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Abstract

The development of phased array antennas is an area of considerable current interest,

driven by the demand for high performance electronic systems for personal communication

systems, mobile satellite communications, rvireless local networks and vehicula¡ radar

systems. With the increasingly congested frequency usage in the traditional lower

frequency bands, attention is becoming focused on high frequency systems which make use

of the millimetre and sub-millimetre wavelength parts of the spectrum. 'Where commercial

interest is involved, issues such as low development and production cost assume a key

significance with regard to the viability of any technology used to realise the systems

described above. This thesis presents techniques that may be used to evaluate the

performance of a wide variety of practical microstrip phased ¿urays in an efficient and

insightful manner.

Microstrip phased arrays form a class of antennas suitable for operation at millimeter

wavelengths. In order to meet modern system specifications, practical microstrip antennas

have become increasingly more complex, comprising metallic radiators and feedlines as

well as dielectric substrates and superstrates which may be continuous or discontinuous in

the aperture plane. Moreover, for small to medium size arrays, the correct design of

elements on the periphery of the anay is important, precluding the use of traditional infinite

array analyses without appropriate modif,rcation. Additional factors influencing the

analytical and numerical techniques used in the design of microstrip arrays include the need

to compute the scanning performance to a degree of accuracy suffrcient to avoid costly

experimental optimisation of the element design, and the need for realistic computing

requirements in the numerical implementation. The objective of this work is to
demonstrate that a generalised periodic Green's function integral-equation approach to

practical phased arays can achieve sufficient flexibility to model a variety of geometries,

computational efficiency such that a desktop computer implementation is feasible, and

accuracy suffrcient for engineering design pulposes.
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This thesis presents a brief overview of microstrip antenna analysis, and describes the

connections between spectral and spatial domain periodic Green's functions in integral

equation methods. These ideas are developed into an efficient hybrid formulation which

combines the benefis of both methods. The hybrid formulation is applied to a variety of

problems from simple metal strip dipoles to more complicated microstrip geometries with

different substrate and feed line configurations to demonstrate the performance of the

technique. A further development to finite array analysis is described, in which spatial

Fourier windowing is used to account for the effect of the array periphery. An

improvement in the accuracy of this approximate technique is explored by an iterative

technique to obtain a more accurate current window to be used in the convolution process"

The research described provides a unified view of the spatial and spectral periodic Green's

functions and their application in a hybrid form to infinite and finite phased array analysis.

The implementation of numerical analysis algorithms is shown to be highly efficient and

accurate for modern microstrip array design.
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CHAPTER 1

Introduction

1.1 Microstrip Phased Arrays

In recent years, considerable effort in antennas resea¡ch has been directed towa¡ds the

realization of different types of arrays, ranging from the large and highly complex electronically-

steered ¿urays in military surveillance systems, to the much simpler printed dipole antenna array.

The emphasis in antenna arr¿Iy research has been driven by the demand for new, higher

performance electronic systems, mainly in the fields of radar, communications and navigation.

V/ith increasing congestion in the frequency sp€ctrum, attention is currently focussed on

creating higher-frequency systems embracing millimetre, sub'millimetre and quasioptical

radiators [] .

Microstrip arrays form a major class of antennas that a¡e useful for operation æ millimetre wave

frequencies. The basic configuration of the microstrip antenna is a metallic strip or patch

printed on a grounded dielectric subst¡ate. A microstrip phased array is a collection of such



substrate supported metal strips or patches together with their feed network, which are designed

to provide a beam that is formed in the required direction by controlling the phase of excitation

of the array elements.

Because of their high cost and thin prof,rle, microstrip phased amrys had largely been used in

military aircraft, missiles, rockets and satellites in ea¡lier applications. However in the last

decade, development and manufacturing costs of microstrip antennas have come down with

increasing manrrity of the technology, reduced cost of substrate material and manufacturing

process, and the simplified computer aided design (CAD) tools that have become available.

Cost reduction and new demands in areas such as civilian satellite communications have led to

wider commercial applications of microstrip phased ¿urÍrys [2]. Some of the recent commercial

applications are in the areas of personal communications systems (PCS), mobile satellite

communications, direct broadcast system television (DBS), wireless local area networks

(WLANs), and intelligent vehicle highway systems (IW{S). Ottrer applications include the use

of microstrip arrays in synthetic aperture radaß for remote sensing and in hyperthermia

applications in the medical field.

In order to meet the modem specifications of the above applications, practical microstrip

antennas have become increasingly more complex, comprising metallic radiators and feedlines

as well as dielectric substrates and superstrates rvhich may be continuous or discontinuous in the

apefture plane. Appropriate modelling techniques a¡e therefore required for the analysis and

design of such complex antennas operating in an array environment. Compared to the

scaffering problem, the requirement for a well dehned feedpoint and an accurate model of the

feed region in the analysis of the antenna.¡adiation problem poses a more stringent modelling

requirement. Moreover, for small to medium size arrays, the correct design of elements on the

periphery of the array is important, precluding the use of traditional infinite anay analyses

without appropriate modifications. A major challenge facing the array designer is to apply the

known circuit and antenna modelling concepts to the design of an integrated assembly which

not only achieves the scanning specifications, but is also robust and affordable. Additional

factors influencing the analytical and numerical techniques used in ttre design of microstrip

phased arrays include the need to compute the scanning performance to a degree of acnuracy
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suffrcient to avoid costly experimental optimisation of the element design [3], and t]re need for

realistic computing requirements in the numerical implementation.

The research reported in this thesis is concerned with numerical modelling of microsEip dipole

arays for purposes of analysis and engineering design. This thesis first presens a brief survey

of the methods found in the literature rvhich may be used for the analysis of microstrip antenna

elements and arrays. Based on the considerations given in the survey, a new numerical

technique which may be described as the Generalised Periodic Green's Function Technþue,is

developed, and then applied to the analysis of infinite arays of metal strip and microstrip

dipoles. Finally, the technique is extended into a Generalßed Periodic Green's Fwtction -

SpectralWindowing technique which is used for the analysis of finite metal strip and microstrip

dipole arays.

1.2 Generalised Periodic Green's Function

- Spectral Windowing Technique

The Generalised Periodic Green's Function - Spectral Windowing technique presented in

this thesis falls under a general class of methods for analysis of microstrip antennas

commonly known as full-wave analysis methods. The technique uses the Integral

Equation method as the basis for formulating the problem, adopts the Periodic Structure

approach which explicitly incorporates the periodicity of the array into the formulation,

and implements the analysis numerically using the Method of Moments. As a first step, the

technique is used for the analysis of an infinite array in which the current distributions on

the elements are assumed to be identical. As a subsequent step, a Spectral Windowing

technique is developed which transforms the periodic Green's function for the infinite array

into a form that approximately describes the behavior of the elements in a finite array

environment. The output of the tr¡vo-step analysis is the set of equivalent currents

representing each element of the array from which all the other parameters needed for

understanding the behavior of the ¿uray may be obtained. One of the key advantages of the

technique is that by modelling the equivalent currents making up the whole array structure,

3



no constraints are placed on the element geometry being modelled. kr this thesis, the

technique has been applied to the analysis of microstrip dipole arrays because of the

interest in studying hnite substrate, feedline and impedance matching effects on the

scanning performance of such array elements. However in general, the technique can also

be applied to the analysis of microstrip patch anays and array elements with substrate

inhomogeneities.

At millimetre wavelengths, the substrates used in typical Gallium A¡senide MMICs are

electrically thick, and are therefore expected to have a significant effect on the design and

performance of the elements and the phased array. In the past, considerable research into

the radiation problem for dipole antennas on electrically thick substrates of infinite lateral

extent has been published [4,5,6]. However, little has been published in the way of printed

dipoles on finite size substrates until recently [7,8,9,10]. The work presented in thesis is an

extension to these more recent investigations in that it develops a more computationally

efficient technique for modelling inhnite microstrip arays with finite substrate geometries

and extends the analysis to finite size arrays. Some work has been reported on the analysis

of finite microstrip arrays fll,l2,13,I4], however in all these cases, the substrate is again

modelled as an infinite slab. Therefore these techniques cannot be used to model f,rnite

microstrip affays which have finite substrates. In the work reported in this thesis, the

substrate which may be f,rnite or infinite in dimensions, is explicitly modelled using basis

functions in the infinite array technique. The application of the Spectral Windowing

technique to the infinite array data would result in a finite array of elements in which the

substrate would also be finite in extent.

Because of their small size and complex integration with the electronics, microstrip

antennas fabricated using the MMIC process a¡e diffìcult to tune and adjust. The accuracy

of the numerical model is therefore crucial in the design process, and models which a¡e

able to analyse the whole physical structure of the array with a minimum of idealisations

are highly desirable. The technique proposed in this thesis makes no assumptions about the

current distributions on the radiating elements and about the nature of the fields in the

dielectric regions. Furthermore, the entire structure of radiating elements with more

4



complicated geometries like foldedlipoles as well as the feedlines have been modelled

with minimum idealisations. Because of its high computational efficiency, the technique

can in principle be extended to the analysis of larger cells comprising sub-arrays of

multiple elements and quasi-periodic structures such as those found in the literature [5].

Validation of numerical models is an essential requirement to establish confidence in their

accuracy. Validation may be achieved using practical measurements, comparison with

results of analysis published in the literature, comparison with calculations using

alternative methods, or by testing the model under known conditions where the results are

well established. In most cases, the infinite and hnite array models presented in this thesis

are compared either with results documented in the literature or with an analysis using an

alternative method. Furthermore, the results of the infinite array models are also validated

at known conditions such as scan angles at which a grating lobe is expected, and at scan

angles along the array plane where no real power is expected to propagate away from the

array. In the case of the finite anay models, predictions for the centre element of a large

but finite array are validated against an infinite array model with the same structure and

geometry, where similar results are expected. Therefore, no reliance has been place on

practical measurements for purposes of validation in this research.

