Genetic Diversity and Interspecific Relationships
in Banksia L.f., (Proteaceae).

Tina Louise Maguire
B. Ag. Sci. (Hons)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Horticulture, Viticulture and Oenology
University of Adelaide

August 1996

\(\text{Defended 1997} \)
Table of Contents

Abstract
Declaration and authority of access to copying
Acknowledgments
List of Tables
List of Figures

Chapter One: General introduction
 The genus *Banksia*
 Thesis aims

Chapter Two: Literature review
 Introduction
 Taxonomy
 Conservation
 Plant population management
 Breeding Systems
 Banksia flower morphology
 Floral initiation
 Protandry
 Pollination
 Consequences of Different Reproductive Modes
 Self incompatibility
 Stigma
 Stylar inhibition
 Ovary inhibition
 Evolution of self incompatibility
 The self incompatibility mechanism
 Interspecific Incompatibility
 Reproductive Ecology
 Reproductive isolation
 Natural Hybridisation
 Hybrid fitness
 Patterns of hybridisation
 Chromosome Studies
 Propagation
 Commercial Importance and Improvement of *Banksia*
 Interspecific Hybridisation
Table of Contents

- Alternative methods of hybridisation 30
- Hybrid Verification 31
- Pollen Collection and Uses 32
 - Factors Controlling Pollen Availability 32
 - Genetic controls 32
 - External controls 33
- Pollen Storage 33
 - Relative humidity (RH.) 34
 - Temperature 34
 - Gas atmosphere and oxygen pressure 34
 - Causes of decreased viability during storage 35
 - Viability tests 35
 - *In vitro* assays 36
 - Non germination assays 36
 - Recording data 37
 - Comparison of viability tests 37
- Molecular Techniques to Study Relationships in Plants 38
 - The polymerase chain reaction (PCR) technique 38
 - Random amplified polymorphic DNA (RAPD) 39
 - DNA sequencing 41
- Molecular Approaches to Plant Systematics 43
 - Chloroplast DNA 44
 - PCR analysis of chloroplast DNA 45
 - Analysis of DNA sequence data 46
 - Conclusions 46

Chapter Three: Viability testing of *Banksia menziesii* pollen after storage at different temperatures

- Abstract 48
- Introduction 48
- Materials and methods 49
 - Plant material 49
 - Pollen collection 49
 - Pollen storage 50
 - Fluorescein diacetate (FDA) test 50
 - *In vitro* germination 51
 - Statistical analysis 51
- Results 51
 - *In vitro* germination 51
Table of Contents

Effect of position on the inflorescence and time during the flowering season
Pollen storage
Discussion

52
52
60

Chapter Four: Interspecific and intergeneric pollination with *Banksia coccinea* R.Br. (Proteaceae)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>62</td>
</tr>
<tr>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>66</td>
</tr>
<tr>
<td>Plant material</td>
<td>66</td>
</tr>
<tr>
<td>Pollinations for assessment of pollen tube growth</td>
<td>66</td>
</tr>
<tr>
<td>Results</td>
<td>67</td>
</tr>
<tr>
<td>Effect on pollen tube growth of site, month and year</td>
<td>67</td>
</tr>
<tr>
<td>Reciprocal crosses</td>
<td>67</td>
</tr>
<tr>
<td>Interspecific and intergeneric pollination with B. coccinea as male parent</td>
<td>68</td>
</tr>
<tr>
<td>Pollen tube abnormalities</td>
<td>69</td>
</tr>
<tr>
<td>Discussion</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>86</td>
</tr>
<tr>
<td>Introduction</td>
<td>86</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>88</td>
</tr>
<tr>
<td>Banksia flower morphology</td>
<td>88</td>
</tr>
<tr>
<td>Interspecific pollination</td>
<td>88</td>
</tr>
<tr>
<td>Results</td>
<td>89</td>
</tr>
<tr>
<td>Discussion</td>
<td>92</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>93</td>
</tr>
</tbody>
</table>

