STUDIES ON THE PHARMACOLOGY OF PHOLCODINE, CODEINE AND DEXTROMETHORPHAN IN MAN AND RAT

Thesis submitted for the degree of Doctor of Philosophy

by

Zhao Rong Chen, B.M., M.M.

Department of Clinical and Experimental Pharmacology,
the University of Adelaide,
Australia.

January 1989
CONTENTS

ABSTRACT.. I

PREFACE.. IV

Chapter 1. GENERAL INTRODUCTION

1.1. Cough and cough suppressants ... 2

1.2. Opioid receptors and analgesia ... 4

1.3. Codeine .. 6
 1.3.1. Antitussive effect of codeine... 6
 1.3.2. Analgesic effect of codeine ... 7
 1.3.3. Assays for the determination of codeine and its metabolites in biological fluids................................. 7
 1.3.4. Pharmacokinetics and metabolism of codeine 9
 1.3.4.1. Absorption.. 9
 1.3.4.2. Bioavailability.. 9
 1.3.4.3. Distribution.. 10
 1.3.4.4. Protein binding.. 11
 1.3.4.5. Metabolism... 11
 1.3.4.6. Half life... 13
 1.3.4.7. Excretion... 14

1.4. Pholcodine .. 17
 1.4.1. Antitussive effect of pholcodine.. 17
 1.4.2. Assays for the determination of pholcodine in biological fluids.............. 18
 1.4.3. Pharmacokinetics and metabolism of pholcodine 19
 1.4.3.1. Absorption.. 19
 1.4.3.2. Bioavailability.. 19
 1.4.3.3. Distribution.. 19
 1.4.3.4. Protein binding.. 19
 1.4.3.5. Metabolism... 19
 1.4.3.6. Half life... 20
 1.4.3.7. Excretion... 20
1.5. **Dextromethorphan** ... 21

1.5.1. Antitussive effect of dextromethorphan 21

1.5.2. Assays for the determination of dextromethorphan and metabolites in biological fluids .. 22

1.5.3. Pharmacokinetics and metabolism of dextromethorphan 23

1.5.3.1. Absorption... 23

1.5.3.2. Bioavailability... 23

1.5.3.3. Distribution... 24

1.5.3.4. Protein binding.. 24

1.5.3.5. Metabolism.. 24

1.5.3.6. Half life.. 27

1.5.3.7. Excretion.. 28

Chapter 2. PHARMACOKINETICS AND METABOLISM OF PHOLCODINE IN HUMANS

2.1. **Determination of pholcodine in biological fluids** by HPLC

2.1.1. Introduction... 33

2.1.2. Materials and methods... 33

2.1.2.1. Reagents... 33

2.1.2.2. Chromatography... 34

2.1.2.3. Stock solutions... 34

2.1.2.4. Sample preparation.. 34

2.1.2.5. Statistical analysis... 35

2.1.3. Results and discussion... 36

2.1.3.1. Chromatography... 36

2.1.3.2. Linearity.. 37

2.1.3.3. Precision and accuracy.. 37

2.1.3.4. Recovery... 37

2.1.3.5. Interference by other compounds.................................... 37

2.2. **Pharmacokinetics of pholcodine in healthy volunteers**

2.2.1. Introduction.. 49

2.2.2. Methods... 51

2.2.2.1. Subjects.. 51

2.2.2.2. Study design... 51
2.2.2.3. Pholcodine analysis in biological fluids...............................53
2.2.2.4. Pholcodine and morphine conjugates analyses.........................53
2.2.2.5. Plasma protein binding determination..................................53
2.2.2.6. Pharmacokinetic and statistical analyses..............................54
2.2.3. Results..56
2.2.3.1. Single dose studies..56
2.2.3.2. Chronic doses study..57
2.2.3.3. Plasma protein binding...58
2.2.3.4. Metabolism..58
2.2.4. Discussion...70

