P® C) is pseudo-differenced

we demonstrate that for any U,V, X € P®, we have
(S—-V)NUCX ff UCXUV.

It follows that (P®,C) is pseudo-differenced since, for any U.V in a distributive
lattice of sets with a unit S, U=V, if it exists, is the smallest element of the
lattice that contains (S — V)N U. Since (P, C) is complete, the smallest element
containing (S — V) N U exists and it will always be a subset of any X for which
(S—=V)NU C X. In other words, if we denote by U =~V the smallest element of
P® containing (S — V) N U, then the result that (S—V)NU C X iff U C XUV
means that U=V C X if U C X UV for any U,V,X € P® making (P?,C) a
pseudo-differenced lattice.
Suppose that (S —V)NU C X. Then,

(S=V)NU)uV C XUV,

(S—=V)uV)n(UuV)C XUV,

UuvVCXxXuy,

UCXUV.
On the other hand, if U C X UV, then

UNnS-vV)c(xuv)yn(s-1v),
C(XnS-V)u(Vn(S-1)),
cXn(s-Vv),

Un(sS-Vv)cCX. a
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Corollary: for U,V € P9,
U=V={reS:qCrandge((S-V)NU)} .

It is worth noting that the proof of the theorem relied only on the fact that
the lattice (P®, C) has a unit and is meet-complete. We have in fact demonstrated

that any meet-complete lattice with a unit is a BrA.
Theorem 1.2: for anyp € S, ([p)®,C) is a BrA. 0

The proof of this theorem is essentially identical to that of Th.1.1. If we denote by

4

=p’ the pseudo difference operator for ([p)®, C), we have

Corollary: for s,t € [p)®,

s=pt={r€p):¢Crandqe ([p)—1)ns}. |

To avoid confusion we note explicitly that when ([p) —¢) Ns = 0, it is a set with no
members, so there is no ¢ € ([p) —t) N s; in other words, if ([p) —t) Ns =0, then

s=pt = (). The same point applies to the formula in the corollary to Theorem 1.1:

if (S-V)NU =0, then U~V =0.

Remark: that each Q(p) = [p)® is a bounded, complete and distributive lattice
means that each Q(p) supports both a BrA operator =, and a HA operator, which
we can denote by =,. That there are such HA operators demonstratable in that

for any s,t,z € [p)® we have
z C ([p)—s)Ut ff snz Ct.
If we define s =, t to be the largest subset of ([p) — s) U . we have

rCs=,t iff sNnazCt
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Since ([p)®, g) is complete and bounded, that largest subset always exists. It follows
that ([p)EB, C) is a relative pseudo complemented lattice with a zero, or in other
words, a HA. In fact, the existence of =, operations for each [p)?® corresponds to
the existence of the usual intuitionist =: x  — Q that makes the logic of Set?
intuitionist.

The presence of operation =, on each (p) suggests the possibility of a BrA
arrow — for Set® dual in type to the usual =. In fact this does not in general
hold. Clearly there is a transformation {=~,:p € P} but the transformation is not
in general natural. A feature of the = arrow in Set? is that for any p € ¢ in P,

the following diagram commutes in Set.

"
=
)
X
=2
)
=
=

This is the meaning of the claim that = is more than just a transformation, it is a
natural transformation. The arrows of Set® are natural transformations between
functors P — Set, so if the transformation — = {=,:p € P} is not natural, then
it does not exist as an arrow in Set¥. In the next section we describe why it is that

components =, fail to produce a natural transformation.
2. Operator Arrows

We have discovered that Q(p) = [p)® is a BrA with respect to set inclusion.
We therefore can define a transformation 7: 2 x @ — € with components 7, for each
p € P given by +,; that is, for each p € P define 7,,: Q(p) x Q(p) — Qp) so that
for (s,t) € Q(p) x Qp),

7p((3,1)) = 5= ,t.
This transformation exists as an arrow in Set? only if the transformation is natural.
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For 7 to be a natural transformation, the following diagram is required to

commute in Set for all P-arrows p — ¢

T

p Q(p) x Qp) ——— QUp)
l Qp x Q Qr
q Qq) x Qq) + Q(q)

q
We need a technical lemma before we can move on to the main demonstration

of this section.

Lemma 2.1: for pCq andt € [p)®,

[9) = (tN[9) = ([p) — t) N a).

Proof: suppose z € [¢) ~ (¢t N [g)). Then = € [¢) and = & ¢ N [¢). But, then we
must have that ¢ ¢ t. Also since p C ¢, we have [¢) C [p), so ¢ € [p). Now, since

t € [p)®, t is a subset of [p), so « € [p) —t. In other words, z € ([p) — t) N [q). So
[9) - (tnle) < ([p) — 1) Ng)-

Now suppose that z € ([p) —t) N [g). Then z € [g). Also, z € [p) —t,so z & ¢t. If
z ¢ t, then z ¢ N [g), but we have already seen that z € [g), so = € [¢) — (t N [g)).
So

(Ip) —t) Nlg) S lg) — (tNlg)). 0

Theorem 2.1: 7 13 not in general a natural transformation.
Proof: the condition that the diagram above commute is the condition that for

any p C ¢ in P and any (s,1) € (p) x Qp), we have

Qg (rp((s,8)) = 7 (9 x 2D (s, 1))

111



Now,

QZ (TP((S,t>)) = Qg(s =)

= (s=pt) N [g).

So, by the corollary to Theorem 1.2,

QIQ’(TP((S,t))) ={relp)vCrandve ([p)—1t) Ns}Ng).

On the other hand we have that
T (8 x Q) ((s,1))) = 74 ((s N [g),t N [9)))

= (sNg) =4 (tNq)).

So, again by the corollary to Theorem 1.2, we have

Tq((Qg X Qg)((s,t))) e {r €lg):vCrandve ([q) —(tNn [_q))) N (s N [q))}

Then, by lemma 2.1,

(2 x Q8 ((s,1))) ={r €lg):v Crandve (([p)—t)N[g)) N (sN[g))}
={relg:vCrandve ([p)—t)Nnsnig}.
Now, by definition, s =pt is the smallest superset of ([p) —t) Ns, and since there is
no guarantee that ([p) —t) N s will be a hereditary set, it will in general be smaller

than s—=p,t. On occasion, then, there will be some ¢ other than @ such that p C ¢

and g € (s=,t) but ¢ & ([p)—%) Ns. On such an occasion, since s = ,t is a hereditary

set

(s=pt) Nlg) = [g):
So,
Qf (7 ((,1))) = o)-
But, by the corollary to Theorem 1.2, ¢ € (s =,t) only if there is some v € ([p)—t)Ns
such that v C ¢q. Obviously in that case v € s, and since s is hereditary, g € s. But,
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by hypothesis, ¢ & ([p) —t) N5, so ¢ € t. And ¢ is hereditary, so [¢) C t. As a result
([p) — t) N{g) = 0. Tt follows then that

7o ((QF x Q9)((s,1))) = 0.

And since, by hypothesis, ¢ # 0, we have [¢) # 0, and therefore

Qg(Tp«Svt))) # Tq((QZ i QZ)“Svt)))'

So, at least to the extent that there are non-empty ¢ in (s+,t) such that ¢ is not

in ([p) — t) N s, the transformation 7 is not natural. O

It is worth emphasising that the conditions used in Theorem 2.1 do not always
hold. We are required, then, to consider how likely it is that they do hold. This will
give some meaning to the claim that 7 is not in general a natural transformation.
Theorem 2.1 shows that if there is some s, € [p)® for some p € P such that
([p) —t) Ns is a proper subset of s —,¢, then 7 fails to be natural as a transformation.
So, the extent to which there are hereditary subsets s,¢ of [p) for which ([p) —t) N's
is not hereditary is one measure of the extent to which 7 fails. Plainly 7 may fail
to be natural more often, but it is at least true that 7 fails to be natural when such
s,t exist. Such s,t exist if it is at least the case that there is p,y € P such that
p C y but p # y. To demonstrate this claim suppose there to such p,y in P. It is at
least true that [y) € [p)® and that [y) # [p). Then [p) - [y) contains at least p but
not y. As a result [p) — [y) is not hereditary. For the same reason ([p)—[y)) N[p) is
not hereditary. So, if we let s be [p) and ¢ be [y), we have an example of s,t € [p)®
such that ([p) — t) N s is a proper subset of s— pt. We can say that 7 fails to be
natural in at least those cases where poset P has at least two distinct elements p
and y such that p € y where C 1s the partial order defining P. This circumstance
seems sufliciently common for posets to justify the claim that 7 in general fails to

be natural.
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With the next chapter we offer a brief history of sheaves by way of introduction
to the concept. Our concern to establish extra operators for € and Sub(d) generally,
becomes focused in later chapters on sheaves for two related reasons. First, sheaves
can be defined with respect to topologies and so, in particular, with respect to closed
set topologies. As we shall discuss, structure in sheaves varies according to the base
space topologies in ways that it does not for presheaves and functors such as we have
considered in this chapter. Second, categories of sheaves are the original toposes.
As toposes, sheaf categories offer us a structurally rich context in which to develop
the issues of paraconsistent topos logic. This idea sustains us until chapter fourteen
where we modify it a little and suggest that sheaf categories offer us a structurally

rich context in which to develop the issues of paraconsistent model theory.
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Part 111I:

SHEAF CONCEPTS



CHAPTER 7: SHEAVES

a brief history of the structure

Introduction: This chapter is intended to act as an introduction to the notion
of a sheaf, particularly for logicians many of whom are unfamiliar with the idea.
It announces the definition of a sheaf by considering some of the history of the
notion. Our history owes much to John Gray’s altogether more comprehensive
“Fragments of the history of sheaf theory” as found in Fourman, Mulvey, and Scott’s
Applications of Sheaves, [1979]. However, all sources listed in the bibliography were
consulted, and the result is a reconstruction of Gray’s history, this time with an
emphasis on the emergence of the conditions used to define all types of sheaves now
known. In particular, it is interesting that the initial account of sheaves privileges
closed sets in the base space, which is very much in line with our own paraconsistent
notion. But also there were rapid changes in this dominance.

A further point made by the chapter is the relationship between the notion of
a sheaf category and the notion of a topos (and so the existence of a subobject clas-
sifier). Sheaf categories are a significant subclass of the toposes and so a significant
subclass of the categories with subobject classifiers. The move from simple functor
categories Set? from chapter 6 to the closed set sheaf categories from chapters 8
and 9 is given a further motivation.

In the present day, sheaves exist in at least two forms: on the one hand there
are the contravariant functors that are called sheaves and on the other, there are the
continuous local homeomorphisms between topological spaces. Both the contravari-
ant functor form and the continuous local homeomorphism forms satisfy essentially

the same property. That there are different structures that bear the name sheaf is
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an acknowledgement that this same “sheaf property” can be described in different
contexts. In fact, what we now know as the “sheaf property” is a generalisation.
The original description applied only to the continuous local homeomorphisms. In
that context the “sheaf property” of a continuous local homeomorphism p: £ — X
was a description of the behaviour of particular types of maps to E from mem-
bers of the topology on X. The relevant maps are the sections of p. Intuitively,
the worth of the “sheaf property” in structures was the change of context that it
allowed: topological discussion could be recast as discussion of algebras; the sheaf
structure would, in a sense, sit above the topological space and the internal struc-
ture of the sheaf would vary with topological variations in that base space. Let us,
then, describe the sheaf property. A section, s, of a sheaf p: E — X is a map to E
from a member, U, of the topology on X such that the map s is continuous and
p-8 = tdy. Such a section is sometimes called a U-section or a section over U.
Whenever U # X, the section s is called a local section. Otherwise, s is a global
section. The sheaf property is a property of sets of sections over covers where a
collection {U;:1 € I} of members of the topology on X is a cover if its union is
also a member of the topology on X. Collection {U;:7 € I} is called a U-cover
if |J{Ui:z € I} = U and U is a topology element. We then consider collections
{s;:s; is a U;-section,i € I'}. A map p: E — X has the sheaf property if wherever

we have a U-cover {U;:t € I} and a set of U;-sections such that
si|UinUj; =55 |U;NU;, alli,jel,
then, there is exactly one section s over U such that
s|U;=s; alliel

We might think of each section as being like a column. Each section has a base U

and reaches up to support E (or, more exactly s(U/) C E). The sheaf property is
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then the idea that columns that overlap in base and support the same “area” of F
are part of just one column. Such physical analogies will go astray if we consider
them too deeply (different sections can have the same base and support different
areas of ), but perhaps the point is made.

Interest in sheaf-like structures was originally cast in terms of the development
of theories of co-homology “over” topological spaces. The sense of “over” was that
the co-homologies were mapped to closed sets. This was the idea of co-homology
with closed support. It happened, then, that the structures regarded as the pre-
cursors of sheaves were defined over the closed sets of a topological space. Later,
perhaps for more generality, this would change. The writer generally regarded as
beginning the interest in sheaf-like structures is Jean Leray. However, we will begin

with an earlier writer who had similar ideas.

Alexander:

J.W.Alexander had a notion of a “grating” over a point set. In “Gratings and
homology theory”, [1947], we find that a grating T is a collection of ordered triples
vi = (a;,bi,¢;) called cuts with no two cuts having an element in common. Of
interest to us is the notion of a representation (T, f, X) of a grating I' on a point
set X called the carrier. A representation (T, f,X) is a grating I' together with a
carrier X and some function f given by I' x X +— {—1,0,1} so that f takes a cut of
I' together with a point of X to —1, 0, or 1. There are three subsets of X defined

relative to a representation. These are
Ai={z € X : f(yi,a) = -1},
Bi={s €X: f,2) =0},
Ci={zeX: flyi,z)=1}.

Alexander defines a representation to be continuous if X is a topological space

and, for any cut +;, the sets A; and C; are open. Indeed any representation will be
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continuous since it will be regarded as inducing the coarsest topology on X that
makes A; and C; open for each ;. Each B; will be a closed set.

The algebraic dimension is introduced via the notion of a chain. First, a cell
of a grating is any finite sequence of elements of cuts of the grating. Thus we have

a cell

A =2y2y...2, where z; =a;orb; or ¢; for some ~;.

The type of cell A is the cell
a(A) = a1az...am where a; in a(A) only if z; in A.

A chain is then a mapping of the set of all grating cells of a fixed type into an
arbitrary ring of coeflicients without divisors of zero.

We then find defined the notion of a locus of a chain. The locus is a subset of
the space X of the representation and is determined by application of some union
and intersection rules to the subsets A;, B;, C; related to the cuts -y; from which the
elements z; of the cells of the chain are drawn. According to Alexander the loci of
any chain on a grating with a continuous representation will be a closed subset of
the carrier set.

Alexander developed various algebraic concepts, including a homology theory,
with respect to the chains of gratings. It is from the earlier papers, “On the con-
nectivity ring of a bicompact space” [1936], and “A theory of connectivity in terms
of gratings” [1938], that we can develop an idea of the origin and the intentions
of Alexander’s grating theory. The aim seems to have been to develop ways of re-
making topological structure in terms of algebraic structure, and in particular, to
make advantageous connections between topological spaces and rings. In Alexander
[1938] we find a part statement of the project: “with every grating I' we are going
to associate an abstract ring II, called the ring of chains of I'." (p.887). At this

stage a grating is a collection of ordered pairs (a, c) of subspaces a,c of a space z
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such that a Uc = z. Associated with any ordered pair is its barrier b = aN¢. These
developed later into the sets A;, B;, C; relative to a representation.
A similar idea of a ring with support in a topological space was to be important

when Leray developed his notion of a faisceau.

Leray:

J.Leray’s initial writings in 1944 dealt with constructions he called concrete
complexes (Gray tells us these are chain complexes in the modern sense) and special
examples he called couvertures. In his “Sur la forme des espaces topologiques et
sur les points fixes des répresentations” [1944|, Leray defines an abstract comples
to be a set of variables and what he calls derivatives. Leray also defines a concrete
complez to be an abstract complex over a space. The abstract complex is “over”
the space in the sense that each element of the abstract complex is associated with
a non-empty subset of the space. A variation on the notion of a concrete complex
is a couverture. As a concrete complex a couverture is at least an abstract complex
over a space. A concrete complex becomes a couverture if it satisfies, among other
properties, the property that it is an abstract complex over a space with a topology
such that each element of the abstract complex is associated with a closed set of the
space. Leray claims that where “homology” theory was the study of finite closed
covers of a space, it can now be the study of couvertures. The principal gain being
that we can substitute an algebraic theory for geometric concerns?.

Between 1944 and 1950 Leray defined and refined another structure that he

! “Jusqu’a présent la théorie de I'homologie a étudié la forme dun espace

topologique en analysant les propriétés de ses recouvrements par un nombre fini
d’ensembles fermés; nous allons effectuer cette étude en analysant les propriétés des
couvertures de I'espace; nous y gagnons de substituer 4 une notion de topologie

ensembliste une notion bien plus maniable de topologie algébrique”, Leray [1944],

p.108.
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called a faisceau. In this case a closed set topological space is much more imme-
diately associated with a ring structure. We find the final version in “L’anneau
spectral et ’anneau filtré d’homologie d’un espace localement compact et d’une
application continue” [1950]. A faisceau B on a space X is defined so that
(a) a ring? B(F) is associated with each closed subset F of X;
(b) when F} is a closed subset of F, there is a homomorphism B(F) —B(F})
where the image of b € B(F') is denoted Fyb € B(F});
() B() =0,
(d)if F, C Fy C F and b € B(F), then Fy(F1b) = Fyb which is to say we have
two homomorphisms, B(F') —B(F}) and B(F}) —B(F3,), the composition of
which is the homomorphism B(F) —B(F,).
A faisceau is called continuous if B(F') = lim B(V') where lim B(V') is the direct

limit of rings B(V') over closed neighbourhoods V of F.

The next recognized writer on the topic of faisceau was Cartan. In his writings,
particularly the Ecole Normale Supérieure Séminaire series, we find faisceau with
an altered definition. Now a faisceau is to be defined over open sets of a topological

space. The change proved to be a very successful one.

Cartan:

In Cartan’s “Cohomologie des groupes, suite spectral, faisceaux” [1950/51], we
find credited to Lazard the following definition: where K is a commutative ring with
a unit element, a faisceau F of K-modules on a regular topological space X is a set
F' aset X, and a projection p : F' — X such that

(1) for all z € X, p™¥(z) = F; is a K-module;

(2) F has a topology such that

(a) the algebraic operations of F' defined by the structure of K-modules F,

2

3

Leray uses “annecau” which Gray translates as “module”.
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are continuous.

(B) p is a local homeomorphism.

Projection p i1s a local homeomorphism if for any a € F, there is some open
N C F such that a € N, and some open U C X such that p(a) € U where the
map p | N is a homeomorphism (that is, bijective with both it and its inverse being
contionuous).

Sections in the modern sense are defined and called sections. For each open set
X C X we denote by I'(F, X) the collection of sections over X. For s € I'(F, X),
if the set {z € X : s(z) # 0}, is closed, then it is called the support of 5. If X
and Y are two open subsets of X such that X C Y, then there is a homomorphism
I'NEY)—-T(F,X) If X CY C Z, then the homomorphism I'(F, Z) — I'(F, X) is
the composition of I'(F, Z) — I'(F,Y) and I'(F,Y) — T'(F, X ). Tt is noted that for
any ¢ € X, the k-module F, that is p~!(z) is the direct limit of sets I'(F, X ) where
X is an open subset of X and z € X. Also, a faisceau F over a space X can be
defined given modules Fx for each open X C X and a system of homomorphisms
fxy : Fy — Fx for each inclusion X C Y such that if X C Y C Z, then
fxz = fxy - frz. This procedure is now standard.

The concern with, or at least the use of, these structures is still in terms of
the performance of co-homological algebra with closed support. In such a project
Cartan introduces the notion of ®-families. These are collections of sets that satisify
certain properties and will be important for the notion of faisceau resolution. Cartan
regards the introduction of ®-families as a generalisation of Leray’s ideas in that
Leray worked with the compact sets of locally compact spaces.

The interesting question is what prompted the change from closed sets to open.
We might speculate that there was an attempt to gain greater generality. On the
one hand the new faisceau would have complex analysis applications, namely in the

study of ideals of germs of holomorphic functions. And on the other hand there is a
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sense in which the structure is freed of its initial motivation without damage to its
intended role. The notion of ®-resolutions and the developing notion of fin, mou,
and flasque faisceau mean that faisceau cohomology theory is still practicable.

In Cartan [1950/51] we see defined the notion of a carapace. (Leray also consid-
ered structures to which he gave the name carapace. These were different from the
notion in Cartan). The presentation of Cartan’s definition sees the carapace as a
particular type of structure satisfying two conditions given as axioms. If the struc-
ture satisfies only the first axiom it is called a “précarapace”. Also any carapace
determines a faisceau and vice versa.

The next development was to characterise faiseaux in terms of open cover

structures of space X. We see this in the writing of Serre.

Serre:

J.-P.Serre in “Faisceaux algébriques cohérents” [1955], defines a faisceau de
groupes abéliens sur X which has X as a topological space and associated with each
z € X an abelian group F,. There is also a set F which is ([ J{F,:z € X}. The
faisceau is essentially a projection II : F — X such that for f € F,, II(f) = z and I
is a local homeomorphism. A further condition will hold entailing that collections
of sections, now denoted I'(U, F) for U C X, will be abelian groups. Also, if U C V
and s € I'(V, F), then the restriction of s to U is an element of I'(U, F) whereby we
have a homomorphism p}; : I'(V, F) — T(U, F).

Again it is noted that given an abelian group Fy for each open U C X and
a system of homomorphisms ¢{; : Fv — Fy such that i oV = o/ whenever
U CV C W, we can define a faisceau.

It is noted by Serre that given a condition relating the zeros of abelian groups
Fu and Fy,, a faisceau defined via abelian groups F; for all open U C X and
homomorphisms ¢y, for all U C V will be canonically isomorphic to the faisceau F

with restriction maps py; for each U C V as described above if when {U;:1 € I} is
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an open cover for some open U C X and there is a system {t; € Fy,:¢ € I} such

that
U; . U; -
Pu;nu; (t:) = ‘PUJmUj(tj)a

then there exists some ¢t € Fyy such that
U . .
wp,(t) =t;, allz el

So we see described the “cover condition” or “sheaf property” that is the charac-
teristic of sheaves as we know them today. Notice that this cover condition is a
feature of the canonical faisceau, denoted (F, pf;), and that Serre’s writing suggests

that there will be faisceaux (F,¢y;) that do not in general satisfy that condition.

Godement:
With Godement’s “Topologie algébrique et théorie des faisceaux” [1964] we
arrive at the modern sheaf notion presented in terms of categories and functors.
Included is the notion of a presheaf. A topology on a space X is understood to be
a poset category. A préfaisceau is any contravariant functor F from this category
to another. A préfaisceau is a faisceau if it satisfies the axioms:
(F1) for open cover {Uj:i € I} of U in X and s',s" € FU) if s' |U; = s" | U;
for all ¢ € I, then s’ = s";

(F2) for system {s; € F(U;):4 € I}, if the restrictions of s; and of s; to U; N U;
are the same for any ¢,5 € I, then there exists s € F(U) such that s
restricted to U; is s; for any ¢ € I.

This notion of faisceau, which we can now call sheaf, is distinguished from
Cartan’s faisceau which we find described as an espace étalé or sheaf space. In

Godement [1964] we find a remark® to the effect the notion of espace étalé is broader

than that of a sheaf.

3

“La démonstration du Théoréme 1.2.1 prouve que tout préfaisceau d’ensembles

JF définit canoniquement un espace étalé dans X...” Godement [1964], p.112.
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Still of concern is cohomology with closed supports. We find presented the

tools of faisceaux flasque, mou, and fine.

Grothendieck:

The categorisation of the notion of the sheaf was furthered by the Grothendieck
school in the 1960’s and 70’s with the development of the notion of topology analogs
for categories and, by generalisation, the notion of sheaves over arbitrary categories
with these “topologies.” This began with the thought that a cover for a categorial
object U could be represented as a collection of maps U; — U. The notion of a
cover was generalised out of its set theoretic origins by noting that we could consider
covering systems rather than particular covers. In that way the defining feature of
a cover became its membership in a system of covers rather than the nature of the
“union” of the elements of the cover. It was found that the central properties of a
set theoretic covering system needed for the expression of the sheaf property were
readily recast in a general language of systems of sets of arrows U; — U. And
so arose the notion of a pretopology or covering system for an arbitrary category
with respect to which we could define sheaves. The notion was refined in the
works of various writers and reached one of its final forms with Lawvere’s axiomatic
development of a categorial topology as a map j :  — . A detailed representation
of these ideas can be found in our chapter eight.

The notion of a topos first arose with the work of Grothendieck and those
who followed him. A Grothendieck topos was a category of sheaves over a category
with a pretopology. Since all Grothendieck toposes have subobject classifiers, they
interested Lawvere; he used the term topos when he described the elementary theory
of finitely co-complete categories with exponentiation and a subobject classifier.
The newest development of the notion of a sheaf came through the work of Lawvere
on the notion of a topologies 7, and the various Giraud theorems. A sheaf‘ could

now be thought of as a distinguish topos object with respect to a topology j. A
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brief description of these ideas and how we use them forms the introduction to our

chapter ten.

The feature of sheaves that interests us most with respect to logic in categories
is exactly the one we have been developing throughout this chapter: the passage
from topological to algebraic structures. Our algebraic concerns are somewhat
simpler than those of the writers who developed the sheaf structures, however the
sheaf remains the right tool for carrying topological algebras into categories. In
particular, since the structure of a sheaf is influenced significantly by the topological
structure of its base space, we would expect to find that the relationships between
maps between sheaves over a fixed topological space are influenced significantly by
the topological structure of that fixed base space. We would expect to see, then,
that the nature of the base space topology will affect the nature of the algebras of
subobjects in categories of sheaves. We have a motive, then, to consider, as we do

in the rest of Part III, categories of sheaves defined over closed set topologies and

the toposes that are categories of such sheaves.
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CHAPTER 8: CLOSED SET SHEAVES

Introduction: This chapter exists to demonstrate that the topological dualisation
of the usual sheaf notion produces another, but in essence standard, sheaf notion.
This is not a radical discovery in that the sheaf notion is already specifiable in the
absence of set theoretic topologies; this, however, does not render trivial the actual
working out of particular structures in a closed set sheaf category, particularly since
these structures will be the subject of original investigation in the next chapter.
Chapter 8 has four sections. The first three sections are expository. They
are included for the benefit of that section of the readership that is not familiar
with categorial sheaf theory. The fourth section contains the definition of closed set
sheaves. In light of the standard material presented in the first three sections, the
definition of a sheaf over the closed sets of a closed set topology is no more mysterious
than the definition of a sheaf over a category. My emphasis, however, is on the use
of the more modern definition of a sheaf to provide a topological dualisation of
the more traditional notion of a sheaf, the one that preceded the development of
pretopologies and topologies for categories. It is with the topological dual of this

more traditional sheaf that we work in the next chapter.