Chapter Six: Seed set following interspecific pollination with *B. coccinea* R.Br.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>95</td>
</tr>
<tr>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>96</td>
</tr>
<tr>
<td>Plant material</td>
<td>96</td>
</tr>
<tr>
<td>Interspecific seed set</td>
<td>97</td>
</tr>
<tr>
<td>Germination trials</td>
<td>97</td>
</tr>
<tr>
<td>Hybrid verification</td>
<td>98</td>
</tr>
</tbody>
</table>
Results

Interspecific seed set

Seed germination of *B. coccinea, B. ericifolia* and
B. coccinea × *B. ericifolia*

Seedling survival and vigour

Hybrid verification and early seedling characters

Discussion

Chapter Seven: DNA isolation methods for *Banksia* and other members of the
Proteaceae.

Abstract

Introduction

Materials and methods

Results

Protocol 1: DNA extraction from mature leaves

Protocol 2: DNA extraction from seedling leaves and other
material high in phenolics and polysaccharides

Protocol 3: Isolation of total genomic DNA from seed material

(slightly modified "miniprep" method of Weining and
Langridge, 1991)

Gel electrophoresis

Discussion

Chapter Eight: Genetic diversity of *Banksia* and *Dryandra* (Proteaceae) using RAPD
markers.

Abstract

Introduction

Materials and methods

Plant material

DNA extraction

DNA amplification and documentation

Data analysis

Results

Discussion

Chapter Nine: RAPD variation within and between populations of *Banksia cuneata* A.S.
George (Proteaceae), a rare and endangered species.

Abstract

Introduction
Table of Contents

Materials and methods 136
 Population sampling 136
 DNA isolation 136
 DNA amplification and documentation 137
 Statistical analysis 138
Results 139
The RAPD profile 139
Estimate of genetic diversity 139
Discussion 148

Chapter Ten: Use of RAPD markers to analyse phylogenetic relationships in *Banksia* (Proteaceae) 153
Abstract 153
Introduction 153
Materials and methods 155
 Plant material 155
 DNA extraction 155
 DNA amplification and documentation 156
 Data analysis 157
 Genetic distance analysis 157
 Phylogenetic analysis using parsimony (PAUP) 157
Results 158
Discussion 166

Chapter Eleven: Application of non-coding chloroplast DNA sequences to *Banksia* (Proteaceae) phylogeny 168
Abstract 168
Introduction 168
Materials and methods 171
 Plant material 171
 DNA extraction 171
 DNA amplification 172
 DNA sequencing 172
 Data analysis 173
Results 173
Discussion 176

Chapter Twelve: General discussion 179
Banksia breeding 179
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic diversity</td>
<td>181</td>
</tr>
<tr>
<td>Species relationships</td>
<td>184</td>
</tr>
<tr>
<td>References cited</td>
<td>187</td>
</tr>
<tr>
<td>Appendix</td>
<td>219</td>
</tr>
</tbody>
</table>
Abstract

Banksias are amongst the best known Australian wild flowers. They are used in ornamental horticulture and last well as fresh cut flowers, or indefinitely as dried arrangements. Breeding and selection of new cultivars for the cut flower industry is currently underway. This thesis aims to increase knowledge essential for conservation biology and for focused and efficient breeding of banksias.

Pollen storage and viability testing are important adjuncts to a plant breeding program. *Banksia menziesii* pollen was stored at 20 °C, 4 °C, -20 °C, -80 °C and -196 °C and assessed using a semi solid medium of 1% agar, 15% sucrose, 0.01% boric acid, 0.03% calcium nitrate, 0.02% magnesium sulphate, 0.01% potassium nitrate, and an incubation temperature of 25 °C. Germination remained constant at around 70% in all treatments except room temperature 20 °C, which after six months had only 25% germination. Pollen viability was assessed using fluorescein diacetate (FDA), but the results did not reflect the loss of germinability at 20 °C. There was no effect of floret position on the inflorescence on germination; but pollen viability varied over the flowering period with maximum germination mid season.