In the numerical analysis of a microstrip array, the results reflect the total contribution of

all the elements. The complexity of the array elements makes it diffrcult to isolate the

cause of some of the effects" For example, an observed scan blindness might be due

predominantly to the mutual coupling of the radiating element with either the feedline or

the substrate. To solve this problem, a modular and stage-by-stage modelling approach has

been adopted in this research. The simpler ¿uray models have been developed as self-

contained modules so that they can form a part of a more complex array model. For

instance, the model of an inf,rnite array of substrate supported, coplanar stripline fed folded-

dipoles was developed from the basic model of an infinite array of horizontal metal strips;

the various other components such as the feedlines, substrates and folded arms were then

added in stages. This has potential significance if it is required to develop the models into

design software packages for general usage.
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I

kt this thesis, the numerical models arc presentd in three stages. kr the fnst stage, metal strip

dipoles in va¡ious configurations which operate in the central region of a large phased array, are

analysed using an infinite array model. In the second stage, infinite array models are presented

for microstrip dipole arrays with various subshate configurations. In the final stage, models are

presented for metal srip and microstrip antennas operating both in the cenFal region and

periphery of a finite phased array. At each stage, the accuracy of the models are confrmed by

validation against well established results from other sources. The models a¡e also used to

obtain results for various array parameters, so that the cha¡acteristics of the physical anay

represented by these models can be established before proceeding to the next stage. In certain

cases, a component of the array element such as the feedlines may be omitted from the

model when the substrates are included in the analysis, so that the effects due to the

feedlines and the substrates could be separately observed and isolated.

One of the major research goals in this work is to develop a technique of analysis leading

to numerical models which are computationally efficient so as to enable their

implementation on a desktop computer. All the computer models have been developed

with the view to minimise the computation time, computer memory and storage

requirements. For purposes of standardisation, the numerical results presented in this

thesis are all based on FORTRAN 77 programs which have been run on a single desktop

computer in which the specihcations which are given in Appendix A.

The numerical analysis using the proposed technique has revealed effects on metal strip

and microstrip arrays associated with the geometry of the radiating elements, feedlines and

substrate, as well as effects associated with the array lattice structure and the f,rnite size of

the anay. For purposes of engineering design, some of these effects like grating lobes and

scan blindnesses need to be avoided, whilst others could be exploited for reasons of

impedance matching and optimization of the array's radiation and impedance

characteristics. In this thesis, the implications of these effects have been illustrated using a

number of design examples. Therefore, the demonstrated accuracy, flexibility and

computational efhciency of the Generalised Periodic Green's Function - Spectral

6



Windowing technique makes it highly attractive for application to the analysis and design

of practical microstrip phased array systems.

1.3 Outline of Thesis

This thesis is concerned with the development and application of a numerical technique for

the analysis and design of various conventional and novel microstrip dipole arrays. The

proposed technique is relevant for the analysis of arrays with both large and small number

of elements, and where the substrate component of each array element may be infinite,

semi-infinite or completely finite in its lateral extent.

Chapter 2 describes the main considerations leading to the development of the Generalised

Periodic Green's Function technique for the numerical modelling of microstrip phased

arrays. The demands of new applications are reflected in the requirement for more

complex microstrip antenna element geometries which may involve discontinuous, multi-

layered or inhomogeneous substrates. The complexity of the antenna element, coupled

with the high cost of post-fabrication testing and adjustments, have created the necessity

for accurate and flexible models to be used in the design process. The more widespread

use and the availability of advanced software for engineering design on desktop computers,

as well as the need to minimise design costs also make it very attractive for a numerical

technique to be implementable on such computers. A survey of various methods to meet

this requirement is presented, leading to the conclusion that the Integral Equation method

using an appropriate form of Green's function may provide the best results. After

examining the options on the approaches and types of Green's function that may be

employed, it is proposed that the new technique should be based on a generalised periodic

Green's function"

Chapter 3 develops the theoretical basis for the Generalised Periodic Green's Function

technique and identifies the key properties of this Green's function that relate to the

7



computationally efficient modelling of phased arrays in general. The spatial form of the

generalised periodic Green's function of an infinite array of point sources is frrst derived

for a rectangular grid lattice, and then extended to the case of a triangular grid lattice.

Using the Fourier transform, the point sources representation of the infinite array is

transformed into a planar current sheet representation, Ieading to the derivation of the

spectral form of the generalised periodic Green's function for both the rectangular and

triangular grid lattices. The key properties of the periodic Green's function are then

described and related to phased array modelling as applicable to the work reported here.

Compared with the spatial form, the spectral form of the periodic Green's function enables

the integraiion over the sources to be evaluated analytically. This property is highlighted as

a major computational advantage of working in the spectral domain and the main reason

for selecting the Spectral Periodic Green's Function to be used in this research. The

numerical convergence property is highlighted as being critical to the computational

efficiency of the technique, and the singularity and convergence properties of the spatial

and spectral forms of the periodic Green's function are derived and discussed. The number

of lobes in the radiation pattern is identified to correspond to the number of propagation

Floquet modes of the spectral periodic Green's function. The emergence of grating lobes is

shown to be dependent on the inter-element spacings of the array and the direction at which

the beam is scanned. Out of an analysis of the spectral periodic Green's function is derived

the well known condition that to avoid grating lobes for all scan angles, the inter-element

spacings should not exceed half a wavelength for rectangular grid lattices and one

wavelength for triangular grid lattices. Finally, the contribution of the Floquet modes to

the active impedance is described, leading to the expected condition that at the grazing scan

angle, no real power is propagated away from the inhnite array.

Chapter 4 describes the procedure for applying the Generalised Periodic Green's function

technique to the modelling of an infinite arrays. The technique is illustrated by modelling

an infinite array of horizontal metal strips orientated with their faces parallel to the anay

plane. The problem is formulated in terms of equivalent two-dimensional currents on the

surface of the metal strips, and the electric field integral equations are then solved using the

Method of Moments. Various ways to maximise the computational efhciency of the

technique are then described. In the problem formulation stage, one way is to use the

8



spectral form of the periodic Green's function in which the integration over the sources

may be evaluated analytically. Numerical results from the model using this technique are

shown. The issue of slow numerical convergence of the results and various approaches to

overcome this problem are discussed. A technique of accelerating the convergence of the

spectral periodic Green's function for on-plane interactions is described, leading to the

development of a Generalised Hybrid Periodic Green's Functíon having a spatial and a

spectral cornponent both of which are rapidly convergent in their respective domains. An

improvement in the computational speed by a factor of 40 to obtain a converged value of

the hybrid Green's function over either the spatial or spectral forms is illustrated with

numerical results.

In the numerical implementation stage, computational efficiency in the f,rlling of the

Moment Matrix by taking advantage of Toepliz-like symmetries in the spectral periodic

Green's function, use of look-up tables and by a gnd segmentation scheme to minimise

numerical evaluation of the spatial component of the hybrid periodic Green's function are

adopted. In preparation for the modelling of three-dimensional element geometries, a new

technique of integrating the Green's function over the sources distributed in the z

dimension is described. The technique is then applied to the case where the horizontal

dipoles are modelled as thin metal strips orientated with their faces perpendicular to the

array plane. The accuracy of the models is validated using results obtained from other

sources in the literature.

Chapter 5 describes some practical issues of modelling arrays of metal strip structures

which may be utilised as the radiating elements and feedlines of microstrip phased anays"

The first issue relates to the efficient modelling of anay elements with three-dimensional

geometries. The technique for accelerating the convergence of the spectral periodic

Green's function described in Chapter 4 is applied to the case where the source segments

are distributed in the z dimension. A numerical experiment is used to demonstrate the

computational efficiency achieved by this convergence acceleration technique. Based on

this technique, an infînite array of vertical metal strip monopoles is developed. The issue

of metal strip junctions is introduced, and various approaches for junction modelling found

9
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in the literature are discussed. A nerv metal strip junction model is described and applied

to the modelling of the metal strip folded{ipole infinite array. The next issue is the

modelling of feedlines; this is done using the junction modelling technique described above

and applied to the analysis of an infinite array of horizontal metal strips with coplanar strip

feedlines. Finally, impedance matching considerations are discussed and the modelling of

an infinite anay of folded dipoles with feedlines, is described. kr every case, the accuracy

of the models is validated either using published data from another source or at specific

conditions where the behavior of the array is rvell established. The numerical effrciency of

the technique is demonstrated by the short computation time taken by the models using a

desktop computer, and the flexibility of the technique can be seen in the variety of models

used for illustration.

In Chapter 6, the Generalised Periodic Green's Function technique is applied to the

analysis of infinite affays of microstrip dipoles with conventional and novel substrate

configurations. Two basic architectures of MMIC phased arrays are described in which the

antenna elements, module electronics and distribution networks may be integrated either in

the transverse direction of the array plane or longitudinal to the array plane. [n these two

architectures, the substrate is usually a continuous slab in the first case and finite in at least

one of the lateral dimensions in the second case. A model is developed for an infinite anay

of metal strip dipoles supported on an infinite slab of grounded dielectric substrate, which

corresponds to the transverse integration architecture. The problem is formulated in terms

of surface currents on the metal strips and volume polarisation currents in the dielectric

substrate; the rest of the solution procedure is similar to that for the infinite anay of

horizontal metal strip dipoles. Numerical results obtained from the model are compared

with data for a similar structure published in the literature [33] and excellent agreement is

found, especially in the detection of the substrate-induced scan blindness angles of the

array. Using the same technique, a metal strip dipole infinite array model is developed

where the substrates are in the form of semi-infinite shees. Again, the numerical results of

the model compare very well with published data of a similar structure using a different

technique of analysis tll. 
^ 

third metal strip dipole infinite array model is then developed

in which the substrates are finite in both the lateral dimensions, and the results agree very

well with an analysis using the spatial form of the generalised periodic Green's function
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[0]. The superior computational efficiency of the spectral periodic Green's function over

the spatial form is demonstrated by a comparison of the results using both techniques. For

all the three models developed, computer CPU times of less than a minute to calculate a

converged value of active impedance using a desktop computer demonstrates the numerical

efficiency of the technique. Finally, models of infinite arrays of substrate supported metal

strip dipoles and metal strip folded dipoles with coplanar strip feedlines are developed to

explore the relative significance of feedline and substrate induced scan blindness, and for

impedance matching considerations.

