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Abstract

In this work we investigate two related aspects of a clualisation program for the

usual intuitionist logic in categories. The dualisation prograrr h.as a,s its encl the

presentation of closed set, or paraconsistent, logic in placr: of the usual open set, or

intuitionist, logic found in association with toposes. \Äie address ourselves pa,rticrr-

larly to Brouwerian algebras in categories as the duals of the usual Heyting algebras.

The first aspect of the program is that of external or ex-ca,tegorial dualisation of logic

structures b¡' interpretation of order. This appears in the u'ork as an exarnirration

of the notion of a complement classifier. We also use ex-categorial dualisation as a,

tool to prompt the development of a categorial proof and rnodel theory adequa,te to

the task of modelling theories generated by inconsistency tolerant logics. We rnake

an initial attempt to develop dual logic structures by considering quotient object

classifiers in place of subobject classifiers. Ex-categorial dualisation of structure was

always meant to act as an indication of the existence of categorial entities that di-

rectly satisfy dual descriptions, so the bulk of the work is concerned with the second

aspect of the dualisation program: the discovery of logic objects within categories

that exhibit paraconsistent algebras in their own right. Our investigation focuses on

sheaves for their algebraic properties in relation to base space topologies. We define

the notion of a sheaf over the closed sets of a topological space. We find essentially

two things. First, logic objects in contravariant sheaf categories contain component

Brouwerian algebras but are not generally themselves Brouwerian algebras within

their categories. A corollary is that subobject lattices in Grothendieck toposes are

Brouwerian algebras (but not naturally so). Second, paraconsistent logic objects do

exist. We describe one such within a category of covariant sheaves. As a corolì.ary

we find that the original ex-categorial dualisation idea represented by the notion of

a complement classifier has an instantiation in categories. Our paraconsistent logic

object proves to be the object of a genuine complement classifier.
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Introduction

When a set of sentences is closed under some consequence relation and und.er

uniform substitrrtion of sentences for atomic sentences we have a sentential logic.

A paraconsistent logic is one which allows that sets of sentences contain a sentence

and its negation and be closed with respect to the logic's consequence relation

without containing every other sentence. The logic is said to tolerate inconsistency.

It is rarely remarked that closed set topologies form algebras for exactly this sort

of logic while it is well known that their duals, the open set topologies, form the

algebras for the logics of Intuitionism. In as much as it is exactly the Intuitionism

algebras that are known to occur in and around topos theor¡, it is perhaps surprisin¡ç

that category theory, with its awareness of duality, should have so little to note on

the topic of paraconsistency. It is at least true that inconsistency toleration is

exactly the right sort of notion to use in the development of any type of machine

that requires input so with the emphasis of category theory tending toward useful

applications, particularly those computational, it is appropriate that we investigate

the underdeveloped area of closed set logic within categories.

The project of this thesis began with the study of closed set topologies as algebras

for paraconsistent logics. These were to be developed as tire duals of the Intuitionist

logics. The background assumption for the usual formalisation of Intuitionism is

that any sentence is interpreted on some open set of a topological space. For a

sentence ,S, then, the negated sentence -,9 is the largest open set for which 5 íì -S
is empty. The dual position assumes that any sentence is interpreted on some closed

set. We can then interpret a set .,9 in relation to a sentence ,S by allowing .S to

be the smallest closed set for which S U.S contains everJ/ other closed set. The

operators - and r are then formaily dual; among other theorems we will have that

,S lì -,S need not be empty. This is to say that sentences ^9 and -.9 are such that



they cannot both be false but that (given a big enough set of designated values)

they may both be true. The background assumption that any sentence is valued

on a closed set allows us to avoid the suggestion that - is a subcontrary operator

rather than negation operator. It follows that the logics that arise as the duals of

intuitionist logics are genuinely paraconsistent. With the introduction of Mortensen

and Lavers' complement classifiers and complement toposes the idea of dualisirrg

logics was linked formally with category and topos theory. The structures that most

obviously linhed Heyting algebras (and so Intuitionism) and topos theory were the

sheaves definecl over open set topologies. And so arose the idea of investigating

the effect on categorial logic of defining sheaves over topologies of closed sets. The

overall aim was and remains one of dualising the logics built into the structures of

toposes and categories.

The importance of paraconsistent versions of categorial logic is in terms of

categories as semantic objects for assignment functions that determine inconsistent

theories: the logic of the category provides the deduction relation under which the

modelled theory is closed; inconsistent theories require (and are generated by) "
paraconsistent deduction relation. Now clearly, categories are not the only seman-

tic objects that we might use in inconsistency model theory. Equally clearly there

has been little or no work on this type of model theory done for categories. Fur-

thermore, category theory is an important mathematical discipline; if we regard

paraconsistent logic as significant, then investigation of its place in category the-

ory is mandated. Some note of it has already been made. In the introduction to

Lawvere and Schanuel's Categories in Continuum Pltysics,1986, Lawvere notes in

connection with sheaves and categories that a property of complements in algebras

of closed sets is that the intersection of a closed set and its compiement will not

invariably be the least element of the algebra; in other words. using closed set lat-

tices as logical algebras produces logics in which a formula and its negation have,
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as a rule, truth values with non-zero intersections.

Just above I claimed that paraconsistent logic allows for the existence of in-

consistent theories. The idea is this: a theory is a set of sentences closed under a

deduction relation; if the deduction relation is paraconsistent, then the presence of

inconsistent sentences within the theory need not mean that the theory contain all

other sentences and be rendered trivial. We may think of paraconsistent deduction

as one that limits the (deductive) impact of contradiction. This is clifferent from

being huppy to have one's theories loaded with inconsistencies. The paraconsistent

logics are, in this light, a way of dealing with problems that arise fïom otherwise

good mathematical and philosophical ideas. A good example is the case of a, set

theory that adopts unrestricted set abstraction, that is, allows that for any property

there is a set of things with that property. Famously, this Ìeads to the existence of

paradoxical sets, notably the Russell set, the set that both is and is not a member

of itseif. But set abstraction is a valuable device so, if there is no theoretically

acceptable restriction that we can place on its use) we must tolerate the paradoxical

sets; the theory that contains unrestricted set abstraction requires a background

logic that is paraconsistent; in that way the details of the ordinary, non-paradoxical

sets are not lost in a flood of trivial sentences flowing from the contradiction of, say,

the Russell set (provided those ordinary sets are not deductively related to that

Russell set). Set theory, in practice, is workable but this is due to the imposition of

restrictions that are not in themselves valuable for more than denying the existence

of sets like Russell's. Many writers have noted that this seems too ad hoc a solu-

tion. And any discussion that leaves us with unrestricted set abstraction also forces

on us paraconsistent logics defined as logics that have associated theories that are

inconsistent but non-trivial.

The idea that we may be required to accept inconsistencv toleration is not

necessarily a "lesser of two evilst' conclusion. The idea that we must require consis-
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tency when we talk about mathematics need not be true; that is, it might just be

the case that our meta-language has to be inconsistent. Consider an exailr.ple not

from mathematics but from ordinary (trnglish) language: "This sentence is false".

This sentence provides us with a version of the famous Lial paradox: if the sentence

is true, then it is false, and if it is false, then it is true. Priest (In Contradiction.

1987) and Priest and Routley (On Paraconsistency,lgs4) tell us that this sentence

generates a true contradiction by having semantic conditions that overdetermirie

its truth value. The sentence has a subject, "This sentence''. and a predicate,

"is false". In semantic terms the sentence is true if its predicate applies truly to

its subject. But just as in the case of the unrestricted set abstraction, this truth

making principle (in conjunction with ordinary sentence forming principles) is t<¡o

strong, it generates contradictory truth values for some sentences. And in the case

of this principle there are even fewer satisfactory methods for restricting its use.

That the Liar paradox exists is an argument for the relative messiness of language;

natural language semantics contains principles that are inconsistent. It may be

possible to cure this inconsistency, perhaps by discovering some theoretically ade-

quate restriction on the relevant principles or by reinventing semantics itself, but

in any case since there exists inconsistent principles in operation at present and in

the foreseeable future, \Me are called upon to make some philosophical comment.

Paraconsistent logic fi1ls the void.

Paraconsistent logics also serve an epistemic purpose. Thinking machines need

a method for dealing with inconsistent data. The logical issuses generated by no-

tions of inconsistent databases and decision making on the basis of such databases

were discussed notably in Belnap's "A useful four-valued logic" , 7977. The issue

essentially resides in the question "What is to be done when our thinking machine

discovers that it has inconsistent data but still must think?" The problem of in-

consistent data is ubiquitous; multiple sources of inf'ormation can individuallv be
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consistent but together be inconsistent; even the idea of a single inconsistent source

of information is not unusual. We are called upon to f'orm a method for dealirrg

with such problems, particularly if we are in the business of designing simulations of

reasoning in clynamic environments. Plainly a good solution is to be able to mark a

datum as "told both" or something of the sort rather than only one of either "true"

or "false". But this is inconsistency toleration. It seems. however, prefera,ble to

some solution that makes ad hoc choices over which of the contradictory data are

true and which are then false.

The notion of containing contradiction is valuable. The fact that it is formally

possible offers us the opportunity of understanding old problems in nev/ ways.

There are some things to be said on the nature of the project of this thesis with

respect to principal content. It may be suggested that in essence, since the focus is

upon algebras, that this is a dissertation on sentential logic with respect to poset

theory. In answer to this I suggest that formally speaking the modeis for the logics

considered are indeed posets but that the project came into being by considering

the duality of open and closed sets in topology; in the terms of the project the

models are topological spaces, and we lose some part of the philosophical content

of the thesis if we speak only of posets. There are two questions to address with

respect to the suggestion that the thesis is more properly located in poset theory

than in topos theory: the first is the straightforward one and is why, if the subject is

sentential logic, get involved with topos theory at all, rvhy not just content oneself

with posets, or even topological spaces; the second would be why, if the subject is

sentential logic, invoke topos theory which is known to provide for formaily richer

Iogics, namely quantified logics. I consider both of these questions in what follows.

As to the first question, the issue of invoking topos theory is not one of a,dvan-

tage. The thesis, in major part, is the working out o1 u þl,pothesis that topological

dualisation of (pre)sheaves) the replacement of closecl set notions for open set no-
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tions in the definition of the (pre)sheaf notion, will produce structures that can be

collected into a category and that that category will exhibit a logic which is para-

consistent, which is to say, dual to the usual topos logics. This hypothesis is first

seen in the concluding remarks to chapter 11 of Mortensen's Inconsistent Mathemat-

ics, 1995. The motivation for an examination of this h;'pothesis was the expected

outcome for the modelling of inconsistent theories on categories. As Mortensen

puts it in Inconsistent Matltematics, "...deductive theories come with a logic in the

background" (p.1); and when the theories are generated by notions of modelling o¡
categories, the background logic is that of the category, which is to sa¡,, that of the

sets of subobjects of the category. Should the hypothesis have borne the expected

fruit, a topos like category with subobject lattices that were Brourverian algebras,

then we would have (the basis of ) a theory of categorial semantics for paraconsistent

logic and inconsistent theories. The issue is not that the tools of topos theory would

act as some aid in the demonstration or otherwise of the hypothesis, it is that the

hypothesis was one about category theory. The project of category theory itself is

to provide insight into the nature of mathematics essentially by doing it over in a
new setting, one with a greater aï/areness of generalisation and structural issues. To

redo inconsistency model theory within toposes required something of mathemat-

ics that may or may not be there. That is, it is relatively clear that the notions of

"proof only through constructive methods" that come from the Intuitionist position

constitute a (reasonably) minimal description of what mathematics and logic are

capable of doing. The notions of inconsistency toleration and containment are rea-

sonably likely, if anything, to be part of a sort of maximal description of the reach of

mathematics and logic. I'm claiming here that Intuitionism and Paraconsistentism,

as philosophical positions, are dual (in a non-technical sense rvhich is nevertheless

related to the actual duality of the formal developments of ihe positions). This is
a much grancler idea than anything attempted in the thesis: the thesis is a starting
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point, more technical than philosophical in bent but meant to provide facts with
which the philosophical duality idea could be considered anew.

As to the second question, why bother with a theory that provides for quantified

logics if the subject matter is only sentential logic, it follows from an understanding

of the project as the working out of a hypothesis related, at heart. to the duality
of open and closed sets that quantification, while interesting in itself, is a side is-

sue. The concern of the thesis is to develop formal structures for paraconsistent

logic exactly by "dualising" existing structures for the logic of Intuitionism in cate-

gories. Notice an important point: there are at least three separate formal notions

of dualisation (as opposed to duality) at work in the thesis. These are (1) stan-

dard categorial dualisation, the replacement of primitive categorial terms by their

duals in statements that describe categorial structures; (2) tattice dualisation, the

replacement of lattice notions of order with their duals; and (3) topological du-

alisation, the replacement of topological set notions with their duals. Along with
these notions of dualisation there is a notion of the dualisation of the logic structure

of a category which means the replacement of Heyting algebra subobject lattices

and classifier objects with their "duals", Brouwerian algebra subobject lattices and

classifier objects. This is what is meant when I claim that the concern of the thesis

is the production by dualisation of categories with paraconsistent logics. This "du-

alisation" of the logic structures of categories is meant to be effected by some act or

combination of acts of the three formal notions of dualisation within the thesis. So

we have two points to make: (1) the subject matter of the thesis is category theory

rather than sententiai logic; and (2) the particular principal concern is with dualisa-

tion of logics with the raw materiai being structures that exhibit Heyting algebras.

The project takes on the appearance of a sentential logic treatise since the distinc-

tion between intuitionist and paraconsistent logic appears at the propositional level.

I claim that it is not so much that I have ignored the quantificational possibilities
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of topos theory nor so much that I have used too strong a device by involcing topos

theory, but that my subject matter, in essence, is Heyting algebras and category

theory (and, of course, dualisation of logics) and therefore, topos theory.

The notion of a topos logic as tù¡e use it in this work requires some explanation.

The usual notion of a topos logic comes from the idea tha,t we may use toposes as

semantic objects; this is the idea that we can use the internal structure of toposes tc-r

interpret formal languages. In these terms, topos logic is the set of rules of inference

that the structure of a topos will support. We consider such systems in chapter

fourteen. However, for the bulk of this work u/e concern ourselves with the structure
of subobject classifiers and when we speak of topos logic rve u,ill be referring to the

internai algebras that arise with respect to these classifiers. Under the usual scheme

logical connectives are interpreted with respect to subobject algebras, so there is a

measure of justification for our minor misuse of the term "topos logic". We should

recognise, too, the difference between Intuitionism, the position on the epistemology

of mathematics, and Intuitionistic logic, the logic formalised in terms of Heyting

algebras. Generally, whenever rvl/e use the word "Intuitionism" and its variants, we

will mean Heyting algebra logic.

Now, there are some things to be said of the project of this thesis with re-

spect to method. The various dualisation techniques at the heart of this thesis are

mathematically simple. The claim is, however, that, simple or not, these techniques

and the worhing out of the consequences of their use provide some phiiosophically

important insight. To back up this claim we ask the following question: When is it
that a mathematically simple technique can give a philosophicallS, important per-

spective? In answer IÃ/e say that the technique must lay open an area of mathematics

to discussion in terms of a new set of notions that are themselves philosophically

significant. An example of a mathematically simple notion is tirat of the duality
between open and closed topologicai sets. This notion is the basis of a mathemat-

B



ically simple technique: topological dualisation, the replacement of topological set

notions in the definition of a mathematical structure with the dual topological set

notions. The duality of open and ciosed sets is philosophically significant for exam-

ple in the light of two rivai empirical hypotheses about the world from the point

of view of physics, namely (1) that propositions are only ever true on open sets of

points, and (2) that propositions are only ever true on closed sets of points. These

hypotheses go to the issue of how we are to think of our claims in physics applying

to the world. Examples of how these hypotheses can be understood to come to

hold lie in possible claims like one that, from the point of view of the physics of

dynamical systems, subparts (that is, sub-bodies) of an¡, body are sets of points of

that body and the set of subparts is (isomorphic to) some topological space. Thìs

sort of claim is mentioned in the introduction to Lawvere and Schanuel [1986]. This

idea of the significance of open and closed set duality deriving from the existence of

these rival hypotheses need not be restricted to the realm of physics. The forms of

hypotheses (1) and (2) apply to any area where there is a notion of one type of thing

under discussion and a notion of classes and subclasses of things of that type. Now,

open and closed set duality being philosophically significant tends to suggest that
topological dualisation will provide philosophical insight should, say, hypothesis(2)

be true and we have before us a mathematics that relies on open set structures to

describe the world. In any case, allowing that hypotheses (1) and (2) are meaningful

suggests that any differences between the logic of open sets and the logic of closed

sets (for example, the differing accounts of negation) are philosophically significant.

It follows that differences in useful mathematics brought about by topological dual-

isation have a philosophical significance. It follows too that paraconsistentists have

an interest in open-closed dualities since closed set logic is paraconsistent. And it
follows that open-closed duality notions are centrai to the project of my thesis.

A further example of a mathematically simple but philosophically valua,ble

I



technique is that of lattice dualisation of Heyting algebras. The technique is sim-

ple: it can be performed by replacing "less than or equal to" with "greater than

or equal tot' (and "greatest Ìower bound" with "least upper bound" and vice versa)

but lub and glb are order dependent concepts and can be regarded as dualised when

the order is dualised). And the technique, while simple, is significant: it produces

algebras that, when taken seriously as logical algebras, produce paraconsistent log-

ics. This is significant in the terms of the philosophical significance of open-closed

dualities since an open set topology ordered by set inclusion is a Heyting algebra

and a closed set topology ordered by set inclusion is a Heyting algebra dual. Heyt-

ing algebra duals \Mere named Brouwerian algebras by McKinsey and Tarski in their

"On closed elements in closure algebras" ,7946. McKinsey and Tarski did see that

the lattice dualisation notion was useful for developing the properties of the alge-

bras but did not see the significance with respect to logic: McKinsey and Tarski

allowed that Brouwerian algebras were algebras for the same logics that were found

associated with Heyting algebras; that is, McKinsey and Tarski dualised the the-

oremhood semantics as well as the algebras rather than develop the logics arising

from Heyting algebra lattice-duals together with standard theoremhood semantics.

I note this in the thesis in chapter 3 when discussing the signifrcance of Brouwerian

algebras as productive of paraconsistent logics.

Notions of open-closed dualities are central elements of the project of my thesis.

The aim of the project was to flnd ways to exhibit Brouwerian algebra structures

within, or at least for, categories. There are two strands to the origin of this

aim. The first strand consisted in the simple fact that sheaves are defined in terms

of topologies. The second strand consisted in the well known fact that toposes

carry Heyting algebra structures. The two strands come togethel in the fact that

categories of sheaves are toposes. Another way of stating the project aim, then, is

that I was investigating the possibility of effecting some kind of dualisation for the
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logic of toposes by performing some version of a "closed" for "open" swap. In the

case of the sheaf categories the swap was literaliy that, a topological dualisation

of the sheaf notion. In the case of the complement classifier discussion the swap

in chapters 11 and 12 was not topoiogical but categorial, however the result was

discussion of structures defined on closed sets rather than open. A feature of the

discussion in chapters 3, 4, 5, 11, and 12 was explicit proof of dual statements

of (more or less) familiar facts and theorems of category theory. In all cases this

reasoning technique was a tool to further basic discussion. This tool is technically

very simple but the details it revealled needed interpretation in the philosophical

terms of the thesis, the open-closed dualities.

All of these techniques, topological and lattice dualisation and the working

through of explicit categorial dualisations, are simple but they work precisely be-

cause they are being applied in situations of relative complexity: a simple change

at a fundamental level to a notion of a thing that stands in a relatively complex

relationship to other known things can, since the external relationships are (pre-

sumably) a,ffected, lead us to understand the changed notion as that of a thing that

is quite new. To make this valuable we need to have some new framework of ideas

into which the changed thing can be fitted. If we have no such new framework, then

the changed thing is merely the thing changed. In terms of the content of the thesis

the new framework of ideas are those of a program for the discovery of structures

that act as semantic objects for assignment functions that determine inconsistent

theories. Topological dualisation is easily understood as the effecting of "a simple

change at a fundamental level" to the notion of a sheaf. Explicit categorial dual-

isation calls for a wider interpretation of the idea of effecting such a change. The

principal "change" is merely a categorial dualisation. Now, it is entirely true to
say that once a theorem in category theory is demonstratecl. then so is its dual.

However, what is not true is the idea that once a theorem is demonstrated., we

11



understand the philosophical nature of the structures associated r¡'ith the dual of

the original theorem; that idea amounts to the claim that once a mathematical the-

orem is demonstrated we have a philosophical understanding of the importance of

its content (that is, for example, once we demonstrate that a Heyting algebra exists

we suddenly know why we should care that it exists, we are suddenly struck by

the worth of the Intuitionist program). But on the other hand philosophical under-

standing of the importance of a structure is undoubtedly sþ.t.d by demonstration

of mathematical detail. For these reasons there is merit in explicit demonstration

of dual claims to familiar theorems when it is used to provicie detail for novel philo-

sophical developments, just as I assert is the intent of chapters 3, 4, 5, and 15.

Chapters 11 and L2 car' also be understood as being of this nature.

We have considered the philosophical merit of the nature of the project and

now v¡e should consider the question of the philosophical merit of the particular

content of this thesis. In other words, does the content of the thesis do justice to

the aspirations of the thesis? Under the terms of the thesis we are broadly engaged

in the task of developing paraconsistent logic within category theory. \Mhat in fact

we address ourselves to is the existence of Brouwerian algebras in the subobject

structure of toposes. Now it is clearly true that the philosophical merit of a concept,

say, paraconsistency, is not enough to establish the philosophical merit of a given

formal model for that concept, say, Brouwerian algebras in the subobject structure

of some category; further argument is needed. We note then that understanding

Brouwerian algebras to be algebras for paraconsistent logic is relatively novel in

category theory. We have the Mortensen and Lavers discussion in Mortensen's

Inconsistent Mathematics. ÃIsq as f noted above, Lawvere is aware of the logical

implications of using lattices of closed sets as logical algebras. But these authors

seem to be largely alone in this area) or at least, largely alone in their interest in

closed set logic as something significant in category theor5,. Goodman (,,The logic
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of contradictions", 1981) and numbers of other authors are aware of the nature of

the logic of closed sets in relation to the logic of open sets, however it seerns that

only Lawvere and, independently, Mortensen and Lavers ha,ve discussed this in the

context of category theory. We should also note that the actual development of

structures within category theory as algebras for paraconsistent logic is extrernelv

novel. So, the notion of a Brouwerian algebra is far fîon new but what is new is the

idea that they should appear in categories (Lawvere's prior discoveries ìn Springer

Verlag 1488 now acknowledged but at the time unknown to me). This makes for an

argument for the worth of finding any examples of Brouwerian algebras in categories,

and indeed for the worth of finding cases where the expected examples fail to exist.

On the other hand, there is some need to develop philosophical notions by see-

ing if there is technical room within the existing discipiine. This, surely, is what

gives the notion of a "contribution to learning" its meaning. Admitedly there is

tension between the idea of existing theory being sacrosanct and the idea of new

discovery, however how are we to know if existing theory needs an overhaul unless

we check first for the workability within the existing scheme of our new ideas? This

calls for an initial philosophical investment, but one, surely, that is modified as

technical work progresses. The initial philosophical investment in the thesis is in

the substance of notions of paraconsistency and of category theory. The technical

investment is then the various investigations of the kinds of dualisations possible.

So there is an argument to the effect that (1) category theory is important and has

a known relationship to logic (viz. model theory with respect to subobject lattices),

(2) paraconsistency theory is important, (3) formalisations of paraconsistent log-

ics arrive most expiditiously by lattice dualisation of formalisations for Intutionist

logics, therefore (4) seek out Brouwerian algebras in categories in the terrrs of the

usual logic structures known in category theory (viz. subobject lattices). Plainl5'

this is, as above, a further argument for philosophic relevance of these particular
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formal models, as required; but it exists along with the idea that there is a sense in

which technical development modifies philosophical development so that there is at

least two notions of the merit of a formal model: the one that gives us a reason to

develop it and the one that is an assessment of its irrpact. This notion of impact is

the sort of thing alluded earlier in this discussion were I suggested that ihe technical

results of the thesis were a starting point from which we could consider anew the

idea of Intuitionism and Paraconsistentism being philosophically dual. 1'he results

give us some context for the discussion of this philosophical duality just a,s, for

example, the development of Heyting algebras provide a, formal context for discus-

sion of Intuitionism as a philosophical position. And in any case, surely the fact

that there \Mere negative results to be found (the principal ones being the failure of

naturalness of the pseudo difference arrows and the failure of categorial dualisation

to produce Brouwerian algebras) answers some part of any trivialiiy claim since it
demonstrates that not every dualisation results in an instantiation of the features

that make the original topological open-closed dualities philosophically valuable.

Finally, a note on a second aspect of our project. This was the concern to

formalise within category theory the ability to address an algebra by considering

its dual. In intent this part of the project has much in common with the original

complement classifier ideas. In terms of constructions we have chosen rather to build

the idea of dualising logics into category theory in the same way that we can build

in the idea of theories and models. Theories become categories, models become

functors, and the ability to address dual logics arises as a language dualisation

functor between theories and models. This encls up aliowing us to use existing

Heyting algebra structures within categories as though the algebras \,vere the dual

paraconsistent algebras.
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A word on topologies and topological spaces and their properties as logical

algebras. Topologies on a set X are collections of subsets c-¡f X satisfying certain

properties. The set X, in recognition of the physical notion of topology, is usually

calied a spaæ. An open set topology Ø for space X is a collection of subsets of

X for which the intersection of any two members of O is a member of O and the

union of any subfamily of o is a member of o, and as well both X and Ø are in

O. The sets of O are called open sets of X relative to O or just open sets. Notable

topologies are the i,ndiscrete or triuial topology that has only x and Ø as members.

There is aiso the d'iscrele topology which has all subsets of -{ as members. The

various topologies in between these extremes are identified relative to one another

as coarser or fi.ner. A topology 01 is coarser than a topolog¡, O2 if each open set

of Or is an open set of O2i and then, also, topology 02 is said to be f,ner than @1.

Topologies can also be defined in terms of neighbourhood s)¡stems. A subset [/ of

X is an (open) neighbourh'ood, of a point r e X if [/ contains arì open set V to which

r belongs. A subset [/ is open relative to a topology iff it contains a neighbourhood

for each of its points. Open set topologies have associated interior operators. A
point r of a subset U of. a topological space X is an interior point for IJ iff I/ is a
neighbourhood of z. Thus we have the interior of U, denoted I(t/), as the set of all

interior points of U . I(U) turns out to be the iargest open subs et of U and [/ is an

open set in a topology iff I(U) : [/. We speak of interior operations determining

open set topologies. Aty open set topology O on a space X. when ordered by set

inclusion, is a Heyting algebra since there is a unit x and a zero Ø and since for

alny U,V e @, we can define the characteristic operator + b:-

U+V:I((x-U)UV)

where I is the interior operator that determines the tolrolog¡,: alternatively arrcl

equivalently we can let U +V be the greatest element of {I4- € O:U ctw cV}.
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A closed set topology E on space X can be defined relative to some open set

topology O or by a set of conditions dual to those that define open set topologies

in general. In the first instance, a subsetU of a space X is called closed.itr X -U
is open in O. In the second instance we say that a set E of subsets of X ìs a closed,

set topology for X if the union of any two members of F is a member of E ¿n¿ ¡h"
intersection of any subfamily of E is likewise a member, and as well both X ancl

Ø are in E. The usual notions of indiscrete and discrete, finer and coarser apply

and we can define a closed neighbourhood in the obvious way. However, where

open sets have interior points, closed sets have accumulation points. A point ¿ of a
subset U of X is an accurnulation point of [/ iff every neighbourhood of :r contains

points of U other than ø. Accumulation points can be callecl cluster or limit poi.nts.

A subset of a topoiogical space is closed iff it contains the set of its accumulation

points' Associated with any closed set topology is a closure operator c/ where for

alry U C X, cI(U) is the union of [/ with its set of accumulation points. A set

[/ is closed relative to a topology iff ct(U) : j. We speak of closure operations

determining closed set topologies. On any closed set topology E we can define an

operator = relative to set inclusion so that for any (J,V €8,

v=u:ct((x -u).v)
Alternatively and equivalently let v 'u be the least element of

{W e F:U uW cV}

\Mhen o is an open set topoiogy on x and F is a closed set topolog), such that
I/ e O itr X -U €F., we have a duality relationship between operators I and -
following f¡om the facts that

X-(U+V):(X-V)-(x-U)
16



and that lattices (o, ç) and (E, Ç) are dual isomorphs in the sense that

itr X -V C X -U

In later chapters we shall formally identify the lattices associated with closecl set

topologies and characterised by the : operator as Brouwerian algebras. For the

moment we point out that our interest in such lattices comes from the prese¡ce of

the derived operator . which we name, for want of anything else, "paraconsistent

negation". lVe say that for any U in a closed set topology on X,.(J : X,[J.
This operator satisfies the characterisation of a paraconsistent negation describecl

in Mortensen's fnconsistent Matltematics since for any IJ,V in a closed. set topology,

U ¿V : X iff

Closed set topologies, then, are paraconsistent algebras. In fact they form a signifi-

cant subclass of those paraconsistent algebras characterised by the existence of a -
operator' Related to the existence of the r operator is the concept of a boundary
of a set in a topology. The closure of a set [/ is in general bigger than [/ itself and
'we can describe an operator B by setting B(U) : .t(U) - U. Since in general a set

7 will have accumulation points u such that r ø U , B(U) is in general non-empty.

Plainly then cI(U) a ct(X - t/) is also in general non-empty. This is what gives

us our paraconsistent negation. Closed set sheaf categories become interesting now

for the fact that the algebra of the base space topoiogy becomes the algebra of the

sheaf section structure. By hypothesis, then, collections of sheaf morphisms will
reflect this algebra and produce morphism algebras with paraconsistent negations

within categories of closed set sheaves. The hypothesis proved to be correct.

UçV

-U ÇV.
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Our interest initially was in what is called a spatial topos. Where X is a topo-

Iogical space with topology O, the category of continuous local homeomorphìsms

over X with respect to O is a spatial topos. (Continuous local homeomorphisms are

defined explicitly in chapters thirteen and seven). The continuous local homeomor-

phisms are otherwise called sheaf spaces and are characterised by a, behaviour of

sections condition. Firstly, where p: A --, X is a continuous local homeomorphism

with respect to topologies O' on A and O on X, a section, of p is sorne continuous

function s;U --+ A such that U € O and p.s: idy. Then we fincl that wherever p

is a sheaf space and [/ € o is such that u : U{Ui:i e I} for a set or U¿ €o, we

havethatif {s¿:ie I} isasetof sectionsof pover each[J¿ suchthat

s¡ lU¿ÀUj: s¡ lU¡7tU¡ aII i, j e I^

then there is exactly one section s over [/ such that

slU¿:so allie I

Furthermore, as must no doubt be apparent, since sections are defined with respect

to elements of the topology on X, algebras of sections are exactly algebras of the

relative base space topologies. This turned out to be more compelling than ex-

pected as a reason to consider sheaf spaces over closed set topologies, since sections

admitted an interpretation as global elements of a sheaf space within the category

Top(X) of sheaf spaces over X, and furthermore Top(X) has a classifier object f)

whose global elements are exactly the "truth values" of the "logic" of the category.

The hypothesis was that an adequate definition of a sheaf space over the cl.osed sets

of a topology would yield a topos whose logic was exactly that of the closed sets of

the base space. For a measure of simplicity. we investigated this hypothesis in terms

of sheaves. Sl¿eaues ouer a topology O are contravariant functors -F: Oop ---+ Set dis-

tinguished from other contravariant functors by exactl5' the property that defines
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sheaf spaces: if.U :U{U¿,ó e I} in O and {s¡ e F(U¡):i e 1} is such thai

Fl;nr,("¿) : Fl,!nr,G ¡) a,lli..ì e I-

then there is exactly one s e F(U) such that

trff,(s) -- s, aII i e I

In this context any contravariant functor Oop --+ Set not otherwise identified is

called a presh,eaf . As such, the sheaves are thought of as a subclass of the presheaves.

In the early stages investigation of closed set sheaf spaces was confused by a

simple mistake in interpretation of the requirements of the behaviour of sections

condition. Since'we v/ere considering closed set topologies we wondered where we

would fi.nd enough arbitrary collections of closed sets whose union was in fact a

closed set. In particular we wondered how we would discern those arbitrary col-

lections whose union \Mas a closed set from those whose union was not. This was

a simple mistake since, as v¡e have written here, the condition on the behaviour of

sections is in conditional form. The condition applies only if a cover exists. There

is no requirement that particular types of cover exist at all.

Discussion of the logical status and nature of classifier objects in presheaf and

sheaf categories forms the bulk of this work. We also address ourselves to the

question of the equivalence of closed set sheaf spaces and closed set sheaves, and to

the logical nature of classifier objects in more general sheaf categories. All of this

forms Part III of the present work.

At this stage it is important to point out that during the time of the develop-

ment and of the writing of the material on classifier objects, it was understood to

be of original content; but in fact in 1991 Lawvere reported the existence of his own

considerably more general result. The relevant report is Larvvere, F.W., "Intrinsic

co-Heyting boundaries and the Leibniz rule in certain toposes" , in Category Theory,
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Springer Verlag Lecture Notes in Mathematics, 1488, pp.279-287. In the note cited

Lawvere writes

"fn any presheaf topos (and more generally anv essentiai subtopos of a

presheaf topos), the lattice of all subobjects of any given object is another

example of a co-Heyting algebra (as well as a Heyting algebra). The co-

Heyting operations are in general not preserved by substitution (inverse

image) along maps..." (Lawvere, 1991, p.280).

This covers the results in my chapter 6 on the non-natural transformation

{'r,p € P} for any category SetP where P is a poset. Now a topos of sheaves is a,

subcategory of some presheaf category. So Lawvere's result contains my own that

any Grothendieck topos has an in general non-natural BrA transformation on the

subobject classifier object.

My discussion is a great deal more detailed than Lawvere's. Lawvere's dis-

cussion, on the other hand, contains enough detail for an expert to recreate the

result and in fact has results relating to circumstances where the BrAs are natural

and partially natural. The virtue of my discussion is its attempt to outline whry

the BrAs are not in general natural. This fitted in with my initial program for

discovering the implications of using closed sets in place of open sets in various con-

structions, particularly sheaves. The focus of the thesis became that of discovering

BrA logic structures and, broadly, that too is the focus of Lawvere's note. However,

our method remained that of topological dualisation: the replacement of open sets

by closed in the notions of various structures; it is not clear that this is Lawvere's

method. Philosophically speaking, the intention with chapters 6, B, 9, and 10 was to

discover semantic objects for paraconsistent logic in categories. The implication of

my actual discoveries is that, along with standard categorial dualisation, topological

dualisation of sheaves is not an immediate source of natural semantic structures.

My emphasis, then, was different from Lawvere's.
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The present work falls naturally into four parts. Chapters one, two, and three

form Part I where we describe such preliminarv category, topos, and algebraic theory

as is needed for the rest of the work. A certain amount of specialist theory on sheaf

spaces, categorial j-sheaves, and Grothendieck toposes is saved until it is needed

in the relevant chapters. Chapter three is particularly important. There we give a

detailed development of those algebras we describe as dual to Intuitionism's Heyting

algebras. We consider the nature of the logics that arise from these algebras, and

develop a notion of dual iogics. Part II is formed by chapters four, five, and six.

\Mith chapter four we provide an assessment of the categorial dualisation project

in terms of the notion of a complement classifrer. In chapter five we investigate

straightforward duaiisation of subobject logic structures by considering quotient

object classifrers. Our conclusions are that if we are to proceecl with the project

it should be in terms of the development of extra operators for subobject lattices

in standard categories. A preliminary attempt is considered in chapter six. Part

III takes up where Part II finishes. Here we retain the idea that we are in search

of extra operators for subobject lattices. With chapter seven we provide a brief

history of the sheaf structure. This acts to motivate the hypothesis that sheaves on

closed set topologies will provide us with paraconsistent logic objects for subobject

lattices. With chapter eight we detail the generalisation of sheaf spaces to sheaves

over categories and from there to 7-sheaves in toposes. \Me describe the appropriate

logic and categorial structure of closed set sheaf categories. The notion of7-sheaves

allows us to demonstrate that categories of sheaves over closed sets exist and have

subobject classifiers. Chapter eight as it appears here is a slightiy revised version of

that written for Mortensen's Inconsistent Matl¿ematics, [1995]. It appears there as

chapter twelve. Part III continues with chapter nine. There we find that the sheaf

structure carries the algebras of closed sets of the base space into the subobject

structures only in part. \Mith chapter ten we generalise the result to Grothendieck
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toposes and are able to show that subobject lattices in Grothendieck toposes are in

fact Brouwerian algebras, which is to say paraconsistent algebras, but not naturally

so; they do not yield Brouwerian logic objects within the category. The results of

chapters nine and ten (and six) are formally subsumed by the Lawvere [1991] result.

The difference is that in the present work we demonstrate the detaii of the result.

This was independently developed and, in fact, not shown in Lawvere's work. \ ¡ith

Chapter eleven we describe a genuine Brouwerian logic ob.ject in a category of all

covariant functors over a closed set topology. This is the result that shows us tha,1,

there is a genuine place in category theory for the consideration of paraconsistent

Iogic. With chapter twelve we elaborate on the nature of the object discovered ìn

chapter eleven. We find that it is a classifier object for a category of covariant

sheaves. The object in fact provides a genuine complement classifier for the sheaf

category in which it exists. In chapter thirteen we flnish Part III by considerirrg

the viability of the closed set sheaves as semantic objects for paraconsistent logics.

We describe a partial equivalence result for closed set sheaves and closed set sheaf

spaces. This chapter is a revised version of James,W., "Sheaf spaces on finite closed

sets" in Logique et Analyse, Contemporary Logical Researclt i,n Australia, 7996.

Part IV contains the last two chapters of the present work. In chapter fourteen

\ ¡e are interested to use the duality of algebras described in chapter three to our

advantage. We develop a dualisation of the usual notion of a category as an object

on which to interpret theories. This dualisation allows us to develop the concept of

a refutation system, as opposed to a deduction system. \Me present this as a means

of understanding the notion of inconsistency toleration in a logic. The principal

contribution is a description of how to model inconsistent theories in categories.

With chapter fifteen we mark a beginning of an interest in further logic structures

within categor-ies. We consider an aspect of monoids in categories as algebras for

relevant logics.
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A notion that has played a part in the conceptuaì development of this work

is that of co-exponentiation. This is just the dual of exponentiaition. In that

exponential objects in a topos play a part in the fact that subobject algebras are

Heyting (this is revealed by part of the working of the Fundamental Theorem of

Topoi), we speculate that properly developed co-exponential objec.ts will if not give

us Brouwerian subobject algebras, then at least some structure on whicir to properly

interpret paraconsistent logics.

Co-exponentiation and its hypothesised relation to subobject algebras can be

described as follows: the condition that Sub(d) be a BrA is suggestive of the exis-

tence of an adjunction. Consider: for Sub(d) to be a BrA we require that f'or any

b*d,a>--+d, zr--d e Sub(d) there exist b:o,>---+ d e Sub(d) such that

b- a>- d { z >--+ d iff b>-+ d { zU ct,>- cl

We can represent this condition in diagram form so that
z -----> 

d
zUa ---- 

¿

commuting iff commuting.

b=a
Given, at least, that unions of subobjects are something like categorial colimits, the

vertical arrows suggest the condition that for any b,a € C there exists an object

b= a e.C, and for any a,b,z € C there exists a bijection of morphisms

C(b' a, z) = C(b, z t a).

This is a claim that any coproduct functor (- + a), C --+ C has a left adjoint. We

may represent this adjoint as ( - a):C -- C. Note that for a category to have

exponentiation any product functor (- t o) must have a right adjoint. So if C has

exponentiation, then for Cop arry (- + ") functor has a left adjoint. Therefore we

cail ( = a) the co-exponentiation functor. Any closecl set topology poset category

has co-exponentiation since (- + ") becomes exactl5' (- U n).

23

1
b



Part I:

PRELIMINARIES



CHA'PTER 1: BASIC CATEGORY THEORY

Introduction: This first chapter is an exposition of the basic notions of category

theory. There are two reasons for including this chapter. The first reason has to do

with part of the intended readership of ihis document, namely logicians and philoso-

phers. Since it is broadly true that logicians and philosopirers are unacquainted with

the detail of category theory, it is appropriate that the thesis contain an exposition

of category theory in enough detail that a reader may follow the discussion in the

later, more technical, chapters. The second reason for including this first chapter is

completeness. The thesis can function as a largely self contained argument for the

various propositions and results established in later chapters.

1-. Categories and Morphisms

A categorE C is a collection of items called objects together with a coilection of

items called arro'us satisfying an existence of associative composition axiom and an

existence of identities axiom (both axioms are given below). Such arrows as exist

within the category are understood as being between objects in that associated with

each C-arrow will be a d,omain ar'd coilomain both of which are C-objects. These

arrov/s, like functions, have a direction: they are from the domain to the codomain.

We represent an arrow g for which the domain is object ¿ and the codomain is

object bl.y g:a -- b or by a -l--+ b. If. g is understood. we may use just a --- ó. We

will use dom(g) to denote the domain of g and use cod(g) for the codomain. Arrows

are also called morphisms. Collections of arrows u'ill be called hom,-sets.

Suppose a collection of objects and a collection of arrows. Let us allow that

no arrow in our collection has a domain or a codomain that is not in our object
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collection. The arrow collection is closed under (binary) composztior¿ if whenever

there is an arrow / and an arrow g such that cod(/):dom(g), there is also an

arro\¡/ k in the collection with dom(k):dom(/) and cod(k):sed(q), u,ttd which is

identical to the arrow made when / is followed by g; for example, if we suppose

arro'ü¡s f:a -- ó and !:b---+ c, then k would be the arrow ,, -l-- b -!- c. In general

there wiii be many arrows a --+ b --+ c and the sense to be made of the notion "/
followed Ly g" depends on the nature of / and g as entities. A useful example to

prompt intuitions is the usual notion of composition of functions. Following the

conventions of functional composition the arrow k that is ihe arrow of "./ followed

Ity g" is denoted g. f .We call g.f a composite (of f and g).

Our collection of arrows is closed under associatiue (bi,nary) composztion if it is
closed under (binary) composition and furthermore, when f ,g,h are arrows of the

collection, if h. g./ is defined, then (h- g)- f : h.Q . f ). Such a collection of arrows

is said to satisfy the eristence of associatiue compos'ítion axiom of categories.

We recognise special arrows called id,enti,ti,es with respect to compositi,on or just

iil,entities. These are arrows with identical domain and codomain, though note that

not all arrows with identical domain and codomain are identities. To be an identity

an arrov/ must have two properties with respect to the collection of arrows within

which they exist. 'We say that an arrow / is an identity with respect to a collection

of arrows if whenever g . f is defined, it is the same arrow as g, and in addition if
f . h \s defined, then it is the same arrow as h.

Recall that we supposed a collection of arrows and a collection of objects. The

arrows were to have no domain nor codomain that was not a member of the object

collection. Suppose that we allow that the collection of arrows is closed under a

composition operation. We say that the collection of arrows satisfies the eristence of

zd,enti,ties axiom with respect to that composition and the object collection if for any

object ó, there is some arrow) denoted id6,in the collection that is an identity with
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respect to the composition operation. If thai composition operation is associative,

then our coliection of objects together with our collection of arrows is a category.

Owing to what are commonly perceived to be foundational difficulties associ-

ated with the practice of category theory there is a distinction made between small

and large categories. A category is small if its collection of objects and its collection

of arrows are both sets. A category is large if its object and arrows collections are

both classes. As lVlacl,ane in Categories for tlte Workin,g Mo,th,ematic,ian, [1971]

notes the practice of category theory calls upon us to consider such things as a

category of all mathematical entities of some type. In particular, we will routinely

be wanting to consider categories of all set-based entites of particular types, for

example,, all groups or all topological spaces or all monoids. and this amounts to

applying a naive comprehension principle: given a propert¡', form a category of all

sets with that property. \Mithin set theory the naive comprehension principles are

famous for generating paradoxical sets. This is usually understood to be inappro-

priate at least within set theory, and is likely to be inappropriate within, at least

mathematical, category theory. There have been various responses to this problem

ranging from the naive ("a category is a category, not a set") to the paraconsistent

("if we must found category theory on set theory, why not use an inconsistency

tolerant logic under which it is possible for, say, the category of all categories to be

both a member and a non-member of itself")" While we are interested in paracon-

sistent categories our concern is not so much with foundations as with internal logic

structures. Accordingly we accept the usual solution from set theory and make an

in principle distinction between sets and classes. \Me will make no special assurnp-

tion about what a class is other than to say that it is a 'collection' that is not a set.

As to what a set is, we hope likewise to avoid commitment by noting that there

are available various formulations for set theory. Intuitively our practice is to allow

naive comprehension for as long as it does not get us into trouble. To some extent
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this is the aim of all formuiations of set theory.

A useful further notion is that of a locally small category, which requires only

that the collection of arrows between any two objects be a. set. The adjective 'small'

is sometimes applied to the intuitive notion of a set or collection. The intuitive or

naive notion of a set covers both the formal notion of set and of class, so a srna,Il

sef will mean a set as defined by some appropriate system.

The concept of a comrnut'inq diagrarn is a valuable and basic one within category

theory. These are diagramrnatic representations of equations that feature arrows

and operations on arrorus. So, for example, the equations that describe the nature

of identities with respect to composition are represented in the diagram

f
o, ---------------- b

g

r
b ----------------+ c

I
When the equations id6 . f : / and g - id¡ - 9 hold, the diagram is said to be

commuting.

Remark: An example of a category is SET, the collection of all sets together with

the collection of all functions between sets. Note that SET is a large category. We

will denote by Set the restriction of SET to all small sets and functions between

small sets. Set, too, is a large categor¡ but constitutes a useful restriction of SET

in that it does not contain elements that can cause difficulties for such mathematics

as we may attempt. Another example of a large category is GRP, the category of

all groups with ali group homomorphisms. Grp will be the category of all small

groups. TOP is the category of topological spaces and continuous functions between

topological spaces. Top is the category of all small topological spaces.

In some sense categories of mathematical entities are universes of mathematical

discourse. \Me can, it is suggested, identify a set, say, and all of its useful properties
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by ascertaining its relative position within the category Set. A central intuition
in the development of the notion of categories was that it is possible to estabiish

all that it is mathematically necessary to know about an entity by establishing

that entity's appropriate, which is to say arrow, relationship to entities of the same

type. As a simple example consider that in the normal language associated with

set theory \Me can look at a set and say that it contains another set which we call a

subset. However,, in the generai language of categories it is not so much that the set

contains a subset as there exists a particular type of Set-morphism, an inciusion

function, between two technically separate Set-objects. The feature of category

theory that has sustained it through this perhaps tortuous usurping of set theory

is the generality of its constructs over broader mathematical theory and the insight

this can afford.

Terrninal and Initial Objects:

A terminal object or terminator in a category C is an object, denoted by 1,

such that for every C-object ø there is exactly one C-arrow c --+ 1. The dual is

an inití,al object denoted bV Ø. The initial object is an object such that for every

object a € C there is exactly one C-arrow Ø - ¿. Note that we speak (loosely) of

fåe terminal and Íå.e initial objects. In fact there may be many such objects within
a given category. The point however is that all terminal objects, if they exist at

all, will be isomorphic within the category and likewise that, if they exist at all, all

initial objects will be isomorphic. To speak of. the terminal object is to use the idea

lhal, within a category) arr isomorph is as good as the real thing. In general we will
be able to identify the canonical construction for an object or structure, but within

a given category any isomorph will behave in exactly the sarne manner and be just

as useful as the "original".
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Monos, Epis, Isos:

We can identify useful or interesting structures in categories by generalising

definitions from more well known areas of mathematics and, in particular, from set

theory. A' monomorphism is the categorial generalisation of an injective function.

An arrow f : b --+ c is a monomorphism, or monic, in a categ ory C, if whenever we

have a pair of parallel C-arrows g,h srch that the following diagram commutes

I
+a, -----------1

h

that is, f . g -- f . h, thenwe have that g : h. Amonic / is denoted by ó >-+ c. Two

facts about monics that we make frequent use of are that if / and g are monic, then

so is the composite f . g , and that if the composite / . g is monic, then so is g.

An epi,morphism is the categorial generalisation of a surjective function. An

arrow f : b '- c is an epimorphism, or epi,c, in a category C, if wheneverwe have a

pair of parallei C-arrows i, j such that the following diagram commutes

f
c

r z

----------1d"
J

b

that is, i.f : j./, then we have that i: j. An epic f is denoted by ó --+r c. The

two facts we have about monics dualise (in a sense that we will describe later), so

that if / and g areboth epic arrows, then so is the composite f . g, andthat if the

composite f . g i" epic, then so is /.
An isomorphism is the categorial generalisation of a bijective function. An

arrow f :b -- c is an isomorphism, or iso,in a category C fiit has an inuerse, thal,

is,thereisaC-arrow f-' c---+b suchthat f .f-t -id" and/-1 .f :idu. An

iso / is denoted by ó c¿ c. The objects b,c of an iso arrow are, within the category,

isomorphic and are called iso objects.

An isomorphism is always both epic and monic. Horn'ever it is not always

true that epic and monic arrows are well behaved. For exanple it is not true tha,t
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in all categories an arrow that is both epic and monic is an isomorphism. This

indicates only that there are more categories than are (intuitively) the image of

SET. The desire to identify categories for which intuitively set theoretic notions

like epimorphism, monomorphism, and set membership behaved as the¡' did for

SET was at least part of the motivation for developing the theory of toposes. But
'we are ahead of ourselves.

Limits and Colimits:

A natural concern arising from contemplation of the notion of a commuting

diagram has to do with the existence of limits and their duals, the colimits. It is

frequently useful to be aware of the existence or otherwise of a limiting (or colim-

iting) example of a commuting diagram. Such things feature heavily in the usual

development of what we might call the mathematics of such entities as we can collect

into categories. A simple example is that of the product and coproduct structures.