Aside from the historical precedent we outlined in the previous chapter, there
are a number of reasons for developing the theory of sheaves over closed sets. First
of all, having a base topology of closed sets introduces to the sheaf notion a concept
of boundary that does not exist for the open set sheaf notion. One area in which
this may work for us is the mathematics of physics where the boundaries of a body
are as important as the parts of a body inasmuch as physics concerns itself with

the interactions of bodies in a system.Lawvere in the introduction to Categories
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in Continuum Physics (F.W.Lawvere and S.H.Schanuel, Springer Lecture Notes in
Mathematics, 1174) mentions the speculation that there is a role for a closed set
sheaf in thermodynamics as a functor from a category of parts of a body to a
category of “abstract thermodynamical state-and-process systems” (p.9). Lawvere
recognises the particular properties of closed set topologies that make them inter-
esting to us, namely that as algebras they provide us with a formalisation of what
we call a paraconsistent negation. Sheaves are then of interest to us in our project
of developing paraconsistent logic in categories for the way in which they transport
algebras of a topology into the structure of a category of sheaves over that topology.
This “transportation” is most evident in the relationship between the algebras of
the base space topology and the algebra that is the classifier object in the category
of sheaves over the topology. With this chapter we begin an exploration of various
aspects of the relationship between closed set topologies and the sheaves and sheaf-
like structures that exist over such topologies. In the present chapter we describe
the relationship betwen the algebras in the base space topology and the algebras of
the classifier object in the sheaf category. We concern ourselves with establishing
that the usual constructions for sheaf categories and subobject classifiers will work
when the base space topology is one of closed sets. In the next chapter we detail
the specific effects on the classifier algebra of a closed set base space topology. We
will find that there are BrA structures within the classifier object itself and that
they are drawn from the BrA structures of the base space. We shall find however
that this does not translate into the existence of a BrA classifier algebra within
the sheaf category. In this aspect, the logic of a closed set sheaf category is not
analogous to that of an open set sheaf category: in the open set case, the classifier
algebras are Heyting and are determined by HAs in the base space. The next chap-
ter, chapter ten, generalises the discussion of chapters eight and nine by considering

categories of sheaves over a finitely complete category. Again we find that there are
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BrA structures within the classifier object but that these do not translate into the
existence of a BrA classifier algebra in the category. The interest in pursuing the
more general sheaf case is firstly in the discussion we can provide of the subobject
classifier structure and its relation to subobject lattices and, secondly, in the fine
tuning we can give the claim that there is a relationship between the base space
structure and the classifier structure in the sheaf category: we fine tune the claim
by rediscovering that the base space structure cannot he the sole determinant of
classifier algebra structure. With chapter eleven we return to discussion of functors
over closed set topologies. Here we make the discovery that we have been waiting
for: we can define a covariant functor over a closed set topology that, because it is
defined with respect to closed sets, is a paraconsistent logic object in the appropri-
ate category. Chapter twelve sets this discovery in context. We are there able to
demonstrate that the discovered object is a classifier object for a category of covari-
ant sheaves. We will see that the best way to interpret the object is as the object
of a genuine complement classifier. We have seen in chapter four that the original
notion of a complement classifier was best understood as an available and legitimate
reinterpretation of the notion of the subobject classifier. With chapter twelve we
see that, as foreshadowed in chapter four, genuine complement classifiers exist and
that their existence is masked by their isomorphism to subobject classifiers. With
chapter thirteen we complete Part III and our discussion of sheaf concepts. We
give a limited equivalence of categories result for closed set sheaves and closed set
sheaf spaces. Closed set sheaf spaces are of interest to us for the way in which their
section structures mirror the algebras of the base space. As such closed set sheaves

become objects for paraconsistent semantics.

With the present chapter we examine categorial sheaves over the closed sets
of a topological space. The first and second sections contains brief descriptions of

some of the existing theory of categorial sheaves. We note that categories of sheaves
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as standardly understood are toposes. It will be proved in the fourth section that
categories of Set-valued sheaves over the closed sets of a topological space are
toposes in just the same way. As a preliminary to this we have section three in
which we discuss subobject classifiers. Since the existence of a subobject classifier
and the resulting subobject classifying maps is a defining feature of a topos, we
will be obliged to show, contrary to some standard presentations, that there is a
construction for the classifying arrows X of sheaf monics that does not rely on U-
completeness of the base space topology. We establish the necessary construction
as a corollary to a theorem at the end of section three. With the next chapter we
discover that Q;, the classifier object for sheaf category sh]-(Setcop), contains BrAs
when C is a closed set topology 7 but that these BrAs do not in general yield a
BrA arrow Q; x ; — Q; in the category. The BrAs that {2; contains do provide
a transformation Q; x Q@ — Q; but it fails in general to be natural. We prove
this failure by a counterexample which turns largely on the failure of set theoretic
closure operators to distribute over intersections. We will use this counterexample
to come to a general conclusion about the conditions needed for a BrA operator

arrow {} x @ — Q to exist in any category with a classifier.
1. Presheaves on Categories

With this section we define the notion of a presheaf on a category C. We also
describe the structure of a subobject classifier for a category of such presheaves.
We give this description in terms of sieves on the base category C. The material
discussed in this section is necessary as a preliminary to the next section where we

define the notion of a sheaf on a category C.

Definition 1.1: let C be a small category and let a be an object of C. An a-sieve
is a set S of C-arrows with codomain a where if b A a 1s 1n .S and there exists

a C-arrow ¢ ——» b, then the composite f-g:c - b — aisin S. The mazimal
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a-sieve {a:cod(a) = a} of all C-arrows with codomain « is denoted (a] or (1d,].
The term “sieve” will always mean some a-sieve for some category object a. In
some circumstances we will use “sieve” where rightly we should use “a-sieve” for a
particular a. We can rely on context to make such usage clear. On occasion, too,
we will use the phrase “sieve on @” to mean the same thing as a-sieve.

Let 7 be a closed set topology for space X. Let 7 also denote the poset
category that has as objects all members of topology 7 and as arrows all inclusions
between members of 7. Since the arrows of category 7 are inclusions, there can be
at most one arrow between any two distinct 7-objects U and V. Likewise there is
exactly one arrow from any 7-object V' to itself. It follows that for any object V. a
V-sieve can be represented as a set S where U € Sonly if U € T and U C V. Set
S is a V-sieve only if whenever U € S and W C U in 7, we have W € S. In this

form the mazimal V-sieve is the set (V] ={U € T:U C V}.

Definition 1.2: A presheaf on C is any contravariant functor C — Set. Following
convention we deal rather with the equivalent covariant functors C°? — Set. The
category of all presheaves on C is denoted Set€”".

When C is a small category it is known that Set®  is a topos. We suppose
now that, unless otherwise stated, C is a small category. The terminal object in
Set®” is the functor 1 given by C 3 a — {0} with the obvious restriction maps.

The classifier object is a presheaf  where for object a in C,
Qa) = {all sieves on a},
and for arrow b — a in C, the image under Q of b — a is Q¢ : Q(a) — Q(b) given by
Qa)2S—{c—b|(c—b—a)e S}

The case of particular interest to us is that of Set®’ where C is a poset 7. In that

case maps {j are given by
a)2 S—={cCb|cCblaecS}=S5nN(b.
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Note that the notation Qf is a little deficient in that it allows no obvious way to
distinguish between the image under Q of f:b — @ and the image under Q of some
different arrow ¢: b — a. This is not a difficulty in considering the category Set? |
however it is significant, for Set®” is general. In later chapters if we find ourselves
required to make the distinction between such images we will resort to “function”
style notation where the image under €2 of an arrow f is denoted Q(f).

Tn Set®" the subobject classifier is a natural transformation true: 1 = §) given
by components true,: {0} — Q(a) where true,(§) = (a], all « € C. By definition
of the subobject classifier, any Set®” -monic 7: F >— G has associated with it a
classifying arrow X,: G — Q. As an arrow in Set®” | X, is a natural transformation
given by the set of components (X;),: G(a) — Q(a), all a € C. The arrows X, are

constructed as follows: for any object a in C and any = € G(a),
(Xr)a(z) = {b— a | Gi(z) € T(F(b))}

where b — a is a C-arrow, G} is the G-restriction map G(a) — G(b) defined for

that C-arrow, and 7 is the b-component F(b) — G(b) of natural transformation .

The Set-valued sheaves over a category are defined to be Set-valued presheaves
over a category that satisfy a condition. The condition is essentially the “sheaf
property” that we outlined in the previous chapter. In this new context the sheaf
property is cast in terms of a covers system, called a pretopology, on the base
category. We would then speak of a site over which the sheaves are defined, the site
being a category with a pretopology. Over time the original notion of a pretopology
has been refined to that of a categorial topology. This notion still has formal links
with the original idea of a set-theoretic topology but is now, with respect to the

formation of sheaves, considerably more general.
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2. Pretopologies and Topologies for Categories

This section follows similar discussions in Johnstone [1977] and in Goldblatt [1984].
We discuss the notions of pretopology and topology for arbitrary categories. We
also describe the definition of sheaves in terms of these structures.

A set theoretic cover for a member U of a topology 7 of topological space X is
a set {U;:¢ € I} of topology members with the property that U{Uiii € I} = U. We
may call {U;:1 € I} a U-cover. In that {U;:i € I} contains only topology elements,
we will say that it it a U-cover in 7. A covering system for a topology 7T is a system
which associates with each topology member U the collection of all U-covers in 7.
The thought that we might generalise the notion of a covering system to categories
is based on the awareness that any U-cover {U;:1 € I} can be represented as a set
of inclusions {U; < U:: € I'}. The essential property is still that U{Ui:e e I} =T,
but we now have the notion of a covering system as a system of sets of arrows from
poset category 7. There are three properties had by any set theoretic covering
system that allow for the expression of the sheaf property: firstly, for any topology
element U, the set {U} is always a U-cover; secondly, if {U;:i € I} is a U-cover
and V. C U in 7, then {U; N V:i € I} is a V-cover; thirdly, if {Ui:i € I} is a
U-cover and for each U; there is some U;-cover {Uir:k € K;}, then U is covered
by {Uix:k € K;,i € I}. Once these three properties are expressed in terms of
arrows in the poset category 7, we have the basis of the notion of a covering system
for a category. All we need do is generalise from collections of arrows of a poset
category to collections of arrows of an arbitrary category. In fact we must restrict
the generalisation to categories with pullbacks since the generalisation of the second
property will involve pullbacks. The generalisation of a set theoretic covering system

for categories with pullbacks is called a pretopology.

Definition 2.1: a pretopology on a category C with pullbacks is a system P where
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for each C-object U there is a set P(U) of sets {U; & U:4 € I} of C-morphisms,
and in addition the following conditions are satisfied:
(i) for each U € C, singleton {idy} € P(U);
(i) f V— Uin Cand {U; =5 U : 45 € I} € P(U), then the pullback family
{(VxpU;, =5 ViieI}isin P(V);
(iid) if {U; <5 U :1 € I} € P(U) and we have {Vix 225 U; : k € K;} € P(U,)

for cach i € I, then {Vix 25 U, 25U .5 ¢ I,k € I} € P(U).

In analogy with sheaves over a topological space we have the notion of sheaves
over categories with pretopologies. We shall say that any contravariant functor
F:C°? — Set is a sheaf when for each U € C and for each {U; =5 U :4 € I'} € P(U),
the following diagram is an equaliser

e do
FU) —— [ Fv:) == [ F(U: xuv U;)
i€l 1 2%
where e is the obvious product map and dy and d; are product arrows respectively of
the images under F of the first and second pullback projection maps U; x vU; — U;
and U; xy U; — Uj, all 4,5 € I. The projections in question arise in pullbacks

Uz' XUU]' —_— Ui

"k

Uj—U
&

of a; along «; and «; along «j, all i,5 € I.

Notice that the notion of a sheaf over a pretopology is exactly that of a sheaf
over a topological space when the pretopology in question is the covers system
of the topological space. In such a case, the equaliser condition for a sheaf on a

pretopology is the condition that whenever {U;:7 € I} is a U-cover in a topology,

the diagram

do

(&

F(U) I[IFw) —THF(CQ Nn,)
el 1 1,7
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is an equaliser. But that this diagram is an equaliser is exactly the claim that
what we have called the sheaf property holds. Recall from chapter seven the sheaf

property: a contravariant functor F: 7°P — Set is a sheaf when for a set of sections

{si € F(U;):1 € I} such that

FU,'OUJ' (S'L) = FU,'JOUJ- (Sj)7 all ty] € Iﬂ,

there is exactly one s € F(U) such that F{J(s) = s; for all i € I. Now the follwoing

diagram shows the construction of e, dy and d; as product arrows

U;
FU'ﬁUj

FU;) F(U,NU;)

U
F U; /‘\p?‘i ]\I”‘h J
do

FU) ..ty [ F(U;) —=—= [ F(U: 0 U;)

icl dy i
prj Prij
U )
FUj J’ FI[J];Jnt J/
F(U]') F(UiﬂU]‘)

Arrow dy is the product of maps Fg'_"nt all 7,7 € I, and d; is the product of maps

FIIJJjnt all 2,7 € I. Arrow e is the product of maps Fg all ¢ € I. From here it is

straightforward that

Theorem 2.1: e is an equaliser for dy and dy iff F' satisfies the “sheaf property”.

Proof: let us grant that index set I has n elements. Then we are able to say
that for any s € F(U), e(s) is some n-tuple ($1,...,8,) where for 1 < ¢ < n,
8; = F([j]'(s) Suppose that for all s € F(U), we have dy(e(s)) = d; (e(s)), or, in

other words,
do((sl,...,sn)) =dy1((S1,---,5n)).
This means exactly that

- U, o
Fg."ﬂUj (Si) = FU,-mUJ-(Sj)v all 7,5 € L.
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From this it follows that F' satisfies the “sheaf property” if there is no s’ ¢ F(U)
other than s such that e(s') = e(s). But when e is an equaliser if e(s') = e(s), then
s' = s. The converse claim is established by the fact that there being no s' € F(U)
other than s such that e(s') = ¢(s) is exactly what it means for e to be an equaliser.

g

Following this discussion we can say that the usual notion of a sheaf on a topo-
logical space is captured by the notion of a sheaf on a category with a pretopology.
We lose nothing in the generalisation.

A category together with a pretopology is called a site. A category of sheaves
defined over a site is called a Grothendieck topos. Take note that this is the definition
of a site and a Grothendieck topos as originally presented (cf. Artin et al.,[1972]).
Since the notion of an adequate set-theoretic covering analog for categories has
changed over time so too have the meanings of “site” and “Grothendieck topos”.
The change in meaning is by way of refinement and as such is not dramatic. How-
ever, we must be aware that the possibility for confusion exists. To guard against
this we will introduce a method of referring to Grothendieck toposes and sites in
such a way as to indicate which level of refinement we are invoking. Ultimately
this is necessary only because we have found it easier to develop some parts of our
discussion in terms of pretopologies and other parts in terms of the newer notion,
which we introduce shortly, of a topology for a category.

A precanonical pretopology for a category C is one for which all representable
functors are sheaves. A canonical pretopology is the precanonical pretopology that
includes all other precanonical pretopologies. It is known that canonical pretopolo-
gies exist and that for a finitely complete category they are in fact formed by the

stable effectively epimorphic families on which notion more is said in chapter ten.

Pretopologies do not in general uniquely determine a category of sheaves. To do

that we refine the notion to that of a (categorial) topology.
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A topology on C is a system J of sets, J(U), of U-sieves for each U € C where
sysem J satisfies the following conditions:

(1) for any U € C, the mazimal U-sieve (U] € J(U);

(i) if R € J(U) and V — U is a morphism of C, then

J*R)={W-5V:f a€R}

is in J(V');
(iii) if R € J(U) and S is a sieve on U where for each (V Uy U) € R we have
F*(S)in J(V), then S € J(U).

When J is a topology on C, the sieves in each J(U) are called covering sieves.
Note that a collection of morphisms with codomain U can be a U-sieve without
being a covering sieve on U.

This new categorial analogy of an adequate covering system leads to a new
notion of site namely that of a category together with a topology. In what follows a
pretopology will always be a system P while a topology on a category (as opposed
to the notion we will shortly encounter of a topology in a category) will always be
a system J. With this nomenclature we will be able to distinguish between sites
(C,P) defined with respect to pretopologies, and sites (C,J) defined with respect
to topologies on C. We now define a sheaf on a site (C,J) to be any contravariant
functor F:C°? — Set satisfiying the equaliser condition expressed in terms of cov-
ering sieves for U rather than covers. A category of sheaves on a site (C,J) is called
a Grothendieck topos on a site (C,J) and is denoted sh(C,J).

We note that given a pretopology P we can define a topology J that will given
rise to the same sheaves: we say that for any U € C, covering sieve R € J(U) iff R
contains some pretopology cover {a;:1 € I'} € P(U). The claim that this topology
gives rise to the same sheaves rests on the claim that if a family {a;:7 € I} satisfies

the equaliser condition, then a family R that contains {a;:i € I} will also satisfy
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that condition. Since we can define topologies J that include pretopologies P in
this way, we can say that any Grothendieck topos on a site (C, P) is a Grothendieck
topos on a site (C,J). The sites (C,P) and (C,J) are not (necessarily) the same, but
they generate the same Grothendieck toposes. Another way of putting this is that
Grothendieck toposes over sites (C,P) are a subclass of the Grothendieck toposes

over sites (C,J).

Proposition 2.1: any Grothendieck topos on a site (C,J) is an elementary topos.

(i

A topology J exists as a presheaf J:C°? — Set. This is the presheaf that
takes each C-object U to the set of covering U-sieves J(U), and takes each C-arrow

v LU to map J(f): J(U) — J(V) given by
JU)S R fY(R)={W 5 V:f-acR).

Clearly presheaf J is a sub-functor of Q. By this we mean that an inclusion J < §

exists in Set®”. Since Set®”” has a subobject classifier, there exists a pullback

|

—e—— oy
e D

—_—
true

where j is the classifying map of J — . Maps j of this sort are examples of maps

J called elementary topologies.

Definition 2.2: any map 7:Q — Q in an elementary topos £ is an (elementary)
topology in £ if the following conditions are met:

(1) 7 -true = true;

(i) 77 =7;

(i) N-(G xj)=7-n.
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The notion of an elementary topology is the final example of the generalisation to
categories of the notion of a covering system. The notion of an elementary topology
1s plainly no longer a system of covers in any literal sense however it does retain the
essential feature of such a system that we may express the sheaf property. This is

. . .. cor
done in terms of j-dense monics in Set” .

Definition 2.3: when j: Q —  is an elementary topology in a topos &, let J >
denote the monic classified by j. We then say that any £-monic X' >—— X is 7-
dense if its classifying map, X4, factors through J >— Q.

The following definition of a sheaf in a topos £ arises as a generalisation of a

theorem due to Lawvere.

Definition 2.4: for any topos £ containing an elementary topology 7, an object
F1s a sheaf with respect to j or a j-sheaf if and only if for any £-arrow f': X' — F
and any j-dense monic a: X' > X, there is exactly one 5: X — F such that the

following diagram commutes.

The category of sheaves identified in this manner is a full subcategory of € and will
be denoted sh;(€). Note particularly that the terminal object for £ will always be

the terminal object for sh 7(£).

Proposition 2.2: if £ is a topos containing elementary topology j, then sh; (&)

18 also a topos. a

Proposition 2.3: when J is a topology on C and j is the character map of the

nclusion J — € in Setcap, the Grothendieck topos sh(C,J) is the topos shj(Setcup i

L
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For a proof of this see Johnstone [1977], Example 3.22 and related discusion.

In this section we have discussed three devices by which we may reasonably
describe category objects as sheaves. The first device was that of the pretopol-
ogy. This was a straightforward generalisation to categories of the notion of covers
in a topological space. The categories of sheaves we may describe using this de-
vice include (equivalents of ) categories of the classical sheaves, the continuous local
homeomorphisms. The next device was that of a topology for a category. This was
a refinement of the pretopology notion. Any category of sheaves over a pretopol-
ogy can be understood as a category of sheaves over a topology. The next device
started out as a refinement of the notion of a topology for a category and became
a generalisation. This last device was that of a topology in a category. Sheaves
may now be thought of as distinguished topos objects. Equally, we need not now
regard the pretopology and topologies—on notions as superfluous. In fact it will be
useful in coming sections to have emphasised the relationships between the devices
so that we might smoothly pass from one to the next depending upon our technical
need. In the next section we will use the device of topologies j to describe the
subobject classifier for sheaf categories while in the section following that we will
use the device firstly of a pretopology P and then a topology J to justify the notion

of sheaves over the closed sets of a topological space.
3. Subobject classifiers in sheaf categories

We have seen in the last section that when sheaves are understood as Set-
valued contravariant functors, any category of sheaves can be rendered as a 7-sheaf
category shj(SetCop) where C is a small category and j is some topology in Set®” .
In the present section we will use this fact to provide ourselves with a construction
for a subobject classifier in any sheaf category. We will also provide a construction

for classifying maps for monics. We have two purposes here. Our principal aim is
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to provide the necessary preliminary detail for our discussion in the next chapter;
there our discussion will appeal to the nature of the classifier object ;. Our second
purpose for the present section is the verification of the existence of a description
of character arrows for monics which, when the sheaf category is sh( SetTop) for
some set theoretic topology 7, does not rely on the set theoretic properties of
7. In particular, we want to be able to construct character arrows for monics
n shj(SetTup) without relying on an assumption of | J-completeness in 7. When
sheaves are defined over topological spaces, it is most often in terms of an open set
topology, and these, by definition, are | J-complete. However. in the next section, we
will be defining sheaves over a closed set topology, so we require a character arrow
construction that is, at least, independent of base space topology types. That there
is such a construction is demonstrated as a corollary to the main theorem of the
present section. This main theorem is on the nature of character arrows in sheaf

categories shj(SetCap) for any small category C.

In section one of this chapter we described subobject classifiers true:1 — §
for presheaf categories Set®”. There is a standard construction for a subobject
classifier truej: 1 — Q; for a sheaf category sh;(Set®”) where j is a topology in

Set®”” (cf. for example, the discussion and references in Goldblatt §14.4, [1984]).

Proposition 3.1: for any topos £ with a subobject classifier true:l1 — Q and a
topology 7: Q2 — §2, the category shj(SetCop) has a subobject classifier true;:1 — Q;
described by the following equaliser diagram in € where e is an equaliser and true;

18 the unique map making the whole diagram commute.

i(lQ
K‘._ J
true;'a_ true
1
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Corollary: when € is a presheaf category Set®”” for smallC, 1 15 a contravariant

functor C°? — Set where for any object a in C
Qj(a) = {S € Qa): (ida)a(S) = ju( )}
and furthermore, for any b —1+ a in C, the maps (Q)¢ are functions given by
Qj(a)3 S {c—b](c—b-Lsa)e 5} e,

In this case we also have that true; is o natural transformation given by components

(truej)q such that

(true;)a(0) = true,(0).

Proof: it is enough to demonstrate that we have natural transformation e
that is an equaliser for idg and j whenever we have equalisers e, for (zdg ), and
Ja all objects a € C. The corollary is then demonstrated by the fact that the
canonical choice for equalisers e, for (idg), and j, in Set are the inclusions of
{5 € Q(a): (ida)e(S) = 7u(S)} in Q(a).

The proof is independent of what natural transformations are equalised so
suppose some parallel pair of natural transformations f,g: F —2G between con-
travariant functors F' and G from C to Set. The transformation f is a collection
of functions f,: F(a) — G(a) for all objects a in C. Likewise, transformation g is
a collection of functions g,: F(a) — G(a). Set has equalisers and we can suppose
canonical equalisers e,: E(a) — F(a) for each pair for functions f, and g,. We
can now use the fact that F' is a functor to generate a functor E and a natural
transformation e: £ — F. Let E be the functor C°? — Set that takes each object
a € C to E(a), the domain of equaliser e,; in addition E takes each b — a in C to
a map Ef: E(a) — E(b) which is defined so that for any = € E(a), E}(z) = Fi(x).
Plainly, if F' is a functor, then so is E. Furthermore, for any b — a in C, the

following diagram will commute in Set.
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f

Ca
a E(a) ——— F(a) —— G(a)
Ga
B Fy ¢
Ty
b E(b) —— F(b) —— G(b)
ep 7

It follows that {e,:a € C} constitutes a natural transformation. Let use denote this
transformation by e. All that remains is to demonstrate that e is an equaliser of f

and g.

We know already that f-e = g-e since fy - eq = ¢o - €4 for all a € C. To

demonstrate that e is an equaliser we are required to demonstrate that for any

natural transformation e’: E' — F such that f-¢' = ¢ - ¢, there is exactly one
natural transformation k: E' — FE such that ¢ = ¢ - k. Consider the following
diagram.

EI

e/
\ §
E — F
e

G

Suppose that f-e' = g-e'. We have immediately that for any a € C, the following

diagram commutes.

9 \ Ja
E(a) — F(a) —/— G(a)
“ Ja

where k, is unique in making the triangle commute. If the maps k, constitute a
natural transformation k: E' — E, then clearly & will be unique in making e’ = k-¢.
To see that maps k, do constitute a natural transformation suppose any b — « in

C and consider the following diagram.
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g E'(a) —— E(a) —* F(a)
(Eﬂ Ef l lF
b 20

Eb)y — b
— 5{l) —— F(

By hypothesis e': E' — F is a natural transformation, so €} - (E'){ = F{ - ¢!,. But

@

foralla €C, e, = e, - kg, so
ev - kp - (B')f = Ff - eq - kq.

Now e is a natural transformation, so Fy* - ¢, = ¢}, - Ef, and so
ep - ky - (E"g = ep - B - ky.

By hypothesis ep is an equaliser, so ey is monic. Then ky - (E')¢ = Ef - k,, and k is

natural as a transformation. O

That we can describe true; in terms of true and e indicates that we can describe
classifying maps X? for sh;(€)-monics 7 in terms of e and the classifying maps X, in
£. We will demonstrate this shortly, but first we need to demonstrate that wherever
T is monic in sh;(£), it is also monic in €. Recall that sh;(€) is a subcategory of &,
so it 1s permissible to describe any map 7 in sh;(€) as being the same map in £. The
following proposition establishes the required relationship between sh ;(&)-monics

and £-monics.

Proposition 3.2 (Lawvere-Tierney): for any elementary topos £ with topology 7,
there 1s a sheafification functor shj: € — shj(E) that has sh;(b) = b for each j-sheaf

b. This functor preserves all finite limits. a

(For a proof see, for example, the proof of Theorem 2.61 in Freyd [1972]).
That the sheafification functor preserves all finite limits means that the Hmit

in £ of any finite diagram of j-sheaves is itself a j-sheaf and is the limit in sh;(€)
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of the same diagram. Plainly since there are no objects nor arrows in shi(€) that
do not eixst in &, it follows that the limit of a finite diagram in sh;(£) is a limit of
the same diagram in €. A particular consequence is that any pullback in sh;(€) is
a pullback in & and any pullback in € of maps between j-sheaves is a pullback in
shj(€). Now, monics are preserved by any functor that preserves pullbacks since in
any category, a map a —- B is monic iff the following diagram is a pullback

1d 4
_

1 4

pa—
t:i‘(—gib

-
u

(cf. Proposition 21.12, Herrlich and Strecker [1979]). It follows that any shi(€)-
monic is monic in &, and any arrow between j-sheaves that is monic in & is also
monic in sh;(€). We are guaranteed, then, that when 7: F > G is a sh;(€)-monic,
7 18 monic in £ and so there exists a classifying map X, in £. We let XJ denote the
classifying map for 7 in sh;(€) guaranteed by the existence of true;. We are now
in a position to demonstrate the relationship between X, X7, and e, the equaliser
of j and idg.

Theorem 3.1:  when & is a topos with topology j and 7: F > G is a sh;(€)-monic,
we have X; = e - XJ.

Proof: consider the diagram

true; €

Let 7 be a monic in sh;(£) and let X = e-X.. We will demonstrate that X = X,. In
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the course of this proof we will refer to parts of the above diagram by (clockwise)
vertices. So, for example, the inner square, the pullback diagram for true; and X7,
is denoted by {F,G,Q;,1}.

To establish that X = X, it is enough to establish that square {F,G,,1}
made from the evident composites is a pullback. Since e - true; = true, the desired
result will follow from the definition of true as a subobject classifier in &.

