Pharmacological determinants and biochemical correlates of nitrate-induced vasodilatation and tolerance development

A thesis submitted to the University of Adelaide as the requirement for the
Degree of Doctor of Philosophy

by

Cui Lan Zhang (MD)

Department of Medicine
University of Adelaide

and

Cardiology Unit
The Queen Elizabeth Hospital

Awarded 1995
Summary

The experiments described in this thesis addressed some of the determinants of acute and chronic responsiveness to the anti-ischaemic vasodilator agent glyceryl trinitrate (GTN; nitroglycerin). In particular, it sought to examine the mechanisms of induction of nitrate tolerance, a phenomenon of decreasing nitrate efficacy during long-term therapy. Experiments were performed largely utilizing an in vitro model (isolated bovine coronary artery rings) and an in vivo haemodynamic model (systemic haemodynamics in patients undergoing cardiac catheterization).

In vitro studies

(1) Interaction between S-nitrosothiols and S-nitrosoproteins and tolerance induction

S-nitrosothiols including S-nitrosoalbumin are present in biological system and may be formed during nitrate administration. In experiments designed to test whether the S-nitrosocompounds influenced the action of GTN, it was shown that low concentrations of this class of compounds were capable of limiting the extent of GTN tolerance.

(2) GTN–endothelin interactions; influence of contractile agents

Endothelin-1 (Et-1) is a vasoconstrictor agent released from endothelial cells and may act as a physiological antagonist to nitric oxide (NO), the active product of GTN metabolism. GTN proved to be a more effective vasodilator in vessels contracted with Et-1 than with the thromboxane mimic U46619. Furthermore, the extent of tolerance to GTN were much less in the vessels contracted with Et-1 than with U46619. In the course of this study, it was shown that vessels contracted with Et-1 failed to maintain steady-state tone and that this was probably due to Et-1-stimulated release of prostanoid and NO.
(3) **Nitrate withdrawal and the phenomenon of “rebound” vasoconstriction**

Abrupt discontinuation of organic nitrate therapy may aggravate ischaemia. The possibility that the bovine coronary artery may serve as an in vitro model of this “rebound” ischaemia was examined by testing responsiveness of the vessel to constrictor agents following induction of GTN tolerance. The results indicated that tolerance induced in vitro was not associated with increased vascular responsiveness to a variety of constrictor agents such as endothelin-1, serotonin, thromboxane analogue U46619 and potassium. The results argue against the possibility that rebound seen in vivo is due to increased reactivity of the vascular muscle.

(4) **Interactions of glyceryl dinitrate with GTN tolerance induction**

Metabolism of GTN is followed by formation and accumulation of high concentrations of 1,2- and 1,3-glyceryl dinitrates (GDNs) and there is evidence that these metabolites may inhibit further metabolism of GTN. The possible effects of these dinitrate metabolites on GTN vasodilator effect and tolerance induction were investigated in this in vitro model. It was found that addition of 1,2- and 1,3-GDN affect neither the vasodilator response to GTN nor the extent of GTN tolerance. These findings suggest that accumulation of GDNs does not inhibit the vasodilator action of and the tolerance induction to GTN.

B. In vivo haemodynamic studies

These studies were performed in an attempt to develop a convenient marker of biochemical events during chronic nitrate therapy. Since soluble guanylate cyclase is the key enzyme system mediating nitric oxide-mediated vasodilator response, cGMP was selected as the potential marker.

In patients undergoing cardiac catheterization for investigation of chest pain, it was demonstrated that 10 min of GTN infusion (10 µg/min) induced significant increase in plasma transfemoral cGMP production which was associated with significant decreases in both systolic and pulmonary capillary wedge pressures. The results imply that transfemoral plasma cGMP concentration gradient may be a sensitive marker of the acute effects of GTN.
It was also demonstrated that during chronic nitrate therapy, there was increased plasma ANP levels which may also contribute to the increased plasma cGMP gradient. Thus, under this conditions, plasma cGMP gradient was no longer a specific marker of nitrate effects, instead, it can only be used as a marker for net vasodilator effects.
Table of Contents

Declaration i
Acknowledgements ii
Publications iii
Summary v
Abbreviations vii
Table of Contents viii

1 Introduction 1-63

1.1 The physiological significance of EDRF 1
1.1.1 The EDRF/guanylate cyclase system and vascular homeostasis 1
1.1.2 Chemical identification of EDRF 2
1.1.3 Exogenous and endogenous nitric oxide 7