Most theories of the broadly mathematical type - set theory, group theory, the the-

ory of vector spaces, and so on - have particular notions of product and coproduct.

What these notions of product (or coproduct) share is a property of existence as

a limit (or colimit). In general, limits within a category are described in terms of

cones and diagrams. A iliagram D in a category C is any collection of C-objects d¿

together with any collection of C-arrows g between those objects. A. cone for D is
a C-object c together with C-arrows c J\ ¿o for each diagram object d¿ such that

for any diagram arro\r¡ di -l-+ d¡ we have a commuting triangle

, fn ,0,

i'
d,¡

We can denote a cone by {. J\ ar}. A timit for D is then that cone {, J+ d.¿} for

f¡
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which where {"' J\ d¿} is any other D-cone, there is exactly one C-arrow ct L-+ 
c

such that for every diagram object d¿ we have a commuting triangle

f¿
C

^
d"¿

.f:

Products arise as limits. Any two objects a,b in a category C constitute a

diagram (admitedly a diagram with no arrows, but a diagram nonetheless). A cone

for this diagram is any C-object d together with a pair of arrows f : d -- a, g: d -- b.

A limiting cone, where it exists, is a C-object c together with a pair of arrows

pra:c--+ o")prb:c--+ b such that there is exactly one arrow h:d-. c making both

dd

h r

a X b -------------+o,
Pra

axb
Prt

c'

g

b

commute in C whenever {ø J- a -l- t} is a cone for diagram {o,b}.And so we have

a definition: a proilucf of two objects a,b in a category C is a tripie (a x b,pro,prb)

where ¿ x ö is aC-object ar'dpro andpr6 are, respectively, C-arrows axb---+ ¿ and

a x b ---+ ó, and for any C-object d, arrd, any pair of C-arrow " 
d J-- a, d -!-, b there is

exactly one C-arrow (1, g) , d -- a x b making the following diagram commute.

d

I
,<Íts>

a <-- a x b ----------------+b

Pra Pru

The arrows pro and prb are called, respectively, the f,rst arrd secon,d projection rnaps.

The arrow ("f, g) ir called a prod,uct rnap. Notice the convention that morphisms

oô¿L
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that are unique in making a diagram commute are represented by broken or dotted

arrows

Limits are deflned only up to isomorphism. This means that for a diagram

D there can be more than one limiting cone, but that if this should be the case,

then the limiting cones are isomorphic in the sense that if {, J: d¿: i e 1} and
r!

{c' ::- d¡:i e 1} are both limiting cones, then there will exist an isomorphism

lc:c--+ c'such fhaf ft¡-k: f¡ for all i e I.

Colimits are described in terms of co-cones. For the diagram D in a category

C, a co-cone is a C-object e together with C-arr ows d¿ t'- e for each diagram object

d¿ such that for any diagram arrow di J+ d,¡ we have commuting

h¿
d,¿

'l
dj

e

h¡

A, colimit for D is then co-cone {d¿ !. e: i € .I} which has the property that if

{dn lt et:i €1} is any other D-co-cone, then there is a unique C-arrow I :e --- el

that makes all triangles

h,n

d¿ ----------------+ e
h¿

commute in C. Like limits, colimits are defined only up to isomorphism. And just

as we can develop the definition of a product in terms of iimiting cones, so can rÃ/e

develop the definition of a coproduct in terms of co-cones. In that case, a coproduct

of two objects a,birr a category C is a triple (o+b,io,it) where ø* b is aC-object,

both io: a ---+ cL * ó and ial. b ---+ a ! b are C-arrows, and the following is true: for any

C-object d and any pair of C-arrow. o -L d,b -\ d tirere is exactly one C-arrow
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lk,ll : cI + b --+ d making the following diagram commute

k I

ü alb <--b
'¿ l)za

d

kll

The arrows io and i6 are called, respectively, the frsl and second i,nject'ion m.aps

The arrow [k,/] is cailed a coprod,uct rnap.

Duality:

There is an important property demonstrated by the notions product and co-

product: they are categorial duals. The same is true of the notions monomorphism

and epimorphism. We define this in terms of dual, or "opposite", categories. A cat-

egory is dual or opposite to a category C if if has the same objects and furthermore

there is a distinct arrow b --+ a if and only if there is a distinct C-arrow a ---+ b; Lihe

dual category is denoted Cop ar,d for /: a --+ b in C, the correspondingCop-arrow is

denoted f"otb + c, and whenever f .g i" defined inC, (f .g)'p is defined inCop to

be a composite goP .-fop. W" have, at least up to isomorphism,, that (ConS'n i" g.

Consider now the definition of a C-monic /: b >--+ c. The arrow / is monic if
whenever we have a parallel pair of C-arrows g,h: a---ìó such that / . g : f . h, we

also have that g: å. Now fop,. ---+ ó exists inCop iff / exists in C, and a parallel

pairg"p,h"P:b ---TøexistsinCopiffg,hexistsinC. Since(Con¡on isC,wewillhave
that (/ - g)'p : U . h)o, in Cop iff f . g : f . h in C. Furthermore,, since f anð, g

under these conditions are the same arrow in C, their duals, f op and eop, are lhe

same arrow in C"P. In other words, / satisfies the monomorphism conditions in C

iff ¡'t satisfies the epimorphism conditions in Cop. Much the same discussion will
reveal that when / is an epimorphism in C, then and only then would .f 

op be a Cop-

monomorphism. We say that pairs of constructions are categorial duals if when Ð

is the statement describing one of the pair in the basic language of categories (that
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is, using reference only to objects, arrows, composites, domains, and codomains)

and l' is the statement describing the other in the basic language of categories,

then Ð is (Ð/)or and X' is Ð'p where for any statement Ð in the basic language

of categories, the statement Ðop is obtained by replacing any word "domail" by

"codomain", â[y word "codomain" by "domain", and any equation ".f - g.h, by
ufoo - hoP.goPu (and by correcting dependent grammar as is appropriate).

More Limits and Colirnits:

A very common and useful construction within categories is that of the binary

limit structure called a pullback. For a pair of arrows

b

I'
C

------------+
o,

,l
0,

f
with common codomain, the pullbaclc is the pair of arrows i,j of the limiting cone

z
d ____+ b

f .1 g x

c

for the diagram {f ,g}. Consider the diagram

e
it

,d
b

t

J

f
The pair i, j is the pullback of the pair /,g if the inner square commutes, that is

g'i: f ' j, and in addition whenever there exists i', j'such that the outer square

commutes, there is exactly one å: e --+ d making the whoie diagram commute.
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\Mhenever we have a pullback {i,j} of {f ,g), it is common to say when i and j
stand to / and g as they do above, that j is the pullback of g along .f and that

i is the pullback of / along g. This is in no sense a neu/ defirrition for the notion

of a pullbaclc; it is simply some terminology by which we rnay identify component

arrows in a pullback diagram in their role as parts of that cliagra,m. Tlrc binary

colimit structure dual to the pullback is called a pushout. Similar terminological

conventions apply.

Pullback Lemma: if a d,iagram of th.e form

a

o

a

o

a

_-______+

------------l

________+

commutes, tlten

O if the top and bottom squares are pullbacks, then so i,s the outer rectangle

(mad,e frorn tlte euiilent cornTtosites), and,

(ii) i/ the outer rectangle and the bottom square are pullbacks, then sods tlte

top square. tr

Here we have a demonstration of the usefulness of the notion of duality: once

the Pullback Lemma is demonstrated, we can regard the appropriate dual claim,

the Pushout Lemma, as equally demonstrated. The reasoning runs as follows: let Ð

be a statement in the basic language of categories giving the definition of structure

S; let T be a theorem cast in the basic language of categories and on the categorial

nature of structures S in any category C; in that case. theorem Top will be on

the categorial nature of structures co-S in categories CoI'where co-S structures are

defined by statement Dop. Now, 1f C"p is a category whenever C is a category and

vice-versa, then any category C is a category (C')', for sorne category C'. And it
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follows that if T is proven for any category C, then so is T'p.
Í

Another useful limit notion is that of an equaiiser. For any parallel pair o 
-,hI

in a category C, an equaliser, if it exists, is a C-arro* " -\ a such that / . i : g . i

and whenever there is some C-anow , -!- a such that / .h.: g.å, there is exactly

one C-arro* . -!t e such that i -k : h. For fixed f,g.i. if there is a diagram as

follows for any h, then i is an equaliser of / and g.

'rÍ
€+Q h

g

k h

c

Co-equalisers are the dual notion. It is readily shown that any equaliser in a category

is monic, and, by duality, that any co-equaliser is epic.

It is worth noting as an independent point that the concept of a monic is a

limit notion just as that of an epimorphism is one of a colimit.

A category is said to be cornplete if there exists within the category a limiting

cone for every diagram. A category is co-cornpleteif there exists within the category

a colimit for every diagram. A finite diagram is one with a finite number of objects

and arrows. A category is called finitely complete if there is a limit for every finite

diagram. Dually a category is said to finitely co-com,plete.

Theorem 1.1: if category C lt,o"s a tern¿'inal object and, has a pullback for euery

pair of &r,'ows with common coilomain, then C is finitely complete. !
And dually,

Theorern 1.2: if category C ltas an ini,tial object and h,us a pushout for euery pair

of arrows uith common domain, then C is fi,nitely co-complete. tr

F\rnctors and Natural Tlansformations:

An important feature of category theory is the constructions on and between

categories. The basic device is the functor. A. functor is a morphism of categories
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that preserves identities and composition structure. A functor F:C --+ D between

category C and category D can be thought of as a pair of assignment functions and

so be F: {Fou,Fo,}.For any C-object a, F(o,): Foa(o) which is some 2-object.

For any C-arrow f , Fff) i. -F",(/) which is some 2-morphism. There are two types

of functor., lhe contrauariant and the couari,ant, and the difference is in terms of

the action of Fo,. For a C-a.::ow o J-- b, the image F",(f) under a covariant

f is some arrolÃ/ F"u(o) --+ F,6(b). A contravariant f. will map .f to some arrow

F"u(b) --, Fo6(a). In other words, covariant functors preserve morphism direction

whiie contravariant functors reverse it. \Mhat further distinguishes functors from

simple assignment functions is their preservation of categorial composition struc-

ture. Any functor is required to preserve identities so that,, for any C-object a.

F(id") : idp@)

Any functor is required to preserve composition structure in the sense that for any

C-arrows g,h if g . h is defined in C, then for covariant f.,

F(g .h): rG)-F(h)

while for contravariant f'
F(s ' h) : F(h)' r(g)

In other words, covariant functors preserve composition while contravariant functors

preserve and reverse it.

Any contravariant functor F:C --+ D carr be understood to be a covariant

functor F:Cop --+ D where .tl¡ and Fo6 are the same functions, but for arry C"n-

arrow fop *elet Fo,(f'p) : F",(f). Recall that f'n:b -+ a is in Cop iff f :a --+ b

is in C, and F,6(/) is a map F(ó) --* -F'(ø). Given this, it is possible to ignore

.the notion of contravaniance and speak only of covariant functors with no loss of

generality. Since, however, in following chapters we wili be dealing in iarge part with
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categorial sheaf theory we will maintain the distinction. We will however adopt the

convention of representing contravariant C ---+ D as covariant Cop --. D. It is worth

noting a philosophical point: contravariance and covariance remain distinct notions;

the elimination of contravariance arrives solely as a result of the isomorphism of

categories of covariant functors CoP --+ D ar-d categories of contravariant functors

C --+ D. (We shall shortly explain how functor categories exist).

Composition of functors is readily defined as composition of the associated

assignment functions so that for -t': C --- D and G:, -- t, the composite G .F is

the pair

{G'u' Fob,Go, ' For}.

Given a category of categories we can identify those functors that satisfy the

usual epi-, mono-, and iso-morphism definitions. Other useful characterisations of

functor types include the full, the faithful, and the embedding notions. A (covariant)

functor F:C--+ 2issaidtobe fúlifsurjectiveonhom-sets; thatis,-Fisfullif any

g: F(a) -- .F(ó) in 2 is .F(/) for some f : a -- b in C. A functor is faithful if injective

on hom-sets; that is, if f'(/) : fG)itD, then / - g in C. A functor is cailed an

embed,iling if the arro'u¡ function is injective in the sense that for each arrow g in D

there is at most one arrow f in C such that F""(f): g. Note that the definitions

of faithful functors and embeddings are not necessarily equivalent. Useful notions

also include the hom and representable functors.

A horn functor for a (small) category C is a functor that maps objects of the

category to sets of morphisms of the category. For object a € C the coaariant

hom functor is functor hom¿(a,,-) : C --+ Set which maps any object b € C to

hom¿(ø, ó), the collection of C-morphisms a --+ b, and maps any C-arro* b J-. b' to

homs(a, /) : hom¿( a,b) ---+ hom¿(a, ó'), the composition function given by

(ø--* b) r-+ (a ---+ U J-- U'1.
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For object a e C l]ne contrauariant lr.om functor is a functor hom¿(-, a) : CoP -+ Set

that maps any object b e C to homc(b,a) and maps a,n)¡ C-arro* b -f ó' to

hom¿(/, ø) : hom¿(b' ,a) --+ hom¿(ó, a), the function given by

(b' - a) r-+ (b J- b' --. o)

Note that we can also use ho or C(o,-) to denote functor hom¿(a,-), and that
'we can. use h.o or C(-,a) in place of hom¿(-, a). We will frequently use C(a,b) or

hom(c, ó) with C understood to denote the collection of C-morphisms d --+ ó. It is

useful to note that

hom¿(-, ¿) : homc.o(a, -).

In keeping with the powerful idea behind category theory that we may make

categories of any mathematical entity, we will define morphisms between functors.

These are the natural transformations.

A natural transformation is a morphism of functors that have common domain

and common codomain. For functorc FrG : C --+ D, a natural trønsformation r,
denoted F :-+ G, from.t'to G is a collectiot of D-arrows 1¿ : F(a) ---+ G(a) for

all objects a Q C that are required to respect the arrow structure of the domain

categories as translated by the functors involved; this means that if. f : a ---+ ó is an

arro\M in C, then the following diagram is required to commute in 2
Ta

a,il
b

F(")
,(it

r(b)

G(")

J""'
G(b)

Tb

When this diagram commutes for any such / with domain a. the map ra from f-(o)

to G(o) is said to be no,tural in a. If F,G are both contravariant functors. then

{ro:a € C} is a natural transformation if for any f , o -- å, in C, the following

diagram commutes in 2
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b

"1/l
a

FØ) -:, - G(b)

,(/t l" )f(

F(a) 

-' 

G(a)
Ta

Note that the fact that we can, in principle, replace any contravariant functor

with a covariant functor means that, in principle, we can have natural tr.ansforrna-

tions between functors of different variance.

That natural transformations are composable amounts to the claim ihat the

components of the natural transformation are composable; that is, for functors

FrG, H:c --+ D and natural transformations r: F --+ G and o: G --.[1, the composite

o 'r is given by components ao . ro which are composites of 2-arrows F(a) -. G(a,)

and G(ø) -- H(a). Plainly this provides a composition operation suitable for the

definition of a category. We denote by Dc the category of all functors C ---+ D. We

can apply the usual definitions of epi-, mono-) and iso-morphism; it is useful to note

that a natural transformation r is monic in Dc if each component ro is monic in D.

A recognised sub-type of the natural transformations are the natural isomorphisms.

A na'tural isomorphisnl' T:C --+ D is a natural transformation where for every object

a € C, component ro is an isomorphism in D. The naturaÌ isomorphisms r: C --+ D

are exactly the isomorphisms in Dc .

For a smali category C, a representation of a functor 1{ : C ---+ Set is a pair

(r, V) where r is an C-object and

tlr : hom¿(r, -) = K

is a natural isomorphism. The object r is called tirre representing object. The

functor If is said to be representaóle when such a representa,tion exists. It follows

that contravariant functors are representable if isomorphic to some hom c(-,r).
A functor F : C --+ D is an equiualence of categories when there is a functor

G : D --+ C and two natural isomorphisms G . F - idc and F . G = idD.
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For any two categories C and D lhe produ,ct category, denoted C x D., has as

objects all pairs (c,d) where c e C, d eD. Ã (C x 2)-arrow is a pair (/,g) where

/ is a C-arrow and g is a 2-arrow. The composite \.f ,g) . (.f',g') is defined to be

ff ' f',g-g') and exists whenever /./' exists in C and g.g/ exists in 2. With this

information in hand we can consider the Yoneda Lemma,.

2" Yoneda

The Yoneda Lemma demonstrates a translation of structure; the internal be-

haviour of a functor G is manifest as a relationship between functors. Via this

lemma we can perform the traditional task of category theory of abstracting away

from an element based description of mathematical entities.

The Yoneda Letnma asserts that when 2 is a category with small hom-sets then,

for any covariant functor G:D -- Set and D-object ø, there is a bijection between

the elements of G(ø) and the set of natural transformations from hom(ø, -) to G.

The bijection in question

)): Nat[hom(o, -), G] --+ G(a)

is given by

6 ++ 6"(id")

where óo is the o-component of natural transformation á:hom(o,-) - G. The

inverse of ), denoted ))', is given by

G(")>rr+(:{(¿'heD},

where ( is a natural transformation hom(a, -) --+ G such that for all b e D and

all / € hom(ø, ó), we have (6(r) -- GU)@). As a corollary, which we obtain by

substituting hom(ö, -) for G, we have that lor a,b € D. each natural transf'ormation
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hom(a,-) --+ hom(ó,-) has the form of contravariant hom(h,-) for a unique 2-
arro'w h:b --- a.

For contravariant functors G, the Yoneda Lemma describes the biiection

/: Nat[hom(-, o), Gl --+ G(a)

and has as a corollary the claim that for objects a,b e D, each natural transfor-

mation ó:hom(-,û) -- hom(-,ó) has the covariant form hom(-,/z) for a unique

D-an:row h:a -- b. By Yoneda, that arrow h is 6"(i,d").

The Yoneda Lemma can be rewritten in terms of two functors from SetD xD lo
Set. These are the functors .E and N . E is the evaluation functor (G, ") r-+ G(a) and

l/ is what we can call the nat-trans functor (G,") r--+ Nat[hom(o,-),G]. In these

terms, the claim that ) is a bijection becomes the claim of a, natural isomorphism

N --+ E; this includes the extra claim that )/ is natural in both a and G.

The contra,uariant Yoneda functorY:Dop -* SetD is defined by

ø r+ hom(a, -)

and

/ '- hom(/, -)

Now, we know that Y acts bijectively on hom-sets (loosely. for sets of arrows in 2
there are isomorphic sets in Set2 picked out by Y) since it follows from the Yoneda

Lemma that for c,d e 2, we have

hom(c, d) = S"tD (hom(c, -),hom(d, -)),

Also, arrorv\¡ ó e Setz is f(/) for some f inD only if ó is hom(/, -) o, isomorphic to

hom(/, -). So, suppose some arrow g inD such that Y(g) : ó; that is,Y(g) : YU).
Since Y acts bijectively on hom-sets, if g and / have the same domain and codomain,

then g : f . It is a further fact about Y that it is injective on objects; that is, for

43



any object F eSetD, there is at most one c € 2 such that Y(c) : F. It follows,

then, that g and / must have the same domain and codomain. In other words, Y

embeds D in SetD, and) in fact, d.oes so isomorphically. The Yoneda functor is

otherwise known as the Yoneda embed,di,ng and is full and faithful.

The dual or couariant Yoned.a functorYt:D --' Set2'o, given by

a r* hom(-, a)

ancl

/ r-+ hom(-, f),

is an embedding for the same reasons; it thereby allows us to regard 2 as a full

subcategory of presheaf category Setz'o.

3. Adjoints

Adjoints are a means of describing universal properties tirat generalises the type

of discussion we have engaged in when we described limits and colimits in terms

of cones and co-cones. Universal properties in category theory are properties of

diagrams; in other circumstances 'r\¡e might call these sorts of properties fundamental

or perhaps archetypal. Amongst a collection of diagrams of (loosely) the same type,

one diagram (and its isomorphs) is universal with respect to that type if the other

diagrams factor uniquely through it; that is, given the diagram that is universal

with respect to the type and given another diagram of the type, a bigger diagram

can be made with unique arrows from the second diagram to the first. The idea

of diagram types here is vague but is meant to invoke the idea of a collection of

diagrams that have the same shape; they do not necessarily have the same arrows

nor the same objects, but they do have the same number of objects and of arrows

and the objects and arrows stand in the same relationships. A concrete example

of a diagram with a universal property is that of a limiting cone C for a diagram
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D. Amongst all the cones for diagram D, cone C is universai (with respect to

the property "is a cone for diagrarn D" ) because any other cone fa,ctors uniquely

through C in exactly the same sense that we gave when we originall)' c1"6tr"O ,n"

notion of a limit for D. Among diagrams of the same "shape", the diagram with

the universal property is an exemplar,, indeed a construction. of some property of

mathematical entities, for example, "is a limit", "is a, product", or "is a subobject

classifier". There is, therefore, some significance to establishing a general treatment

for the existence and description of universal properties.

Ad,joi,nts are functors in an adjunction . An adjunctzon between two (covariant)
F

functors C, -D is a bijection
G

g : g,,o: hom2(tr'(r),a) ry hom¿(r, G(o))

which is natural in r € C arrd a € D. The bijection being natural in r and û, means

that individual bijections gt.,a ã,rE the components of a natural transformation be-

tween the following hom bifunctors:

hom2(f'(-), -) and hom¿(-, G(-)).

These bifunctors are not in principie more complicated than the usual hom functors,

though note that they are both, as one would expect, contravaria¡rt in the first

variable and covariant in the second. The object functions of both functors are

readily described: for any r € C and any a € D

(hom2(f'(-), -)) ot: (ï,ø) '+ homo(F(r),a)

and

(hom¿(-, G(-))) ob t (*,ø) r-+ hom s(r.G(a)).

We describe the arrow functions in two stages. Consider hom2(tr.(-), -). For any

r € C and any 2-arrow k:a --+ ó, hom2(F(r),k) is the usual composition function

F(r) --- a r-- F(r) --. o J-- b.
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Also, for any C-arrow h: r -+ y and a;rry a € D, horne(tr.(ä), a) is

F(y) - ct r-+ F(r) \9 rgS -- o.

So, for any å: r --+ A in C and any k: a -- b inD, (hom2(-t¡( ).-))o,, is a ma,p

hom2(-F (y), o) - hom2r(tr.(z), o) - hom2(tr'(z). ó)

given by

F(y) - a v-+ F(r) \9 ,@ -- o J- b.

Similarly r¡/e can arrive at the arrow function for hom¿(-,G(-)). Recall that

hom¿(-, C(-)) is contravariant in the first variable and covariant in the second;

then, for any h: r -- g in C and any k: a --- b in D, (hom¿(-. G(-))),, i" a map

hom¿(y, G(")) -- hom¿(2, G(")) --+ hom¿(r, G(b) )

given by

y --+ G(a) *, * J- y --+ G(a)"-9 CçU¡.

\Me are now in a position to recognise that an adjunction ,p exists if and only if
for all objects r €C, a €D and all arrows h:r ---+ y inC and k: a --+ b in 2, the

following two diagrams commute

hom2(F(r), k)

hom2(,F'(r), ó)
9r,b

hom2(f'(y), a)
9a,o

hom¿(9, G(o))

a

b

k

a

:x

h

hom2(,F(r), c) hom¿(r, G("))

homc
þ"-,t",c(k))

(2, G(b))

and

home(F(h),a) hom¿( h. G(a))

lrom2(-F(r), ") --V 
" "- 

hom¿(r, G("))
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Diagrams of the first sort are the claim thal, ç is natural in a. Diagrams of the

second sort are the claim that g is natural in r.

When we have an adjunction g the functor F is called the left adjoint. In its

role as left adjoint of G, f is denoted by F ) G. Functor G is called the right

ailjoint and denoted by G I F.

Adjoints are expressible in terms of their units and co-units. The u,nit of an

adjunction cp is a natural transformation 4 : id¿ ---+ F . G given by components

eo : ç(idrf"¡); component 4o is that element of hom¿ (a.G(F(a))) that is the

image under ga,F(a) of. idpç"¡. The unit has the property that for any object a € C

and any C-arrow o -!- G(ó) there is exactly one 2-arrow F(a) l-. U such that

a \o , G(F(a)) F(")

b

r)(
g

c(ó)

commutes in C.

Dually, we have the co-unit of an adjunction. The co-unit is a natural trans-

formation e: F . G --+ id"yt given by components eu : gãIu¡,oldclu¡). The co-unit

has the property that for any 6 € D arrð, any D-arrow tr'(c) J-- U there is exactly

one C-arrow a -!-+ G(ó) such that
€t

F(c(b)) b

IF

Glr)

t9 ) r
a F(")

commutes Á D.

For functors -F and G the claim that natural transformations 4 and e exist is

exactly the claim that bijection cp exists. It is via the unit and the counit that

adjunctions reveal universal constructions.
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With this brief summary of the basic categorial concepts we will employ, we

proceed to the notion of a topos. In the next chapterwe summarise basic definitions

and results from topos theory. These are needed as a preliminary to later chapters,

where !ú/e proceed to establish further results connecting the theory of sheaves,

toposes, and paraconsistent logic.
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CHAPTER 2: BASIC TOPOS THEORY

Introduction: This second chapter is an exposition of the very basic notions of

topos theory and topos logic. The reasons for including this chapter are very much

the same as those for including chapter 1, but in this case they apply with more

force. The bulk of the specific categories discussed in the course of the thesis are

toposes and the structures discussed in the course of the thesis are exactly those

that are at the heart of topos logic. Chapter 2 also contains a section on the basic

features of the technical device called image factorisation. This ìs simple exposition

and allows us to make simple uses of the device in later technical chapters without

comment.

1. Toposes

A topos is a category with some extra structure. The search for a definition of a

topos was originaliy motivated (in part) by the need to identify categories that were

sufficiently like SET that various generalised set-theoretic notions like mono- and

epi-morphism were well behaved in the sense that they maintained their analogy

as constructs with their original set based counterparts. The original toposes were

what we now call Grothendieck toposes, that is, categories of sheaves over sites.

Since these categories had many of the necessary features the name was appropriated

by Lawvere to describe the more general structure that is the elementary topos.

The notion of a topos is now standard within category theory and is so well

developed that it is appropriate to speak of toposes as being a subject matter in

their own right. Our exposition here is a summary of some standard facts and

constructions within this subject matter.
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An elementary topos is a category t that

(1) is finitely complete,

(2) is finitely co-complete,

(3) has exponentiation, and

(4) has a subobject classifier

We have seen how to understand the notions of completeness and co-completeness.

The third property, that of exponentiation, is the generalisation of the set notion

of the existence of exponential objects BA. (A set based object BA is ordinarily

understood to be the set of all functions from set ,4 to set B). The subobject

classifier is the generalisation to categories of the notion of subsets and, in particular,

subsets as described by characteristic functions. We will proceed. to define these

notions in more detail, and we follow this with an exposition of the idea of iogic in
a topos. We finish this chapter with a brief description of the technical device of
image factorisation.

A category C has erponentiation if. it at least has products and if for any C-

objects ø, ó there is a C-object ó" and a C-arrow eu : bo x o, --+ á such that for any

C-object c and any C-arrow g : c x a ---+ b, there is a unique C-arrow Ç : c ---+ b

making the following diagram commute

d
1x id"i

g

cxa
Equivalentiy, a category C has exponentiation if for every object a e C there is a
right product functot (- x a) : C -+ C which has a right adjoint. A right product

functor (- t o) is given by ó rt ó x a and Ø J- c) - (f x id,o:b x a ---+c x a). The

right adjoint to this functor will b" (-)" : C - C. The arrow e,¿., will be the co-unit

of the adjunction. Objects b" are called erponential objects.

eub xa
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The subobject classifier is the focal point for what can be understood as the

Iogic of the categorial structure. We can describe lattices of subsets of a set under set

inclusion and, in seeking a generalisation of this f'or categories, we find subobjects

and their classifier. In that subsets can be understoocl in terms of inclusions an<l

the lattices of subsets reworked as lattices of functions. we a,ddress ourselves, in

general categories, to monics. For an object d in a category C,Iet Monic(d) be

the collection of all C-arrows that are monic with d as codomain. We can define a

pre-order (reflexive, transitive order) on Monic(d) so that for J,9 € lVlonic(d) we

say .f C g iff there is a C-arrow k making the following diagram commute

k

ie, iff there is some k such that / : g -k. Since / is monic, so is k. This pre-order

will not in general be a partial order (reflexive, transistive, and anti-symmetric)

since there wiil, in general, be isomorphic, but non identical, monics: for such a

pair /,g we will have / Ç g and g ç f ., but not f : g.\Me can. however, establish

a partial order on Monic(d) under the obvious equivalence relation. We will say

that /, g € Monic(d) are in the same equivalence class if and only if we have both

f Ç g and g Ç /. Such an equivalence class is called a subobject of d. The collection

Monic(d) partitioned under this equvalence relation is denoted Sub(d). It will be

usual in what follows to blur the distinction between subobject and representing

morphism. In the relevant areas this is the standard practice and foliows from the

fact that, for such constructions as we consider, all members of a given subobject

behave as though identical; in fact, members of the same subobject are usually

not identical as arro!¡/s, but such differences as exist are not relevant in the usual

context of subobject evaluation. This is another example of the pervasive feature

of category theory that, in context, an isomorph is as good as the real thing.
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The subobject construction for a small category C can be presented as a con-

travariant functor SUB : Cop --+ Set which takes objects d of C to sets Sub(d), and

for C-morphisms h : dt --+ d, produces a function SUB(h) : Sub(d) --+ Sub(d') which

takes subobject (representative) / e Sub(d) to the pullback of .f along lz

SUB(l¿X.f)
dt

h

d
Í

Note that, as is plainly required, any pair of monics in the same subobject will

determine the same subobject when pulled back. When the subobject functor is

representable in a category C, lhe object that represents it is usually denoted by

f¿. In fact, SUB being representable is equivalent to the existence within C of a

subobject classifier. Object f) is called lhe classifier object.

A, subobject classifier for a category C is a morphisrntrue:1 --+ f) which is from

the terminal object 1 to an object 0; in addition the arrow has the property that

for a,rry C-monic f , o* d, there is exactly one C-arrow d ---+ {1, denoted X¡,, t}'at

makes the following diagram a pullback

true

The maps X ¡ ate calied classifying rnaps. In Set these are the characteristic func-

tions. When the subobject classifrer exists in a category the assignment of. X ¡ to f
for all arrows / in Sub(d) establishes a bijection

Sub(d) ry hom(d,0)

a

a

r
d

X¡

f¿

a

1
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The forward looking reader will see that the next point of interest will be the

attempt to transfer any algebraic operators that exist for Sub(d) to hom(d, Q) and

from there to the structure of fl itself.

Remark: When discussing categories, and in particular the structure of toposes,

there is a distinction to be drawn between internal and external constructions.

Recall that a topos is a category and as such is a collection of objects and arrows.

A construction for a category is called tnternal only ìf that construction is an object

or an arrow of the category. Any other structure will be called erterna,l to the

category. As an example, we have just noted that in a, topos t the collection

Sub¿(d) will be isomorphic to t(d, Q). There is in general no reason to believe

that Sub¿(d) exisis as a collecfion within the topos,, that is, there is no reason irr

general to believe that the collection Sub¿(d) is an object or an arrow of t. This

makes Sub¿(d) an external construction. We know however that t(d,0) is always

represented within a topos by object fld. We say then that Sub¿(d) is the external

version of Od; while fld, being an t-object, is the internal version of Sub¿(d).

2. Topos Logic

The logic objects of a topos are the classifier objects fl. These are focal points

for "topos logic" in the same way that two element sets are the focus (or locus)

of logic within set theory. Objects f) are developed as algebras within a topos

by developing those natural operators that exist on each Sub(d), and, in essence)

transfering these operators to l). The technical device for this transference is the

Yoneda lemma for contravariant functors. The contravariant functor in question is

SUB. As an indication of how this works recall the bijection Sub(d) ry hom(d,0)

and so the existence of operators on hom(d, f)) u'henever there are operators on

Sub(d,0); there is an isomorphism

hom(d,0) x hom(d, f¿) ", hom(d,f) x Q),
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and, in that operators on all Sub(d) are to be called natural if they correspond to a,

natural transformation hom(d, fl x Cl) -+ hom(d,0), the Yoneda lemma guarantees

us unique maps f) x Q --+ f) for each set of natural operators on lattices Sub(d).

For any object d in a topos t, Sub(d) ordered by subobject inclusion is a

bounded, distributive lattice. For / ; a> d and g : b>--+ d in Sub(d), we have the

greatest lowerbound, f lg:aÀb>-+ d, given by the pullback of / along g,

aÀb ------------+ bttI tsJJ
a ____+ df

and the least upper bound f U g , aU b >--+ d given by the image factorisation of the

coproduct map [,f, g]. W" will say more about image factorisation shortly. The unit

is the identity morphism on d. The zero is the unique map from the initial object to

d. Furthermore, operations l-ì and U are natural in d meaning that for any ¿t J- 
¿,

suB(kx/ u s) : suB(kx/) u suB(k)(s)

and

SUB(kX/ n g) : suB(kx/) n suB(kxe).

Via the Yoneda Lemma, then, we have maps U, fì: Í) x f) --+ f). Zeros and units are

natural in the same sense. We can define a natural order object, O, by equaliser
en

O >---------------+ fl x f) ------l f¿
Prt

k (X ¡,x n)

d

We use this to order sets t(d,0) and find, as we would expect. that

f Çg iff X¡1Xn

where C is subobject inclusion and X¡ I X, is defined to hold iff (l¡,Xn) factors

through e (that is, k exists as in the diagram above).
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Since e is monic, we can define its character map and as we would expect

this is the intuitionist operator *: f) x f) --+ f). The object ft is then revealed

as an intuitionist or Heyting algebra (HA). The arrow + is used to define the

characteristic Heyting algebra operator þ for each t(d,O) and as a result for each

Sub¿(d), and then subobject lattices are revealed likewise as HAs.

Since all details of the just described algebraic structure of 0 will exist as

objects and arrows of the topos, the object f) is described as an interna,/ algebra.

The use of the term "internal" is something of an extension of the previously offered

definition, but does not seem to breach the spirit of that definition: whether it
does or not depends on whether or not one requires that the HA in question be

understood as the set of fì together with operator arrows and order object.

An alternative method of specifying the logical aigebras of any topos is avail-

able. This new method produces the same structure but without (obvious) reference

to the Yoneda lemma. Given a subobject classifier frue

(1) n : f) x 0 --+ f) is the classifying map for the product rnap (true,true);

(2) U : f,) x f) ---+ f) is the classifying map of the image of map

l(tr u es, i dç¿), (i ds, tr u es)l

where trues is the map f) -- 1 t'"1 0;

(3) +: f) x 0 --r f) is the classifying map of the equaiiser

n
e:O>-f)x0---C¿t

Prt

(a) - : f) ---+ f) is the classifying map of the arrow f alse : 1 --+ 0 which is the

classifying map of the unique arrow Ø --- 7 from the initial object to the termirral

object.
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3. Image Factorisation

Lastly, a summa.ry of some facts about image or epi-monic factorisation in a

topos. We follow the Goldblatt [198a] presentation. In a, topos t, for any arrow

o J- ó we can form the pushout of / along /
b

J
r

q

a,

/l
J
b

r
----------+

-------+p
p

\Me can also form the equaliser of the pushout b jr. M/e denote this equaliser by

irn f:f@)-ó. Since q.f :p'f ,therci..,rniqle f*:a--.f(a)making
irn ff@)+b

p
----------------

T
l|

f

1^
0,

q

commute. It follows from the availability of the construction that epi-monic fac-

torisations exist for any arrow within a topos. The notion rrla)¡ also be considered

in more general categories however in this text we will not need it.
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l* f
ü

commute. It happens that im f is the smallest subobject through which / factors

and that /* is epic. This is the construction within a topos of what is called the epi-

monic or image factorisation of the arrow 
"f 
. Itr general, the image factorisation of

an arrow / is the production of an epic /* and a monic irn f of. which the composite

i* f ' f i" f , and of which it can be said that whenever there is an epic a and a

monic å, such that h . g -- f , there is exactly one k making the diagram

k

c



The idea of image factorisation is the generalisation to categories of the well-

known id.ea that any set function A -I- B can be factored into a surjectiort

f*,A--* f(A) followed by an injection f(A) - B where fØ): {f@)tr e A}

and/.(ø):f@),aIIr€A.

This completes our presentation of such basic features of category and topos

theory as we need for later discussion. We wiil, in later chapters, introduce other

structures and constructions which, gìven the level of scrutiny they have been sub-

jected to over the years, should count as basic to category and topos theory, but

which, given our aims, do not count as introductory. Accordingly we leave our ex-

position of Grothendieck toposes and sheaves until Part III and particularly chapter

eight. With the next chapter we introduce such aspects of the study of logic, and

particularly paraconsistent and intuitionist logic, that we will need for the rest of

this work.
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CHAPTtrR 3: THtr HA DUAL

Introduction: Heyting algebras are known to occur rvithin and around the struc-

ture of toposes and in particular to occur as subobject lattices. In anticipation of

categorial constructions exhibiting dualised lattices) we consider the property of

Heyting algebra duals that they are algebras for paraconsistent logics. These are

logics that non-trivially allow that a sentence and its negation have overlapping

truth values by which we mean that the conjunction of a sentence and its nega,tion

has some value other than false without the logic containing all other sentences.

The text from which we take our initial understanding of a paraconsistent logic and

logics in general is Mortensert's Inconszstent MatL¿ematics, [1995].

In a later chapter we give a detailed presentation of a system of rules of inference

which, following the conventions of the literature, we call a logic. That collection of

rules is better called a deduction system. In what foilows we iay out what we mean

when'we use the term logic in its technical sense. It should become apparent that

deduction systems and logics are closely related. We shall give a description of what

counts as a paraconsistent logic and a paraconsistent iogical algebra in the sense

that we will use throughout the rest of this text. The systems we concern ourselves

with are essentially those that can be built using the closed sets of topological

spaces.

This chapter has four sections. The frrst is largely expository. Much of what

is presented in this section is well known. I provide a formal logical language, a

notion of a Heyting algebra (HA), a notion of a Brouwerian algebra (BrA), and a

demonstration that the HA and BrA notions are dual. Since the bulk of the thesis is

on the existence of algebras of this type, there is a need to be reasonabl5r clei,aiied in

the setting up of terminology and the presentation of definitions. I am c.oncerned,
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too, to be able to make it clear that while a Boolean algebra is both a HA and

a BrA, an algebra may be both HA and BrA without being Boolean. In the first

section of the present chapter this is mereiy suggested but it follows from the results

of chapters 6, 9, and 10. In particular, since in chapter 10 I demonstrate that any

subobject lattice in any Grothendieck topos is both HA and BrA, then if any lattice

that is both HA and BrA has to be Boolean, then all Grothendieck toposes must be

Boolean toposes; and since there are Grothendieck toposes that are not Boolean,

there are lattices that are both BrA and HA without being Boolean. Alternatively

note that in part two of section one of chapter 2 I demonstrate that any f-l-complete

lattice with a unit is a BrA so, by duality, any [J-complete lattice with a zero is

a HA, and so if any lattice that is both HA and BrA must be Boolean, then any

bounded, complete lattice must be Boolean. In any case, the most we can say of

HA-negation (-) in relation to BrA-negation (-)on the same lattice (L,=) is that

ra I -a for any a € L. For (1, f) to be Boolean we require that t a: -o.

The second section reproduces Mortensen's Inconsistent Mathernatecs [1995]

notion of a paraconsistent algebra. I demonstrate that BrA's are paraconsistent al-

gebras in this sense. I reproduce some of Mortensen's results on the algebraic nature

of paraconsistent algebras. Given the philosophical significance of paraconsistent

logic and the relative novelty of paraconsistency as a topic in category theory, the

section serves the purpose of making the reader aware of some of the significance of

finding BrAs in mathematical structures.

Section three exists to provide us with a notion of connection between logics

defined with respect to duai algebras. Notions of duality for operators on the

algebras are used to formalise a language dualisation and this is used to provide a

notion of dual valuations for (dual) logicai languages. With these notions we can

provide some illumination for the nature of logics defrned with respect to BrAs.

This way we can give some philosophical sense to the phrase "paraconsistent logic"
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as I use it (and its variations) in the thesis. The fourth section continues this kind

of investigation with respect to slightly different notions of valuation. I also givr:

some discussion of dualisation of theoremhood semantics. Again this contributes

to a philosophical understanding of the kind of logic for which we will be seeking

categorial semantics.

1. Langugages, Logics, and Dual Algebras

1.1: A language of a logic is a collection of atomic terms, terrn f'orming operators,

predicates or relations, sentential operators, variables (for terms and for sentences).

and quantifiers. Atomic terms refer to individuals and can be considered names.

Term forming operators are functions. We use the standard notions of predicates,

variables and quantifiers. Sentential operators are connectives that make sentences

from sentences. \Me concern ourselves with the principal connectives - (not), -
(intuitionist negation), - (paraconsistent negation), & (and), V (or), + (intuitionist

implication), = (pseudo difference). We frequently use A in place of k. Just as

frequently we will use lattice operators ll and l-J in place of & and V given that we use

lattices to interpret these ianguages. On the sense of the : connective Goodman, in

"The logic of contradiction",[1981], has suggested the name but not. Our preference

will be for the name pseud,o difference after the name of the characteristic operator

of the Brouwerian algebras that we will use to interpret the connective.

Formulae are defined by induction so that

(iX") if / is an n-place term forming operator and tt,...,tn are terms, then

f (tr,. . . ,tn) is a formula;

(b)if-Risann-placepredicateandfl ,...,tnareterms,then,R(ú1,....f,") is

a formula;

(2) if þ arrdg are formulae, then so are ry g, -g, -g, gk(,, gV ú, g ) l¡,

and g - tþ;
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(3) if cp is a formula and u is a variable, then -up and Vu9c are formulae.

The formulae described by (tX") and (b) are atomic. The formulae described bv

(2) and (3) are logically compound^

Sentences are formulae with no variables outside the scope of a quantifier or, in

other words, with no free variables. Uni,form substitution for sentence variables is

the process of making new formulae from old by replacing ail instances of a sentence

variable in a given formulae with a given sentence or forrrula. We also ha,ve the

notion of uniform substitution of terms for term variables. A rule of inferen,ce ts

a specification that given any sentence of a particular form, we may derive some

further sentence of a further particular form. Finally, a logr,c is a set of sentences of

a given language closed under uniform substitution, and closed under a collection

of rules of inference, also calied a consequence relatzon.

The semantics of a language are provided by some interpretation function that

associated well formed sentences with some more or less arbitrary value. One or

more of these values will be d,esignated,, and if on ail valuations of a given sort a

sentence receives a designated value, then that sentence will be called a theorem.

We can specify a logic by describing a system of valuations and collecting together

all theorems. Semantic consequence relations are typically related to valuations by

the condition that if the value of a sentence <p is less than that of a sentence ty' in

an appropriate sense, such as that of a lattice order, then r/ can be thought of as a

consequence of g. Given the right sort of valuation system, a collection of theorems

will be a logic.

One can alternatively specify a logic by listing some rules of inference along

with some subset of theorems which when closed under the rules of inference yield

the complete set of theorems. This is the axiomatic presentation and the theorems

of the given subset are the arioms.

A logical algebra is some systematic algebraic method for determining the val-
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uation of a logically compound sentence given valuations for that sentence's con-

stituent parts. Certain types of lattice with the right sort of operators can be

understood as logical algebras. The elements of the lattice are used as sentence

values, and the lattice operators interpret the conner:tives. Certain elements of the

lattice wili be distinguished as relating to theoremhood. Again the logic is the

collection of theorems.

With this chapter ì /e will be concerned with developing logics in terms of the

Heyting algebras and their duals. We will shortly define both types of algebra and

indicate the sense of duality we are using. In the meantime, to prompt intuitions, we

note that any topology of open sets is a Heyting algebra, and any Heyting algebra

can be understood as some topology of open sets on some space. Likewise, the

Heyting algebra duals are the closed set topologies.

Formally, a Heyting algebra is a relative pseudo complemented lattice with a

zeto. To explain, we note that lattices are a subclass of the posets. A, poset or

partially ordered set is a set P together with a reflexive, transitive. and antisym-

metric binary relation ,R deflned on P. Relation R is reflerir.'e when, for all p € P,

(p,p) e R; Ris transitiue when, for all p,e,r e P, if \p,q) e -R and (q,rl e R,

then (p,r) e Ã; and.R ts antisymmetric when, for all p,Ç € P, if (p,q) e .R and

k,pl e -R, then p : q. Such a relation -R, is commonly called a partial ordering

and is commonly denoted by E or some variant. We will write "p Ç q" in place of

"(p,q) e. R". For any p,Ç € P, the least upperbound (lub) or joinlor p and q is

an element of P, denoted pl e,such that p C pl-J g and q I pLJ g, and if there is

some z €P such that both p Z z andgl z, then plq Z z. It will follow that

p¿ (q l-J r) : (p U q) U r and that p l) q.: ql p. A greatest lower bou,nd, (gtb) or

rneet for p and q is an element of P, denoted p [-l q, and is such that p t-] q f p and

pnqZ q,andif thereissome z€P suchthat zlpandz f q,then zapt-lg. We

will have that p¡ (q n"): (pnq) nr and that pVrt: qnp. A lattice is a poset
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(P, E) where, for every p,e € P, there exists in P a lub and a glb with respect to f .

A lattice has a zeroif there is some element Ø e p such that, for all p €P.Øap.
A lattice has a unit if there is some element 1 € P such that, for all p e P, p a 1.

A lattice with a zero and a unit is called bounded. A lattice ís distributiaeif, for all

Prg,r € P, both

pv (ql-] r) : (pn q) ! (p n r)

and

pr(q tìr): (ptq) n(pLlr)

In a bounded lattice an element p has a meet cornplernenf if there is some q € P

such that pfiq: Ø. The element p has a joi,n complemenl if there is sorne q such

that p LJ q :1. An element q is a (Boolean) cornplemenf if it is both a meet and a

join complement for some p.

We change our symbols slightly and let Lbe a lattice. For lattice elements a, ó,

there is a pseudo complernent of a relatiue to b in the lattice if there is some c e L

such that

forallre L, rlc iff aVrZb.

This element c is denoted by a + b. A lattice is said to h,aue relatiue pseuilo

complements or be relatiue pseudo cornplemented, (rpc) if a + b e L for all a,b e L.

An rpc lattice will always have a unit since for aÍry (r")r € L, r Z a ) a. If the

lattice has a zero) Ø) rvr/e can define a complement operator - by allowing that for any

a € L, -o,:a + Ø. In fact, - is a meet complement operator. When our lattice is
dÍ

an open set topology ordered by set inclusion, -c proves to be U{r e L: aÀ. : Ø};

that is, -a is the greatest element c € L such that alt c : Ø.

The class of all rpc lattices with zeros are used to characterise the intuition-

istic propositional logic IL - see for example McKinsey and Tarski [1946] and the

references there identified. Consider a language as defined a,bove but restricted to
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sentential operators -rk,V, *. Consider the set of all well formed serrtences of this

language. An Il-valuation, u, is a function from the set of sentences to some rpc

Iattice with a zero so that for sentence ,S

(1) if ,5 is atomic, u(,9) is some element of the lattice;

(2) if S is - 51 where Sr is a sentence, then u(S) : -u(Sr )i

(3) if S is ^9r&^Sz where,91 and 52 are sentences, then u(5) : u(,Sr) n u(S2):

(4) if ^9 is ,9r V,92, then u(^9) : r(Sr)tJu(52);

(5) if S is Sr ¿ Sz, then u(S) : u(,Sr) + u(Sr).

If, for ali rpc lattices with zeros and ali possible valuations u on those lattices,

we have u(.9) : 1 for sentence ,S, then that sentence is a theorem of IL. The logic

IL was developed by Arend Heyting; the ll-characteristic algebras, the rpc lattices

with zeros, have since become commoniy identified as Heyting algebras.

There is an alternative and equivalent presentation of IL in terms of axioms

- see for example Heyting's Intuitionism,179661. There are eleven axioms and one

rule of inference:

I. a + (a&,a)

II. ("kþ) + (Bka)

III. (o + p) + ((*&r) + (0&|)
IV. ((o * P)a@ + 7)) + (o =+ 7)

v. þ+(o+p)
vI. (ak(a + þ)) + þ

VII. a+(av p)

VIII. ("v 0)+@vcr)
IX. ((o *.ùu(p +7)) * ((ov Ð+t)
X. -¡y)(o+0)
XI. ((* * þ)k(o + -þ)) j r¿

Rule of inference - Detach,menf: From a and a + þ. denve B.
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Essentially, IL has all the axioms of classical logic barring (a V -a). When we

come to discuss paraconsistent logic further we shall avoid the axiomatic presen-

tation in that more variation on the specifrcation of a logic is available simply by

changing the number and sort of valuations we consider fbr algebras. In particulzu'

we shall consider the logics derived from individual aigebras.

t.2z The dual of a lattice L is a lattice Lop which has the same collection of

elements, and has a reversed lattice order in the sense that ø lr. b iff b Z¿w a

where f¿ is the order on f, and ll'o is the order on LoP. We will sometimes use

the phrases lattice d,ual or lattice d,ualisation to indicate this notion of reversing or

reversed lattice orders. We will also speak of the dua,l lattice of L and mean Lop.

\Me shali also allow that any lattice l' isomorphic to Lop be identifred as the dual

of. L. From the point of view of lattice theory (or at least within the category of

lattices) an isomorph is as good as the real thing. We shall distinguish that Lop for

which a € L iff a € Lop by the title the canonical dual of. L.

This notion of lattice dualisation is exactly categorial in the sense that since

any lattice f, forms a poset category L in which the objects are lattice elements

and the morphisms are the lattice ordering relationships, the lattice .Cop forms the

poset category Lop which is the categorial dual of L. However we maintain the

terminology of lattice dualisation, since we will later want to identify structures

within categories that are in fact lattice duals but are not derived by dualisation

within the category.