The square {F,G,,1} is a pullback only if it satisfies two conditions. First,
the square must commute, that is we must have X -7 = e-true;-!. But X = ¢-X? so
the square commutes if e- X2 -7 = e-true;-!. Now, since {F. G, 25,1} is a pullback,
it at least commutes, so X2 - 7 = true; - |. Plainly, then, e- X/ -7 =¢- true; - 1. The
second and final condition that {F, G, 2,1} must satisfy to qualify as a pullback is
that whenever the square {E, G, Q,1} made from the evident composites commutes,
there is exactly one E A F making the whole diagram commute. Suppose that
{E,G,Q,1} does commute. This means that e X{-g = ¢-true; - f. But e is an
equaliser and therfore monic, so we have X - g = true; - f. But in that case, since
{F,G,Qj,1} is a pullback, we have exactly one E *F making the whole diagram

commute. a

Corollary: for topos Set®”” with topology 3, if T: F > G 1s a shj(Setcop)-monic,

then for any a € C and any z € G(a),

(X2)a(2) = (Xr)a(2).

Proof: for any a € C, (X;)s = €4 - (X{_)a, and the canonical choice for e, is an

inclusion. O
It follows that in j-sheaf categories sh;(Set®”") we can use the usual con-
struction for maps X, as the construction for maps X2. So when 7: F>— G is a

Shj(SetCop)—monic, X1 is the map G — Q; where for any a in C and any = € G(a)

(XDal(z) = {b— a| Gi(z) € 7 (F(b))}
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where b — a is some map in C.
4. Closed Set Sheaves

Typically sheaves over topological spaces are defined in terms of the open sets
of the base space. The notion of a category of sheaves over a site allows us to define
a category of sheaves over the closed sets of a topological space and announce that
these categories are toposes.

Suppose some topology 7 of the closed sets of some space X. Any topology
is partially ordered by set inclusion, so any topology forms a poset category. Let
(T, C), or when no confusion will result let 7, denote the poset category of topology
T ordered by set inclusion. To define a sheaf over the closed sets of X we need only
define a pretopology P for poset category 7. To do this we note that any sieve
in 7 will be some R = {U; 2 Ui o€ I} where U and U; for all ¢+ € I are
topology elements and each «; is an inclusion. Now since there can be at most
one inclusion between any two topology elements, we can understand R to be a
family {dom(a;):a; € R} of sets. On this understanding the defining conditions
for a pretopology P become those originally true of set-theoretic covering systems,
namely

(1) foreach U €T, {U} € P(U);

() fVCUiInT and {U;:1 € I} € P(U), then {VNU; ¢ €I} cP(V);

(i) if {U; : ¢ € I} € P(U) and we have {V; 1 : k € K;} € P(U;) for each 7 € I,

then {Vir: k € K;,1 € I} € P(U).
It follows that there is a pretopology P for 7 described by the covers system C for
X which has for each U € T a set

CU) = {{Uiie I} |U = J{Uizi € I}}

of sets where each U; € 7. While this is not the only pretopology we could describe

for 7, it is distinguished in that it is the canonical pretopology. A proof that this
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pretopology is canonical for 7 can be performed in terms of a notion to be intro-
duced in chapter ten. There we note the standard result that canonical pretopologies
for finitely complete categories are formed by the stable effectively epimorphic fam-
ilies. It is straightforward to show that poset category 7 is finitely complete and
the the family {U, — U:z € X} is effectively epimorphic iff U{Us:z2 € X} = U.
Furthermore these families are easily proven stable with respect to being effectively
epimorphic when pulled back. It is exactly this pretopology which will interest us

in the next chapter.

Having defined a pretopology P for category 7, it is straightforward that we
have a category of sheaves over 7. It is worth remarking that the canonical pre-
topology for 7 is essentially just a covering system of the sort we would be familiar
with from the task of defining sheaves over open set topologies. The only difference
is that we are now considering closed set covers. It is worth remembering, too,
that the equaliser condition we use to identify those presheaves that are sheaves is
essentially just the familiar “sheaf property”. There is an intuitive sense, then, to
the claim that (some) sheaves over closed sets just are sheaves in the traditional
sense. We finish this section with a statement of the theorem we have essentially

already proven.

Theorem 4.1: any category of sheaves over the closed sets of a topological space

18 @ topos. O

Of interest to us in the next chapter will be the particular nature of the classifier
objects in closed set sheaf categories. We find that a base topology of closed sets
does introduce BrAs into the structure of {2; but not in a way that yeilds Q; as a BrA
object in shj(SetTop). The BrAs that do exist will be best understood as algebras
of sections given that {2; as a sheaf has an equivalent construction as a continuous

local homeomorphism over 7. As such we retain our interest in §2; as an (ex-
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categorial) object of paraconsistent semantics rather than as a paraconsistent logic
object in a category. We address the equivalence of closed set sheaves and closed
set sheaf spaces in chapter thirteen. For discussion of an actual paraconsistent logic

object, see chapters eleven and twelve.
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CHAPTER 9: BROUWERIAN ALGEBRAS
in

CLOSED SET SHEAVES

Introduction: This chapter follows directly from chapter 8. In chapter 9 I give
a technical discussion of an aspect of the nature of the classifier object as a logical
algebra in a closed set sheaf category. This chapter is the one that tests and refutes
the hypothesis that the topological dualisation of the sheaf notion enables us to de-
scribe new natural operators for subobject lattices in sheaf categories. The chapter
has two sections. The first section shows that at the component level there are BrA
operations to be found in the subobject classifier structure (as we see in the next
chapter this means that subobject lattices in the category in question are BrAs).
The second section shows that these BrA operations are not natural in the sense
of being productive of a natural transformation within the category that would
make the classifier object itself a BrA. The second section contains a discussion
of why the component BrA operations do not produce a natural transformation.
This discussion is given in terms of closure operations that define closed set topolo-
gies. The discussion, then, in this chapter is significant in two ways. Firstly it is
a refutation of the hypothesis that topological dualisation of the sheaf notion will
produce structures which when collected into categories yield natural BrA subob-
ject lattices. Secondly it is the beginning of the discussion on why BrAs do not,
in general, exist in toposes in a way completely analogous to the existence of HAs.
In this, then, our discussion here is quite different from that in Lawvere [1991] in
which paper Lawvere announced a result that subsumes the non-naturalness result

of this chapter.
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This chapter contains a technical discussion of the algebraic nature of 2; in
sh;(Set”™") where T is a closed set topology and j is the canonical topology in
Set””". We will find that for each V € 7, the set 2;(V) ordered by set inclusion
is a subalgebra of (7,C) and as such is a BrA. We will use ~y to denote the
BrA operator on each Q;(V). The collection of functions { ~y:V € T} is consid-
ered. We shall find that the collection does not constitute a natural transformation
Q; xQ; — Q; in shj(SetTop). The existence of collection {+~v:V € 7} will be
placed in context by the discussion we give in chapter thirteen of sheaves as sheaf
spaces. Each Q;(V) can be understood as an algebra of sections of a sheaf space
and the existence of =~y reflects the fact that this algebra is closely tied to base
and stalk space topologies.

In the last section of the last chapter we described the canonical pretopology
P that exists for the poset category 7. From section two of the last chapter we
know that P can be refined to a topology J for 7 that will give rise to the same
sheaves. We know, too, that J exists as a subfunctor of  in Set” = and that the
classifying map, j, for this inclusion is a topology on Set? . It is this J that we
use to determine the sheaf category sh j(SetTop) that we consider in this chapter.
We know from section three of the last chapter that we can describe the classifier
object Q; for sh;j(Set” ). It will be found in the first section of the present chapter
that for each V' € 7, the set ;(V') is isomorphic to the set (V] and as such, under
set inclusion, is a subalgebra of (7,C). It follows that we can define a pseudo
difference operation =y for each 2;(V'). This means that we have a transformation
{+v:V € T}. In the second section of the present chapter we show that this
transformation is not in general natural. As such the transformation is not in

general an arrow in shj(SetTop).
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1. Component Algebras of the Classifier Object

Suppose the pretopology P on closed set poset category 7 where for each U € 4.
P(U)= {{Usie I} |U = | J{Usi € I}}.
Let J be the topology on 7 defined so that
R e JWU) iff R contains some {U;:1 € I} € P(U).
Recall that Q for Set” " has that
QU) = {all sieves on U}

so there exists an inclusion J < §. Let j be the character map of this inclusion. It

follows that for all V € 7 and all S € Q(V),

Jv(S) ={U CV:Q}(S) € J(U)}.

Lemma 1.1: for any V € T and any S € V), we have S C ju(S).

Proof: if V € S, then (V] € S, in which case it would follow that for any
UCV,Ql(S)=Sn(V] = (V]. So, by condition (1) of topologies J, if V € S, then
V€ jv(S). 0O

Now, we say that a V-sieve S is not mazimal if it is not some (U] for some
U CVinT. A maximal V-sieve (U] is said to have exactly one top element, namely
U. A top element in a V-sieve S is some W € S such that for all Z € S, it is not

the case that W is a proper subset of Z.

Lemma 1.2: if V-sieve S 1s not mazimal, then S # jv(S5).
Proof: if S is not maximal, it will have at least two distinct top elements. Let
W and W' be two distinct top elements in S. It follows that W UW' ¢ S. However,
WUW' € jv(S)if Qfuw (S) € (W UW'). Now
Qiyuw (S) = SN (WuUW'|
= (W]u (W’
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so, U(yuw:(S)) = WU W'. This means that QY 1 (S) is a cover for W U W',
or in other words, Q. (S) € (W UW"). 0
Lemma 1.3: if V-sieve S is mazimal, then S = jy/(S).

Proof: suppose S is (U] for some U C V in 7. Suppose that W C V and
W ¢ (U], that is, W ¢ U. Now QW (S) = (U] N (W] = (U N W]. Also, since
W g U, we have U NW # W. It follows that (J(Q¥.(S)) # W, so QY(S) & J(W)

and W ¢ jv(5). This gives us jy(5) C S which together with lemma 1.1 gives us
5 = jv(S) O

Theorem 1.1: for any V € T and any S € Q(V), S = ju(S) iff S is mazimal

Proof: lemmas 1.2 and 1.3. 0

It follows from the fact that it is the domain of an equaliser of idq and j that

we can describe ; as a functor 7°P — Set such that for all V € 7,
Qi(V)={W]:W CVin T}
and when U C V in 7, restriction maps (£2;);, are given by
(Q)y (W]) = (W] 0 (U],

To simplify our discussion note an isomorphism: let 2 be a functor 7°? — Set

where for all V € T
Q'(V)=(V];

/

and for all U CV in 7, maps (Q'J)l‘; are defined so that for any W € (V],
Q)W) =W nU.
Theorem 1.2: Q; and Q' are iso in shj(SetTUp).
Proof: the theorem is demonstrated by describing a bijection

pv: Qi (V) = QHV)
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for each V' € T and showing that {¢v:V € 7} constitutes a natural transformation.

If we define ¢y so that for any (W] € Q;(V),
QOV((W]) e wfa

it is plain that ¢y is a bijection. That {¢v:V € T} constitutes a natural transfor-

mation is the claim that

Yv .

14 Q;(V) ——— Q4(V)
()7 (251

U 2(0) —— (V)

commutes for any U C V in 7. To establish that the squares in question commute

observe that for any (W] € Q;(V)

@5 (v (WD) = (EW)
=WnU

and that

eu (@5 (W) = pu((Wln (V)
=pu(WnU])

=WnuU. 0

Since ; and Qf are iso in shj(SetTap), we can use them interchangeably in

the sh;(Set”"") context.

Theorem 1.3:  for any V € T, the set Q4(V) under set inclusion is o BrA.
Proof: any W, W' € Q(V) are closed sets in 7 and are such that W, W' C V.
It follows that W N W' W U W' C V and are closed sets in 7. This means that

Q'J(V) 1s a lattice under set inclusion.
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That Q%(V) is a BrA follows from the fact that (7, C) is a BrA. We have that,
for any S, T,Z2 € T,

S—-TCZzZ f SCTUZ

where = is the BrA operation on (7,C). Now, if ST C V', then S—T C V| since
we always have that =T C S. Plainly, if we define —v on Q;(V) such that for
any 5,T € 24(V),

S;vT:S;T,
daf

then =y is a BrA operation on (V). 0

It follows from the existence of ¢y that Q;(V') is a BrA under set inclusion.

2. Component Algebras and Natural Transformations

In this section we demonstrate that the collection { ~y:V € 7} of functions in
general fails to be a natural transformation. We demonstrate this in terms of 2.
The claim that {=y:V € T} constitutes a natural transformation in shj(SetTop)

is the claim that the squares

1% QUV) x (V) ——— Q(V)
Q) x Q)Y (QhHY

Q;-(U) X Q’]-(U) _ Q’]-(U)
~U

commute for all U C V in 7. Observe that for any (S,T) € Q'J(V) X Q'J(V)

@8 (= ((5,T))) = (@S =T)
= (S=T)nU

and

<o (@ x Y(S.T)) = =u((SNU.TAV))
=(SNU)=(TNU).
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Now, if ¢l is the closure operation that determines the closed set topology 7 on X )
we can describe S = T as the set cl((X —T)NS)and (SNU)= (TN U) as the set
d((X—(Tnv)nsn U).

There are two cases to consider. The first is where (7, C) is a Boolean algebra,

and the second is where it is not.

Theorem 2.1: when (7,C) is o Boolean algebra, {~v:V € T} is a natural

transformation.

Proof: Suppose that (7, C) is Boolean. This means in particular that for any
TeQyV), (X —T) =X —T. And then we have that

S=T)NU=c((X-T)NS)NU
=(X-T)nSNnU

and

(SﬂU);(TﬂU):cl((X—(TmU))mSmU)

=X —(TnU)NSNU;
and since X —(TNU)NU = (X —T)NU, we have

(S=TYnU =(SNU)= (TNV). 0

So in the Boolean case we do have a natural transformation. However since
(7,C) is Boolean, the natural transformation { ~y: V € T} is relatively trivial from
our point of view. Its existence does not change the fact that Q' will be a Boolean
algebra. That Q) will be a Boolean algebra follows from the fact that each QL(V)

will be a Boolean algebra.

Theorem 2.2: when (7,C) is not o Boolean algebra, {=y:V € T} is not a
natural transformation.
Proof: Suppose that (7, C) is not Boolean. Suppose further that V = X . Since

(7, ) is not Boolean, there must be at least one T' € 7 such that cl( X —T) # X —T.
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For some such T let U be the b(X — T), the boundary of X — T. If we let S be X,

then
(S=T)NU =c((X ~T)nS)NU
=cd(X-T)NnX)NyX —T)
= cl(X —~T)NbX —T)
— KX —T)
and
(SNU)=(TnU) =e((X - (T D)) )nsnu)
—c ((X (TNHX - )))anb(X—T))
- cz(X — (B(X = T)) N KX ~T))
= cl(0)
=0,
And since by hypothesis 5(X — T') # (), the square does not commute. O

Another way to look at this result is to consider the cases where both V and

S are X. Then

(S=T)NU =cl(X = T)NU

and

(SNU)=(TNU) =d((X - (T D)) nU).

And since (X —(TNU))NU = (X — T)NU, the claim that {~y:V € T} is a

natural transformation is, in part, the claim that for any T, U € 7T,
X -T)nU =cl((X -T)NU).

This is the claim that set theoretic closure operations distribute over intersection.
This is known to be false in general. We can say that in those cases where it is
true, we have a natural transformation {~v:V € 7}, and in those cases where it

is false, we do not.
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The next chapter is a discussion of the properties of ; in the more general sheaf
categories sh j(Setcap) where C is a small category. We will find once again that
for each a € C, Q;(a) is a BrA under set inclusion but that this will not in general
yeild a BrA ; in the category. Since the categories sh]-(SetTap) are numbered
among the categories sh j(SetCop) we would expect a general failure of naturalness
for collections of BrA operations on sets 2j(a); the interest in including the next
chapter is the fact that we can show subobject lattices from any Grothendieck topos

to be Brouwerian algebras under the usual subobject inclusion ordering.
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CHAPTER 10: GROTHENDIECK TOPOSES

Introduction: This chapter generalises the results and discussion of the previous
chapter. Where chapter 9 considers the subobject classifier in a category of closed
set sheaves chapter 10 considers the subobject classifier in (by isomorphism) any
Grothendieck topos. The result in chapter 10 on component BrAs in the classifier
structure and their failure to yield a natural transformation is a generalisation of the
results in chapter 9 inasmuch as the chapter 10 results contain the chapter 9 results.
However, the method employed in chapter 10 to produce the results is recognisably
different from that used in chapter 9 and does not derive from a topological duali-
sation. It follows, then, that from the point of view of my project, the discussions,
technical and otherwise, are distinct. This is my reason for separating them into
two chapters. The significance of chapter 10 is in the fact that it generalises chapter
9.

With this chapter we offer a part generalisation of the discussion in chapters
eight and nine. We concern ourselves here with a discussion of subobject clas-
sifier objects in categories of sheaves over sites. We will use the fact that any
Grothendieck topos is equivalent to the category of sheaves over itself with the
canonical pretopology to give a description of the classifier object as a functor
Q; of subobject lattices. Further, we will use the fact that subobject lattices in
Grothendieck toposes are complete and distributive to show that for any object a
in the base category, the image Q;(a) is a BrA under set inclusion. As we would
expect from the discussion in chapter nine we will also find that these BrAs do not
yield a natural transformation in the sheaf category itself; so, in general, it will not

follow from the existence of BrAs Q;(a), that 2, is a BrA. The discussion in this
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chapter will add an extra dimension to that in chapters eight and nine by virtue of
the fact that we will be able to use the failure of naturalness in a of the particular
2;(a) BrAs here to offer some informed speculation on what it would be for the
subobject logic of a category to be paraconsistent.

In section one we will recast our earlier discussion of pretopologies in terms
of stable effectively epimorphic families. In section two we will use an equivalence
theorem from Makkai and Reyes [1977] to give a description of the classifier object
of a Grothendieck topos in terms of subobject lattices. In section three we will use
the completeness and distributivity of such lattices in Grothendieck toposes to show
that there are BrAs within the structure of the classifier object. We go on to show
that these algebras do not yield an extra operator on the classifer algebra within
the category.

We make some significant use of the features common to both j-sheaf theory
and pretopology theory and we will accomodate this by using a concept of a topology
defined by (pretopology) saturation. If cov is a pretopology for a category C, then

we will say that J is a topology for C defined by saturation of cov if for any a € C,
R cJ(a) iff R contains some S € cov(a).

The topology j that is the character of the inclusion J < Q in Set®”” will also be
called a topology defined by saturation of cov. It is readily shown that sh;(Set¢")

and sh(C, cov) are equivalent.

1. Pretopologies and Sheaves revisited

For a category C, a collection C' = {a, ELN | @ € X} of C-arrows is

called an epimorphic family if given any pair of parallel arrows i,75:a =3b such
that ¢- fr = j - f; for all z € X, then we have i = j. Suppose we have an epi-

morphic family C. Suppose further that for some C object d there is a family
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D = {a, T d:z € X} of C-arrows such that for any z,y € X the outer square of

the following diagram commutes where {f, g} is the pullback of {f,, fv}

/\\

Qg Xgq Gy

\//

If it happens that for any such family D there is exactly one C-arrow h:a — d such
that for all © € X, we have h- f; = g, then C is called an effectively epimorphic
family. Any effectively epimorphic family is an epimorphic family but in general
the converse does not hold.

We speak (loosely) of the pullback of a family C' = {a, ELIp € X} along
a C-morphism k:a' — a. This is a family C' of C-morphisms with the property
that g, € C' iff g, is the pullback of f, along k for some f, € C. An effectively
epimorphic family C is called stable if for any C-morphism k, the pullback of C along
k is also effectively epimorphic. It is known (cf. for example Goldblatt §16.2, [1984])
that the stable effectively epimorphic families of a finitely complete category form a
canonical pretopology for that category; it is also known that for any Grothendieck
topos, the stable effectively epimorphic families are exactly the epimorphic families.

A useful theorem follows from the above understanding of pretopologies. The
theorem can be found as one part of Theorem 1.4.3, Makkai and Reyes [1977], and
is about the nature of what is called the canonical functor for categories of sheaves
over sites. To describe the theorem we first introduce some notation and develop
the notion of the canonical functor. For this chapter a category of sheaves over a
site C = (C, cov) we will be denoted by sh(C). When D is a locally small category,

that is when hom(a,b) is a set for any objects a,b € D, and D = (D, cov) is a site,
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the canonical functor

Ep:D — sh(D)

is the composite of the dual Yoneda functor }': D — Set?”” and the sheafification
functor sh: Set?” — sh(D). Consider the Grothendieck topos sh(C) of sheaves

over any site C = (C,cov). Let COV be the canonical pretopology on category
sh(C). Then

Proposition 1.1:  E,cy: sh(C) — shcov(sh(C)) 15 an equivalence of categories

and 1s essentially just (that is, isomorphic to) the dual Yoneda embedding. O
2. Subobject Classifiers in Grothendieck Toposes

In this section we will be addressing ourselves to the nature of classifier objects
in categories of sheaves over Grothendieck toposes with canonical pretopologies.
The proposition at the end of the last section tells us that any Grothendieck topos
is equivalent to the category of sheaves over itself with the canonical pretopology.
It follows that any discussion we make in this section will apply (by isomorphism)
to classifier objects in any Grothendieck topos. A feature of this discussion will be
the complexity of notation so we first of all will consider some simplifications.

Let C be a category and let cov be a pretopology for C. Let C = (C, cov) denote
the site that is C together with cov. We will use st(C) to denote the category of
presheaves C°? — Set. Previously we have used the notation Set®” to denoted
st(C). The notation “st(C)” can be read “the category of stacks on C”. A stack on
C is the same thing as a presheaf on C. We will use sh.o,(C) or sh(C) to denote the
category of sheaves on C with respect to cov. The category that we concern ourselves
with in this section is shcov(sh(C)) where COV is the canonical pretopolgy on
sh(C). For relative simplicity we assume COV and denote the subject of our

discussion by sh(sh(C)). Our discussion so far has been of sheaves with respect to
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pretopologies since these are the terms of the Makkai and Reyes theorem. However,
we will want to make use of the tools of j-sheaf theory to define the classifier ob ject
for sh(sh(C)). To do this we let j be the topology in sh(sh(C)) defined by the
saturation of COV. In terms of the notation used in previous chapters J 18 a map
Q — Q in the category Set*"(©D” with O as the classifier object. The category
sh(sh(C)) is equivalent to Shj(Set(Sh(O))ap). We will prefer the simpler sh(sh(C))
for the name of the category. We will use Q; to denote the classifier object of
sh(sh(C)). It will be important to keep in mind that when we write “Q” we will
be referring to the classifier object of the presheaf category st(sh(C)).

The reason for going to the trouble of considering sh(sh(C)) is the description
it will afford of §2; in terms of subobject lattices in sh(C). We will find, as one would
expect, that for any object a in sh(C), Q;(a) ordered by set inclusion is essentially
Sub,p(cy(a) ordered by subobject inclusion. Since any Grothendieck topos over a
site is bi-complete, any Sub,p(cy(a) is a complete lattice. Together with the fact
that the lattice is distributive we have that we can define a BrA operation on §2(a)
(and therefore BrA operations on subobject lattices in sh(C)). We will find that
the BrA operations =, for each ;(a) do not constitute a BrA operation on Q55
but in any case we will have a description of BrA operations on each Sub,p(cy(a)
for any a in sh(C) and a new description of the sh(C) classifier object.

Since sh(sh(C)) is at least an elementary topos we can describe its classifier

with the usual equaliser diagram in st(sh(C)) for idg and j
e 1dg
er Q) —_—->Q
J

We have, then, that for any a € sh(C),
§15(a) = {5 € a): ju(S) = (ida)a(S)}

= {S:7.(5) = S}.
Recall that §2(a) is the collection of all a-sieves on sh(C) and that

7a(5) = {b— a | Qi(S) € J(b)}.
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We saw in chapter eight that where j is the canonical topology on SetTOp, we have
for any V € 7 and any V-sieve S, jy(S) = Siff S = (U] for some U C V in 7. We
will demonstrate a similar result here. To describe it we introduce some notation.
For a map b A a, let (f] or (b s a] or, when f is understood, (b — a], be the
sieve that contains all arrows ¢ —» @ that factor through f. This then is the sieve
such that for any ¢ 2= a, g € (b 7, a] iff there is some ¢ " b such that g=1/f-h.
On occasion we will use (a] to denote (id,]. In what follows sieves (b —s a] are
always sieves of sh(C)-arrows. We also introduce the concept of a top element for
these sieves. For sieve S of arrows, the arrow b REY is a top element if there is
no (c - a) € S through which f factors other than itself or an 1somorph. In that
case there is no (¢ — a) € S and no b ", ¢ such that f = ¢ h other than when
g = f or g ~ f. Note that where f and g are isomorphic arrows the sieves (f] and

(g] are identical.

We will show through a series of lemmas that for any a € sh(C) and any
S € Qa), jo(S) = S iff § = (b>> a] for some sh(C)-monic b > a. It will follow
that

Qj(a) = {(f]: f € Subsi(cy(a)}.

We will say that S € Q(a) is mazimal iff it is (b — q] for some b — a in sh(C). If
S € (a) is not maximal, it must have at least two distinct top elements. These top

elements will be distinct in the sense that they are neither identical nor isomorphic

in sh(C).

Lemma 2.1:  for any a € sh(C), if S € Q(a) is not mazimal, then j,(S)# S.

Proof: if S is not maximal, it has at least two distinct top elements. Let these
elements be b —% ¢ and b —%+ a. Since sh(C) is a topos, the map [t1,t2]: b+ b — a

exists in sh(C). Consider the diagram
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t1
th
by, 1
b+ b‘[l ..... Z ] ..... > a
Zbl
e

Plainly, both ¢; and ¢; factor through [t1,t3]. Tt follows from this and the hypothesis
that #; and ¢, are top elements that [t;,#;] € S. So we will have demonstrated the
lemma if we show that [t1,%2] € 7,(S).

Now Q([t1,%2])(S) = {c Lobgw | [t1,t2] - f € S} so we have
i, in} C Q([t1,82])(S).

It follows that to demonstrate Q([t1, t2])(S) € J(b+¥') and therefore to demonstrate
that [t1,%2] € jo(S), we need only demonstrate that {i;, iy } is an epimorphic family.

Consider the diagram

Suppose some parallel pair b+ 5" —d in sh(C) such that
g

f’lb:g'tb and f'ib’:g"z"b’-

Plainly, if f' = f -4, and ¢' = g - i, then the whole diagram commutes. But by
definition of coproduct there is exactly one arrow b 4+ &' — d that makes the whole
diagram commute, namely [f', ¢']. So f = g and {44, 1y} is an epimorphic family.

0
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Corollary: for any a € sh(C) and any S € Q(a), ju(S) is mazimal.
Proof: by lemma 1.2, if j,(S) were not maximal, then Ja(Ja(S)) # 7a(S) which

would contradict a defining feature of topologies that they are idempotent. O

It follows that a necessary condition for j,(S) = S is that S be (b — d] for
some b — a in sh(C). It is relevant, then, to note that, since sh(C) is a topos,
any sh(C) arrow g:b — a has an epimonic factorisation. This in part means that
there exists in sh(C) and epic ¢*:b —» ¢(b) and a monic im ¢: ¢(h) >— a such that
g=1umg-g*

Lemma 2.2: for g:b—a, if g € S, then im g € 7,(5).
Proof: since S is a sieve, if g € S, then Q(¢)(S) = (id}]. In that case, 1t follows

by condition (1) of topologies that
g)(5) € I(b).

But recall that J is the saturation of the canonical pretopology on sh(C). This
means that (g)(S) € J(b) iff Q(g)(S) contains an epimorphic family. Let that
family be

E={c; Z5b|zeX}.

It 1s plain that if g, € Q(g)(S), then g* - g, € Q(g)(S), so consider the family

B* = {cs 250 L g(b) |z € X).