2.3. Isolation and identification of metabolites of pholcodine
2.3.1. Introduction...74
2.3.2. Methods..74
2.3.2.1. Urine samples...74
2.3.2.2. Extraction..75
2.3.2.3. Separation..75
2.3.2.4. Identification..75
2.3.3. Results and discussion ..76

Chapter 3. POLYMORPHIC METABOLISM AND PHARMACOKINETICS OF
DEXTROMETHORPHAN IN HUMANS

3.1. Simultaneous determination of dextromethorphan and
three metabolites in plasma and urine by HPLC
3.1.1. Introduction...80
3.1.2. Materials and methods..81
3.1.2.1. Reagents..81
3.1.2.2. Chromatography...81
3.1.2.3. Stock solutions...82
3.1.2.4. Sample preparation..82
3.1.2.5. Statistical analysis..83
3.1.3. Results and discussion ...84
3.1.3.1. Chromatography...84
3.1.3.2. Linearity..85
3.1.3.3. Precision ...85
3.1.3.4. Accuracy...85
3.1.3.5. Recovery...86
3.1.3.6. Interference by other compounds ... 86

3.2. Polymorphic metabolism of dextromethorphan in humans

3.2.1. Introduction .. 102
3.2.2. Methods ... 103
3.2.2.1. Subjects .. 103
3.2.2.2. Study design ... 104
3.2.2.3. Drugs analyses in urine .. 104
3.2.2.4 Calculation of metabolic ratio .. 104
3.2.2.5 Statistical analysis ... 105
3.2.3. Results ... 105
3.2.4. Discussion ... 121

3.3. A pilot study on the pharmacokinetics of dextromethorphan in humans

3.3.1. Introduction ... 123
3.3.2. Methods ... 124
3.3.2.1. Subjects ... 124
3.3.2.2. Study design ... 124
3.3.2.3. Drugs analyses in biological fluids 125
3.3.3. Results ... 125
3.3.4. Discussion ... 130

Chapter 4. STUDIES ON THE PHARMACOLOGY OF CODEINE IN HUMANS AND IN RATS

4.1. Simultaneous determination of codeine, norcodeine and morphine in plasma and urine by HPLC

4.1.1. Introduction ... 133
4.1.2. Materials and methods .. 134
4.1.2.1. Reagents .. 134
4.1.2.2. Chromatography ... 134
4.1.2.3. Stock solutions ... 135
4.1.2.4. Sample preparation ... 135
4.1.2.5. Statistical analysis ... 136
4.1.3. Results and discussion ... 136
4.1.3.1. Chromatography ... 136
4.1.3.2. Linearity... 137
4.1.3.3. Precision... 137
4.1.3.4. Accuracy and stability.. 137
4.1.3.5. Recovery... 138
4.1.3.6. Interference by other compounds... 138

4.2. Direct determination of codeine-6-glucuronide in plasma and urine using solid-phase extraction and HPLC

4.2.1. Introduction... 152
4.2.2. Materials and Methods.. 153
 4.2.2.1. Reagents... 153
 4.2.2.2. Chromatography... 153
 4.2.2.3. Stock solutions.. 154
 4.2.2.4. Sample preparation.. 154
 4.2.2.5. Statistical analysis... 155
 4.2.2.6. Analysis of purity of synthesised codeine-6-glucuronide sample................. 155
 4.2.2.7. Influence of urine on the hydrolysis of codeine-6-glucuronide by β-glucuronidase ... 157

4.2.3. Results and discussion... 157
 4.2.3.1. Chromatography... 157
 4.2.3.2. Linearity... 158
 4.2.3.3. Precision... 158
 4.2.3.4. Accuracy... 158
 4.2.3.5. Recovery... 159
 4.2.3.6. Interference by other compounds... 159
 4.2.3.7. Purity of codeine-6-glucuronide.. 160
 4.2.3.8. Influence of urine on the activity of β-glucuronidase..................................... 160