McKinsey and Tarski in their "On closed elements in closure algebras", [1946],

used the notion of a Brouwerian algebra to discuss algebras of closed sets. Using the

terminology of Rasiowa and Sikorski's Mathematics of Metamathematics, [1963], we

understand a Brouwerian algebra to be a pseudo differenced lattice with a unit. A

Iattice L is pseuilo il'ifferenced" if. f.or all a,b € /, there exists an element b'a e L
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of which it is true that

forallreL, b'alr iff bluLJr

Any pseudo differenced lattice has a zero since for all a^r e L. o,L u Z r.
When l' has a unit, 1, we can define a complement operator - by allowing that for

arry a € L, -¿¿:1= a. In fact - is a join complement operator.
dl

When our lattice is a closed set topology orderecl b), r"t inclusion. rø proves to

be fl{c € L:alJc:1}; that is, -¿ is the least element c € f such that aUc:1.

Since the lattice elements are closed sets, that least element exists and is unique.

There is a significant relationship between the Brouwerian algebras (the BrAs)

and the Heyting algebras (the HAs).

Theorern l.2.Lz The lattice d,ual of a Heyti,ng algebra is a Broutaerian algebra

a,nd uice uersa.

Proof: Iet (H, f ) be a Heyting algebra. Define (H, E,r) so that for c,d € H,

c I d iff. d E"e c. Plainly (H, E) and (H, Coo) are lattice duals.

Consider some z €H. If. zis the lub for some a,b e H with respect to f, it is

the glb for ø,b with respect to lop.Also, if z is a glb with respect to f , it is a lub

with respect to foo.

Now suppose z is a è b for some a,b €. H. We know, then, that for any r € H,

r C z iff ¿ l-l r 
= 

b. If we use lJo, to denoted lub with respect to Coo, then we can

say not only that r Z z íff z loo r, but that øtlr f bifrbÇop aLJopr In other

words, for any r € H,

z foo r iff 6lop (al.o r).

So with respect loZoo, element z is the pseudo difference b'a.

Now, a ) b is defined for every a,b € (H,f) so b-¿ is defined for every

a,b e (H, E,r). This make. (H, E,p) an rpc lattice. Furthermore, since (H, f ) has
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a zero) (H, E,o) has a unit, and it follows that (H, E,o) is a Brouwerian algebra.

The proof that wher. (H,E) is a BrA, (H,foo) is a HA is performed in the sarne

u/ay. U

It follows as a corollary that any topology of closed sets is a BrA, since such a

topology ordered by set inclusion is the lattice dual of some topology of open sets

ordered by set inclusion. \Me can, however, usefully prove this corollary directly.

Let X be a topological space with a topology E of closed sets. Any closed set

topology ordered by set inclusion is a BrA since for any A, B e F we can define

B ' A : cI((X - A) n B), where c/ is the closure operator that defines the topoiogy.

Alternatively, and equivaiently, we allow that B = A is the smallest element of E

containing ((X - A)ÀB). Since E is a closed set topoiogy, it is closed with respect

to intersections and the smallest superset of ((X - A)a B) will exist.

Theorern L.2.22 Any closed, set topology zs a BrA,.

Proof: suppose arry B,A,Z e. E which is a closed set topology on X.

Suppose (X - A) r\ B Ç Z. Then

(tx- A)ìB)uAçzuA,
(tx- A)uA) n(Bu A)c zuA,

BUAçZUA,
BCZUA.

And on the other hand, if B C Z lJ A,llnen

BÀ(x-A)c(zuA)À(x-A),
ç (z n (x -,4)) u (.+açx - Á)),

cz.(x-A),
B.(x-A)ç2.

So, (X-A)ÀBcZ itr BcZrA.
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Since there will be a smallest such Z, there is an eiement in E that sa,tisfies

the definition of B'A for any B,A € E. This makes (E,C) a pseudo differenced

lattice. Plainly, too, the lattice has a unit, since there is a largest ck-¡sed set narnely

x" !

Rernark: Notice the historical point that Brouwerian algebras were investigatecl

in relation to IL. Using the zero of a lattice to indicate theoremhood, it was discor'-

ered that Brouwerian algebras characterise IL. Obviousl;r, since rve want BrAs to do

a different algebraic job, we will not be using these theoremhood semantics. The

guiding insight for our project is that to produce a paraconsistent algebra all one has

to do is reverse the lattice order on a Heyting algebra. Initially, then, we make no

dualisation of the standard scheme that theoremhood is associated with the lattice

unit. This is natural enough since theoremhood semantics are not formally part of

the notion of algebra.

1.3: One feature of the BrA operators as strictly dual to those of the Heyting

algebras is that - is not a good implication operator. The operators ll,Ll,- ç¿n

be interpreted as conjunction, disjunction, and (as we shall see) paraconsistent

negation. The operator =, however, suffers from the condition that ó Z a iff
b'a : Ø. For the present we take no position on implication other than to note a

solution suggested for just such a problem in chapter eleven of Mortensen [1995].

The solution is to define a simple implication operator and add it to the stock of

operators. For a lattice L, lhe simpie implication operator. denoted --+, is defined

so that

for a,b € L, a --- b: 1 iff a,Zb
Ø otherw-ise.

A BrA together with -+ will be denoted BrA-. As an alternative to the introduction

of --+ we could rely on the metalinguistic ! related to f on the lattice. Specifically,

for sentences A,B we assert AFB itr u(A) E ,(B), al1 valuations ?).
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L.4z Boolean algebras wili from time to time become part of our discussion" These

algebras are defined to be those bounded, distributive lattices that have a comple-

ment operator that describes both a meet and join complement. Any Boolean

algebra is both a Heyting algebra and a Brouwerian algebra. To see this suppose a

Boolean algebra BA with a complement operator denoted lry -. For any ø, b € BA,

there is a pseudo complement ¿ ì b, of arelative to ó in BA, namely c * b : -alb.
There is also a pseudo difference b= o, namely b' a : -av b

Of interest to us in later chapters will be the circumstances under which an

algebra that is both Heyting and Brouwerian is also Boolean. It is not immediate

that a iattice L tlnat is both BrA and HA ends up being Boolean; it is possible that

for some a e L, both -¿ and -ø exist in f without coinciding, that is without it

being true that roJ: -(r. When such complements do not coincide, there is no ciaim

that - is more than a meet complement nor that - is more than a join complement

unless one or both of these claims were true to begin with. But when complements

do coincide for all lattice elements, we piainly have a bounded, distributive lattice

with a Boolean complement operator, and so a Boolean algebra.

2. Paraconsistent Algebras

With this section we defrne a notion of paraconsistent algebra. The deflnition

we give is exactly that found in Mortensen [1995]. Also found in Mortensen's [1995]

are those properties of a paraconsistent algebra that we give here as P-theorems

one to six. We have introduced some minor modifications to the proofs of these

theorems. We find as a straightforward consequence of the definition that any

Brouwerian algebra is also a paraconsistent algebra.

A paraconsistent algebra is a structure (f;f,¡,1-1,-,1,Ø) where Lis a lattice

ordered by f with meet and join operators ll and l-J respectively; the lattice has

z.zero Ø and a unit 1; the lattice also has a complement operator, r, defined with
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respect to f so as to satisfy condition P that for all a,b € L,

al) b :1 iff

It foliows as a result of this condition that

(1) au.a:7; (2) rra a o,; (3) -(a l-J ó) f -¿ ¡ -þ'

(4) -(ø tl b) :.alrþ; (5) -(a l-l -¿) : 1; (6) in general, ø I -a + Ø.

For a lattice L to be a paraconsistent algebra, it will be sufficient that it be a BrA.

Theorern 2.1: any BrA 1 L;lrl, U, = ,-,1 ) sati,sf,es condition P.

Proof:bydefiniiion, 1-a=b iff 7lo,lb. So, -alb iff øllb:1.D

We now verify that resuits (1)-(6) apply given condition P. Presume a paraconsistent

algebra L anda,b €.C. Notice in particular that we are not restricting this part of

the discussion to BrAs.

P-Theorem 1: al.J-a:1.
Proof: underconditionP, ra,Zro, iff aL).a:1. tr

P-Theorer¡¡ 22 rra,l a.

Proof: since ,C is a distributive lattice, we always have that a l) b : ó l-J ø, and

in particular we always have that al.Jro, : reLJ o,. Then, by P-Th.1,¡ ral-l a : 1,

and by condition P, rra C o. t

P-Theorern 3: -(ø l-J ó) E r¿ n ró.

Proof: Using P-Th.1 and the properties of distributive lattices,

1 - lt"Ja

: (ó l_t -ó) r_t a (P-Th.l)

: bt:(-bua)

: óLr(1 n(' óL-rc))
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: 1l_Ja

: bl((au-¿) n(-óua)) (P-Th.1)

: bU((-øn.ó)Uø)

: (alb)U(-on-ó).
So, by condition P, -(a ! ó) f -q,V-b. n

P-Theorern 4z .(a l-l b) : rq,Ll-þ.

Proof: by P-Th.2 --(ø l-l b) f a l-l b, and by definition of t-ì, a v b C- ¿. So

--(ø [ì b) 
= "

By condition P, -(ønå) lJa :1 iffrr(øl-l b) a a so, -(atl b)lct : ¿¡r(a,tTå) : t

which under condition P means that

ra I r(anb)

In the same v¡ay we show that -b I -(a n b) (the first step is to note that a n b E ó

so, by P-Th.2, --(ø rl ó) E ó). It follows, by definition of l-.1 as a lub operator, that

-at)-bE-(anó)

Now, by the properties of a distributive lattice and by P-Th.1,

(a n b) LJ (-ø u -b) : (a u (-o t-.1-A)) n (A I i-o lJ -ó))

: ((" U -ø) u -b) ¡ ((b Ll -b) u -¿)

: (1 U -ó) n (1 Ll-a)

_1
-a

which under condition P means that

-(ø l-l b) Z.x,lrþ
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So

-(a tl b) :.aLJrþ !

Notice that in Mortensen [1995] wefind only the claim that -(anó) f .a,t-i.h.

P-Theorern 5: -(ø l-ì -a) :7.
Proof: By P-Ths.4 and 1, .(aV-a) : r¿¿l)-rs. : 1. tr

Lemma 2.1: for a paraconsistent algebra L to be Booleo.n, it is a necess(LT'y o,n,d,

sufficient condition that a l-l-c : Ø for all a € L.

Proof: that the condition is necessary is trivial, so we prove only sufficiency-

Let an.a: Ø. Then

(a11-a) ! rr¿ :

(ø l-J --ø) I (-o Ll --ø) :

o,L)..a :

SO, (r f

But rra f

and therefore rr0, :

Øl)--a,

_¡ Cl,t

_.At

r. (L

(dist.latt.)

(P-rh.1)

(P-rh.2)

P-Theorem 6: in general, af1-a + Ø.

Proof: by definition, any BrA is the lattice dual of some Heyting algebra and

vice versa. As such, a BrA is Boolean if and only if its dual is Boolean. Since

Heyting algebras are not in general Boolean, neitb.er are BrAs. So in general, for

elements of a BrA, and therefore of a paraconsistent algebra, c l -a + Ø. u

Rernark: This last theorem encapsulates the idea that the algebras we are con-

sidering are indeed paraconsistent, which is to say represent toleration of inconsis-

tencies. While in general it will not be the case that a fl rû : 1, it happens that,

72

a

o,



given an interpretation of - as a negation operator, sentences and their negations

will overlap in value. If nothing eise this is a contradiction. We therefore describe

r as a paraconsistent operator. The forms of explicit contradictions wiil not appear

as theorems of the logics developed from these algebras until we corne to clescribe

appropriate duals of the theoremhood semantics. Logics containing - and described

by the usual theoremhood semantics are interesting for their particular clescription

of the nature of negation. Logics containing explicit contra,dictions have a different

role. This usually is to formalise the claim that there just are real contraclictions.

3. Intuitionism's Dual

\Me have the opportunity to make use of existing results about IL to describe

at least one of the logics we can generate with BrAs. Our task here is similar in

spirit (if not in detail) to the (unrelated) project of Goodman [1981]. We shail

describe a logic that is dual to IL. We call this logic DIL (IL'r would be more in

keeping with our use of the op notation however we wish to avoid the suggestion

that DIL is merely derivative; as a logic DIL is formally independent of IL.) We

will have an infrnite number of sentence letters, four connectives l,!,',-, and

parenthesis devices "(" and ")". The usual sentence formation rules apply. It will

be useful to establish that there is a bijection between sentences of the DIL language

and sentences of the propositional IL ianguage. We do this by noting that atomic

sentences are common to the languages and that where and only where there is

an operator from the set {u, l--1, +, -} in an ll-sentence, there are the respective

operators from the set {U,1, =,-} in some Dll,-sentence. Explicitly. for sentence

^9 in IL, we define sentence Sop in DIL so that

(1) if ^9 is an atomic sentence, .9'p is ,9;

(2) 1f ^9 is -,9r where 51 is an Il-sentence, th.en,So? is -1.9ie),

(3) if ^9 is Sr t-l ,92 where .91,52 are Il-sentences, then ,S'p is Sie I S3';
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(3) if .S is 51 t-J 52, then ,9op is Si? n Sie;

(4) if 5 is Sr I Sz, then,Sop is Sie ' Sio.

Plainly S is an ll-sentence iff Sop is a Dll-sentence. This process of "dualising"

sentences is one we will use frequently. We have already seen a useful variant of it
used in the proof of Theorem 3.1.2.7.

\Me will maintain a convention that Il-sentences be represented as ,9 and that

Dll-sentences be represented as Sop. We use a simiiar notation to denote duai

valuations. We shall say that where u is a valuation of a set of sentences {S¿: i e I}
on an algebra L, the d,ual ualuation, denoted uop, is of the set of sentences {Sie:'i, e

1) on the dual lattice Lop so that u(^9¿) : u"e(Sie)., all i € 1. Note the important

point that while L and Lop have the same (or isomorphic) underlying sets, the

elements of that set play different roles with respect to the orders defrning L and

Lop. For example, if. r e 4 is the unit of L,we have y f z for all y € 4, but we

also have * Zop y where foo is the order that defines Lop over the same set. In

other words, the same element r of the underlying set is the unit for L iff it is the

zero for Lop . Likewise r is the zero for L iff r is the unit fot: Lop. A consequence of

this is that for dual valuations u, uoP and dual sentences ,5, S'op) v/e have u(^9) : 1

iff uoe(Soe): Ø, and u(.9) : ø iff uoP(Sop):1. It is fair to say that the standard

usage of the generic 1 and Ø for unit and zero can be a little misleading here. To

be perfectly explicit about what we want to say, suppose that 1 and Ø are the unit

and zero of I and that 1' and Øt are the unit and zero of .C"p; when L"p is t]ne

canonical dual of L, Ø :1' and 7 : Ø' . To avoid confusing equations in the rest of

this section, we maintain this slightly non-standard usage.

Plainly there is a bijection between valuations u of a, set of sentences using

connective set {lì, U, *, -} and valuations uoP of the dual set of sentences usirrg

connective set {U,1, - ,-}.
We will say that a well formed sentence S"2 is a Dll,-theorern iff for all valua-
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tions u"p on all BrAs we have u"n(Son):1'. The sequence of symbols For"S'o -ill
indicate that ^9op is a Dll-theorem. Recall that an ll-sentence S is an ll-theorem

iff for all valuations u on all Heyting algebras we have u(S) : 1. The sequence of

symbols I S will indicate that S is an Il-theorem.
II,

Theorem 3.1: ff lr"t, th,en lor". SoP.

Proof: suppose t"t. Then for any ll-valuation ?, we have u(,9) : 1. B;r

definition, ,(-S) : ø. The sentence dual of -S is - Sop. So for the duai valuation

uop,we will have uop(rsop): 1'. Since there is no Brouwerian algebra that is not

the dual of a HA and no Dll,-valuation that is not the dual of an ll-valuation, we

have I -SoP. D'DIL

Notice that we cannot in general prove the converse of this theorem. Consider

the following counterexample to that converse: for any element ¿ in a BrA, P-Th.5

tellsusthat-(¿n-o):1,andP-Th.6tellsusthatingeneral a,a-o"*Ø;itfollows
that p -(Aon n-Aop) for any ll-sentence A, and that for some Dll-valuations'DIL \

lsoP wehave uop(Aop flrAop) # Ø'; and so u(A I -A) f I, so Ér"Ou -A. In other

words, from F -SoP, it does not follow that F .9.' 'DIL ------ 'IL - -

Also, consider the converse of Theorem 3.1 in the foiiowing form: if not l, ,S,

then not þ - SoP. The condition that f S tells us only that there is some IL-' DIL 'IL
valuation such that "(S) + 1. To establish ahrt Éorr-S'op, we need first to establish

that u(-$) I Ø Gn other words that uop(- S'p) + 1'). For any element ¿ in a HA we

have that al)-a f 1, so we are in general denied the desired result. \Me are however

guaranteed the result if we assert that u is an Il-valuation on not just any HA but

on a HA that is also a Boolean algebra. In other words, if ^9 is not a theorem of

classical logic, then -,9op is not a theorem of DIL. Since classical logic is non-trivial,

there must be some sentences that are not Dll,-theorems; so, DIL is not trivial as a

logic. Another proof of the non-triviality of DIL arises frc¡m the following theorem
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(together with the fact that IL is non-trivial)

Theorem 3.2: ForrS'o iff ?rr-S
Proof: suppose For"Soo. Then for any Dll-valuation, r.rop(,S"r) -- 7'. B;,'

definition, uop(rsop) : A'. The sentence dual of .Sop is -,S. So for the dual

valuation ?r) we will have u(-,S) : 1. Since there is no HA that is not the clual of

some BrA, and no Il-valuation that is not the dual of solne Dll,-valuation, we have

F -S.II,

Suppose F -,S. Then for any lI,-valuation, u(-5¡ : 1. Now, for any element
IL

¿ in a HA, øll -d : Ø, so if -a, : 1, then a : Ø. It follows that for any Il-valuation,

u(.9): Ø. It follows, too, that for any Dll-valuation, uop(sop) :1'. to Forrsop. I
IL and DIL are both sublogics of classical logic (CL). The algebras that char-

acterise CL are exactly the Boolean algebras used in just the same tÄ¡ay as the HAs

for IL and the BrAs for DIL. Since the collection of HAs includes the collection of

Boolean aigebras, any Il-theorem is a theorem of CL; and since the collection of

BrAs includes the collection of Boolean algebras, any DIl-theorem is a Cl-theorem.

Thai IL and DIL are different logics can be demonstrated with respect to any sen-

tence ALJ - A where - is a generic negation operator; the sentence ALl - A in DIL

would be A t-l -4, whereas in IL, it would be ,4. t-.1 -4. For arry a in a HA, it is true

that ø n-a: Ø, but it is not in general true that aL-l-a: 1, so Ér"ou -A; but for

any ø in a BrA, aLJra:1by definition, ro For"A tJ-A. DIL and IL are formally

different sets of sentences. Note, too, that since both DIL and IL are sublogics of

CL, they are both consistent and non-trivial.

Theorem 3.3: for o,ny well formed DIL-sentence Sop

F
]-)

-(son Tt rÍ;or;
II,

Proof: this follows from P-Th.5
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4. Individual Logics and Natural Duals

To characterise a logic we need not address ourselves to all algebras of a partic-

ular type. It is an interesting project in itself to develop those logics ch¿u'acterised

by individual algebras. To develop an individual BrA logic we settle upon one BrA

and consider all valuations of a set of sentences on that one lattice: we assume a,

consequence relation tied to the order on the lattice (this relation will have tha,t

A 
= 

B itr u"p(A) Zo, uop(B) for all valuations ?;oP ot-tthe fixed BrA) and say that

the individual BrA logic is that set of Dll-sentences S'? such that for any valuation

'DoP orr the fixed BrA, uor(.9op):1'. It is non-trivial but straightforward that such

a set of sentences is closed under þ and uniform substitution.

It should be easy to see that these individual BrA logics wili in general be

consistent: for a given BrA if 7 + Ø, then whenever S'? is a theorem, r$oP is not a

theorem, and whenever - SoP is a theorem, I;op will not be a theorem. Furthermore,

in general, these individual logics will not have contradictions as theorems since,

for any element ø of the appropriate algebra both a l.¿ f a and an-a f -¿ so

that if (an-a):1, then both o:1 and -a:7., which will be true only if 7:Ø.

We can introduce a further variation on the characterisation of logics. This calls

for the notion of designated values. Up until this point we have given theoremhood

semantics that assume just one designated value, namely the unit of a lattice. In the

context of individual BrAs, \ry'e can allow that there be more than one designated

value. To maintain closure under the lattice order based consequence relation, we

usually require that any set of designated values be a filter on the fixecl BrA. A
subset F of the underlying set L of a lattice Lop is a filter ort LoP if u'hen o € F
and ¿ 

=opb, 
then ó € F; and in addition,if a e F and ó e F. then an b € F. We

need really only require that for D C L to be a set of designated values, if a € D

and a 
=op 

b, then ó € D; this allows, for example, a set of clesignated values D that
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contains all lattice elements other than the zero. Our theoremhood semantics, then,

whether the set D of designated values is a filter on Lop or not, are that sentence

,S'p is a theorem of the individual logic if on all valuations uop with the fixed BrA

as codomain, uoP($on) e D.

In terms of dualising logics associated \Mith individual HAs, a natural dual-

isation of the usual unit-as-designated-value scheme is to allow the collection of

designated values for the HA-dual to be the set of all lattices elements other than

the zero. This is suggested in Mortensen [1995] (p.104; see also Mortensen and

Leishman, "Computing dual paraconsistent and Intuitionist logics", [1989]). This

allows a simple duality between individual HA logics and individual BrA logics:

suppose a HA, L, and a logic, I, generated by considering all C-valuations with 1

as the only designated value; 1et P be the logic generated by all valuations on BrA

Lop willn 0 being the only non-designated value; the relationship between ihe logics

is then expressed by

FS iff +t'o.
This surely is a most natural idea of dual iogics. We consider similar logics sim-

ilarly related when in a later chapterwe come to discuss a logic which we call

co-GL, the dual of geometric logic. In the meantime 'we carry forward from this

chapter the essential idea that Browerian algebras and an adequate representation

of inconsistency toleration in logics go hand in hand.

With the next chapter we begin Part II of the present work. We address

ourselves to an existing attempt to describe within toposes such structures as would

give rise to BrAs in place of the usual HAs.
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Part II:

CATEGORIAT SEMAI\TICS
FOR

PARACONSISTENT LOGIC



CHAPTER 4: THE COMPLEMENT CLASSIFItrR

Introduction: The notion of a complement classifier was originally introduced in

Mortensen's Inconsistent Matl¿ematics, [1995]) as a tool with which to discuss para-

consistency within topos theory. Essentially one toolc a, topos and reinterpreted its

subobject classifier as a complement classifler. This had the effect of dualising the

Heyting algebra structure that was the basis of the topos logic: the usual construc-

tions for lub, and glb, true, and f alse become constructions for what are essentially

their lattice duais. The discovery of what we here call a BrA associated with any

topos is strictly ex-categorial, that is, external; an act of interpretation of an exist-

ing structure is required. The point however is that the existing structure is itself

interpreted. The subobject classifier is a generaiisation of a set-theoretic structure

associated with characteristic functions; this generalisation, however, subsumes the

structure associated with complement characteristic functions. In Mortensen [1995]

the reinterpretation of the classifier is motivated by an analogy with the specifica-

tion of topological spaces. There it is noted that it is as natural to specify such

a space by its closed sets as by its open. The claim then seems to be that with

respect to algebras ,C (based in Q in a topos), we might just as naturally speak of

algebras Lop . Il would seem that both algebras are just as natural in that they both

successfully describe the same subobject structures within the topos. Our view herr:

is different from that just described. Our preference is to find explicit internal con-

structions that demonstrate BrA properties. We recognise that the ex-categorial

dualisation of the subobject classifier does indeed produce (external) BrAs, but w<:

are unhappy with the fact that the dualisation is ex-categorial. Our concern is not

that the dualisation is wrong, for it is not. It is a tenet of category theory that
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elements of objects are less important than (arrow) relationships between objects,

so there is no category theoreiic objection to renaming the true arrow .f alse. Orr

concern is that we do not reveal any new features of the contents of toposes. In

particular, as we shall see, the algebras of subobjects remain intuitionistic. These

concerns derive from the type of role we assert for the complement classifi.er. We had

hoped to use it as a tool to discover categories with subobject ciassifiers which, even

as standardly construed, gave rise to BrA subobject iattices. It was presurned that

such a classifier would reveal something on the nature of objects in the category. In

this we have placed a slightly different emphasis on the complement ciassifler than

was originally intended.

In this and the next chapter two negative results are obtained. Tire flrst is

developed in this chapter and is that a complement classifier is formally indistin-

guishable from a subobject classifier. It follows that the notion of a complement

classifi.er reveals the possibility of paraconsistent topos logic without acting as a tool

to reveal particular paraconsistency structures. We follow this line of thought in

chapters eleven and twelve. In chapter eleven we discover a genuine paraconsistency

object in a category of covariant functors. Then in chapter twelve we discover that

the object determines a complement ciassifrer by being, on the one hand, a para-

consistency object, and on the other hand, the codomain of a subobject classifier.

The point is that we needed first to discover that the object was a paraconsistent

iogic object before we could declare the existence of a complement classifier. In

the chapter following the present one we develop the second of our negative results.

\Me aim there at producing paraconsistent algebras by (ac:cepting the usual inter-

pretation of the subobject classifier and) developing a classifier for the duals of the

subobjects, the quotient objects. We find that tire quotient object classifier usually

does not exist in a topos, and that where it does. it cloes not provide adequa,te

algebraic structure for the development of its domain as a, logic object. We leave
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open the question of such a classifier in more general categories. The search for

structures that reveal BrAs on subobject lattices as standardly ordered will occupy

the remainder of Parts II and III. The idea of reinterpretation of lattices as inves-

tigated here will remain useful: we will use a related technique in chapter fourteen

when we come to interpret dual languages on the same algebras.

The present chapter has two motivations. The first is that it was with the com-

plement classifler notion that the project of the thesis originall¡' began. The second

is that with chapters 11 and 12 I claim to have produced a genuine complement

classifier; some discussion is required within the thesis to motivate the claim that

this is a discovery.

The chapter has two sections. In the first section Mortensen's notion of a

complement classifi.er is described. The algebra associated with the complement

classifier is described as being a "true" for "false" dualisation of the aigebra as-

sociated with the subobject classifier structure. As such a complement classifier

can be thought of as a subobject classifler under a new interpretation. I provide

a motivation for the legitimacy of this re-interpretation by making a case for the

claim that the subobject classifier structure as standardiy known captures more

notions than just that of a subobject classifler. The subobject classifier structure

subsumes a structure for which the dualised subobject classifler interpretation is

the most natural. I take this to be by way of clarifrcation of the original Mortensen

complement classifler notion. My notion, then, of a genuine complement classifier

is that of a subobject classifrer structure whose natural interpretation is as a corn-

plement classifier. My discussion brings out two points: there are no truly natural

interpretations of the classifier structure since all interpretations are essentially ar-

bitrary, but there is a philosophical distinction to be made between a truth a row

interpreted as "trre" and a truth arrow interpreted as "false''. Aìso. there are some

standard conventions on what kind of truth arrow will count as "tLue" and what will
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count as "false". Thus I provide a motivation for an interpretation of the structure

I describe in chapters 11 and 12.

The second section of chapter 4 carr be thought of as the technical version of the

discussion in th.e flrst section on the idea that the structure of a subobject classifrer

subsumes the structure of a complement classifrer: I demonstrate that a complement

classifier and a subobject classifier in the same topos will be isomorphic.

1. The Classifier

Definition: For a category C a cornplement classifieris a C-arrow false : 1 + fì

where for any monic f , o * d there is one and only one C-arrow d --+ f), denoted

X;, making the following a pullback in C,

o f ,d.

\¡/
,f)

f alse

Using a complement classifier f alse in place of the subobject classifer frze dualises

the usualtopos logic constructions: where f alse was the classifyingmap of Ø --1,
the complement classifying map of Ø -- 7 is best described as a map true; in corn-

plement classifier terms the usual constructions for O and U become, respectively,

U and Cì; the construction for the intuitionist * becomes the construction for a -
arrow. The technique is to say that where, in a topos, we had a feature of the topos

logic described by X ¡ for sorne arrow .f , we no\M say that we have a feature described

by T¡, where /' is the arrow / with all instances of true replaced l:y f alse. For

example, O is usually constructed as X(t,ue,true), so the replacement feature of the

algebra will be described by X1¡ot"",fatse). The arrow Xft,,e.r,ue) is o essentially

because the only time a claim a lì ó is true is when a and ó are both true. The arrow
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X(¡otse,¡ar""¡ will be a binary operation that values a clairn .f ol,se only when its twcr

arguments are valued false; in other words, X(¡atse,¡urs"¡ is U.

As we have discussed, there is no bar to the act of rena,ming or reinterpreting

true as f alse and then developing the paraconsistent algebra, of Q. It seems possible

indeed to go further and assert that there be actual to¡-ros-like categories that have

genuine complement classifiers, if only because the f'oregoing construction would

seem to supply a relative consistency argument for the existence of such categories.

It is appropriate however that we say more than tha,t there is an analogy wìth

reinterpreted toposes, if we wish to claim that such classifrers exist. An important

point seems to be that with respect to functor SUB being representable, there is

no difference between complement and ordinary classifiers. We are left to purstle

intuitive (ex-categorial) requirements to make a distinction. As we see in later

chapters, for example chapter eight, it is possible to represent internal poset f) as an

external poset with structure in the ordinary set-theoretic sense; we can examine the

external versions of true ar'd f alse and make intuitive assessments. If the external

version of an arrow is the unit, or related appropriately to the unit, of external f), it

is usual to call that arrow true, and if the arrol,l/ is the zero of the poset, then it would

be usual to call it f alse. These, of course, are essentially arbitrary judgments made

intuitive by common usage. However, there remains the possibility that an arrow

that we would on this standard caII f alse, exists as the universal arrov/ assoc.iated

with the representation of SUB. That is, there remains the possibility that there

are subobject classifiers that are in fact complement classifiers. In chapter twelve

we demonstrate the existence of just such a classifier.

A point worth noting about complement classifiers as reinterpreted subobject

classifers is that they really are classifrers of complernents in the following sense.

When we accept the usual understanding of subobject inclusion we have that, for
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f,g e Sub(d),

f cg iff

where Ç is subobject inclusion and Xn < X¡ holdswhenever (Xn,X¡) factors through

e: @ >-- f) x f), the equaliser of lì and pr1. R.ecall that l-ì is the complement char-

acter construction of what is usually U, so (Xn,.\¡) factoring through e under the

ordinary constructions would mean that U (fr,lf ) : Xq which is best understoocl

as X¡ 1Xn. This actually is the point of the complement character constructìorr:

it reverses the usual order on f). We note however that while f) becomes an inter-

nal BrA, all lattices Sub(d) remain Heyting algebras. It is reasonable to suppose

that a genuine complement classifier would work in the same way. It is possible to

re-order Sub(d) in the sense that we say g C / itr by subobject inclusion f Ç g.

Our intention there would be to claim something like "having re-ordered Sub(d), I

am (by some implied dualisation functor) speaking now about some topos-like cat-

egory with actual BrA Sub(d) lattices under subobject inclusion". This is less than

helpful in a subject that usually proceeds by actual construction. There is however

some value in this as a starting analogy. This, after all, prompted the search for

standard constructions where Sub(d) really rras a BrA, and this search turned out

to be successful.

2. Cornplement Classifier vs. Subobject Classifier

Our concern with this section is to establish that whenever a subobject clas-

sifier and a complement classifler exist in the same category, they are formally

indistinguishable. Let us suppose that we have a topos t with a subobject classifier

true:I ---+ f) and a complment classifier f alset:1 - f)'. Goldblatt [1934] offers a

proof (pp.81-2) that subobject classifiers are unique up to isomorphism. \Me can

adapt this to show that the arrow true:7 -- Q and the arrow .f alse:1 ---+ f) are. up

to isomorphisrn, the same. Consider the diagram
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true
1

1

1

c¿

,x
\¿/

f)'

TUe

----------------+

f alsel

true

The top square and the bottom square are, by hypothesis, pullbacks. By the pull-

back lemma, then, the outer rectangle is a pullback. By definition of the subobject

classifier, there is exactly one arrorvr/ making the rectangle a puliback. This arrow

must be XT : ide. So,

X ¡alse' 'Xbu" : idç.

Replacing true with f alse' and f alse' wilhtrue in the foregoing proof, we get

Xtru"'X¡arse, - id"g,

It follows that X¡ou", is an isomorphism between f) and fl'. Now since false' --

Vrru..true andtrue:X¡atse,.false', v/e have that f alse' and true are the same

arrov/ up to isomorphism.

The foregoing result is a consequence of the definition of the complement clas-

sifier. The point however is that this is not a fr.aw in that definition. The flaw iies in

the definition of the subobject classifier. It encompasses too much. The standard

definition of the subobject classifier does not allow, even in Set, for a distinction

between complement and ordinary classiflers; the flaw is akin to that of asserting

that there are no closed sets because their algebra works as a HA when dualised.

The conclusion in Mortensen [1995] is that the nature of the cÌassifier as either

"subobject" or "complement" is a matter of interpretation. In fact, at the level of
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generality that allows us to speak of classifier structures in the absence of particrr-

lar examples, this must be true. However, at the level of particular examples, we

may have some basis for distinction in some kind of examination of the external

correlates for the (appropriate) internal algebras. Our aim in later chapters will be

to avoid having to interpret structures to get dualisatìon results: we aim to present

structures that are dual rather than dual interpretations of the same structure. Irr

fact, we manage to do both in chapters eleven and twelve.

\Me should retain two ideas. Firstly, that paraconsistent iogic is available in

ordinary toposes by fiat of straightforward ex-categorial reinterpretation of the clas-

sifier structure. Secondly, finding paraconsistent algebras within the structure of

a category is a matter of finding lattices that have the right properties under the

usual notions of internal order. \Mith the next chapter we detail one such attempt.

In our search for paraconsistency semantic objects in categories we aim at finding a

classifier for quotient objects on the grounds that quotient objects and subobjects

are dua,l. \Me find that such structures as are available to us are inadequate to the

task of supporting a logic of the kind we desire. Our discussion will be valuable

for reveaiing the need to look less at straightforward categorial duality and more

at the representation of dual structures within the same category. The point of the

present chapter was that reinterpretation of structure within categories is available

as a tool for injecting paraconsistency into categories. but as a tool it is unsubtle

in the same way that the interpretation built into the definition of the subobject

classifrer is unsubtle. Neither of the acts of interpretation allow for a distinction in

particular classifier constructions. There seems to be no obvious reason to accept

one interpretation over the other. The next chapter is a first attempt to develop

dual structures,, rather than dual interpretations.
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CHAPTER 5: THE QUOTItrNT OBJECT CLASSIFIER

Introduction: A quotient object is an equivalence class of epimorphisms with

common domain in the same rÃ¡ay that subobjects are equivalence classes of monics

with common codomain. In our project of dualisation cluotient objects come to our

attention in that where there are lattices of subobjects in C, there are lattices of

quotient objects in C"p. The prospect, then, is that where we have HA subobject

lattices, we have BrA quotient object lattices. We will flnd however that this does

not naturally hold. If we order subobject collections by subobject inclusion we

get Heyting algebras (at least for toposes) and if we order their duals by quotient

object inclusion we find that we have exactly the same algebra. This result provided

the first clue that the task of obtaining BrA structures in categories was less about

categorial dualisation than about straightforward representation of lattice dualities.

In what follows we address ourselves to the deflnition of a quotient object and

the relationship between lattices Sub(d) in a category C. and their duals, the lattices

Quo(d) in the dual category Con. \Me find that such lattices are naturally isomorphic

rather than anti-isomorphic. This means that where lattices Sub(d) are HAs, for

example in a topos t, lattices Quo(d) are likewise HAs in the dual category. It

follows then that in investigating quotient object lattices with a view to finding

BrAs we are preferably interested in considering the relationship of lattices Sub(d)

and Quo(d) from the same category. In this context we find that a feature of lattices

Quo(d), as standardly constructed, is that they are not automatically BrA. This,

too, is indicated by our isomorphism rather than anti-isomorphism conclusion. The

following conside¡ation is an elaboration. Quo(d) as a lattice with respect to a

category C is constructed so that its dual, Sub(d) in Cop, is a Sub(d) lattice also
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as standardly constructed. It follows, as we will demonstrate below, that Sub(d) in

¿or, which we denote by Sub¿"o(d), and Quo(d) in C, which we denote Quo¿(d), are

naturally isomorphic rather than anti-isomorphic; that is, were Quo(d) to be BrA

in C, then Sub(d) must be BrA in Cop. But Sub(d) is not ever a BrA (other than

when Sub(d) is also Boolean) with respect to the standardly definecl opera,tors; the

operators, if they exist, always yield a HA. It follows that to find a Quo(d) that is

BrA, we need to be able to define a new operator. As a consequence we would be

deflning anew operatorfor Sub¿.o(d) lattices. This is our clue that the searchfor a

place for paraconsistent logic within the usual logic structures of a category is the

search for a new algebra of subobjects. We take up this search in Part IIL

In the flrst section of this chapter we define quotient objects and establish the

relationship between subobject lattices for categories C and quotient object lattices

for categories C"p. With the second section we define the notion of a quotient

object classifier. We frnd that such classifiers are unlikely to exist for toposes, nor

indeed for any category with a strict initial object. For other categories there is

no obvious bar to the construction, so we note by analogy with the notion of a

complement classifier that there are dual interpretations available for the proposed

quotient object classifier.

Chapter 5 aims at two conclusions. The first comes from the demonstration

in the first section that simple dualisation of the subobject ciassifier notion does

not standardly yield paraconsistent logic for topos duals. In fact the logic does not

change through simple dualisation. The result extends to any instance of the dual of

a subobject classifier on the assumption that the only known operators for subobject

lattices are the ones that make the lattices Heyting algebras. Since the logic does

not change in the (simple) dualisation, the task of discovering BrAs in classifier

structures is not served by simple categorial dualisation of the classifier notion. This

argument has at its heart two simple technical results: the first. Proposition 5.1.1.
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is that Sub¿(d) ry Quo¿,p(d); the second, Proposition5.1.2, is that Sub¿(d) ordered

by subobject inclusion and Quo¿,o(d) ordered by quotient object inclusion are (up

to isomorphism) the same ordered set. Arguably Prop.5.1.i folkrws immediately

from the construction of Sub¿(d) and the standard notion of categorial duality.

The result is perhaps trivial or at least in no neecl of expiicit proof. This is less

true for Prop.5.1.2 but arguably still holds (assuming a rea,der u'ith a firm grasp orr

duality ideas and consequences). To emphasise this is to misunderstand the project

of chapter 5. With chapter 5 I am making an argument fbr the inadequacy of

standard categorial dualisation of the subobject classifier notion for the production

of BrAs in a category; my discussion goes beyond the simple demonstration of the

isomorphism of algebras Sub¿(d) and Quo¿," (d). This frrst section is more discussive

than technical. The consequence of the argument in section 1 is that if we wish to

find BrAs in quotient classifi.er structures we must either fi.nd a way for a quotient

object classifier to be understood as a sort of complement (quotient object) classifier

or we must find nerv operators for subobject lattices. The second section of chapter

5 deals in part wiih the first of these two options. This is the second reason for

including this chapter in the thesis. In the second section I investigate the notion

of a quotient object classifier with a view to discovering whether or not some of

the ideas raised in the complement classifier chapter can be applied. This second

section has two parts. The second part contains the discussion related to chapter

4 notions. The first part contains a technical result on the existence of quotient

object classifiers.

The interpretation of a quotient object classifier as a truth value of some value

object is not determined by simple duality unless one decides to allow it to be so.

Some discussion is required to bring this out. In particula,r ure are interested to

assure ourselves that there is a relatively natural interpretation of the quotient ob-

ject classifiel' arrow in Set just as there is a relatively natulal inter-pretation of the
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subobject classifier arrow in Set. I do use a technique that amounts to explicit

proof of dual claims bui I do this to inform a discussion where the issue is interpre-

tation of arrows as truth values. That discussion is not settled by simple categorial

dualisation. My conclusion is that complement classifler notions apply to the inter-

pretation of quotient object classifiers if and only if they apply to interpretation of

subobject classifi.er interpretations. With this conclusion I close discussion of one

of the options left to us as a consequence of the argument in section 1 of chapter

5. This leaves us with the option of finding nev/ operators for subobject lattices.

This I take up in the next chapter. (And since I leave beirind the quotient object

classifier context, I am free to take up a third option in the search for BrAs, namely,

the search for a genuine complement classifier).

The negative results of this and the previous chapter play a significant role in

establishing the nature of the project of the rest of the thesis, in that they demon-

strate that not every attempt at dualisation will yield appropriately paraconsistent

results.

1-. Quotient Object Lattices

Quotient objects are to epimorphisms what subobjects are to monomorphisms.

Consider an object d in a category C. Let Epic(d) be the collection of all C

epimorphisms with domain d. We define a preorder (reflexive, transistive ordering)

on Epic(d) by allowing that, for /,9 € Epic(d,),, f C g itr there is some C-arrow

k from the codomain of g to the codomain of / such tirat the following diagram

commutes

That is, f Ç g iff thereis some k suchthat / - k. q. Since .f : k..g and / is epic, we

c2 k
d,

b
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have k as epic. The sense then of the ordering can be seen in Set: since k is epic, b

is (at least isomorphic to) a subset of c. We say that this ordering is natural since it

reflects (in Set) a natural idea of an entity being less than or equal to another; that

natural idea is the one of subset inclusion. The order we have defined for trpìc(d)

will not in general be a partial order (reflexive, transistive, antisymmetric ordering)

since, in general, there will exist isomorphic epics .f and g with the same domain d;

that there can be iso but not identical epics means that .f C g and g C .f implies

only / - g and not in general f : g. We can however- establish a partial order ort

Epic(d) partitioned under the obvious equivalence relationship. We say that epics .f

and g with the same domain d are in the same equivalence class iff both .f C g and

g C f . Such equivalence classes are called quotient objects of d. Epic(d) partitoned

under this equivalence relation will be denoted Quo(d). The partial order we define

on Quo(d) is also denoted by Ç, and will be called quoti,ent, object inclu,.si,on,. We

say Quo(d), the collection of all quotient objects for d, is partiaiiy orderecl so that

for [/],[g] e Quo(ù,ff1g [g] itrfor/: d---+>b andg : d---+ c thereis some k: c--+ b

such that

commutes. \Mhere the category from which Quo(d) is drawn is not apparent we

attach a subscript to Quo that names the category of origin; for example, if Quo(d)

is a collection of equivalence classes of epics from category C, we rnay also denote

the collection by Quo¿(d). We apply the same convention to collections Sub(d).

Proposition 1.1: Sub¿(d) ry Quo¿,'(d).

Proof: suppose [/] e Subc(d). BV defi.nition / ìs rnonic in C and has codomain

d. It follows that there is an epic f o' \n Cop with domain d. Now g € l.f) iff I is a
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C-monic with codomain d and there is some kr and kz in C such that

f :g.h and 9:.f .kz

\Mhere such a g exists in C, there exists aCoP-epic. go|' andCop arrows kie and kie

such that

l"' : (g'kt)oo : l*i' 'g"o ancl goP : (.f kt)oo loP..l t

in other words, gop € ¡¡'nl. Itfact, the relationship between C andCoI' requires that

9 € [/] iff gon € lf'ol, and that C-monic / exist iff C'p-epic .fop exist. So Sub¿(d)

and Quo¿,"(d) are isomorphic collections. D

Proposition 1.2: forV|[g] e Sub¿(d) andlf"nl,lg"ol € Quo¿,o(d), we haue

[/] ç' [g] itr lf'ol Çr lg"l

where Çt it subobject i,nclusion and, C2 is quotient object inclus'ion.

Proof: [/] Çt [g] itr there is some C-arcow k such thai / -- g 'k. But this is

true iff there is some CoP arrow kop such lhat f'n -- (g .k)oo : kop .gop. And under

that circumstance V'olÇ, ¡n'r]. So if [/] C1 [9], then V"olç, ¡n"r]. The converse

is established in the same way using the fact that (C"r)op is C. D

These propositions establish that Sub¿(d) and Quo¿,"(d) form isomorphic lat-

tices respectively under subobject and quotient object inclusion.

Since subobject inciusion amd quotient object inclusion both reflect a natural

idea of "less than or equal to", that of subset inclusion, we will describe lattices

(Sub""¿6:(d), qt) and (Quo¿ "o,Cz) as naturo,lly isomorphic. Plainly quotient object

inclusion is the not the only ordering possible for the collection Quo¿"o(d), nor is

subobject inclusion the only one for Sub¿(d), but if we change the ordering, then we

change the lattice. Knowing then that subobject lattices, as commonly understood,
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are HAs when drawn from a topos t obliges us to assert that quotient object lattices,

as commonly understood, are HAs when drawn from topos duals ¿on; tlne operators

that we know to be definable on a lattice (Quo(d), Cz) by virtue of the isomorphism

wiih (Sub(d), Ct) will always yield a HA rather than a BrA. For collections Sub¿(d)

we can say that fl exists if C has puilbacks, U exists if C has image factorisations

and coproducts, and þ exists if C is something like a topos (this is vague, but

for the point we are making we do not need an explicit definition). On the face of

it Quo¿"r(d) should be a dual iattice since the conditions under which the lattice

operators exist dualise; however, since the order on Sub¿(d) is defrned by what

arrows exist, the conditions under which the order exists dualise as well. This is

just the point of Proposition 1.2 above. Since the known operators on Sub¿(d) with

respect to the usual ordering are lub, glb, and intuitionist implication, the known

operators on Quo¿,o(d) with respect to the usual ordering r,r'ill be lub, glb, and

intuitionist implication. And since any C is Cie for some category Cr, it is a fact

that any collection Quo¿(d) under quotient object inclusion is, at best, a HA. Note

well that we do not rule out the possibility of extra operators.

One avenue of investigation that remains open to us is that of interpreted

algebras associated with the natural quotient object lattice structure. This is the

idea that should a quotient object classi,fier exist, its role as a truth value wouid be

amenable to interpretation for the same reasons that \Me may vary the interpretation

of a subobject classifier.
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2. The Functor QUO

2.Lz With this section we defrne a functor QUO: C ---+ Set for categories C. The

functor is defined to represent the construction of quotient objects in just the rvay

that the functor SUB was defined to represent the construction of subobjects. Since

subobjects and quotient objects are dual, the details of the definition of QUO.

particularly the details of the definition of QUO(/) where .f is any arrow in C, will

be dual to the relevant details of the definition of SUB. It follows that QUO will be

a covariant functor.

Our principal concern with this section is to consider the nature, if any, of a

quotient object classifier in a category, and since the existence of such a thirrg is

equivalent to functor QUO being representable, we give some consideration to the

circumstances under which this occurs. We find firstly that if a quotient object

classifier exists, it is an arrow Qn ---r Ø where Qn ir the object of the representation

of QUO and Ø is an initial object. We find, then, that where a category C has a

strict initial object, for exampb if C is a topos, then it is unlikely that a quotient

object classifier exists. This does not rule out the existence of such a classifer for

categories whose initial objects are not strict.

For a category C, the subobject functor SUB: CoP --+ Set is a contravariant

functor from C to Set that takes C-objects ¿ to collections Sub(ø) of subobjects of

ø, and takes C-arrows lc: at --- ø to functions SUB(k): Sub(ø) --+ Sub(ø') where for

[/] e Su¡(a), Sub(k)([/]) irthe collectionof arrows g':b -- n'whereg' e Sub(kXt/])

iff g' is the pullback in C of some g € lÍl along k; in fact, SUB(kX[/]) is [/'], the

subobject of a' represented by f', the pullback of / along k. The construction of

SUB relies on the fact that, in any category, if two rnonics determine the same

subobject, then their respective pullbacks along any giverr arrow in the category

also determine the identical subobjects. By duality, this fact gives us that, in any
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category, if two epics determine the same quotient object, then their respective

pushouts along any arro'w in the catgeory also determine identical quotient objec.ts.

It follows from this relationship bewteen pushouts and epics that we have a ready

definition for QUO.

We define functor QUO:C -+ Set to be a covariant functor with an object

function that takes and ¿ e C to Quo(a), the set of ail quotient objects of a, and an

arrowfunction which takes any C-arrow k:a -+ a' tc¡ QUO(k):Quo(a) -t Quo(a')

given by Quo(a) > [g] * [pushout of g along k] e Quo(a').

Suppose now that QUO is representable in a category C and Qa is the repre-

senting object; that is, suppose some natural isomorphism between QUO and a hom

functor hom(Q¿, -). This is equivalent to the existence of an arrow Ç: Qn --+ Qo in

C of which it is true that for every b e C and every [/] e Quo(ó), there is exactly

one arro\/,Q{rQn -- ó, which we call the "quotient-character of /", such that

auO(a{)([g]) : [/]. Of q this is equivalent to saying that for any epic / : b ---++ d

there is exactly one C-arrow, namely Q{, making the following diagram a pushout

r
d

Qo Qn

\Me now give a demonstration on the nature of Qo. Our discussion here and

the following lemma and theorem dualise that found in Barr and Wells, Toposes,

Triples and. Theories, [1985]. There Barr and Wells consider the nature of the

classifier arrows whose existence and classifying properties are equivalent to the

representability of SUB. They frnd there that the arrow in question has a terminal

object as domain. By exactly dualising their lemma and theorem we find that g has

an initial object as codomain; that it, Qo is an initial object in C.
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Lernrna 2.L.lz for any u : b --+ c and epic q' : o -+' b, the di,agram,

id.

q

is a push,out.

Proof: consider for any g and ä the diagram

d
h

c

h

u q

C

1
o,

c

1

c

1
q'

id"

ba
q.'