1.2 Exogenous donors of nitric oxide: Glyceryl trinitrate (GTN) 8
1.2.1 Clinical utility 8
1.2.2 Major limitations 9

1.3 Pharmacological effects of GTN 10
1.3.1 Vasodilator effects 10
1.3.2 Antiplatelet effects 11

1.4 Pharmacokinetics of GTN and its dinitrate metabolites (GDNs) 13
1.4.1 Pharmacokinetics of GTN 13
1.4.2 Dinitrates (GDNs): Background 14
1.4.3 Formation and pharmacokinetics of GDNs 16
1.4.4 Pharmacological effects of GDNs 19
1.4.5 Effects of GDNs on GTN bioconversion and action 20

1.5 Mechanisms of action of GTN 22
1.5.1 Bioconversion to NO, activation of soluble GC and increase in cGMP 22
1.5.2 Sulphhydryl (SH) availability and GTN bioconversion 26
1.5.3 SNOs modulation and GTN metabolism 29
1.6 Factors modulating pharmacological effects of nitrates:—
A. Nitrate tolerance
1.6.1 Definition and historical aspects
1.6.2 Putative mechanisms of nitrate tolerance
1.6.3 Role of SH donors in the modulation of nitrate effects and prevention of nitrate tolerance

1.7 Factors modulating pharmacological effects of nitrates:—
B. Pseudo-tolerance and rebound ischaemia
1.7.1 Evidence for pseudo-tolerance and rebound ischaemia
1.7.2 Mechanisms of pseudo-tolerance: (a) circulating neurohormonal changes
1.7.3 Mechanisms of pseudo-tolerance: (b) vascular sensitivities to vasoconstrictor agents

1.8 Factors modulating pharmacological effects of nitrates:—
C. Specific interactions between nitrates and vasoconstrictor materials
1.8.1 Endothelin-1 (Et-1)
1.8.1.1 Release and physiological effects of Et-1
1.8.1.2 Interaction between Et-1 and NO

1.9 Factors modulating pharmacological effects of nitrates:—
D. Interaction between nitrates and other vasodilator agents
1.9.1 Atrial natriuretic peptide (ANP)
1.9.1.1 ANP release
1.9.1.2 Biological effects of ANP
1.9.1.3 Interaction between ANP and GTN
1.9.2 Prostanoids

1.10 Development of biochemical markers of GTN effect/tolerance
1.10.1 Importance of development of GTN biochemical markers
1.10.2 Potential candidates for GTN biochemical markers

1.11 Aims and outline of thesis

2 Materials and Methods

2.1 Materials

2.2 Methods
2.2.1 In vitro artery model
2.2.1.1 Preparation of isolated bovine coronary artery rings
2.2.1.2 Measurement of vasodilator responses 69
2.2.1.3 Measurement of vasoconstrictor responses 69
2.2.1.4 Induction and measurement of tolerance 69
2.2.2 Work related to biochemical studies in in vivo (human) model 70
2.2.2.1 Blood collection for plasma cGMP and ANP assay 70
2.2.2.2 Plasma cGMP assay 71
2.2.2.3 Plasma ANP assay 71
2.2.2.4 Platelet cGMP assay 72

2.3 Data analysis 72

3. Modulation by S-nitrosothiols of GTN effects in vitro 73-97

3.1 Summary 73
3.2 Introduction 74
3.3 Experimental protocol 76
3.3.1 Effect of SNAP on GTN vasodilator response 76
3.3.2 Effect of SNOCAP on GTN vasodilator response 76
3.3.3 Effect of S-nitroso-albumin on GTN vasodilator response 77
3.3.4 Vasodilator response to S-nitrosothiols (SNO)/S-nitroso-albumin (SNO-Alb) 77

3.4 Data Analysis 78

3.5 Results 78
3.5.1 Vasodilator and interactive effects of GTN and SNAP 78
3.5.2 Vasodilator action of SNAP 79
3.5.3 Interaction between SNOCAP and GTN 80
3.5.4 Vasodilator response of SNO-Alb 80
3.5.5 Interaction between SNO-Alb and GTN 81
3.5.5.1 Effects of pre-incubation with SNO-Alb alone on GTN responses in non-tolerant vessels 81
3.5.5.2 Effects of pre-incubation with SNO-Alb on GTN tolerance induction 81
3.5.5.3 Cross tolerance between SNO-Alb and GTN 82

3.6 Discussion 82
4. The contractile response to endothelin-1 in vitro

4.1 Summary
4.2 Introduction
4.3 Experimental protocol
4.4 Data analysis
4.5 Results
4.5.1 Vasoconstrictor response to Et-1
4.5.2 Effects of NOLA and IND
4.5.3 Role of the endothelium
4.5.4 Contractile response to U44619
4.5.5 Endothelial function