Chapter 7 develops a Spectral Windovirtg technique which, when applied to the results of

the infinite array models described in Chapter 4 to 6, enables the finite array behavior to be

predicted. This technique is based on a Generalised Periodic Green's Fwtction for a finite

anay which is derived from first principles using an ElemenGby-Element approach. An

iterative variant of the technique is also developed which is able to improve the accuracy of

the technique and indicate the likely accuracy of the results. The technique is illustrated

using the analysis of a finite array of horizontal metal strip dipoles" The results compare

well to those obtained by an accurate but less numerically efficient full analysis of the array

using the Element-by-Element method. The technique is then applied to the analysis of a

finite array of horizontal metal strips having coplanar strip feedlines in the first case and a

substrate in the second case, where feedline and substrate induced scan blindness effects

for the respective infinite arrays have been observed from the models described earlier. In

both cases, near unity active reflection coefficient values for all the elements and negative

active resistances in some of the elements are predicted by the model in the vicinity of the

substrate-induced scan blindness angle of the infinite array. Therefore, it is clear that the

technique has yielded information regarding the edge effects of a finite array not otherwise

available from an inf,rnite anay analysis, and which is very computationally demanding to

obtain using a full Element-by-Element approach analysis. This information would be very

useful for purposes of practical engineering design of finite microstrip arays.

From the theoretical derivations and extensive applications discussed in this thesis,

conclusions regarding the capability of the Generalised Periodic Green's Function
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technique are drawn in Chapter 8. The relevance of this research to the accurate, flexible

and computationally efficient analysis and design of microstrip arrays in general is

highlighted and certain areas for further resea¡ch are identified.

In summary, the major contributions presented in this thesis are as follows:

A survey of the current methods useful for analysis and design of microstrip antennas

and phased arrays together an indication of their relative merits, is provided.

A new infinite array technique for the analysis of metal strip and microstrip dipole

anays is developed, and which is characterised by:

a

o

a Problem formulation using Electric Field Integral Equations.

A generalised periodic Green's function which is not constrained by the

element geometry and which explicitly models the array's periodicity.

a

a

Numerical implementation using the Method of Moments.

Accurate prediction of the array behavior as testified by validated results.

High computational efficiency to be able to model with minimum idealisations

and to implement on a desktop computer, a microstrip anay with a complex

three-dimensional element geometry comprising as an example, a folded-dipole

radiating element and coplanar strip feedlines on a finite substrate.

Flexibiliry to model discontinuities in the substrate of the microstrip antenna

element, and array elements arranged in both rectangular or triangular grid

lattices.

A technique for accelerating the convergence of the spectral periodic Green's function

has been further developed, together with a technique for integrating this Green's

function over sources distributed in the direction pe¡pendicular to the array plane, so

that th¡ee-dimensional phased Íuray geometries can be efficiently analysed"

A simple and accurate technique for modelling metal strip junctions is presented.

a

o

o

o
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o A spectral windowing technique based on the Finite Array Generalised Periodic

Green's Function is developed rvhich is able to predict the behavior of the finite anay

by operating on the results of the infinite array model"

The phenomenon of feedline-induced and substrate-induced scan blindnesses in the

scanning performance of microstrip phased arrays is described, and various ways to

minimise the scan blindness effect are identified.

The effects of the dielectric substrate on the performance of microstrip arrays is

described and ways to exploit the beneficial effects to optimise the antenna's

performance are also described.

a Extensive practical design examples are used to illustrate the application of the above

modelling techniques, and solutions to design problems for both infinite (representing

very large) and small finite arrays are described.

The key features of accuracy, flexibility and computational efficiency of the Generalised

Periodic Green's Function - Spectral V/indowing technique demonstrate its potential for

modelling microstrip ¿umys in general.
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CHAPTER 2

Methods for Analysis and

Design of Microstrip Arrays

2.I Introduction and Overview

In Chapter 1, microstrip phased ¿rrrays were introduced as a class of antennas suitable for

operation at millimetre wavelengths and for use in a wide variety of military and

commercial applications. Since the invention of the microstrip antenna over 40 years ago

Í16,171, the demand for its application has been increasing rapidly, especially in the last

two decades. The early models used for analysing such antennas were suffrciently

adequate to meet the simpler design needs of the applications at that time. However, in

order to meet the demands of modern system specifications, practical microstrip antennas

have become increasingly more complex and hence require more complex and accurate
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analysis. In line with advances in the technology, the techniques for numerical analysis

need to be sufficiently flexibl¿ to deal with more complex structures and yet be able to

yield accurate results with a minimum of computational resources. Numerical techniques

for such applications which can be implemented on personal computers or workstations

widely available in industry and R&D establishments are desirable. Based on these

considerations, a numerical technique suitable for the analysis of microstip arrays should

desirably have the following characteristics:

Prediction Capability - It should be able to predict the main parameters describing the

characteristics of the elements in an array including the input impedance, radiation pattems,

directivity, gain, effrciency and polarization pattern. This is a primary requirement of the

numerical tool.

o

a Flexibilty - It should be sufficiently general to be able to model a variety of array

configurations which may include:

Arrays with different numbers of elements, ranging from large arrays with

thousands of elements, to small arrays with only afew elements.

a

Va¡ious lattice arrangement of the elements, including rectangular and triangular

grid lattices.

Metallic part of the elements, including striplines and patches, located either on top

or at the side of the substrate.

Substrate or superstrate continuity and homogeneity

o Feed mechanism which may be direct feedlines or electromagnetic coupling.

Accuracy - It should have adequate accuracy for purposes of engineering analysis and

design.

o Computational effrciency - It should place a realistic demand on the computational

resources required for its numerical implementation"

Having surveyed various methods found in the literature which may be used for the

analysis of microstrip antennas and phased arrays, it has been concluded that although each

a

a

a

a
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of these methods has certain unique advantages, none of the methods has all of the above

characteristics to a high degree. Therefore, a new technique for the analysis of microstrip

dipole anays is proposed. The purpose of this chapter is to briefly describe the methods of

analysis found in the literature and to evaluate their suitability for modelling of microstrip

antennas and arrays based on the characteristics listed above. The reasons for the selection

of the krtegral Equation method and the development of a new Generalised Periodic

Green's Fwctiott and Spectral Windowing technique based on this method is also

provided.

2.2 Methods of Analysis for Microstrip Arrays

The development of flexible and numerically eff,rcient techniques for analysis and design of

microstrip antennas and arrays is cunently súll an active area of research. Some of these

techniques have already been developed into Computer-aided Design (CAD) software for

general usage and marketed commercially for applications in industry, defence and

academia. Examples of such software include Ensemble, Micropatch, PCAAD, em and

PATW. As surveyed by Pozar and James [18], the various techniques can be broadly

divided into two groups: reduced analysis methods, andfull-wave analysis methods. Some

of the techniques can be used for the analysis of microstrip antennas only whilst others can

be used for analysing both microstrip antennas and arrays; the distinction will be made in

the description to follow. kr Figure 2.1, a chart is given which provides an overview of the

various methods which fall under these two classes, as well the relationship to the choice of

a specific method as the basis for developing a new technique to be derived in Chapter 3.

The details of the chart a¡e elaborated below- kr this section, each method will be briefly

described and evaluated in terms of its suitability for modelling microstrip phased arays

based on the characteristics of a desirable technique provided in Section 2.1. The survey

will also identify the key issues for the selection of the Integral Equation method as the

basis for developing the new Generalised Periodic Green's Function technique, whose

theoretical basis will be presented in Chapter 3 and whose application to metal strip and

microstrip dipole ¿urays will be discussed in the following chapters.
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Hybrids
and Other
Methods

Methods for Analysis and Design
of Microstrip Arrays

Full-Wave
Analysis
Methods

Reduced

Analysis
Methods

FEM Method
FDTD Method

Cavity model
Transmission Line model
Multi-port Network Model

Integral
Equation
Method

Element-by-Element
vs

Periodic Structure

Dielectric Slab Green's Function
vs

Generalised Periodîc Green's Function

A new technique based on the

Generalised P eriodic Green' s Function

Figure 2.1 : Chart showing methods suitable for the analysis and design of microstrip
antennas and anays
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2.2.1 Reduced Analysis Methods

Reduced analysis methods generally introduce one or more approximations to simplify the

microstrip antenna problem. They are often accurate enough for first cut designs, and have

a clear advantage in terms of computational simplicity and speed. Examples of these

methods include the transmission line technique which models the antenna as a

transmission line section with lumped loads; the cavity model which uses a magnetic wall

boundary condition approximation for the periphery of the patch; and the multi-port

network model which is a generalisation of the cavity model. These models were the hrst

to be developed for microstrip antennas and have been useful for practical design as well as

providing a good intuitive explanation of the operation of such antennas.

Transmission Line Model

Transmission line models treat the microstrip antenna as a loaded transmission line

resonator, and models the patch as two identical resonant slots. Each slot is formed by the

radiating edge of the patch and the ground plane, and has a depth of approximately a

quarter wavelength in the dielectric substrate. The advantage of this model lies in its

simplicity as the resonant frequency and input resistance are given by simple formulas

based on transmission line theory. However its disadvantages [9] include unsuitability for

modelling of arrays and of patches with other than rectangular shape, a need for an

empirically determined conection factor to account for the fringing fields at the radiating

edges, and diffrculty in modelling the feed mechanism. More recent work has attempted to

improved the accuracy of this type of model by various methods such as taking into

account the mutual coupling between the slots and introducing simple analyic expressions

for parameters such as the input admittance [20].
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Cavity Model

In the cavity model, the microstrip patch antenna is modelled as a thin TMz - mode cavity

surrounded by magnetic walls. The electric and magnetic fields between the patch and

ground plane a¡e then expanded in terms of a series of cavity resonant modes 121,221. As

with the transmission line model, the effect of fringing fields at the edges of the patch is

not modelled, but compensated for by means of a correction factor to the resonant patch

length. An effective dielectric loss tangent is used to account for the power lost to

radiation. A va¡iation of the cavity model known as the multi-port network model, divides

the cavity into segments, expands the fields in these segments in terms of eigenfunctions,

and combines the multi-port Z-matrices conesponding to the segments to form an overall

Z-matnx for the structure [23]. This technique is an improvement over the cavity model in

that the feed reactance is built into the theory, but its main limitations are unsuitability for

modelling arays and the effect of thick substrates"

Despite some notable advances that have been made to overcome some of their limitations,

the inherent drawbacks of reduced analysis methods have been:

o Limited accuracy in determining the resonant frequency and input impedance,

especially when dealing with thick substrates

o Limited capacity to handle mutual coupling, large arrays, feed network effects and

multi-layer substrate configurations.