By definition u ' qt : id"'(, ' q'), so the inner square commutes. Suppose the outer

square commutes, that is, suppose g'qt : h'("' q'). Since q' is epic and composition

is associative, g : h.u. Therefore there is at least one c -!- a making the whole

diagram commute, namely Ic : h. But for the whole diagram to commute it must

be the case that Ic . id.: â. And this is true iff k : h. So, there is exactly one k

making the whole diagram commute. t

Theorern 2.L.Lz in any category Q, i, an initial object.

Proof: for any given a €C, there is at least one map from Qo to c, namely the

map u given by the following pushout
id,

a

u ádo
X

Qo --+ a exists; then, b), the lemma, the

Q¿*- Qnq

Now suppose some further arrow u
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following is a pushout id".
a

1
u q

Q, QN
q

Now, by the nature of q, there is exactly one arrow Qn - a, namely Qi9", making

the square a pushout; so u.q : Q'r!". But we have already seen that ¡¿".Q'Í" : ?r.Ç.

so u' 8: u'q. It follows, by the fact that q is epic, that u :'¿¿. So, f'or any a € C,

there is exactly one map from Qo to rz. tr

It is a corollary to this theorem that where the initial object of C is strict, for

example if C is a topos, that Q¿ is an initial object. This follows as a straightforward

consequence of the definition of a strict initial object: and initiai object Ø in a

category C is strict if whenever there is an arrow a - Ø, then that arrow is an

isomorphism. If QUO is representable in a category with a strict initial object, the

representing object for QUO must be initial and q must be iso to id6.

Theorem 2.L.22 QUO i,s not in general representable i,n categories witl¿ strict

initial objects.

Proof: if QUO is representable in such a category, then Qn i. an initial object.

It follows, then, that for any object ¿ in the category, there is exactly one arro'w

Qn -* ø. This entails that every epic / with domain a is (iso to) the pushout of id6

along just one arrow Qn -- ø. This entails that every object of the category has, at

most, one quotient object; in other words, every pair of epics u'ith common domain

have isomorphic codomains. This is not impossible, but equally, it cannot hold in

general, not even for categories with strict initial objects. Consider any topos with

at least two objects, c and ó, that are not isomorphic u'ithin the topos. Suppose

further that there are two epics, the first being J:a --* r¿ and the second being

g: a ---+> b. Objects ¿ and ó are not iso in the topos, so g is not an isomorphism.
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Arrows / and g erre epics with the same domain in a category with a strict initial

object, but / and g do not have iso codomains. The extent to which such epics

or similar pa,irs of epics are possible within categories with strict initial objects is

some measure of the extent to which QUO is not representable for such categories.

We assert ihat the range of categories with strict initial objects is such that pairs

of epics as described are more likely to exist than not; and so assert the theorem

demonstrated. ¡

Notice that when it is true that each object of a category (with strict initial

object) has exactly one quotient object, there is a one to one correspondence between

quotient objects and arrows with the initial object as domain. Trivially the latter

could be called t'charactert' arrows.

2.22 Suppose now that we consider categories that do not have strict initial objects.

To support a quotient object classifer, a category requires some initial object so let

us consider categories with non-strict initial objects. To assure ourselves that there

are categories with non-strict initial objects in which QUO is representable note that

when t is a topos, SUB is representable, so in t"p QUO is representabie; and if top

had a strict initial object, then all maps t ---+ a in t, for any t-object ø, would be

isomorphisms. So let us suppose a category with a non-strict initiai object in which

QUO is representable. In that case we have a map Qn --+ Ø and no obvious reason

to suppose that Qn is an initial object. It is reasonable then to presume that Qp

is a¡r internal algebra with operator arrows determined by the natural operations

on each Quo(d) ry hom(Q¡, d). The bijection Quo(d) ry hom(Q¿, d) is described

UV [/] r- Q{ The natural operations on each Quo(d), that is, the operations that

determine components of natural transformations

hom(Q¿ l_ Qn, -) --+ hom(Q6, -)

are, when C is the category in question, exactly those whose duals are natural for
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each Sub¿",(d). As we have discussed above, the order C2 on each Quo(d) together

with these operations will yeild HA Quo(d) provided tirat we understand Sub¿,o(d)

to be a HA. It wili follow that we may take Qn to be an internal HA in the same

way that we may take f) to be an internal HA. Tire only relatively difficult part

of this is that where f) has operator arrow f) x 0 -* f), Q6 has operator arrows

Qn -- Qn -| Qn.

There is now a distinction to make: this is between the algebraic structure on

Q¡ and that on each Quo(d). We have seen that the standard ordering on Quo(d)

produces a HA. \Me have yet to see how this relates to an order on Qa. Clearly, we

can impose an order on Qn that directly reflects the order on each Quo(d). Naturally

this would make Qn .tt internal HA. However, such an imposition of order amounts

to an interpretation of Ç: Qn --+ Ø as a particular truth value, namely as a, value

true. We have yet to see that this is the intuitive interpretation. To do that we must

review what we expect the nature of q to be in a know context. Consider Set and

Set'p. any quotient object classifier in a category Con can be thought of as trueoP

where true is a subobject classifier in C. This is just a consequence of the definitions.

In that case there is a quotient object classifi.er in Setop. To get a sense of the arrow

trueoP in Setop we consider true in Set. The arrow true: {Ø} -- {Ø,1} characterises

any inclusion /: o,ç b by determining an arrow X¡:b --+ {Ø,1} described for any

rebby
x¡(r): 1 iffre._ f(a),

Ø otherwise.

It follows that in Setop the map trueoP characterises any superset arrow fop:b --u a

by determining an arrow (X¡)', :Qlr'o:{Ø,1} --+ b where for any r Çb

(Q{" )-'(") : t
t
1 iff r € (f"e )-t(o),
Ø otherwise.

This, and that fact that Xt,u. : ide and therefore that Q{"""' - ndr' give us

reason to believe that whatever interpretation we are given to applying to subobject
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classifiers is the same one we should give to quotient object classifiers; after

usual subobject classifier in Set picks out l from {Ø,1} and is called tru,e, amd

the quotient object classifier trueoP in Setop is defined so that (trueon¡-r(Ø) : 1.

It should be apparent thought that just as there is no difficulty in interpreting a

subobject classifler as the truth value f alse, there will be no diffrculty in interpreting

a quotient object classifier, likewise, as a truth value f alse. The effect in both cases

will be to dualise the algebraic nature of the usual operator constructions.

We can take two points from this discussion: flrstly, straightforward duality

of categories does not yield the logic structures r /e are interested in and, secondly,

quotient objects and their lattices are not always immediate ca,ndidates as natural

logic bearers in the same mann-er as subobjects. In combining the ideas that come

out of this and the last chapterwe see that to gain paraconsistent algebras in

categories we need a way of building them into the usual relationships between

categorial objects. The next chapter demonstrates an attempt to recognise such

paraconsistent algebras in a functor category.
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CHAPTER 6: A FUNCTOR CATEGORY

Introduction: With this chapter we begin our investigation into the existence

of extra operators for lattices of subobjects. Our concern in this chapter is with

those categories that are categories of set-valued functors over posets. These are

the categories Setc of functors C - Set where C is a poset category. It is a well

known result that when C is small, the category Setc is a, topos. An example of

a small category C is a poset category P. When we have a partially ordered set

P, say the set of all subsets of a set P ordered by set inclusion, we can say that P

determines a category. The category determined by P is that which has as objects

all members p of P, and furthermore has, for any p,Ç Q P, an arrow p --+ q if and

only if p E q where f is the partial ordering of P. \Me wiil use P to denote both

the poset and the category determined by ihe poset.

For categories Setc it is known that structure in C is related to subobject

lattice structure Setc. \Me note with interest then that where E is a topology of

closed sets, then the lattice (E, q) of E ordered by set inclusion, is not a HA. In fact

(E, q) is a BrA. Furthermore (E, Ç) is a poset. Since the category SetE must have

an algebra (0, O), we offer the hypothesis that \Me may use those BrAs that we find

in (8, Ç) to construct a new operator for logic object f). In fact this hypothesis fails,

but it is instructive to see why. In what follows we fix poset P as a set ,S of subsets

p of some set P. The partial ordering for P is set inclusion. For any topological

space X both the lattice of closed sets and the lattice of open sets form posets of

this kind.. The categories we concern ourselves with, then, are SetP.

To begin with we had noted in investigation that while the subobjec.t lattice

structures in categories SetP were related to the algebras and subalgebras of P.

they were not directly related in the sense that these algebras could be immediatelS,
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carried over into functor constructions. The algebras that do reflect the subobject

structure of SetP can be constructed with reference to P in the sense that the

algebras have cosieves from P as elements. We will clefine cosieves shortly but the

net result is that while we can vary the algebraic properties of P (our P may be

based on a closed set topology and so be a BrA, or it may be based on an open

set topology and so be a HA), we do not vary the fact that the iattices of cosieves

of P that are used in the construction of the classifier object of SetP are always

bounded, complete, and distributive. The focus of our investigation rnoves, then,

from the properties of P to the properties of bounded, complete distributive lat-

tices. Knowing as'we do that describing the iogic of a topos amounts to describing

which arrows 0 x f) ---+ f) exist within the topos, we varied our original hypothesis

on the origin of the extra operators. Any topos SetP has an intuitionist + arro,vv

essentially because any bounded, complete distributive lattice supports such an op-

erator. We noted that any such lattice wiil also support the characteristic operator

of a Brouwerian algebra; we speculated that we may use this fact to construct a BrA

arrow = : f) x Íì ---+ f) for SetP in just the way that the usual * is constructed. The

speculation proves in general to be false. It was not that the requisite BrAs do not

exist, for they do. In fact we are able to construct a transformation f) x f) --+ fl. The

problem is that the transformation is not in general a natural transformation. This

means that the tra¡rsformation is not in general an a row in SetP. In chapter nine

'we come across the same problem for particular extra arrows in sheaf categories.

What follows is a demonstration that the ciassifier object 0 of a topos SetP

plays host to component lattices fl(p) for all p € P and that along with being HAs,

these lattices are BrAs. \Me follow this with a demonstration that the BrAs Q(p) are

notnat:ural in p and so do zol produce a BrA operator on fl itself. So, in as much as

this operator does not exist, the slogan "the logic of variable sets is intuitionistic"

remains appropriate.
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This is the first of the chapters which investigate the possibility of describing

new natural operators for subobject algebras. The negative result presented here

serves as a prompt for the same hypothesis restricted to particular kinds of toposes

investigated in later chapters. With respect to chapter 6, presheaf categories SetP

were originally chosen for investigation on the grounds that the¡' 66n¡.ined the

largest number of things on which we could reasonably perform a topological duali-

sation, these things being functors from topological spaces. The original discussion

was developed so that P wouid be a closed set topology. The idea was tirat where

SetP, with P an open set topology, has HA subobject lattices, topological dualisa-

tion of the objects of SetP (that is, the consideration of SetP with P a closed set

topology) would produce some nev/ structure for subobject lattices. It was quickly

noted that the construction of the classifler object for SetP is not especially influ-

enced in terms of the algebraic nature of fl by the algebraic nature of the poset

P. I therefore considered SetP where P is any poset. In fact it would have been

relatively easy to extend the discussion to categories Setc where C is some small

category. Inasmuch as my concern was for topological dualisation and that the

preliminary investigation pointed to a negative result for the existence of natural

BrA structures, I decided to focus on the less general categories SetP.

Chapter 6 has two sections: the first section contains the positive result that

the subobject classifier has BrAs in its component structure; the second section

contains the negative result that the component BrAs do not produce a natural

transformation and so do not produce an operator arrow for the subobject alge-

bras of SetP. The discussion in the second section brings out the point that the

failure of naturalness can be closely linked to to the construction of the classifier

object and does not appear to be significantly linked to the algebraic nature of P.

The hypothesis that drove the research that led to the material of Part III of the

thesis was formed partly as a result of tiris. Since my method was to be one of
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topological dualisation, I needed to be working with structures defrned with respect

to topologies and which, when formed into a category, had a srrbobject classifrer

whose algebraic properties were relatively closely dependent upon the topologies

used to deflne the original objects. The obvious ch.oice were the sheaves. An extra,

advantage of worhing with sheaves was that their categories would be subca,tegories

of categories SetP; this offered the possibility that whatever was ca,using the BrAs

to be non-natural in SetP could be, in a sense) left out, particularly when I came

to consider closed set sheaves.

The philosophical significance, then, of chapter 6 is relatively subjective. The

objective point of the chapter is that some man-ipulation (some restriction or extra

property) is needed in a category (particularly in a functor category) before we can

produce a category with a natural BrA structure. One assessment of the kind of

restriction needed led to the discoveries and discussions in chapters 8, 9, and 10.

At the time of research and then of writing the material of this chapter and

chapters 9 and 10 was understood to be original. In fact a result subsuming the

categorial results in these chapters was reported in 1991 in F.W. Lawvere's "Intrinsic

co-Heyting boundaries and the Leibniz rule in certain toposes" ir Category Th,eorg,

Springer Verlag Lecture Notes in Mathematics, 1488, pp.279-287.

In the note cited Lawvere writes

"In any presheaf topos (and more generally any essential subtopos of a

presheaf topos), the lattice of all subobjects of any given object is another

example of a co-Heyting algebra (as well as a Heyting algebra). The co-

Heyting operations are in general not preserved by substitution (inverse

image) along maps..." (Lawvere, 1991, p.280).

This covers the results inmy chapter 6 on the non-natural transformation {-rtp €

P) for any category SetP where P is a poset. Now a, topos of sheaves is a, sub-

category of some presheaf category. So Lawvere's result contains my own that
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any Grothendieck topos has an in general non-natural BrA transformation on the

subobject classifier object.

My discussion is a great deal more detailed than Lawvere's. Lawvere's dìs-

cussion, on the other hand, contains enough detaii for ar expert to recrea,te the

result and in fact has results relating to circumstances where the BrAs are natural

and partially natural. The virtue of my discussion is its attempt to outline urhy

the BrAs are not in general natural. This fitted in with m5' initiai program for

discovering the implications of using closed sets in place of open sets in various con-

structions, particularly sheaves. The focus of the thesis became that of discovering

BrA logic structures and, broadly, that too is the focus of Lawvere's note. However.

our method remained that of topological dualisation: the replacement of open sets

by closed in the notions of various structures; it is not clear that this is Lawvere's

method. Philosophically speaking, the intention with chapters 6, 8, 9, and 10 was to

discover semantic objects for paraconsistent logic in categories. The implication of

my actual discoveries is that, along with standard categorial dualisation, topological

dualisation of sheaves is not an immediate source of natural semantic structures.

My emphasis, then, was different from Lawvere's.

1. Component Algebras

When the poset P is a smali category, the category SetP is a topos- Topos

SetP is a particular example of topos Setc where C is an arbitrary small category.

The topos structure of Setc can be described in terms of C-arrows in collections we

call cosieves. Note that while we are largely following Goldblatt's [198a] discusson

of categories SetP, we have in later chapters adopted the dual definition of sieve

given in Johnstone's Topos tlteory, .79771, So where Goldblatt has usecl "sieve" we

use ttcosievett.
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For category C and fixed C-object c, let

S" : {,f : for some C-object b,o, J-. b in C}

A subset,9'of S" satisfies the conditionof closure under left composi,tionif whenever

b -!- cin Cand ø l-. Uin,S', then g . f e S'. Any subset of S" that is closed und.er

left composition is caiied a cosieue. Such a sieve is sometimes called an a-cosieue. It

follows that for any C-object a, both S" and Ø are a-cosieves. For poset P: (S, E),

any subset A C P is hered,i,tary with respect to f if whenever p e Aand p f q. then

q e A. For each p € P, the set lp) : {q : p a cl} is called the pri,ncipal Lr,eredi,tary

subset of P generated, by p. Plainly there is a cosieve ,9' in category P iff there is a

hereditary subset A in poset P; the bijection being given by:

p--+q€S' iff qe A

For this reason we identify cosieves with the appropriate hereditary subsets and

develop SetP in terms of the latter. The set of all hereditary subsets of P will be

denoted P@. The set of all subsets of a given [p) hereditary with respect to f will

be denoted bv þ)o. Note that if A € þ)o, then A e Po. SetP, as a topos, has a

classifi,er object f,). The standard construction for f) is the functor P ---+ Set given

by'

r¿(p) : [p)o;

for p f q in P the maps f){: fl(p) - f-¿(q) are given bv þ)@ ) A r--+ A¡lÐ.

Proposition 1.1 (Goldbtatt): P@ ordered by set inclusion forms a bounded, corn-

plete distributiue lattice. !

When P is (S, Ç), the lattice (Po, ç) is bounded by ^9 ancl Ø.

Proposition 1.2 (Goldblatt): for any p € S,lp)Ø ordered by set tnclu.sion, forrrts

a bounded, complete d,istributiue lattice. D
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Lattice (þ)@, Ç) is bounded by [p) and Ø

Theorern 1.1: (Po,q) is aBrA.

Proof: we recall from chapter three the definition of a BrA as a pseudo-

differenced lattice with a unit. \Me note first of all that when P is (S, C), the

lattice (P@,Ç) has unit ^9. Secondly, to show that (P@.C) is pseudo-differenced

we demonstrate that for arry (J,VrX e P@, we have

(s-v))ucx iff ucxuv.
It follows that (Po, C) is pseudo-differenced since, for an¡' U.V in a distributive

lattice of sets with a unit ,9, U'V, if it exists, is the smallest element of the

lattice that contains (^9 - y) n [/. Since (Po, q) is complete, the smallest element

containing (S - y) î [/ exists and it will always be a subset of any X for which

(S - y) ÀU ç X. In other words, if we denote by U'V the smallest element of

Po containing (S - y) n [/, then the result that (S - y) n U ç X 1fr U c X uV
means lhat U =V C X iff U C X U I/ for any U,V,X € Po making (Po,Ç) a,

pseudo-differenced lattice.

Suppose that (S - V) ÀU ç X. Then,

(ts-v)Àu)uv cxuv,
(ts-v)uv)n(uuv)çxuv,

U UV C X UV,

UCXUV.
On the other hand, if U C X U V, then

u n (s -v) c (x uv)n (,9 - v),

ç (x n (,s - Y)) u (tz n 1s - l,')),
çxn(^9-y),

u n (s -v) c x. !
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Corollaryz for (J,V €P@,

U'V : {r e S : qZr and q € ((S- Y) n LI)} tr

It is worth noting that the proof of the theorem reliecl only on the fact that

the lattice (Po, g) has a unit and is meet-complete. We have in fact demonstra,ted

that any meet-complete lattice with a unit is a BrA.

Theorern 1.2: for any p e S, (þ)*, c) zs a, BrA

The proof of this theorem is essentiaily identical to that of Th.1.1. If we denote by

' 'o' the pseudo difference operator for (þ)o, C), we have

Corollaryz for s,f e þ)o,

s'ot :{r e þ) : qt r and q e ([p) -t) n s]

To avoid confusion we note explicitly that when (tp) - t) n s - Ø, it is a set with no

members, so there is no q € (þ) - ¿) n s; in other words, it (þ) - ¿) n s - Ø, then

s:ot : Ø. the same point applies to the formula in the corollary to Theorem 1.1:

if (^9 - V) r\U : Ø, then U =V : Ø.

Remark: that each C¿(p) : þ)* it a bounded, complete and distributive lattice

means that each f)(p) supports both a BrA operator -o and a HA operator, which

we can denote by *p. That there are such HA operators demonstratable in thai

for any s,t,r € þ)@ we have

rc(lp)-s)u¿ iff snrCr
- \u / / -

If we define .s )o ú to be the largest subset "f ([p) - ") U l. rve have

¡

nCs=)"t iff strCf
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Since ([p)*, c) is complete and bounded, that largest subset always exists. It, follows

that ([p)o, c) is a relative pseudo complemented lattice with a, zerol or in othe¡.

words, a HA. In fact, the existence of +, operations for each [p)@ corresponds to

the existence of the usual intuitionist +: f) x Q ---' Q that rnakes the logic of SetP

intuitionist

The presence of operation -p or each Q(p) suggests the possibility of a BrA

arrow - for SetP dual in type to the usual +. In fact this does not in general

hold. Clearly there is a transformation {'o,p € P} but the transformation is not

in general natural. A feature of the =) arrow in SetP is that for any p c q in P,

the following diagram commutes in Set.

+n
f¿(p) x fi(p) 

-+ 

f-)(p)

ln6 ' n; lntJJ
f¿(q) x cl(q) -------------+ f¿(q)

+q

This is the meaning of the claim that * is more than just a transformation, it is a

natural transformation. The arrows of SetP are natural transformations between

functors p --+ Set, so if the transformation - : {-p:p € P} is not natural, then

it does not exist as an arrow in SetP. In the next section we describe why it is that

componentr -o fail to produce a natural transformation.

2. Operator Arrows

\Me have discovered that f)(p) : [p)O is a BrA with respect to set inclusion.

We therefore can define a transformation r:f,) x f) -+ f) with components ro f'or each

p € P given by -pi that is, for each p e P defi.ne ro:f)(p) x A(p) -- A(p) so that

for (s, ú) € C¿(e) x f)(p),

to ((t, ú)) : s'pt.

This transformation exists as an arrow in SetP only if the transformation is natural.

p

q
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For r to be a natural transformation, the following diagrani is required to

commute in Set for ail P-arrows p --+ q

f¿(p) xç¿@)Lafp)
t f-¿ä

fl(q) x f¿(q) r¿(q )
T,I

We neecl a technical lemma before we carr rnove c¡n to tb.e main demonstration

of this section.

Lernrna 2.1: lorpCq and, ¿ € þ)o,

tq) - (¿n tq)) : ([p) -¿) n [q)

Proof: suppose xelù-(tn[q)). Then "e [q) andr ltnlù. But,thenwe

musthavethat r /ú. AlsosincepC q,, wehave [q) C [p), sor € þ). Now, since

¿ € þ)o, t is a subset "f þ), so r € lÐ -t. In other words, " e ([p) -¿) n [q). S"

tq)-(tntq)) ç(þ) -¿) nlq)

Now suppose that " € (lÐ-¿) n [q). Then " e lù. Also, r e lù-f, so r / t. If
r ø t,then r / tnlù,but we have already seen that r e [q), so :r € [q) - (¿ n tq)).

So

(tpl - t) n [q) q [q) - (¿ n tq)). D

Theorem 2.1: r 'is not in general a natural transformation.

Proof: the condition that the diagram above commute is the conclition that for

arry p Ç g in P and any (s,t) e f-l(p) " 0(p), we have

aoo?o((", ¿)) ) : ,o ((c¿i " CIl ) ( (", ¿)) )

a,qQoo

p

q.
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Now,
aI(,r((", ¿))) : fif (s -r,t)

- ("pt) n [q)

So, by the corollary to Theorern 1.2,

9:lGr((",¿))) : {" e [p),u Cr and u e ([p) -l) ..']n [q)

On the other hand we have that

,o((al " CIl)((",¿))): ro(('n [q),¿ n [q)))

: (s r-ì [q)) -o(¿ n [q))

So, again by the corollary to Theorem 1.2, we have

,o((Q'o x CIä)((r,¿))) : {'e [q)'u cr and u e ([ql - (¿n tq))) n ("n tq))]

Then, by lemma 2.1,

"o(al t CIl)((",¿))) : {" e [q)' u Cr and u e ((tp)-¿) n tq)) n ("n tq))]

: {r € [q):u c r and, € (þ) -f) nr n [q)].

Now, by definition, s:of is the smallest superset "f ([p) -¿) ns, and since there is

no guarantee that (þ) - t) n s will be a hereditary set, it will in general be smaller

than s =oú. On occasion, then, there will be some q other than Ø such that p C q

and q € (s=rf) but g ø (lÐ-¿)ns. On such an occasion, since s =otis a hereditary

(" -r¿) n [q) : [q)

So,

But, by the corollary to Theorem 1.2, q € (s -ot) only if there is some " e (lp)-ú)ns

such that u C q.Obviously in that case t) € s, and since.s is hereditaty, Ç e s. But,

772
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by hypothesis, g ø (p)-¿) ns, so g € f. And f is hereditary, so Lù Çt. As aresult

(þ) - ¿) n [q) : Ø. It follows then that

,o((a| x f-¿?)((",¿))) : Ø

And since, by hypothesis, q + Ø, we have lrl) I Ø, and therefore

a7(,r((",¿))) l,o((CI| " elf )((",t)))

So, at least to the extent that there are non-empty q in (s =oú) such that q is not

i" (þ) - ú) n s, the transformation r is not natural. D

It is worth emphasising that the conditions used ìn Theorem 2.1 do not always

hold. We are required, then, to consider how likely it is that they do hold. This will

give some meaning to the claim that r is not 'in general a natural transformation.

Theorem 2.1 shows that if there is some s,t € [p)o for some p € P such that

(þ)-ú)lìs is a proper subset of. s=rt, then r fails to be natural as a transformation.

So, the extent to which there are hereditary subsets s,ú of þ) for which (þ)-t) ns

is not hereditary is one measure of the extent to which r fails. Plainly r may fail

to be natural more often, but it is at least true that r fails to be natural when such

s,f exist. Such s,f exist if it is at least the case that there i" p,A € P such that

p ç y but p # A. To demonstrate this claim suppose there to such p,U irt P. It is at

least true that [y) € þ)o and that ïA) *tÐ.Then [p) - [y) contains at least p but

not g. As a result þ) - [y) is not hereditary. For the same reason (þl- [y)) n þ) is

not hereditary. So, if we let s be þ) and t b" [y), we have an example of s,f € þ)o
such that (tp) - t) n s is a proper subset of s= pt. \A/e can say that ¡ fails to be

natural in at least those cases where poset P has at least two distinct elements p

and g such that p Ç A where f is the partial order defining P. This circumstance

seems suffi.ciently common for posets to justify the claim that r in general fails tc-,

be natural.
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\Mith the next chapter we offer a brief history of sheaves by way of introduction

to the concept. Our concern to establish extra operators for 0 and Sub(d) generally,

becomes focused in later chapters on sheaves for two related reasons. First, sheaves

can be defined with respect to topologies and so, in particular, with respect to closed

set topologies. As we shall discuss, structure in sheaves varies according to the base

space topologies in ways that it does not for presheaves and functors such as we have

considered in this chapter. Second, categories of sheaves are the original toposes.

As toposes, sheaf categories offer us a structurally rich context in which to develop

the issues of paraconsistent topos logic. This idea sustains us until chapter fourteen

where we modify it a little and suggest that sheaf categories offer us a structurally

rich context in which to develop the issues of paraconsistent model theory.
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Part III:

SHEAF CONCtrPTS



CHAPTER 7: SHEAVtrS

a brief history of the structure

Introduction: This chapter is intended to act as an introduction to the notion

of a sheaf, particularly for logicians many of whon are unfamiliar with the idea.

It announces the definition of a sheaf by considering some of the history of the

notion. Our history owes much to John Gray's altogether more comprehensive

"Fragments of the history of sheaf theory" as found in Fourman, Mulvey, and Scott's

Applicati,ons of Sheaues, [i979]. However, all sources listed in the bibliography were

consulted, and the result is a reconstruct'ion of Gray's history, this tirne with an

emphasis on the emergence of the conditions used to define ail types of sheaves now

known. In particular, it is interesting that the initial a,ccount of sheaves privileges

closed sets in the base spaceT which is very much in line with our orvr/n paraconsistent

notion. But also there were rapid changes in this dominance.

A further point made by the chapter is the relationship between the notion of

a sheaf category and the notion of a topos (and so the existence of a subobject clas-

sifi.er). Sheaf categories are a signifi.cant subclass of the toposes and so a significant

subclass of the categories with subobject ciassifiers. The move from simple fLnctor

categories SetP from chapter 6 to the closed set sheaf categories from chapters 8

and 9 is given a further motivation.

In the present day, sheaves exist in at least two forms: on the one hand there

are the contravariant functors that are called sheaves and on the other, there are the

continuous local homeomorphisms between topological spaces. Both the contravari-

ant functor form and the continuous local homeorrrorphism f'orms satisfy essentially

the same property. That there are different structures that bear the name sheaf is
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an ackno\Mledgement that this same "sheaf property" can be described in different

contexts. In fact, what we now know as the "sheaf property" is a, generalisation.

The original description applied only to the continuous local homeomorphisms. In

that context the "sheaf property" of a continuous local homeomorphism p: E ---+ X
was a description of the behaviour of particular types of maps to E from mem-

bers of the topology on X. The relevant rnaps are the sections of p. Intuitively,

the worth of the "sheaf property" in structures was the change of context that it

allowed: topological discussion could be recast as discussion of algebras; the sheaf

structure would, in a sense, sit above the topological space and the internal struc-

ture of the sheaf would vary with topological variations in that base space. Let us,

then, describe the sheaf property. A, sect'ion,, s, of a sheaf p: E ---+ X is a map to -E

from a member, U, of the topoiogy on X such that ihe map s is continuous and

p.s : id,u. Such a section is sometimes called a [/-section or a section over [/.

\Mhenever U + X, the section s is called a local section. Otherwise, s is a global

section. The sheaf property is a property of sets of sections over covers where a

coliection {U¡:i € /} of members of the topology on X is a coaer if its union is

also a member of the topology on X. Coliection {U;:i € fi is cailed a U-couer

if [J{t/¿: i e I} : [/ and [/ is a topology element. We then consider collections

{s¿:s¿ is a [/¿-section,i € f]. A map p:E --+ X has the sheaf property if wherever

we have a U-cover {U¡:i e 1} and a set of [/¡-sections such that

s¡ lU¿lU¡ : "¡ lU¿ÀU¡, alI i, j e I,

then, there is exactly one section s over [/ such that

s lU¿: s¡, aIl i e I

We might think of each section as being like a column. Each section has a base U

and reaches up to support E (or, more exactly s(Lr) C E). The sheaf property is
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then the idea that columns that overlap in base and support the same "area" of E

are part of just one column. Such physical analogies wili go astray if we consider

them too deeply (different sections can have the same base and support different

areas of. E), but perhaps the point is made.

Interest in sheaf like structures was originally cast in terms of the clevelopment

of theories of co-homology "over" topological spaces. The sense of "over" was that

the co-homologies were mapped to closed sets. This was the idea of co-homology

with closed support. It happened, then, that the structures regarded as the pre-

cursors of sheaves were defined over the closed sets of a topological space. Later,

perhaps for more generality, this would change. The writer generally regarded a,s

beginning the interest ìn sheaf like structures is Jean Leray. However, we will begin

with an earlier writer who had similar ideas.

Alexander:

J.W.Alexander had a notion of a "grating" over a point set. In "Gratings and

homology theory" ,ll947l, we fi.nd that a grating f is a collection of ordered triples

7i: (a¿rb¿r"¿) called czús with no two cuts having an element in common. Of

interest to us is the notion of a representation (f ,,f, X) of a grating I on a point

set X called the carrier. A representation (f,-f,X) is a grating I together with a

carrier X and some function / given by f x X = {-7,0, 1} so ihat / takes a cut of

f together with a point of X to -1, 0, or 1. There are three subsets of X defined

relative to a representation. These are

A¿ : {r € X : Í(-y¿,r)- -1},
B¿:{r €X: f?y¡,r):0},
C¿ : {r € X : .f(.y¿,")- 1}.

Aiexander defines a representation to be cont'inuous if X is a topological space

and, for any cut 7;, the sets -4¿ and C; are open. Incleecl any representation will be
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continuous since it will be regarded as inducing the coarsest topology on X that

makes A¿ and C¿ open for each 7¿. Each B, will be a closed set.

The algebraic dimension is introduced via the notion of a chain. First, a, cell

of a grating is any finite sequence of elements of cuts of the gra,ting. Thus we have

a cell

A: ztz2... zrn where zi: cti or ó,; or c¡ for some 7i.

The type of cell A is the cell

a(A) : a1a2 . . . ap where ø; in a(A) only if z¡ in Ã

A ch,ain is then a mapping of the set of all grating cells of a fi.xed type into an

arbitrary ring of coefficients without divisors of zero.

\Me then find defined the notion of a locus of a chain. The locus is a subset of

the space X of the representation and is determined by application of some union

and intersection rules to the subsets A¿, B¡, C¿ related to the cuts 7¡ from which the

elements z; of the cells of the chain are drawn. According to Alexander the loci of

any chain on a grating with a continuous representation will be a closed subset of

the carrier set.

Alexander developed various algebraic concepts, including a homology theory,

with respect to the chains of gratings. It is from the earlier papers, "On the con-

nectivity ring of a bicompact space" [1936], and "A theory of connectivity in terms

of gratings" [1938], that we can develop an idea of the origin and the intentions

of Alexander's grating theory. The aim seems to have been to develop ways of re-

making topological structure in terms of algebraic structure. and in particular, to

make advantageous connections between topological spaces and rings. In Alexander

[1938] we find a part statement of the project: "with every grating I we are going

to associate an abstract ring fI, called the ring of chain-' of 1." (p.887). At this

stage a grating is a collection of ordered pairs (a, c) of subspaces ø, c of a space Í
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such that al) c : r. Associated with any ordered pair is ils børr'ier b : ø O c. These

developed later into the sets A¿, B¿rC¿ relative to a representation.

A similar idea of a ring with support in a topological space was to be important

when Leray developed his notion of a faisceau.

Leray:

J.Leray's initial writings in 1944 dealt with constructions he called c.oncrete

complexes (Gray tells us these are chain complexes in the modern sense) and special

examples he called couvertures. In his "Sur la forme des espaces topologiques et

sur les points fixes des répresentations" 11944], Lera5, defines an øbstract compler

to be a set of variables and what he calls derivatives. Leray also defines a concrete

compler to be an abstract complex over a space. The abstract complex is "over"

the space in the sense that each element of the abstract complex is associated with

a non-empty subset of the space. A variation on the notion of a concrete complex

is a couverture. As a concrete complex a couaerture is at least an abstract complex

over a space. A concrete complex becomes a couverture if it satisfies, among other

properties, the property that it is an abstract complex over a space with a topology

such that each element of the abstract complex is associated with a closed set of the

space. Leray claims that where "homology" theory was the study of finite closed

covers of a space, it can now be the study of couvertures. The principal gain being

that we can substitute an algebraic theory for geometric concernsl.

Between 1944 and 1950 Leray defined and refined another structure that he

1 "Jusqu'à présent la théorie de I'homologie a étudié ia forme d.'un espace

topologique en analysant les propriétés de ses recouvrements par un nombre fini

d'ensembles fermés; nous allons effectuer cette étude en analysant les propriétés des

couvertures de I'espace; rìous y gagnons de substituer' à une notion de topologie

ensembiiste une notion bien plus maniable de topologie algébrique", Leray [7944),

p.108.
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calied a faisceau. In this case a closed set topological space is much more imme-

diately associated with a ring structure. We find the flnal version in "L'anneau

spectral et I'anneau filtré d'homologie d'un espace ìocalement cornpact et d'une

application continue" [1950] . A, faisceaz B on a space X is defined so that

(a) a ring2 B(tr') is associated with each closed subset F of X;

(b) when f'r is a closed subset of f', ther-e is a homomorphism B(r') ---B(tr.l)

where the image of b e B(F) is denoted F b e B(Fr );

(c) B(Ø) : o;

(d) if Fz C Ft C F and b e B(F ), then Fz(-trr b) : Fzb which is to say we have

two homomorphisms, B(F ) *B(fr ) and B(Fr ) -.8(F2), the composition of

which is the homomorphism B(f') --+B(F2).

A faisceau is called continuous if B(.F) : lim B(y) where lim B(lz) is the direct

limit of rings B(V) over closed neighbourhoods V of F.

The next recognized writer on the topic of faisceau was Cartan. In his writings,

particularly the Ecole Normale Supérieure Séminaire series, we frnd faisceau with

an altered deflnition. Now a faisceau is to be defined over open sets of a topological

space. The change proved to be a very successful one.

Cartan:

In Cartan's "Cohomologie des groupes, suite spectral, faisceaux" [1950/51], we

find credited to Lazard the following definition: where K is a commutative ring with

a unit element, a faisceau T of K-modules on a regular topological space X is a set

.t', a set X, and a projection p : F ---+ X such that

(1) for all z € X, p-r (t) : fl" is a K-module;

(2) F has a topology such that

(a) the algebraic operations of -F defined by fþs structure of K-modules F"

Leray uses ttanneautt which Gray translates as "moclule"2
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are continuous.

@) p is a local homeomorphism

Projection p is a local ltomeornorplr.ism if for arry o, € F, there is some open

¡/ g f. such that a € ly', and some open [/ C X such that p(a) € [/ where ihe

map p I l/ is a homeomorphism (that ìs, bijective with both it and its inverse being

contionuous).

Sections in the modern sense are defined and called sections. For each open set

X CX we denote bV f(.F.,X) the collection of sections over X. For s € l(F,X).
if the set {r € X : t(r) t Ø}, is closed, then it is called the supporf of s. If X
and Y are two open subsets of X such that X C Y, then there is a homomorphism

f(4y) -* l(f,X). If X cY C Z,then the homomorphism l(F,Z) --+f(4X) is

the composition of l(.F-, Z) - f (¡', y) and f (f', Y) - l(F, X ). It is noted that for

a;rry r € X, the k-module F" that isp-1(r) is the direct limit of sets l(F,X) where

X is anopensubsetof X andr € X. Also, afaisceau Tover aspace X canbe

defined given modules Tx for each open X C X and a system of homomorphisms

fxv : Fy -- Fx for each inclusion X c Y such that if X C Y C Z, t]nen

f xz : f xv ' fvz. This procedure is now standard.

The concern with, or at least the use of, these structures is still in terms of

the performance of co-homological algebra with closed support. In such a project

Cartan introduces the notion of Õ-families. These are collections of sets that satisify

certain properties and will be important for the notion of faisceau resolution. Cartan

regards the introduction of Õ-families as a generalisation of Leray's ideas in that

Leray worked with the compact sets of locaiiy compact spa,ces.

The interesting question is what prompted the change from closed sets to open.

We might speculate that there was an attempt to gain greater generality. On the

one hand the new faisceau would have compiex analysis applications) namely in the

study of ideals of germs of holomorphic functions. And on the otirer hand there is a
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sense in which the structure is freed of its initial motivation without damage to its

intended role. The notion of (Þ-resolutions and the developing notion of fin, rrlou,

and flasque faisceau mean that faisceau cohomologv theor5r is stili practicabk:"

In Cartan [1950/51] we see defined the notion of a cu,rapacr:. (Leray also consid-

ered structures to which he gave the name carapace. These were different from the

notion in Cartan). The presentation of Cartan's deflnition sees the carapace as a

particular type of structure satisfying two conditions given as axioms. If the struc-

ture satisfies only the first axiom it is called a "précarapace". Also any cara,pace

determines a faisceau and vice versa.

The next development was to characterise faiseaux in terms of open cover

structures of space X. We see this in the writing of Serre.

Serre:

J.-P.Serre in "Faisceaux algébriques cohérents" [1955]. deflnes a fai,sceau rle

groupes abéliens sur X which has X as a topological space and associated with each

r € X an abelian group .7". There is also a set F which is [J{"F": r € X}. The

faisceauisessentiallyaprojectionfl f--+Xsuchthatfor-fefr,fI(/):randfl
is a local horreomorphism. A further condition will hold entailing that coliections

of sections, now denoted l(U, Ð for U C X, will be abelian groups. Also, if Lr C V

and s € f(%-f , then the restriction of s toU is an element of l(U,?) whereby we

have a homomorphism p$ ' f(% ?) --+ l(U,Ð.
Again it is noted that given an abelian group fu for each open [/ C X and

a system of homomorphisms g[ : T1, --- Tu such tira,t ç1. eY' : pl,' whenever

U C V C W, we can define a faisceau.

It is noted by Serre that given a condition relating the zeros of abelian groups

Fu and Fu,, a faisceau defined via abelian groups Fu for all open [/ C X and

homomorphisms g[ lot all t/ C V will be canonicalll. isornorphic to the fäisceau .F

with restriction maps p[ 1o, each [/ C V as describecl a,bove if u'hen {t/¡:i e 1} is
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an open cover for some open [/ C X and there is a systern {t¡ e Fu,: i e 1} such

that

gTL', nu, (t ¿) : vui, nu, (t i )'

then there exists some t € Fu such that

va,(t) : t,, allz€I

So we see described the "cover condition" or "sheaf property" that is the charac-

teristic of sheaves as we know them today. Notice that this cover condition is a

feature of the canonical faisceau, denoted (F, pU),, and that Serre's writing suggests

that there will be faisceaux (f ,çY) that do not in general satisfy that condition.

Godement:

\Mith Godement's "Topologie algébrique et théorie des faisceaux" [1964] we

arrive at the modern sheaf notion presented in terms of categories and functors.

Included is the notion of a presheaf. A topology on a space X is understood to be

a poset category. L préfaisceau is any contravariant functor T frorn this category

to another. A préfaisceau is a faisceau if it satisfies the axioms:

(F1) for open cover {U¡:i e I} of U in X and s',s" e. F(U) if s'l[J¿: s" l[J¿

for all i e I, then s' - s";

(F2) for system {"¿ e f (U¿): z e /}, if the restrictions of s¿ and of s¡ to U¡ÀU¡

are the same for any i,j e f, then there exists s e F(U) such that s

restricted to [4 is s; for any i e 1.

This notion of faisceau, which we can now call sheaf, is distinguished from

Cartan's faisceau which we find described as an espuce étalé or sheaf space. In

Godement [1964] we find a remark3 to the effect the notion of espace étalé is broader

than that of a sheaf.

3 "La démonstration du Théorème 1.2.1 prouve que tott préfaisceau, d'ensembles

"Fdéfinit canoniquement un espace étalé dans x..." Goclenent [1964], p.7r2.
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Still of concern is cohomology with closed supports. M/e find presented the

tools of faisceaux flasque, mou, and frne.

Grothendieck:

The categorisation of the notion of the sheaf was furthered by the Grothendieck

schooi in the 1960's and 70's with the development of the notion of topology analogs

for categories and, by generalisation, the notion of sheaves over arbitrary categories

with these "topologies." This began with the thought that a cover for a categorial

object [/ could be represented as a collection of maps (J¡ --+ L . The notion of a

cover was generalised out of its set theoretic origins by noting that we couid consider

covering systems rather than particular covers. In that way the defining feature of

a cover became its membership in a system of covers rather than the nature of the

"union" of the elements of the cover. It was found that the central properties of a,

set theoretic covering system needed for the expression of the sheaf property were

readily recast in a general language of systems of sets of arrows (J¿ - (1. And

so arose the notion of a pretopology or covering system for an arbitrary category

with respect to which we could define sheaves. The notion v/as refined in the

works of various writers and reached one of its final forms with Lawvere's axiomatic

development of a categorial topology as a map j : f) -+ fl. A detailed representation

of these ideas can be found in our chapter eight.

The notion of a topos first arose with the work of Grothendieck and those

who followed him. A Grotl¿endieclc topos was a category of sheaves over a category

with a pretopology. Since all Grothendieck toposes have subobject classifiers, they

interested Lawvere; he used the term topos when he described the elementary theor5,

of finitely co-complete categories with exponentiation and a subobject ciassifier'.

The newest development of the notion of a sheaf came through the work of Lawvere

on the notion of a topologies y, and the various Giraud theorerns. A sheaf.could

now be thought of as a distinguish topos object with respect to a topology 7. A
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brief description of these ideas and how we use them forms the introduction to our

chapter ten.

The fea,ture of sheaves that interests us most with respect to logic in categories

is exactly the one we have been cleveloping throughout this chapter: the passage

from topological to algebraic structures. Our algebraic- corcerns are somewhat

simpler than those of the writers who developed the sheaf structures, however the

sheaf remains the right tool for carrying topological algebras into categories. In

particular, since the structure of a sheaf is influenced significantly by tire topological

structure of its base space, we would expect to frnd that the relatiorrships between

maps between sheaves over a fixed topological space are influencecl signifrcantly by

the topological structure of that fixed base space. We would expect to see, then,

that the nature of the base space topology will affect the nature of the algebras of

subobjects in categories of sheaves. We have a motive, then, to consider, as we do

in the rest of Part III, categories of sheaves defrned over closed set topologies and

the toposes that are categories of such sheaves.
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CHAPTtrR 8: CLOSED SET SHtrAVtrS

Introduction: This chapter exists to der¡ronstrate that the topological dualisation

of the usual sheaf notion produces another, but in essence standard, sheaf notion.

This is not a radical discovery in that the sheaf notion is already specifiable in the

absence of set theoretic topologies; this, however. does not render trivial the actual

working out of particular structures in a closed set sheaf category, particularly since

these structures will be the subject of original investigation in the next chapter.

Chapter 8 has four sections. The first three sections are expository. They

are included for the benefit of that section of the readership that is not familiar

with categorial sheaf theory. The fourth section contains the definition of closed set

sheaves. In light of the standard material presented in the first three sections, the

definition of a sheaf over the closed sets of a closed set topology is no more mysterious

than the definition of a sheaf over a category. My emphasis, however, is on the use

of the more modern definition of a sheaf to províde a topological dualisation of

the more traditional notion of a sheaf, the one that preceded the development of

pretopologies and topologies for categories. It is with the topological dual of this

more traditional sheaf that we work in the next chapter.

Aside from the historical precedent we outlined in the previous chapter, there

are a number of reasons for developing the theory of sheaves over closed sets. First

of all, having a base topology of closed sets introduces to the sheaf notion a concept

of boundary that does not exist for the open set sheaf notion. One area in which

this may work for us is the mathematics of physics rvhere the bounda,ries of a body

are as important as the parts of a body inasmuch as physics concerns itself with

the interactions of bodies in a system. Lawvere in the irtroduction to Categort,e,s

727



in Continuurn Pltysics (F.W.LarMVere and S.H.Schanuel, Springer Lecture Notes in

Mathematics, 1174) mentions the speculation that there is a role for a closed set

sheaf in thermodynamics as a functor from a categor¡, of parts of a body to a

category of "abstract thermodynamical state-and-process s).Stems)' (p.g). Lawvere

recognises the particular properties of ciosed set topologies tirat make them inter-

esting to us, namely that as algebras they provide us witir a formalisation of what

we call a paraconsistent negation. Sheaves are then of interest to us in our project

of developing paraconsistent logic in categories for the wa,y in rvhich they transport

algebras of a topology into the structure of a category of sheaves over that topology.

This "transportation" is most evident in the relationship betu'een the algebras of

the base space topology and the algebra that is the classifier object in the category

of sheaves over the topology. With this chapter we begin an exploration of various

aspects of the relationship between closed set topoiogies and the sheaves and sheaf-

like structures that exist over such topologies. In the present chapter we describe

the relationship betwen the algebras in the base space topology and the algebras of

the classifier object in the sheaf category. We concern ourselves with establishing

that the usual constructions for sheaf categories and subobject classifiers will work

when the base space topology is one of ciosed sets. In the next chapter we detail

the specific effects on the classifier algebra of a closed set base space topology. We

will find that there are BrA structures within the classifier object itself and that

they are drawn from the BrA structures of the base space. \Ä/e shall find however

that this does not translate into the existence of a BrA classifier algebra within

the sheaf category. In this aspect, the logic of a closed set sheaf category is not

analogous to that of an open set sheaf category: in the open ser case, the classifier

algebras are Heyting and are determinecl by HAs in the ba,se space. The next chap-

ter, chapter ten, generalises the discussion of chapters eigirt and ilne by considering

categories of sheaves over a finitely complete category. Again u,'e fincl that there a,re

r28



BrA structures within the classifier object but that these do not translate into the

existence of a BrA classifier algebra in the category. The interest in pursuing the

more general sheaf case is firstly in the discussion we can provide of the subobject

classifier structure and its relation to subobject iattices and, secondly, in the fine

tuning we can give the claim that there is a relationship l:etween the base spa,ce

structure and the classifier structure in the sheaf categor¡'; we flne tune the claim

by rediscovering that the ba,se space structure cannot be the sole determinant of

classifier algebra structure. With chapter eleven we return to discussic-¡n of functors

over closed set topologies. Here we make the discovery that we have been waiting

for: we can define a covariant functor over a closed set topology that, because it, is

defined with respect to closed sets, is a paraconsistent logic object in the appropri-

ate category. Chapter twelve sets this discovery in context. We are there able to

demonstrate that the discovered object is a classifier object for a category of cova,ri-

ant sheaves. We will see that the best way to interpret the object is as the object

of a genuine complement classifier. \Me have seen in chapter four that the original

notion of a complement classifier was best understood as an available and legitimate

reinterpretation of the notion of the subobject classifier. With chapter twelve we

see that, as foreshadowed in chapter four, genuine complement classifiers exist and

that their existence is masked by their isomorphism to subobject classifiers. With

chapter thirteen we complete Part III and our discussion of sheaf concepts. We

give a limited equivalence of categories result for closed set sheaves and closed set

sheaf spaces. Closed set sheaf spaces are of interest to us for the way in which their

section structures mirror the algebras of the base space. As such closed set sheaves

become objects for paraconsistent semantics.

With the present chapter we examine categorial sheaves over the closed sets

of a topological space. The first and second sections conta,ins brief descriptions of

sorne of the existing theory of categorial sheaves. We note that categories of sheaves
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as standardly understood are toposes. It will be proved in the fourth section that
categories of Set-valued sheaves over the closed sets of a topologica,l space are

toposes in just the same way. As a preliminary to this we have sec.tion three in
which we discuss subobject classiflers. Since the existence of a, subobject classifier

and the resulting subobject classifying maps is a, defining feature of a, topos, we

will be obliged to show, contrary to some standard presentations, that there is a

construction for the classifying arrows X of sheaf monics that does not rely on U-
completeness of the base space topology. We establish the necessary construction

as a corollary to a theorem at the end of section three. With the next chapter we

discover that flr, the classifrer object for sheaf category slr¡(Setc"' ), contains Br.As

when C is a closed set topolo gy T but that these BrAs clo not in general yield a

BrA arrow f)¡ x f)¡ - f)j in the category. The BrAs that f)., contains do provide

a transformation ft¡ x ft - Í)j but it fails in general to be natural. We prove

this failure by a counterexample which turns largely on the failure of set theoretic

closure operators to distribute over intersections. We will use this counterexample

to come to a general conclusion about the conditions needed for a BrA operator

arrow 0 x 0 -t f) to exist in any category with a classifier.