1
Suppose some parallel pair g(b) ——d of sh(C) arrows such that i-¢g* - g, = j-¢*- ¢,

for all z € X. Since E is an epimorphic family, we have

and since ¢* is epic, we have



It follows that E* is an epimorphic family; and since E* € Q(im ¢)(S), we have

that Q(em ¢)(S) € J(g(b)). As a result im g € 7,(5). O

Corollary: for any S € Q(a), 74(S) s (¢] for some sh{C)-monic g.

Proof: by the corollary to lemma 2.1, any j,(S) is (b —— a] for some h in
sh(C). Now, by the above lemma, im h € 7,(5,(S)). But ju(ja(S)) = 7a(S) and A
factors through im h. It follows that A must, up to isomorphism. be im h; that 1s,

h must be monic. 0

A necessary condition, then, for j,(S) = S is that S be (b > a) for some

sh(C)-monic g.

Lemma 2.3: f sieve (b LN c] contains an epimorphic family, then k is an epi-

morphism.

Proof: let E = {c, LNy NN | 2 € X'} be the epimorphic family in (b £, cl.
7
Suppose a parallel pair ¢ ——3d such that i-k = j-k. It follows that i-k-k, = j-k-k,

J
for all z € X. Since E is an epimorphic family, 7 = . O

Theorem 2.1:  for any a € sh(C) and any S € Q(a), j,(S) =S iff S is (b —— 4]
for some sh(C)-monic g.

Proof: since we have the corollary to lemma 2.2, we need prove only that if
S is (b N a) for some sh(C)-monic g, then j,(S) = S. Suppose then that S is
(b >~ a] as described. From the corollary to lemma 2.2 we know that j,(S) must
be (c LN a] for some sh(C)-monic h. It is straightforward that S C j4(S), so

there must be some k:b — ¢ such that h - k = g. Consider the following diagram.

CI
nj/
b

i

—_—_—

2
c
) J/h
a

g

|
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Plainly, for any sh(C) arrow n with codomain b, h-k-n = ¢ -n, so
(k] € Q(h)(S).

Now suppose that m € Q(h)(S). This requires that h - m factor through ¢, or in
other words, that there is some n such that the outer square commutes. Now, we

know that the bottom right triangle commutes, so we have that
h-k-n=h-m

and, since h 1s monic, we have that

so, m € (k]. As a result

QR)(S) = (K.

Now, by hypothesis, h € j,(S5); this means that Q(h)(S) € J(c). It follows that
Q(R)(S) = (k] must contain an epimorphic family. In that case, by lemma 2.3, k is
an epimorphism. But ¢ = k- k so k is monic. In all, since k is an arrow in a topos,

k is an isomorphism. In other words, j,(S) = S. O

Corollary 1: for any a € sh(C), Q;(a) = Subgc)(a).

Proof: from the definition of a subobject as an equivalence class of monics, if
[f] € Sub,p(cy(a) and g,h € [f], then (g] = (h]. Likewise, if (g] = (h] for monics
f,g then f and ¢ determine the same subobject. The rest of the demonstration is

straightforward from Theorem 2.1. a

Corollary 2: Qj(a) ordered by set inclusion and Subg,(cy(a) ordered by subobject
inclusion are wsomorphic lattices.
Proof: since Sub,y(cy(a) is a lattice, it 1s enough to show that Q;(a) and

Sub,,(cy(a) are isomorphic as partially ordered sets.
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For [f], [¢9] € Subsnioy(a) if [f] < [¢g] where < is subobject inclusion, then there
must be some k such that ¢-k = f. In that case, (f] € (g] where C is set inclusion.
Now if (f] C (g, then f € (g], so there must again be some &k such that ¢ -k = f.
In that case [f] < [g]. 0

As we would expect, then, when Q; is the classifier object for sh(sh(C)) and

a is a sh(C)-object, ;(a) is essentially Sub,,c)(a).

A complete description of functor §2; will include the restriction maps $2;(k)

where k is some sh(C)-arrow. The following diagram can be expected to commute.

€Cq

Qj(a) >——— Qa)

’»/[ Qj(k)l lﬂ(k)

Qj(a') —— Q(a")

The maps ¢, and e, are equalisers in Set and as such can be assumed to be

inclusions. The maps (k) is then defined so that for any S € Q;(a)
Q;(k)(S) = (b5 a' | k- a € 5}.

This description of (k) is accurate but not especially informative. It makes no
reference to the fact that any S € Q;(a) is a maximal a-sieve. It happens, in fact,
that any Q;(k)(S) is the pullback family of S along k and that where S is (f],
Q,;(k)(S) is the maximal a'-sieve with the pullback of f along k as top element. We
prove this with our next theorem. A point about notation: the pullback of f along
k is denoted by SUB(k)(f) in that the image of & under the subobject functor SUB
is SUB(k): Sub(a) — Sub(a') and for any f € Sub(a), SUB(k)(f) is the subobject

determined by the pullback of f along k.

169



Theorem 2.2: for any k:a' — a and f:b>> a in sh(C),

Q;(k)((f]) = (SUB(k)(f)].

Proof: consider the following diagram.

Any n € Qj(k)((f]) iff k-n = f-m for some m, but in that case the outer square
commutes and, since the inner square is a pullback, there is a unique h making the

whole diagram commute; in particular
SUB(k)(f)-h =n.

So, n € (SUB(k‘)(f)] if n € Qj(k)((f]). On the other hand, if n € (SUB(k)(f)],
then there must be some h such that n = SUB(k)(f) - A in which case define
m = k' - h and note that, since the inner square commutes, the outer square will

commute making n € Q;(k)((f])- O

The discussion in this section is useful for two reasons: firstly we have drawn
the link between classifier objects and subobject lattices; and secondly we have
presented what amounts to a representation theorem for subobject lattices (in
Grothendieck toposes) as lattices of sets. This allows us to discuss the algebraic
nature of subobject lattices in relatively simple terms. With the next section we

consider the BrA nature of such subobject lattices.
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3. Brouwerian Algebras in the Classifier Object

With this section we show that for any object a in sh(C), the set Q;(a) or-
dered by set inclusion is a BrA. This follows from the fact that in any Grothendieck
topos sh(C), the collection Sub,,cy(a) ordered by subobject inclusion is a com-
plete, distributive, and bounded lattice. One straightforward consequence of this
demonstration is the Sub,,(cy(a) is a BrA. We will use =, to denote the BrA oper-
ation on each §2;(a). We will consider the collection {=,:a € sh(C)}. Technically,
this collection of functions constitutes a transformation Q; x Q; — Q; but we will
find that this transformation is not in general natural. That the transformation is
not natural means that it is not an arrow in sh(sh(C)); so, while each Q;(a) is a
BrA, the object Q; is not.

We saw in the last section that 2;(a) and Sub,j(c)(a) are isomorphic lattices.
Following from the bi-completeness of any Grothendieck topos, any Sub,,(c)(a) is
complete as a lattice. It follows that (£2;(a), C) is complete. It is also the case that
any Sub,p(c)(a) has a unit, namely the identity arrow on a. It follows that (id,] is
the unit for (2;(a), C). As we saw in chapter six that a lattice of sets is a BrA will
follow from that lattice being meet-complete and having a unit. We now reproduce
that demonstration for (©2;(a), C).

For any (2j(a), C) define an operator —, so that for any (f],(g] € 2;(a),

(F1=algl = N{ B ((Gda] = (a]) N (7] € (]}

The set (¢da] —(g] is just the set-theoretic subtraction of (g] from (id,]. It happens,
then, that ¢’ € (g] — (¢d,] iff there is no sh(C) arrow 7 such that ¢’ =g - 7.
Another, and equivalent, way of describing (f]+.(g] is that it is the smallest
(h] € 2;(a) that contains ((zdq] — (¢]) N (f]. Since (;(a), C) is complete, a smallest
such (h) will always exist. Note the exact similarity bewteen the definition of -,

and the definition of a BrA operation on a closed set topology.
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Theorem 3.1: (Q;(a),C) is a BrA.

Proof: the theorem is demonstrated if for any z,y, 2 € Qj(a), we have
To,yCz iff 2CyU-z.

Since z =,y is the smallest z € {j(a) containing (1 —y) Nz where 1 denotes the

unit of (£2;(a), Q), it is enough to demonstrate that
(I-y)nzCz iff z2CyUz.

We do this in what follows. Note that we will use the fact that (2;(a),C) is a
distributive lattice. If (1 —y) Nz C 2, then
(I-y)nz)uyc=zuy,
(1=y)uy)n(zUy) S zUy,
tUy < zUy,
zCyU=z.

On the other hand, if z C y U 2, then

zN(l1-y)S(yUuz)N(1-y),
Cnl-y)uU(zn(l-y),
gzm(l—y)a

(1-y)NzC =z O

Note that there appears to be a difference in the definitions of —, for Qj(a)
and =y for Q3(V) where Q2 is the classifier object for closed set sheaf category

shj(SetTop). In chapter nine we described =y for (V) so that for S, T ¢ QA(V),

S+vT=5=T=cl((X -T)NS)
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where X is the unit of (7,C), = is the BrA operation, and ¢l is the closure operation
that determines 7 on X. If we follow the method described in this chapter we should

have
S=vT =cl((V-T)N S).
However, since S,T C V, we have

Ad((X-=T)NS) =cl((V-T)NS)

and there is no difference in operator definition. It follows, then, that the failure of
{=v:V € T} to constitute a natural transformation in shj(Set”"") should indicate
a general failure of {~,:a € sh(C)} to constitute a natural transformation for
sh(sh(C)). The failure of naturalness for { ~,:a € sh(C)}, as we shall see, occurs
for much the same reason as in the sh;(Set?”") case.

We take it to be the case that the successful definition of ~4 amounts to an
understanding of (£2;(a),C) as a closure algebra. It is at least the case that since
(22;(a), ) is a BrA, it is isomorphic to some closed set topology. The following
lemma will help make it clear that for { ~,:a € sh(C)} to be natural, the operators

= must distribute over intersections.

Lemma 3.1: for k:a' — a and g:b>> a in sh(C), we have

(SUB(k)(£)] = (g] N (K].

Proof: consider the diagram




where the inner square is a pullback. If f € (g] N (k], then there is some map z — q

for which there is an m and an n such that
f=g- m=k-n

in which case the outer square commutes and there is a unique h making the whole
diagram commute; in particular, SUB(k)(¢)- h = n and therefore n € (SUB(k)(g)].
Now, if n € (SUB(k)(g)], then there is some h such that SUB(k)(g) - h = n, in
which case define m to be &' - h. It would follow that the outer square commutes

and k- n € (¢g] N (k]. So there is a bijection (SUB(k)(f)| ~ (¢] N (k] given by

n—k-n. 0

Theorem 3.2: {—=,:a € sh(C)} does not, in general, constitute a natural trans-
formation in sh(sh(C)).
Proof: the collection of functions is a natural transformation if for any k:a' — a

in sh(C), we have commuting diagrams

a Qi(a) x Qj(a) —— s Qy(a)
k (€2, x $2;)(k) (§2;)(k)
a' Qj(a’) x Qj(a') ——— Q;(a)

al

Now, for any <(f],(g]> € Qj(a) x Qj(a)

(@) (=4 ({71 (9])) ) = @EN (] alg))
= ((f]=a(g]) N (K]

and

=u (@ x 2@ ((U19N)) = =or (LN (K] (6] N (]))
= ((f1N (k]) =ar ((g] N (K]).
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To simplify our discussion let us use “clo(S5)" to mean “the smallest (h] € Qj(a)

such that S C (h]”. Then

((£1=(g]) N (k] = ela (((ida] = (9]) 1 (1]) N (&)

and

(10 () = (91 1 (R]) = el ( ((Gdar] = (g N (B])) N (£ (k]).

Suppose now that (f] is (id,] and k € (g]. Then

((f]=al9]) O (k] = ela((ida] — (g]) N (]
and
(1N R o (9] 1 (K1) = elor (((5kar] = (K]) 11 (R))

= clo(0)

— 0.
Now we know that

(ida] — (9] € cla((ida] — (9])

so we are not guaranteed that cl, ((ids] — (g]) N (k] is an empty set. In fact, if we
suppose that (k] = (g], then, in general, clo((id.] — (g]) N (k] is not an empty set.

In other words, there will in general be some a and some k& in sh(C) such that
(©)E) (= ({1, (a))) # =or (2 x 2B (1, (a1)))- 0

In this and in the previous chapter we have discovered BrA structures related
to the internal structure of various sheaf categories. The BrAs themselves have
all been external in the sense that the underlying sets of the BrAs have not been
objects of the categories in question and the BrA operations on those underlying
sets have not been categorial arrows of the right sort. With the next chapter we
describe a paraconsistent logic object that is wholly internal to a covariant functor
category. And with chapter twelve we will see that this paraconsistent logic object

i1s in fact a sheaf.
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CHAPTER 11: COVARIANT LOGIC OBJECTS

Introduction: With this chapter we describe a covariant functor B that exists
within the category Set? where 7 is a closed set topology. The functor B is shown
to be a paraconsistent logic object with the feature that it induces paraconsistent
algebras on sets hom(d, B) for all objects d of Set” . In the next chapter we show
that B is isomorphic to the classifier object Q. for a subcategory she(Set?) of
Set?. The category shcl(SetT) 1s a category of covariant functors 7 — Set that
are sheaves with respect to what we call a co-topology C on poset category 7. Co-
topologies C on categories C are defined by dualisation of topologies J on categories
cer.

A logic object in a category C is an object A of C for which there are C-arrows
A x A — A and C-arrows A — A that can be understood as algebraic operations.
We call such arrows operator arrows. As an example we can point to any classifier
object  in any topos. The usual arrows N, U, =:Q x Q@ — Q and —: Q — Q make
2 an intuitionist logic object within the topos. The notion of a logic object is
a generalisation of the usual idea of logical algebras as sets together with truth
functions. We may develop the intuitive idea by saying that any classifier object
together with the usual truth arrows is a logic object for its home topos in just the
same way that any two element set together with the usual truth functions is a logic
object for set theory. Logic objects need not be tied to the subobject structure of
a category; all that is required is that the right sort of operator arrows exist.

A point to note with respect to understanding the sense of this chapter and the
next is brought out in the following discussion. Let X be a topological space, let

© be the open sets of X, and let 7 be the closed sets of X. The sets ©® and 7 are
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isomorphic by bijection ® 3 U — X —U. Consider now the posets of © ordered by
set inclusion and of 7 ordered by set inclusion. Since U C Vin®@if X -V C XU
in T, we have posets (0, C) and (7, C) as dual isomorphs. In categorial terms poset
category 7 is poset category ©°P. So a covariant functor 7 — Set is essentially
a covariant functor ©°”? — Set which is essentially a contravariant functor ® —
Set, ie., a presheaf on an open set topology. In other words, the categories Set”
of covariant functors on closed set topology 7 are, up to isomorphism, familiar
categories of presheaves on open set topologies. Since this isomorphism of categories
holds, the discussion and proofs of chapter 11 are formally unnecessary. However,
that B is a paraconsistent logic object in Set” remains true. Arguably this is a.
discovery in itself. It is a hidden feature of the discussion in chapter 11 but the result
is established by much the same dualisation of operators as described in chapter 4.
The point is that here the dualisation is eminently reasonable. In the absence of
the intuition pump of knowing that B is essentially just the subobject classifier of a
familiar open set sheaf category, the most straightforward way of building operators

on B produces the BrA object described.

1. A Paraconsistent Logic Object in a Covariant Functor

Category

Consider the category Set” of covariant functors 7 — Set where 7 is a closed
set topology on a space X. For any U € 7T, let [U) be the set of all supersets W of
U that are in 7. To put this another way, we will say that W € [U) iff U C W and

W € T. We now define a functor B as follows: for each U € T . let
B(U) = [U);
and where U C V in T let there be a function BY: B(U) — B(V') given by

B(U)>S— SUV.
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Lemma 1.1: for U CU in 7T, BY = idgy).

Proof: S € B(U)iff U C S, so for any S € B(U), BY(S)=SuU = S. (]

Lemma 1.2: for any U CV CW in T, we have BY, = By, - BY.

Proof: for any S € B(U),

By (BY(S)) = By (SUV)
=(SuV)yuw
—SUW

= BY(9). o

Theorem 1.1: B 1s a covariant functor 7T — Set.

Proof: the necessary properties of preservation of identities and composition

are demonstrated in lemmas 1.1 and 1.2 above. O

Our next task is to show that B is a logic object. We do this by demonstrating
the existence of distributive lub and glb operator arrows, respectively | J: B x B — B
and (:BxB — B, in Set”. The existence of such arrows means that we may call B
a distributive lattice object in Set?” . Then, to the extent that any distributive lattice
is an algebra for a logic, B is a logic object. In the first instance we demonstrate
the existence of two natural transformations, |} and [, which we describe as being
lub and glb operators on B. The sense in which these arrows do constitute such
operators is in their effect on sets hom(d, B). We will see later that there is a natural
definition of an order for sets hom(d, B) arising from the existence of these arrows
and that, under this order, each hom(d, B) is a distributive lattice where for any
f>9 € hom(b, B), lub(f, g) is given by | J-(f, g) and glb(f, ¢) is given by (-(f, g).

We shall go on to show that B is a BrA logic object. We will do this by
demonstrating the existence of a natural transformation —:B x B — B which

determines BrA operations for the lattices hom(d, B).
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Lemma 1.3: for any U € T, B(U) ordered by set inclusion is a bounded, distriby-
tive lattice.

Proof: to show that B(U) is a distributive lattice under set inclusion it is
enough to show that if S,T € B(U), then SUT and SN T are in B(U) where U, N
are set theoretic union and intersection. Now if S, T € B(U), then it is at least true
that S, T are closed sets in 7 and that U C S,T. It would follow that S UT and
SN T were closed sets, and furthermore that both U C SUT and U € SN T. So
if §,T € B(U), then SUT,SNT € B(U). To show that (B(U), <) is bounded, it is
enough to point out that both U € B(U) and X € B(U). O

It follows from this lemma that we have functions

Nu: B(U) x B(U) — BU):(S,T) - SNT
and

Uu: B(U) x B(U) — B(U):($,T) - SUT

for any U € 7. The next two lemmas demonstrate that these functions constitute

natural transformations in Set”.
Lemma 1.4: the collection of functions {Ny | U € T} constitutes a natural trans-

formation.

Proof: we are required to show that wherever U C V in 7, the following

diagram commutes:

N
U B(U) x B(U) ——— B(U)
l (B x B)Y BY
Vv B(V)x B(V) —— B(V)
Ny
Now if U €V in T and (S,T) € B(U) x B(U), then we have

BY (nu((5,T))) =BE(S N T)
=(SNTHuVv
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and

Ny <(B A T))) =Ny ((SUV,TUV))
=(SuUV)N(TUV)

=(SNT)UV.
So

BY Ny =nv - (B xB)Y. O

We will denote the natural transformation {Ny |U € T} by .

Lemma 1.5:  the collection of functions {Uy | U € T} constitutes a natural trans-

formation.

Proof: we are required to show that wherever U C V in 7, the following

diagram commutes:

Uy
U B(U) x B(U) —— B(U)
l (B x B, By
VvV B(V) X B(V) —U—> B(V)
1%

Now if U CV in T and (S,T) € B(U) x B(U), then we have

BY(Vu((5,1))) = BYUS UT)

=(SUT)uVv
and
Uv((B X B)%((S,T))) — Uy ((SUV,TUV))
=(SUV)U(TUV)
=(SUT)UV.
So
BY -Uy =Uy - (B x BYY. 0O

180



We will denote the natural transformation {Uy | U € T} by |J.

Since () exists for B and Set” is a topos, we can define a Set” object © by

equaliser as in the following diagram.

A

@—— BxB———8
7, pry
ke /}, g>
d

For any f,¢ € hom(d, B), we will say that

f<g i ()(f.9)=pri-(f.9)

The sense of this definition is that product map (f, ¢) factors uniquely through e iff

N -(f,9) = pr1 - (f,g). Now, since (), pr1, and any f,g € hom(d, B) will be natural

transformations, we have f < g iffforall U € T,

Nu - {fu,gu) = (pr1)u - (fu.gv);

and we have this iff for all z € d(U)

(Nv - (fu,9u))(z) = ((pr1)v - (fu,gu))(z)
or, in other words, iff
fu(z) Ngu(z) = fu(=).

It 1s straightforward, then, that <is a partial order for each hom(d, B) and that, with
respect to this order, maps ():(f,¢) and |J-(f,g) are, respectively, glb’s and lub’s
for any f,g € hom(d,B). In these terms each hom(D, B) is a distributive lattice.
In fact, these lattices will be bounded. We can define a natural transformation

unit: B — B as the collection of functions

unity:B(U) — B(U): S — X
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and a natural transformation zero: B — B as the collection of functions
zeroy:B(U) — B(U): S — U,

and then any hom(d, B) will be bounded by unit- f and zero- f for any f € hom(d, B).

Theorem 1.2: B is a bounded, distributive lattice object.

Proof: the meaning and proof of the theorem are contained in the above dis-

cussion and sequence of lemmas. O

The aim of this chapter was to demonstrate that B is a paraconsistent logic

object. We do that now with a sequence of lemmas leading to Theorem 1.3.

Lemma 1.6: each B(U) is a BrA under set inclusion.

Proof: associated with any closed set topology 7 on space X is a. BrA operation
= given by allowing that for any S,T € 7, S=T = cl((X — T) N S) where ¢l
is the closure operation that determines the topology 7. The BrA operation is

characterised by the property that for any S, 7,2 € T
S~TCZ if SCTUZ.

It follows from the definition of ~ that if U C S, T, then, in general, U ¢ S~ T.
However, U C (S+~T)UU, and if U C Z, then

S~TCZ iff (S=T)uUCZ
so, for any S,T,Z € B(U)
(S=TYUUCZ it SCTUZ.

It follows that we can define a BrA operator, ¢, on B(U) by stipulating that for

any 5,1 € B(U),

S=yT=(S=T)UU. 0
df
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Lemma 1.7:  for any closed set topology T on a space X and any S,T,V € T,
(S=TYuV = ((SUV);(TUV)) u V.
Proof:

(SUV)=(TUM)UV =e((X —(TuV)n(SUV)) UV
=cl

(
(
o
(
(

—(TUV)N(5UV) uv>

=cl

N(X — )uV) ﬂ(SUV))

((x
( (TuV))uv)m((SUv)UV)>
((x
((

=d( ((x-T)uV)n ((X—V)UV))H(SUV))
d(((x TYUV) (SUV))

cz((X T)N S) uv)

X -T)nS)uv

el((
=(S=T)UV. o

The equation in the above lemma is in fact true of any BrA. We have restricted

the lemma to topological BrAs for the relatively simple proof the closure operation

definition of = allows.

Lemma 1.8: the collection {~y |U € T} constitutes a natural transformation.

Proof: we are required to show that wherever U C V in 7, the following

diagram commutes:

U B(U) x B(U) ——— B(U7)
l (B x B)% k‘u
v B(V) x B(V) —— B(V)

;‘/
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Now, for any U C V in T and any (S,T) € B(U) x B(U), we have

BY(=u((8.1))) =BY((S=T)u )

=((S~T)uU)uVv

=(S=-T)UuV
and
v ((B < BY((5, 7)) = “v((SUV.TUV))
=((SUV)=(TUV))uV.
It follows from lemma 1.7 that the diagram commutes. O
We will denote the natural transformation {=y:U € T} by =. This natural

transformation imposes a BrA structure on each hom(d, B): we say that for any

f,g € hom(d, B), the pseudo difference of f with respect to g is = - (f, g).

Theorem 1.3: B is a paraconsistent logic object in Set? .

Proof: theorem 1.2 together with lemma, 1.8. O

So far we have shown that B exists as a paraconsistent logic object in Set?. We
have said nothing explicit on the relationship of B to the usual logic structures in
a category, the subobject lattices and the classifier objects. In fact, B is not a
classifier object for Set?. However, it is an isomorph of the classifier object for
a particular subcategory of Set?. As we shall see in the next chapter, 1t will not
follow that the subcategory in question has a paraconsistent subobject structure.
The classifier algebra in question is in fact intuitionist but there is an intuitively
natural manoeuver that allows us to dualise the order and produce B. It is worth
taking careful note of the fact that B is naturally understood to be a paraconsistent
logic object. The isomorphism that we develop in the next chapter of B to a classifier
object does not negate this natural understanding. In the relevant subcategory of

Set”, B can be thought of as the codomain of a natural complement classifier.
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CHAPTER 12: COVARIANT SHEAVES

Introduction: With this chapter we consider the notion of a co-topology C on a
category C and develop the notion of sheaves in covariant functor categories Set®
with respect to such co-topologies. We demonstrate that the category of such
sheaves has a subobject classifier and is finitely complete. The notion of a co-
topology C on a category C will be exactly dual to the notion of a topology J on a
category C°P. It will follow that we have a notion of a canonical co-topology. We
will be particularly interested in the category of sheaves in Set® with respect to a
canonical co-topology where C is a topology 7. In the first instance we let 7 be a
closed set topology for a space X. We saw in the last chapter that in such a case
the category Set” contains a paraconsistent logic object B. We demonstrate that
B and the classifier object for the category of sheaves with respect to the canonical
co-topology on 7 are isomorphic as objects in Set? and are dually isomorphic as
logic objects. It follows that the subobject classifier of the sheaf category can be
given with B as codomain and as such can be thought of as a complement classifier.
The existence of a well motivated interpretation of the subobject classifier as a
complement classifier will be of use to us in later chapters where we discuss the
interpretation of paraconsistent theories as categories.

As with chapter 11 we must note an isomorphism of categories that affects an
understanding of the sense of the present chapter. In the same way that chapter 11
deals with familiar categories of presheaves on open set topologies, chapter 12 deals,
by isomorphism, with familiar categories of sheaves over open sets. Accordingly
everything in chapter 12 up to and including the two corollaries of Theorem 12.3.3
1s no more than explicit proof of dual claims to familiar facts. This leaves untouched

the discussion of B as the object of a genuine complement classifier. This discussion
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brings out the fact hidden in chapter 11 that I have produced a BrA object by a
method that is equivalent to applying a “false” for “true” dualisation to a familiar
subobject classifier. However, B remains a successful construction. Demonstrating
that B is the object of a subobject classifier is not original but demonstrating that
it is the object of a complement classifier must be since complement and subobject

classifiers are philosophically different notions.
1. Co-topologies

The notion of a categorial topology J as a system of sieves is easily dualised.
Let us consider a system C of cosieves with respect to a category C. System C will
be a collection of sets C(a) for each a € C where each C(«a) is a set of a-cosieves from
C. Recall that an a-cosieve from a category C is a set R of C-arrows with domain
a such that if a = b is in Rand b —% cis an arrow in C. then a —— b —%5 ¢ 18
in R. Recall, too, the notion of a dual category C°? for any category C. We say of
C and C°? that they have the same collection of objects but that there is an arrow
fra — bin C iff there is an arrow f°P:b — a in C°P. The notion of dual categories
will help us to formalise the notion of the dual of any a-cosieve R for any a € C.

We denote the dual by R°? and say that
feRrR iff fPeRP,

Plainly, where R is an a-cosieve from C, R°? is an a-sieve from C°”. Given a system
C of sets of cosieves with respect to a category C, we can define a system C°P of
s y

sets of sieves with respect to a category C°? by stipulating that
R e C(a) iff R°P c C°P(a)

for all objects a € C. We will say that system C is a co-topology on C iff system
C°? is a categorial topology, in the sense of topologies J. for C°7. Thus we have the

following definition.
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Definition 1.1: a co-topology C for a category C is a system {C(a) | a € C} where
each C(a) is a set of a-cosieves and in addition
(1) { | dom(a) = a} € C(a);
(2)if R € C(a) and @ 5 bin C, then f*(R) = {b - c| a- f € R} is in C(b):
(3) if R € C(a) and S is an a-cosieve such that for each @ —- b in R, we have
fT(S) in C(b), then S € C(a).
The cosieves in each C(a) are called covering a-cosieves or just covering cosicves.
Any co-topology C for category C determines a covariant functor C:C — Set
as follows: let the image under functor C of any a € C be the set C(a) of cover-
iIng a-cosieves, and let the image under functor C of any C-morphism a N b be

C(f): C(a) — C(b): S +— f¥(S). When no confusion will result we will also use Cs
to denote C(f).