Interspecific hybridisation is assessed as a potential breeding tool, and for the assessment of species relationships within the genus. Pollen tube growth was investigated using controlled hand pollination of the commercially significant species *Banksia coccinea*, to species of *Banksia*, and the related genus, *Dryandra*. Currently, the relationship between *B. coccinea* and the other species groups within *Banksia* is unclear. It has been found previously that success of pollen tube growth in the pistil following interspecific pollination was largely related to taxonomic distance between the species (Sedgley *et al.* 1994). Thus, interspecific hybridisation is a suitable technique to determine the compatibility relationships of the problematic species *B. coccinea*. Some species supported no germination of *B. coccinea* pollen. Others produced pollen tube
abnormalities including thickened walls, bulbous swellings, non-directional growth, burst tubes and branched tubes. Control of pollen tube growth in the pistil was imposed in the pollen presenter, a specialised region of the style for pollen presentation to foraging fauna, and in the upper style. There was no significant reciprocal effect on pollination success in the lower style. The results of pollen tube compatibility in the lower style indicated that *B. coccinea* had a closer affinity to the section *Oncostylis*, than to section *Banksia* where it is currently placed. Given the distinct morphology and close pollen-pistil relationship to section *Oncostylis*, it is proposed to move *B. coccinea* out of section *Banksia* to a new section *Coccinea*, the sister section to *Oncostylis*. Intergeneric crosses of *B. coccinea* with *Dryandra* species resulted in some compatibility, with one cross having low numbers of pollen tubes in the pollen presenter and upper style region. These results indicate a close relationship between *Banksia* and *Dryandra*, which are sister genera in the tribe *Banksiae*, family Proteaceae.

Species relationships within *Banksia* were also assessed using molecular techniques. Random amplified polymorphic DNA (RAPD) markers were assessed for their usefulness at various taxonomic levels within the genus. It was found that RAPDs are informative at the close species level, but not at more distant levels, such as between distantly related series, sections, and subgenera. In addition, species relationships at higher levels were investigated using direct polymerase chain reaction (PCR) sequencing of chloroplast DNA (cpDNA) spacer regions between the *trnL* and *trnF* exons. These regions are thought to be universal for plant species and informative at the intra and interspecific level of plants. Using the region between *trnL* and *trnF*, relationships within *Banksia*, and between *Banksia* and *Dryandra* were investigated. It was found that this region was conservative, with little variation between species. Section *Banksia* formed a group, section *Oncostylis* formed another group, and *B. coccinea* along with two *Dryandra* species was placed between the two sections. Resolution at this node however, was not complete. Subgenus *Isostylis* formed two groups away from the two sections in subgenus *Banksia*, with *B. illicifolia* and *D. formosa* together, while *B. cuneata* was
more distantly related. Based on DNA sequence and RAPD data, it appears that *Banksia* and *Dryandra* may be artificial genera, and that in the presence of each other, they cannot be separated using RAPD or *trnL* DNA sequence data.

Genetic variability within species of *Banksia* was investigated using RAPDs. Levels of genetic diversity were generally high, ranging from 0.59 - 0.90. This agrees with previous work using isozymes, pollen tube and fruit set data, showing that *Banksia* species are predominantly outcrossing. In particular, a detailed study was conducted on a geographically restricted, rare and endangered species, *B. cuneata*. Using RAPDs on all known populations, it was found that levels of genetic diversity were high, ranging from 0.65 - 0.74, and that there was no significant genetic differentiation between populations.

In conclusion, this study contributes to knowledge essential for further improvement and conservation of *Banksia* species, and raises questions regarding the currently accepted taxonomic relationships within *Banksia* and between *Banksia* and *Dryandra*.