1-. Presheaves on Categories

\Mith this section we define the notion of a presheaf on a categ ory C. We also

describe the structure of a subobject classifier for a category of such presheaves.

We give this description in terms of sieves on the base category C. The material

discussed in this section is necessary as a preliminary to the next section where we

define the notion of a sheaf on a category C.

Definition 1.1: let C be a small category and let n be an object of C. An a-sieae

is a set S of C-arrows with cod.omain a where if t) -l-- a is ìn S and there exists

a C-arrow , -l- ó, then the composite / g: c -+ b -, ¡;1is in S. The marimal
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a-tieae {a: cod(a) : a} of all C-arrows with codomain c¿ is denoted (a] or (icl^].

The term "sieve" will always mean some a-sieve fol sor¡re ca,tegory object a. In
some circumstances we will use "sieve" where rightlS, we should use ',r¿-sieve" for a,

particular a. We can rely on context to make such usage clear. On occasion, too,

we will use the phrase "sieve on o" to mean the sa,me thing as a-sìeve.

Let T be a closed set topology for space X. Let T also clenotr: the poset

category that has as objects all members of topoi ogJ, T and as alrows a,ll inclusions

between members of 7. Since the arrows of category T are inclusions, there can be

at most one arrow between any two distinct 7-objects LI and I/. Lilcewise there is

exactly one arrow from any T-object I/ to itself. It follows that for any object J/, a

V-sievecanbe representedas aset,9 where tl e S onlyif U e T and U C V'. Set

S is a I/-sieveonly if whenever U e S andW C [/ in T,wehaveW €,9. In this

form the rnarimalV-sieue is the set (l/] : {(l €T:U çV}.

Definition 1.2: A presh,eaf on C is any contravariant functor C ---+ Set. Following

convention we deal rather with the equivalent covariant functors CoP -- Set. The

category of all presheaves on C is denoted Setc"o.

When C is a small category it is known that setc" is a topos. we suppose

now that, unless otherwise stated, C is a small category. The terminal object in

Setc"o is the functor 1 given by C > a ,-- {Ø} with the obvious restriction maps.

The classifier object is a presheaf f) where for object a h C.

f)(a) : {all sieves on a},

and for arrow b ---+ a in C, the image under f) of ó ---+ ø is f)f; : a(ø) ,- f)(b) given by

f¿(") >.9 r' {c --+ bl(c ---+ L,---+ cr) e S}.

The case of particular interest to us is that of Setc" r¡,here C is a poset 7. In that

case maps Qf are given by

f)(") > S r+ {c c bl cc ó c c e S} : Sn(bl.
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Note that the notation Ofr is a little deflcient in that it allows no obvious way to

distinguish between the image under f) of /: b --+ a and the image under f) of some

different arrow g:b ---+ a. This is not a difficulty in consiclering the category SetT"' .

however it is significant for Setc"o is general. In later cha,pters if we fincl ourselves

required to nake the distinction between such images we r,r'ill resort to "function"

style notation where the image under f) of an arro\M .f is denoted f)(/).
In Setc" the subobject classifier is a natural transformationtrue:1 -+ Q given

by components trueo: {Ø} --+ f)(ø) wheretrueo(Ø) : (a]. all a € C. By clefinition

of the subobject classifier, any Setc"--or,i. r:F >---+ G has a,ssociated with it a

classifying arrow Xr: G -+ f). As an arrow in Setc'o, X, is a riatura,l transformation

given by the set of components (X"),:G(a,) --+ 0(a), all a € C. The arrows X, are

constructed as follows: for any object a in C and any r e G(a),

(x,)"("): {ö --+ a I Gi@) € rb (F(ó))}

where b -+ a is a C-arrow, Gfr is the G-restriction map G(cr) --+ G(ó) defined for

that C-arrow, and 16 is the b-component F(ó) --+ G(ó) of natural transformation r.

The Set-valued sheaves over a category are defined to be Set-valued presheaves

over a category that satisfy a condition. The condition is essentially the "sheaf

property" that we outlined in the previous chapter. In this new context the sheaf

property is cast in terms of a covers system, called a pretopology, on the base

category. We would then speak of a site over which the sheaves are defined, the site

being a category with a pretopology. Over time the original notion of a pretopology

has been refined to that of a categoria,l topology. This notion stìll has formal links

with the original idea of a set-theoretic topology but is now, with respect to the

formation of sheaves, considerably more general.
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2. Pretopologies and Topologies for Categories

This section follows similar discussions in Johnstone [1977] and in Goldbiatt [1gg4].

We discuss the notions of pretopology and topology for arbitrary categories. We

also describe the definition of sheaves in terms of these structures.

A set tl¿eoreti,c col)er for a member U of a topology T of topological space X is

aset {[4: i e I] of topologymernberswith thepropert),tìrat U{Ltn'i e I}: U. we

may call {U¿:i € 1} a [/-cover. In that {tJ¿:i € 1} contains only topology elements,

we will say that it it a U -couer in T. A couering systernfor a topology T is a system

which associates with each topology member U the collection of all l/-covers tn T .

The thought that we might generaiise the notion of a covering system to categories

is based on the awareness that any [/-cover {U¿: i e I} can be represented. as a set

of inclusiotm{u,,--+U:ie I}. Theessentialpropertyisstillthat[J{U¡:ie I}:Li,
but we now have the notion of a covering system as a system of sets of arrows from

poset calegory T. There are three properties had by any set theoretic covering

system that allow for the expression of the sheaf property: firstly, for any topology

element U, the set {t/} is always a [/-cover; secondly, if {t}¿:i e I} is a [/-cover

and V Ç I/ in T, then {Un¡V:i, e ,I} is a V-cover; thirdly, if {U¿:i e I} is a
U-cover and for eachU¿ there is some [/¿-cover {[Jo,r,k e K¿], then [/ is covered

by {U,,r: k € K¡,i e I}. Once these three properties are expressed in terms of

arrows in the poset category T, we have the basis of the notion of a covering system

for a category. All we need do is generalise from collections of arrows of a poset

category to collections of arrows of an arbitrary category. In fact we must restrict

the generalis¿tion to categories with pullbacks since the generalisation of the second

property will involve pullbacks. The generalisation of a set theoretic covering system

for categories with pullbacks is called a pretopology.

Definition 2.7.: a pretopology on a category C with pullbacks is a system P where
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for each C-object [/ there is a set P(u) of sets {U¿ 
o', Lt:i e I} of C-morphisms,

and in addition the foliowing conditions are satisfied:

(i) for each U ÇC, singleton {idu} e P(I/);

(ii) if V-----U inC and {t/¿ :+U:ieI} € P(u). then thepullbackfamily

{V xu ui l\ V : i eI} is in p(y);

(iii) if {U¿Lu:ie1} e p(U) anclwehave{V,,r P'4¿ro:k€Ii¿} e p(U¿)

for each i € I,then {%,,t 4-3Uo:+U :i € I,k e Ii¡} e p(t¡).

In analogy with sheaves over a topological space we have the notion of sheaves

over categories with pretopoiogies. We shall say that any contravariant functor

F:Cop --+ Set isasheaf whenfor each(J € C andforeach {Un:..LI :i e I} e p(I/),

the following diagram is an equaliser

e do

ll"ttl¿) -- ;--l llrtu¡ xu u¡)
i€I d''1 i,j

F(U)

where e is the obvious product map and d6 and d.1 are product arrov/s respectively of

the images under f'of the first and second pullback projection maps IJ¿x¡¡U¡ ------+ IJ¡

and [/¿ xu U j ------+ U j, aII i, j € 1. The projections in question arise in pullbacks

U¡ xuUj 
- 

U¿ll*,
IJJ, --7,

of a¡ along a¿ and a¿ along a¡, all i, j e I.
Notice that the notion of a sheaf over a pretopology is exactly that of a sheaf

over a topological space when the pretopoiogy in question is the covers system

of the topological space. In such a case) the equaliser condition for a sheaf on a

pretopology is the condition that when"rret {[/,:i e I] is a [/-cover in a topology,

the diagram
doil F(u;) 

-Ì
ll .t Lr¡ ) Lr,)

e
F(U)

i€I
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is an equaliser. But that this diagram is an equaliser is exactlv the claim that
what we have called the sheaf property holds. Recall from chapter seven the sheaf

property: a contravariant functor F:Top --+ Set is a sheaf whr:n for a set of sections

{s¿ e F(U¿):i e I} such that

Flin ,(",) : Flinu,Gi), all i.i c I.

there is exactiy one s € F(U) such that FI,G): si for all i e 1. Now the follwoing

diagram shows the construction of e, ds and d1 as product arrows

F(u¡)
Fl,'nr,

F(Ui ÀU j)
FÏ,

pf¡

r,J

d,o

F(U) : > II F'(u,)
i€I , = Ilp(uoìu¡)dt i,i

F(u ¡)
nu¡- U;ñU¡ þ",

F(Ui tU j)
Arrow d6 is the product of maps Flinu, aIIi,, j € /, and d1 is the product of maps

Flln , arr i, j € 1. Arrow e is the product of maps Fff alr i e I. From here it is

straightforward that

Theorem 2.1: e is an equali,ser for ds and, d1 iff F satisfi,es the "sheaf property".

Proof: let us grant that index set t has n elements. Then we are able to say

that for any s € F(U), e(s) is some n-tuple (s1,...,s,) where for 1 ( ' < r¿,

"¡: FIG). Suppose that for all s € F(U), we have d¡(e(-s)) : dr("(")), or, in
other words,

do((rr,...,",)) : dr (("r,.. .,",,)).

This means exactly that

Flinu,("¿) : Flinu,G i),
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From this it follows that tr' satisfres the "sheaf propert¡r" if there is no s/ e F(U)
other than s such that e(s') : e(s). But when e is an eclutr,liser if e(s') : e(s). then

st : s. The converse claim is established by the fact that there being no -st 6 F(U)
other than s such that e(s') : e(s) is exactly what it rrea,rrs f'or e to be a,n equaliser.

!
Foliowing this discussion we can say that the usual notion of a sheaf on a topcr

logical space is captured by the notion of a sheaf on a, category q'ith a pretopology.

We lose nothing in the generalisation.

A category together with a pretopology is called a -sitr:. A category of sheaves

defined over a site is called a Grotl¿endieclc topos. Take note tirat this is the definition

of a site and a Grothendieck topos as originally presented (cf. Artin et at.,[1972])"

Since the notion of an adequate set-theoretic covering analog for categories has

changed over time so too have the meanings of "site" and "Grothendieck topos".

The change in meaning is by way of refrnement and as such is not dramatic. How-

ever, we must be atvl/are that the possibility for confusion exists. To guard against

this we will introduce a method of referring to Grothendieck toposes and sites in

such a v/ay as to indicate which level of refinement we are invoking. Ultimately

this is necessary only because we have found it easier to develop some parts of our

discussion in terms of pretopologies and other parts in terms of the newer notion,

which we introduce shortly, of a topology for a category.

A, precanonical pretopology for a category C is one for which all representable

functors are sheaves. A canonical prelopology is the precanonical pretopology that

includes all other precanonical pretopologies. It is known that canonical pretopolo-

gies exist and that for a finitely complete category they are in fact formed by the

stable effectively epimorpiric families on which notion more is said in chapter ten.

Pretopologies do not in general uniquel5' determine a, categor'5' of sheaves. To clct

that we refine the notion to that of a (categorial) topology.
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A topology on C is a system J of sets, J(U), of U-sieves for each U e C where

sysem J satisfies the following conditions:

(i) for any U e C, tine marimal U-sieve (Ul e J(U);

(ii) if Ë e J(U) and V J-- U is a morphism of C, therr

/.(A):{W o,V..f .o'e R}

is in J(Iz);

(iii) if rR e J(U) and ,9 is a sieve on [/ where for each V J-- U) e Rwe have

/.(,9) in J(I/), then ,9 € J(U).

When J is a topology on C, the sieves in each J(LI) arc called co'uering sieues.

Note that a collection of morphisms with codomain ü/ can be a U-sieve without

being a covering sieve on [/.

This new categorial analogy of an adequate covering system leads to a new

notion of. site namely that of a category together with a topology. In what follows a

pretopology will always be a system P while a topology on a category (as opposed

to the notion we will shortly encounter of a topolo Ey i,n a category) wilt always be

a system J. With this nomenclature we will be able to distinguish between sites

(C,P) defined with respect to pretopologies, and sites (C,J) defined with respect

to topologies on C. We now define a sheaf on a site (:C,J) to be any contravariant

functor F;Cop ---+ Set satisfiying the equaliser condition expressed in terms of cov-

ering sieves for U rather than covers. A category of shean'es on a site (C,J) is called

a Grotl¿end,ieclc topos on a s'ite (C,J) and is denoted slt(C,J).

We note that given a pretopology P we can define a topology J that wiil given

rise to the same sheaves: we say that for any U € C, covering sieve R e J(tl) itr R
contains some pretopology cover {a¡:i € 1} e P(t/). The claim that this topology

gives rise to the same sheaves rests on tire claim that if a fanilv {a¿: i. e 1} satisfies

the equaliser condition, then a family -R that contains {a¡: i € 1} will also satisfy
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that condition. Since we can define topologies J that inciude pretopologies p in
this way, we can say that any Grothendieck topos on a site (C,P) is a Grothendieck

topos on a site (C,J).The sites (C,P) and(C,J) are not (necessarily) the same, but
they generate the same Grothendieck toposes. Another way qf putting this is that
Grothendieclt toposes over sites (C, P) are a subclass of the Grothendieck toposes

over sites (C,J).

Proposition 2.1: any Groth,endieclc topos on a site (C,J) i-c 0.n elementary topos

A topology J exists as a presheaf J: Cop ---+ Set. This is the presheaf that
takes each C-objectU to the set of covering U-sieves J(U), and takes each C-arrow

V J- [/ to map J(/): J(U) -- J(y) given by

J(Y) )R,--+f*(R):{W o,V:f .ae R}

Clearly presheaf J is a sub-functor of f). By this we mean that an inclusion J .-+ f)
exists in Setc"o. Since Setc'o has a subobject classifi.er, there exists a pullback

true
where j is the classifying map of J .--+ f). Maps j of this sort are examples of maps

j called elementary topologies.

Definition 2.22 any map 7:Q --+ f,) in an elementary topos E is an (elernentary)

topology in t if the following conditions are met:

(i) j.true:true;
(ii) r.j:r;
(iii) n .(j x j): .7 . n.
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The notion of an elementary topology is the final example of the generalisation to

categories of the notion of a covering system. The notion of an eiementary topology

is plainly no longer a system of covers in any literal sense however it does retain the

essential feature of such a system that we may express the sheaf property. This is

done in terms of j-dense monics in Setc'o.

Definition 2.3: when j:f) -- f) is an elementary topology in a topos t,Iet J >--+ f)
denote the rnonic classified by7. We then say that any t-rnonic x' ,\ X rs j-
d,ense if its classifying map, X*, factors through J >---+ Q.

The following definition of a sheaf in a topos t arises as a generalisation of a
theorem due to Lawvere.

Definition 2.4: for any topos t containing an elementary topology j, an object

.F is a sheaf wi,tlt respect to j or a j-slteaf if and only if for any t-arrow 13,:X, --+ F
and any j-dense monic a: X' t-- X, there is exactly one f3: X --+ F such tha,t the

following diagram commutes.

dxt >____________+ x

palp
\,

F

The category of sheaves identified in this manner is a full subcategory of. € and will
be denoted sh¡(t). Note particularly that the terminal object for t will always be

the terminal object for sh¡(t).

Proposition 2.22 if t is a topos containing elementary topology j, then sh¡(t)
is also a topos. ll

Proposition 2.3: when J is a topology on C and .j i.* tlt,e, cl¿a,ro,cter map of th,e.

inclusion J --+ f) insetc"o , th,e Grothend"'ieclc topos -slt(C. J) is the topos s/z¡(Setc'" ).
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For a proof of this see Johnstone [1977], Example 3.22 and related cliscusion.

In this section we have discussed three devices b5' -¡1.1, we may reasona,bly

describe category objects as sheaves. The first device was that of the pretopol-

ogy. This was a straightforward generalisation to categories of the notion of covers

in a topological space. The categories of sheaves we may describe using this de-

vice include (equivalents of) categories of the classical shea,ves. the continuous local

homeomorphisms. The next device was that of a topolog), for a category. This was

a refinement of the pretopology notion. Any category of sheaves over a pretopol-

ogy can be understood as a category of sheaves over a topology. The next der.ice

started out as a refinement of the notion of a topology for a category and became

a generalisation. This last device was that of a topology in a category. Sheaves

may no\M be thought of as distinguished topos objects. Equally, we need not now

regard the pretopology and topologies-on notions as superfluous. In fact it will be

useful in coming sections to have emphasised the relationships between the devices

so that we might smoothly pass from one to the next depending upon our technical

need. In the next section we will use the device of topologies 7 to describe the

subobject classifier for sheaf categories while in the section following that we will
use the device firstly of a pretopology P and then a topology J to justify the notion
of sheaves over the closed sets of a topological space.

3. Subobject classifiers in sheaf categories

\Me have seen in the last section that when sheaves are understood as Set-

valued contravariant functors, any category of sheaves can be rendered as a 7-sheaf
category sh¡(setc'o ) where C is a small category and 7 is some topology in setc'o .

In the present section we will use this fact to provide ourselves with a construction

for a subobject classifier in any sheaf category. Mie u,ill also provide a construction

for classifying maps for monics. We have two purposes here. Our principal aim is

740



to provide the necessary preliminary detail for our discussion in the next chapter;

there our discussion will appeal to the nature of thr: classifier object 0 ¡. Our second

purpose for the present section is the verification of the existence cif' a clescription

of character arrows for monics which, when the sheaf category is .shi(SetT"o 1fo,
some set theoretic topology T, cloes not rely on the set theoretic properties of

T. In particular, we want to be able to construct chara,cter arrows for rnonics

irr sh¡(Set7""¡ *ithout relying on an assumption of [J-conpleteness ínT. When

sheaves are defined over topological spaces) it is most often in terms of an open set

topology, and these, by definition, are [J-complete. However. in the next section, we

will be defining sheaves over a closed set topology) so we require a, character arrow

construction that is, at least, independent of base space topolog5r types. That there

is such a construction is demonstrated as a corollary to the rnain theorern of the

present section. This main theorem is on the nature of character arr-ows in sheaf

categories sh¡(Setc" ) for any small category C.

In section one of this chapter we described subobject classifiers true;1 --+ {L

for presheaf categories Setc'o. There is a standard. construction for a subobject

classifier true¡:1 --+ f)¡ for a sheaf category sh¡(Setc"o ) where j is a topology in

Setc" (cf. for example, the discussion and references in Goldblatt S14.4, [1984]).

Proposition 3.1: for any topos t with a subobject classif.er h'ue:r --- {1, and, a

topology j:Íl --+ {L, th,e category sh¡(setc"') h,as a subobject classi.fier true¡:1 --+ f)¡

ilescribed, by tlte folloraing equaliser d,iagrarn tn t wl¿ere e i-s an equal'iser and true¡

is tl¿e unique map rnaking tlte whole diagram cornrnute.

" 
icle

0r-f)----lf¿
J

truer' t¡-ue

1
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Corollaryz wlt,en t is a preslt eaf category Setc'o for small C, Q, i,s a contrata,riant

functor CoP --+ Set where for any object ct, in C

f¿¡(") : {,9 € 0(a): (ida)"(S) : -r,(S)}:

anil furtherrlore) for any b J. a in C, tlte mups (CI¡)i arr; f.rtnctions giuen by

C¿¡(") t,9 r+ {c --- bl (. - b J-.a) e S} € f¿/(ó)

In tlt'is case ue also haae tltattrue¡ is a natural transforrnation, qiuen by components

(true¡)o sucl¿ tl¿at

(true ¡)" (Ø) : true 
"(Ø).

Proof: it is enough to demonstrate that we have na,tural transformation e

that is an equaliser for idg and j whenever we have equalisers eo lor (ide), and

j" all objects a e C. The corollary is then demonstrated by the fact that the

canonical choice for equalisers e¿ for (i,de)o and jo in Set are the inclusions of

{^9 e S)(ø):(i,d,ç¿),(S) : j.(,9)} in f)(a).

The proof is independent of what natural transformations are equalised so

suppose some parallel pair of natural transformations /, g: F -G between con-

travariant functors f' and G from C to Set. The transformation / is a coilection

of functions f":F(a) --, G(a) for all objects ainC. Likewise, transformation g is

a collection of functions go: F(a) --+ G("). Set has equalisers and we can suppose

canonical equalisers e": E(a) ---+ F(a) for each pair for functions f o and go. We

can now use the fact that I'is a functor to generate a functor E and a natural

transformation e: E --+ F. Let .Ð be the functor C"p -, Set that takes each object

a QC to E(a), the domain of equaliser eo; in addition -Ð takes each b -- a in C ro

a map Ef :E(a) -+ E(b) which is defined so that for any r e E(a), Et@): Ff (r).
Plainly, if -F is a functor, then so is E. Furthermore, for an1' b --+ a in C, the

following diagram will commute in Set.

742



nço¡ -Í!-=- rço7 G(")a

b

tt|

F (b)

Gt
9o

ft'
G(b)

9t

It follows that {eo: a € C} constitutes a natural transformation. Let use denote this

transformation by e. All that remains is to demonstrate that e is an equaliser of .f
and g.

We know already that / .e : g.e since fo.eo : go.eo for aII a e C. To

demonstrate that e is an equaliser ìrøe are required to dernonstrate that for any

naturai transformation et: Et ---+ .F such that / . ¿t : g €' , there is exactly one

natural transformation k:E' --+ E such that et -- e-k. Consider the following

diagram.

Suppose that / -¿t : g-e'.\Me have immediately that for any a e C, the following

diagram commutes.

E.'(")
ko

f"
E(") F(") G(")

eb

--J

-J

Et

E

e'

e
G

f
g

F

el-n

ea
9o

where ,ko is unique in making the triangle commute. If the rrlaps ko constitute a

natural transformation k: Et ---+ -Ð, then clearly k will ìte unique in making e, : k.e.

To see that maps lco do constitute a natural transforrnation suppose any b - a in

C and consider the following diagram.
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E'(o) ro , nço¡ -!:__- orn,
(Ð',)i Ei

E'(b)
k6

E(b) 
------------- 

F(h)

By hypothesis e': Et --+ -F is a natural transforma,tion. so "'t,.(E
for all a e C, e'o: ¿o. ko, so

Ef,, anci so

Et'k"

By hypothesis e6 is an equaliser, so e6 is monic. Then kr.(E'
natural as a transformation.

a

b
J"t

a
h Ff Bute

et . lq .(E')i : F{ -eo-ko

Now e is a natural transformation, so -Fuo '€a : eb

"u.ku.(E')i:"u

)i Ei .k", and k is

D

That we can describetrue¡ in terms of true and e indicates that we can describe

classifying maps Xr, for sh¡(t)-monics r in terms of e and the classifying maps X, in

t. We will demonstrate this shortly, but first we need to demonstrate that wherever

r is monic in sh¡(t), it is also monic in t. Recalt that sh¡(t) is a subcategory of t,
so it is permissible to describe any map r in sh¡(t) as being the same map in t. The

following proposition establishes the required relationship between shr(t)-monics

and t-monics.

Proposition 3.2 (Lawvere-Tierney): for any elementarg topos t wi,th topology j,
there is a sheafif,cation functor sh¡: t -- sh¡(t) tltat áøs sh¡(ó) = b for each j-sheaf

b. Th.is functor preseraes a,ll f"nite limi,ts. tr

(For a proof see, for example, the proof of Theorem 2.61 in Freyd 11972)).

That the sheafification functor preserves all finite limits ûleans that the limit

in t of any fi.nite diagram of 7-sheaves is itself a 7-sheaf and is the limit in -rh¡(t)
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of the same diagram. Plainly since there are no objects nor arrows in slz¡(t) that
do not eixst in t, it follows that the limit of a finite diagram in stt.¡(t) is a iimit of
the same diagramin t. A particular consequence is that any pullba,ck in shr(t) is

a pullback in t and any pullback in t of maps between j-sheaves is a pullback in
sh¡(t). Now, monìcs are preserved by any functor that preserves pullbacks since in

any category, a map a -"-+ B is monic iff the following diagram is a pullback

id¡
----------------+ A

u

------------+u

("f. Proposition 27.72, Herrlich and Strecker [tO7O];. It follows that any sh¡(t)-
monic is monic in t, and any arror¡/ between 7-sheaves that is monic in t is also

monic in sh¡(€). We are guaranteed, then, that when r: F >--+ G is a s/z¡(t)-monic,

r is monic in t and so there exists a classifying map X, in t. We Iet Xr, denote the

classifying map for r in sh¡(t) guaranteed by the existence of true¡. \Me are now

in a position to demonstrate the relationship between x,, XL, and e, the equaliser

of. j and ide.

Theorem 3.1: utl¿en t is a topos with topology j and, r: F >--+ G is a sh¡(t)-rnonic,

wehaueX,:e-XJr.

Proof: consider the diagram

E
g

T
X

true,
Let r be a monic in sh¡(t) and let X : e.Xr,. We will dernonstrate that X : X". In
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the course of this proof we will refer to parts of the above ciiagram by (clockwise)

vertices. So, for example, the inner square) the pullback diagram for true¡ ancl Xf ,

is denoted by {4 G,0¡,1}.

To establish that y : Xrt it is enough to establish that square {l',G,Q.1}
made from the evident composites is a pullback. Since e-trtt,t:¡ : true, tire desired

result will follow from the definition of fuue as a subobject classifrer in t.
The squar" {.F, G,0,1} is a pullback only if it satisfres two conditions. First.

the square must commute, that is we must have X .T : e.tru,e,.!. But X : e.Xr, so

the squarecommutes if e.Xtr'T: e.true¡.!. Now, since {-l¡. G,{ù.¡,1} is apullback,

it at least commutesrsoXJr.r:truej.!. Plainly, then, e.XJ,.r: e-true.¡.!. The

second and final condition that {f', G,0,1} must satisfy to quaiif)' u,. a pullback is

that whenever the square {8, G r 0, 1} made from the evident composites commutes,

there is exactly one -E J- f making the whole diagram cornmute. Suppose that

{8,G,0,1} does commute. This means that e.X+-g: e.true¡./. But e is an

equaliser and therfore monic, so we have XJ, - g : truej. /. But in that case, since

{F,,G,Í-)¡,1i is a pullback, we have exactly one E }- tr' making the whole diagram

commute. D

Corollary z f or topos Setc"' with topology j , if r: ¡r ,-- G is a slz¡(Setc'o )-moni,c,

tlten for any a €C and anA ï, e G(a),

(xt")"(") - (x")"(r).

Proof: for any a e C, (X")" : ea ' (X+)", and the canonical choice for eo is an

inclusion. ¡
It follows that in 7-sheaf categories sh¡(Setc"') we can use the usual con

struction for maps X" as the construction for maps Xf . So when r;F>--+ G is a

sh¡(Setc'o )-rnonic, Xf is the map G- Oj wherefor anl, a,inC and any r eG(a)

(x+)"("): {b -- a I Gi@) e ra (¡.(ó)) }
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where b - a is some map in C

4. Closed Set Sheaves

Typically sheaves over topological spaces are defined in terms of the open sets

of the base space. The notion of a category of sheaves o\¡er a site allows us to clefine

a category of sheaves over the closed sets of a topologica,l space and announce that

these categories are toposes.

Suppose some topology T of the closed sets of some space X. Any topology

is partially ordered by set inclusion, so any topology forrrs a poset category. Let

(T,ç), or when no confusion will result \el T, denote the poset category of topology

7 ordered by set inclusion. To define a sheaf over the closed sets of X we need only

define a pretopology P for poset category 7. To do this we note that any sieve

inZwillbesome R: {u¡ o', (J,i e I} whereu and u¿for alli e rare
topology elements and each a¿ is an inclusion. Now since there can be at most

one inclusion between any two topology eiements, we can understand -R to be a

family {dom(c¿): o; € Ã} of sets. On this understanding the defining conditions

for a pretopology P become those originally true of set-theoretic covering systems,

namely

(i) for each U e T, {t¡} e P(I/);

(ii) if V cU inT ar'd {U¡:i, e 1} e P(t/), then {V ct(J¿:i e I} € p(y);

(iii) if {U¿ : i € /} € P(U) and we have {%,r : k e Ii;} e P(t/;) for each i € I,
then {%,r : k e I{¡,i e I} € P(U).

It follows that there is a pretopology P for T described by the covers system C for

X which has for each U € 7 a set

C(u) : {{u;:i e r} lu : U{¿¡0, r € 1} }

of sets where each U¡ € 7. \Mhile this is not the only pretopology we could describe

for T, it is distinguished in that it is the canonical pretopology. A proof that this
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pretopology is canonical for T can be performed in terrrrs of a, notion to be intro-

duced in chapter ten. There we note the standard result that canc-¡nical pretopologies

for finitely complete categories are formed by tire stable effectively epimorphic fam-

ilies. It is straightforward to show that poset category 7 is finitely compiete and

the the family {U" -- U:r e X} is effectively epimorphic itr [J{I/":r € X} : j.
Furthermore these families are easily proven stable with respect to being effectively

epimorphic rvhen pulled back. It is exactly this pretopologv which will interest us

in the next chapter.

Having deflned a pretopology P for category T, it is straightforward that we

have a category of sheaves over T. It is worth remarking that the canonical pre-

topology f.or T is essentially just a covering system of the sort we would be fämiliar

with from the task of defining sheaves over open set topologies. The only difference

is that we are now considering closed set covers. It is worth remembering, too,

that the equaliser condition we use to identify those presheaves that are sheaves is

essentially just the familiar "sheaf property". There is an intuitive sense, then, to

the claim that (some) sheaves over closed sets just are sheaves in the traditional

sense. \Me finish this section with a statement of the theorem we have essentially

already proven.

Theorem 4.1: any category of sheaues ouer tl¿e closed sets of a topologico,l space

is a topos. tr

Of interest to us in the next chapter will be the particular nature of the classifier

objects in closed set sheaf categories. We find that a base topology of closed sets

does introduce BrAs into the structure of fì¡ but not in a way that yeilds Q¡ as a BrA

object in slz¡(Set7'o;. Th" BrAs that do exist wiil be best unclerstood as aigebras

of sections given that 0¡ as a sheaf has an equivalent construction as a continuous

local homeomorphism over 7. As such we retain our interest in f), as an (ex-
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categorial) object of paraconsistent semantics rather than a,s a paraconsistent logic

object in a category. We address the equivalence of closed set sireaves and closed

set sheaf spaces in chapter thirteen. For discussion of an actual paraconsistent logic

object, see chapters eleven and twelve.
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CHAPTER 9: BROUWERIAN ALGEBRAS

CLOStrD SET SHEAVES

Introduction: This chapter follows directly from chapter 8. In chapter 9 I give

a technical discussion of an aspect of the nature of the classifier object as a logical

algebra in a closed set sheaf category. This chapter is the one that tests and refutes

the hypothesis that the topological dualisation of the sheaf notion enables us to de-

scribe new natural operators for subobject lattices in sheaf categories. The chapter

has two sections. The first section shows that at the component level there are BrA

operations to be found in the subobject classifier structure (as we see in the next

chapter this means that subobject lattices in the category in question are BrAs).

The second section shows that these BrA operations are not natural in the sense

of being productive of a natural transformation within the category that would

make the classifrer object itseif a BrA. The second section contains a discussion

of why the component BrA operations do not produce a natural transformation.

This discussion is given in terms of closure operations that define closed set topolo-

gies. The discussion, then, in this chapter is significant in two \Ã/ays. Firstly it is

a refutation of the hypothesis that topological dualisation of the sheaf notion will
produce structures which when collected into categories yield natural BrA subob-

ject lattices. Secondly it is the beginning of the discussion on why BrAs do not,

in general, exist in toposes in a way completely analogous to the existence of HAs.

In this, then, our discussion here is quite different from that in Lawvere [1991] in

which paper Lawvere announced a result that subsumes the non-naturalness result

of this chapter.
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This chapter contains a technical discussion of the algebraic nature of f), in
sh¡(SetT" o; *h"r" T is a closed set topology and j is the canonical topology in

SetT". We will find that for each V e T, the set ç'¿¡(V) ordered by set inclusion

is a subalgebra of. (7, c) and as such is a BrA. M/e will use :y to denote the

BrA operator on each f)¡(I/). The collection of functions { -v: V e T\ is consid-

ered. We shall find that the collection does not constitute a, natural transformation

o¡ x o¡ - oj in sh¡(setZ'o). The existence of collection {-rr, v e T} will be

placed in context by the discussion we give in chapter thirteen of sheaves as sheaf

spaces. Each Or(y) can be understood as an algebra of sections of a sheaf space

and the existence of 'v reflects the fact that this algebra is closelv tied to base

and stalk space topologies.

In the last section of the last chapter we described the canonical pretopology

P that exists for the poset category T. From section two of the last chapter we

know that P can be refined to a topology J for T that will give rise to the same

sheaves. We know, too, that J exists as a subfunctor of f) in SetT'o and that the

classifying map, j, for this inclusion is a topology on Set7"o. It is this 7 that we

use to determine the sheaf category sh¡(SetT'o; th.t we consider in this chapter.

We know from section three of the last chapter that we can describe the classifier

object 0¡ for sh¡(SetT"" ). It will be found in the first section of the present chapter

that for eachV eT,the set f)r(V) is isomorphic to the set (Iz] and as such, under

set inclusion, is a subalgebra of (f ,ç). It follows tha,t we can define a pseudo

difference operation 'y for each f)¡(I/). This means that we have a transformation

{=rrtv e T}. In the second section of the present chapter we show that this

transformation is not in general natural. As such the transformation is not in
general an arrow in så¡(Set7'o).
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1. Component Algebras of the Classifier Object

Suppose the pretopology P on closed set poset category 7 rn'here for each U e T,

P(U) : {{un,ie r}lu:U{ø,ze t}\.
Let J be the topology on 7 defined so that

R e J(U) iff -B contains some {[/¿: i e I] € P(t,¡)

Recall that f) for Set7"o has that

CI(U) : {ali sieves on t/i

so there exists an inclusion J .--+ f). Let 7 be the character map of this inclusion. lt
follows that for all I/ e T arrd all .9 e f¿(y),

jv(S): {u cv:aU6) € J(¿/)}

Lemma 1.1: for any V e T and, any .9 e ft(V), we haue .9 c 7y(S).
Proof: if V € S, then (y] q S, in which case it would follow that for any

U çV, f¿f(S) : So (Vl: (I/]. So, by condition (1) of topologies J, if V € ^9, then

v e jv(S). r
Now, v/e say that a V-sieve S is not marimal if it is not some (t/] for some

U C V inT. A maximai V-sieve (U] is said to have exactly one top element, namely

U. A top elemenf in a V-sieve,S is some W e S such that for all Z e S,itis not

the case that W is a proper subset of Z.

Lernrna 1.2: if V-sieue S is not man,ima| tlten S l.iv(S).
Proof: if S is not maximal, it will have at least two distinct top elements. Let

W aladW' be two distinct top elements in S. It follows that W t)W' ( S. However.

W UW' e rv(S) if Q\uw,(,g) e J(W u i4l'). Now

QW^*,(S) : S.(Wuw'l
(wlu (w'l
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so, U (QWu^,,(^9)) : W ¿W'. This means that QWu^,,(.9) is a cover for W UW,,
or in other words, QWu*,(,9) e J(W UW'). ¡¡

Lernrna 1.3: if V -sieue S ds marimal, then S ::v(5).
Proof: suppose .9 is (I/] for some u c v in T. Suppose that w C v and

W ø (t/1, that is, W f U. Now f)þ(S) : (t/l n \ry) : (Lt aW). Atso, si'ce

W çU, we irave U ÀW +W.It follows that [J(C¿#,(Sl) +W, so Oþ1S) ø J(W)

and W Ø iv(S) This gives us 7y(S) C S which together with lerrma 1.1 gives us

S : jv(S). tr

Theorern 1.1: for anyV e T and any Se 0(l/), S:.lv(S) iff S i,s matim,al.

Proof: lemmas 1.2 and 1.3. tr

It follows from the fact that it is the domain of an equaliser of idç and 7 that

we can describe f)¡ as a functor ToP --+ Set such that for al| V e T,

0¡(V): {(Wl,W çV inT);

and when tl C V in T, restriction maps (WY, are given by

(wY,((wl) : (wln (ul

To simplify our discussion note an isomorphism: iet 0| be a functor Top --+ Set

where for all V e T

, 0'(v) : (vl;

andfor all t/ C V inT, maps @')Y, are defined so that for any W e (Vl,

@)A(w):w Àu

Theorern 1.2: {'1,¡ and {'L', are zso in sh¡(SetTo ).

Proof: the theorem is demonstratecl by describing a bijection

9y: Q¡(V) -- 0'r1V)
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for each V e T and showing that {VvtV € 7} constitutes a natura,l transformation.

If we define (pv so that for any (Wl e A¡(V),

ev(wl) : w,

it is plain that gy is a bijection. That {pv,V € 7} constitutes a natural transfor-

mation is the claim that

v

U

f¿(

f¿

)ül

¡(v) -!!-. n

ft¡

commutes for any U C V in 7. To establish that the squares in question commute

observe that for arry (Wl € f¿,(Y)

(ç'¿' )Y, (v " 
(w11) : {n' ¡Y, {w)

:WÀU

and that

,eu(tùY,((wf )) : eu(1w1 n iu1)

: eU ((w n nl)

:W )U

Since CI¡ and f)! are iso in sh¡(SetT"o), *" can use them interchangeably in

the sä;(SetT"o ) context.

Theorem 1.3: for anyV €T, the setA'j(V) und,er set'inclttsion ts aBrA..

Proof: any W,W' € A'j(V) are closed sets in T and are such that W,Wt C V'.

It follows that W ÀW',W IJW' C I/ and are closed sets in 7. This means that

CIi(y) is a lattice under set inclusion.
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That C)i(V) is a BrA follows from the fact that (T,C) is a BrA. We have thar,

for any S,T,Z €T,
S-TcZ iff ScTUZ

where - is the BrA operation on (7,ç). Now, if ,9,7 C [, then S'T C V, since

we always have that S=T Ç S. Plainly, if we define :\,, on f¿i(y) such that for.

any,5,T e Q'j(V),

S-vT:S=T,
dl

then =y is a BrA operation on f-lj.(Y). ¡
It follows from the existence of gv that f)r(I/) is a BrA under set inclusion.

2" Component Algebras and Natural Ttansformations

In this section we demonstrate thai the collection {=r,V e T} of functions in

general fails to be a natural transformation. \Me demonstrate this in terms of f)i.
The claim that { =v;V € 7} constitutes a natural transformation in sh¡(Setr"o )

is the claim that the squares

-V

o'i(u) x ct!(u) --; n'i(u)

commutefor all U CV ínT. Observethat for any (S,T) e A',(V ¡ x CI!.(V)

(0'¡)Y,(-" ((r, r))) : (c¿;)l(s = ")
: (S- T)ÀU

and
-"({r,; *a')Y((s,"))) : =(r ((sn u,rÀu))

V

U
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Now, if c/ is the closure operation that determines the closed set topolo gy T <>n X,
u/e can describe s'T as the set c/((x - ") 

n s) anrt (^g n rl¡ ' (T À t/) as the set

d(é-(rnu)) nsnu)
There are two cases to consider. The first is where (T,C) is a Boolean algebra,

and the secorrd is where it is not.

Theorern 2.1: wlr,en (T,c) is a Boolean algebra, {-t..,v e T} is a no,tu,ral

transf ormat'ion.

Proof: Suppose lhat (7, C) is Boolean. This means in particular that for any

T e A'j(V), cl(X - T) : X - T. And then we have that

(,e = 
") ", :i|:,,:,;j)",'

and
(sn u).=- (?n u) : "t(r" - (r n n)) . s n u)

-x-(TÀu)nsnL,';
and since X - (Tn t/) n U : (X - ") 

n [/, we have

(.9: 
") 

ÀU : (^9 n U) -- (r aU)

So in the Boolean case we do have a natural transformation. However since

(7,ç) is Boolean, the natural transformation {'r,V e T} is relatively trivial from

our point of view. Its existence does not change the fact that Cl! will be a Boolean

algebra. That f)! will be a Boolean algebra follows from the fact that each 0|(I/)
will be a Boolean algebra.

Theorern 2.2: when (7,ç) ,is not a Boolean algebra, {-y:V e T} i-c not a

natural transf o rmation.

Proof: Suppose that (T,C) is not Booiean. Suppose fulther thatV: x. Since

(T ,ç) is not Boolean, there must be at least one ? € Z such that c/(X- T + X -I:.
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For some such ? IetU be the b(X - ?), the boundary c¡f X -T.If we 1et S be X,
then

(s- 
") 

nu -- ct((x - 7) n,5) n Ct

:"t((x-T) nx) nb(x-T)
:cl(X-T)Àb(J-r)
:b(X -T)

and
(s n u)= (r n u) :,t(t" - (" n rr)) n s n ¿r)

: a(@- (rn b(x -"))) n x f\b(x- 
")): a(x - þtx - r)) À t)(x - r))

: ,l(Ø)

And since by hypothesis ó(X - T) + Ø, the square does not commute. tr

Another way to look at this resuit is to consider the cases where both I/ and

,S are X. Then

(S- 7) ÀU : cI(X -r)ÀU
and

(s n u)-. (? n u) : "t(r" - (" n r/)) n u)

Andsince (X- ("nt/)) t\(J:(X-T)ìU, theclaimthat {'v:V €T}isa
natural transformation is, in part, the claim that for arry T,U e T,

ct(x - r) Àu : ct((x - 7) n u)

This is the claim that set theoretic closure operations clistribute over intersection.

This is known to be false in general. We can say that in those cases where it is

true, we have a natural transformation { -v'. 1' e T}, and in those cases where it
is false, we do not.
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The next chapter is a discussion of the properties of f)¡ in the more general sheaf

categories sh¡(Setc"' ) where C is a small category. We will find once again that

for each a €C, C¿¡(") is a BrA under set inclusion but that this will not in general

yeild a BrA Q¡ in the category. Since the categories.s/z¡(SetT" ) ale numbered

among the categories sä¡(S "tc"') we would expect a general failure of naturalness

for collections of BrA operations on sets fì7(a); the interest in including the next

chapter is the fact that we can show subobject lattices from any Grothendieck topos

to be Brouwerian algebras under the usual subobject inclusion ordering.
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CHAPTER 10: GROTHENDIECK TOPOSES

Introduction: This chapter generalises the results ancl cliscussion of the previols

chapter. \Mhere chapter 9 considers the subobject classifier in a ca,tegor;r of closed

set sheaves chapter 10 considers the subobject classifier in (b5' isomorphism) any

Grothendiech topos. The result in chapter 10 on component BrAs in the classifier

structure and their failure to yield a natural transformation is a generalisation of the

results in chapter 9 inasmuch as the chapter 10 results contain the chapter g results.

However, the method employed in chapter 10 to produce the results is recognisably

different from that used in chapter 9 and does not derive from a topological duaii-

sation. It follows, then, that from the point of view of my project, the discussions,

technical and otherwise, are distinct. This is my reason for separating them into

two chapters" The significance of chapter 10 is in the fact that it generalises chapter

9.

With this chapterwe offer a part generalisation of the discussion in chapters

eight and nine. We concern ourselves here with a discussion of subobject clas-

sifier objects in categories of sheaves over sites. We will use the fact that any

Grothendieck topos is equivalent to the category of sheaves over itself with the

canonical pretopology to give a description of the classifier object as a functor

CI¡ of subobject lattices. Further, we will use the fact that subobject lattices in

Grothendieck toposes are complete and distributive to show that for any object a

in the base category, the image ç¿¡(o) is a BrA under set inclusion. As we would

expect from the discussion in chapter nine we will also flnd that these BrAs do not

yield a natural transformation in the sheaf category itself; so, in general, it \Miil not

follow from the existence of BrAs fl¡(o), that Q¡ is a BrA. The discussion in this
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chapter will add an extra dimension to that in chapters eight ancl nine by virtue of

the fact that we will be able to use the failure of naturalness in a of the particular

f¿r(") BrAs here to offer some informed speculation on what it woukl be for the

subobject logic of a category to be paraconsistent.

In section one we will recast our earlier discussion of pretopologies in terms

of stable effectively epimorphic families. In section two we will use an equivalence

theorem from Ma,kkai and Reyes 11977) to give a description of the classifier object

of a Grothendieck topos in terms of subobject lattices. In section three we will use

the completeness and distributivity of such lattices in Grothendieck toposes to show

that there are BrAs within the structure of the classifier object. We go on to show

that these algebras do not yield an extra operator on the classifer algebra within

the category.

\Me make some significant use of the features common to both 7-sheaf theory

and pretopology theory and we will accomodate this by using a concept of a topology

ilefined' by (pretopology) saturation. If cou is a pretopology for a category C, then

we will say that J is a topology for C defined by saturation of cou if for any a e C,

,R e J(ø) iff .R contains some ,9 € cou(a)

The topology j that is the character of the inclusion J .--+ f) in Setc'o will also be

called a topology defined by saturation of cou.It is readily shown that så¡(S"tc'o)
and så(C, cou) are equivalent.

1. Pretopologies and Sheaves revisited

Foracategory C,acoIlectionC: {o, J\ al r € Xi of C-arrowsis

called an epr'rnorplt"ic family if given any pair of parallel arro\\¡s i,,j:a ----ìb such

that i.fr: j.f"f.or all r € X, thenrve have i,: j. Supposewe have anepi-

morphic family C. Suppose further that for some C object d there is a family
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D -- {o, n', d"tr € X} of C-arrows such that for ¿¡Íry x:)y € X the outer square of
the following diagram commutes where {f ,g} is the pullback of {Í,, fr}

ar

{

ctr:L x (L úy

{JlJ

9y
ay

If it happens that for any such family D there is exactly one C-arrow h:a --+ d such

that for all ¿ € X, we have å . Í,: g", then C is called an effect,iaelg epirnorphi,c

family. Any effectively epimorphic family is an epimorphic family but in general

the converse does not hold.

We speak (Ioosety) of the pullback of a family C : {o, 1', o, r e X} along

a C-morphism k: o,' --+ e. This is a family C' or. C-morphisms with the property

thai g, e c' itr 9, is the pullback of /, along k for some f , e c. An effectively

epimorphic family C is called stable if for any C-morphism k, the pullback of C along

k is also effectively epimorphic. It is known (cf. for example Goldblatt $16.2, [1984])

that the stable effectively epimorphic families of a finitely complete category form a

canonical pretopology for that category; it is also known that for any Grothendieck

topos, the stable effectively epimorphic families are exactly the epimorphic families.

A useful theorem follows from the above understanding of pretopoiogies. The

theorem can be found as one part of Theorem 7.4.3, Makkai and Reyes [1972], and.

is about the nature of what is called the canonical functor f'or categories of sheaves

over sites. To describe the theorem we first introduce some notation and develop

the notion of the canonical functor. For this chapter a category of sheaves over a

site C : (C,cou) we will be denoted by sh(C). When 2 is a locally small categciry,

that is when hom(ø,ó) is a set for any objects a,ó E D, ancl D: (D,cou) is a site.

Í

I

0, >d
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the canoni,cal functor

Ee:D --+ sh(D)

is the composite of the dual Yoneda functor U,:D --- Set2'n and the sheafification

functor sh:Set2'o --+ sh(D). Consider the Grothencliech t,opos sh(C) of sheaves

over any site C : (C,cou). Let COV be the canonical pretopology on category

sh,(C). Then

Proposition 1.1: E"n(Ð: slz(C) ---+ slzcov ("n1c¡; is a,n, equiualence of ca,tegorr,es

and is essentially just (that is, ,isomorphic to) the d,u,al yoneda em.bedd,ing. tr

2. Subobject Classifiers in Grothendieck Toposes

In this section we will be addressing ourselves to the nature of classifrer objects

in categories of sheaves over Grothendieck toposes with canonical pretopologies.

The proposition at the end of the last section tells us that any Grothendieck topos

is equivalent to the category of sheaves over itself with the canonical pretopology.

It follows that any discussion we make in this section will apply (by isomorphism)

to classifier objects in any Grothendieck topos. A feature of this discussion will be

the complexity of notation so we first of all will consider some simplifications.

Let C be a category and let cou be a pretopology for C. Let C : (C,cou) denote

the site that is C together with cou. We will use sf(C) to denote the category of

presheaves C"p --+ Set. Previously we have used the notation Setc"o to denoted

st(C). The notation "sf(C)" can be read "the category of stacks on C". A stack on

C is the same thing as a presheaf on C. We will use sh,.o,,(C) or s/z(C) to denote the

category of sheaves on C with respect to cou. The category tirat we concern c,¡urselves

with in this sectionis shcçy(så(C)) where COV is the canonical pretopolgy on

sä(C). For relative simplicity we assurne COV and clenote the subject of ou¡

discussion by sä(sh(C)). Our discussion so far ha,s been of sheaves with respect to
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pretopologies since these are the terms of the Makkai and Reyes theorem. However,

we will want to make use of the tools of j-sheaf theory to define the classifier object

for så(så(C)). To do this we let j be rhe ropology in så(-sh(C)) defined by the
saturation of COV. In terms of the notation used in previous chapters 7 is a map

f) --+ ,f) in the category 5"1(sä(c))'o with 0 as the classifier object. The category

så(s/z(c)) is equivalent to sår.(5.¿(s/r(c))'n). w" will prefer the simpler så(så(c))
for the name of the category. We will use CI¡ to denote the classifier object of

så(sh(C)). It will be important to keep in mind that when we u,rite "f)" we will
be referring to the classifier object of the presheaf category sf(s/z(c)).