Lemma 1.1: for any a € C and any co-topology C on C, Clida) = tdg(q)-
Proof: for any S € C(a),

Cida)(S) = (ide) T (S) = {a -2+ b | a - id, € S} = S. 0

Lemma 1.2: ifa - b2 ¢ in C, then C(g - f) = Clg) - C(f).
Proof: for any S € C(a), we have
a € Cg)(CUF)(S)) it g € CL(S) iff a-g-f €.
We also have that C(g-f)(S):{ci)d|a-g-f€S}. a

Theorem 1.1: C:C — Set is a covariant functor.
Proof: the necessary properties of preservation of identities and composition

are demonstrated in lemmas 1.1 and 1.2 above. O

Recall now that covariant functor category Set® has a subobject classifier

true:1 — Q where € is a covariant functor C — Set such that for any a € C,
Q(a) = {all a-cosieves}:
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and for any «a s pim C,
Q):a) = Qb S— {b-S5c|a-feS)

The classifier true: 1 — 2 is a natural transformation {true,: a € C} with true, () =
[tdy), all @ € C. Now, it is plain that there is an inclusion C' < Q. Since Set® has
a subobject classifier, there is a character arrow of this inclusion. We use ¢l to
denote this character arrow. Recall that if 7: F > G is a SetC—monic, then X, is

constructed pointwise by allowing that for all a € C and all + € G(a)

N

(Xr)ale) = {a L b | QA (=) € 7 (F(0))).

So we say that clis a natural transformation {cl,: @ € C} such that for any R € Q(a)

clo(R) = {a -5 b | Qf)(R) € C(b)).

To date we have been able to show that co-topologies ¢l have at least two of the
properties that characterise elementary topologies. These are the properties that
cl-true = true and cl - ¢l = cl. We give the demonstration of these properties in

the following sequence of theorems and lemmas.

Theorem 1.2: ¢l - true = true.

Proof: for any a € C,
cl(truea(®)) = el fid)

= {a L b1 90F)((da) € C1))
Now, Q(f)([zda)) = {a Lb|a-fe [ide)}. But a - f € [id,) iff a € [idy), so
Qf)([ida)) = [eds).
It follows by condition (1) of co-topologies that Q(f)([ida )) € C(b) for any f € [id,).
And, since if f ¢ [id,), then f & cla([ida)), we have cl, ([id,)) = [ida) = trueq (0).
In other words, for any a € C,
cla(true (1) = true,(0). 0
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Lemma 1.3: for R, R' € Q(a), if RC R' and R ¢ C(a). then R' € C(a).

Proof: suppose R, R' € Q(a) such that R C R'. Now. if a > b € R, then
PREEIN € R, and, since R is a cosieve, fT(R') = [idy). Then by condition (1) of
co-topologies, f+(R') € C(b). But this is true for any f € R, so by condition (3) of
co-topologies, R' € C(a). O
Lemma 1.4: for R € Q(a), R C cl (R).

Proof: if @ =1 bin R, then Q(f)(R) = {b " ¢ | - f € R} = [idy). 0

Lemma 1.5: for R € Q(a) and any a Libin C, QUMR) CQUS)(clo(R)).
Proof: a € Q(f)(R) iff « - f € R. But if a- f € R. then, by Lemma 1.4,
a- f € cly(R), from which it follows that « € Q(f)(cl(R)). 0

Theorem 1.3: ¢l cl = cl.
Proof: by the definition of ¢/, we can demonstrate that the theorem if we can

show that for any a € C, any R € Q(a), and any a U P C.
QF)(R) € CH) I F)(cla(R)) € Clb).

This would show that f € cl,(R) iff f € cl,(cl.(R)).
So, suppose some a € C, some R € Q(a), and some «a Jorme Suppose

further that Q(f)(R) € C(b). It follows by Lemmas 1.5 and 1.3 that
Q(f)(cla(R)) € C(b).

Suppose now that Q(f)(clo(R)) € C(b). Now if b - ¢ is in Q) (cla(R)),
then a - f € clo(R), which means that Q(a - f)(R) € C(c). But Qo - IUR) =
Qo) (USNR)) = aT(QF)(R)). So, by condition(3) of co-topologies,

QF)(R) € CO). O

Since Set” is a topos, it has equalisers and we can define an object Q. as in

the following diagram where e is an equaliser.
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1dg

Qo >——> Q —/———=30

. cl
trueclj'-._’ /;rue

1

The existence of map true.; follows from Theorem 1.2 and the universal property

of equalisers.
2. Categorial Co-topologies on Closed Set Topologies

Since topologies J and co-topologies are exactly dual, we have a notion of
canonicity for co-topologies. We say that a co-topology C on C is canonical iff
C°? is the canonical topology on C°?. We will show that when C is a canonical

co-topology on a closed set topology 7, functors 2; and B are isomorphic in Set” .

Proposition 2.1:  the canonical co-topology for any topology T is that co-topology
C where for any U € T, Re C(U) iff R={U 25 U; | i € I} with

(WUiiel} =U. O

Suppose 7 is a closed set topology and C is the canonical co-topology on 7. Let
cl be the character map in Set? of the inclusion C — ). For any two objects U
and U; in the poset category 7, there can be at most one arrow U -2 U; and if
1t exists, it will be an inclusion, so let us identify cosieves R = {U =% U, |1 € I}
with sets of closed sets R = {U; | ¢ € I'}. Under this identification any co-topology
C becomes a system {C(U):U € T} where each C(U) is a set of U-cosieves and in
addition

(1) [U) € CU);

(2)if Re C(U) and f:U CVin T, then fH(R)=RnN[V)isin C(V);

(3)if R € C(U) and S is a U-cosieve such that for each f: U7 C V in R, we have

FT(S) € C(V), then S € C(U).
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Furthermore, we can describe the classifier object of Set” as a functor § where for
any U € T,
QU) = {all U-cosieves)
and for any f:U C V in 7, the map Q(f): Q(U) — V), also denoted QY is given
by
QU)> S— SN[V).
It follows, too, that ¢/ becomes a natural transformation {clr+: U € 7'} such that for
any R € Q(U),
cly(R) = {W | Q{(R) € C(W)}.

The following lemma and theorem sequence leads us to the theorem that B and Q.

are isomorphic in Set? .

Lemma 2.1: f U CW,V, then [W)N[V)=[WuUV).
Proof: if € [W)N[V), then z € [W) and = € [V) in which case W C z and
V Cz But then WUV Cz,s0z € [WUV). o € [WUV). then WUV C 2, so

W Czand V C z. In that case z € [W) and z € V), s0 @ € [W)n|[V). O

Theorem 2.1: for any U € T and any R € Q(U), cly(R) = R iff R = (W) for
some U CW inT.

Proof: suppose R # [W). Then R is some U-cosieve with at least two bottom
elements; that is, R contains at least two distinct elements ¥ and Y’ neither of
which have proper subsets in R. Since Y and Y’ are distinct bottom elements,
YNY' ¢ R To show that cly(R) # R, we show that ' N1" € ely(R). Now.
Y)Y € R, then U CYNY' so QY v/ (R) exists. Since Y and ¥ are bottom
elements

Oy (R)=RNYNY')=[Y)U[I").
Now, since (([Y)U [Y')) =Y NY", we have QY ,,(R) € C(Y NY") and therefore
YNY'€cy(R).
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Suppose now that R = [W). Then cly(R) # R only if there is some Z ¢ QU)
such that Z € cly(R) and W € Z. Now for Z € cly(R) we require that QU(R)
be in C(Z) which is to say we require that () (QY(R)) = Z. In the present case
QZ(R) = [W) N [Z) which, by lemma 2.1, is [W U Z) so () (RY(R)) = W U Z. But
if W& Z,then WUZ # Z,so cly(R) = R. O

Corollary: in SetT, Qe 15 the functor where for U ¢ 7.
Qa(U) ={[W):UCW in T}
and for U CV in T,

Q)7 Qa(U) = Qu(V): [W) — [W) N [V). 0

Theorem 2.2: B and Q. are isomorphic objects in Set? .

Proof: the theorem calls for the demonstration that there is a natural isomor-
phism between B and §.; in Set?. To this end we note that for any U € 7 the
function @y Qa(U) — B(U) given by [W) +— W is a bijection since (W) € Q. (U)
Hf W is a closed superset of U, just as W € B(U) iff W is a closed superset of U.
Now, if the collection {¢y:U € 7} constitutes a natural transformation, the fact
that each ¢y is a bijection will make {py: U € 7} a natural isomorphism.

The collection {¢y:U € T} is a natural transformation if for any U C V in T,

the following diagram commutes.

Q) —Y, B)

Qa(V) S B(V)

Now for any [W) € Q,(U) we have
By (¢(W)) = By(W)

—WuV
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and
o (Qe)v (7)) = v (W) N [V))
=y ((WUV)) (Lemma 2.1)
=WuVv.

So, as required,

pv - (Qa)y = By - ou. O

Our next claim will be that B and Q. are dually isomorphic as logic objects.
In part this requires of us the claim that €2, has an existing logic object structure.
We delay that until the next section where we demonstrate that Q. is the classifier
object of a subcategory shcl(SetT) of Set” . The dual 1somorphism of logic objects
is directly analogous to the idea of dual isomorphism or anti isomorphism of lattices.
Two lattices (L£1,E1) and (L2, C,) are dually isomorphic if there is an isomorphism

¢: L1 — Ly of the underlying sets and, in addition, if for any a,b € £,

The dual isomorphism of B and Q. as logic objects follows from the fact that for
any U € T and any V,W € B(U)

VCW iff [W)CI[V)

We have seen that B is a logic object essentially because any B(U7) is a bounded,
distributive lattice under set inclusion. It follows from the above bicondition and
the known isomorphism of B and Q; in Set? that each B(U) and Qa(U) are dually
1somorphic as lattices under set inclusion. From this follows the dual isomorphism
of B and Q2 as logic objects. In the next section we will see that §2,; is the classifier

object for a subcategory she(Set®) of functor category Set®. Tt is worth noting
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that the usual idea of a classifier object as an algebra makes €. a logic object
whose structure, in the case of Set? | is exactly described by saying that it is dually

1somorphic to B.

Theorem 2.3: B and Q. are dually 1somorphic as logic objects inasmuch as Qe

18 a classifier algebra. 0

The proof of this theorem is indicated in the above discussion.
3. Sheaves on Co-topologies

We have seen that where C is a co-topology on a category C we can define
a map cl : £ — Q and then an object Q and a map trues:l — Q. in SetC.
With this section we demonstrate that there is a subcategory shCl(Setc) of Set® of
which true.; is the subobject classifier. This will be a category of what we will call
cl-sheaves. These are to be distinguished objects of Set® identified with respect to
map cl in just the same way as j-sheaves are identified with respect to topologies 7.
Notice that while co-topologies C and topologies J are duals we are not proposing
to claim shcl(SetC) to be a category co-sheaves (or sheaf duals). In what follows we
will define objects of shcl(SetC) to be covariant functors with a particular property
with respect to cl-dense monics in Set®. The property in question will be exactly
the one used to identify contravariant functors as sheaves. In the case of sheaves the
property is cast in terms of j-dense monics where j is a topology. We take it, then,
that for our Shct(Setc) objects to be co-sheaves, our notion of c/-denseness must
be dual to the usual notion of j-denseness. It, however, is not. The two notions of
denseness of monics are, in categorial terms, the same.

Assume that C is a co-topology on a category C and that ¢/ is the character
map for C <  in Set®. In what follows all arrows are Set'-arrows. Suppose a

monic o: X' >» X with a character map X,.
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Definition 3.1: o¢: X' >> X is cl-closed if
Xy =cl-X,.

Since all monics in a subobject have the same character arrow, a subob ject [o] will
be called cl-closed if o is cl-closed.

Definition 3.2: o: X' >> X is cl-dense if
cl-Xo = Xiay-

In other words, if ¢l- X, is the character map for the identity arrow on X, then o is
cl-dense. Where cl-dense o is the representative morphisms of a subob ject [o], we

5

say that [0] is a cl-dense subobject.

Since cl is an arrow Q — £, it imposes local operators cl on each Sub(d) in
Set® that are natural in d. For any f € Sub(d) we define cly(f) to be that subobject
classified by ¢l - X;. The idea that these operators are natural in d means exactly

that for any k:d' — d and any f € Sub(d),

Lo (SUB(R)(f)) = SUB(k)(cla( /).

The notions of ¢l-closed and cl-dense monics can be cast in terms of these operators.

A monic 0: X' > X is cl-closed iff clx (o) ~ o, and cl-dense iff clx (o) ~ idx.

Definition 3.3: we will say that any object F' of Set® is a cl-sheaf iff given any
cl-dense monic 0: X' >» X and any f': X' — F, there exists exactly one fiX o> F

such that I
X/

X

commutes. The category of cl-sheaves in Set® will be denoted she(Set® ).
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Notice that with respect to topologies j this definition exists as a theorem that
says that where j is a topology on some topos £, an object a € £ is an object
a € sh;(€) iff it has the above property with respect to j-dense monics. This is
taken to be a theorem in that the category sh; (&) is regarded as already specified
in terms of the usual equaliser definition of j-sheaves. Plainly though, the theorem
may be used as a definition.

We next aim to demonstrate that Q. in Set is a cl-sheaf. To do this we need

the following technical lemmas.

Lemma 3.1: there 1s a 1-1 correspondence between cl-closed subobjects [o] and
maps X L Qe

Proof: if [o] is a cl-closed subobject of X, then X, = ¢/ - X,. It follows by the
properties of e as the equaliser of ¢/ and idg that there is exactly one f: X — Q.
such that X, = e - f. Suppose now some arrow f: X — Q.. By composition there
will be an arrow X —- Qo O which, since it has codomain 2, is the character
arrow of some monic o: X' > X; that is, ¢ - f = X, for some monic o. Since e is
the equaliser of ¢l and idg, we have ¢l - e = e, and so we have ¢l - ¢ - f=e-f. From
this it follows that o, and the subobject it determines, are cl-closed. We complete
the proof by noting that if e - f is the character arrow for some further subobject

[4], then, by definition of character arrows, o] = [4]. O

Lemma 3.2: the pullback of a cl-dense subobject 1s a cl-dense subobject.

Proof: let 0: X' >> X be a cl-dense monic. Now, for any k:Y — X in Set®,
SUB(k)(o) is the pullback of o along k, so if SUB(k)(o) is a cl-dense monic, then
the lemma is demonstrated. But SUB(k)(o) is cl-dense iff cly(SUB(k)(o)) ~ idy.

Now, we know that

cly (SUB(k)(0)) ~ SUB(k)(clx (o))
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and since ¢ is c¢l-dense, clx (o) ~ idy, so
cly (SUB(k)(a)) ~ SUB(k)(idx)

~ 1dy. O

Lemma 3.3:  for monics o':Y'>> X' and 0: X' >~ X, we have X5 — X(o.ot) * 0.

Proof: consider the diagram

true

By the properties of the subobject classifier, the lemma is demonstrated if we can
show that X(4.,+) - 0 makes the square {Y', X', Q, 1} a pullback. We are required,
then, to show that the square {Y', X', X,Q,1} commutes and that whenever the
outer square {E, X', X, 0,1} commutes, there is exactly one k: £ — Y such that
the whole diagram barring X,» commutes. Firstly, the square {Y', X', X,Q,1} is a

pullback so it at least commutes. Secondly, suppose some f and g such that

X(o.oy -0 - f =true- f;

that is, suppose that {E, X', X,,1} commutes. We have already noted that the
square {Y', X', X,Q,1} is a pullback, so if the square {E,X'.X,Q,1} commutes,
then there is exactly one k such that most of the diagram barring X, commutes.
We only say that most of the diagram commutes since we have not yet established
that ¢ = o' - k. However, we have that o - o' - k = o - g. Then. since ¢ is monic. we
have ¢’ - k = ¢. In all, if the outer square {F, X', X, 1} commutes, then there is

exactly one k such that the whole diagram barring X, commutes. O
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Lemma 3.4:  for any f,g € Sub(d), if Xy <X, then ¢l - X; < ¢l - X,.

Proof: the lemma requires us to demonstrate that for all « € C and all R € Qa),
i (Xg)a(R) C (Xg)a(R), then cla((Xf)a(R)) C ch,((Xg_)ﬂ(R))

so suppose that (Xy)a(R) C (X4)o(R). From this we have that for any z:a — b
and any a:b — ¢, if a2z € (Xf)o(R), then o -z € (Xy)a(R). It follows that if
a € Uz)((Xg)a(R)), then a € Q(z)((Xg)a(R)), or in other words

=) ((X1)a(R)) S QU2)((Xg)a(R)).
Now z € clo((Xf)a(R)) iff 2(2)((Xf)o(R)) € C(b). So, by lemma 1.3,

if z¢ cla((Xf)a(R)), then z € cl, ((Xg)a(R)). N

Theorem 3.1: Q. is a cl-sheaf.
Proof: suppose some cl-dense monic o: X’ >+ X and some map f: X' — Q..
It follows from lemma 3.1 that there is some ¢l-closed monic ¢': Y’ >+ X' such that
Xor = e- f'. Let 0":Y" >= X be the monic classified by ¢l - X,.,.. By definition
1

o' is cl-closed so there is some f": X — Q. such that X, = e - f. We have the

following diagram.

We will have proven the theorem if we show that f” makes the inner triangle

commute and is unique in doing so. We show first that f" makes the triangle

commute.

198



From lemma 3.3 we have that X, = X(s-1) * 0, 80 we have that

cl-Xogr=cl-X(g.g1) 0.

But ¢ is cl-closed and X, = ¢l X(4.41), 50
Xgt = Xgr 0.
Furthermore X, = e- f' and X,» = ¢ f", so
e-f=e-f"- 0.

Now, e is an equaliser and therefore monic. It follows that

ff=fll-o_

and the triangle commutes. We show now that f" is unique in making the triangle
commute.

Suppose that there is some further f: X — Q. such that f' = f-o. Since f
exists, there is some cl-closed a: Y >» X such that X, = ¢ - f. Our aim is to show
that @ and " = clx (0 - ¢') determine the same subobject. It will follow, by lemma
3.1, that f = f" as required. Consider the following diagram where {3, h} is the
pullback of {«,c}.

!

o~

e TN

h
B
g
(47
—

Dbt — ™

(¢}
=~

D
o

_—
true

Since the top and bottom squares are pullbacks, the outer rectangle 1s a pullback

making X; =e- f - 0. But, by hypothesis, o - f = f', so
Xp=-¢e-f.
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But, further, e - f' = X, so

Xp = Xy,

In other words, h o~ ¢'. Now, since the top square is a commutes, « -+ ~ o - o'. It

follows that clx(o-0') =~ clx(a-i). Therefore our proof is complete if we demonstrate

that

cx(a-1) ~a.

We have seen that a-i ~ o -o'. It follows that ¢ - ' C a where C is subobject
inclusion. From this we have that X(o-a'y < Xo. Then, from lemma 3.4, we have

that ¢l X(5.,1) < ¢l Xo. Recall that « is cl-closed, so we have that
Cl . X(o.,a.l) S Xa-

This gives us that clx(o - 0’) C a. Now, consider the following diagram.

Y

true

The inner square is a pullback by definition. To demonstrate that the outer square
commutes note that from lemma 3.3 we have that X; = X(a-i) - & and that from

lemma 3.2 we have that ¢ is ¢cl-dense. Since i is cl-dense

c-X; = Xidy

. ! t .
and X,4, is the map ¥ — 1 25 Q otherwise denoted fru eyv. So

cl - Xgiy - a0 = true - |,
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It follows that there is a unique h that makes the whole diagram commute. In

particular we have

a=clx(a-1)-h

from which we have that o C clx(a 7). Recall that « -1 =0 -h ~ ¢ - ¢/ 50 we have

that

a Cclx(o-o"). r

To demonstrate that Q.; is the classifier object for sh,c[(SetC) we need first
demonstrate that sh.(Set®) and Set® agree on limits of finite diagrams of cl-
sheaves. It will follow from this first, that shcl(SetC) is finitely complete and second,
that shcl(SetC) and Set® agree on monics between cl-sheaves. The classifier result,
follows from the universal propoerties of e as an equaliser.

The demonstration that shc[(Setc) and Set® agree on limits of finite diagrams
of cl-sheaves comes in two parts: first we show that the terminal object in Set® is a
cl-sheaf and, second, we show that the pullback in Set€ of a diagram of cl-sheaves
is a cl-sheaf. This suffices as a demonstration of agreement on finite limits since

any category is finitely complete if it has pullbacks and a terminal ob Ject.

Theorem 3.2: the terminal object in Set® is a cl-sheaf.

Proof: for any X' L 1 and any cl-dense monic o: X' > X, there is exactly
one map f: X — 1 such that f' = f- o, namely the unique map X — 1 guaranteed
by the definition of 1 as a terminal. That f' = f - ¢ follows from the fact that

hom(X’,1) must contain exactly one member. O
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Theorem 3.3: a pullback in Set® of cl-sheaves is a cl-sheaf.

Proof: consider the diagram

XI
|
I
' Z + B
- a’
fD
fa g P
YA y D
o

Suppose that the center square {Z,B,D, A} is a pullback and that A, B.D are
cl-sheaves. Suppose that o is a cl-dense monic and that some arrow X - Z

exists. Since D is a cl-sheaf, there is a unique fp such that

foro=f-af=ap-f.

Now, A is a cl-sheaf, so there is unique f4 such that g’ - f' = fa-o. But then
a-ff=a fao,

so, by uniqueness of fp, fp = a- f4. Likewise we show that fp = B - fp since f is

a cl-sheaf. So,
a-fa=p-fB.

But this together with the fact that the inner square is a pullback means that there
is a unique h: X — Z such that the whole subdiagram {X,Z, B, D, A} commutes.

Now, the fact that « - f4 = 8- fg means that
o« fa-o=B fp-o

and, again, by the fact that the inner square {Z,B,D. A} is a pullback, there will be

exactly one f: X' — Z making the whole diagram, barring the {X', X, Z} triangle.
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commute. But f’ is one such arrow and so is h - o. It follows that

f'=h-o. 0

Corollary 1: shcl(Setc) is finitely complete and agrees with Set® on limits of
fintte diagrams of cl-sheaves.
Proof: the present theorem together with theorem 3.2 together with the stan-

dard result that pullbacks and terminal objects imply all finite limits. 0

Corollary 2: true. is the subobject classifier for shcl(SetC).
Proof: by the first corollary to Theorem 3.3, sh.(Set®) and Set® agree on
monics between cl-sheaves. The present corollary follows from this and the universal

and monomorphic properties of e as an equaliser. The proof is a variation on that

of Theorem &.3.1. O

The above corollary is interesting in the light of Theorem 2.2 and the claim of
dual isomorphism for logic objects B and 2. In the case where 7 is a closed set
topology, the natural isomorphism ¢: B 2 Q. in Set” means that w-true.:l — B
must be a classifier for shcl(SetT). In fact, since trueq:1 — €2 os a natural
transformation {(truec)v:U € T} where (true.)u () = [U) the map ¢ - truey is

given by components ¢y - (true.)y where

@U((truecl)U(@)) =U,

Since U C Z for all Z € B(U), the map ¢ -true., in terms of the natural algebra on
B, is better thought of as a truth value false. When this is taken into account we see
that - true functions as a complement classifier in shq(Set? ). By this we mean
that if ¢ -truey is used to construct operator arrows on B in just the way that true
is used with respect to €., then the algebra B is the (type) dual of the algebra €2,;.

(In fact we get the algebra that we have described in chapter eleven). Consider,
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for example, the usual construction of the glb operator arrow. On Qg the glh
arrow is constructed as the ¢ - trueq-character of the product map (true,, truec).
This generalises the idea that the truth function and: {0,1} x {0,1} — {#,1} has
and(z,y) = 1 iff © = 1 and y = 1. Now, if we consider the character map of
(¢ truect, v - trueq) recalling that ¢ - true. is intuitively the truth value false, we
have an arrow that is a generalisation of the truth function f: {0. 1} x {#,1} — {0, 1}
which has f(z,y) =0 iff 2 = 0 and y = 0; in other words, the o - true.;-character
map of (- truec, ¢ -truey) is a lub operator arrow. The same discussion applies to
the usual constructions of ( J, ©, = in just the way we have described in chapter four
and was originally described in chapter eleven of Mortensen [1995]. As we suggested
in chapter four, if a complement classifier was to exist, it would be categorially
indistinguishable from a subobject classifier; this is exactly the case for ¢ - true,,.
The thing that makes ¢ - true, a complement classifier rather than a subobject
classifier is a (relatively) intuitive assessment of the nature of @ - true. as a truth
value. This assessment, even in the case of bona fide subobject classifiers, is never
strictly categorial. It is based on the convention that the unit of a lattice interprets
T, or truth, while the zero of the lattice interprets L, or falsehood. If we accept that
convention, as we do in the usual subobject classifier case, then surely we accept it

in the case of ¢ - truey. This makes ¢ - true, a genuine complement classifier.

The next chapter marks the end of Part III and concludes our discussion of
sheaf concepts. The discussion there will be somewhat different from the foregoing
sheaf discussion in that we focus our attention on sheaf spaces rather than functors.
In fact our concern is a generalisation of that which we have exhibited in the last
five chapters. In the last five chapters we have been concerned to discuss the nature
of particular sheaves, namely sheaves that are classifier objects. as logic objects
and, more broadly, as objects of paraconsistent semantics. In the next chapter

we describe an equivalence result for categories of sheaf spaces and categories of
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sheaves. Sheaf spaces are of interest for something like the reason sheaves were
invented: they transport algebras from the base space into the section structure
of the sheaf space projection itself. An equivalence result between sheaves and
sheaf spaces over closed sets has the effect of making closed set sheaves generally

interesting as objects for paraconsistent semantics.
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CHAPTER 13:
SHEAF SPACES ON FINITE CLOSED SETS

Introduction: A sheaf space is a continuous local homeomorphism between topo-
logical spaces. It is known that a sheaf over an open set topology will give rise to a
sheaf space and vice versa, and it is usual to note that the category of all sheaves
on an open set topology © for a space X is equivalent to the category of all sheaf
spaces over X with the same topology. With this chapter we modify the notion of
local homeomorphism to deal with closed sets and verify that at least a restricted
class of closed set sheaves are equivalent to “closed set sheaf spaces”.

The notion of a closed set (pre)sheaf is a particular example of the notion of a
(pre)sheaf over a category and as such is uncontroversial. A sheaf space over closed
sets will be defined in exactly the same way as the usual sheaf spaces. However in
the absence of a general theory allowing us to forgo open set topologies, we could be
accused of misusing the “sheaf space” name. Our claim is that since the categorial
notion of a sheaf has proven amenable to dualisation in terms of being defined over
closed sets rather than open without loss of the defining features of a sheaf, we can
make a similarly conservative dualisation for the more traditional notion of a sheaf
here called a sheaf space. We would then be in a position to develop the features
of a sheaf space that make it attractive to a mathematical logician mindful of the
new tool of closed sets in the base space.