4.6 Discussion

5. Interaction between GTN and endothelin-1 in vitro

5.1 Summary
5.2 Introduction
5.3 Experimental protocol
5.3.1 Assessment of GTN vasodilator response and GTN tolerance
5.3.2 Comparison of GTN effects in Et-1 and U44619-constricted artery rings
5.3.3 Presence of NOLA and IND
5.3.4 Effect of endothelium removal on GTN responses

5.4 Data analysis

5.5 Results
5.5.1 Studies on non-tolerant arteries
5.5.1.1 Comparison of vasodilator responses of GTN between Et-1 and U44619-contracted non-tolerant arteries
5.5.1.2 Effects of NOLA/IND on GTN responses
5.5.1.3 Effect of endothelium removal on GTN response
5.5.2 Studies on GTN tolerant arteries

5.6 Discussion
5.6.1 Et-1 contracted artery
5.6.2 U44619 contracted artery
5.6.3 Comparison of GTN effects in Et-1 contracted and U44619 contracted arteries
6. **Effects of GTN on vascular responsiveness to constrictor agents in vitro** 142-158

6.1 Summary 142
6.2 Introduction 143
6.3 Experimental protocol 145
6.4 Data analysis 146
6.5 Results 146
 6.5.1 Tolerance to GTN 146
 6.5.2 Effects of GTN tolerance on responses to vasoconstrictor agents in arteries with endothelium intact 146
 6.5.3 Effects of endothelial removal on responses to vasoconstrictor agents 147
 6.5.4 Effects of GTN tolerance on responses to vasoconstrictor agents in arteries with endothelium removed 147
 6.5.5 Variations in experimental conditions 147
6.6 Discussion 148

7. **Modulation by 1,2- and 1,3-GDN of GTN vasodilator effect and tolerance induction in vitro** 159-169

7.1 Summary 159
7.2 Introduction 160
7.3 Experimental protocol 161
7.4 Data analysis 162
7.5 Results 162
 7.5.1 Vasodilator potencies of GDNs 162
 7.5.2 Tolerance to GDN 162
 7.5.3 Interaction with GTN 162
 7.5.4 Cross tolerance to GTN induced by GDNs 165
7.6 Discussion 165
8. Assessment of transfemoral plasma cGMP concentration gradients as a biochemical marker of nitrate effects in man

8.1 Summary
8.2 Introduction
8.3 Methods and Materials
 8.3.1 Patient selection
 8.3.2 Haemodynamic measurement
 8.3.3 Blood collection, assays of plasma cGMP, ANP and platelet cGMP

8.4 Section I
 Production of plasma cGMP across the femoral vascular bed during acute GTN infusion

8.4.1 Experiment protocol
8.4.2 Data Analysis
8.4.3 Results
 8.4.3.1 Patient characteristics
 8.4.3.2 Haemodynamic responses to GTN
 8.4.3.3 Baseline cGMP and ANP concentrations
 8.4.3.4 cGMP, ANP response to GTN infusion
 8.4.3.5 cGMP generation vs haemodynamic response to GTN

8.5 Section II
 Effect of NAC on GTN responses during acute GTN infusion: Haemodynamic and biochemical responses

8.5.1 Experimental protocol
8.5.2 Data analysis
8.5.3 Results
 8.5.3.1 Patient characteristics
 8.5.3.2 Haemodynamic responses
 8.5.3.3 Biochemical responses

8.6 Section III
 Generation of plasma cGMP across femoral vascular bed during chronic nitrate therapy

8.6.1 Experimental protocol
8.6.2 Data analysis
8.6.3 Results
 8.6.3.1 Patient characteristics
 8.6.3.2 Comparisons of haemodynamic and biochemical parameters between acute and chronic nitrate administration

8.7 Discussion

9. Conclusions and Future Studies

 9.1 Role of S-nitrosothiols and S-nirosoproteins in nitrate tolerance

 9.2 Effect of GTN tolerance on responsiveness of bovine coronary artery to vasoconstrictor agents

 9.3 Interaction between GTN and vasoconstrictor agents Et-1 and the thromboxane analogue U46619

 9.4 Effect of the dinitrate metabolites on GTN vasodilator responsiveness

 9.5 Plasma cGMP concentration gradient across femoral vascular bed as a marker of acute GTN effect

Bibliography

Publications relevant to this thesis