4.3. Pharmacokinetics and metabolism of codeine in healthy young volunteers

4.3.1. Introduction... 174
4.3.2. Methods.. 176
 4.3.2.1. Subjects.. 176
 4.3.2.2. Study design.. 178
 4.3.2.3. Drugs analyses in biological fluids.. 179
 4.3.2.4. Analysis of creatinine concentrations... 179
 4.3.2.5. Pharmacokinetic and statistical analyses... 180
4.3.3. Results..181
4.3.3.1. Codeine...181
4.3.3.2. Codeine-6-glucuronide.............................182
4.3.3.3. Renal clearance.......................................183
4.3.3.4. Urinary excretion.....................................183
4.3.4. Discussion..202

4.4. Pharmacokinetics and disposition of codeine in elderly patients
4.4.1. Introduction...209
4.4.2. Methods..210
4.4.2.1. Patients..210
4.4.2.2. Study design...213
4.4.2.3. Drugs analyses in plasma and urine...............213
4.4.2.4. Creatinine analysis...................................215
4.4.2.5. Pharmacokinetic and statistical analyses.......215
4.4.3. Results...216
4.4.3.1. Codeine..216
4.4.3.2. Codeine-6-glucuronide.............................217
4.4.3.3. Morphine and morphine glucuronides..............217
4.4.3.4. Renal clearance.......................................218
4.4.3.5. Urinary excretion.....................................219
4.4.4. Discussion...242

4.5. Polymorphic metabolism of codeine in humans
4.5.1. Introduction...247
4.5.2. Methods..248
4.5.2.1. Subjects...248
4.5.2.2. Study design..248
4.5.2.3. Drugs analyses in urine.............................248
4.5.2.4 Metabolic ratio and statistical analyses.........249
4.5.3. Results...249
4.5.4. Discussion..256

4.6. \(\mu \)-opioid receptor binding affinity of codeine and its metabolites and some other opiates
4.6.1. Introduction...257
4.6.2. Methods..258
4.6.2.1. Animals...258
4.6.2.2. Ligand...258
4.6.2.3. Compounds...258
4.6.2.4. Binding assay..259
4.6.2.5. Statistical analysis...259
4.6.3. Results ...260
4.6.4. Discussion...266

4.7. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia
4.7.1. Introduction..269
4.7.2. Methods...270
4.7.2.1. Reagents..270
4.7.2.2. Codeine O-demethylation in rat brain in vitro.............270
4.7.2.3. Codeine O-demethylation in rat brain in vivo.............271
4.7.2.4. Statistical analysis..272
4.7.3. Results...272
4.7.3.1. Morphine formation in rat brain in vitro...................272
4.7.3.2. Morphine formation in rat brain in vivo...................272
4.7.4. Discussion...280

Chapter 5. A PILOT STUDY ON THE ANTITUSSIVE EFFECT OF CODEINE, PHOLCODINE AND DEXTROMETHORPHAN IN PATIENTS WITH CHRONIC COUGH
5.1. Introduction...284
5.2. Methods...285
5.2.1. Equipment..285
5.2.2. Drugs...286
5.2.3. Patients...286
5.2.4. Study design...287
5.2.5. Drug analyses in plasma and urine................................287
5.2.6. Pharmacokinetic and statistical analysis.......................288
5.3. Results...289
5.4. Discussion...298
Chapter 6. GENERAL DISCUSSION AND CONCLUSION 300

APPENDIX

I. Reagents involved in this thesis.. 311
II. Normal value ranges of clinical biochemical tests............. 312
III. Synthesis of codeine-6-glucuronide.................................. 313
IV. Identification of the metabolite of pholcodine................. 315
V. List of publications... 326

BIBLIOGRAPHY... 327
ABSTRACT

The aims of this thesis were to study the pharmacokinetics and pharmacodynamics of pholcodine, codeine and dextromethorphan in humans and in rats.