There is some expectation that an adequate description of a closed set sheaf
space can be put to use in terms of Davey’s representation constructions. Davey
in his “Sheaf spaces and sheaves of universal algebra” [1973], describes a general
method for converting a subdirect product representation of an algebra to a repre-

sentation of an algebra of global sections of a sheaf space. We note that Davey's
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construction is given in terms of open set sheaf spaces. One of our guiding specula-
tions has been that mathematical and logical objects arising from inconsistent but
non-trivial theories could be collected into categories that were structurally differ-
ent in some recognisable way from categories of objects from consistent theories. A
milder version of this speculation has that with the right sort of objects we would
have categories that exhibit paraconsistent algebras either as objects or as morphism
structures. One way to investigate these speculations is to address the nature of
categories of sheaf spaces with each sheaf space containing a representation of some
paraconsistent algebra. Such an investigation would seem to be most fruitful if our
sheaf spaces were defined over closed sets. In the first instance. though, we must set
about discovering the viability of the notion. In particular, for the extension of the
discussion into more general category theory, we will want to know how closely the
theory of closed set sheaves and sheaf spaces mirrors the theory of open set sheaves
and sheaf spaces. To that end we consider an equivalence of categories result for

closed set sheaves and sheaf spaces.

Another of our motivations for considering such a result is simpler. We have
been interested throughout Part III in the nature of sheaves, and particularly
sheaves of closed sets as logic objects in categories. We have paid closest atten-
tion to classifier objects in these categories. There are two things we would like to
do: first, find a way to extend our discussion to other objects in the sheaf category,
and second, move some way toward finding out if there can be categories with para-
consistent subobject structures. The first of these tasks is handled by moving to
sheaf equivalent sheaf spaces in that such structures do what the original sheaves
do: they transport base space algebras into the section structure of the sheaf space.
The second of our two tasks is only touched upon with this chapter. We have seen
in chapters nine and ten that paraconsistent subobject structures exist but fail to

be natural in a way that can be expressed by saying set theoretic closure operations
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fail to distribute over intersections. The move from sheaves to sheaf equivalent
sheaf spaces changes the context of discussion and allows us to speak of subobject
lattices directly in terms of the continuous maps that exist between objects. We

expect this, one way or the other, to be profitable but we follow it no further in the

present work.

With this chapter we present a somewhat restricted revision of the standard
constructions for the presheaf to sheaf space functor L and the sheaf space to sheaf
functor I' that can deal with structures on closed sets rather than open. While
we propose to proceed along the usual line of development, we shall at times be
required to alter the usual proofs to accomodate the new nature of the stalk and

base space topologies.

It will be advantageous to restrict the functor constructions to presheaves and
sheaf spaces over finite spaces X with topologies 7 where any member of 7 is a
finite subset of X. That is to say the usual construction will not in general work
for closed sets without some restriction of this sort. We make significant use of this
restriction and we note that it is not entirely arbitrary. Where C is a small finitely
complete category and cov is a finite pretopology in the sense that for all objects
c € C, cov(c) is finite, then the site C = (C, cov) is called finitary and the category
sh(C) is a coherent topos. In fact any coherent topos is equivalent to some sh(C) for
finitary C. Such toposes are significant as classifying toposes for algebraic geometry
(see, for example, Johnstone [1977] and Makkai and Reyes [1977]). We note that
if every member of a topology 7 is finite, then the canonical pretopology cov for
poset category 7 yields a finitary site (7, cov) and so a coherent topos sh(7, cov)
of closed set sheaves.

We will also be required to restrict our constructions to presheaves F where
for any closed U, the set F'(U) is finite. This is in response to what seems to be a

deep feature of the consistent construction of sheaf space morphisms from presheaf
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morphisms: given a presheaf morphism f:F — F’ it is possible to describe a
function Lf from constructed sheaf space (LF,pr) to (LF',pp ). but to prove that
function continuous in general we will be required to accept arbitrary unions in the
topology on space LF. Notice too that the usual construction of sheaf I'E from
sheaf space (F, p) may not guarantee finite sets I'E(U). The particular implication
for us is that while we can describe a functor T' from the category of all sheaf spaces
over X to the category of sheaves over X, it will not in general compose with the
functor L restricted to sheaves. To avoid this problem the domain of our T will be
restricted to sheaf spaces (E,p) where E is finite. These restrictions are somewhat
ad hoc but only from the point of view of creating a more general “sheafification”

theory.

Note well that the above restrictions apply only for the particular construction
of functors L and I included here. There should be no conclusion that this indicates

which presheaves and sheaf spaces can exist on closed sets.

There is a criticism to be dealt with here. It is that the finiteness assumption for
the relevant topologies renders the material of this chapter philosophically trivial
in that finite closed set topologies (and finite open set topologies) are not really
distinguishable from finite ditributive lattices. In answer to that criticism we note
that the first order of business for this chapter is to produce the desired equivalence
of categories result; the second order of business, following on from the first, is to
note that, all other things being equal, the equivalence of sheaves on closed sets
and sheaf spaces on closed sets can be performed only for finite closed sets. There
may be some restriction on the nature of the topological space that allows the
construction for non-finite closed sets but without some such restriction, the non-
finite construction cannot go ahead. This is pointed out a number of times during;
the discussion. The significance of the result is then that sheaf and sheaf space

theory on closed sets is similar but importantly different from the same theory on
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open sets. If the emphasis of the chapter were solely on achieving the equivalence
result, then the chapter would be of no special significance since under the finiteness
assumption the result is covered by the usual equivalence theorem for sheaves and
sheaf spaces on open sets (open and closed set topologies are formally distinct only in
their respective treatment of non-finite collections of topology elements). However
in the chapter I give some discussion of the possibility of achieving the result with
respect to non-finite closed sets. With respect to at least one point of the ordinary
construction I was able to show that the topological dual of that construction is not
formally constructible without the restriction to finiteness (all other things being
equal).

We will adopt the following conventions: 7 is always a closed set topology
of finite subsets of some finite X; presh(X,7) is the name for the category of
closed set presheaves over topological space X where for any closed U € X and any
presheaf F' the set F(U) is finite; sh(X, T ) is the category of sheaves in presh(X, T );
sheafsp(X,T) is the category of sheaf spaces (E, p) over X where E is finite. Any
category name given without an underbar should be taken to refer to the unre-
stricted categories in question. L will be a functor presi(X,7) — sheafsp(X,7T).
I' will be a functor sheafsp(X,7T) — sh(X,T).

We shall end by discovering that sh(X,7) is equivalent to sheafsp(X,7T).

Our discussion below owes much to the demonstration of the equivalence of
open set sheaves to open set sheaf spaces found in Tennison’s Sheaf Theory [1975)
and is a later draft, but essentially the same as, James, W., “Sheaf spaces on finite

closed sets” in Contemporary Logical Research in Australia. Logique et Analyse,

[1996).



1. Sheaves and Sheaf Spaces

With this section we define the notions of closed set sheaf and closed set sheaf
space that we will use. Notice that what we will be calling a sheaf in this chapter
1s indeed a sheaf according to the usage of the word accepted in chapters eight and
ten. The sheaves in the present chapter are exactly those functors identified with
respect to the canonical topology 7 in Set””” where 7 is the closed set topology.

Once we have given the necessary definitions we will give some technical lemmas
on the nature of sections in a closed set sheaf space. These will be used in the next
two sections where we show that we can construct closed set sheaf spaces from
closed set sheaves and vice versa. The last section contains the demonstration that

the existence of these particular constructions implies an equivalence of categories.

Definition 1.1: Presheaves are contravariant functors. When 7 is a topology for
a space X, any contravariant functor F': 7°? — Set is called a presheaf on T or, if
7 is understood, a presheaf over X. A sheaf on T is any presheaf F that satisfies
the following condition: if U € 7 and there is some {U;:1 € I} with each U; € T

and (J{U;:t € I} = U, then whenever we have {sc F(U;):7 € I} such that
Fing, (8) = Fgfiny. (s5)
for all ¢, 5 € I, there is exactly one s € F(U) such that
Fg(s) = s;

all 2 € I. For closed set topologies 7T, a sheaf on 7 is called a closed set sheaf.

Definition 1.2: For any presheaf F on 7 over X and any 2 € X, the stalk F, of
F' at z is defined to be the direct limit of the system of sets F(U) where z € U and

arrows F‘L,] where z € U C V.



We can construct a stalk Fy for I as follows. Fix z € X. Let Z be the disjoint
union of all F(U) where € U. We define an equivalence relation ~, on Z by

saying that if z € U,V and v € F(U) and v € F(V), then
U ~p v
iff
there is some W € T such that t ¢ W C U NV and
Fyy(u) = Fyy(v).

Then F; is Z/ ~, together with maps F(U) — F, which are F(U) < Z — (Z] ~)
given by s — s, with each s; being the equivalence class for s € F(U) under ~,.
It is useful to note that for any s;,t, € F, where s € F(U) and t € E(V), we
have s, = t, iff there is some W C U NV such that « € W and F‘%(s) = FV‘[/,(t)
Morphisms of presheaves induce what we will call stalk morphisms. Suppose
f:F — F' between presheaves F' and F'. Recall that f is a natural transformation

{fu:U € T}. Then for each z € X there are stalk morphisms f,: F,, — F' given by

sz = (fu(s)),
where ¢ € U. For composite presheaf morphisms F EE T F'". we have
(9 fle =9z fa

Definition 1.3: A map p: E — X between topological spaces F and X is contin-
uous iff the inverse of each open set in X is open in E. Equivalently, the map is

continuous iff the inverse of each closed set is closed (Th.3.1, Kelley [1955]).

Definition 1.4: A map p: E — X is a homeomorphism if it is a bijection and

both it and its inverse are continuous.

Definition 1.5: A map p: E — X isa local homeomorphism if for any ¢ € E. there

is some homeomorphism p|N: N — U such that both IV and U are open and e € N,
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p(e) € U. Inessence a map is a local homeomorphism if it is a homeomorphism when
restricted or “localised” to an open subset of its domain. Plainly. we can describe a
similar property of maps in terms of closed sets. Replace all occurences of “open”
with “closed” in the definition of a local homeomorphism and a homeomorphism

and we have the definition of a closed set local homeomorphism.

Definition 1.6: A closed set sheaf space on X is a closed set local homeomor-
phism p: E — X that is continuous between topological spaces £ and X. When
X is understood we use (E,p) to denote the sheaf space. For what follows all

homeomorphisms are defined with respect to closed sets.

Definition 1.7: For sheaf spaces over the same X a sheaf space morphism

g:(E,p) — (E',p")
is a continuous map ¢: F — E' such that p =p' - g.

Definition 1.8: For closed set sheaf space p: E — X and closed subset U of X, a
closed set section of p over U, or just U-section of p, is a continuous map s: U — E
such that p - s = «dy. The collection of all sections over U is denoted I'E(U). The
notation recalling functor I' is deliberate.

Definition 1.9: Any collection 3 of sets will be called a basis for a closed set
topology = on a space X = |JB when we have that b € = iff b is a finite union of
members of 8. Any collection « is a subbasis for closed set topology = if the collection
of all intersections of members of a is a basis for =. Plainly. any collection « can

be used as a subbasis for a topology on | J a.

Lemma 1.1: any homeomorphism p|N: N — U guaranteed by p as local homeo-
morphism gives rise to a section (p|N) ' U — E.

Proof: (p|N)~! is by definition continuous and plainly p- (p|N)™! =idy. 0O
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Definition 1.9: A map s:U — E between topological spaces is a closed map iff

the image in £ of each closed set in U is closed.

Definition 1.10: For any ¢ in topological space F, a set M is a closed neighbour-
hood of e if there is some N C M such that e € N and N is closed in E. In what

follows when we speak of neighbourhoods of e we will mean closed sets M such that

e c M.

Lemma 1.2: any section s:U — E of sheaf space pr E — X 1s « closed map.
Proof: recall that we have supposed any topology 7 on X to contain only finite
subsets of X. By hypothesis, then, U is finite. It follows that s(U) is finite. Now,
for any e € s(U) the definition of p as a sheaf space assures us of closed sets M C E
and V € X such that e € M, p(e) € V, and p|M: M — V is a homeomorphism.
It follows that (p|M)(M) is closed in X. Therefore (p| M )(M) N U is closed in X.
Now, s is a section, so (p| M) must map M Ns(U) bijectively to (p| M)(M)NU and
since (p| M) is continuous, M N s(U) is closed in E. Choose one (p| M) for each

e € s(U) and s(U) becomes the finite union of the associated sets M N s(U). O

Lemma 1.3: any section s:U — E is a homeomorphism s:U — s(U).
Proof: since p - s = tdy the map s:U — s(U):z — s(x) has a bijective inverse
p|s(U). The section s is continuous. Also s is a closed map so, given p as continuous,

the map p|s(U) is continuous (see Lemma 4.1). 0

Lemma 1.4: the collection of sets formed by the images of all sections s over all
closed sets U of the sheaf space (E,p) 1s a basis for the topology on E when E is
finate.

Proof: recall that we have suggested that any base space X is finite, so any
closed subset U of X is finite. It follows that any s(U) is a finite subset of E. Now.
Let M be any closed subset of E. For any ¢ € M there is some closed neighbourhood

N C FE such that a homeomorphism p|N exists. Finite intersections of closed sets
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are closed sets, so the set M NN is closed in F; and since p|N is a homeomorphism
we have a section s = (p|(M N N)) ™" over closed set (p|N)(M N N) = p(M N N).
Plainly e € s(p(M N N)) € M. Since the space E is finite, the subset M must be
finite, so choose one s for each e € M as described above and then the set M can
be described as the finite union of sets s(p(M N N)). Since E is itself a member
of the topology, it follows that E is some finite union of sets s(U). Since also any

s(U) € E the space E is the union of all s(p(E N N)). 0
2. From Presheaves to Sheaf Spaces

In this section we first describe the construction of a sheaf space (L, pp) given
a presheaf F. Secondly, we describe the construction of a sheaf space morphism L f
from (LF,pr) to (LF',pp:) given a presheaf morphism f: F — F'. We finish this

section with a demonstration that these constructions describe a functor
L:presh(X,T) — sheafsp(X,T).

Suppose a presheaf F:7°? — Set from presh(X,7) where 7 is a closed set
topology on X. We will construct a topological space LF and a map pp: LF — X.

We will go on to demonstrate that (LF, pr) is a sheaf space.

Construction 2.1: let LF be the disjoint union of the stalks F, of F for all
x € X. Since any element of F; is some s, determined by some s € F(U) where
z € U, we may, wherever U is closed in X and s € F(U), define a map 5:U — LF
by

Uz s,.
With respect to such maps each F, is the union of all sets $(U) where z € U € T

and s € F(U). It follows that we may topologise LF by accepting the collection

of sets §(U) for all U € T and all s € F(U) as a closed set subbasis. In fact, we
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may demonstrate that the sets §(U) form a closed set basis. We do this with the

following two lemmas.

Lemma 2.1: if 8 is a collection of finite sets and « is a non-finite subcollection
of B, (Yo =& for some finite subcollection o' of a.

Proof: if any of the members of « are disjoint, the lemma. is proven. Otherwise,
choose some b € a. We define o' in terms of b. Firstly, let b € o'. Then, note that
for any = € b, if z € (), then there is some b’ € « such that « ¢ §'. For any such
x € b choose exactly one such ¥ € o and let &' € o'. Let no other members of S be
members of a'. Since b is finite, &' must be finite; and, by virtue of its definition,
Na' =Na. O
Lemma 2.2: the collection of sets $(U) for allU € T and all s € F(U) is a closed
set basis for LE.

Proof: any collection § of sets identified as a closed set subbasis for a topology
is a closed set basis for the same topology if any arbitrary intersection of members
of 3 is a finite union of members of 3. Now, since by hypothesis any U € T is finite,
any §(U) is finite. By lemma 2.1, then, we need demonstrate only that any finite
intersection of sets 3(U) is a finite union of sets 3(U). We demonstrate this if we
show that the intersection of two sets 5(U) is a finite union of sets S(U).

Let 3(U) be defined for some s € F(U) and let #(V) be defined for some
te F(V). ifee 3U)n f(V), then e = s, = ¢, for some x € U N V. But in that

case there must be some W € 7 such that z € W and
Fip(s) = Fy(t).

Let 7 be that element of F(W) picked out by F(s) and F\.(t). Plainly, for all

€W, ry =38, =t,; that is, for all 2 €¢ W

Fiy (r) = Fiy(s) = Fy(t).
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It follows that #(W) C §(U) N (V). Since this is true for any ¢ € S(U)YNHV) and
3(U)N#(V) is finite, the set 3(U) N#(V) can be described as the finite union of the

sets 7#(W). 0

Construction 2.2: let pp:LF — X be defined so that (pr)~(z) = F, for all
zeX.
To show that (LF,pr) is a sheaf space we must show that pp is a continuous

local homeomorphism.

Lemma 2.3: the map pp:LF — X is continuous with respect to the topology on
LF.

Proof: for any closed U C X, we have (pp)™*(U) as the disjoint union of all
F, for z € U. It follows that (pr)~'(U) is the collection of points s, for all z € U
and all V € 7 such that 2 € V and s € F(V). But note that for any s € F(V),
FYay(s) = FYRY (s | UNV) which means that s, = (s | UNV), forallz € UNV.
It follows that we may describe (prp) ™ (U) as the union of sets §(V) where s € F(V)
and V C U in 7. Now, by hypothesis U is finite, so there are only a finite number
of V'€ T such that V C U. Furthermore, F' € presh(X,7) so any F(V) is finite.

It follows that (pr)~"(U) is a finite union of closed sets 3(U). a

Lemma 2.4: p:LF — X is a local homeomorphism.

Proof: any e € LF will have some closed neighbourhood §(U). The maps
pr|3(U) and § are bijective inverses. Since pp is continuous. pp |$(U) is continuous.
It follows from the construction of the topology on LF that pr | §(U) is a closed

map and since § is its inverse, § is continuous (see Lemma 4.1). O

Theorem 2.1: if F' € presh(X,T), then (LF,pr) € sheafsp(X.T).
Proof: lemmas 2.3 and 2.4 together with the fact that. as constructed, LF is

finite. 0O
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Suppose a morphism f: F' — F' in presh(X,7). We construct a map
Lf:(LF,pr) — (LF',pp)

and go on to demonstrate that Lf is a sheafsp(X,7 ) morphism.

Construction 2.3: recall that presheaf morphisms f: /' — F' induce stalk mor-
phisms f,: F, — F! for all z € X given by F, > s, — (fU(S)F)m where ¢ ¢ U.
Define Lf: (LF,pr) — (LF',pps) so that for any s, € LF,

(LF)(s2) = (fu(s)),-

Lemma 2.5: pp = pp - Lf.

Proof: for any s, € LF, pr(s;) = = while

pr (LF(s2)) = pr ((fu(5)), )

=z, O

Lemma 2.6: Lf i3 continuous.
Proof: any member of the basis of the topology on LF' is g’(U) for some
s' € F'(U) and some U € T. To demonstrate the lemma it is enough to demonstrate

that (Lf)~!(s'(U)) is a closed set in LF. But for any e € s/(U), e = (s'), and
LAHT():) = {s € F(U): fuls) = s');
and since by definition of Lf, we have (Lf)(3(U)) = fu(s)(U), we have
(LATW) = J{38():s € F(U) and fu(s) = s'}.

Recall that F' € presh(X,7), so F(U) is finite. It follows that (Lf)™! (SA’(U)) is a

finite union of closed sets in LE'. W)



It should be apparent that if we do not restrict the size of F(U) it is possible
that there be a non-finite number of s € F(U) for which fy(s) = s', in which case
we would need some extra hypothesis about the topology on LF. an alternative

topology, or another construction for Lf.

Theorem 2.2: i f 15 a presh(X,T) morphism, then Lf is a sheafsp(X,T)
morphism.

Proof: lemmas 2.5 and 2.6. 0

Theorem 2.3:  the construction of sheaf space (LF,pr) from presheaf F' and sheaf

space morphism Lf from sheaf morphism f determine a functor
L:presh(X,T) — sheafsp(X,T).

Proof: the lemma is demonstrated if we show that the L morphism construc-
tion preserves identities and composition. Suppose a presh(X,T) identity map
tdp: F' — F. The L morphism construction preserves identities if

L(idp) = idwrpp)-

Now, for any s, € LF', we have

L(idp)(sz) = ((idv)(s)),, = sa
while
id(LF,pF)(SI) = ('Ld&p)(sl) = Sp.

Suppose a presh(X,7T) composite F' L P 5, F". The L morphism construction

preserves composition if
L(g-f)=Lg-Lf.
Now, for any s, € LF,

L(g : f)(Sz) = (g ’ f)x(sz) - (gl' ’ fJ)(‘x)
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while

(Lg - Lf)(s:) = Lg(LS(s2))
= (9o - f2)(s2). t

3. From Sheaf Spaces to Sheaves

In this section we describe the construction of a sheaf T'E given a sheaf space
(E,p) on X. We describe the construction of a sheaf morphism I'¢:T'E — TE’
given a sheaf space morphism ¢:(E,p) — (E’,p'). We finish this section with a

demonstration that these constructions describe a functor
I:sheafsp(X,T) — sh(X,T).

This functor is readily restricted to a functor
:sheafsp(X,7) — sh(X,T)

and in the next section we demonstrate the main result of this chapter that L
restricted to sheaves and I are an equivalence of categories.
Suppose a sheaf space (E,p) on X. We construct a functor I'E: 7°? — Set

and go on to demonstrate that ['E is a sheaf.

Construction 3.1: define 'E: 7°? — Set by allowing that for any closed U C X
T'E(U) = {all sections s of p over U7}:
and when V C U in 7, the restriction map (T'E)Y, is given by

s s | V.
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Theorem 3.1: T'E 15 a sheaf.
Proof: suppose closed set U and set {U;:1 € I} of closed sets such that [/ —

(W{Ui:% € I}. Suppose that we have {s; € (TE)(U;):i € I} such that
. Uj
(PE)g:ﬁU] (Si) . (FE)U,'F]UJ' (57)

all 2,7 € I. This allows us to define a map s:U — E by setting s(z) = s,(2)
whenever € U;. The theorem is demonstrated if we show that s € TE(U) and
in unique in making (TE)f (s) = s; all ¢ € I. First of all. s € TE(U) if s is
continuous and p - s = ¢dy. The fact that p- s = idy follows directly from the fact

that p-s; =udy, all i € I. Now, by definition, for any closed N C E
s_l(Nﬂs U{s Nﬂs )):ie[};

and since each s; 1s continuous and, by lemma 1.2, a closed map, s~! (N Ns(U)) is
a union of closed sets. Now, I may not be finite, but each s; ' (N N si(Ui)) must be
a subset of U; which, by hypothesis, is finite, so s7! (N N s(U)) can be represented
as the union of some finite subset of {si_l (N N si(Ui)):i € I}. It follows that s is

continuous.
Now, it follows by definition of s that (I‘E)gi(s) = s; all 7 € I but suppose
there is some further s' € TE(U) such that (FE)gi(s’) = s; all 7 € I. The fact that

{U;:i € I} covers U and that each s; is a bijective function requires that s = s’

Suppose a sheaf space morphism ¢: (E,p) — (E’,p'). We construct maps
(Tg)y:TE(U) - TE'(U)

for each closed U € T and go on to demonstrate that {(I'g): U € 7T} constitutes a

natural transformation I'¢:T'E — T'E’.
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Construction 3.2: for any closed U € X define (I'g)y:TE(U) — I'E'(U) by
FE(U)> s+ g-s.

That ¢ - s € TE'(U) follows from that fact that both ¢ and s are continuous and

from the fact that p-s = idy together with p' - ¢ = p means that p' - ¢ - s = idy.

Theorem 3.2: {(T'9)y:U € T} constitutes a natural transformation.
Proof: the theorem is demonstrated if whenever V' C U in 7. the following

diagram commutes.

T
TE(U) U TE(U)

U
T (I‘E)i‘ﬁl l(rE')%;
Vv

TE(V) — TE(V)
(Tg)v

But this holds since for any s € TE(V)
(TE")Y ((Tg)u(s)) = (TE)(g - s)
=(g-9)|V

and

(Tg)v ((TE)y(s)) = (Tglv(s | V)

=g-(s|V).

Since g and s are functions

(g-8)|V=g-(s]|V) O
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Theorem 3.3: the construction of sheaf T'E from sheaf space (E,p) and sheaf

morphism T'g from sheaf space morphism g determine o functor
:sheafsp(X,T) — sh(X,T).

Proof: the theorem is demonstrated if we show that the I' morphism construc-
tion preserves identities and compositions. So, suppose a sheafsp(X,7T) identity

id(gp): (E,p) — (E,p). Identities are preserved if
P(id(g py) = tdrp.
This holds only when, for all U € 7T,

(CGdp)))y = (tdre)u.

But, for any s € (T'E)(U),

(F('Ld(E,p)))U(S) = ldE - S

= (idI‘E)U(S).

Suppose now a sheafsp(X,T ) composite (E, p) ey (E'.p') = (E",p"). The

I" morphism construction preserves composition if
I'(g-f)=Tg-Tf.
This holds only when, for all U € T,
(T(g- £)y =Tg)v - (Cfu.

But, for any s € (TE)(U)
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while

(Tg)u - (Tflu(s) = (TCg)u((Tfuls))
=Tg)u(f-s)
=g-(/-9) 8
It remains true that in producing a sheaf I'E from sheaf space (E, p) we have
accepted and used a restricted topology on the base space X, but note that we have
required no restriction on E. Later we shall have need of a restricted domain T.

Plainly if we restrict the domain to sheaf spaces (E,p) where E is finite, we can

define a functor

T:sheafsp(X,7) — sh(X,T).

4. Equivalence of Categories

With this section we demonstrate that the functor L restricted to sheaves and

the functor I' are an equivalence of categories for sh(X,7) and sheafsp(X,T).

This is demonstrated by showing a natural isomorphism

L (L|sh(X,T)) = idgpearsp(x,7)
and a natural isomorphism
(L|sh(X,T)) L= idgx,1)-
The demonstration proceeds in three parts. We first show that for any sheaf space
(E,p) in sheafsp(X,T ), there is a sheafsp(X,7 ) isomorphism
kp:(E,p) — (LLE, pre).

Secondly we show that for any sheaf F' in presh(X,7T), there is a presh(X,7)
isomorphism

hp:F —TLF
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Thirdly we show that these isomorphisms constitute the required natural transfor-
mations. To begin with, we give a technical lemma that is needed for the next

lemma.

Lemma 4.1: for topological spaces X and Y and inverse maps k: X — Y and
k'Y — X, if both k and k are closed maps, then both k' and k are continuous.
Proof: suppose k is not continuous; that is, suppose there is at least one closed
U CY such that k7!(U) is not closed in X. But &' is k! and k' is a closed map.
This means that wherever U is closed in Y, k'(U), and therefore k~1(U), is closed

in X. Map k is continuous. The same proof applies for k' when £ 1s a closed map.

[

Lemma 4.2: for any (E,p) in sheafsp(X,T) there is an isomorphism

Proof: a sheaf space isomorphism is a continuous isomorphism k: £ — LI'F
such that p = prg - k. We construct two maps, k: £ — LT'E and k":LTE — F,
and show them to be bijective inverses and both closed maps. This, together with
lemma 4.1, gives us continuous isomorphism k. We show also for our constructed k
that p = prg - k.