Therefore these methods have not been considered here as candidates to develop a

comprehensive tool for the analysis and design of microstrip arrays.

2.2.2 Full-wave Analysis Methods

Full-wave analysis refers to an electromagnetic solution that includes all relevant wave

mechanisms, allowing the enforcement of boundary conditions to an accuracy limited only

by the numerical implementation of the solution. Hence a full-wave analysis method
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accounts for the dielectric substrate more rigorously than reduced analysis methods in the

analysis of the microstrip antenna problem. Such models include the Integral Equation,

Finite Element (FEM), Finite Difference Time Domain (FDTD) methods. The methods in

this category are accurate and capable of calculating all the relevant electrical parameters of

the microstrip array for a wide range of array geometries including feed networks and

multilayer conhgurations. However, their disadvantages are their greater computational

requirement compared with reduced analysis methods and lower level of user confidence

when experimental or other independent validation is absent.

Integral Equation Method

The Integral Equation method is among the most commonly used full-wave analysis

methods, and a large number of solutions have been developed for specific classes of

antennas. The problem is formulated using the integral form of Maxwell's equations and

usually with a Green's function to account for the mutual coupling. The different types of

Green's functions that may be used has led to the development of a number of different

techniques for formulating the problem within this general method. The integral equations

are discretised to convert them to matrix equations using the Method of Moments. The last

step in this method is the numerical solution of a set of linear equations, which is usually

done with a computer subroutine based on a method such as Gaussian elimination [24].

The solution is a set of equivalent currents from which all the other parameters such as

radiation pattern and reflection coeff,rcient may be obtained. Being a full-wave analysis

method, murual coupling between the sources and all the field effects of the antenna are

explicitly modelled, so that no correction factors need to be applied to the results. The

Integral Equation method has the advantage of being able to predict the behavior of

microstrip antennas and anays with high accuracy, and is suitable for modelling of

microstrip arays. However despite the demonstrated versatility and accuracy, most of the

techniques based on the Integral Equation method suffer from the drawback of requiring

extensive computer time, and from the fact that any change in the geometry such as the

patch shape, configuration of substrate or method of feeding, would require the

development of a new solution.
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Finite Element Method

The Finite Element Method has been used for accurately simulating scattered or radiated

fields from complex three-dimensional objects whose geometry varies on a scale of a

fraction of a wavelength. A region to be analysed is enclosed by bounding walls and

divided into a finite-element mesh, so that electromagnetic fields can be simulated in the

waveguides and cavities formed in the bounded region. The difficulty in applying this

method to radiation problems involving large arrays is that the finite-element mesh has to

be truncated at some large but finite size. Recent extension of this method [25,26] has

coupled the three-dimensional Finite Element (FE) solutions interior to the bounding

surface with an efficient Integral Equation (IE) solution that enforces the Sommerfeld

radiation condition either exactly or approximately. The main advantage of this method is

in modelling objects that do not allow an analytic solution. However, the number of

elements making up the mesh is usually very large, thus making the technique more

suitable for implementation on a parallel processing supercomputer.

Finite Difference Time Domain Method

Like the FEM, FDTD solutions model the entire antenna, including substrate and metal

components, and some of the surrounding volume. The FDTD method is formulated using

a central difference technique for discretizing Maxwell's curl equations in both time and

space, in order to calculate the fields on the nodal points of the discretized finite volume

which surrounds the antenna [27].

The FEM and FDTD methods are both extremely versatile for handling arbitrary

geometries, including discontinuous, multilayer and inhomogeneous dielectrics" However,

they often also require considerably more computing power than the Reduced Analysis

methods and the Integral Equation solution for the analysis of a comparable anay element

geometry. I;n most cases, supercomputer implementation is required by these methods to

produce results within a reasonable time. Hence these two methods are not prefened for

modelling the radiation of microstrip arrays.
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Hybrid and Other Methods

The methods listed in this chapter are not exhaustive, but only represent the more common

numerical methods encountered in the literature. There a¡e a number of other techniques

which may be either a variation of one of the methods discussed above, or represent a

hybrid of two or more of these methods. One of these methods is the Plane Wave

Expansion Moment Method (PWEMM) [28], which is a form of Integral Equation solution

but which does not mahe use of the Green's function. It has been successfully used in the

modelling of infinite arrays of thin-wire radiating elements with feedlines [28]. However,

without a Green's function, it is difficult to adapt this method to model the substrate part of

microstrip antennas and to model finite size arrays.

Summary

Of the two broad classes of modelling techniques outlined above, it may be concluded that

reduced analysis can offer quick and simplified solutions with minimal computational

requirements; but these solutions are inherently less accurate and limited to simple antenna

structures. Hence the approach used in reduced analysis methods are considered to be

unsuitable as a basis for developing a highly accurate and flexible, but computationally

efficient numerical technique for the analysis and design of microstrip arrays. Full-wave

analysis methods offer much bener solution accuracy and flexibility, but generally require

large computing resources in their numerical implementation. h many cases, a

supercomputer is required to evaluate the solutions within a reasonable amount of time.

Among the full-wave analysis methods, the Integral Equation method offers good accuracy

for purposes of engineering design and allows the problem to be formulated such as to

require less computational resources for thei¡ implementation than FE and FDTD methods.

Hence, the Integral Equation method is adopted to develop a new numerical technique

which offers good accuracy and flexibiliry to handle a wide range of microstrip antenna

structures, but at the same time, avoid the high demand on computing resources normally

associated with full-wave analysis methods. A brief description of the important features

of this technique is provided in the next section.

22



2.3 The Generalised Periodic Green's

Function Technique

Integral Equation analysis implemented using the Method of Moments (MoM), is one of

the most commonly used full-wave methods for the analysis of microstrip antennas and

aÍays. Whilst the MoM implementation technique is already well established, there is

considerable scope within the Integral Equation analysis method for formulating the

antenna problem in such a manner as to optimise both the accuracy and efficiency of the

numerical solution. Some techniques produce extremely accurate results, but they usually

also require large computing resources which can often only be met by a supercomputer.

The two factors which determine computational efficiency of the technique to a large

degree are the way that murual coupling between the array elements is modelled, and the

way that the source elements are modelled by the Green's function.

2.3.1 Modelling of Mutual Coupling

It is widely known that electromagnetic coupling between elements has an influence on

anay perforrnance, and that these effects are often significant, particularly if the radiators

are closely spaced. The active impedance is the impedance at the feed port of an antenna

element under conditions where all of the elements of the array are excited to produce a

given radiation pattern. Because of mutual coupling, the active impedance of a phased

array element changes as the elements are excited to scan the beam through different

angles. In the case of finite arrays, the active impedance also depends on the relative

position of the particular element with respect to other elements in the rray. Hence,

mutual coupling effecs produce a number of practical difficulties in the design and

operation of a scanning ¿rrray, and must accordingly be taken into account in any numerical

technique employed to model the array's behavior. There are in general, two approaches to

account for mutual coupling in phased alrays.
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Element-by-Element Approach

The Element-by-Elernent Approacå accounts for the cumulative effect of mutual coupling

between all the elements. The active impedance of an element in an array is therefore

obtained from a knowledge of the self-impedance of the element and the mutual impedance

between neighbouring elements. The advantage of the Element-by-Element approach is

that it may be used to analyse either an isolated element or an array of elements. Although

it does not by itself, yield any insight into the characteristics associated with the periodicity

of an array, the numerical results using this approach serve as a useful check on those of

other approaches. The main drawback of this approach is that the computational resources

required is proportional to the square of the number of elements making up the array. If the

anay has many elements, or if the complexity of the element geometry requires the currents

to be represented by a large number of basis firnctions, a numerical analysis using this

approach would almost certainly require excessive computer resources.

Periodic Structure / Infinite Array Approach

If a phased array consists of a large number of elements, it is convenient to view it as

consisting of two components: a central region and a peripheral region near the edges. The

elements in the central region appear to operate in the same environment, and thus may be

analysed as if they are located within an inhnite array environment. This method, which

has been described by Oliner and Malech among others as the Periodic Structure Approach

[30], incorporates the array's periodicity into the model. A description of the application of

this approach to the derivation of the generalised periodic Green's function is given in

Chapter 3.

In summary, analysis based on the Element-by-Element approach offers potentially

accurate results and flexibility by progressing from the single isolated element to an

element operating in a array which may be of any size. However, its main disadvantage is

the prohibitively high requirement for computational resources to model microstrip ¿urays.

The Periodic Structure approach enables the direct analysis of an element operating in an

infinite array environment, and is computationally more efficient for predicting the
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behavior of elements in the central region of large affays. Chapter 7 will describe a

Spectral Whúowing technique which uses the information yielded by a Periodic Structure

analysis of an infinite aÍay to predict the behavior of elements at the periphery of a finite

array having the same element and lanice structure. It has been found that compared with

the Element-by-Element approach, this two-stage analysis still offers significantly $eater

computational efficiency for the analysis of finite microstrip arrays. For the above reasons,

the new technique to be introduced in this section is based on the Periodic Stn¡cture

approach.

2.3.2 Green's Function Modelling of Sources

In most Integral Equation solutions for microstrip antenna arrays the dielectric substrate is

accounted for in a rigorous manner by means of the Green's function. The Green's

function is essentially the vector potential response to the current sources in the antenna. A

form of Green's function which has been frequently used by Pozar [31] and others for the

analysis of microstrip andennas is known as the Dielectric Slab Green's Function whose

geometry is given in Figure 2.1.

Z

q
Grounded inhnite
slab dielectric
substrate Infinitesimal

current elementInf,rnite

Ground plane

J,

Figure 2.1 : Geometry for an infinitesimal current element on an infinite slab of grounded

dielectric substrate

1
h

X
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Figure 2.1 shows an infinitesimal current element located on the top face of a grounded

dielectric substrate which is infinitely large in extent in the ry plane. The Green's function

has been developed for this single current element on the inhnite dielectric substrate. It has

been shown [32] that this Green's function can also be configured to model an infinite

array of sources; in this form, it is may be described as a Green's function of a periodic

structure. Examples of full-wave analysis models using the Dielectric Slab Green's

function for modelling of infinite arays of printed dipoles and microstrip patches [33,34]

are widely available in the literature.