The reasonfor going to the trouble of considering så(så(C)) is the description

it will afford of f)¡ in terms of subobject lattices in så(C). We will find, as one would

expect, that for any object a in så(C),Q¡(o) ordered by set inclusion is essentially

Sub"¿16¡(a) ordered by subobject inclusion. Since any Grothendieck topos over a

site is bi-complete, any Sub,¿1ç¡(ø) is a complete lattice. Together with the fact

that the lattice is distributive we have that we can define a BrA operation on fl¡(ø)
(and therefore BrA operations on subobject lattices in s/z(C)). \Me will flnd that
the BrA operations -o for each Í-)¡(a) do not constitute a BrA operation on 0¡;
but in any case we will have a description of BrA operations on each Subr¿16¡(a)

for any a in så(c) and a new description of the så(c) classifier object.

Since så(sh(C)) is at least an elementary topos we can describe its classifier

with the usual equaliser diagram in sú(slz(C)) for ide and j
" ida

f,)r, >------------+ fl
We have, then, that fbr any o,€ sä(C), 

J

0r(") : {,S € fi(a): j"(S): (idç¿)"(,S)}

: {^9: j"(S): S}.
Recall thai f)(a) is the collection of all a-sieves o'slr,(c) and that

j"(S) : {b ---+ c I fifr(^s) € J(ó)i
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\Me saw in chapter eight that where j is the canonical topologv on SetT'o, we have

for any V eT and anyV-sieve,9,fv(S): S iffS: (t/] f'oL some Lr CV inT. We

will demonstrate a similar result here. To describe it we introcluce some notation.

For a map ó J- o, iet (/] o. (ó -L øl or, when / is understoocl, (b --+ al, be the

sieve that contains all arrows , -!- a that factor through I. This then is the sieve

such that for any c -! + a, g € Q J- a] iff there is some , f:- ö such that g : J . lt.
On occasion we will use (a] to denote (.id,"). In what follou,s sieves (1, - ø] are

always sieves of s/z(C)-arrows. We also introduce the concept of a top element f'or

these sieves. For sieve ,S of arrows, the arrow b J- a is a top elem,enl if there is
no (c L ") € S through which / factors other than itself or an isomorph. In that

case there is no (c -!. ") €,9 and no ó -L c such that / : g.h other than when

g : f or g - /. Note that where / and g are isomorphic arrows the sieves (/] ancl

(9] are identical.

We will show through a series of lemmas that for any ú e så(C) and any

s e f)(ø), i"(s): s iff,9: (ó>--+a] for some så(c)-monic b,--a. It will follow

that

f¿¡("): {(/1,/ e Sub"¿rci(¿)}

We will say that S e fl(ø) is marimaliffit is (ó --+ ø] for some b - a in s/z(C). If
S e f)(c) is not maximal, it must have at least two distinct top elements. These top

elements will be distinct in the sense that they are neither identical nor isomorphic

in så(C).

Lemma 2.1: for any a € sh(c), if s e c)(ø) is not mar,imal, tlt.en j ^(s) I s.

Proof: if S is not maximal, it has at least two distinct top elements. Let these

elements be ó 5 a and b' t", a. since så(c) is a topos. the rnap [tr,tr):b*h, --n a.

exists in sh(C). Consider the diagram
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b

,r1

b+
,rî

bt

t1

t2

Plainly, both ú1 arrdt2 factor through ltr,tr]. It follows fr-on this and the hypothesis

that ú1 and t2 are top elements that [11 ,tz] I ^9. So we r,vill have d.emonstrated the

lemma if we show that [f1 ,tr] e j"(S).

Now f,)([t1, ¿r])(S) : {c J-, b + b, I [tr,tr). / e S1 so r,r,e have

{i¡,it,} q C¿([tr, trl¡ 1S;

It follows that to demonstrate Ct([t1,¿r])(S) e J(ó+ó') and therefore to d.emonstrate

that [ú1 ,tz] e j "(S), we need only demonstrate that {i¿, i6, } is an epimorphic family.

Consider the diagram

) ct,

f

i6 and f.i6,:g-i6,

b,_----_¡ d
g

r
Suppose some parallel pair ó t b' 

-rd 
in så(C) such that

g

g

b

,rl

b+
trl

bt

f ia:g

Plainly, if f' : f .i6 ar'd g' : g.i6,, then the whole diagram commutes. But by

definition of coproduct there is exactly one arro.w b + b, -+ r/ that makes the whole

diagram commute, namely lf',g'l.So /: g and {it,.i¡,} is an r:pimorphic fanrily.
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Corollary: for úny o" e sh(C) and any.g e 0(rz), j"(S) ,is mr.r,ímal.

Proof: by lemma I.2,if j"(S) were not maximal, then.i"(j"(S)) +j"(^g) which

would contradict a defining feature of topologies that they are idempotent. ¡
It follows that a necessary condition for j,(S) :.9 is that "g be (ö - ¿] for

some b --+ ct" in sh.(C). It is relevant, then. to note that, since s/z(C) is a topos,

any så(C) arrow g:b --+ ¿ has an epimonic factorisation. This in part means that
there exists in så(C) and epic g*:b ---+> 9(á) and a monic im g:g(b)*ø such that
g:img.g*.

Lernrna 2.2: for g:, --+ ct"t if g e S, then im g €j,(,S).
Proof: since ,S is a sieve, if g e S, then c¿(gXS) : (idul. In that case. it follows

by condition (1) of topologies that

o(gxs) € J(ó)

But recall that J is the saturation of the canonical pretopology on sh(C). This

means that C)(g)(S) e J(ó) itr Cl(9)(^9) contains an epimorphic famiiy. Let that
family be

E:{c"J+UlreX}.
It is plain that if g" e f¿(g)(,9), then 9* . g,e fl(9)(.9), so consider the family

E* : {", t:-, b !- gØ) I *€ X}
z

suppose some parallel pair g(b) ---d of sh(c) arrows such that i.g* .g, : j .g* .g,
Jforallra.-X Since -E is an epimorphic famiiy, we have

z

and since g* ì.s epic, we have

gg J
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It foilows th¿rt -Ð* is an epimorphic family; and since E" c Q(irrt g)(S), we have

that f)(irn 9X^9) e .l(9(A)). As a resuit irn g € J,(^g). !

Corollary: for any S € f)(a), j"(S) i,s (g) for some sl-t(C)-rnonic g.

Proof: by the corollary to lemma 2.7, any,?"(^9) is (ó -! cr"] for some A, in

så(C). Now, ìry the above lemma,, int h. e .i"(j"(S)). B:ut, ;j,(.j.(5)) : -?"(.9) and å,

factors through im h. It follows that l¿ must, up to isomorphisr¡r. be 'im h; that is,

å must be monic. !

A necessary condition, then, for j"(S) : ,9 is that S ìre (b ,!--- a) for some

så(C)-monic A.

Lemrna 2.3:

morph,ism.

Proof: Iet E: {r" }=.U t'- clr e X} be the epimorphicfãmiiy in (b -! cl.
z

Suppose a parallel pair c :d such that i.k : j.k. It follows that z, .k.h, : j.lc.k,
for all r e X. Since n i" olnepimorphic farnily, i, -- j. D

Theorem 2.1: for any a e sh(C) ønd, any ^9 e f)(a), j"(S): S iff S i,s (b >-!--+ a1

for some sh(C)-monic g.

Proof: since we have the corollary to lemma 2.2, we need prove only that if

^9 is (ó ,!-- "1for some så(C)-monic A, then j-(S): S. Suppose then that .g is

(b >!--- a] as described. From the corollary to lemm a2.2 we know that j"(^9) must

be (c .1-' ø] for some så(c)-monic å. It is straightforward that s C j"(s), so

there must be some k: b --+ c such that lz.lc: g. Consider the following diagram.

if sieae (b -!- c] contai,ns øn ep,imorphic fami,ly. then lc 'is an epz-

c'

,l
l)

llL

l'¿

c

CL

k

I
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Plainiy, for any sh(C) arrorv n with codomain b, h, . lc .?t : g' ??) so

(kl s CI(åxs)

Now suppose that m € f¿(/¿X.9). This requires that h-rn factor through g. or in

other words, that there is some n such that the outer square commutes. Now. we

know that the bottom right triangle commutes. so we ha,r'e that

h'k.n:h'm

and, since h is monic, we have that

k.n:m

so, rr¿ € (k]. As a result

CI(hxs): (kl.

Now, by hypothesis, å. e r"(,S); this means that f¿(/r.XS) e J(c). It follows that

CI(hxS) : (k] must contain a¡r epimorphic family. In that case, by lemma 2.3, k is

an epimorphism. But g : h. It so ,b is monic. In ail, since k is an arrow in a topos,

k is an isomorphism. In other words, f"(S) : 5. tr

Corollary 1: for any ø e så(C), f)¡(o) a Sub"¿1s;(ø).

Proof: from the definition of a subobject as an equivalence class of monics, if

[/] e Sub,nlc¡(a) and s, h e lfl, then (el : (hl. Likewise, if (sl : (h] for monics

/, g then / and g determine the same subobject. The rest of the demonstration is

straightforward from Theorem 2.1. tr

Corollary 2: f¿¡(") ordered by set inclus'ion ønd Sub*¿1cl(a) ordered, by subobject

inclusion are isomorplt ic lattices.

Proof: since Sub"nlc¡(a) is a lattice, it is enough to show that 0r'(ø) and

Sub"¿1ç¡(a) are isomorphic as partially ordered sets.
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For [/], [g] e Sub"¿1ç;(a) if i/] < [9] whers ( is subobject inclusion, then there

must be some k such lhat g' k : f . In that case. (/] C (9] rvhere C is set inclusion.

Now if (/] ç (9], then Í e (gl, so there must again be some k such that g .k: f .

In that case [/] < [g]. D

As we would expect, then, when f)¡ is the classifier object for slt(slt(C)) and

¿ is a sä(C)-object, f)¡(a) is essentially Sub"¡,1ç¡(a).

A complete description of functor f), will include the restriction ma,ps 0r(k)

where k is sorne så(C)-arrow. The foliowing diagran can be expectecl to cornmute.

The maps eo and €at àrr', equalisers in Set and as such can be assumed to be

inclusions. The maps ç¿¡(k) is then defined so that for any S e f)r(a)

CIj(kxs) : {ó -5 o' I l'. a € ^9}.

This description of C)¡(k) is accurate but not especially informative. It makes no

reference to the fact that any .9 € ft¡(ø) is a maximal ¿-sieve. It happens, in fact,

that any f¿j(kxS) is the pullback family of S along k and that where S is (/],

ç¿j(kXS) is the maximal ¿'-sieve with the puilback of / along k as top element. \Me

prove this with our next theorem. A point about notation: the pullback of / along

k is denoted by SUB(kX/) in that the image of k under the subobject functor SUB

is SUB(k): Sub(o) -- Sub(a') and for any -f e Sub(a). SUB(k)(/) is the subobject

determined by the pullback of / along k.

f¿¡(o) --Í:------ gço¡

ß

a

1
Ctr,
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Theorem 2.2: for any k:a' - ct and f :b>-- n in sh(C),

0¡(k)((/l) : (suB(kxl)l

Proof: consider the foliowing diagram

c
TL

suB(k)(/)
TN

k'

Any n € f¿j(k)((/]) itr lc-n: f .mfor some rr¿, but in that case the outer square

commutes and, since the inner square is a pullback, there is a unique h making the

whole diagram commute; in particular

suB(kx/) .h: n

So, n € (SUB(kX/)] if n e C)¡(k)((/l) On the other hand, tr n e (SUB(kX/)],

then there must be some h such that n : SUB(k)(f)'h in which case defi.ne

nt : Ic' . h and note that, since the inner square commutes, the outer square will

commute making n e A¡@) ((/l) tr

The discussion in this section is useful for two reasons: firstly we have drawn

the link between classifier objects and subobject lattices: and secondly we have

presented what amounts to a representation theorem for subobject iattices (in

Grothendieck toposes) as lattices of sets. This allows us to discuss the algebraic

nature of subobject lattices in relatively simple terms. \Ã¡ith the next section we

consider the BrA nature of such subobject lattices.

u

I
a

b'

b f
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3. Brouwerian Algebras in the Classifier Object

with this section we show tha,t for any object a tn .sh(C), the set f).¡(a) or-

dered by set inclusion is a BrA. This follows from the fact that in any Grothendieck

topos sä(C), the collection Sub"¿1c¡kt) ordered b), subobject inclusion is a corn-

plete, distributive, and bounded lattice. One straightforward consequence of this

demonstration is the Sub"61cl(a) is a BrA. We will use ao to denote the BrA oper-

ation on each f)¡(o). We will consider the collection {=o:ct e sh(C)}. Technically,

this collection of functions constitutes a transformation 0¡ x 0¡ - Qj but we will

find that this transformation is not in general natural. That the transformation is

not natural means that it is not a,n arrow in sh(sh(C)); .o, while each 0r(ø) is a

BrA, the object f)¡ is not.

\Me saw in the last section that 0r(o) and Sub"¿(c)(o) are isomorphic lattices.

Following from the bi-completeness of any Grothendieck topos, any Sub"¿1c¡(a) is

complete as a lattice. It follows that (f¿¡(o), Ç) is complete. It is also the case that

any Sub,¿(c)(¿) has aunit, namely the identity arrow on ø. It follows that (id,] is

the unit for (f)¡(a), Ç). As we saw in chapter six that a lattice of sets is a BrA will

follow from that lattice being meet-complete and having a unit. \Me now reproduce

that demonstration for (Clr(ø), C).

For any (f¿¡("), C) define an operator :@ so that for any (,f], (9] e f)¡(ø),

Ul-"@l: n{ @): ((id")- (gl) n (/l q (hl}

The set (¿d"]- (g] is just the set-theoretic subtraction of (9] from (id"l. It happens,

then, thal gt e (g] - (id"]itr there is no så(C) arrow r, such that gt : g.¿.

Another, and equivalent, way of describing (/] -"(gl is that it is the smallest

(h] e c)¡(a) that contains (Qa"l- (s']) n (/l since (o, (.), C ) is complete, a smallesr

such (h] wili always exist. Note the exact sirnilarity bewteen the definition of =o

and the deflnition of a BrA operation on a closed set bopology.
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Theorem 3.1: (f¿¡("), c) is ¿ BrA.

Proof: the theorem is demonstrated if for any r,.U, z € f)r(ø), we have

r'oyCz iff rCgUz

Since r'aa is the smallest z e Q¡(a) containing (7 - y) o e; where 1 denotes the

unit of (f¿¡(o), C), it is enough to demonstrate that

(t-a)ÀrCz iff rCguz

We do this in what follows. Note that we will use the fact that (0r(o), c) is a
distributive lattice. If (1 - y) À " C z, then

((t-y) nr) uyczt-)y,

((t - y) u y)n (r u y) c z t-) y,

rUy C zUy,

rCyUz.

On the other hand, 1f. r C y lJ z, then

rn(1 -a)c(aur)n(1-y),
Ç (v n (t - v)) r (z ct(i - y)),

czt(I-y),
(t-y) trcz. tr

Note that there appears to be a difference in the clefinitions of -o for Qr(a)

and = y for çl'j(V) where f)! is the classifier oìrject for closed set sheaf category

sh¡(setZ'o). In chapterninewe described =1,, f'or {'¿'j(r,') so that for.s. T e e'¡(v),

S'vT-S-T:cl(fX-") nS)
dr
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where X is the unit of (7,ç), - is the BrA operation, and c/ is the closure operation

that determines T on X . If we foliow the method describecl in this chapter we should

have

S -'-vT : ct((V - 7.) n.9).

However, since,9, T C V, we have

cl((x -") n S):,t((v -")n.s)
and there is no difference in operator definition. It follows, then, that the failure of

{'r,V e f } to constitute a natural transfolmation in s/z¡(Set7'o ¡ .ho.rld indicate

a general failure of { =o: a e sh(C)} to constitute a natural transformation for
sh(så(C)). The failure of naturalness for {-o,o e slz(C)}) as we shall see, occurs

for much the same reason as in the så¡(Set7"o) ...".
we take it to be the case that the successful definition of = o amounts to an

understanding of (f¿¡("), C) as a closure algebra. It is at least the case that since

(f¿¡("), Ç) is a BrA, it is isomorphic to some closed set topology. The following

lemma will heip make it clear that for {= ot o e sä(C)} to be natural, the operators
:o must distribute over intersections.

Lernma 3.1: for k:a,'--. o, and g:b>--+a i,n sh(C), we haue

(sun1r;1¡)l =(gl n(kl

Proof: consider the diagram

z

h r¿

c a

rn
suB(kxe)

I

lç' k

b
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where the inner square is a pullbach. If f e (gln (k], then ther-e is some rnap z -) a

for which there is an rn and an n such that

f:g.m,:k.n

in which case the outer square commutes and there is a unique iz making the whole

diagram comrnute; in particular, SUB(k)(g) . n: r¿ ând therefore n € (SUB(¿Xg)l

Now, if n € (SUB(kXg)], then there is some /z sucìr that SI.B( k)(g)-l'¿: n,. in

which case define rr¿ to be k' - h. It would follow that the outer square commutes

and k ." e (gl n (kl So there is a bijection (SUnlf )t/)] = (.ql n (kl given by

n ¡--+ lc.n

Theorern 3.2: {=o;o e sä(C)} d,oes not, in generaL constitute a natural tra,n-s-

formation in sh(sh(C)).

Proof: the collection of functions is a natural transformation if for any k: a' --+ a

in sh(C), we have commuting diagrams

ç¿¡(") x f)¡(ø) -----:-- f¿¡(o)

fl¡("') x f-l¡(ø') _-----) f)¡(o')
d'

Now, for an¡, ((/1,(sl) e f)¡(a) x fì¡(a)

(CI,xk) ( -" ((trl, tnl))) : (0¡Xk)((.fl-"(gl)

: ((/l ="(g)) n trl

and
=,, ((o, x o¡)(k)({rfl, rgl))) a :o, ({t.fl n (,r1, (.,/l n (kl))

: ((¡l n (kl) =.,((gl n (kl)

a

1-
(1,'

(f¿¡ x c¿¡Xr) (c¿¡Xr)
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To simplify our discussion 1et us use "clo(S)t' to mean ,,the smallest (å] € f)¡(a)
such that .9 C (/¿]". Then

((/l-,(el) n(kl : a"(ka")_k/l)n(il) .(kl
and

(t¡l n (kl)-",(tgl n(Å,1) : ,,",((tta",l - ((gl ntrl)) n(/l . (kl)

Suppose now that (/] i. (id"] and k e (gl. Then

((/J-.(el) n(kl : ct"(Qa"l-(../l) n(rl

and
((fl n (kl) -",((gl n (kl) : d", ((ç,,r^,1 - (kl) n tkl)

: cl",(Ø)

Now we know that

(id,"l - (s) c ct"(Qa¿ - (gl)

so 1ve are not guaranteed t]nat clo((id,"] - (g]) n (k] is an empty set. In fact, if we

suppose that (k] : (g], then, in general, ct^((ld"] - (g]) n (k] is not an empty set.

In other words, there will in general be some ø and some k in sä(C) such that

(c¿,X¿)(:,((ffl,trl))) * =o,({n, " r¿¡Xk)({ffl,tnl))). !
In this and in the previous chapter we have discovered BrA structures related

to the internal structure of various sheaf categories. The BrAs themselves have

all been external in the sense that the underlying sets of the BrAs have not been

objects of the categories in question and the BrA operations on those underlying

sets have not been categorial arrows of the right sort. With the next chapter we

describe a paraconsistent logic object that is wholly internal to a covariant functor
category' And with chapter twelve we will see that this paraconsistent logic object

is in fact a sheaf.

Ø
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CHAPTER 11: COVARIANT LOGIC OBJECTS

Introduction: With this chapter we describe a, covariant functor 6 tirat exists

within the category Setz where T is a closed set topolog¡r The functor 6 is shown

to be a paraconsistent logic object with the feature that it induces paraconsistent

algebras on sets hom(d, B) for all objects d of Set7. In the next chapter we sho.¡,

that 6 is isomorphic to the classifier object f,)"¿ for a, subcategory så.¿(Set7) of

Set7. The category så"¿(Setz) is a category of covariant functors 7 ---+ Set that

are sheaves rvith respect to what we call a co-topology C on poset category T. Co-

topologies C on categories C are defined by dualisation of topologies J on categorìes

cop.

A logic object in a category C is an object A of. C for which there are C-arrows

A x A --+ A and C-arrows A --+ A that can be understood as algebraic operations.

We call such arrows operator o,rrows. As an example we can point to any classifier

object f) in any topos. The usual arrows O, U, +: f) x Q -- f) and -: f) --* f) make

l) an intuitionist logic object within the topos. The notion of a logic object is

a generalisation of the usual idea of logical algebras as sets together with truth

functions. We may develop the intuitive idea by saying that any classifier object f)

together with the usual truth arrows is a logic object for its home topos in just the

same way that any two element set together with the usual truth functions is a logic

object for set theory. Logic objects need not be tied to the subobject structure of

a category; al1 that is required is that the right sort of operator a rows exist.

A point to note with respect to understancling the sense of this chapter and the

next is brought out in the following discussion. Let X be a topological space, let

O be the open sets of X, and let T bef,he closed sets of X. Tire sets O and Z are
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isomorphic by bijection O ) U ¿+ X - U. Consider- norv the posets of O ordered b1,

setinclusionandof Torderedbysetinclusion. Since U CI,' inOiff X-V C X-U
in 7, we have posets (O, c) arrd (7, C) as dual isornorphs. In categorial terms poset

category 7 is poset category Oo2. So a covariant functot- T --+ Set is essentiaily

a covariant functor @oP --+ Set which is essentiall_r' a contravariant fìrnctor O --
Set, ie., a presheaf on an open set topology. In othel rvords, the categories SetZ

of covariant functors on closed set topology T ate. up to isomorphisrn, familiar

categories of presheaves on open set topoiogies. Since this isomorphisrn of categories

holds, the discussion and proofs of chapter 11 are formally Llnnecessar)¡. However,

that 6 is a paraconsistent logic object in Setz remains true. Arguably this is a

discovery in itself. It is a hidden feature of the discussion in chapter 11 but the result

is established by much the same dualisation of operators as described in chapter 4.

The point is that here the dualisation is eminently reasonable. In the absence of

the intuition pump of knowing lhat B is essentially ìust the subobject classifier of a

familiar open set shea,f category, the most straightforward way of building operators

on 6 produces the BrA object described.

1 A Paraconsistent Logic Object in a Covariant Functor
Category

Consider the category SetT of covariant functors T --+ Set where T is a closed

set topology on a space X. For any U Ç T,let [U) be the set of alÌ supersets W of

U that are in T. Toput this another u/ay, we will say that W € [U) itr U C W and

W e T. We now defrne a functor 6 as foilows: for each U € T .Iet

B(u) : lu);

and where Li cv inT let there be af'unction B{,:ß(Li) ---+ 6(I'') given by

B(U)rS*-^9uY
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Lemma 1.1: for U C U in T, BA : idse).

Proof: S e ß(U) itrU c S, so for any ,S € B(U), BU(S): ,5 u LL : S

Lemma 1.2: for anyU CV CW inT, weh.o,ae B(a,:BW.ßV.
Proof: for any S e B(U),

n(rçn{çs)): 8lþ6 uv)
:(.gu\i7ow
: SUW

: slL(s)

Theorem 1.1: ß i,s a couariant functor 7 ----r Set.

Proof: the necessary properties of preservation of identities ancl composition

are demonstrated in lemmas 1.1 and 1.2 above. tr

Our next task is to show lhat B is a logic object. We do this by demonstrating

the existence of distributive lub and glb operator arro\Ms, respectively [J:6 x ß --+ B

and [l: B x ß -- B, in Set7. The existence of such arrows means that we may call 6

a d,istributiue lattice objectin Set7. Then, to the extent tirat any distributive lattice

is an algebra for a logic, B îs a logic object. In the first instance we demonstrate

the existence of two natural transformations, [_J and |, which we describe as being

lub and glb operators on 6. The sense in which these arrows do constitute such

operators is in their effect on sets hom(d,6). We will see later that there is a natural

definition of an order for sets hom(d,6) arising from the existence of these arrows

and that, under this order, each hom(d,6) is a distributive lattice where for any

f ,g € hom(ó,6), lub(/,9) is given bv U .\.f ,s) and glb(/,9) is given bv n.(/,g).
We shali go on to show that B is a BrA logic object. We will do this by

demonstrating the existence of a natural transformation ':B x B -- B which

determines BrA operations for the lattices hom(d,6).
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Lernrna 1.3: for any U €T, ß(U) ordered by setinclusion is a, bounded,, distribu,-

tiue lattice.

Proof: to show that ß(U) is a distributive lattice under set inclusion it is

enoughtoshowthatif .9,?e ß(U), then.gU?and SaT arein B(tl) whereU,o

are set theoretic union and intersection. Now if ,S,? € B(Ll). then it is at least true

that,9,T are closed sets in T and Lhat U c S,T. It woulci follow that S U ? and

.Sn? were closed sets, and furtherrnore that both U C S U? and U C S fì?. So

if. S,T e ß(Lt), then 5 UT, S n ? € B(A). To shorn, that (ß(U ), C) is bounded, it is

enough to point out that both [/ € B(U) and X € B(U ) ¡
It follows from this lemma that we have functions

au:ß(U) x B(U) --+ ß(U): (,9, 
") 

--+ S o ?

and

uu:B(U) x B(U) -- ß(U): (,S,7) --+ S U ?

for any U e T. The next two lemmas demonstrate that these functions constitute

natural transformations in Set7.

Lemma 1.4: the collection of functzons {À¡¡ lU e T} constitutes a naturaltrans-

formation.

Proof: we a,re required to show that wherever (J C V in T, tirre following

diagram commutes:

f-ì ¿-¡B(u) x B(u) B(Lr)

(B x B){,

U

V

BT,

ß(v) x B(v) B v)flv
Now if U C V in 7 and (,9, 

") 
e ß(U) x B(U), then we have

si(nu((s,"))) : nl)6 ¡r)
:(.snT)uV
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and
n" (ts " B)V((s,"))) - ry ((s u v,r o v))

:(.9uV)ÀQuv)
:(SnT)uV.

So

BV.¡u - Àv (B x B){,,

\Me will denote the natural transformation {[ìy I U e T] bl. |.1.

Lernma 1.5: tlt'e collection of functions {Lt¡r lU e T} const,itutes a nøtural trans-

formation.

Proof: we are required to show that wherever Lt C V in T, the following

diagram commutes:

B(u) u' , B(u)

(n x B){,

I

ß

B

U

V

(U

v)

X)

B Uv

B(V) - ----------+ B
Uv

Now if U çV in 7 and (,S,") e B(U) x B(U), then we have

n{,(uu((s,"))) : Bv6 ¿r)
:(SuT)uV

(

and

So

uv ({s " B)V((s,"))) : t)v((s u v,r u v))

:(.9uV)u(TuV)
:(suT)uv.

ßV'¿, - uv .(B x B)uu
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We wili denote the natural transformation {Uy I Lr e T} lry U

Since f^l exists for B and setT is a t.pos, we can clefine a setz object O bv

equaliser as in the following diagram.

"n@ >--------------+ B x B - ----- B
Pt't

(f, s)

d

For any f ,g € hom(d, B), we will say that

f <g iff ll(¡,s):p,t.(.f,g).
The sense of this definition is that product map (,f, g) factors uniquely through e iff

fì.(/, g) : prt .(f ,g).Now, since fl, pr1, and a;rry .f ,g e hoÍrr(d,6) will be natural

transformations, we have f < g iff for alI U e T,

.u' (fu,9u) : (prt)u . (fu,gu);

and we have this iff for aII r e d(U)

(au ' ffr,sul)(r): ((p"')u ' Uu,su))(r)

or, in other words, iff

fu@)Àgu("): fu(*).

It is straightforward, then, that ( is a partiai order for each hom(d, B) and that, with

respect to this order, maps n.(/,g) and U (/,9) are, respectively. glb's and lub's

for any f ,g € hom(d,6). In these terms each hom(D,B) is a distributive lattice.

In fact, these lattices will be bounded. We can define a natural transformation

unit: B --+ 6 as the collectiol of functions

unitu:B(U) ---' B(r): S *-+ X
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and a natural transformation zero:ß --+ 6 as the collection of functions

zerou:B(U) --- ß(U ):.9 r-+ U.

andthenanyhorn(d,B)willbeboundedbyunit.J andze.ro..f fc.irany .f ehorn(d,ß).

Theorem 1.2: B is a bound.ed, d,istributi,ue lattice objcct.

Proof: the meaning and proof of the theorem are containecl in the above dis-

cussion and sequence of lemmas. tr

The aim of this chapter was to demonstrate that 6 is a pa,raconsistent logic

object. \Me do that now with a sequence of lemmas leading to Theorem 1.3.

Lemma 1.6: each, ß(U) is a BrA under set inclusion.

Proof: associated with any closed set topology T on space -X is a BrA operation

-i- given by allowing that for any S,T e T, S=T : c/((X - Z) n S) where c/

is the closure operation that determines the topolo gy T . The BrA operation is

characterised by the property that for any S,T,Z €T

S-TCZ iff SCTUZ.

It follows from the definition of = that if U c ,S, ?, then, in generar, tl ç S - T.

However, U C (S -=- 7) U U, and if U C Z, then

so, for any ,9, T, Z €. ß(U)

(S-") uUcZ iff ScTUZ

It follows that we can define a BrA operator, =u, on 6([,r) br. stipulating that for

any^9,TeB(U),

s'uT *(s = r) u u

(S- 7) uU c ZiffS'T C Z
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Lernma 1.7: for any closed set topology T on a sp(r,ce X a,nd, any S,T,V Ç T ,

(S-") uV : ((su V)- (T u y)) u v

Proof

((s u v)- (ru y)) uv : d(@ - e ¿y)) n (su v;) u rz

(x_ rruv)) n(srJv) urz)

(x-euy)) uv') n((suy) uy))

(fx - r) n (x - rz))uiz) n (s u y))

(tx-r; uv) n((x-y)ulr)) n(suy))
x-r)urz) n(suy))
x-r)ns) uv)

:.r((
: rt( (

: .r((
: ar((

:,/(((

__ ./ (((

:rl((x-")n.9) uv
: (S- T)UV.

The equation in the above lemma is in fact true of any BrA. We have restricted

the lemma to topological BrAs for the relatively simple proof the closure operation

definition of = allows.

Lemma 1.8: the collection {=¿¡ | U e T} constitutes a natural transformation.

Proof: we are required to show that wherever (J Ç I/ in T, lhe following

diagram commutes:
B(u) x B(u) -:!_= B(u1U

v

(ß x B){. ßrry

B(v) x B(v) 
-----------r 

B(tt1
-V
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Now, for any U CV in 7 and any (,9, T) e ß(U) x B(u), we have

BV (-,((s, "))) 
: u|((s= T u Lr)

((s- T)¿u) utr
(S-T)uIr

and
=, ({n " qv((.s, 

"))) 
: = r, ((s u ri.r u vl)

({s, v)' (T u v')) u v:

It follows from lemma 1.7 that the diagram commutes. tr

We will denote the natural transformation { =Lt:Lt € Z} bv This natural

transformation imposes a BrA structure on each hom(d,6): we say that for any

f ,g ç hom(d,6), the pseudo difference of / with respect to g is - .(f ,g).

Theorem 1.3: B is a paraconsistent logi,c object in Setr .

Proof: theorem 1.2 together with lernma 1.8. tr

So far we have shown tìnat ß exists as a paraconsistent logic object in Set7. We

have said nothing explicit on the relationship of B to the usual logic structures in
a category, the subobject lattices and the classifier objects. In fact, 6 is not a
classifier object for Set7. However, it is an isomorph of the classifier object for

a particular subcategory of Set7. As we shall see in the next chapter, it will not

follow that the subcategory in question has a paracon-sistent subobject structure.

The classifier algebra in question is in fact intuitionist but there is an intuitively
natural manoeuver that allows us to dualise the order and produ ce ß. It is worth

taking careful note of the fact that B is naturally understoocl to be a, paraconsistent

logic object. The isomorphism that we develop in the next chapt er of ß to a classifier

object does not negate this natural understanding. In the relevant subcategory of
Set7, ß can be thought of as the codomain of a, natural complement classifrer.
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CHAPTtrR 12: COVARIANT SHtrAVES

Introduction: With this chapter we consider the nc-¡tion of a co-topolog5' C on a,

category C anrd develop the notion of sheartes in cova,riant functor ca,tegories Setc

with respect to such co-topologies. We demonstrate that the category of such

sheaves has a subobject classifier and is finitely complete. The notion of a, cc-r-

topology C on a category C will be exactly dual to the nc.¡tion of a topology J on a

category Cop. Il will follow that we have a notion of a, canonical co-topoiogy. We

will be particularly interested in the category of sheaves in Setc with respect to a

canonical co topology where C is a topology T . In the first instance we let T be a.

closed set topology for a space X. We saw in the last chapter that in such a ca,se

the category SetT contains a paraconsistent logic object 6. \\¡e cLemonstrate that

6 and the classifier object for the category of sheaves with respect to the canonical

co-topology on T are isomorphic as objects in Setz and are dually isomorphic as

logic objects. It follows that the subobject classifier of the sheaf category can be

given with 6 as codomain and as such can be thought of as a complement classifier.

The existence of a well motivated interpretation of the subobject classifier as a

complement classifier will be of use to us in later chapters where we discuss the

interpretation of paraconsistent theories as categories.

As with chapter 11 we must note an isomorphism of categories that affects an

understanding of the sense of the present chapter. In the same \\¡ay that chapter 11

deals with familiar categories of presheaves on open set topologies, chapter 12 deals,

by isomorphism, with familiar categories of sheaves over open sets. Accorclingh,

everything in chapter 12 up to and including the two corolla,r'ies of Theorem 12.3.3

is no more than explicit proof of dual claims to familiar f¿r,cts. This leaves untouchetl

the discussion of 6 as the object of a genuìne cornplernent ciassifier'. This discussiorr
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brings out the fact hidden in chapter 11 that I have producecl a BrA object b5' a

method that is equivalent to applying a, "false" for "true" clualisa,tion to a farnili¿rr

subobject classifier. However, 6 remains a successful construction. Dernonstra,ting

that 6 is the object of a subobject classifier is not oliginzrl but demonstrating that

it is the object of a complement classifier must be since complement ancì sul-iobject

classifiers are philosophically different notrons.

1. Co-topologies

The notion of a categorial topology J as a system of sieves is easil¡' clualised.

Let us consider a system C of cosieves with respect to a ca,tegory C. System C r,vill

be a collection of sets C(a) for each a € C where each C(ø) is a set of a-cosieves frorn

C. Recall that an c-cosieve from a category C is a set -R of C-anows with domain

a such that if o J. b is in J? and b -!- c is an arrow in C. then o J-, It -!- cis
in -R. Recall, too, the notion of a dual category Cop for a,n)¡ category C. We say of

C and Cop that they have the same collection of objects but that there is an arrow

f: a -- b in C iff there is an arrow fop,b -+ ¿ in Cop. Tltenotion of dual categories

will help us to formalise the notion of the dual of any a-cosieve R for any a e C.

\Me denote the dual by Ron and say that

f e R iff Íore Ror.

Plainly, where.Ris an c-cosieve frornC, Rop is an ¿¿-sieve ft<>mCoI'. Given a system

C of sets of cosieves with respect to a category C, we can clefine a, system Cop of

sets of sieves with respect to a category Cop by stipulating that

A e C(ø) iff R"P e C"(o,)

for all objects a € C. We will say that system C is a co-topoloqtl on. C iff s)/stem

C'p is a categorial topology, in the sense of topologies J. f<',r'Cot'. Thus u<: ha,ve the

following definition.
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Definition 1.1: aco-topologyC for acategoryCisasystem {C(") la,e c} where

each C(c) is a set of a-cosieves and in addition

(t) {r I dom(a) : a} e C(o);

(2) ifrR e C(a) and ¿ J- U in C, then f+(R): {b -5 c I cr. .f e n} is in C(b);

(3) if rt e C(c) and S is an a-cosieve such that for each r¿ -l- t, in A. we have

/+(S) in C(ó), then ,S e C(c).

Tlre cosieves in each C(a) are called coaering a-cos'ieue.s or just c:oucri,rr,q co.si,e.ues.

Any co-topology C for category C determines a, covariant functor C:C -+ Set

as follows: let the image under functor C of any a e C be the set C(c) of cover-

ing ø-cosieves, and let the image und.er functor C of any C-morphisro o -! ó b"
C(/)'C(a) -- C(ó):,9 ,--, f+ (.9). \Mhen no confusion will result rve will also use C[j

to denote C(/)

Lemrna 1.1: for any a e C and any co-topology C onC, C(id.): idcø).

Proof: for any ^9 e C(a),

c(id"x,s): (id")+(^9): {a_5 bl*.idue s}:,9. !
Lemma 1.2: i,f a J- b -!- c in C, th.en C(s . f) : C(g) C(/)

Proof: for any S e C(ø), we have

a e c(e)(c(/xs)) iff a.e € c(/)(s) iff a . s. .f e s

WealsohavethatC(g /XS) :{.-!-,dl*.g./€^9}. ¡

Theorem 1.1: C:C ---, Set is a coaariant functor.
Proof: the necessary properties of preservation of iclentities and compositio¡

are demonstrated in lemmas 1.1 and 1.2 above. U

Recall now that covariant functor category Setc has a subobject classifier

true:7 --- f) where f) is a covariant functor C ---+ Set such that fbl any a e C,

0(a) : {all cr-cosieves}:
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and for arny (r l- b in C,

f)(/),f)(a) --+ f)(b):.9 r+ {tr -5 c I a. I e S1

The classifrer true:1 ---+ f) is a natural transformation {tr tr,e',, . o e C} n'ith /r-t¿ea (l) -
[id"), all a € C. Now, it is plain that t]rere is an inclusion Cl .- f). Since Setc h¿r,s

a subobject classifier, there is a character arrow of this inchrsion. We use c1 to

denote this character arrow. Recall ihat if r:F >-+ G is ¿r Set¿r-monic. then X, is

constructed pointwise by allowing that for all a e C and all .L € G(a).

(x,)"(") : {" !ó | f¿(/)(r) € 1¿,(F(¿,)) }

So we say that c/ is a natural transformation {c/": a e C} srrch that for any rR e 0(a),

ct"(R): {a J-- ó lCI(/Xft) e C1ö¡i

To date we have been able to show that co-topologies c/ have at least two of the

properties that characterise elementary topologies. These are the properties that

cl'true : true and c/ ' cl : c/. We give the demonstration of these properties in

the foilowing sequence of theorems and lemmas.

Theorem 1.2: cl - true : true.

Proof: for any a € C,

cl o(true o(ø)) : ct "(lt a "))
: {a l- b l CI(/)(tid")) € c(å)}

Now,f¿(/)([id")) :{" ",blo.f €Ud")}. Bur a..f Ç[id")itra€[id6).so

au)(id")) : [idó).

It follows by condition (1) of co-topologies that o(.f ) ([id,,)) € C(¿,) for an¡, .f € [i,d,,)

And, since if f ølid"), then / ø ct"(lid")), *" have c/n([t¿.)) : li(],,):tnt,eo(l)).
In other words, for any a e C,

cl"(true^(Ø)) : true"(Ø). !
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Lemrna 1.3: for R,R' eQ(a), il R C R' o,r¿d, Ã. e C(¿) . th,en, R' e C(o,).

Proof: suppose R, R' € f)(ø) such that J? C R' . Nou,. if o, J , /¡ € Ã., thr:n

o J-. b e R', and, since R is a cosieve, .f+ (R') - li,(lt). Therr bv condition (1) of

co-topologies, /+(A') e C(ó). But this is truefor any./ € A, so by conclition (B) of

co-topologies, -B' e C(a). !

Lemrna 1.4: for R € 0(a), RC cl"(R).

Proof: if al--btnR,then0(/)(A) : {ög c lo,./ e n1 :licl6). ¡

Lemma 1.5: for Re fl(a) and. an1¡ o J-, b i,n C,fl(.f)(A) q 0(.f) (ct.(R)).

Proof: a e f-t(/)(A) itr a . f e R. But if d .,t e -R. rhen, by Lemmzr 1.4,

ù. f e cl"(R), from which it follows that a e f)(/)(c/,,(R)) E

Theorem 1.3: cl .cI: cl.

Proof: b;' the definition of c/, we can demonstra,te that the theorem if rve can

show that for any ø € C, any Ã e O(cr), and any o J. b in C.

CI(/x,?) € c(ó) iff f)(/)(c/.(Ã)) e c(ói

This would show that / € cl"(R) itr / € cl"(cl"(R)).

So, suppose some a € C, some Ã e 0(a), and some o J-- b in C. Suppose

further that f)(/)(rR) € C(b). It follows by Lemmas 1.b and 1.3 that

f-¿(/)(c/,(Ã)) e c(o)

Suppose now that CI(/)(c/,(Ã)) € C(ó) Now if b -9- c is in f)(/)(c/"(Ä)),
then a . f e d"(R), which means that f)(a .fXR) € C(c). But f)(a . .f)(R) :
f-¿(a)(ç¿(/XÃ)) : d! (f¿(/XA)). so, by condition(3) of co ropologies,

CI(.fxÄ) € c(1,). !

Since Setc is a topos, it has equalisers ancl u,e can clefirre a,n ol;ject O.,¡ as irr

the following diagram where e is an eclualiser.
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f).¿ >----+ f)
idç¿

---------lf¿
cl'

e

true.¡ true

1

The existence of rnap true"¿ follows from Theorem 1.2 ¿rncl the univelsal property

of equalisers.

2. Categorial Co-topologies on Closed Set Topologies

Since topoiogies J and co-topoiogies are exactll. dua,l, rve ha,r,e a notion of

canonicity for co-topologies. We say that a co-topology C on C is canonical iff
Cop is the canonical topoioçy on Cop. We will shoq, that when C is a canonical

co-topology on a closed set topology T, functors f).¿ and 6 are isomorphic in Set7.

Proposition 2.1: tl¿e canonical co-topology for any topology T is th.a,t co-topology

C where for anyU e T, Re C(U) iff R: {U 3U¡li e I} uittr.

|{u,'ieI}:¡¡. D

Suppose T is a closed set topology and C is the canonicai co-topology onT. Let
c/ be the character map in Setz of the inclusion C .--+ Q. For any two objects [/
and [/¿ in the poset category T, there can be at most one arrow ¡¡ -\ I/¿ and if
it exists, it will be an inclusion, so let us identify cosieves ,?: {Lr :i ¿ro I i e I}
with sets of closecl sets -R: {U¡li e r}. Under this identification any co_topology

C becomes a system {C(U): U e T} where each C(I/) is a set of Lr-cosieves and. in

addition

(1) tY) e c(u);
(2)if Ãe C(U) and/: (I cVinT,then.f+(-r?) :Rn[ti) isinC(Ii):
(3) if R e C(U) and ,S is a [/-cosieve such that for each .f : Lí C V in .R, we have

/+(s) € c(v), then ,s € c(u).
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Furthermoïe) we can describe the classifier oìrject of SetT a,s a functor ,Q where fcrr

arry U € 7,,

C¿(U) : {all l/-cosieves]

andfor any /: U cv inT,the map f)(/):f¿(t/) -+ o(I/). a,lso clenotecl t-tlr,is given

by

f¿(Y)fS*-+.9n[Y).

It follows, too, that c/ becornes anatural transformation {c/¿,: L- e T} such that fcr¡

any -R € f,)(U),

cI¡¡(R): {W I C¿yu(A) € C(r4,)}

The following lemma and theorem sequence leads us to the thr:orem that 6 ancl 0"¡

are isomorphic in Set7.

Lemrna2.1: if U CW,V,thenlW)n[y) :lWUV).
Proof: if r e lw)l [7), then r e lW) and r € [y) in rvhich caseW C r a'd

v Ç r. But then w uv c z, so r €[w uv). rf r €lw uÍ''). tr,enwU v c r, so

W Cr andV Cr. Inthat case r e [W) andr elV), soz € lW)ÀlV). tr

Theorem2.l: for anyU eT and any rte C)(U) , ctu(R): Riffft:lW) for
sorneU CW i,nT.

Proof: suppose R + lW). Then -R is some l/-cosieve with at least two bottom

elements; that is, Ã contains at least two distinct elements )" a,nd IZ' neither of

which have proper subsets in rR. Since Y and Y' are ciistinct bottom elements,

Y ñYt ø R. To show that ctu(R) + R, we shorn, that )- n l'' € clu(R). Norn,.

if Y,Yt € -R, then U c Y o Y' so QV,",(A) exists. Sincr: )- ancl )'-' are bottorr
elements

Ivn",(A) : -R n [y n ),') : [)') u [)-')

Now, since [''](ty) U [y')) : Y aYt, we have OV.l,,(Ã) e C(1- a ).-/) a¡cl rher-efor.e

Y ÀY' € clr(R).
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Suppose now that R : [W). Then ctu(R) f R o:nl5, if rhele is some Z e 9(U )

such that z e clu(R) and w ç z. Now for z € ctu(R.) we require that aV@¡
be in C(Z) which is to say we require that [l (A1,I-1) : Z. In tire pr.esenr ca,se

AY@) : [W).'lZ) which, by lemma 2.1, is lW ¿ Z) .o ll 6)i@ù : 14/ u Z. Bú,
if W ç Z,thenWU Z f Z,so clu(R): fi. u

Corollary z in SetT , {1.¡ is the functor uth,ere f or Li e ,T 
.

f)"¿(t/) : {[W):U cW irT]
and,forUCVinT,

(AòV,A,¿(U) -+ f).¿(I/): ïW) - [I4l) n [I/). !

Theorem 2.2: B and {1"¡ are isomorph.ic objects rn SetT .

Proof: the theorem calls for the demonstration that there is a natural isomor-

phism between B and f)"¿ in Set7. To this end we note that for any U e T the
function gLr:Q.¿(U) --+ B(U) given bv [W) *+ W is a bijection since lW) € f-¿.¿([/)

itr W is a closed superset of [/, just as W e B(U) itr W is a closed superset of t/.
Now, if the coilection {VurU € f} constitutes a natural transformation, the fact

that each gu is a bijection will make {purtl €T} a natural isomorphism.

The collection {gy: U e T} is a natural transformation if for any U C V in T,
the following diagram commutes.

f¿"¿(t/) *u , ß(U)(n",)vJ 
þvQ"t(v) -n- ßV)

Now for any lW) € f)"¿(U) we have

sv@(tr4.))): nÍj1t,)

:14/UI:
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and

vv ((a.òV (lw))) : ,r, (J4/ ) . lv ))

: ?v 1¡ttz u t,'))

:WUV.
(Lenna 2.1)

So, as required,

9v (a,ùY, : ß1, 9ti

Our next claim will be thal ß and f),"¿ are cluali1, isomorphic as logic objects.

In part this requires of us the claim that f).¿ has an existing logic object structure.

We delay that until the next section where we clernonstrate that Q.¿ is the classifier

object of a subcategory sh.¡(Setr ) of Set7. The clual isornorphisn of logic objects

is directly analogous to the idea of dual isomorphism or anti isomorphism of lattices.

Two lattices (,C1, f 1) and (Lr,lr) are dually isomorphic if there is an isomorphism

þ: L1 --+ Lz of. the underlying sets and, in addition, if for any a.b € Lt

a z1 b iff $(b) =2 S@)

The dual isomorphism of ß and f)"¿ as logic objects follows from the fact that for

anyU e T arJanyV,W eß(U)

iff lw) c lv)

We have seen that B is a logic object essentially because an¡'6(t,r) is a bounded.

distributive lattice under set inclusion. It follows from the above bicondition and

the known isomorphism of B atd f)"¿ in Setz that each 6(U) ancl Q"¿([/) are dually

isomorphic as lattices under set inclusion. Frorl this follou's the clual isorrrorphisrr

of 6 and f)"¿ as logic objects. In the next section r,ve u,ili see that fì"¿ is tlrr: classifier.

object for a subcategory så"¿(Setc) of functor categorv Settr. It is worth roti¡g

V CW
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that the usual idea of a classifier object as an algebra, ura,iies l).¡ a, logic objr:<:t

whose structure, in the case of Set7, is exactly clescribecl b5, 5u,r¡n* that it is cluallv

isomorphic lo B.

Theorern 2.3: ß and' {1.¿ are d,ually isomorph.ic as loqi,c objr:cts i,n,a"smucl¿ a.s {lr¡
i,s a classif"er algebra. tr

The proof of this theorem is indicated i' the above disc.ssion.

3. Sheaves on Co-topologies

We have seen that where C is a co-topology on a categorv C. we can define

a map cl : {l -r f) and then an object f).¿ and a map trtte.¡:1 ---+ f)"t in Setc.

\Mith this section we demonstrate that there is a subcategor)¡ -</2.¿(Setc) of Setc of

which true"¡ is the subobject ciassifier. This will be a categor¡, of what we will call

c/-sheaves. These are to be distinguished objects of Setc identified with respect to

rnap cl in just the same v¡ay as j-sheaves are identified with respect to topologies 7.

Notice that while co-topologies C and topologies J are duals 'v\¡e are not proposing

to claim sh"¿(Setc) to be a category co-sheaves (or sheaf duals). In what follows we

will defrne objects of sh"¡(Setc) to be covariant functors with a particular property

with respect to c/-dense monics in Setc. The property in question will be exactly

the one used to identify contravariant functors as sheaves. In the case of sheaves the

property is cast in terms of 7-dense monics where 7 is a topolog;,. We take it, then,

that for our sä"¿(Setc) objects to be co-sheaves, our notion of c/-denseness must

be dual to the usual notion of 7-denseness. It, however. is not. The two notions of

denseness of monics are, in categorial terms, the same.

Assume that C is a co-topology on a category C ancl th¿rt r:/ is the char-a<:tr:r.

map for C'-+ f) in Setc. In what follows all arrows ale Set(l-¿r1'r-ows. Sr,rppose ir

monic o: X' >--+ X with a character rnap Xo.
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Definition 3.1: o: X' >--+ X is cI-closed if

Xo : cl'Xo

Since all monics in a subobject have the same chara,cter ¿ì,r-r'ow) a subobjec.t, [ø] will
be called c/-closed if ø is c/-closed.