Consider any ¢ € E. Let s:U — E and s':U' — E be any two sections of p
such that e € s(U) and e € s'(U"). By definition s € TE(U) and s’ € CE(U'). Now,
s and s’ have overlapping images; that is, s(U)Ns'(U') is not empty. Consider then
the set p(s(U) N s'(U")). It will be the case that

s|p(s(U) N .S'(U')) =s'Ip(s(U)ns'(U")

only if, for any z € p(s(U) N s'(U")), s(z) = s'(z). Note that we must have both

s(z) and s'(z) in s(U) N s'(U') since s and p|s(U) are bijective inverses as are s’
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and p|s'(U’). But since s and p|s(U) are bijective inverses we have that for any
band ¥ in s(U), if (p|s(U))(b) = (p|s(U))(d'), then b = b'. The same holds with
respect to s’ and any b,b' € s'(U'). It follows that for any = € p(s(U) N s'(U")),
s(z) = §'(z), since p(s(z)) = p(s'(z)) = z. In other words, s and s’ are identical
when restricted to p(s(U) N s'(U")). Now, by lemma 1.2, both s and s’ are closed
maps, so s(U) N s'(U') is closed in E. And since both s and s' are continuous,

s~ 1 (S(U) N 3’(U’)) as well as (s')7! (S(U) N ' (U")) are closed in X. But
sTHs(U) N ' (UN) = ()T (s(U) N s'(U)) = p(s(U) N &' (U1)),

so there is a closed set in X, namely p(s(U) N s'(U")), restricted to which s and s’

are identical. In other words, there is a W € 7 such that

(LE)Y(s) = (LE)Y(s").

It also happens that, since e € s(U) N s'(U'), p(e) € W. It follows that where s is
some section of p with e € cod(s), then s ~,(.) s’ for all other sections s’ of p with

e € cod(s'). Therefore, we may define a map k: E — LI'E by
€ Sp(e)

where s is any section of p with e € cod(s).

We now show that k is injective. Suppose e, e’ € E such that ¢ # ¢'. If
e € p71(z) and €' € p7!(y) such that = # y, then it is automatically the case that
k(e) # k(e') since LI'E is the disjoint union of stalks (CE), all = € X. Suppose,
then, that e,e’ € p~'(z). Suppose sections s:U — E and t:V — E such that
e € 8(U) and e' € t(V). By definition, s(z) = e and t(z) = €', so s(z) # t(z). It

follows that there can be no W &€ 7T such that z € W and

(LE)(s) = (LE)y ().
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It follows, then, that s,(.) # tp(er); O in other words, k(e) # k(e').
We now show that k is a closed map. By lemma 1.4, k is a closed map if for
any section s:U — E of p, k(s(U)) is closed in LTE. Now, by definition of k., we

have that k(e) = s, for any e € s(U), so

k(s(U)) = {sp(ey:e € s(U)}.

Now, p(s(U)) = U, so
k(s(U)) = {sp(er:p(e) € U)
but this is the set 3(U). By construction 2.1, then, k(s(U)) is closed in LT'E.

We now define a map k':LI'E — E which we show to be an injective closed
map. We show that k' is the inverse of k. Since both k£ and k' are, then, known to
be injective, both & and k' are seen to be bijections.

Any element of LT'E is s, for some s € (CE)(U) with 2 € U. Now, for
any ' € (LE)(U') we have s ~, s', and therefore s, = s, only if there is some
W CUNU' with € W over which s and s’ agree. In particular, if s ~, s, then

s(z) = s'(z). It follows that we may define a map k':LI'E — E by
sg — s(z).

We now show that k' is injective. Suppose sections s € (CE)(U) and ¢ € (TE)(V)

such that z € U, V. By definition of sections we have that
s|p(s(U)nt(V)) =t | p(s(U)Nt(V))

with p(s(U) N#(V)) being a closed set. Now, if s(z) = (). then there is some W .
namely p(s(U) N¢(V)), such that

(LE)w(s) = (CE)W(t)

with x € W C U NV, in other words, s ~ t, so s, = 1.
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We now show that k' is a closed map. By lemma 2.2, it is enough to show that

k(3(U)) for any s € LE(U), is closed in E. But
k(5(U)) = {s(z):z € U}
= s(U).

So, by lemma 1.4, k(3(U)) is closed in E.

We now show that &' is the inverse of k. This is straightforward. For any
e € E, k(e) = spey where e € cod(s). Recall that k is injective. It follows that
k='(k(e)) = e. Now k'(k(e)) = s(p(e)), and since s is a section, s(p(e)) = e.
Furthermore, for any s, € LI'E, k'(s;) = s(z) and, since obviously s(z) € cod(s),
k(K (1)) = sp(s(ay) = 52

It follows that k: E — LI'E is a continuous isomorphism. To complete the
demonstration of the lemma observe that for any e € E if p(e) = z, then k(e) is
$p(e) Which is s; for some s with e € cod(s), and, by definition prz(k(e)) = z. It

follows that
p=pre-k. a
Lemma 4.3: for any sheaf F in presh(X,T) there is an 1somorphism
hp:FF — T'LF.

Proof: for any U € 7 define a function (hr)y: F(U) — CLF(U) so that for
any s € F(U)
(hr)u(s) = s.
The lemma is demonstrated if we show that each (hp )y is a bijection and that for

any U C V in 7, the following diagram commutes.

(hr)u ,
U F(U) —— (CLF)(U)
T Fy l l@m%ﬁ
1% F(V) — - (TLF)(V).
(hr)y
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First, we demonstrate that the diagram commutes. For any s € F(U)

(ITLF)Y ((hr)u(s)) = (CLE){(3)

=3|V
and .
(hr)v (Fy(s)) = (hp)v(s | V)
—s|V.

Now, F/(s) = FY(s | V), 80 s ~; (s | V) and s, = (s | V), for any © € V. It

follows that

We now demonstrate that any (hr)y is injective. Any section § € TLF(U) is
given by §(z) = s for all z € U, so for §,# € TLE(U) we have § = £ only if s, = ¢,
all € U. But, in that case, for each ¢ € U there must be some W € T such that

z € W and F{§,(s) = FY(t). It follows that U is covered by these sets W and, when

7' axe laesk, o= B

We now demonstrate that any (Ar)y is surjective. This is the demonstration
that for any e € I'LF(U), there is some s € F(U) such that e = 3. If e € TLF(U),
then e is some section U — LF of pr. As such, e is a closed map making ¢(U)

closed in LF. It follows that e(U) is some finite union
U{@'(Ui):i eI}

where 5; € TLF(U;) all ¢ € I. It follows from the definition of pp that
J{Usieny=u.

Suppose now that for some z € U; NU;, we have §;(xv) # 5;(x). Since e is a section,

ple(U) is the bijective inverse of e, so

(ple(D) (5i(z)) # (ple(U)) (5(x)).
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But, this is the claim that p(5i(z)) # p(5j(z)) and since 5; and 5} are sections, it
must be that p(5i(z)) = p(5j(z)) = z. In other words, we can characterise e by

e(z) = §i(x) for all z € U; any ¢ € I. Another way of putting this is that
5|1U:nU; =5 |U;nU;, allijel
It follows, when F' is a sheaf, that
Ffioy, (s:) = Fiiny,(s;) alli,j el

Now, since the sets U; cover U, if F'is a sheaf, there is exactly one s € F(U) for

which Fg‘ (3) =s; alle € I. So, for any U; and any z € U;, we have
FG(s) = Fyi (i),

which is to say, (s;); = s;. It follows that e is the map §: U — LF determined by
that s € F(U) for which Fg‘ (s) = si, all ¢ € I. Since there is exactly one such s,

(hr)u is surjective. ]

Theorem 4.1: functors T and L | (sh(X,7)) are an equivalence of categories.
Proof: for this proof let L' be the functor L restricted to the sheaves of
presh(X,T). Functors L' and [ are an equivalence of categories if there are natural
1somorphims
L'T tdgheafsp(x,7) and 'L = tden(X,7)-
From lemmas 4.2 and 4.3 we have the isomorphisms kg:(E,p) — LLE for sheaf

space (E,p) and hp: F' — I'LF for sheaf F. The present theorem is established if
{kg:(E,p) in sheafsp(X,7)} and {hp:F in sh(X,7)}

constitute natural transformations.
The collection {hp: F in sh(X,7)} constitutes a natural transformation if

whenever f: F' — F' is a sh(X,7 ) morphism, the following diagram commutes.
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The diagram commutes if the component diagrams for each U ¢ 7 commute. Now.

for any s € F(U)
(LL() y ((hr)u(s)) = (TL(F)) (3)

— (Lf) -3

while
(he)u (fu(s)) = fuls).
Now, (Lf) -3 is a map U — LF' where for any = € U, we have ((Lf) - 3)(z) =
(fu(s)),. In other words,
(Lf) - & = fus).
The collection {kg: (E,p) in sheafsp(X,T)} constitutes a natural transforma-

tion if, whenever ¢: (E,p) — (E',p") is a sheafsp(X,7T) morphism, the following
g

diagram comimutes.

Now, for any e € E, kg(e) = sp() where s is some section of p with e € cod(s).

Assume s is a section over U. Now, for any s; € LI'F with s € (CE)(U) and x € U

(L_P(g)) (31) . (Eg)z(sz)

It follows, then, that



We also have the following
ke (9(0)) = Spi(yte)

where s' is some section of p' with g(e) € cod(s’). Now, both g and s are continuous,
so ¢ - s 18 continuous. Furthermore, since p = p' - ¢, we have p' - ¢ - s = idy. And
plainly, g(e) € (g - s)(U) when e € s(U). It follows that ¢ - s is a section of p' with

g(e) € cod(g - s). It follows, too, that

Séf(g(e» = (9 $)p(ge))

and since p'(g(e)) = p(e), we have

(LL(g)) (kr(s)) = kg (g(e))

as required. O

In summary:

A restricted class of sheaves over closed sets is provably equivalent to a re-

stricted class of sheaf spaces over closed sets.

This chapter marks the end of Part III and our discussion of the properties of
sheaves as objects of paraconsistent semantics. With the next chapter we begin a

discussion of categories themselves as objects on which we may model theories.
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Part 1V:

THEORIES and RELEVANCE



CHAPTER 14:

INCONSISTENT THEORIES IN CATEGORIES

Introduction: With this chapter we continue our interest in categories and the
semantics of paraconsistent logics. In particular we will be concerned to show how
we may describe categories as semantic objects for inconsistent theories. In the first
instance we develop the usual notion of a category as a suitable semantics object
for a theory in a many sorted language. This is the idea that sorts in a language
can be modelled by objects of a category and then formulae in such languages
can be modelled by soubobject of particular sort models. We then speak of a
model for a theory as a functor from the language to the category. The ability
to model inconsistent theories then becomes, at least, the ability to describe an
adequate notion of sets of designated values (if our semantic objects have more
than one designated value per lattice, then we have the possibility of a formula
and its negation receiving (different) designated values). Alternatively we can seek
out categories with BrA subobject algebras and use these as models. This idea is
usefully combined with the first, but is itself lacking to some extent in that those
BrA subobject algebras we have discovered to date lack the pleasing categorial
property of naturalness with respect to other such algebras in the same category.
A third idea, and one that we shall pursue, calls for the use of lattice dualisation.
We have a standard result that any subobject lattice in a topos is a HA, so it
follows that we have something of a plethora of opportunities to produce BrAs by
dualisation. There is, however, a sense that using dualised subobject lattices in this
way is not quite the same as straightforwardly modelling a theory in a category. We

will therefore use the tool of language, rather than lattice. dualisation. This is the
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idea that we model formulae in a Janguage on a structure by allowing that a formula
 recieve a value that, in a standard model, would be given to the dual formula @°P
where ¢ and @°P are dual in the sense that wherever there is an and connective in
¢ there is an or connective in ¢°?, and so on. We will give a complete description
of what constitutes a language dualisation in section two of the present chapter
however the claim that a language dualisation on a standard model amounts to the

same thing as a lattice dualisation in the model should be understandable.

This chapter is an explicit statement of the effect of the application of a lan-
guage dualisation to the notion of topos logic as a sequent system. The kind of
dualisation here called language dualisation is different from both “false” for “true”
dualisation discussed in chapter 4 and ordinary categorial dualisation. Language
dualisation applies to formulae in a logical language and is motivated by standard
notions of algebraic duality. So a language dualisation of a formula ¢ produces a
formula ¢°P where A replaces any instance of V (and vice versa) and ~ replaces any
instance of = (and vice versa). Given this notion of language dualisation I develop
the details of modelling formulae in toposes £ by allowing that where a standard
model assigns some topos arrow or object to formula ¢, we assign that object or
arrow to °P. This is analogous to using open set topologies as semantic objects for
closed set logics (by including a dualisation function in the interpretation function).
In the absence of what we might call a co-topos, a topos-like category with natural
BrA structures, some manipulation of the sort described in chapter 14 is needed if
we are to model inconsistent theories in categories in the same way that we model
such consistent theories as we do in toposes. At least some explicit working out of
the details of such manipulated notions is needed since the idea that what we are
working with is a deduction system is affected by these manipulations. Explicitly,
by applying a language dualisation to a sequent system and models for languages we

produce a system that preserves falsehood rather than truth. So the philosophical
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significance of chapter 14 is twofold: firstly I have produced a method of modelling
inconsistent theories in toposes, and secondly I have made explicit the nature of the

inference system that goes with these models.

A consequence of this notion of language dualisation is that, given a language
L and its dual £°7, any model of a theory T in language £ amounts to a model
of the dual theory T°? in L£°7 and vice versa. Furthermore there are significant
consequences in terms of proof theories. Given a notion of language dualisation for
models and some proof theory for theories T in language £, we can develop what we
may call a dual proof theory for theories T°? in £°7. The idea is that straightforward
language dualisation of a proof system produces a disproof system. With respect to
categories as semantic objects the standard proof system is a Gentzen system called
geometric logic, or GL. In section three we will apply our language dualisation to GL
and produce a system that we call co-GL and which is best understood as being a
system that from falsehoods derives falsehoods. This leads us to the principal claim
of this chapter: that we can model inconsistent theories by providing what we call
refutation models. This is the idea that inconsistent theories can be characterised by
collections of formulae that are undeniably false. Consider, for example, the theory
of classical arithmetic. Let P be the collection of all well formed formulae that are
false in standard models for classical arithmetic. Let Py be a proper subset of P and
allow that only P; sentences are undeniably false. Among the various models of a
theory T under which all of P; are false, there will be some ( non-classical) models
for which only the sentences of Py are false. We may describe T as an inconsistent
theory characterised by falsehoods P; and wherever T has a model that falsifies all
of Py, we say that T is modelled by a refutation model of P;. The principal idea
behind refutation models and disproof systems like co-GL is that a set of falsehoods
closed under falsehood preservation rules allows for the claim that all other well

formed sentences are true (or at least designated) even if, classically, some of them
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would be false (or undesignated). This seems a natural philosophical dual of the
Intuitionist principle that the lack of a proof of the truth of a sentence is not a proof
of its falsehood.

The use of categories as semantic objects for many sorted languages is not
solely a model theoretic exercise. The categorisation of the task is extended by
the construction of categories Ct with respect to theories T and the demonstration
that models of T in Grothendieck toposes £ correspond to continuous morphisms
between sites (Cr,cov) and £. Our discussion in this chapter will not go this far.
The language dualisation program is wholly amenable to expression in this form
but is not wholly motivated. The usual reason for developing the notion of a theory
modelled in a category is to begin discussing category theory itself in terms of the
language of models. Then it is possible to describe categories in terms of formulae
of the language that hold in those categories. The language dualisation program
actually hampers such discussion in that both a formula and its dual would describe
the same feature of a category but the dual would be a description at one remove for
having been dualised. The point of language dualisation of models in this chapter
is to demonstrate the types of concerns we will have when and if we find categories
with natural BrA subobject structures and start to use them as standard semantic
objects for standard (inconsistent) theories. In that such a situation would require
some proof system other than the classical or the intuitionist a chapter such as
the present one has a useful role: by dualisation of existing category based proof
systems we can discover such systems as will be useful in non-standard settings.

With section one we give a formalisation of a many sorted language and briefly
describe the details of interpretation of the language within a topos. With section

two we develop the disproof system co-GL and its relation to inconsistent theories.
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1. Many Sorted Languages

An elementary language consists of primitive symbols together with a collec-
tion of variables. Such languages are called single-sorted when the variables range
over elements of what is intuitively one sort or type, namely, those from just one
interpreting set. Many-sorted languages are those whose variables require interpre-
tation in terms of more than one set or structure. These are the languages used to
formalise, for example, scalar multiplication of vectors.

Let § be a class whose members will be called sorts. An S-sorted language £
will require one denumerable set of variables V, for each a € S such that if a,b € S
and a # b, then V, and V; are disjoint. When v € V, we write v:a. For our
S-sorted language there will be a basic connective alphabet of

(i) propositional connectives: A,\/,=,~, ~,=;

(ii) quantifiers: V, 3;

(iii) identity: ~.

We also include parenthesis devices ) and (.
Furthermore there shall be
(iv) individual constants ¢ that are matched with sorts. The sort of c¢ is
denoted by c: a;
(v) relation symbols R that are assigned a natural number n, called its number
of places, and a sequence of sorts (ai,...,a,). This is denoted by
R:{ay,...,an);
(vi) operation symbols g that have a number of places n and a sequence of sorts
(a1,...,an, any1). This is denoted by g: (a1, ...,an) — any.
An S-sorted language £ is then a collection of sorted variables together with a

collection of operation, relation, and logical symbols, and individual constants.

Terms of a language are expressions within it denoting individuals. For a many-
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sorted language terms are always terms of a given sort. For £ the terms are the

variables, constants, and operation statements.

The atomic formulae include the identity expressions and the relation state-
ments. Identity expresions are of the form t ~ v where ¢, u are terms of the same
sort. Relation statements are R(%, ..., t,) where for R: (aq, ..., an) the terms iy, ..., ¢

n

are of sorts aq, ..., a, respectively.

General formulae are built inductively following the rules
(1) any atomic formula is a formula,

(1) if ¢ and 9 are formulae, then so are (¢ = ¥),(p = ), (—p) and (r¢);
(iii) if © is a set of formulae, then A ©,\/ O are formulae:
(

iv) if ¢ is a formula and v a variable, then (Vv)p and (Jv)e are formulae.

There is a definitional distinction to be made between free and bound variables
which we can blur and say just that a variable is bound in a formula if it falls within
the scope of a quantifier and otherwise variables in formulae are free. A sentence of
the language is a formula in which any variable is bound. Any formula containing
at least one free variable is called open. Sentences and formulae will be denoted by

Greek letters and, for example, ¢(v) will denote an open formula ¢ with free v.

We include the special formulae T and L which will denote respectively empty

conjunction and empty disjunction.

Interpretation in a topos:

Interpretation comes in two parts. First we give a direct interpretation of sorts
and symbols, and then we give interpretations of terms and formulae with respect
to sequences of variables. Where € is a topos an £-model for an S-sorted language
L is a function Y with domain S U £ such that

(i) for each sort a € S, we let U(a) be an E-object;
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(i) for each g: (ai,...,an) — any1, we let U(g) be an E-arrow
Ulay) X ... x Ulan) — Ulant1);

(iii) for each R:(ai, ..., an), we let U(R) be a subobject of U(ay) x ... x U(ay);

(iv) for each c:a, we let U(c) be an arrow 1 — U(a).

The second part of an interpretation calls for interpretation with respect to
sequences V.= (v1,...,0m) of distinct variables. A word on the notation that
follows. When v = (v1,...,vm) is a sequence of distinct variables with v;:a;, we
use U(v) to denote the product U(a;) x ... x U(am). This is slightly misleading
since U(v) is not meant as an interpretation of v so much as an interpretation of the
associated sequence of sorts. However the notation is conventional so we maintain
it. Also we will be using apparently distinct functions &Y to interpret terms and
formulae with respect to distinct v. In fact the superscripted v is no more than a
reminder: for example, the symbols “UV(p)” mean “the interpretation under ¢ of
@ with respect to sequence of variables v”. Again, the notation is conventional and
we maintain it. Terms and formulae are interpreted with respect to sequences of
variables that are appropriate. For a term ¢ a sequence v is appropriate to t if it
contains at least all the variables in ¢. For a formula ¢, a sequence v is appropriate
to o if it contains at least all the free variables in ¢.

Terms: for a term t where ¢: a suppose that sequence v = (vy,. .., Un) with v;: b;
contains at least all the variables that occur in ¢. Define U(v) to be the product
U(b1) x ... xU(bn). Then we define the interpretation under & of t with respect to
v to be a map

UY(t):U(V) — U(a)

such that
(i) if ¢ is variable v;: a, then UY(¢) is the projection U(v) — U(a);

(i) if t is ¢, then UV (t) is the composite U(v) — 1 “e) Ul(a):
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(iii) if ¢ is g(t1,. .., tm) Where g: (ay,...,an) — a, then UV () is the composite

UV (1), UV (1)) )
v : —;L{_al)x...xZ/{(am)u(*ggU(a)

Note that (UV(¢1),...,UY(tm)) is a product map.

Formulae: for a formula ¢ of £ suppose that sequence v = (vy. ... ,Un) With v;: b;
contains at least all the free variables of . Define U(v) to be U(by) x ... x U(by)
Then we define the interpretation under ¢ of ¢ with respect to v to be a subobject
of U(v); in addition, the subobject is denoted UV () and satisfies the rules that
(1) UV(T) is maximum subobject idy(yvy: U(V) — U(V):;
(2) UY(L) is minimum subobject §f — U(Vv);
(3) U¥(t ~ u) and for terms ¢, u, both of sort a, are equalisers of
Uv(t)
Uv) =—=u(a);
U (u)
4Huv (R(tl, . ,tm)) for R:(a1,...,am,) is the pullback
U (¢)

d' >——m U(v)

l l U (t1), - UV (Em)

d>—— U(aj)
UR) I

of (UY(t1),...,UY(tm )} along map U(R);

(5) connectives A,\/,—,~,=, = are interpreted as the usual operations A, \/,
-, ~, =, = operations on Sub(U(Vv)) provided that those operations exist
for &:

(6) quantifiers ¥, 3 are interpreted by functors Vs, 35: Sub(domf) — Sub(codf)
as follows: suppose that for formula (Vw)y or (3w )y all free variables of
appear in the sequence v,w. Consider projection map pr:U(v,w) — U(v)
and let

UY (Fwep) = 3, (U ()
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and

UY (Ywip) = Vo (U (3)).

The notion of interpretation of a language in a topos can be extended to inter-
pretation in arbitrary categories by allowing that the interpretation of a language
L on a category C is a function #: S U L — C that satisfies all those properties of

an interpretation in a topos that C has the structure to support.

Truth in a model:

A formula ¢ of a language £ will be said to hold in o model U if, when v

contains all and only the free variables of ¢, we have
U () = U (T).

We will denote this with
U }? ©.

To accomodate a broader notion of “holding in a model” we introduce the concept
of an object of designated values. An object of designated values will exist in the
first instance only in a category with a subobject classifier and will be an ob ject
D of the category for which there is an inclusion D —  where  is the classifier
object. The notion is best described in terms of some functor category Set®. In
that case, for each a € C, we have (a) as a set of sets. Furthermore we have
D(a) € Q(a). So D works as a designated values object in the sense that we allow
each D(a) to be a set of designated values in Q(a). We say for any f € Sub(d) that

[ is designated iff for each a € C and each z € d(a),
(X1)a(z) € D(a).

Plainly, some designated value objects will be more intuitive than others. Consider

for example an object D in Set® given by D(a) = [id,) all a € C. For such an object
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f € Sub(d) is designated iff f ~ id4. Such an object describes exactly those values
in any Sub(d) that are most comm\only regarded as designated, namely the units
of the lattices (Sub(d), <). At the other extreme is an object D given by D(a) for
all a € C where D(a) is £(a) wothout the zero of (f(a), C). This object designates
all f € Sub(d) other than §) > d. This extreme will be formally interesting in later
discussion when we come to dualise models via language dualisation, so take note
of it here. We will say of a formula ¢ of language £ that ¢ is not undeniably refuted

by model U if where v contains exactly the free variables of

U () # U (L),

We will denote this by

U "_5 ©.
Notice as a final point that the reason we use objects included in § as a repre-
sentation of designated values is to solve the problem of coordinating the sets of
designated values on each Sub(Y(v)). Since in general there is more than one
Sub(U(v)) under consideration, we require some formal link between designated

sets of subobjects if only that we may have a means of abstracting our discussion

from particular subobject structure in particular categories.
2. Geometric logic, Sites, and Language Algebras

With this section we define two dual fragments, £9 and £9°", of the language
L. The relationship of duality is used to define dual theories and then dual models
for these dual theories. There is a proof theory, called geometric logic or GL,
associated with the fragment £9. We use the notion of language duality to define a
dual system which we call co-GL. The system co-GL decomes a type of proof theory
for £9°". We will use the notion of dual models for theories to develop the idea that

co-GL is a disproof. This is the idea that we use co-GL to derive falsehoods from
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falsehoods. Our development of GL is based upon the discussions in Goldblatt
[1984] and Makkai and Reyes [1977].

Definition 2.1: For a language £ a fragment L' is a subclass of the class of all
formulae of £ that is closed under the inclusion of subformulae and substitution.
So if ¢ € L and 1 is a well-formed subformulae of ¢, then v € £'; and if t is a term

of £ and v is a free variable in ¢, then ¢(v/t) € L'

Definition 2.2: A formula ¢ of a language £ as described in section one is called
posttwe exsstential if, in addition to atomic formulae, it contains no logical symbols
other than T, 1,A,V, and 3 where A,V are finite A,\/. The collection of positive
existential formulae of £ is denoted £9. A formula ¢ is called coherent or geometric
if it is formula ¢ = 1 where ¢,% € £9. All formulae ¢ in £9 can be called coherent
in that each ¢ can be identified with T = . As a result we refer to £9 as the

coherent or geometric fragment of L.
Dually,

Definition 2.3: A formula ¢ of £ is called co-positive-ezistential or negative uni-
versal if, in addition to atomic formulae, it contains no logical symbols other than
1, T,V,A, and V. The collection of negative universal formulae of £ is denoted
£9°7. A formula ¢ is called co-coherent of co-geometric if 1t is a formula ¢ = ¢ for
¢, € L7, All pin £9°” can be called co-coherent in that each @ can be identified

with ¢ = 1. As a result we refer to £9°" as the co-coherent or co-geometric fragment

of L.

Definition 2.4: A sentence of a language £ is a formula ¢ of £ with no unbound

variables.

Definition 2.5: A theory of a language L is a set of sentences of the language

L closed under a consequence relation and satisfying the property that if ¢ and ¢
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are sentences of the theory, then so is ¢ A 1. When all sentences of the theory are
sentences in L9, then the theory is called coherent or geometric. When all sentences

of the theory are in £9” the theory is called co-coherent or co-geometric.

Languages and Models:

There is a straightforward duality relationship to be drawn between £9 and
£97 . Tt can be described by defining formula ¢°? for any ¢ € £9 as follows

(1) if ¢ is atomic formula 1, then ©°P is ¢;

(2) if @ is 1 A 1ha, then P is 1P V o, 7;

(3) if @ is 1y V 1hy, then @ is 77 A 7,

(4) if  is 11 = 1Pa, then p°P is 7 = 77

(5) if  1s Jwp, then p°P is YVwh°P.

Recall that sorts, terms, and atomic formulae are common to £9 and £9°° and
1t 1s apparent that

€LY Iff e’

and that we may define a duality function

[-SuLs ssucs”

where if @ € S, 1 (a) = a; and if ¢ € L9, then | (¢) = ¢°?. As a point of
nomenclature, since [ is a bijection, we will frequently use symbol | to represent
both the function and its inverse.

We can use this duality function to make plain a relationship of duality between
models for £9°” and models for £9. Given a model 4:S U £9 — & where € is any

topos, we can define a model U,,: SU LI — £ by

Up:SULS” sy Yg

Plainly, when z is a sort, or an operation or relation symbol, Uop(t) = U(x). Also,

when t 1s a term and v contains at least the variables in ¢
L{;'p(t) =Uv(1).
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And when ¢ € £9°" and v contains at least all the free variables of ©
Usp(ip) = U (7).
Given the relationship of duality between £9 and £97", it should be apparent that

U exists iff U,, exists.