An alternative Green's function for a periodic structure is the Generalised Periodic

Green's Function of an infinite planar array of regularly spaced sources with uniform

amplitude and linear progressive phase shift. A formal derivation of this Green's function

will be presented in Chapter 3. Although both types of Green's functions are capable of

modelling an infinite array, the distinct differences between them a¡e summarised in Table

2.1 below.

Table 2.1 : Comparison between Dielectric Slab Green's function and Generalised
Periodic Green's function

Dielectric Slab Green's Function Generalised Periodic Green's Function

Dielectric substrate automatically accounted

for by the Green's function - hence, no basis

functions required for the substrate

Green's function is independent of

substrate geometry; substrate is modelled

by volume polarisation currents and

expanded using basis functions

Not suitable for modelling discontinuities of

the substrate

Able to model both finite and infinite

geometry substrates

Assumption of infinite slab substrate is

retained when modelling a f,rnite size array

of radiating elements

Able to model a truly finite array where the

radiating element, substrate and ground

plane are all finite in extent

More diffrcult for modelling layered or

inhomogeneous substrate.

Not inherently constrained by substrate

inhomogeneity
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Of the two types of Green's functions, numerical evaluation of the Dielectric Slab Green's

function appears to be more computationally efficient as basis functions are not required

for modelling the substrate. However, it offers less flexibility for modelling microstrip

arrays with finite substrate geometries. It has been found that the computational efficiency

for the numerical evaluation of the Generalised Periodic Green's function can be

signihcantly improved by other meåns; a detailed discussion of this will be given in

Chapter 4. Hence it was decided to base the new technique on the Generalised Periodic

Green's function which will be derived in Chapter 3.

2.4 Summary

F'rom the considerations outlined in this chapter, it is apparent that the choice of the method

of analysis has considerable impact on the overall characteristics of a numerical technique

for the analysis of microstrip arays. In this chapter, various methods have been briefly

described and evaluated against the desirable characteristics enumerated in Section 2.1. It

is concluded that there is scope for developing a new technique with overall improvement

over the existing techniques in terms of accuracy, flexibility and numerical efficiency. This

new technique is proposed as the Generalised Períodic Green's Function technique which

makes use of the Integral Equation method of analysis, the periodic structure approach and

a generalised Green's function which because it is not constrained by the element geometry

offers better modelling flexibility than the Dielectric Slab Green's function. This chapter

has therefore provided the context for the development and application of the Generalised

Periodic Green's function technique in the chapters to follow. Over the last four decades, a

proliferation of many innovative microstrip antenna designs have emerged to meet a wide

variety of applications. The models presented in the thesis are not intended to be

exhaustive, but to demonstrate the technique's potential for flexible, accurate and

numerically effrcient modelling of a wide variety of microstrip arrays to meet the

requirements of engineering design. Therefore, the proposed technique widens the options

cunently available for the analysis and design of the new generation of microstrip phased

array antennas to meet the demands of modern applications.

27



CHAPTER 3

The Generalised Periodic

Greents Function: f)erivation

and Properties

3.L Introduction and Overview

In the last chapter, a brief survey was presented of various methods that may be used for

the analysis of microstrip antennas and aûays. It was concluded that a full-wave analysis

using aGeneralised Periodíc Green's FunctíonTechnique based on the Integral Equation

Method offers the advantages of good engineering accuracy, flexibility to handle anay

elements with substrate discontinuities, and potential computational effrciency to enable

implementation on a desktop computer. The kernel of the technique developed in this

thesis is the Generalised Periodíc Green's Fwtction. An in-depth understanding of this
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Green's function and its properties enables the technique to be efficiently applied to the

analysis of both infinite and finite arrays. In its basic form, the Green's function refers to

infinite affays; hence the technique using this Green's function by implication adopts an

infinite amay approach to the solution of the problem. However in Chapter 7, a form of

the Generalised Periodic Green's Ftutction for a Finite Array is derived and developed

into a technique to solve the finite array problem.

A description of some of the properties of the periodic Green's function can be found in a

number of references in the literature [35,36,37,38]. However, the discussion in these

references is focused on the mathematical properties of the Green's function rather than the

implications for analysis of antenna arrays. Furthermore, the Green's function described in

the literature applies only to structures where the sources are spaced at regular intervals in

the aperture plane to form a rectangular grid lattice. In practice, it is also possible to

arange the sources at regular intervals into other types of lattices such as a skewed [39] or

triangular edd t401.

In this chapter, a method of deriving Íhe Spatial and Spectral forms of the Generalised

Períodic Green's Function for a rectangular grid lanice will be presented. The analysis

will be extended to the derivation of these two forms of the periodic Green's function for a

triangular grid lanice, which will be used in Chapter 5 for the analysis of phased anays

arranged in a triangular grid. Some of the properties of the Generalised Periodic Green's

Function will then be described in relation to practical phased anay modelling. Based on

the theoretical concepts developed in this chapter, the Generalised Periodic Green's

Function Technique is described in Chapter 4 and applied to the analysis of infinite ¿urays

of metal strip structures and microstrip dipoles in Chapters 5 and 6, respectively.
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3.2 The Spatial Periodic Green's Function

Figure 3.1 shows an infinite planar array rvhere the elements are scalar point sources

arranged in a rectangular grid lanice and spaced at regular intervals å and d apart in the ¡
and y directions, respectively. The point sources have identical magnitudes and a linear

progressive inter-element phase shift in the ry plane such that a plane wave is propagated

away from the array in the (0, 0) direction.
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Figure 3.1 : An infinite planar anay of point sources arranged in a rectangular grid lattice

Each point source is located within a unit cell which is enclosed by the cell boundaries

represented by the dashed lines in the diagram. As described by Jorgenson and Mittra [37],

the spatial periodic Green's function is defined as the vector potential response at a point

P(x,y,z) due to the infinite array of sources f , each of which is located at (x',y',7') in the

(m,n)th unit cell. The array of unit amplitude phase-shifted sources may be represented

mathematically as a product of phase-shifted Dirac delta functions as follows:

oo

o

ooo

J(x, y, z) = 2 I At, - x' - mb)ô(y- y' - nd) õ(r- z') s-ik"'b e-ikînd
m=< n=<
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where k, = kosinî cosQ and fr, = kosin9 sint are the components of the free-space wave

propagation vector, /<¿, in the.r and y directions respectively; and the exponentials represent

the linear phase shifts. The Dirac delta functions are used to denote locations where the

currents exist, and do not imply infinite currents at these locations. The spatial form of the

periodic Green's function for a rectangular grid lattice is then given by the integral of the 3-

dimensional free-space scalar Green's function over the sources:

6vatial =JJ
: o-jkor
I 
- 

J(x,y,z) dxdy dz' +îlr
æ ^-ihr^

= t t e' "-- 
e-ikrnb e-ikrn¿,L¿ Lt ó.tr

m=4n=< ttwmfl

(3.2)

where r ='m (* - t' - *b)' + (y - y' -nd)' +(z- z')' , ild each term in the double

summation refers to the contribution of the point source in the (m,n)th cell to the periodic

Green's function. The superscript and subscript of the symbol G refers to the spatial form

of Green's function, and the fact that it is an infinite array Green's function, respectively.

Unless otherwise stated, the Green's function should be taken as referring to an infinite

array in a rectangular grrd lattice.

It should be noted that the infinite array Green's function defined in (3.2) describes only

one point source in each unit cell" If the radiating element in each unit cell consists of

distributed sources, then the Green's function may be integrated over all the sources

making up the element. Hence (3.2) describes a generalised periodic Green's function in

the sense that it is not constrained by the geometry of the array element. An important

implication of this is that when this Green's function is applied to the modelling of

practical phased arrays, the technique is also not constrained by the geometry of the anay

elements.
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3.2.1 Spatial Periodic Green's Function for a

Triangular Grid Lattice

The periodic Green's function derived in Section 3.2 applies only to an infinite array in

which the elements are arranged in a rectangular grid lattice. Although the rectangular grid

lattice is probably the simplest to analyse, it is not optimum in terms of avoiding a grating

lobe which is the scan angle at which a second main lobe emerges in the radiation pattern

of the array. ln general, it is possible to arrange the elements of the array in an alternative

grid shape such as a skewed grid of which a special case is the triangular grid. The ability

to modify a chosen $ating lobe is extremely useful in array design, and certain types of

grid lattices allow substantially wider inter-element spacings and consequently the use of

fewer elements to achieve the same scanning effect. Sharp [a0] has found that by

ananging the elements of a phased array in a triangular pattern, the number of elements

needed is reduced by as much as I3.47o compared with the rectangular grid lattice, for no

grating lobes at the same scan angle of the main beam. Hence it is useful to extend the

periodic Green's function analysis of infinite ¿urays to include a triangular lattice because

of its practical design advantages. It is also noted that a number of infinite array analyses

given in the literature that are useful of comparison of results, are based on triangular gnd

lattices. It is therefore important to develop models which can be configured for the

triangular grid lattice, so as to be able to validate their accuracy by comparison with these

results.