Definition 3.22 o: Xt >- X is cl-dense if

cl .Xo : Xi,Lx

In other words, if cI.Xo is the character map for the identit\¡ arrow on X, then o is
c/-dense. Where c/-dense ø is the representative morphisms of a subobject [o]. we

say that [ø] is a cl-d,ense subobject.

Since c/ is a,n arrow f) --+ f), it imposes local operators cl on each Sub(d) in
Setc that are natural in d. For any / e Sub(d) we define c1¿(/) to be that subobject

classified by cI 'X¡. The idea that these operators are natural in d means exactly

that for any k: dt -+ d and any / e Sub(d),

c!¿, (SUB(kX/)) : SUB(k)(cla(.f))

The notions of c/-closed and c/-dense monics can be cast in terms of these operators.

A monic o: x' ,--+ x is cl-crosed iff cry(o) - ø, and c/-dense iff cl¡(ø) - idx.

Definition 3.3: we will say that any object tr' of Setc is a cl-sh,eø,f iff given a¡y
c/-densemonic o:X'>-+X and arry ft:X' -- -P, thereexists exactly one /: X --+ F
such that IX' F

o

X

commutes. The category of c/-sireaves in Setc wili be clenotecl .siz.,¿(Setc )
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Notice that with respect to topologies j this definition exists as a theorenr tha,t

says that where 7 is a topology on some topos t, an object a, Ç t is an object

a € slt'¡(t) itr it has the above property with respect to .i -clense rnonics. This is

taken to be a theorem in that the category sh¡(t) is legarclecl as a.h.ea,clv specifiecl

in terms of the rrsual equaliser definition of 7-sheaves. plainll, though, thr: theo'em

may be used as a definition.

We next aim to demonstrate that f)"¿ in Setc is a c/-sheaf. To clo this we rrer:cl

the following technical lemmas.

Lemma 3.1: th'ere is a 1-1 correspondence betuteen, cl,-closed, subobject-s lol and"

nLaps X l- Q"r.

Proof: if [ø] is a c/-closed subobject of X, then Xo : cl,. Xo. It follows ìty ihe
properties of e as the equaliser of cl and id,e that there is exactlv one ./':¡ --- f)"r
such that Xo : e ' /. suppose now some arrow .f : x -+ e"¿. By composition there

will be an arrow X J-- 9"t 3,Ç) which, since it has cod.omain Íì, is the character

arro'w of some monic o: Xt ,--+ X; that is, e . f : Xo for some monic ø. Since e is

the equaliser of c/ and ids,we have c/.e: €.¡ and so we have cl.e.f : "..f. From
this it follows that ø, and the subobject it determines) are c/-closed. We complete

the proof by noting that if e ' f is the character arrow for some further subobject

[/], then, by definition of character arrows) l"l: ló1. tr

Lernma 3.2: th.e pullback of a cl-d,ense subobject is a cl-d.ense srúobject.

Proof: let a: X' >--+ X be a c/-dense monic. Norv, for any k: y --+ X in Setc,
SUB(kXø) is the pullback of ø along k, so if SUB(k)(o) is a ci-clense monic. then
the lemma is demonstrared. But SUB(k)(") is ci-clense iff cly.(SuB(k)(o)) - icly.

Now, we knor,v that

cly (suB(kX")) - suB( Ä )(c.Ì.ç (ø ))
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and since ø is c/-dense, cl¡(o) - id¡, s<r

clv (suB(kx")) = suB(¿xiúl_x )

= irly

Lernma 3.3: for monr,cs ot:Y'>--+X' an,rl o:X,r--X, utr: h,aur: \.o,-X16,.6,¡

Proof: consider the diagram

!

o

E

g

I
YI X

Xo'

tru,e,

By the properties of the subobject classifier, the lemma is clemonstrated if we ca,n

show that x6.o,¡.a makes the square {I'', X',e,1} a pultback. We are required,

then, to show that the square {Y',X',X,e,1} commutes and that whenever the
outer square {Erx',X,Q,l} commutes, there is exactly one k: E -ry,such that
the whole diagram barring Xa' corrìrrlltes. Firstly, the square {y,,X,,X,0,1} is a
pullback so it at least commutes. Secondly, suppose some .f and g such that

X6.o,)'o'f:true.f,

that is, suppose that {-Ð, x'rx,,f),1} commutes. We have already noted that the

square {Y',X',X,Q,1} is a pullback, so if the square {8.X,.X,0, 1} commutes.

then there is exactly one k such that rñost of the diagram ba,rring x,, commutes.

we only say that most of the diagram commutes since we have not 5re¡ establishecl

that g :6t . k. However, we have that ø .o' .k - o .cJ.T'hen. sin<:e ø is rnonic. r,r,cr

have ø' 'lc : g. In all, if the outer square {E,x',x, o, 1} commutes. the¡ there is
exactly one k such that the whole diagram barring Xø, corìmutes. !

>-} X

I
f)

o

olo
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Lemrna 3.4: for any f ,g € Sub(d), i,f X¡ < Xn, then cl .\.¡ { cl .Xo.

Proof: the lemma requires us to demonstrate that fbl all r¿ € C ancl all B e 0(a),

if (xr)"(R) c (xs)"(R), then ct"((X¡),,(Ä)) q ct,,,((\,,)"(,t))

so suppose that (x¡)"(R) c (xe),(lÌ). From this rve h¿r,r'e tÌrat for an5, z:ct, -+ b

and any a:b ---+ c, if a.z € (xr)"(A), then a -z e (Xn).(A). It follorvs that if
a e {L(z)((x¡)"(n)), then a e Q(z)((xù"(R)), or in other. u,oLcts

CI(z) ((x/)"(Ê)) c a(z)((x n)"(a))

Now z e cl"((x¡),(E)) itr f)(z)((x¡),(n)) € C(ó). So, ìry ternma 1.3,

if z € clo((x¡),(A)), rhen z € cto((ro ).(n))

Theorern 3.1: f)"¿ is a cl-sheaf.

Proof: suppose some c/-dense monic o:X'r--+X ard some map f,rX,----¡ f).t.
It follows from lemma 3.1 that there is some c/-closed monic o'..y' ,-- X, such that
X6, : e . f' . Lel, ot':Y" >--+ X be the monic classified by ct . Xo.o,. By definition

o¡t is cl-closed so there is some f",X ---+ f)"t such that Xo,, : e. .f,,. We have the

following diagram.

o' f' (-:xt F oYt

Y,,
o

X

We will have proven the theorem if we show that .f" rna,lies the inner triangic

commute and is unique in doing so. We show first that .f" rnakes the triangle

commrrte.
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From lemma 3.3 we have that Xo, :X(o.o,).ø) so we havr: that

cl . Xo, : cl .Xço.o, 
1

o

But ø' is c/-closed and Xo,, : cl .Xço.o,¡t so

Xo' : \o" o

Furthermore Xor : e. f' ànd Xot, : e. f", so

e o

Now, e is an equaliser and therefore monic. It f'ollows that

f r'

and the triangle commutes. We show no\M that /" is uniclue in making the triangle

commute.

Suppose that there is some further f :x ---+ f)"¿ such that /' : f .o. Since /
exists, there is some c/-closed a:Y >-+ X such that xo - e.f . Our aim is to show

that a artd o" : c|x(o 'ø') determine the same subobject. It will follow, by lemma

3.1, that I : f" as required. consider the following diagram where {i,h} is the

pullback of {a, ø}.
h

a

Z
,J

Y

# X'

J"
X

Jf
0"¿

J"
a

>______-____+

1 ----------------+

Xn:e'f'

true

Since the top and bottom squares are pullbacks, the outer r-ecta,ngle is a pullba,ck

making Xh: e. f .o. But, by hypothesis, o. f - ./', .o
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But, further) e. f' : Xo,, so

XI": Xo,.

In other words, lt - o'. Now, since the top square is a cc.¡rlmutes, c.. . i - o . o,. It
follows that cl¡ (ø' o' ) = cl¡ (a' i). Therefore our proof ìs complete if rve clemonstrate

that

cly(a.i) - *.

wehaveseenthat a"i- o o'.Itfollowsthat ø.o'c cv rvhere C is subobject

inclusion. From this we have that xço.o,) < xo. Then, frorl lemma J.4, we have

tlrat c/ 'Xço.o,¡ 1cl' X.. Recall that a is c/-closed) so we have that

This gives us that cry(o .o') ç a. Now, consider the following diagram.

Y

a

cly(a-i) X

l"
f¿

I'X" .;

true

The inner square is a pullback by definition. To demonstrate that the outer square

commutes note that from lemma 3.3 we have that X¿ : X1o.t¡ .a and that from
lemma 3.2 we have that i is c/-dense. Since i is cl-dense

cl 'Xço.o,¡ { Xo

I

a

1

and. X¿¿.,. is the map Y --; 1 t::3 A othenvise clenotecl tr',rLel Scr

cl .X¿ : Xidv

cl' Xço.t¡' a : h'tt,c:. l.

200



It follows that there is a unique /¿ that makes the whole dìagram commute. In
particular we have

a : cIx(o¿.i) h

from which we have that a C cl¡(a'i). Recall that a .i : o .h - o.ø, so we have

that

aÇcIy(o.o')

To demonstrate that f)"¿ is the classifier object for. .-sh,¡(Setc) we need frrst

demonstrate that s/2"¿(Setc) and Setc agree on limits of finite diagrams of cl-

sheaves. Itwillfollowfromthisfirst,thats/2"¿(setc)isf iteÌ¡,completeandseconcl,

that så"¿(Setc) and Setc agree on monics between c/-sheaves. The classifier result

follows from the universal propoerties of e as an equaliser.

The demonstration that sh"¿(Setc) and Setc agree on iimits of finite diagrams

of c/-sheaves comes in two parts: first we show that the terminal object in Setc is a

ci-sheaf and, second, we show that the pullback in Setc of a diagram of c/-sheaves

is a c/-sheaf. This suffices as a demonstration of agreement on finite limits since

any category is finitely complete if it has pullbacks and a terminal object.

Theorem 3.2: tl¿e terminal object in Setc i,s a cl-sh,eaf.

Proof: for any X' J-- 1 and any c/-dense monic o: X, >-.X, there is exactly

one map f :X --+ 1 such that /' : f -o, namely the unique map -X --+ 1 guaranteed

by the definition of 1 as a terminal. That .f' : .f . o follolvs from the fact that
hom(X',1) must contain exactly one member. I
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Tlreorern 3.3: a pullbaclc in Setc of cl-sheaues is a, cl,-sh,r:a,f

Proof: consider the diagram

xt

t
X

f'
fp

) Z B
û

fo
13',

A
a

Suppose that the center square {z,B,D,A} is a pullback ancl that ;1, B,D a¡e

c/-sheaves. Suppose that ø is a c/-dense monic and that sorle arro.w .f 
,: X, -+ Z

exists. Since D is a c/-sheaf, there is a unique /¡ such that

fn

Now, A is a c/-sheaf, so there is unique /¿ such thal Bt . .f, : .f a.o.But then

tl

D

o:þ.*'.f'--* p' .f'

P' ' f' : a' ft'oa

so, by uniqueness of /p, f o:a.f,a..Likewise we show that /p : þ.f s silce B is

a c/-sheaf. So,

*'f.r:0.Tn.
But this together with the fact that the inner square is a pullback means that ihere

is a unique h:x ---+ z stch that the whole subdiagra- {x, z,B,D,A} comrnutes.

Now, thefact that a.f¿,: þ fa means that

a ft'o : 0' fn

and, again, by the fact that the inner square {2, B , D- A} is a pullìrach, thr:re u,ill þr:

exactly one /: X' --+ Z mktngthe whole diagram, barring the {I,, X. Z} trialgle.
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commute. But /' is one such arrow and so is h . o. It foilorn's that

f':lr'o

Corollary 1: s/2"¿(Setc) is f"nitely complete anrl u"qrer:.-s u;itl¿ SetL: on, li,mits of

f.nite diagrams of cI-sh,eaues.

Proof: the present theorem together with theorern 3.2 togethr:r u'ith the stan-

dard result that pullbacks and terminal objects imph' all finite limits. ¡

Corollary 2: truer¡ is th,e subobject classif"er for -rl't,¡(Setc).

Proof: by the first corollary to Theoren 3.3..s/r,¿(Setc) and Setcr agree on

monics between c/-sheaves. The present corollary follows fron this and the universal

and monomorphic properties of e as an equaliser. The proof is a variation on that

of Theorem 8.3.1. tr

The above corollary is interesting in the light of Theorem 2.2 ar'd the claim of

dual isomorphism for logic objects B arrd f)"¿. In the case where T is a closed set

topology, the natural isomorphism g: ß o Q.¿ in Setz means that cp .true"¡:7 -+ ß

must be a classifier for så"¿(S"f ). In fact, since true"¿:1 --+ f)"¿ os a natural

transformation {(true"¡)u:U e T} where (true"¡)u(A) : [I/) the map g -true.¡ is

given by componerft,s gu .(true"¡)u where

su((true.òu(Ø)) : U

Since U C Z for all Z e B(U), the map g.true,¡, in terms of the natural algebra on

6, is better thought of as a truth value f alse. Mlhen this is talien into a,ccount we see

that g .true.¡ functions as a complement classifier in.sh.¿(Set7). B:, this r,ve mean

that if g.truer¿ is used to construct operator arro\\¡s on 6 in just the rva;r that true.¡

is used with respect to f)"¿, then the algebra 6 is ihe (t¡'pe) clual of the algebra 0"t.

(In fact we get the algebra that we have clescribed in chaptel eleven). Consider,
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for example, the usual construction of the glb operatoï ar-ror,\¡. On f)"¿ the gllr

arrow is constrtrc-ted as the g-true.¿-chanacter of the procluct nap (true"¿,true"¿).

This generalises the idea that the truth function and:{Ø,1} x {Ø,i} - {Ø, 1} has

and(rrU) :7 iff r :1 and U : \. Now. if rve co¡sidr:r-the character map of

(ç.true"¿,g.true.¿) recalling that rp .true.¿ is intuitivel)' the tluth value /c/se , rvr:

haveanarror/thatisageneralisationof thetruthfunction .f ,{(t.1}xiØ,1} -+ {Ø.1}
which has .f(:c, A): Ø iff r : Ø and tJ : Ø; in other w6rcls. tþe p .t.ru,c:"¿-cha.rac.ter.

map of (g'true.¡,g'true.¡) is alub operator arrow. The s¿rne discussion applies tcr

the usual constructions of U, O, * in just the way r,ve have clesclibed in chapter four

and was originally described in chapter eleven of Mortensen [1995]. As we suggestecì

in chapter four, if a complement classifiervvas to exist, it would be categoriallS,

indistinguishable from a subobject classifler; this is exactl¡' the case for g.tt"u,e,.¿.

The thing that makes p 'true./ a complement classifrer rather than a subobject

classifier is a (relatively) intuitive assessmen-t of the nature of ç .tru.e.¡ as a truth
value. This assessment, even in the case of bona fide subobject classifiers, is never

strictly categorial. It is based on the convention that the unit of a lattice interprets

T, or truth, while the zero of the lattice interprets I, or falsehood. If we accept that

convention, as we do in the usual subobject classifier case, then surely we accept it
in the case of ç 'true"¡. This makes ç .true.¡ a genuine complement classifier.

The next chapter marks the end of Part III and concludes our discussion of

sheaf concepts. The discussion there wili be somewhat different frorn the foregoing

sheaf discussion in that we focus our attention on sheaf spa,ces rathel than functor-s.

In fact our concern is a generalisation of that which we have exhibited in the last

five chapters. In the last five chapters we have been concer-necl to cliscuss the nattue

of particular sheaves, namely sheaves that are classifier' oìrject,s. as logic objects

and, more broadly, as objects of palaconsistent semantics. Irr the next chaptcl

we describe an equivalence result for categories of sheaf spaces trncl categor.ies of
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sheaves. Sheaf spaces are of interest for sornething like the reason sheaves were

invented: tirey transport algebras from the base sp¿lce into the section structure

of the sheaf space projection itself. An equivalence result betr,veen sheaves and

sheaf spaces over closed sets has the effect of making closecl set sheaves genera,li5,

interesting as objects for paraconsistent semantics.
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CHAPTtrR 13:

SHEAF SPACES ON FINITtr CLOSED SETS

Introduction: A sheaf space is a contìnuous local homeomorphism between topo

logical spaces. It is known that a sheaf over an open set topologS' u'ill give rise to a

sheaf space and vice versa, and it is usual to note that ihe categorlr of all shea,ves

on an open set topology O for a space X is equivaient to the category of all sheaf

spaces over X with the same topology. With this chapter we moclif.r. the notion of

local homeomorphism to deal with closed sets and verify that at least a restricted

class of closed set sheaves are equivalent to "closed set sheaf spa,ces".

The notion of a closed set (pre)sheaf is a particular example of the notion of a,

(pre)sheaf over a category and as such is uncontroversial. A sheaf space over closecl

sets will be defined in exactly the same way as the usual sheaf spaces. However in

the absence of a general theory allowing us to forgo open set topologies, we could be

accused of misusing the "sheaf space" name. Our claim is that since the categorial

notion of a sheaf has proven amenable to dualisation in terms of being defined over

closed sets rather than open without loss of the defining features of a sheaf, lÃ/e can

make a similarly conservative dualisation for the more traditional notion of a sheaf

here called a sheaf space. We would then be in a position to develop the features

of a sheaf space that make it attractive to a mathematicai iogician mindful of the

new tool of closed sets in the base space.

There is some expectation that an adequate description of a closed set sheaf

space can be put to use in terms of Davey's representation constructions. Dave¡,

in his "Sheaf spaces and sheaves of unirrersal aigebra" [1973]. describes a genera,l

method for converting a subdirect product representation of an algebra to a repr<:-

sentation of an algebra of global sections of a sheaf spa,ce. \Ãie lote that Davev-'s
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construction is given in terms of open set sheaf spaces. Onr: of our guiding specula-

tions has been that mathematical and logical objects arising fïom inconsistent 6¡t
non-trivial theories could be collected into categories that '"r'ere structurally cliffer-

ent in some recognisable way from categories of objects fi-or¡r consistent theories. A

milder version of this speculation has ihat with the right solt of objects we rvoulcl

have categories that exhibit paraconsistent aigeì:ras eithr:r' a,s ob.jects or as morphism

structures. One way to investigate these speculations is to acldress the rrature 6f

categories of sheaf spaces with each sheaf space containing a repr-esentation <>f sorne

paraconsìstent algebra. Such an investigation would seen to be most fruitful if our.

sheaf spaces were defined over closed sets. In the first instancr:. though, we must set

about discovering the viability of the notion. In particular. for the extension of the

discussion into more general category theory, we will want to linow how closely the

theory of closed set sheaves and sheaf spaces mirrors the theorr¡ of open set sheaves

and sheaf spaces. To that end we consider an equivalence of categories result for

closed set sheaves and sheaf spaces.

Another of our motivations for considering such a result is simpler. We have

been interested throughout Part III in the nature of sheaves, and particularly

sheaves of closed sets as logic objects in categories. \Me irave paid closest atten-

tion to classifier objects in these categories. There are two things we would like to

do: first, find a way to extend our discussion to other objects in the sheaf category,

and second, move some way toward finding out if there can be categories with para-

consistent subobject structures. The first of these tasks is hanclled by rnoving to

sheaf equivalent sheaf spaces in ihat such structures do what the original sheaves

do: they transport base space algebras into the section structure of the sheaf space.

The second of our two tasks is only touched upon with this chapter. M/e have seen

in chapters nine and ten that paraconsistent subobjecl, structules exist but fail to
be natural in a way that can be expressed by saying set theoletic ciosule opera,tions

207



fail to distribute over intersections. The move frorn sheaves to sheaf equivalent

sheaf spaces changes the context of discussion ancl ailows us to speak of subobject

lattices directly in terms of the continuous maps that exist between obiects. We

expect this, one r ¡ay or the other, to be profitablr: but we fbllow it no fïrther in the

present work.

With this chapter we present a somewhat restric.ted revision of the standard

constructions for the presheaf to sheaf space functor L ancl the sheaf spa,ce to sheaf

functor I that can deal with structures on ckrsed sets rather than oper. While

\Me propose to proceed along the usual line of clevelopment, we shail at times be

required to alter the usual proofs to accomodate the nerv nature of the stalk and

base space topoiogies.

Ii will be advantageous to restrict the functor constructions to presheaves and

sheaf spaces over frnite spaces X with topologies 7 where any member of 7 is a

finite subset of X. That is to say the usual construction will not in general work

for closed sets without some restriction of this sort. We make significant use of this

restriction and we note that it is not entirely arbitrary. Where C is a small finitely

complete category and cou is a finite pretopology in the sense that for all objects

c € C, cou(c) is finite, then the site C : (C,cou) is called fi,ni,tary and the category

så(C) is a coherent topos. In fact any coherent topos is equivalent to some så(C) for

finitary C. Such toposes are significant as classifying toposes for algebraic geometry

(see, for example, Johnstone 11977) and Makkai and Reyes [1977]). We note that

if every member of a topology T is finite, then the canonical pretopology cou for

poset category 7 yields a finitary site (T,cou) and so a, coherent topos slz(T,cou)

of closed set sheaves.

We will also be required to restrict our constLuctions to presheaves -t' rvherc:

for any closed U,ttre set F(t/) is finite. This is in response to rvhat seens to be a

deep feature of the consistent construction of sheaf spa,ce morphisns from preshea,f
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morphisms: given a presheaf morphism f : F -- Ft tt is possible to describe a,

function L/ from constructed sheaf space (.LF,pr) to (LF',pr,). but to prove tha,t

f'unction continuous in general we will be required to accept arbitra,r'y unions in tire

topology on space L-t'. Notice too that the usual construction of sheaf f-E from

slreaf space (E,p) rnay not guarantee finite sets lE([/). Tire particulal irlplicatio¡
for us is that while we can describe a functor I from the categorl. of all sheaf spaces

over X to the category of sheaves over X, it u'ill not in genr:lal cornpose with the

functor L restricted to sheaves. To avoid ihis problern the domain of our f will be

restricted to sheaf spaces (8,p) where -Ð is finite. These restrictiors are somewhat

ad hoc but only from the point of view of cr:eating a nore genelal "sheafification"

theory.

Note well that the above restrictions apply only for the particular constmction

of functors L and f included here. There should be no conclusion that this indicates

which presheaves and sheaf spaces can exist on ciosed sets.

There is a criticism to be dealt with here. It is that the finiteness assumption for

the relevant topologies renders the material of this chapter philosophically trivial

in that finite closed set topologies (and finite open set topologies) are not really

distinguishable from finite ditributive lattices. In answer to that criticism we note

that the first order of business for this chapter is to produce the desired equivalence

of categories result; the second order of business, following on from the first, is to

note that, all other things being equal, the equivalence of sheaves on closecl sets

and sheaf spaces on closed sets can be performed only for finite closed sets. There

may be some restriction on the nature of the topological space that allows the

construction for non-finite closed sets but without some such lestriction, the non-

finite construction cannot go ahead. This is lrointecl out a rrumìrc'r' of times during

the discussion. The significance of the result is then that shr:af ancl sheaf spacc.

theory on closed sets is similar but importantiy diff'erelt fi'om the sa,me theory ()n
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open sets. If the emphasis of the chapter were solely on achievìng the equivalence

result, then the chapter would be of no special significancr: since uncler the finite¡ess

assumption the result is covered by the usual equivalence theorern for sheaves ancl

sheaf spaces on open sets (open and ciosed set topologies a,r'r,r formall5' distinct onl5' i¡
their respective treatment of non-finite collections of topolog¡. elements). However

in the chapter I give some discussion of the possibilit¡' of achieving the result with

respect to non-finite closed sets. With lespect to at least one point of the orclinar'1,

construction I rn'as able to show that the topological clual of that construction is not

formally constructible without the restriction to finiteness (a1l other things being

equal).

We will adopt the foilowing conventions: 7 is alwa5's a closed set topology

of finite subsets of some finite X; presh(X,T) is the name for the category of

closed set presheaves over topological space X where for anv closed U C X and any

presheaf l¡ the set f'(I/) is finite; sh(X,7) is the category of sheaves in presh(X,T);

sheaÍsp(X,T) is the category of sheaf spaces (E,p) over X u,here E is finite. An5'

category name given without an underbar should be taken to refer to the unre-

stricted categories in question. L will be afunctor presh(X,,7) - sh,eaf sp(X,T).

f will be a functor sheaf sp(X,T) -+ sh(X,T).

\Me shall end by discovering that sh(X,7) is equivalent to sheaf sp(X,T).

Our discussion below owes much to the demonstration of the equivalence of

open set sheaves to open set sheaf spaces found in Tennison's Slteaf Th.eory [1975]

and is a iater draft, but essentially the same as) James, \V., "Sheaf spaces on finite

closed sets" in Contemporary Logical Research, in A'ustrah,ø. Logique et Analyse,

[1ee6].
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1. Sheaves and Sheaf Spaces

With this section we define the notions of closecl set sheaf and closecl set sheaf

space that we will use. Notice that what we will be calling ¿i sheaf in this chapter.

is indeed a sheaf according to the usage of the word accepted in chapters eight and

ten. The sheaves in the present chapter are exactly those functors identified with

respect to the canonical topology j in SetT"o where 7 is the closecl set topology.

Once we have given the necessary definitions we rvill give some technical lemma,s

on the nature of sections in a closed set sheaf space. These rvill be used in the next

two sections where we show that we can construct closecl set sheaf spaces fïorn

closed set sheaves and vice versa. The last section contains the demonstration that

the existence of these particular constructions implies an ecluivalence of categories.

Definition 1.1: Presheaves are contravariant functors. \Mhen T is a topology for

a space Xrany contravariant functor F:Top -+ Set is called apreslt,eaf on,T or,if
7 is understood, a presheaf ouer X. A sheaf on T rs any presheaf f' that satisfies

the following condition: if U e T and there is some {tl¡:i € 1} with eadnLl; €T
and [J{I/¿: i e I} : [/, then whenever we have {sçF(U¡):i e I} such that

Fl:nu,("¿) : Fli.r,(" ¡)

for al1 i, j e I, there is exactly one s € F(U) such that

Fff,(') : ",

all i e 1. For closed set topologies 7, a sheaf on 7 is called a closed set shrøf,

Definition L.2: For any presheaf F onT over X ancl any r € X, the -ctalk, F, of

F at r is defined to be the direct limit of the system of sets F(Lr) where z € t/ ancl

arrows Ffl where r €U CV.
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We can construct a stalk F" for.t. as follows. Fix ¿ € X. Lef Z be the disjoi¡t
union of all F(U) where r € U. We define an equivaience relatiorr Nr. on Z by

saying thai if r e U,V ardu e F(U) and u € -F(I/), then

U, -r:IJ

itr

there is some W e T such that :x e I4/- C L¡ n l" ancl

eln@) : rlv@)

Then F"is Zf -, togetherwithmaps F(U) + F, which areF(LI), + 2 ,.> (Zl -*)
given by s r+ s" with each s" being the equivalence class for,s € F(LI) u.nder -*.

It is useful to note that for any s¿) t" € F" where .s e F(Ll ) ancl f € -l¡(V), u'e

have s, : t, iff there is some w c u o v such that u e ra ar'd FX,(t) : Flv(t).

Morphisms of presheaves induce what we will cali stalk morph,isn¿s. Suppose

f : F ---+ F' between presheaves -F and f". Recall that / is a natural transformation

{fu,U € T}. Then for each r € X there are stalk morphisms f ,: F, -- F', given by

where r e U.

(g . f)" : g,. f"

," *, (/u(")),

For composite presheaf morphisms -F J- p' e , F", we have

Definition 1.3: A map p:E ---+ X between topological spaces E and X is contin-

uous iff the inverse of each open set in X is open in -Ð. Equivalently, the map is

continuous iff the inverse of each closed set is closed (Th.3.1, Kelley [igbb]).

Definition I.4z A map p: E --+ X is a l¿omeornorphi,sm, if it is a bijection arrd

both it and its inverse are continuous.

Definition 1.5: A map p: E ---+ X is a local h,om,eontorplti,sm if fol a,n-r, e Ç E, thelc:

is some homeomorphismpll/:I/ --+ [/ such that botþ /\i a¡d t;- a,r.e opcn and e € |y',
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p(") e [/. In essence a map is a local homeomorphisrn if it is a homeomorphism when

restricted or "localised" to an open subset of its domain. Piainll'. we can describe a

similar property of maps in terms of closecl sets. Replace all o(:curences of "open"

with "closed" in the definition of a local horneomolphism a,ncL a iromeomorphism

and we have the deflnition of a closed set loco"l homeom,orph,i,sm,.

Definition 1.6: A closed set slteaf s[)&ce on X is a closecl sef local homeornor-

phism p: E ---+ X that is continuous between topological spaces E and X. When

X is understood we use (E,p) to denote the sheaf spa,ce. Fol wirat follows all

homeomorphisms are defined with respect to closed sets.

Definition l.7z For sheaf spaces over the same X a slt,eaf .space morplt'ism

s:(E,p) - (E',p')

is a continuous map g: E --+ -E' such that p : pt . g

Definition 1.8: For closed set sheaf space p:E --+ X and closed subset (J of. X, a
closed set section of p ouer U, orjust [/-section of p, is a continuous map s: U --+ E

such that p. s : idu. The collection of all sections over [/ is denoted lE(I/). The

notation recalling functor f is deliberate

Definition 1.9: Any colleclion B of sets wili be called a basis for a closed, set

topology E on a space X : UB when we have that b 6 E iff å is a finite union of

members of. B. Any collection a is a subbasis for closed set topologA F if the collection

of all intersections of members of a is a basis for E. Plainl¡,. anj,¡ collection cv can

be used as a subbasis for a topology on [J a.

Lernrna 1.1: any hom.eomorph,ism pl,n/:N ---+ U gttarunteed, bt¡ p a,s local hom,eo-

morphisrn giues rise to a sectio" (pl¡/)-t :(J - E.

Proof: (pl¡/)-t is by deflnition continu.ous and plainly p.(pllr¡-t : idu. !
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Definition 1.9: A map s:U -+ -Ð between topologica,l spa,cr:s ts a closed m,np ifl
the image tn E of each closed set in U is closed.

Definition 1.10: For any e in topological space -Ð, a set 1,1 is a closed neigh.borr-

h.ood of e if there is some N C AI such that e € N and ;V is ciosecl in E. In what

foliows when we speak of neighbourhoods of e we will mean closecl sets M such that

e e M.

Lernrna L.2: any section s:U ---+ E of slteat' space p: E -: -\ r,-s r¿ clo-red rrr.u,p.

Proof: recall that we have supposed any topologS' T cln X to contain only finitc:

subsets of X. By hypothesis, then, t/ is flnite. It folior,vs that s(Lt) is finite. Norv,

for any e e s(U) the definition of p as a sheaf space assures us of closed sets M ç E
and I/ C X such that e e M., p(e) € /, and plM,M --+ I/ is a homeomorphisn.

It follows that (plM)(M) is closed in X. Therefore (plNI X¡/) n t/ is closed in X.
Now, s is a section, so (plM) must rnap M ns(U) bijectiveil' to (pl A,I)(M)û LI ancl

since (p lM) is continuous, M À s(t/) is closed in E. Choose one (p lM) for each

e e s(U) and s(U) becomes the finite union of the associated sets M n s(I/). tr

Lemma 1.3: any section s:U --+ E is ahomeomorphi,srr¿ s:U --+ s(U).

Proof: since p . s : idu the rnap s:U - s(U): r r--+,s(r) has a bijective inverse

pl"(U). The section s is continuous. Also s is a closed map so, given p as continuous)

the map plt@) is continuous (see Lemma 4.1). !

Lernrna 1.4: the collection of sets formed by tlte image.s of all sect'ions s ouer all

closed sets U of tlr,e sheaf space (E,p) 'is a basis for tlt.e topology on E wlten E is

finite.

Proof: recall that we have suggested that any base spa,ce '{ is finite, so ¿ru)¡

closed subset U of X is finite. It follorvs that any s(U) is a finite subset of -Ð. I'iou'.

Let M be an¡, closed subset of -Ð. For aryy e € M there is sornr: closecl neighbor.rrhoocl

N C E such that a homeomorphism p lN exists. Finite intr:r'sections of closecl sets
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are closed sets, so the set M ît N is closed in -Ð; a,nd since p lN is a homeomorphism

we have asection s: (pl(MÀ¡l))-t over closed set (plN)(M n¡/) : p(M ìN).
Plainly e e s(n(M n ¡¿)) c M. Since the space -Ð is finite, the subset 1\4 must be

finite, so choose one s for each e e M as describecl a,borre and then the set AI c¿n

be described as the finite union of sets s(p(A[ n 
^I)). 

Since E is itself a, member

of the topology, it follows that ,Ð is some frnite union of sets s(U). Since also any

s(I/) c ,E the space .E is the union of all s(n@ n 
^I)). 

!

2. FYom Presheaves to Sheaf Spaces

In this section we first describe the construction of a sheaf space (L,pr) given

a presheaf -t'. Secondly, we describe the construction of a sheaf space morphism !¡f
from (Lf', fr) to (LF',pr,) given a presheaf morphism .f: F --+ tr". We finish this

section with a demonstration that these constructions describe a functor

L:presh(X,T) - shea.f sp(X,T)

Suppose a presheaf F:Top --r Set frorn presh(X,T) where T is a closed set

topology on X. \Me will construct a topological space Lf' and a map pp:LF --+ X.
We will go on to demonstrate that (LF,pe) is a sheaf space.

Construction 2.1: let LF be the disjoint union of the stalks F" of .t' for all

r € X. Since any element of fi" is some s, determined by some s e F(U) where

r € U,we may, wherever [/ is closed in X and s e F(U), deflne a map .Ç:U ---+ LF
by

U>rF-+sz.

With respect to such maps eadn F" is the union of all sets s(U) where r e U e T
and s € ¡'(t/). It follows that we may topologise L-F b1' a.."p,'ng the collection

of sets 6(t/) for aII U € T and al1 s € F(tl) as a closecl sr:t subba,sis. In fa,ct, ur:
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may demonstrate that the seis ,î(U) form a ciosed set ba,sis. W'e clo this with the

following two lemmas.

Lemma 2.1: if B i's a collection of f,nite sets o.nd, cu is o, non-f,nite sttbcollection,

of P, Àa: ll a' for some f,nite subcollecti,on at of a.

Proof: if any of the members of a are disjoint, the lemma, is proven. Otherwise,

choose some b e a. We deûne a/ in terms of ó. Firstly, Iet ó e rr'. Then, note that
for any r e b,fi r / fla, then there is some b' € a such that :ü øb'. For a¡y such

r e b choose exactly one such b' e * and let b' e a,. Let no other rnembers of [) be

members of at. Since ó is finite, a' must be finite; and, by virtue of its definition,

|a': [-la. !

Lernrna 2.2; th'e collection of sets 3(tI) for altU € T and all ," ç F(Lr) i-c a closed,

set basis for L_F.

Proof: any collection B of sets identified as a closed set subbasis for a topolog¡r

is a closed set basis for the same topology if any arbitrary intersection of members

of B is a finite union of members of. B. Now, since by hypothesis any U e T is flnite,

any .î(t/) is finite. By lemma 2.1, then, we need demonstrate only that any finite
intersection of sets ,6(U) is a frnite union of sets "(t/). We demonstrate this if we

show that the intersection of two sets 3(I/) is a finite union of sets .î(u).

Let ,A(U) be defined for some s e .F(t/) and let f(V) Ue defined for some

t e F(V). if e € 3(U)n î(V), then e: s, : t,for some r €U ÀV. But in that

case there must be some W e T such that r € W ar'd

Fil,@ : plrft)

Let r be that element of F(w) picked out by FX,G) and F|í,ft) plainl;,, f'or all

r e W, r'x.: sr: úr; that is, for all r e I4z-

rW ?) : rfv¡) : F{vft)
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It follows that f(I4z) E .ç(t/) atî(v). Since rhis is true f'or ail\'c € s(u) n f(v) a,ncl

3(U) n fltz¡ ir finite, the set 3(t/) n î(V) rur_ be clescribr:cl as the finite u¡ion of thr:

sets f(I4z). !

To show that (Lf',lr) is a sheaf space we must shou' that pr ts a confln11e,r,

local homeomorphism.

Construction 2.22

r e X.

Lernma 2.3:

LF.

Iet pp:LF -* X be defined so that (pr)-r(r) : ft for zrll

tlr,e mo,p pp:LF --+ X i,s cont,inuous utitl¿ rr:-qpr:ct to tlte topologu on,

Proof: for any closed U ç X, we have (pr)-t(U) as the clisjoint union of all

F, for r eU. It follows that (p¡)-l(u) is the collection of points s, for all ¿ € U
and all V e T such that r € V and s € F(v). But note that f'or any s € F(V),
Fln G): FIRIG lU aV) which means that s, : (" I Li aV,), for all x €U CtV.

It follows that we may describe (p¡)-1(I/) as the union of sets J(Z) where s e ,F (V)
and V C U in 7. Now, by hypothesis [/ is finite, so there are only a finite number

of.V e 7 such that I/ C [/. Furthermore, F € presh(X,T) so ar].y F(V) is finite.

It follows that (p¡)-1(ff) is afinite union of closed sets s(I/). !

Lernrna2.42 p:LF ---+ X is a local ltomeornorph,ism.

Proof: aly e € L¡'will have some closed neighbourliood s(t/). The maps

pFlS(U) and 3 are bijective inverses. Since pp is continuous. pr li([I) is continuous.

It follows frorn the construction of the topology on LF that pF ls(U) is a closed

map and since.4 is its inverse,.î is continuous (see Lemma 4.1). D

Theorern 2.1: if F e presh(X,T), th,en (LF,pe) e sl-¿ect.f -qp(-\.2).

Proof: lemmas 2.3 and 2.4 together with the fact that. as constructed, LF is

finite. !
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Suppose a morphisrn f : F -+ F' in presh(X,T). We construct a, map

\f : (LF,2F) -+ (LF' ,pp,)

and go on to demonstrate that L_f ir a sheaf sp(X,T )rnorphism.

Construction 2.3: recall that presheaf morphisms .f : F --- F' induce staik mor.-

phisms f,:F,, -- FL for all r e X given by F, > .r, '-- (fu(")).. where r € Lt.

Define \f :(LF,pr) --+ (LF',pi',) so that for any sr €LF.

(LÐ('") : (/ir(-')),

Lernrna 2.5: pF : pF, .U.
Proof: for any s, e.L-F, prr(s") : r while

pr, (LJG,)) : po,({r, t'l),)

Lemrna 2.6: U it continuous.

Proof: any member of the basis of the topology on L-Fr is t(U) for some

s' e F'(U) and some U e T. To demonstrate the lemma it is enough to demonstrate

that (Lf)-t(i(U)) is a closed set in L,F. But for any e e ?(U). e - (s'), and

(L/)-' (("'),) : {s € F(U):.fu(") - -.'};

and since by definition of U, we have (ff)(,ô(U)) : .f u(s)(L¡), rve have

(L/)-'(t(u)) : [J{s{n): s e F'(r/) and .fy(-s) : -.'}.

Recall that -P € presh(X,T), so F(U) is flnite. It f'ollows tirat (L.f)-t(?çU)) is a

finite union of closed sets in Lf'. !
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It should be apparent that if we do not restrict the size of F(U) it is possible

that there be a non-finite number of s e F(U) for which .fu(t) :,s', in which case

we would need some extra hypothesis about the topolog), on L-t', an alterna,tive

topology, or another construction for L/.

Theorern 2.2:

morph,ism.

if f is a presh(X,T) morph.tsm. thr:n, LÏ is a shect.f'sp(X,T)

Proof: Iemmas 2.5 and 2.6. !

Theorem 2.3: th,e construction of slt,eaf space (LF,pp) from preslteaf F a,nd, sh.eaf

space rnorph,ism \f from slteaf morphi,sm f determi,ne a functor

L:presh(X,T) - sheo"f sp(X,T).

Proof: the lemma is demonstrated if we show that the L morphism construc-

tion preserves identities and composition. Suppose a presh(X,7) identity map

idr: F --+ F. The L morphism construction preserves identities if

L(idF): id1rr,n,).

Now, for any s, eL-F, we have

L(idp)(s,): ((¡¿r)("))" : ""

while

idçn,n,) ("") : (idyr)(s") : -...

Suppose a presh(X,7) composite -t' J- F' e , F". The L rnorpirism construction

preserves composition if

r-k'f):Ls'U.
Now, for any s, €LF,

L(g./X",): (g'.f)"(",): (s,../, )(.-, )
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while

Qs 'U)G") -- Ls (1,/("" ))

: g"('['('s"))

: (g' /")("')

3. FYom Sheaf Spaces to Sheaves

In this section we describe the construction of a sheaf lE given a sheaf space

(E,p) on X. We describe the construction of a sheaf morphism lg:lE --- l4l
given a sheaf space morphism g:(E,p) n (E',p'). We finish this section with a

demonstration that these constructions describe a functor

l: sheaf sp(X,T) --+ sh(X,T )

This functor is readily restricted to a functor

l:sheaf sp(X,T) --- sh(X,,7)

and in the next section we demonstrate the main result of this chapter that L
restricted to sheaves and f are an equivalence of categories.

Suppose a sheaf space (E,p) on X. We construct a functor lE:T"p --+ Set

and go on to demonstrate that f,Ð is a sheaf.

Construction 3.1: deflne lE Top -+ Set by allowing that for any closed U C X

IE(U): {all sections s of p o.rer [/-]

and when V C U in T, the restriction map (IE)V is given br'

sr+sll/.
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Tlreorern 3.1: lE is a sheaf.

Proof: suppose closed set [/ and set {U¿:i e I} of ciosecl sets such that tr':
ll{t¡,'i e I}. Suppose that we have {s; e (lE)(Ui):i e I} such that

(l E)Y,',..r, (ro ) : (l E)urj,n, ( s ¡ )

all i,j e I. This allows us to define a map s:U - E bv setting s(z) : 5-1,.;

whenever r € U¿. The theorem is demonstrated if rve shou' that s € fE(t/) aLrd

in unique in making (lE)U,(") : s¡ all i e I. First of ai]. s € fE(U) if .s is

continuous and p's: idu. The fact that p-s: id¿r follou,s directly from the fact

that p' si : id¡¡, all i e I. Now, by definition, for any closecl 
^r 

c E

'-'(¡'l n s(U)) : U{"0'(I'l n s¿(tro;):i e r};

and since each s¿ is continuous and, by lemma 7.2ra closed nap, s-1(,nlns(Cl;) is

a union of closed sets. Now, I rnay not be finite, but each s¡1(,nr À s¡(U¡)) must be

a subset of 4 which, by hypothesis, is finite, so s-1(lr n s¡rr;) can be represented

as the union of some finite subset of {s¿ 
1(l/ n s¿(u;)): i € I}. It follows that s is

continuous.

Now, it follows by definition of s that (lD)fi,(") : s¿ all i e I but suppose

there is some further st e IE(U) such that (lE){ ("') : s¡ all i e I. The fact that

{U¿:i €.I} covers [/ and that each s; is a bijective function requires that s : s'.

!

Suppose a sheaf space morphism g:(E,p) - (E',p'). We construct rnaps

(fe)u: lE(U) -- lE'(LI)

for each closed U e T and go on to demonstrate ihat {(fg)¿. :Li € T\ constitute-s ¿r

natural transformation lg:lE ---+ lEt .
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Construction 3.2: for any closed U ç X define (lg)u:lE(U) -- lE,(t/) by

IE(U))sr+s.,s

That g's e l-Et([/) follows from that fact that both g and -s are continu.ols ancl

from the fact that p. s : id¡1 together with p' . g :p neans that ¡tt . g . -c : idry.

Theorem 3.2: {(fg)u,U e T} constttutes a natu,ral t,rartsformati,on.

Proof: the theorem is demonstrated if whenever l/ C U tn T. thr: f'olk-rwing

diagram commutes.

Gs)u
I E(U) -----------+ I E' (U )

(tE')?;

tÐ(v) 
(r.9'-+ 

tE'(v)

But this holds since for any s € lE(y)

(tE')v((rg)u(")) : (tEt){,@ s)

-- (g'") lv
and

(rg)', (1rø¡n1s¡, 

I :iï,;l',
Since g and s are functions

(g.")lV:g.("lY)

U

1
V
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Theorem 3.3: tl¿e constructi,on of sh.eaf lE from slteaf space (E,p) and, sheaf

morphism lg from sheaf space morph,ism g determin,e a, fu,nctor

l: sheaf sp(X,T) -- sh,(X,T)

Proof: the theorem is demonstrated if we show that the I morphism construc-

tion preserves identities and compositions. So, suppose a sherL,.f sp(X,7) identity

id@,p),(8.,p) -- (E,p). Identities are preservecl if

l(idçø,e7) : id,rn

This holds only when, for all U e T,

(rQ\ø,e¡)), : (idrø)u

But, for any s € (lEXt/),

(rçtap,o)),r(") : id,s . s

: (id¡B)¡r(s)

Suppose now a sheaf sp(X,7) composite (,8, ù J- (E',p') -!- (8",p"). The

f morphism construction preserves composition if

s

rk . f) :rg .rf

This holds only when, for all U e T,

But, for any s € (f,EXt/)

(r(g.Ð)u:eg)u.(r/)u

(r(g f))r(") : s .f .s
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while

(rg)u . (r/)u(r) : (rg)u ((r.f )u('l)

Qs)u(f '')
s'(f '). tr

It remains true that in producing a sheaf fE from sheaf spa,ce (E,p) we have

accepted and used a restricted topology on the base space X, but note that we han'e

required no restriction on -Ð. Later we shall have need of a, restricted domain f.
Plainly if we restrict the domain to sheaf spaces (E,p) where E is flnite) we calr

define a functor

l:shea.f sp(X,T) ---+ sh(X,T).

4. Equivalence of Categories

With this section we demonstrate that the functor L restricted to sheaves and

the functor I are an equivalence of categories for sh(X,7) and shea.f sp(X,T).

This is demonstrated by showing a natural isomorphism

r. (L I ú6,,T)) = idshearsp(x,r)

and a natural isomorphism

(1, l"¿1x,2)) f = id"n(x,r).

The demonstration proceeds in three parts. \Me first show that for any sheaf space

(E,p) tn sheo.f sp(X,T), there is a shea.f sp(X,T) isomorphism

k B: (8,'p) -+ (Ll E, pr ø).

Secondly we show that for any sheaf F ín nresh,(X,T ). there is a presh(X,T)

isomorphism

hp: F --+ lLF.
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Thirdly we show that these isomorphisms constitute the required natural transfor-

mations. To begin with, we give a technical lemma that is needed for the next

lemma,.

Lemnra 4.1: for topological spaces X and Y and, i,n,uerse map-s k: X -t Y unrl

lct:Y ---, X, i,f both k and k are closed maps, tlten both, k' a,n,rl, k ure conlin,u,otts.

Proof: suppose k is not continuous; that is, suppose there is at least one closed

U çY such that k-'(U) is not closed in X. But k'is k-1 and k'is a closed map.

This rneans tÌrat wherever [/ is closed in Y, k'(U), ancl therefore k-1(U), is closed

in X. Map k is continuous. The same proof applies for k' rvhen k is a closed map.

Lernrna 4.2: for any (E,p) in sheaf sp(X,T) tl¿ere i,,s an isomorpltisrn

ks:(E,p) -- (IJÐ,,prn)

Proof: a sheaf space isomorphism is a continuous isomorphism k: E --+ LIE
such that p: prø.\c. We construct two maps, k:E --+ LIE and k':LlE - E,

and show them to be bijective inverses and both closed maps. This, together with

lemma 4.1, gives us continuous isomorphism k. We show also for our constructed k

thatp:prp'k.
Consider any € € E. Let s:U --+ -Ð and st:U' --+ E be any two sections of p

suchthat e € s(U) and e € s'(t/'). By definition s € LE(U) and -*' eLE(U').Now,
s and s' have overlapping images; that is, s(t/)n "'(U') is not empty. Consider then

the set n(s(U) n s'(t/')). It will be the case that

s lp(s(t/) n s'(t/')) -- s'lp(s(U ) n -s/(¿,'/ ))

only if, for any r € p(s(U) n s'(ff')), s(r) : s'(z). Note that rvr: rnust have both

s(r) and s'(r) in s(t/) n "'(U') since s and pl"(t¡) are bijective iu'erses â,s zr.re .r-t
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and/rl"t(U'). But since s and pl"Q) are bijective inverses we ha,ve that for an5,

ó and ó' in s(t/), if (rl"(t/))(b) : (pl"(u))(b'), then It: b'. The sarre holds wittr

respect to sr and any ó, b' € s'(U'). It follows that for any r e p(.s(Lr) n s,([/,)),
s(c) : "'("), since p(s(r)): p(st(r)) : r. In other words, s ancl s' are identical

when restricted to p(s(t/) n s'(t/')). Now, by lemma 1.2, both s ancl s' are closed

maps, so s(t/) tl s'(t/') is closed in E. And since both s and s' a,re continuous)

s-l(s(U) Àst([Jt)) as well as (s')-1("(U) Àst((J')) ur" closecl in I. But

s-l (s(t/) n s'(t/')) : ("')-t ("(f¡) t s' (Lr' )) : p('(L¡) n .s'(¿¡l )) .

so there is a closed set in X, namely p(t(U) n s'(t/')), restricted to r,virich -s and s'

are identical. In other words, there is aW € 7 such that

(rE)Yy(") : (rÐWG')

It also happens that, since e e s(I/) os/([/'), p(e) ÇW.It follows that where s is

some section of p with e e cod(s), then s -p(.) s'for all other sections s/ of p with

e e cod(s'). Therefore, we may define a map lc: E --- LIE by

e å s,pk)

where s is any section of p with e € cod(s).

\Me now show that k is injective. Suppose e,e' € E such that e I "'. If
e e p-r (r) and e' € p-l(y) such that r f y, then it is automatically the case that

k(") I k(e') since LfE is the disjoint union of stalks (fE)" all ¿ e X. Suppose,

then, that e,e' e p-t(r). Suppose sections s:(J --+ E and t:V --+ -Ð such that

e e s(U) and e' € t(V). By definition, s(r) : e and l(r) : er, so s(r) I t(r). It
follows that there can be no W € 7 such that z € I4l and

QÐW@: [E)V,(t)
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It follows, then, that so1"¡ ttpG,); or in other words, k(r) I k("').