In fact, the relationship between U and U,, is usefully described by the following

diagram o
SULy —— gor

I

SUﬁ&——) £
U

where the left triangle is known to commute and the outer square is defined to
be commuting with d¢ being the usual categorial dualisation functor. The point
to note is that U and U,, share exactly the same range but that while &/ would
interpret A,V,3 by (,J, 3y in &, the model U,, would have (1, J,3; interpreting
respectively V, A, V. In effect, where U targets the lattice structures of £, model Uop
targets their duals.

The notable examples under the dualisation are the formulae T and 1. Since
T 1s defined to be empty conjunction and 1 is empty disjunction, we have that
USH(T) =UV(L) and Uy, (L) = UY(T). It follows that if models ¢ designate only
UY(T) of each Sub(d) and if we allow all subobject other than the Uy,(L) to be
designated under U,,, then we have the following relationship between formulae
that hold in models of the coherent language and formulae that hold in models of

the co-coherent language.

Z/{I?go iff Z/{Opl;'%cp‘”’.

In general, so long as models U,, do not designate the Uy,

(L) of Sub{U(v)), we

have that

it U }? v, then, Uy, b ¢°".
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Notice a slightly confusing feature of the dualisation that wherever ¢ is a term

and v is a sequence of variables containing exactly those free in ¢ ~ t, we have
Ut~ t) =U(t~t)
and under the usual interpretations & we would have that
U (t~t)=UY(T)
so we have
Usp(t =) = Uy, (L)

The only serious problem with this is that it may be misread as meaning that under
Uop, equations involving identical terms will fail. This is a misreading in that the
only interpretation of & to be made is the one provided by Uop. The symbol = is
standard for identity but under U,,, the two place relation ~ does not behave as
identity and so should not be considered as such. In fact, under Uyp, =~ behaves as

non-identity. It is necessary that we bear this in mind when we come to consider

co-GL.
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Proof theory:

We will consider two finite sequent systems. The first is the standard system of
geometric logic called GL presented by Makkai and Reyes [1977]. The second one
we will call co-GL and will be the dual of GL in the same sense that £9 and £9°" are
dual languages. We describe co-GL by applying the language dualisation function 1
to all the axioms and rules of GL. Obviously this does not create a new deduction
system as such; some interpretation is required. Consider first the axioms of GL.
These are formulae ¢ such that for any topos £ and any £9-model U, it is expected

that
U I? .

Assuming that any £9° -model Uop 1n € does not designate U (L) in any subobject

lattice it follows that
Uop = ©°F.
So, if ¢ is an axiom for GL, then [ (¢)¢°? is an axiomatic falsehood, or perhaps

absurdity, for co-GL.

Consider now the rules of GL. They will have the form
{@,‘: el }

©
and mean that from {©;:7 € I} derive ©. That these are rules means that whenever

U is an L9-model in &, it is expected that if
U IT O, alltel,
then
U |:1 0.
Putting this another way we have that if
U(0;)=Uu"(T)
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for all ¢ € I, then

UY(O) = U (T).

Applying the language dualisation to both formulae and models we have that when-

ever

Usp(O©77) = Usp (L)

for all « € I, then

U,(0°7) = U L)

It follows that if all subobjects other than those Uy, (L) are designated under all
£9°7 -models Uop, then the dualised GL rules of inference are rules of falsehood,
or absurdity, preservation for co-GL. For these reasons we call co-GL a system of
refutation or disproof.

We consider the finite systems since there are well known completeness and

soundness results for finite GL. We will describe GL first.

GL: A sequent will be an expression I' = ¢ where I' is a finite set of formulae.
When % and all formulae in I" are £9 formulae, the sequent is geometric. A sequent
is not a formula but can easily be re-written as one if required: I' should be re-
written as the finite conjunction of all its members. In what follows the union TUA
will be written T', A.
Axioms of identity:
v,
VRW = W R,
v~ w0 = p(v/w),
where v and w are variables of the same sort and ¢ is atomic.
Axiom A7l:

=, if ¢ecl.
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Rules of inference:

The rules have the form

{O;:1€ 1}
O
meaning from {0;:¢ € I'} derive O.
A AT, = ¢
(R/\l) ifc,OGP;
ANT =
A NT =%
(R/\z) ingA;
A=)
A0, VT =9
(RV,) f el
A=

and all free variables occurring in T" also occur free in the conclusion;

[ANT,p = g €T}

(BV,)

ANT =9
A, p(v/t), Jwp(v/w) = b
(R31)
A, p(vft) =9
A, Jwp(v/w), o = ¢
(R3,)

A, Jwp(v/w) = P

if v does not occur free in the conclusion;

A,F(tl,...,tn),(p(tl,...,tn) = 1

(RT)
A,P(tl,...,tn) =1

provided that all free variables in the premiss occur free in the conclusion and
that for some vy, ..., vy, the sequent I'(vy,...,v,) = @(v1,....0,) belongs to theory
) q \V1 ¥ g

T together with the GL axioms.
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When there is a finite sequence of geometric sequents ending in © with all
members of the sequence being axioms, members of the geometric theory T, or
following from earlier members of the sequence by application of the GL rules, then
the sequent O is said to be GL-derivable from T. We denote the existence of such

a sequence by

There are known to be soundness and (classical) completeness theorems (re-
spectively, Theorem 3.2.8 and Corollary 5.2.3, in Makkai and Reyes [1977]) for

system GL. Let T be some collection of £9 formulae.
Soundness Theorem: sf T kO and U is a T-model in topos €, then U l? 0. O

Classical Completeness Theorem: if T i O, then there 1s o Set-model U such that
U }T T and U b:% O. |

Given what we know about the duality of £9 and £9°” we can dualise GIL
and produce a system of co-geometric logic which we shall call co-GL. As we have
discussed, co-GL will be a system of axiomatic falsehoods and falsehood preserving

rules.

co-GL: The specification of co-GL is basically the same as that for GL except
that all dualisations by I from £9-formulae to £9°7 -formulae apply. co-GL will be a
system of axiomatic falsehoods (for want of a better phrase - we mean formulae used
as axioms but meant to be false) and falsehood preserving rules. A co-GL sequent
will be an expression 1°? = I'°? where I'°? is a finite set of formulae. When P and
all formulae in T°7 are £9” formulae, the sequent 1s co-geometric. A sequent is not
a formula but can easily be re-written as one if required: T'°? should be re-written as
the finite disjunction of all its members. In what follows the intersection I'°P 1 A°P

will be written I'°P, AP,
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Axiomatic falsehoods of non-identity:
v R U
W R V-V R W;
v R w0, (o)) = o7
where v and w are variables of the same sort and ©°? is atomic. To assure oneself of
the actual falsehood of this third “axiom” recall our earlier discussion to the effect
that &~ will behave as 5 and note that v &~ w and ¢°?(v/w) = V°P are conjoined; the
meaning of the axiom is, then, that when v is identical to w, formula ¢°?(v/w) = °P
is false.
Axiom(atic falsechood) A°P1:
PoP ~ TP if ohoP ¢ TP,
Rules of falsehood preservation:

The rules have the form

{01 eI}

Q°r
meaning from the falsehood of A{©{7:i € I} derive the falsehood of @°P,
AP \/ TP 4)oP - 0P

(RP\/,) if ©oP € Tor;
AP P = \/ TP

AP 1p°P = \/ TP
(R V,) if ToP C A°P,
¢OP = A°p

AP pOP 4)oP = A\ TP
(Ro? \,) if por € Tor
AP 1)OP = HoP

and all free variables occurring in I'? also occur free in the conclusion;

{AOP,/\FOP’wOP; (POP:QOOP c FOP}
(B A\y)

AP 4poP = A\ Top

252



AP, p°P(v[t), h°P = YweP(v/w)
(R°PY4)

AP o7 0P (1 /1)

AP Nwp°P(v/w), hP — p°P
(R°PYy)

AP, 2P = V(v o)

if v does not occur free in the conclusion;

AP TOP(41 . £0), P = O (4, . )
(RoPTP)

Aop’d)op; I“’P(tl, . ,tn)

provided that all free variables in the premiss occur free in the conclusion and
that for some v1,...,v,, the sequent °P(vy,... v,)~ I'°?(vy,...,v,) belongs to
T°? together with the co-GL axioms.

When there is a finite sequence of co-geometric sequents ending in © in which
all members of the sequence are axiomatic falsehoods of co-GL, formulae of some
co-geometric theory T, or are consequences of earlier formulae in the sequence by
the co-GL rules of flasehood preservation, then we say that O is co-GL derivable
from T. We denote this by

Tk ©.

Theorem 2.1: if T is a geometric theory and T°P is defined by allowing @°? € T°P
off ¢ € T, then we have

TP E ©°F iff THO.
Proof: the result follows by definition of the dualisation on £9 and on GL. O

Dualisation also provides us with two special non-triviality theorems. To prop-

erly describe them, some definitions are in order.

Definition 2.6: Where £ and L°” are dual languages so that where ¢ is in £,

the dual in £°? is denoted ©°P, we say that a set T°? of sentences @°P of L7 is a
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co-theory iff T described by
peT il 7T
1s a theory.

Definition 2.7: For any set of sentences, T, of a language £. if I{ is a model for
L and
UE ¢

for all ¢ € T, then U is a T-model or a model for T.

Definition 2.8: For any set of sentences T of a language £. if I is a model for £

and
U
for all ¢ € T, then U is called a T refutation or a refutation model for T.

Theorem 2.2: for any set of L9 formulse TP, if ToP b, O and U,p 15 a

refutation model for T°P in a topos £, then we have
Uop % 0°r,

Proof: by duality, since by the Soundness theorem for GL, for any T, if T L ©
and U is a model for T in a topos &, then U |? 0. O

Theorem 2.3: for any set of L9 formulae TP, if T°P 7, ©°P, then there is a
refutation model U,y for T°P in Set such that U,, % o°r,

Proof: by duality since by the Completeness theorem for GL if T is a set of £9
formulae and T / ©, then there is a model U for T in Set such that U |:1 T and
U o. a

In the light of these last two theorems we can we can see how we may use

the concept of a refutation model with respect to a refutation system like co-GL
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to model inconsistent theories. First of all note that for any negation inconsistent
theory T, that is any theory T that contains ¢ and ~¢ = ¢ = L. the co-theory TP
is negation inconsistent. This is because if ¢ € T, then °” € T°P, and if - € T,
then (—p)? = (¢ = L) = (T = p°?) = —(¢°P) is in T°?. Furthermore, we can

demonstrate that co-GL is consistent in the sense that
if  TeP |—2 O°? then T°F I/Z (%P,

This follows directly from the fact that GL is consistent together with Theorem 2.1.
So, to model inconsistent theories T using co-GL methods we need only consider
models for subsets of consistent co-theories. If T’ is a proper subset of some co-
theory TP such that for some P, neither ©°? nor ~(¢°?) are in T’, then, generally,

there will be at least one refutation model Uop for TP such that
both U,y |§ @ and U,y )? (p°P).
All that is required is that

neither T'FE ¢°” nor T E ~(0°P).

We regard falsehood preservation systems as reasonable tools for use with in-
consistency tolerant logics. After all, the acceptance of BrAs as algebras for para-
consistent logics amounts to the claim that inconsistency is not meant to mean that
some sentence is both true and false; the claim of inconsistency is that some sen-
tence and its negation are both not false. Toleration of inconsistency would seem
to mean something like avoiding the proliferation of inconsistent claims; one way

to do this would be to make consequence or inference an issue only of undeniable

falsehood.
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CHAPTER 15: THE OMEGA MONOID

Introduction: Thisis the final technical chapter of the thesis. It is a reproduction
for categories of a theorem for sets due to Faith and found in C. Faith [1973]. It
is included for its demonstration of the difficulty for the discovery of relevant logic
algebras that are based in toposes in the same way as the Heyting algebras. This
represents both an added layer of meaning for the original Faith result and a signal
of further interest in discovering the nature of categories as semantic objects for
non-classicial logics generally.

Throughout this work our interest has been in the categorial expressions of
paraconsistent logic. With this chapter we give a preliminary result for the investi-
gation of a broader range of non-classical logics. Our interest here is with Anderson
and Belnap’s relevant logic as described in Entailment [1975]. The algebras for this
logic are the De Morgan monoids. Now, for any object a in a category C, there
is always a monoid hom¢(a,a) where composition is the multiplication operation.
This gives us an opportunity to discuss relevant logics within category theory.

In the context of this text we have two constraints on our investigation of
monoids. First, we are interested to see structures related to Q objects or at least
with subobject lattices. Second, we are considering De Morgan monoids which
means we will require that our monoids have some lattice structure. It will be shown
in this chapter that, even before consideration of the required relationship between
the lattice order and the multiplication operation, the requirement that a De Morgan
monoid be commutative imposes the restriction that where c is the categorial object
around which we define our monoid there must be at most one arrow 1 — ¢, that
1s, exactly one global element. This is a significant limitation compared with the

usual treatment of Heyting algebras (2 in which algebraic elements correspond to the
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global elements. In passing we note the possibility of revitalising this investigation
by consideration of such structures as sheaves of monoids and sheaves defined over

monoids.
1. De Morgan Monoids

The following definitions are taken from Anderson and Belnap [1975].
Definitions 1.1: A semi-group (S,®) is a non-empty set S closed under ®, an
associative binary operation. When a ® b = b @ ¢ for all «,b € S, the semi-group
is commutative. If t € S such that t ® a = a ® t = «a, then t is an identity for the
semi-group. A semi-group with identity is called a monoid. If S is a lattice and
a®((bUc)=(a®b)U(a®c) for all a,b,c € S, then the semi-group is lattice ordered.

A De Morgan lattice is a lattice (S, <,—) where “—” is a unary operator for
which —(—a) = a and a < b implies —b < —a.

A De Morgan monoid is a structure (S, ®, <, —) where (S, ®, <) is a lattice or-
dered, commutative semi-group, (S, <, —) is a De Morgan lattice, and the following

two conditions are satisfied:
(a®@b)<c Hf bR(-c)<—a iff (—c)®a<—b
a<a® a.

When C is an arbitrary category, the collection of endomorphisms C(c,c) for
any ¢ € C 1s a set closed under composition of arrows. This set can be represented
as a single object category having object ¢ and morphisms C(c.c). This category
is called a strict monoidal category or a categorial monoid with composition as the
multiplication operation. When €2 is the truth value object of an arbitrary topos &,
the set £(€, ), which we shall call an 2-monoid, derives lattice structure from the

lattice (Sub(£2),C) where C is subobject inclusion. By definition of  as a truth
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value object, we have a bijection Sub(£)) = £(£, Q) described by
Sub(Q) 3 f — X5 € £(Q, )

which allows us to define an order < on £(£2,Q) in terms of subobject inclusion on

Sub(£2). The fact that Sub(d) is a HA gives us (£(Q,Q), <) as a HA.

Proposition 1.1: for any object ¢ in (small) category C, the set C(c,c¢) of all
C-morphisms ¢ — ¢ 18 a monoid with respect to composition.

Proof: C(c,c) is closed under composition since the composition of any two
morphisms ¢ — ¢ is a morphism ¢ — ¢. Composition is by definition an associative
binary operation on morphisms. Furthermore, we have the identity arrow id. : ¢ — ¢
for which we have id. - f = f-id. = f, any f € C(c,c). So (C(c.c).-) is a semi-group

with identity. O

The following results draw on a result in Faith’s Algebra: Rings, Modules and
Categories I [1973] where it is shown that Maps X, the semigroup with respect to
composition of all functions from non-empty set X to X, is comutative if and only

if X is a singleton. Assume a small category C with a terminal object 1.
Definition 1.2: For any object ¢ € C, a (global) element of ¢ is a map 1 — c.

Formally analogous to the notion of a constant endomorphic function is a map
f 1 ¢ — c that factors through a global element of c¢. This is a map f for which

there is a commuting diagram of the following sort,

f
C———¢
\/

1

We will denote by z. a map ¢ — ¢ that factors through element 2 : 1 — .



Lemma 1.1:  for any g,z. € C(c,¢), we have g -z, =y, for some y. € C(c,c).

Proof: consider the diagram
ZTe 9
c c c
1

Define y to be the arrow such that y = g-2. Now 2, = v-Lso g2, = g-2-1 = 4!

which by definition is y.. ]

Lemma 1.2: for any g,z. € C(c,¢), we have z. - g = 2,.

Proof: consider the diagram

g Te
¢ y C ' €
!
| G5
1

We have z. - ¢ = z - ! ¢g. But, by definition of the terminal object, we have

l=1.9.S0,z.,-g=2z2-!==z.. O

Notice a particular corollary that any z. is idempotent. As proof, let ¢ = «.

in the lemma. We now prove the main result of this chapter.

Theorem 1.1: in a category C with a terminal object the monoid (C(c,c),-) is
commutative only if there is at most one map 1 — c.

Proof: suppose at least two distinct maps 1 —— ¢ and 1 —2 ¢. Since z - ! and
y - ! are both constant morphisms, that is they factor through 1, when z # v, then
x -t # yl. So, for distinct z,y we have distinct . and y,.. It follows, by lemma 1.2,
that for any g € C(c, ¢),

Te g F Y- g
Now, z. € C(c,¢), so
T “Ze F Yo * Te.
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But, again by lemma 1.2, z. - z. = z,, so

Te F Yo r T,

Now, if the monoid is commutative, y. - 2. = z. - y.. s0 we should have

Te F Te Yoo

But, by lemma 1.2, z, = 2. - y. since y. € C(¢,c). It follows that (C(c,¢), ) cannot

be commutative unless C(c, ¢) contains exactly one element. O

In particular, this means that the Q-monoid where it exists for a category will
not be commutative, and hence not be De Morgan, unless it. is at least true that there
is exactly one truth value 1 — 2. Notice in finishing that the reason for recasting
Faith’s result for Maps X in categorial language is that Faith’s discussion is in
terms of sets and functions and, unlike sets, categorial objects are not necessarily

completely determined by their global elements.

In seeking out commutative monoids on the structure of categories we are not

left without resources.

Definition 1.3: For a semi-group S and a non-empty subset X of the underlying

set,

center X ={a € S|a®z=zQaforall z € X}.

Clearly, center X is a commutative sub-semi-group of S. In the case of small
C(c, c) the identity arrow on c is always an element of center C(c,c). Two further
topics of interest will then be under what conditions is center £(€, ) more than
just {idq}, and will center E£(Q,Q) have any structure related to the lattice on

(2, Q). This direction will not be pursued in this work.
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CHAPTER 16: CONCLUSIONS

In this work we have investigated two aspects of a dualisation program for logic
in categories. The first aspect was that of external or ex-categorial dualisation of
logic structures by reinterpretation of order structures. This was the core of the
original dualisation program that featured the notion of a complement classifier.
This type of dualisation featured heavily in our discussion in chapter fourteen where
we considered modelling theories in categories. The principal contribution of that
chapter was the notion that we could use this type of dualisation to prompt the
construction of a deduction system suited to the notion of inconsistency toleration.
The bulk of this work, however, was given over to investigation of the other aspect of
the dualisation program: the attempt to describe internal logic objects that exhibit
paraconsistent algebras in their own right. We were led to this type of investigation
by the discovery that straightforward categorial duals of ordinary subobject logic
structures would not produce logic structures that were dual in the logical sense.
This was the import of chapters four and five. Our investigations focused on sheaves
for their properties in relation to base space topologies. We found essentially two
things. First, logic objects in sheaf categories contain component BrAs but are not
generally themselves BrAs within their categories. This was the import of chapters
eight and nine. An interesting corollary of this investigation was that subobject
lattices in Grothendieck toposes are indeed BrAs (but not naturally so). Second, we
discovered that the original dualisation idea contained in the complement classifier
notion has an instantiation in categories. With chapter eleven and twelve we found
a genuine complement classifier in a category of covariant sheaves.

A barrier to the discovery of BrA logic objects with respect to subobject struc-

ture in categories seems to be the faillure of naturalness of BrA operations by virtue.
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essentially, of the failure of closure operations to distribute over intersections. An
interest for the future is in seeing if this remains a problem in categories that are
co-exponentiated (in the way of closed set topologies) as opposed to exponentiated
in the way of open set topologies and toposes. The notion of co-exponentiated
categories is itself of interest with respect to the internal language of categories.
We have seen in chapter fourteen one of the ways that we may develop categories
in terms of a logical language. The method there located interpretation of logical
connectives in the subobject lattices. We expect that a genuinely interesting exten-
sion of our investigation will be in the examination of those categorial structures
determined by the imposition of a given non-classical logic as a background for the

interpretation of the usual formulae that describe categories.

262



[4]

[5]

[6]

[7]

(8]

[10]
[11]
[12]

[13]

[14]

Bibliography

Allwein, G., [1992], “The duality of algebraic and Kripke models for linear
logic,” Ph.d Thesis, Dept.Comp.Sci., Indiana University.

Allwein, G. and Hartonas, C., [1994], “Duality for bounded lattices,” (unpubl.).
Anderson, A.R. and Belnap, N.D., Jr., [1975], Entailment. The logic of rele-
vance and necessity, Vol.1, Princeton University Press.

Artin, M., Grothendieck, A., and Verdier, J.L., [1972.73]. Thedrie des topos et
cohomologie étale des schémas, Lect. Notes in Mathematics, volumes 1,2, and
3, Springer Verlag.

Barr,M. and Wells, C., [1985], Toposes, Triples and Theories, Springer-Verlag.
Belnap, N.D.jr., [1977], “A useful four-valued logic” in Dunn, J.M., and Epstein,
G., (eds.), Modern uses of multiple-valued logic, D.Reidel Publishing Co., 1977.
Bredon, G.E., [1968], “Cosheaves and homology,” Pacific J. of Math., vol.25,
no.l.

Curry, H.B., [1963], Foundations of Mathematical Logic, McGraw-Hill Book
Company.

Davey, B.A, [1973], “Sheaf spaces and sheaves of universal algebras,” Math. Z.,
134, 275-290.

Davey, B.A. and Priestley, H.A., [1990], Introduction to Lattices and Order,
Cambridge Mathematical Textbooks.

Faith, C., [1973], Algebra: Rings, Modules and Categories I, Springer-Verlag.
Freyd, P., [1972], “Aspects of topoi”, Bull. Austral. Math. Soc., Vol.7, 1-76.
Fourman, M.P., Mulvey, C., and Scott, D.S., (eds.). [1979], Applications of
Sheaves, Lecture Notes in Mathematics, 753, Springer Verlag.

Goldblatt, R., [1984], Topoi, (revised edition), Studies in logic and the founda-

tions of mathematics, 98, North-Holland.

263



[15]

[16]

[17]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
28]

Goodman, N.D., [1981],“The logic of contradiction,” Zeitschr. f. math. Logik
und Grundlagen d. Math., Bd.27, S.119-126.

Herrlich, H. and Strecker, G.E., [1979], Category Theory. (second edition),
Sigma series in Pure Mathematics,1, Heldermann Verlag.

Heyting, A., [1966], Intuitionism, 2nd., revised edition. North-Holland.
Johnstone, P.T., [1977], Topos Theory, Academic Press.

Kawada,Y., [1959/60], “Theory of cosheaves,” J. of Fac. of Sci.. Univ. Tokyo,
Sect. I, Vol VIII.

Lawvere, F.W., {1991], “Intrinsic co-Heyting boundaries and the Leibniz rule in
certain toposes” in Category Theory, Springer Verlag Lecture Notes in Mathe-
matics, 1488, pp.279-281.

Lawvere, F.W. and Schanuel, S.H., [1986], Categories in Continuum Physics,
Lect. Notes in Math., 1174, Springer-Verlag.

Mac Lane, S., [1971], Categories for the Working Mathematician, Springer Ver-
lag.

MacNeille, H. M., [1937], “Partially ordered sets,” Trans. of the Amer. Math.
Soc., 42, 416-460.

Makkai, M. and Reyes, G.E., [1977|, First Order Categorical Logic, Lect. Notes
in Math., 611, Springer-Verlag,.

McKinsey, J.J.C. and Tarski, A., [1946], “On closed elements in closure alge-
bras”, Annals of Mathematics, 47, 122-162.

McLarty, C., [1995], Elementary Categories, Elementary Toposes. Oxford Logic
Guides, 21, Oxford University Press.

Mortensen, C., [1995], Inconsistent Mathematics, Kluwer Academic Publishers.
Mortensen, C. and Leishman, S., [1989], Computing dual Paraconsistent and

Intuitionist Logics, Automated Reasoning Project Technical Report Series, TR-

ARP-9/89.

264



[29]

[30]

[32]

[33]

[34]
[35]

[36]

[37]

1]
2]

Priest, G., [1987], In Contradiction, (Nijhoff International Philosophy Series;
39), Martinus Nijhoff Publishers, Dordrecht.

Priest, G. and Routley, R., [1984], On Paraconsistency, Research series in Logic
and Metaphysics, Dept. of Philosophy, RSSS, ANU.

Rasiowa, H. and Sikorski, R., [1963], Mathematics of Metamathematics,
Panstwowe Wydawnictwo Naukowe.

Routley, R., [1976], "The semantical metamorphosis of metaphysics”, Aus-
tralasian Journal of Philosophy, Vol.54, No.3, pp.187-205.

Strooker, J.R., [1978], Introduction to Categories. Homological Algebra and
Sheaf Cohomology, Cambridge University Press.

Tarski, A., [1956], Logic, Semantics, Metamathematics, Clarendon Press.
Tennison, B.R., [1975], Sheaf Theory, LMS. lect. note series, 20, Cambridge
University Press.

Urquhart, A., [1978], “A topological representation theory for lattices,” Algebra
Universalis, 8, 45-58.

Volger, H., [1975], “Ultrafilters, ultrapowers and finiteness in a topos,” J. of
Pure and Applied Alg., 6, 345-356.

Sheaf History

Adamson,I.T., [1971], Rings, Modules and Algebras, Oliver & Boyd.
Alexander,J.W., [1936], “On the connectivity ring of a bicompact space”, Proc.
Nat. Acad. Sci. USA, 22, 1:300-303, 11:381-384.

Alexander,J.W., [1938], “A theory of connectivity in terms of gratings”, Ann.
Math, Series 2, 39, 883-912.

Alexander,J.W., [1947], “Gratings and homology theorv™. Amer. Math. Soc..
53, 1, 201-233.



Bredon,G.E., [1967], Skeaf Theory, McGraw-Hill.

Cartan,H., [1950/51], Cohomologie des groups, suite spectral, faisceauz,
Séminaire Henri Cartan, Ecole Normale Supérieure, 2e.éd.

Fourman, M.P., Mulvey, C., and Scott, D.S., (eds.), [1979], Applications of
Sheaves, Lecture Notes in Mathematics, 753, Springer Verlag.

Godement.R., [1964], Topologie algébrigue et théorie des faisceauz, Hermann,
in Actualités Scientifiques et Industrielles, no.1252.

Gray,J.W., “Fragments of the history of sheaf theory”, in Fourman, Mulvey,
and Scott [1979].

Johnstone,P.T., [1977], Topos Theory, Academic Press.

Kelley,J.L., [1955], General Topology, Van Nostrand Reinhold Co.

Leray,J., [1944], “Sur la forme des espaces topologiques et sur les points fixes
des répresentations”, J. de Math. Pures et Appliquées, Ser.9, 24, 95-168.
Leray,J., [1950], “L’anneau spectral et I'anneau filtré d’homologie dun espace
localement compact et d’une application continue”, J. de Math. Pures et Ap-
pliquées, Ser.9, 29, 1-139.

Seebach,J.A., Seebach,L.A., Steen,L.A.; [1970], “What is a sheaf?” Amer.
Math. Monthly, Sept.

Serre,J.-P., [1955], “Faisceaux algébriques cohérents”, Ann. Math., series 2, 61,

197-278.

266