Figure 3.2 depicts a triangular grid lattice where the rectangles and circles both represent

the point sources of the infinite array. In this lattice, the columns of sources are separated

by a distance b, and the rows of sources a¡e sepa¡ated by a distance d. In order for a plane

wave to be propagated away from the array in the direction (e,Q), a linear phase shift of åk,

is imposed on the sources between adjacent columns, and dk, is imposed on the sources

between adjacent rows, where k, = kosin]cosQ and k, = kosin) sínþ .
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Figure 3.2 : An infinite planar array of point sources arranged in a triangular grid lattice

The derivation of the triangular grid lattice recognises two superimposed rectangular sub-

lattices in the grid, one sub-lattice represented by the rectangles and the other represented

by the circles in Figure 3.2. In each of these sub-lattices, the point sources are arranged

with inter-element spacings of 2b and 2d, respectively in the x and y directions. One of

these sub-arrays is centred on the reference element shown by the black rectangle in Figure

3.2, whilst the other is offset by a distance å and d away from this element in the x and y

directions, respectively. The sources in the triangular grid lanice may be represented as the

sum of these two rectangular grid suÞanays as follows:

J(r, y, z) = J r(r, y, z) + J z(*, y, r) (3.3)

where,

lõçx - x' - zmb)ô(y - y' - ?nd) e-ik'2nb e- ik,'znd õk- z') (3.3a)

o

trl

n=4
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Jr(t,y,z) = I >ô(r - x' -p.m- tþ) A(y - y' -lzn-tþ) r-ik'(2n-t)b
tfl=<n=<

,-lkr(2n-r)d õk_ Z)

The sources shown as rectangles in Figure 3.2 are represented by (3.3a), whilst the sources

shown as circles are represented by (3.3b). The spatial form of the periodic Green's

function for a triangular grid lattice is then obtained by integrating the free space Green's

function over the sources, as follows:

(3.3b)

(3.4)

7

GY,i*'= iii # I (x,v,z) dx dv dz

= i t + e-i(2kinb+2k)'nd)

m=<rl=< 47Trr*,

* i f e-iko'z'" 
r-ir.k,(2m-r)b+k,(2n-l)dr

^:*^a 4nro,-

where ft^n = (r- r' -2mb)2 + (y - y' -2nd)2 +(z- z')'

and r^ ='¿mn (x - x' -Í2m- 1þ)' + (y - y' -l2n - l)d.)' + (z - z')'

The symbol for the Green's function, G has a superscript denoting the spatial form of the

Green's function, a subscript with symbols - implying that it is for an inhnite array, and f

in the subscript implying that it is for a triangular grid lattice. The derivation can also be

extended to a skewed gnd lattice, if required. The spatial form of the periodic Green's

function is related to the spectral form by a Fourier transform. The next section will derive

this spectral form for both the rectangular and triangular grid lattices.

3.3 The Spectral Periodic Green's Function

In Section 3.2, the concept of a phased anay was represented by an inf,rnite planar array of

point sources with periodic spacing and imposed with a progressive linear phase shift. The

periodicity of the array is described by the regular spatial separation of the elements.
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Hence the Green's function derived is known as the spatial form of the periodic Green's

function. Consequently, the use of the generalised spatial periodic Green's function in the

analysis of practical phased anays is commonly known as spatial domain analysis.

However, Wheeler has shown 141,42,431that it is also possible to idealise a phased array

as a planar electric current sheet which is the limiting case of many small electric dipoles,

closely spaced, and backed by an open+ircuit boundary, as shown in Figure 3.3.

H Plane Scan E Plane Scan

Electric wall

H
\ Z H

o,\

O ¡1'- Hr+
Yo/ X

-J +
<-b+ +d
(a) Plane of scan shorving the current sheet and magnetic field

current
sheet

pomt
source

o

(b) Plane of anay, showing a unit cell of current sheet and the equivalent point source

Figure 3.3 : An idealised model of a planar aÍÍay, made of an electric current sheet

o
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The infinite array of point sources in Figure 3.1 is idealised as an electric current sheet

located at the aperture plane of the array, as shown in Figure 3.3. The region above the

aperture plane is the radiation region. The region below the aperture plane is assumed to

be an open circuif reflector which is characterised by permittivity given by e - 0 and

permeability given by p - .". The current sheet has a current density ,I of uniform

amplitude, but phased for radiating a plane wave in a direction at an angle 0 from

boresight, where boresight is defined as the direction normal to the aperfure plane. The

current density is associated with a magnetic intensity Il, of equal amplitude and phase,

but perpendicular to the direction of the current. Owing to the imposed phase shift and the

symmetry of the ¿uray, the unit cell of dimensions b and d can be assumed to be bounded

by electric and magnetic walls which have no effect on the field distribution. However,

once the walls are present, the field outside the unit cell may be ignored because all mutual

coupling effects of the neighbouring elements a¡e inherently taken into account. Hence the

current sheet in a unit cell which is bounded by the electric and magnetic walls, radiates in

the direction of the rube formed by these walls. The cunent sheet representation of the

infinite array of point sources enables a different form of the periodic Green's function to

be derived, as described below.

The mathematical representation of the infinite array of point sources given in (3.1) may be

converted into the current sheet representation of Figure 3.3 by means of the Fourier

transform. kr this section, extensive use will be made of the two dimensional Fourier transform

pair, which is given by:

- i(Þ,t* F,t) dx dy (3.5a)F(p,,p,)= jj r{,,r¡,

I I F@,,þr)r*t'þ"*þ" dþ,dþ,f (x,y)=# (3.5b)

whereflx,y) is a function in the spatial domain and F(þ,,þ,.) is the Fourier transform of

flx,y). Applying the Fourier transform in (3.5a) to (3.1), the current expression becomes:
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i $,,þ r,z)= j i J(x,y,z) 
"-iL'++Þ't' 

dt dy

j j I rø ,, þ ,,2) ,+i(þ'x+þ'1-' dp, dþ,

=#à"åut'' -!tõG,-+' (3.6)

(3.7)

(3.7a)

(3.7b)

,-ik,(x-x') ¿'iÞ,t' r-lÅr(r-l') r-iï{' õe - Zr)

The inverse Fourier transform in (3.5b) returns the expression to the spatial domain:

J(x,y,rl =fi
= # àiatÉ, -Tr riÞ'G-x') ¿p, s-ik'('-'')

ï õ$, -T¡ "iÞ 
t-t't dþ, ¿-ik,(t-Ð 57r- r',

m=< n=<

1

I L ,tr'^('-'') ,iþ'-,{t-t) 5çr-rt¡
bd

where þ,^ =2mrf b - k, and þ r^ =2nxf d - kr. It can be seen from (3.7) that the sources

are represented as an infinite sheet of current located at the aperture plane z = z'of the

array, and described by the integer values of rn and n. Since the summations over m and n

are inf,rnite, it is possible to re-express the above current expression in a more convenient

form:

J(x,y,O:# 
à,Lr-to'^(x-x') 

,-ik''n 
()-)') õk- z')

where k,^ =Zmxf b + k, and kr, -2nrcf d + k,

For a point on the current sheet representing the infinite array, the Green's function

satisfies the inhomogeneous scalar Helmholø equation. SommerfeldÍ441has shown that

separation of variables in rectangular coordinates yields the one dimensional Green's

function in the z dimension for a unit source at a point z':

Gk.z)= 
I 

,-lkztz-z'l'zjk,
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where þ is the wave propagation vector in the z direction. Summing the response at a

point (ay,z) due to all the point sources in the current sheet by combining (3.7a) and (3.8)

yields the spectral form of the periodic Green's function:

G specnal 1

bd m=4 n-_4

- ikr^(x-r') -.¡kr., (r-l') - ik" lz-z'l
-.Me e (3.e)

G

where the wave propagation vector in the z direction, k,_ = tcl - t<',^ - t<1, for the

propagating wave condition tcl > kl, + kl., , and k,- = i tc'z,^ + tcl.^ - tcl for the

evanescent wave condition k: . k:^ * k:,. The Green's function in (3.9), and

consequently the plane waves propagating away from the infinite array exist only for

discrete values of ln and n. Hence, the set of integer values for m and n corresponds to

what is commonly referred to as the (m,n)th Floquet mode of the array. The generality of

the Green's function in (3.9) is the same as for that in (3.2) since it is not constrained by the

array element geometry. As (3.9) is periodic for a set of discrete wave propagation vectors

described by (3.7b) rather than in the lattice spacings, it is known as the generalised

spectral periodic Green's function. Consequently, the use of this Green's function in

practical anay analysis is referred to as spectral domain analysis.

The above derivations of the spatial and spectral forms of the periodic Green's function

have been obtained by using either an infinite array of point sources (spatial domain) or an

inlrnite current sheet (spectral domain) representation of the periodic structure. It is also

possible to transform the spatial form of the periodic Green's function directly into its

spectral form by using the Poisson Transformation as suggested in [38]. A full derivation

of the Poisson transform method is given in Appendix B for completeness.
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3.3.1 Spectral Periodic Green's Function for a

Triangular Grid Lattice

The procedure for transforming the spatial form of the periodic Green's function for the

triangular grid lattice into its spectral form is similar to that for the rectangular grid lanice

shown in Section 3.3. By applying the Fourier transform to (3.3) which is the point source

representation of the infinite array for the triangular grid, and then applying the inverse

transform to return to the spatial domain, the cunent sheet representation of the array is

obtained" It is noted that the triangular grid lanice is made up of two rectangular sub-

lanices in which the source representations are given by (3.3a) and (3.3b), respectively.

Application of this analysis procedure for the hrst sub-lattice represented by (3.3a) is

straight forward, and the result is given below.

I
J,(x,!,ò = deo)å,å 

e-jr'nF-x') 
"- 

jk" ()-)') õk- z') (3.10)

where k,. =Zmr I (Ú)+ È, and È-,, = 2ntt / (2d) + k,

The form of (3.10) is evident because the rectangular sub-lattice represented by the small

rectangles in Figure 3.2 has inter-element spacings of 2b and2d, respectively in the x and y

dimensions; and the reference element is located at the origin of the coordinate axes. The

derivation ofthe current sheet representation ofthe sources for the second rectangular sub-

lattice given in (3.3b) is not as straight forward, and a more detailed description is given

below. Application of the Fourier transform to the point sources representation of the anay

in (3.3b) leads to the following:

i,(þ,,þ,,.)= i t I iuf" -x'-lz^-rþ)a(r -y'-[zn-tþ)- (3.1 r)m=-æm=..€4<

õ(,- z'¡e-iÞ,'r- ik'(2n-t)b r-iÞù r-ik,{zn-t)d dxdy

The above expression needs to be simplified and ananged into a form suitable for an

inverse transformation to be applied- By using a change of variable u = x-x'+b and v = y-

y'+d , (3.11) becomes:
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Í r(þ,, þ r, r) - i r"(þ,, þ r, r) . i r(þ,, þ r, r) õ(z - z')

where,

lr"(þ',þr,z) õ(u -2mb)e-iþ'u du

(3.12)

(3.12a)

(3.12b)

(3.13)

= i i y 
¿( n - -^o\r-io'G'-b)"-ik'(zn-t)bi-:=-b \" b )

7*(þ,,þ r,z) = 6(v -znd)e-iþ¡u dv

m=<¡=<d

tn=<n=€...Ð

riï

rrï

I Fr(þ ',þ r,z) si(Þ"*P'Ðdþ dþ,

= à ^\i 
u(u, - i)'- " "' 

-"- jk' (2n-') d

The regular spacings between elements in each dimension of the infinite ¿uray may be re-

expressed as (2m-1)b = x-x' and (2n-I)d = y-y'. Taking the inverse Fourier transform of

(3.12) returns the expression to the spatial domain, but in a current sheet representation:

J r(x,y,z) = #

By summing the equations for the current sheet representation of the sources for the two

rectangularsub-latticesgivenin(3.10)and(3.13), thesourcesoftheentiretriangulargrid

lattice may be represented by:

J (x, y,z) = J r(x,y,z) + J r(x,y, z)
(3.t4)

=h 2i jafÉ, -Tr riÞ'G-x'+b)¿p, ¿-ik'('-'').