We now show that k is a closed map. By lemma 7.4. lc is a, closed map if for

any sectior s'.[J --+ E of. e, k(s(U)) is closed in LfE. Nou,. ]r)- definition of k, we

have that k(e): so¡"; for arry e € s([/), so

k(s(U)) : {sp(") : e € s&r)}

Now, p("(¿¡)) : f/, so

k (s(U)) : {sp(") : p(e) e u}

but this is the set 3(I/). By construction 2.1, then, k(s(fr¡) is cÌosed in LfE.
\Me now define a map kt:LlÐ ---+ E which we show to be an injective closecl

map. We show that k' is the inverse of k. Since both k and fr' are, then, known to

be injective, both k and lc' are seen to be bijections.

Any element of LI.E is s" for some s € (fE)(U) u'ith z € U. Now, for

any s' € (|EXU') -" have s -, st, and therefore s" : sl, only if there is some

W CU ll [/'with r €W over which s and s'agree. In particular. if -s -" s', then

s(r) : "'("). It follows that we may define a map lct:LlE --+ E by

s" rt s(z)

\Me now show that k' is injective. Suppose sections s e (fE)(U) and ¿ € (tEXy)
such that r e U,V. By definition of sections we have that

s I p(s(I/) n¿(y)) : t I p(s(U) nt(t'))

with p(s(t/) n f(y)) being a closed set. Now, if s(z) : t(t:). then there is some I4,'

namely p("(U) n ¿(Y)), such that

GE)yy(') : (LE)Y4,ft)

with r e W CU ÀV; in other words, s -rt, So s, : l.
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We now show that kt is a closed map. By lemma, 2.2. il, is enough to show that

k(S(U)) for any s e LE(U), is closed in E. But
k(3(U)) :{s(r): reU}

: s(t/).
So, by lemma 7.4, lc(.î(U)) is closed tn E.

\Me now show that k' is the inverse of k. This is straightforward. For any

e € 8,, k(e): sple; where e € cod(s). Recall that k is injective. It follows that

tc-|(tc(e)) : e- Now k'(k(")) : r(r(")), and since s is a, section, s(p(e)) : e.

Furthermore, for any su €LlE, k'(t,): s(r) and, since oþr'iousl)'s(z) e cod(-s),

tc(k'(s")) : "o1"1")): s,.

It foilows that k: E ---+ LIE is a continuous isomorphism. To complete the

demonstration of the lemma observe that for any e € E if p(e) : r, then k(e) is

so1"¡ which is s, for some s with e € cod(s), and, by definition prp(k(")) : r. It

follows that

P: Prø'k' tr

Lemma 4.3: for any sheaf F in presh(X,T) tl¿ere is an tsomorpltism

hp: F --+ fL.F.

Proof: for any U e T define a function (hr)u, F(Lr) --+ I!¡'(t/) so that for

any s € F(U)

The lemma is demonstrated if we show that each (hr)u is a bijection and that for

alay U C V tn T, the following diagram commutes.

(hr)r,
F (U ) -------- -) (lLF )( ¿I )

(hr)u(") s

U

1
V

Fy (f LF)1,

F (V ) ----------------+ (rLFX Y )
(he)t'
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First, we demonstrate that the diagram commutes. For any .s e F(U)

gLF)v((ä")"(')) : (U.F)l(' )

: s lV
and

(he)v(F',7(")) : (he)v(.s lv)
: "1.

Now, FIG): FIG I i/), so " -, (r I V) and.s" : (s lV),, for any.r: € V. It
follows that

3lv -- ;av

We now demonstrate that any (h¡)y is injective. Ar,y section 3 e ILF([/) is

given by .Ç(r) : s¿ for all r € [/, so for .î, î elLE(U) we have s : îonly if s, : t,
all z € U. But, in that case, for each r € [/ there must be some IrZ € 7 such that

r € W and .F,þ(s) : Ffr(t). It follows that tl is covered by these sets W- a,nd, when

-F is a sheaf, s : t.

We now demonstrate that arry (hp)u is surjective" This is the demonstration

that for any e € Itf'(U), there is some s e F(I/) such that e:3. If e e fl,tr'(t/),
then e is some section U --+ þF of pp. As such, e is a closed map making e(U)

closed in L-t'. It follows that e(I/) is some finite union

[-J{.e iø)'i e I}

where .1 e ILF(U¡) all i e I. It follows from the defrnition of pp that

Utø:ieI|:r;
Suppose nou' that for some r e U¡ÀU¡, we have $(r) t t@ ). Since e is a, section.

pl"@) is the bijective inverse of e, so

(pl"(r¡))(c(")) I @l4u)) (,1r.1)
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But, this is the claim that p(Ç(r)) * p(C¡(r)) and since f; and Ç are sections, it
must be that p(Ç(")) : p(t@)) : ". In other words, we can characterise e by

e(r):,î(r) for ail r € U¡ any i e L Another way of putting this is that

1¡lU¡ÀU¡: û lUo)U¡, aIIi,,j e I.

It follows, when -F is a sheaf, that

Fl:nu,("n): rj;nu,Gi) arri,j e I.

Now, since the sets [/¿ cover U, if F is a sheaf, there is exactl5' one -s e F(LI) for

which fl,G) : s; all i e L So, for any (J¿ and any r € (J¡. we have

FJ,(s): Fl,,(.s¿),

which is to say, (s,), : sr. It follows that e is the map .î: LI - + LF cletermined by

that s € F(U) for which Ff,G): si, all i e I. Since there is exactly one such s,

(he)u is surjective. !

Theorern 4.1: functorsl and,Ll(sh(X,T)) are an equiualence of categories.

Proof: for this proof let L' be the functor L restricted to the sheaves of

presh(XrZ). Functors L' and f are an equivalence of categories if there are natural

isomorphims

L'f = idn¡o"¡oo1x,r¡ and lL' = id"n(x,r¡.

From lemmas 4.2 and 4.3 we have the isomorphisrns kB:(E,p) ---, LIE for sheaf

space (E,p) and h¡: F --+ fl,.t' for sheaf F. The present theorem is established if

{kB:(E,p) in sheaf sp(X,T)} and {l't,p: F in sh(I,7)}

constitute natural transformations.

The collection {hp:.F in så(X,7)} constitutes a natur-al tra,nsformation if
whenever f:F ---+ -F" is a pll(X,7) morphisrn, the following cliaglzrrr r:ommutes.
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hr

---------------- fL¡.,
hp,

The diagram commutes if the component diagrams for each L-t e T commute. Norv.

foranyseF(U)
(rL(/)) r((hr)u(,)) : (rL(/)),r{s )

: (L/) ."
while

(he,)u(f"(")) : ,úì)
Now, (L/) .î is a map [/ --+ LF'where for any r € U, we have ((L-f) .s)(z) :
(fu("))". In other words,

(L/) ..6:/æ).

The collection {k¿: (E,p) in shea-f sp(X,T)} constitutes a natural transforma-

tion if, whenever g:(8,,p) - (E',p') i. a shea.f sp(X.,T) morphism, the following

diagram commutes.

E ku,LrE

g

Et ---------------- LlEl
lcø,

Now, for any e € E, kø("): sp(.) where s is some section of p with e € cod(-s).

Assume s is a section over [/. Now, for any s" € Lf¡. with .s € (fExtr) and r € [,I

(Lr(g)) (',) : (rg)"("")

((lg)u(")),
It follows, then, that

(Lr(g)) (ru(,)) : ((!g)"(")),r"r

: (g ' s)p(").
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We also have the following

k",(g(")) : s'p,(s(.))

where s'is some section of p'with g(") e cod(s/). Now. both g and s are continuolrs,

so g.s is continuous. Furthermore, since p: pt g,we har.e p' .g.s: i,du. Ancl

plainly, g(") € (g'tXU) when e e s(U). It follows thal, g..s is a sectiol of p'with
g(.) e cod(g . s). It follows, too, that

s'p,Gk)) : (g . s)p, (s(q)

and since p'(g(")) : p(e), we have

(Lr(g))(¿"(")) - t p,(g(,))

as required. !

fn summary:

A restricted class of sheaves over closed sets is provably equivalent to a, re-

stricted class of sheaf spaces over closed sets.

This chapter marks the end of Part III and our discussion of the properties of

sheaves as objects of paraconsistent semantics. With the next chapter we begin a

discussion of categories themselves as objects on which we may model theories.
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Part IV:

THEORItrS and RELtrVANCE



CHAPTER 14:

INCONSISTENT THtrORItrS IN CATEGORIES

Introduction: With this chapter we continue our interest in categories and the

semantics of paraconsistent logics. In particular we i,vill be concerned to show hor,r'

we may describe categories as semantic objects for inconsistent theories. In the fir'st

instance we develop the usual notion of a categor;r ¿r a suitable semantics object

for a theory in a many sorted language. This is the idea that sorts in a language

can be modelled by objects of a category and then fc-¡rmulae in such languages

can be modelled by soubobject of particular sort models. We then speah of a,

model for a theory as a functor from the language to the category. Ttre ability

to model inconsistent theories then becomes, at least, the ability to describe an

adequate notion of sets of designated values (if our- semantic objects have more

than one designated value per lattice, then we have the possibiiity of a formula

and its negation receiving (different) designated values). Alternatively we can seek

out categories with BrA subobject algebras and use these as models. This idea is

usefully combined with the fi.rst, but is itself lacking to some extent in that those

BrA subobject algebras we have discovered to date lack the pleasing categorial

property of naturalness with respect to other such algebras in the same category.

A third idea, and one that we shall pursue, calls for the use of lattice dualisation.

We have a standard result that any subobject lattice in a, topos is a HA, so it

follows that we have something of a plethora of opportunities to produce BrAs by

dualisation. There is, however, a serìse that using dualisecl subobject lattices in tiris

way is not quite the same as straightforwardly modelling tr theor¡' in a category. \Ã,'e

will therefore use the tool of language, rather than latti<:e. clualis¿rtion. This is the
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idea that we model formulae in a language on a structure bv allou'ing that a formula

g recieve a value that, in a standard model, wouicl be given to the dual formula gon

where g and goP are dual in the sense that wherever there is an o,n,cl, connective in

cp there is an or connective in gop, and so on. We will give a, cornplete clescription

of what constitutes a language dualisation in section two of the present chapter

however the claim that a language dualisation on a standard rnodel arnounts to the

same thing as a lattice dualisation in the model should be understandable.

This chapter is an explicit statement of the effect of the application of a lan-

guage duaiisation to the notion of topos logic as a sequent system. The kind of

dualisation here called language dualisation is difi'erent from both "false" for "true"

dualisation discussed in chapter 4 and ordinary categorial dualisation. Language

dualisation applies to formulae in a logical language and is motivated by standard

notions of algebraic duality. So a language dualisation of a formula cp produces a

formula gop where A replaces any instance of V (and vice versa) and - replaces any

instance of =+ (and vice versa). Given this notion of language dualisation I develop

the details of modelling formulae in toposes t by allowing that where a standard

model assigns some topos arrow or object to formula gt we assign that object or

arro\Ã/ to gon. This is analogous to using open set topologies as semantic objects for

closed set logics (by including a dualisation function in the interpretation function).

In the absence of what we might call a co-topos, a topos-like category with natural

BrA structures, some manipulation of the sort clescribed in chapter 14 is needed if
we are to model inconsistent theories in categories in the sarne rvay that we model

such consistent theories as we do in toposes. At least some explicit worliing out of

the details of such manipulated notions is needed since the idea that what rve are

working with is a deduction system is affected b¡' these manipulations. Explicitl¡',

by applying a language dualisation to a sequent system ancl moclels for languages u/e

produce a system that preserves falsehood rathel than truth. So the philosophicai

Ð9 tr
¿JÙ¿



significance of chapter 14 is twofold: firstly I have produced a method of modelling

inconsistent theories in toposes, and secondly I have made explicit the nature of the

inference system that goes with these models.

A consequence of this notion of language dualisation is that, given a language

L and its dual Lop, any model of a theory T in language .C amciunts to a model

of the dual theory Top in Lop and vice versa. Furthermore there are significant

consequences in terms of proof theories. Given a notion of language duaiisation for

models and some proof theory for theories T in language L, we can develop wirat we

may call a dual proof theory for theories ToP in L"p . The idea is that straightforwarcl

language dualisation of a proof system produces a disproof system. With respect tcr

categories as semantic objects the standard proof system is a Gentzen system called

geometric logic, or GL. In section three we will apply our language dualisation to GL

and produce a system that we call co-GL and which is best understood as being a

system that from falsehoods derives falsehoods. This leads us to the principal claim

of this chapter: that we can model inconsistent theories by providing what we call

refutation models. This is the idea that inconsistent theories can be characterised by

collections of formulae that are undeniably false. Consider, for example, the theory

of classical arithmetic. Let P be the coliection of all well formed formulae that are

false in standard models for classical arithmetic. Let P1 be a proper subset of P and

allow that only P1 sentences are undeniably false. Among the various models of a

theory T under which all of P1 are false, there will be some (non-classical) models

for which only the sentences of P1 are false. We may describe T as an inconsistent

theory characterised by falsehoods P1 and wherever T has a moclel that falsifies all

of P1) we say that T is modelied by a refutation model of P1. The principal idea

behind refutation models and disproof systems like co-GL is that a set of falsehoods

closed under falsehood preservation rules allows for the claim that all other well

formed sentences are true (or at least designated) even if, classicallv) some of therr
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would be false (or undesignated). This seems a natural philosophical dual of the

Intuitionist principle that the lack of a proof of the truth of a, sentence is not a proof

of its falsehood.

The use of categories as semantic objects for many sorted languages is not

solely a model theoretic exercise. The categorisa,tion of the task is extended b1,

the construction of categories Ca with respect to theories T and the demonstration

that models of T in Grothendieck toposes t correspond to continuous morphisms

between sites (C1 ,cou) arrd t.. Our discussion in this chapter',r'i11 not go this far.

The language dualisation program is wholly amenable to expression in this f'o¡m

but is not wholly motivated. The usual reason for developing the notion of a theory

modelled in a category is to begin discussing category theor¡, itself in terms of the

language of models. Then it is possible to describe categories in terms of formulae

of the language that hold in those categories. The language duaiisation prograrn

actually hampers such discussion in that both a formula and its dual would describe

the same feature of a category but the dual would be a description at one remove for

having been dualised. The point of language dualisation of models in this chapter

is to demonstrate the types of concerns we will have when and if we find categories

with natural BrA subobject structures and start to use them as standard semantic

objects for standard (inconsistent) theories. In that such a, situation would require

some proof system other than the classical or the intuitionist a chapter such as

the present one has a useful role: by dualisation of existing category based proof

systems we can discover such systems as will be useful in non-standard settings.

With section one we give a formalisation of a man)¡ sorted language and briefll,

describe the details of interpretation of the language within a topos. With section

two we develop the disproof system co-GL and its relation to inconsistent theories.

qDn
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1. Many Sorted Languages

.Nn elententary language consists of primitive symìrols together with a coilec-

tion of varial¡les. Such languages are called single-sorted when the varial¡les range

over elements of what is intuitively one sort or type, namely, those from just one

interpreting set. Many-sorted languages are those whose variables require interpre-

tation in terrrrs of more than one set or structure. These are the langua,ges usecl to

formalise, for example, scalar multiplication of vectors.

Let 5 be a class whose members will be called sorts. An S-sorted language C

will require one denumerable set of variables Vo for each a € .S such that if ct,b € S

and ¿ f b, therr Vo and V¿ are disjoint. When u € Vo we write u:a. For our

S-sorted ianguage there will be a basic connective alphabet of

(i) propositional connectives: A, V, -, -, - , *i
(ii) quantifiers: V,l;
(iii) identity: =.

\Me also include parenthesis devices ) and (.

Furthermore there shall be

(iv) individual constants c that are matched with sorts. The sort of c is
denoted by c: ø;

(v) relation symbols R that are assigned a natural number n, called its nurnber

of places, and a sequence of sorts (at,,...,a'-). This is denoted by

R: (a1 ,...ran)i

(vi) operation symbols g that have a number of places n and a sequence of sorts

(ot,...,ant&n+7). This is denoted by g, (or,...,n,) - antr.

An S-sorted language ,C is then a collection of sorted variables together rvith a

collection of operation, relation, and logical symbols, ancl inclividual constants.

Terms of a language are expressions within it clenoting inciividuais. For a manv-
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sorted language terms are always terms of a given sort. For L Lhe terms are the

variables, constants, and operation statements.

Tl;.e atomic forrnulae include the identity expressions ancl the relation state-

ments. Identity expresions are of the form t x u, where t-u. a,re terrns of'the same

sort. Relation statements are R(út, ...,t,-) where for R: (.rr, ..., ri,,) the terms tt,...,tn
are of sorts o1 ,¡...¡en respectively.

General formulae are built inductively folloiving the rules

(i) any atomic formula is a formula;

(ii) if g and tþ are formulae, then so are (,'a -+ 4,),(.p'rit), (-ç) and (-p;.
(iii) if O is a set of formulae, then I O, V O are fbrmulae:

(iv) if g is a formula and ¿, a variable, then (Vu)g and (-u)g are formulae.

There is a definitional distinction to be made between free and bouncl variables

which we can blur and say just that a variable is bound, in a formula if ìt falls within

the scope of a quantifier and otherwise variables in formulae are free. A sentence of

the ianguage is a formula in which any variable is bound. Any formula containing

at least one free variable is called open. Sentences and for-mulae will be denoted by

Greek letters and, for example, p(u) will denote an open formula p with free u.

We include the special formulae T and I which will denote respectively empty

conjunction and empty disjunction.

Interpretation in a topos:

Interpretation comes in two parts. First we give a direct interpretation of sorts

and symbols, and then we give interpretations of terns ancl f'ormulae with respect

to sequences of variables. \Mhere t is a topos an t-model for an S-solted language

L is a function U with domain S U L such that

(i) for each sort ø € .S, we let U(a) be an t-object;
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(ii) for each g: (or,...,o") - anr1.¡ we let U(g)be an t-ar-row

U("t) x... x U(o,^) '-,I,l(a-+t);

(iii) for each R: (or,...,c,,,), we IetU(R) be a subobject of l.l(c,t) x... x l,l(o,,),

(iv) for each c:û,, we Iet U(c) be an arrow t - I,l(a,).

The second part of an interpretation calls for ìnterpretatic-¡n with respect to

sequences v : (rr,...,u^) of distinct variables. A word on the notation that

follows. When v : (rr ,. . . ,u^) is a sequence of distinct valiables rvith 'ui: ei j we

use //(v) to denote the product U(a¿) x . . . x 1,4(a,n). This is slightl¡, misleading

since /,/(v) is not meant as an interpretation of v so much a,s an interpretation of the

associated sequence of sorts. However the notation is conventional so we maintain

it. Also we will be using apparently distinct functions l,lu to interpret terms ancl

formulae with respect to distinct v. In fact the superscripted v is no more than a

reminder: for example, the symbols "Uu(g)" mean "the interpretation underZ of

cp with respect to sequence of variables v". Again, the notation is conventional and

we maintain it. Terms and formulae are interpreted with respect to sequences of

variabìes that are appropriate. For a term f a sequence v is appropriate to t if it
contains at least all the variables in f . For a formula gr, a sequence v is appropriate

to g if. it contains at least all the free variables in g.

Terrns: for a, term f where ú: a suppose that sequence v : (u1 ,. . . ,un) with u¿: b,

contains at least all the variables that occur in ú. Define tl(v) to be the product

U(bt) x ... x U(b-).Then we define the interpretation under tt of t with respect to

vtobeamap
U'(t):U(v) ---+ U(a)

such that

(i) if I is variable u¿:a, then U'(t) is the projection t/(v) -+U(");

(ii) if f is c, thent/-(t) is the composite U(v) -- 1 49 U(cL):
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(iii) if / is g(ú1 ,...,t*) where g: (ør ,...,a^) ---+ c¿, then t/.(t) is the composite

u(u) <Uu(tr),...,u"(r-))
(or) " ... xt/@,,¡t!9 Y61

Note that (U'(tt), . . . , U" (t,")) is a product map

Formulae: for a, formula g of I suppose that sequence v : (tr1 ,. . . ,un) with u¡: ó¡

contains at lea,st a,ll the free variables of g. Define |,l(v) tctl;etl(b1) x .. . xU(b,).
Then we define the interpretation under U of. g with respect to v to be a subobject

of U(v); in addition, the subobject is denoted U'(p) ancl satisfies the rules that

(I) U"(T) is maximum subobject idyçu¡:tl(v) --+ Ll(v):

(2) U"(L) is minimum subobject Ø --+ U(u);

(3) U'(t = z) and for terms l,z, both of sort a) are eclualisers of

u" (t)
u(v) 

-U(a);
u" (r)

(4) U' (n(¿t ,...,t,,)) for R: (or,...,(r,n) is the pullback

u" (ç)
udt

d

v( )

(u ,u(v)(t^))(.rX¿' ),

of (U"(t1),. . . , U'(t,-)l along map Z,/(R);

(5) connectives [,V, -,-, *, = are interpreted as the usual operations A, V,

-,-, *, - operations on Sub(Ll(v)) provided that those operations exist

for t;
(6) quantifiers V, I are interpreted by functors V¡, l¡: Sub(dorn.f ) --+ Sub(coct f )

as follows: suppose that for formula (Yt-u)rþ or (lu:)v' all free variables of .rl'

appear in the sequence v,.r.r.'. Consider projection map pr:l,l(v,ut) ---+ Ll(v)

and let

U" (-utþ) : 1r,(I'{u'- (rþ))
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and

U" (Vwtþ) : V p,(U"'- (rþ)).

The notion of interpretation of a language in a, topos can be extended to inter.-

pretation in arbitrary categories by allowing that the interpretation of a language

L on a category C is a function Ll:S ¿ L -- C that satisfies all those properties of

an interpretation in a topos Lhat C has the structure to support.

Tbuth in a rnodel:

A formula g of a language L wlrl be said to hold i,n a modet u if. when v
contains all and only the free variables of cp, we have

u'(p) : u" (T)

We will denote this with

ule
To accomodate a broader notion of "holding in a model" we introduce the concept

of an object of designated values. An object of d,esignated aalues will exist in the

first instance only in a category with a subobject classifier and will be an object

D of the category for which there is an inclusion D .--+ f) where f) is the classifier

object. The notion is best described in terms of some functor category Setc. In
that case, for each a € C, we have f)(ø) as a set of sets. Furthermore we have

D(a) c 0("). So D works as a designated values object in the sense that we allow

each D(ø) to be a set of designated values in f)(a). We say for. any / e Sub(d) that

f is designated iff for each a € C and each r e d(a),

(X ¡)"(r) e D(ct)

Plainly, some designated value objects will be more intuitive tha,n others. Consicler

for example an object D in Setc given by D(a,) : licl,,,) all a € C. For sucir an objer:t
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/ e Sub(d) is designated iff f - id¿. Such an object describes exactly those values

in any Sub(d) that are most commonly regarded as designated, narnely the units

of the lattices (Sub(d), <). At the other extreme is an object D given b:, D(¿¿) for.

all a € C where D(a) is f)(ø) wothout the zerool (f¿("),C). This oìrject designa,tes

all / e Sub(d) other than Ø >-+ d. This extreme will be formall¡' interesting in later

discussion when we come to dualise models via language dualisation, so take note

of it here. We will say of a formula cp of language L tha,t cp is not u.rr,rlen,iably refuted

by model U if. wherc v contains exactly the free variables of g

U'(p) + u'(L)

We will denote this by

Notice as a final point that the reason \Me use objects included in 0 as a repre-

sentation of designated values is to solve the probiem of coordinating the sets of

designated values on each Sub(t/(v)). Since in general there is more than one

Sub(e/(v)) under consideration, we require some formal link between designated

sets of subobjects if only that we may have a means of abstracting our discussion

from particular subobject structure in particular categories.

2. Geometric logic, Sites, and Language Algebras

with this section we define two dual fragments, Ls and Ls"', of the language

,C. The relationship of duality is used to define dual theories and then dual models

for these dual theories. There is a proof theory, called geometric logic or GL,

associated with the fragment Ls . We use the notion of language duality to define a

dual system which we call co-GL. The system co-GL decomes a type of proof theorS,

for Ls"o. We will use the notion of dual models for theories to clevelop the idea that

co-GL is a clisproof. This is the idea that we use co-GL to clelive falsehoods from

Uètc'2'
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falsehoods. Our development of GL is based upon the clisc:ussions in Goldblatt

[1984] and Makkai and Reyes 119771.

Deflnition 2.Iz For a language L a fragment L' is a, sul¡class of the class of all

formulae of L that is closed under the inclusion of srrbf'olrnulae and substitutiol.

So if / € .C' and { is a well-formed subformulae of /, then \þ € L'l and if ú is a, terrn

Definition 2.22 A formula g of a language ,C as describecl in section one is callecl

positiae eristenti,al if, in addition to atomic formulae, it r:ontains no logical symbols

other than T, l, A, v, and I where A, V are finite A, V. The collection of positive

existential formulae of L is denoted Le. A formula rp is callecl col¿erent or geometric

if it is formula ö + ,þ where ó,rþ e Ls . 
^I 

formulae g rn Ls can be called coherent

in that each g can be identified with T + g. As a result rve refer to Ls as the

coherent or geometric fragment of. L.

Dually,

Definition 2.3: A formula g of L is called co-positiue-ert.stentt,al or negatiue uni-

uersal if, in addition to atomic formulae, it contains no logical symbols other than

I, T, V, A, and V. The collection of negative universal formulae of f is denoted

Ls"' . 
^ 

formula g is called co-coh,erent of co-geometric if it is a formula þ'$ for

ö,rþ e Ls'o . All g in Ls"P can be calied co-coherent in that each p can be identified

with g - I. As a result we refer l,o Ls" as the co-coherent or co-geometric fragment

of L.

Definition 2.42 A sentence of. a language L is a fornuia ç of L with no unbound

variables.

Definition 2.52 A theory of a language L is a set of sentences of the language

.C closed under a consequence relation and satisfying the property that if tp and Ll,
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are sentences of the theory, then so is rp AT/. Mrhen all sentr:nces of the theory are

sentences in Ls, then the theory is called coherent or gr:onetric. When all sentences

of the theory are in Ls"e l the theory is called co-coherent or co-geometric.

Languages and Models:

There is a straightforward duality relationship to be drawn betweel Ls antð.

Ls'o.It can be described by defining formula ?oP for any ç, e Ls as follou.s

(1) if g is atomic formula ry', then gop is l-,'

(2) if I ts th Arþ2, then qon i" ,þio V ,þí';

(3) if ç is tþt Y tþz, tìnen qon i" ,þi' A rþi';

(4) if p is ,h + ,þ2, then ?oP is ,þ30 - ,þio;

(5) if g is -wtþ, then qon is Vwdor.

Recall that sorts, terms, and atomic formulae are common to Ls ar'd Ls"' and

it is apparent that

PeLe iff V"P€Ls"
and that we may define a duaiity function

/:5U Ls -.Sl)Ls"'

where if ¿ € S, / (a) : a; and if g € Lø, then I (9) : 9'n. As a point of

nomenclature, since / is a bijection, we will frequently use symbol / to represent

both the function and its inverse.

We can use this duality function to make plain a relationship of duality between

models for Ls'o and models for.Ce. Given a model Ll:S¿Ls --+ t where t is any

topos, we can define a model Llor: E l) Ls'o ---.- t by

l,{or:S l,) Ls'o -L s u Ls u, t.

Piainly, when z is a sort, or an operation or relation s¡/mbol, l,{or,(r,) : Z/(r). Also.

when f is a term and v contains at least the variabk:s in I

u:o1) : u'(t)'
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And when g e Ls"' and v contains at least all the free variables of ,rr

u\o@) : t'{u (9o')'

Given the relationship of duality between Ls and ¿s" , it should be a,pparent that

Z exists iff Uoe exists.

In fact, the relationship between U and Llo, is usefully described by the foliowing

diagram 
suLs;' 

------+ 
toî,

I

s u Le* 
-____________+

Uop

u

cl¿

c(,

where the left triangle is knor,vn to commute and the outer square is defined to

be commuting with d¿ being the usual categorial dualisation functor. The point

to note is that U and Uo, share exactly the same range but that while /,/ would

interpret A,V,f by ll,U,lf in t, the model t{o, would ha..e [1,U,]¡ interpreting

respectively V, A,V. In effect, where I,{ targets the lattice structures of. t,rnod,ell,lo,

targets their duals.

The notable examples under the dualisation are the formulae T and I. Since

T is defined to be empty conjunction and I is empty disjunction, we have that

U:r(T) : U'(L) and Ulo(L) : U"(f ). It follows that if models l./ designate only

u" (T) of each Sub(d) and if we allow all subobject other than the u:r(L) to be

designated under Uoo, then we have the following relationship between formulae

that hold in models of the coherent ianguage and formulae that hold in models of

the co-coherent language.

In general, so long as models Uoo do not designate the L|X,,(L) of Sub(Z(v)), u'e

have that

tlren. Uo, Ê ço,'

uo, É eo'ifful,

uleif
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Notice a slightly confusing feature of the dualisation that u'herever f is a terrn

and v is a sequence of variables containing exactly those free in t xt, we have

U'(txt):UXr(t=t)

and under the usual interpretations Ll we would have that

U"(t xt):U"(r)

so we have

U:r(txt):U:o¿)

The only serious problem with this is that it may be misread as meaning that under

Uor, eqtations involving identical terms will fail. This is a, misreading in that the

only interpretation of = to be made is the one provided b¡, Llor. The symbol = is
standard for identity but under Uoo, the two piace relation = does noú behave as

identity and so should not be considered as such. In fact, under Llop, = behaves as

non-identity. It is necessary that we bear this in mind when we come to consider

co-GL.
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Proof theory:

We will consider two finite sequent systems. The first is the standard system of

geometric logic called GL presented by Makkai and Reyes 11977). The second. o¡e

we will call co-GL and will be the dual of GL in the same sense that Ls a:nd. Ls"' a,-e

duai languages. We describe co-GL by applying the language dualisation functic¡n I

to all the axioms and rules of GL. Obviously this does not create a new deduction

system as such; some interpretation is required. Consicler first the axioms of GL.

These areformulae <p such that for any topos t and arry Ls,modeIt{, it is expected

that

Assuming that any Ls'o -nrodell,looin t does not designateLllr(I) in any subobject

lattice it follows that

Uo, Ê ?"o.

So, if g is an axiom for GL, then / (v)p"o is an axiomatic falsehood, or perhaps

absurdity, for co-GL.

Consider now the rules of GL. They will have the form

{O;:i e /}

o
and mean that from {O¿: i € 1} derive O. That these are rules means that whenever

U is ar 4e-model in t, it is expected that if

UlOt allie I,

then

Putting this another v/ay we have that if

U'(Ø ) : U" (T)

ule

u+o
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for all z € 1, then

U"(ø):t/"(T)

Applying the language dualisation to both formuÌae and models we have that when-

ever

u:r(o?o) : u:p(L)

for all i € f, then

u:o(@") : u:p(L)

It follows that if all subobjects other than those U:r(L) are designated under ali

Ls'o -rnodels l,{oo, then the dualised GL rules of inf'erence are rules of falsehood,

or absurdity, preservation for co-GL. For these reasons we call co-GL a svstem of

refutation or disproof.

\Me consider the finite systems since there are well knorvn completeness and

soundness results for finite GL. We will describe GL first.

GL: A, sequent will be an expression I * Ty' where f is a finite set of formulae.

When r/ and all formulae in I are Le formula.e, the sequent is geometrt,c. A sequent

is not a formula but can easily be re-written as one if required: f should be re-

written as the finite conjunction of all its members. In what follows the union I U A
will be written f , A.

Axiorns of identity:

?)xu)

ux?.D+?rxu)
?) x lD jg + g@ lu),

where u and u) are variables of the same sort ancl ,rr is atomic.

Axiom A1:

I + rþ, if ,þ <-l.
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Rules of inference:

The rules have the form
{O¿: i e 1}

meaning frorn {O¿: i e I} derive O

A,Al,9=+?þ
(,8 A' ) ifcp€l;

A,¡\f+,r/

A,If + /
(Ã Ar) iffCA;

L+rþ

A,P,Vl+rþ
(,? v, ) iføef

L,v + ,þ

and all free variables occurring in I also occur free in the conclusion;

{A,Vl,p}tþ:9el}
(Ã vr) A,!f =+ r/

A,,e@ lt),)we@ ltt) + rþ

(Al' )
L,e@ lt) + rþ

L,lup@ lta),ç + ,þ

(Ãlr)
L,)u7@lu') + rþ

if u does not occur free in the conclusion;

A, |(¿1,. . .,tn),p(h,,. . .,t-) + rþ

(,RT)
A, f(¿1 ,. . . ,tn) è ,þ

provided that all free variables in the premiss occur free in the conclusion a,ncl

that for some ur t . . ., urr the sequent f (rr , . . . , u,, ) =+ ?(ut, . r)¡r ) ltelongs to theory

T together with the GL axioms.

o
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When there is a finite sequence of geometric sequents encling in O with all
members of tire sequence being axioms, members of the georretric theory T, or
following from eariier members of the sequence by application of the GL rules, then

the sequent O is said to Y:e GL-deritsable from T. \A/e clenotr-- the existence of such

a sequence by

There are known to be soundness and (classicai) completeness theorems (re-

spectively, Theorem 3.2.8 and corollary 5.2.J, in Makkai ancl Reyes [1g27]) for

system GL. Let T be some collection of fe formulae.

Soundness Theorem: ,Í T tr @ and Ll zs a T-model i,n topos t. tl¿en u + Ø. ¡

Classical Completeness Theorem: ,f T V @, then there is o. Set-rnod,el l,l -cuch tl¿at

u+T and?,!+ø. !
Given what we know about the duality of Ls and. Ls"' we can dualise GL

and produce a system of co-geometric logic which we shall call co-GL. As we have

discussed, co-GL will be a system of axiomatic falsehoods and faisehood preserving

rules.

co-GL: The specification of co-GL is basically the same as that for GL except

that all dualisations by / frorn Ls-formulae to Ls" -formulae apply. co-GL will be a

system of axiomatic falsehoods (for want of a better phrase - \,e mean formulae used

as axioms but meant to be false) and falsehood preserving rules. A co-GL sequ,en,t

will be an expression tþon - lop where lop is a finite set of formulae. When tþ"p artcl

all formulae in lop are Le'o formulae, the sequent is co-geometri,c. A sequent is lot
a formula but can easily be re-written as one if required: lol' shoulcl l¡e re-u,ritten a,s

the finite di,sjunction of all its members. In what follows the znterse,ctionlop t-ì A,,P

will be written lop ) Lop.

rh o
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Axiomatic falsehoods of n on-identity:

uxu;
IDxULU=W;

u - u,ç"P(ul-)- goP

where u and L0 a;re variables of the same sort and çoP is atomic. To assure oneself of

the actual falsehood of this third "axiom" recall our earlier discussion to the eff'ect

that = will behave as f and note that u = u and goP('u f u)' gop are conjoined; the

meaning of the axiom is, then, that when u is identical to ,ro, formula g"e (u f u;) - gop

is false.

Axiom(atic fälsehood) Aor 1 :

,þ"P loP , if tþop € f'op .

Rules of falsehood preservation:

The rules have the form
{@?o,i e I}

@oP

meaning from the falsehood of ¡\{oie: i e I} derive the falsehood of oop.

AoP,Vloa,lþop=goP
(Ã'n Vr) if gon € fol;

^ 
p,Iþop . Vf,,

Loa,rþop . V f,o
(E"o V, ) if f'p c Lop;

,þ"P LoP

LoP rgoP rrþoP t A frp
(ft'o Ar ) if ç'n € ful'

LoP rrþoP - goP

and all free variables occurring in lop also occur free in the conclusion;

{AoP, A f oP, ,þoP ' poP: çoP € l"P}

Lop,rþop. Af,n
(R"' A,)
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6on,goP(u lt),rþ'o 'Vraç'e(u f u)
(ft,ev1)

LoP , rþov -'- g"n (u f t)

¡n ,Vwgo, (, I .), rþo? ?oP
(P"ev2)

LoP ,1þoP 'Vugor (u f ut)

if u does not occur free in the conclusion;

Lop)lop(tlr..., tn),rþop' ?op(tt,...,/r)
(R'nT'n¡

Lop rlþop . frp(/r ,. . . ,t,,)
provided that all free variables in the premiss occur free in the conclusion a¡d

that for some u1¡...,un, the sequent pop(rt,...,u,.¿) ' fot'(u1 ,...,ur) ìrelongs to

T'P together with the co-GL axioms.

When there is a finite sequence of co-geometric sequents ending in O in which

ali members of the sequence are axiomatic falsehoods of co-GL, f'ormulae of some

co-geometric theory T, or are consequences of earlier formulae in the sequence by

the co-GL rules of flasehood preservation, then we say that O is co- GL deriaable

from T. We denote this by

Theorern 2.1: if T is a geornetric theory andTop is def"ned by allowing ?op €T"p
iff p € T, then we haue

Proof: the result follows by definition of the dualisation on Ls and on GL. !

Dualisation also provides us with two special non-triviality theorerns. To prop-

erly describe them, some definitions are in order.

Definition 2.62 Where L and LoP are dual languages so that where cp is in L.
the dual in Lop is denoted goP, we say that a set Toz of sentences gop of L"p is a

rbo

Tl-1 oitropTop 12 ø
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co-theory iff T described by

P € T iff gol €'IoP

is a theory.

Definition 2.7: For any set of sentences, T, of a langua,ge L. if tl is a model for

L and

ulç
for all g € T, then U is a T -model or a rnodel t'or T.

Definition 2.8: For any set of sentences T of a language L. if U is a model for L

and

u*ç
for all g €T,thenU is called aT refutattonor a refutat'ion model forT.

Theorern 2.2: for o,ny set of Ls'P forrnulae Top, if T'n F., ePn and, tloo is a

refutation mod,el for Top in a topos t, then we l¿aue

uo, É @"r.

Proof: by duality, since by the Soundness theorem for GL. for any T, if T b O

ardU is a model for T in a topos t, then U + O. D

Theorem 2.3: for any set of ¿s'P formulae T"p , if T"n V" A', , then there is a

refutation rnodel Uoo for Top in Set suclt that Lloo É O"r.

Proof: by duality since by the Completeness theorem for GL if T is a set oÍ Ls

formulae and T I O, then there is a model U for T in Set sucir that t/ l1 T ancl

In the light of these last two theorems we can we can see how we rnay use

the concept of a refutation model with respect to a refutation system like co-GL
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to model inconsistent theories. First of all note that for an)/ Degation inconsistent

theory T, that is any theory T that contains g and -?: ç.+ L. the co-theory Tor)

is negation inconsistent. This is because if g e T, then g"? e ToP, and lf -g € T,

then (-p)oo : (g + L)op : (T =gop): r(gon¡ is in To/'. Furthermore. we ca,n

demonstrate that co-GL is consistent in the sense that

then T"' V" r (Ooz ¡

This follows directly from the fact that GL is consistent together inith Theorem 2.1.

So, to model inconsistent theories T using co-GL methocls we need only consider

models for subsets of consistent co-theories. If T' is a proper subset of some co-

theory Top such that for some gcop, neither gop ror.(ç"? ) are in T'. then, generallv,

there will be at least one refutation model I,loo for Top such that

U.o É ?"o and t/", È .(?oP)

Top 12 e-'pif

both

All that is required is that

neither nor Ttlr.(g'n¡

We regard falsehood preservation systems as reasonable tools for use with in-

consistency tolerant logics. After all, the acceptance of BrAs as algebras for para-

consistent logics amounts to the claim that inconsistency is not meant to mean that

some sentence is both true and false; the claim of inconsistencf is that some sen-

tence and its negation are both not false. Toleration of inconsistency would seern

to mean something like avoiding the proliferation of inconsistent claims; orre wa,v

to do this would be to make consequence or inference an issue only of undeniable

falsehood.

T' lr gop
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CHAPTtrR 15: THE OMEGA MONOID

Introduction: This is the flnal technical chapter of ihe thesis. It is a repr.oduction

for categorìes of a theorem for sets due to Faith and founcl in C. Faith [1973]. It
is included for its demonstration of the difficulty f'or the discovery of relevant logic

algebras that are based in toposes in the same v/ay as the Heyting algebras. This

represents both an added layer of meaning for the original F aith result ancl a signal

of further interest in discovering the nature of categories as semantic objects for

non-classiciai logics generally.

Throughout this work our interest has been in the categorial expressions of
paraconsistent logic. With this chapterwe give a preliminary result for the investi-

gation of a broader range of non-classical logics. Our interest here is with Anderson

and Belnap's relevant logic as describedin Entai,lrnent [1975]. The algebras for this

logic are the De Morgan monoids. Now, for any object a in a category C, there

is always a monoid hom¿(4, ø) where composition is the multiplication operation.

This gives us an opportunity to discuss relevant logics within category theory.

In the context of this text we have two constraints on our investigation of

monoids. First, \¡/e are interested to see structures related to f) objects or at least

with subobject lattices. Second, we are considering De Morgan monoids which

means we will require that our monoids have some lattice structure. It wiil be shown

in this chapter that, even before consideration of the required relationship between

the lattice order and the multiplication operation, the requirement that a De l\,{organ

monoid be commutative imposes the restriction that whele c is the categorial object

around which we define our monoid there must be at most one arrow 1 - + c. that

ìs, exactly one global element. This is a significant limitation compar.ecl with thr:

usual treatment of Heyting algebras f) in which algeblaic elerrents corresponcl to the
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global elements. In passing we note the possibility of revitalising this investigatio¡

by consideration of such structures as sheaves of monoicls and sheaves defi¡ed over

monoids.

1. De Morgan Monoids

The following definitions are taken frorn Anderson and Belnap [1975].

Definitions 1.1: A sern'i-group (S,A) is a non-empty set S closed uncler @, an

associative binary operation. When aØb -- bØ a for all a,b € S, tire semi-group

is cornmutatiue. If ¿ € S such that t E c : c @l : ø, then I is an'iden,titg for the

semi-group. A semi-group with identity is called a mon,oid. If S is a lattice and

a8(bUc): (aSb)U(aAc) for aIIa,b,c € S, then the semi-group is latt,ice ordered.

A De Morgan lattice is a lattice (S, (, -) rn'here "-" is a una y operator for

which -(-") : c and a 1b implies -b 1 -a.
A De Morgan monoid is astructure (S,8,(,-) where (S,O,<) is alattice or-

dered, commutative semi-group, (S, <, -) is a De Morgan lattice, and the following

two conditions are satisfled:

(øAb) <c iff ó8(-c)1-a iff (-.)øa1-b

a3aØa

When C is an arbitrary category, the collection of endomorphisms C(c,c) for

any c € C is a set closed under composition of arrows. This set can be represented

as a single object category having object c and rnorphisms C(c.c). This category

is caiied a stri,ct monoid,al category or a categorial monoid rvith cornposition as the

multiplication operation. When f) is the truth v¿r,lue object of an arbitrary topos t.
the set t(f¿,f)), which we shall call an f) monoicl, derives lattice strucrture from thr:

lattice (Sub(f)), C) where C is subobject inclusion. By clefinitic¡n of O as a tnrth
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value object, we have a bijection Sub(f)) = t(Q,f)) descriìred bv

Sub(C)) ) f *Xr €t(ç'¿,Q)

which allows us to define an order ( on t(0, f)) in terms of suìrobject inclusion on

Sub(f)). Thefact that Sub(d) is aHA gives us (t(f),f¿),<)as a HA.

Proposition 1.1: for any object c in (srnall) category C. th,e set C(c,c) of a,tl,

C-morpltisrrLs c ---+ c is a monoid witlt, respect to cornpositi,on,.

Proof: C(c, c) is closed under composition since the composition of any two

morphisms c --+ c is a morphism c ---+ c. Composition is by ciefinition an associa,tive

binary operation on morphisms. Furthermore) we have the iclentity arrow id. : c --+ c

for which we have ¿d"-l : f .id": -f, any .f e C(c,c). So (C(c.c:)..) is a semi-grotqr

with identity. ¡

The following results draw on a result in Faith's Algebra: ßin,gs, Modules und

Categories 111973] whereit is shown tinat Maps X, the semigroup with respect to

composition of all functions from non-empty set X to X, is comutative if and only

if X is a singleton. Assume a small category C with a terminal object 1.

Definition L.2z For any object c € C, a (global) element of c is a map I --+ c.

Formally analogous to the notion of a constant endomorphic function is a map

f : c -, c that factors through a global element of c. This is a map / for which

there is a commuting diagram of the following sort,

.f
C (

T

1

\Me will denote tty ". a map c ---+ c that factors tìrrough element t::7 -,+ c
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Lernma 1.1: for any g,r. € C(c,c), we lto,ue ! . :1 .:,y, .for' sornc ,!,lc e C(c,c)

Proof: consider the diagram

rc I
C 

--------+ 
c 

-------+ 
C

T ,II

Define y to be the arrow such that lJ : g.r. Now:r:.- : ¿ .1. so g.lrc : !1 
.:t'.1 : ¡¡.t

which by definition is gc. !

Lernma 1.2: for any grr" e C(c,c), use l¿aae rc. g - .Ì:,.

Proof: consider the diagram

1

\Me have rc.g : r.l.g. But, by definition of the terminal object, we have

! : !.g. So, :xc. g: x:.1.: rc. !

Notice a particular corollary that a;rry:Lc is idempotent. As proof, Iel g - :c.

in the lemma. We now prove the main result of this chapter.

Theorern 1.1: in a category C wi,tl¿ a terrntnal object th,e monoi,d (C(c,c),.) is

cornmutatiue only if there is at most one nL&p I --+ c.

Proof: suppose at least two distinct maps 7 -!- c ancl 1 -1- c. Since z . ! ancl

y'l are both constant morphisms, that is they factor thror,rgh 1. when r f y,lhen
r'l+ y!. So,fordistinctr,A wehavedistinctrcand U,. It f'ollou's.ìrylemma1.2,

that for arry g e C(c,c),

r.'g + Uc' 9.

Now, r, Q C(c,c), so

tc't, I y"'r..
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But, again by lemma 7.2, r". t¿ : rc1 so

r,ly,

Now, if the rnonoid is commutative, '!jc.r¿: tc yc. sjo ive shoulcl have

r.

r"*:Lr.y,

But, by lemma 7.2, r.: rc ' yc since .U" e C(c,c). It follou's that (C(r:,c)..) ca,rrnot

be commutative unless C(c,c) contains exactly one eiement. D

In particular, this means that the f)-monoid where it exists for a category will

not be commutative, and hence not be De Morgan, unless it is at least true that there

is exactly one truth value 1 --+ f). Notice in finishing that the reason for recasting

Faith's result Lot Maps X in categorial language is that Faith's discussion is in

terms of sets and functions and, unlike sets, categorial objects are not necessarily

completely determined by their global elements.

In seeking out commutative monoids on the structure of categories we are not

left without resor:rces.

Definition 1.3: For a semi-group ,S and a non-empty subset X of the underlying

set,

center X: {o € ^9 loSr: x:Ø(r for all r e X}.

Clearly, center X is a commutative sub-semi gr-oup of S. In the case of small

C(c,c) the identity arrow on c is always an element of cente.t- C(c:,c). Two further

topics of interest will then be under what conditions is cet'¿tet- t(f¿, f¿) more tha,n

just {ide}, and wlll center t(Q,f)) have any structure lelatecì. to the l¿rtticc. <-xr

t(f¿, A). This direction will not be pursued in this u'oLli.
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CH,A.PTtrR 16: CONCLUSIONS

In this work we have investigated two aspects of a, clualisati<¡n progl'a,m for logic

in categories. The first aspect was that of external or ex-catr:gorial clualisation of

iogic structures by reinterpretation of order structures. This was the core of the

original dualisation program that featured the notion of a, courpleurent classifi.er.

This type of dualisation featured heavily in our discussìon in chapter fourteen whele

we considered modelling theories in categories. The principal contribution of that

chapter was the notion that we could use this type of dualisaiion to plornpt the

construction of a deduction system suited to the notion of inconsistenc;r toleration.

The bulk of this work,, however, was given over to investigation of the other aspect of

the dualisation program: the attempt to describe internal logic objects that exhibit

paraconsistent algebras in their own right. We were led to tiris type of investigation

by the discovery that straightforwa.rd categorial duals of ordinary subobject logic

structures would not produce logic structures that were dual in the logical sense.

This was the import of chapters four and five. Our investigations focused on sheaves

for their properties in relation to base space topologies. We found essentially two

things. First, Iogic objects in sheaf categories contain component BrAs but are not

generally themselves BrAs within their categories. This was the import of chapters

eight and nine. An interesting corollary of this investigation was that subobject

lattices in Grothendieck toposes are indeed BrAs (but not naturally so). Second, u'e

discovered that the original dualisation idea containecl in the complement classifier'

notion has an instantiation in categories. \Ä¡ith chaptel eleven ancl tu,eh,e we fourrcl

a genuine complement classifier in a category of cortariant shea,r'es.

A barrier to the discovery of BrA logic objects u'ith respect t<> sriìrobject struc-

ture in categories seems to be the faiiure of natulalness of BIA o1>elati<>ns l>r, virtur'.
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essentially, of the failure of closure operations to distril¡ute over intersections. An

interest for the future is in seeing if this remains a, problem in ca,tegories that are

co-exponentiated (in the way of closed set topologies) as opposed to exponentiated

in the way of open set topologies and toposes. The notion of co-exponentiated

categories is itself of interest with respect to the internal ianguage of categories.

We have seen in chapter fourteen one of the ways that we may develop categories

in terms of a logical language. The method there iocated interpretation of logical

connectives in the subobject lattices. We expect that a genuineh' interesting exten-

sion of our investigation will be in the examination of those categorial structures

determined by the imposition of a given non-classical logic as a backgrouncl for the

interpretation of the usual formulae that describe categories.
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