1. Original sensitive and specific HPLC assays were developed for the determination of (1) pholcodine; (2) codeine-6-glucuronide; (3) codeine, norcodeine and morphine and (4) dextromethorphan and three metabolites in plasma and in urine, which are suitable for the pharmacokinetic and metabolism studies in man and rat.

2. The pharmacokinetics and metabolism of pholcodine after single and chronic dosing were studied in six healthy human subjects. The pharmacokinetics and metabolism of pholcodine were substantially different from those of other chemically related compounds, such as codeine. Pholcodine had a very long plasma half-life which was about 15 times longer than that of codeine. The results indicate that the currently recommended dosage regimens for pholcodine may be inappropriate. Two new metabolites were isolated and one of them, a oxidative product of the morpholine ring, of pholcodine was successfully identified by HPLC, mass spectra and nuclear magnetic resonance spectra.

3. The pharmacokinetics of codeine were comparatively studied in 8 young subjects and 7 elderly patients. Codeine-6-glucuronide, the major metabolite of codeine, was directly determined in plasma and in urine for the first time. The plasma concentrations of codeine-6-glucuronide were 17 times higher than codeine but the plasma half-lives of the two compounds were similar in young subjects. The pharmacokinetics of codeine and codeine-6-
glucuronide in the elderly were altered compared with those in the young subjects. The absorption was delayed and the plasma half-lives for codeine and especially for codeine-6-glucuronide were increased. The plasma concentrations of codeine and codeine-6-glucuronide at steady state increased 2.4 and 3.8 times respectively and the renal clearances of codeine and codeine-6-glucuronide decreased 5.0 and 7.2 times respectively. The plasma concentrations of codeine and codeine-6-glucuronide at steady state were strongly correlated with the clearance of creatinine. All the pharmacokinetic changes were significantly correlated with age. β-glucuronidase, a widely used tool for the studies of glucuronides, is not suitable for the quantitative determination of codeine-6-glucuronide because of the incomplete hydrolysis.

4. The polymorphic metabolism of codeine was demonstrated in humans. The O-demethylation ratio of codeine was strongly correlated with that of dextromethorphan which is known to exhibit genetic polymorphism in the O-demethylation. This finding may have important clinical implications because codeine may not produce analgesia in the poor metabolisers who are unable to metabolise codeine to morphine. The preliminary results of the study on the genetic polymorphism of dextromethorphan suggested that the frequency of deficiency of this polymorphism in an Australian population was 3/52, which was similar to those in European countries (3-9%).

5. The μ-receptor binding affinities of codeine and its metabolites and several other opioids were studied in rat brain using the ligand \(^3H\)-DAGO. The results showed that some of metabolites had similar or higher affinity to the μ-receptor than the parent compound and suggest they may be important in mediating analgesia. Pholcodine and dextromethorphan showed very low
binding affinities to the μ-opioid receptor which supports the previous findings that pholcodine and dextromethorphan have no analgesic effect.

6. Codeine O-demethylation to morphine in the brain was studied in the rat in vitro and in vivo. At 30 minutes after intraperitoneal administration of codeine, morphine was detected in the brain. However, after intraperitoneal administration of morphine, although a similar plasma morphine concentration was achieved, morphine was not detected in the brain. The results indicate a central (brain) conversion of codeine to morphine. The morphine concentrations in the rat brain after codeine administration peripherally were about 20 times that required to displace 50% of the μ-receptor ligand 3H-DAGO. After incubation of codeine with NADPH system in vitro, more morphine was found in microvessel rich tissue than in the total homogenate. The results suggest that the O-demethylation of codeine to morphine occurs in microvessel tissue, possibly in endothelial cells. The biotransformation of codeine to morphine in the brain rather than in liver may explain the analgesic effect of codeine.

7. A cough recording system for measuring cough frequency was developed for a clinical study designed to compare the relative antitussive efficacy of codeine, pholcodine and dextromethorphan in patients. In a double-blind, placebo controlled pilot study, the antitussive effect of these agents in patients with chronic cough were studied.