Ï ,,B, -Çl ,i|"t-r+d) oU, e-ikto-t) õe- z)

= i. i. -1- ,-ik,.(x-x') ,-ik,,(s-t) 
"i(n+n)x 

õk-2,)
Ê'*,"-4bd

t t + "-ik'.(,-x') "-i*ntt-t1f1* "i(n+ùxfõç- z,)
ÊL,u-4bd

The one-dimensional Green's function for a source point on the current sheet is given by

(3.8). Summing the response at a point (x,y,z) due to all the source points in the current
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sheet, the spectral form of the periodic Green's function for the infinite array in the

triangular grid lattice shown in Figure 3.2 is given by:

G:'ln,o,=ååù6,_ikx^G_x,)e_jk,n0-t,),_ikz^V-z,|

[1* 
"t'*""1

(3.15)

The form of the periodic Green's function is similar to that for the rectangular lanice in

(3.9), which is reproduced below for direct comparison:

tspecrralG
I

e
- ikr^(x-x') - jkrn(l-l') - ik. V-z'l-.me e

nr_...€n=< 2 ik_ bdu1m

In comparison with the spectral periodic Green's function for the rectangular lattice, it is

noted that the differences in (3.15) are the term within the square brackets representing the

contribution of the two rectangular sublattices, the lattice par¿rmeters at the denominator of

the first term now given by 2b and 2d, and the wave propagation vectors given by

k,^ =2mnf 2b + kosin1cosQ und k.r; =2nnl2d + kosin1stn@. It should be noted that the

term within the square bracket has a value of zero whenever (m+n) is odd, and a value of 2

when (ln+n) is even. This result has implications in both the spatial and spectral domains.

In the spatial domain, m and n represent the elements of the infinite array, and a zero value

of the Green's function for odd values of (m+n) corresponds to the absence of an element

at that location in the spatial pattern. h the triangular lattice shown in Figure. 3.2,it can be

seen that for an odd value of (m+n), there is no element at a location correspondingto mb

units of distance along the x axis and nd units of distance along the y axis from the

reference element in either the positive or negative direction. The more important

implication of this phenomenon is in the spectral domain in relation to grating lobes, and

this is described in the next section.
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3.4 Properties of the Periodic Green's

Function

In Section 3.2,the spatial form of the generalised periodic Green's function for both the

rectangular and triangular grid lattices were derived. kr Section 3.3, it was shown that the

point sources representation of the infinite array may be idealised using a current sheet

representation. It was also shown that by application of the Fourier transform, the spectral

form of the periodic Green's function could be derived from its spatial form. In general, it

is readily possible to transform the periodic Green's function of an infinite array from one

domain into the other. The two forms of this Green's function, however, have uniquely

different properties. In this section, and in the next chapter, some of the more useful

properties of the periodic Green's function will be described and related to practical array

analysis. The f,rrst two properties described below relate to the computational effort

involved in the use of the Green's functions; they are briefly described in this section, and

then illustrated using numerical modelling data in the next chapter to show the extent of

computational efficiency that can be achieved. The other properties are fully discussed in

this section.

3.4.1 Integration over the Sources

htegral equation method analysis of metal strips and microstrip phased ¿urays generally

employ the Electric Field Integral Equation to solve for the unknown currents on the metal

parts (radiating element and feedline) and dielectric part (substrate) of the array element.

This is normally done by expanding the unknown currents as a set of basis functions to

discretise the integral equation and satisfy boundary conditions on the electric field

scattered by these currents. The solution of the integral equation so obtained involves an

integration of the Green's function over the basis functions. The use of the spatial periodic

Green's function requires the integration to be evaluated numerically. Numerical

integration is computationally time consudng, especially if the anay element is modelled
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by a large number of basis functions. In contrast, the spectral periodic Green's function

enables the integration to be evaluated in closed form provided that the basis functions

used in the analysis are analytically integrable functions. In Chapter 4, this property of the

spatial and spectral forms of the periodic Green's function will be illustrated by way of an

analysis of an infinite array of horizontal metal strips. For this reason, a form of the

generalised spectral periodic Green's function has been used in the all numerical models

reported on this thesis.

3.4.2 Singularities and Numerical Convergence

Two important properties of the generalised periodic Green's function in relation to its

application for phased array analysis, are its síngularitíes and numerical convergence

characteristics. The meaning of these two terms are explained below. For convenience,

the two forms of the periodic Green's function given in (3.2) and (3.9) are reproduced here

to illustrate their properties.

Gswtiat - I > -ik,ú e-ikrnd
m=4n=4

(3.r6)

(3.r7)GsPectral :# ii
m=< fl=€

- jkr^(x-x') - jkrno-t,) - ik, lz-z'l-.m
e e

where the parameters r- - (*-r'-*b)' +(y- y'-rd)' +(z- z')2, k,-kosin?cosþ,

k,- = kosin? sinQ , k,^ 2mrf b + k," kr, =2nxf d + kri k* =- r!. + *i. - ft, for the

evanescent wave condition &02 . k',^ n tcl. . lt should be noted that in the case of (3.16), the

summation is over the point sources of the infinite aûay, whereas the summation in (3.17)

is over the Floquet modes of the inhnite current sheet representation of these sources. A

singulariry exists when the value of the Green's function tends to infinity and cannot be

accurately stored by the computer. h the numerical implementation of either of these

Green's functions for the modelling of practical phased arrays, there is a need to truncate

the double inf,inite summation at a large but finite value. Numerical convergenc¿ refers to
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the number of terms of the summation that must be used in order that the Green's function

may be accurately evaluated in the numerical solution.

It may be seen from (3.16) that the spatial Green's function has a singularity when h,n = 0.

This can only happen when the field point is at the same location as the source, which

requires the condition z = z'. This is known as the on-plane condition when the

observation point lies in the array planc. Furthermore, when 0 + 0, k, -> kscos@ and k, +

kosin\, so that for negative values of tn = -m' aîd n = -n', the two exponential terms

representing the phase shifts in (3.16) become ,ln'bwos| ^¡ ,in'dkosin,, respectively. It

is apparent that the contribution of these two exponentials do not decay with increasingly

large but negative values of m and n. This explains the poor convergence of the Green's

function for large scan angles. In summary, the generalised spatial periodic Green's

function has a singularity for interactions rvhich satisfy the on-plane case, and a poor

convergence property for large scan angles.

In the case of the spectral periodic Green's function, it is apparent from (3.17) that the

Green's function is singular when kr* =0, which occurs for Floquet mode (0,0)

conesponding to grazing scan angle, 0 = 90o- In the on-plane case defîned by 7 = 7' , it

may be shown that the summand in (3.17) va¡ies as (e-i^t' ,-inry) m2 + n2 which

does not decay for Floquet modes corresponding to large but negative values of m a¡d n.

Hence, the Green's function is again slowlyconvergent. In summary,it has been shown

that the generalised spectral periodic Green's function has poor convergence in the on-

plane condition and has a singularity at the grazing scan angle.

The two forms of the periodic Green's function form a Fourier transform pair, and the dual

nature of their singularity and convergence condition is well established [37]. The amount

of computational effort required in the periodic Green's function technique is largely

determined by the numerical convergence of the Green's function. It has been shown

above that the periodic Green's function has very different numerical convergence
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properties in the spatial and spectral domains. Hence, the flexibility to work in either or

both domains makes it possible to use a particular form of the Green's function in a region

where it does not exhibit poor convergence, so that a computationally efficient numerical

solution can be obtained. A detailed discussion of how this is achieved will be presented in

Chapter 4, in the context of modelling an infinite array of horizontal dipoles.

3.4.3 Propagation Floquet Modes and Grating Lobes

Under certain circumstances, a phased aûay may have a grating lobe which is an additional

main beam appearing in the radiation pattern of the array. The existence and prediction of

grating lobes for rectangular grid lattice arays is well understood and may be found in the

literature. However, a description of the spectral periodic Green's function's grating lobe

prediction capability is useful for validating the results of the technique that will be

discussed in the next chapter. The spectral periodic Green's function given in (3.9) is

governed by the propagating wave and evanescent wave conditions, given respectively by:

k3 > kl^ + kj^ for the propagation condition (3. I 8a)

k3 <kl^+k2r^ for the evanescent condition

The numbers of the (m,n)th Floquet modes for which the integers m and n satisfy the

propagating wave condition are refened to as the propagation Floquet modes- Each of

these propagation Floquet modes corresponds to a lobe in the array's radiation pattern. If

the expression for the wave propagation vectors in the x and y directions,

k,^ 2mxfb+kosin?co.s@ and kr,=2nnf d +kosin1sinþ arc substituted into (3.18a), the

following inequality is obtained:

(3.18b)

(3.1e)+ 2síno (#,"' r . *'*r)< cosz e

The term on the right hand side of the inequality has a maximum value of I when 0 = nn

and a minimum value of 0 when 0 = nn l2 . These two conditions correspond respectively
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to the boresight scan angle, which is the scan angle normal to the array plane and the

grazing scan angle, which is the scan angle along the plane of the array. At the boresight

scan angle, the propagating wave condition reduces to:

I

(3.20)

It is evident from this expression that so long as the inter-element spacings å and d are both

less than the wavelength i" then rn and n can each only take a value of 0 for the above

condition to be satisfied. In this case, mode (0,0) is the only propagation Floquet motle ancl

consequently, there is only one lobe in the radiation pattern of the array at this scan angle.

All the other integer values of rn and n in the spectral periodic Green's function satisfy

(3.18b) and are referred to as the evanescent Floquet modes. Conversely, if either b or d is

greater than one wavelength, then there would be more than one propagation Floquet

mode, and the array would have grating lobes at the boresight scan angle. Of course in

practice, a phased anay is used for scanning to angles other than boresight, and the

limitation on inter-element spacings for avoiding grating lobes is more stringent than one

wavelength.

The prediction of $ating lobes for all possible scan angles is achieved by setting 0 to 90'

(which is the grazing scan angle) in the propagating wave condition given by (3.19), so

that:

,n2À? ,r2fr_-* ^ (I
b' d'

+(+ + z c o s Q). +(+ + z s in Q) < o (3.21)

This condition is fulfilled if the following more stringent inequalities are satisf,red together:

(3.22a)

(3.22b)

It is evident that (3.22a) is satisfied for m -- 0, and for negative values of ¡¡t such that the

term within the bracket is positive. This would lead to the condition:
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(3.23a)

which is seen to be dependent on the integer m and the scan plane described by p. The

smallest non-zero value of b in (3.23a) is given by À12 when rn = -1 and C = 0. kr the

same way, (3.22b) is satisfied for n = 0, and for negative values of n such that the term

within the bracket is positive, so that:

) 
*," (T,",,.*,*r)<,o,' e

(3.23b)

Again, the smallest non-zero value of d in (3.23b) is given by ÀJ2 when n = -l and ø = tdZ.

The physical meaning of these results is that a second lobe (the first grating lobe) will

propagate at the grazing scan angle if b = d = ÀJ2 which is the well known grating lobe

condition [45,46]. The Floquet mode associated with this gating lobe is either mode (-1,0)

in the d = 0 plane, or mode (0,-I) in the Q = td2 plane.

GRATING LOBES FOR TIIE TRIANGI]LAR GRID LATTICB

The analysis for predicting the grating lobes of the infinite array in a rectangular gnd lattice

can also be applied to that in a triangular grid lanice. In the case of triangular grid lattice,

however, the wave propagation vectors in the ¡ and y directions associated with the spectral

periodic Green's function in (3.15) are given by k,^=mnlb+kosinfuosQ and

krn=nnfd+kosín1sinQ. Using the same procedure of analysis as before, it can be

shown that the propagating wave condition for the triangular grid lattice is given by:

mz Lz ,2 L2

-J--

4b2 '  d',
(3.24)

The prediction of grating lobes for all possible scan angles is achieved by setting 0 to the

grazing scan angle (ie,0= 90"), so that the above inequality reduces to:
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(3.2s)

The above condition is fulfilled if the following two inequalities are simultaneously

satisfied:

(#){(*) .'-'o} . (*){(*) * 
"n' 

o} = 
o

(#){(#ì*'-'o}=o

(*){(*)*"''o}=o

(3.26a)

(3.26b)

where rn and n can take integer values from -- to +"". Considering the @ = 0 plane for the

moment, it is evident that (3.26b) is satisfied only by n = 0. Equation (3.26a) is satished by

m = 0 and negative values of lz which satisfy the following condition:

yr?ùt e.z7)
4

which has as its solution all negative values of m. However, it is noted that the spectral

periodic Green's function for the triangular lattice represented by (3.15) is zero for values

of m and n such that (m+n) is odd, and consequently an additional condition is that (m+n)

should be an even value. Since n = 0 is required to satisfy (3.26b), m = -l cannot be used

for this reason, and therefore, the next negative value of rn which satisfies (3.27) is m = -2"

The Floquet mode associated with this value of m is mode (-2,0) and corresponds to the

first grating lobe for the triangular lattice with å = )J2. By considering the Q = ilZ plane, it

can be shown that the first grating lobe emerges with d = À12. Since the inter-element

spacings for a triangular grid lattice are 2b and 2d in the r and y directions respectively, no

grating lobes will emerge for inter-element spacings of i, or less.

The above discussion highlighs the fact that the expression for the spectral periodic

Green's function contains the information in the Floquet modes from which the grating

lobe condition may be derived. This information is useful not only for prediction of grating

lobes but also for design of periodic lattices in which grating lobes are avoided.
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3.4.4 Contribution of Floquet Modes to

Active Impedance

For a phased array, the active impedance is defined as the impedance at the feed port of an

antenna element under conditions when all of the elements are excited to produce a given

radiation pattern. In the periodic structure analysis of phased arrays, the contribution of the

Floquet modes to the active impedance of the array is well documented in the literature

[37]. The propagation Floquet mode (or modes, if grating lobes are present) contributes to

the real part of the active impedance. The reactive component of the active impedance

involves all the higher, non-propagating Floquet modes which satisfy the evanescent wave

condition in (3.9). It was shown in Section 3.4.1 that when no grating lobes are present,

the only contribution of the spectral periodic Green's function to the active resistance is

from the term associated with Floquet mode (0,0). The wave propagation vector in the z

direction for this Floquet mode is given by:

k-=
¡{x)

kocos0k3 -k'"-klo= (3.28)

As the scan angle Q -+ ¡c12, then by (3.28), k^ + 0. ttris is the singularity condition of

spectral form of the periodic Green's function described in Section 3.4.2. In the absence of

grating lobes, an inhnite value of Green's function would lead to a zeto active resistance"

This result is consistent with physical reality because when no grating lobes are present, the

real part of an infinite array's active impedance must be zeÍo at the grazing scan angle

since no real power can propagate away from the array at this angle. This condition of zero

active resistance at the grazing scan angle applies to all types of infinite arrays, and has

been found to be very useful as a check against erors in both the analysis and numerical

implementation of the various infinite array models discussed in the next three chapters.
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3.5 Summary

In the course of developing the theoretical basis for the analysis and modelling of various

types of phased anays in the following chapters, the contributions of this chapter are in:

Deriving the spatial form of the Generalised Periodic Green's Function for an infinite

planar anay in both a rectangular and a triangular grid lattice using a point sources

representation, and the spectral form using a current sheet representation of the array.

Describing the properties of the Generalised Periodic Green's Function and relating

them to practical aspects of phased array modelling such as computational efficiency

and avoidance of grating lobes.

Deriving and describing the implications of the singularity and convergence properties

of the two forms of the Generalised Periodic Green's Function.

ç

o

a

The insight gained and the techniques developed in this chapter have been applied to the

analysis and modelling of inf,rnite arays of metal strips and microstrip dipole antenna

elements which will be discussed in the next three chapters. The theoretical work

discussed in this chapter also forms the basis for the development of a technique for the

analysis of finite ¿urays, using an infìnite array approach; this technique will be presented

in Chapter 1 and illustrated using numerical examples of metal strip and microstrip dipole

finite arrays.
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CHAPTER 4

Generalised Periodic Green's

Function Analysis of

Infïnite Arrays

4.1 Introduction and Overview

In Chapter 3, the theoretical basis of the Generalised Periodic Green's Function technique

for modelling microstrip anays was established. The spatial and spectral forms of the

generalised periodic Green's function were derived for an infinite anay of point sources in

rectangular and triangular grid lattices" The properties of this periodic Green's function

which a¡e relevant to practical phased array modelling, were also described. At this point

the analytical tools necessary for the application of this technique to the analysis of an

inf,inite phased array have been assembled. As described in Section2.2.2, high accuracy
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may be achieved with this technique subject to constraints on the discretisation of the

geometry, because it is based on a full-wave solution of the problem. The relative merits of

this technique as compared to the others in the same class of full-wave solutions would

therefore depend largely on the numerical effrciency of the overall solution.

The puqpose of this chapter is to describe horv the technique is applied to the analysis of a

phæed array problem. The problem is analysed in two stages:

Problem formulation using Electric Field krtegral Equations.

Numerical implementation using the Method of Moments.

h both of these stages, techniques to maximise the computational efficiency of the solution

are described and illustrated with numerical data by using a relatively simple model of an

inhnite anay of horizontal metal strip dipoles above an infinite ground plane. Apart from

its simplicity, the dipole array model is also chosen because numerical results from other

sources are available for validation, and because it forms a basic building block for

modelling other more complex structures which will be described in the later chapters. In

the first case, the horizontal dipoles are modelled as thin metal strips orientated with their

faces parallel to the array plane. This orientation of the metal strip is simpler to model as

the equivalent currents representing the anay elements are not distributed in the direction

perpendicular to the array plane.

Finally, as a prelude to the modelling of array elements with three-dimensional geometries,

a second configuration consisting of horizontal metal strips orientated with their faces

perpendicular to the array plane is also discussed. A new technique is prescribed for

dealing with the equivalent current sources distributed in the plane of the metal strips in

this orientation.
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4.2 Analysis Procedure for the Generalised

Periodic Green's Function Technique

The idealized structure of the planar infinite array is given in Figure 4.1. Each element of

the array consists of a horizontal metal strip of length / and width 1r, orientated with its face

parallel to the array plane, and positioned at a height lr above an infinitely large, perfect

electric conducting ground plane.

Y

Boundaries of Unit Cell Delta-Gap Feed Voltage

1
d

I

w

þa

zero thickness

-=- -=-

r

I
1

X

z inf,rnite
ground plane

I
h

lmages

Figure 4.1: An inf,rnite array of horizontal metal strips in a rectangular grid lattice,

orientated with their faces parallel to the array plane and located above an inf,rnite ground

plane (top view and side view).
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The width of the metal strip is namow with respect to its length ( ie, w << ¿ ). The metal

strip is also assumed to be infinitesimally thin, such that the equivalent surface current

Jlf¡ ..p."sents the total cunent on the metal strip. The inter-element spacings are å and

d in the ¡ and y directions, respectively. Each metal strip is assumed to be excited by an

ideal delta-gap voltage source at its centre [47], and no feedline is included in the model at

this stage. The excitation is assumed to have a uniform magninrde and a linear progressive

phase shift between successive elements across the aperture plane, such that a plane wave

is propagated away from the array in the direction (0,0). The array is divided into identical

unit cells as shown in the diagram, with each metal strip element being located in a unit

cell. Because the anay is infinite in extent across the ry plane, each element of the array

operates in an identical electromagnetic environment as all the other elements. It is

therefore sufficient to analyze only one unit cell of this periodic structure, which shall be

denoted as the reference unit cell and whose centre lies at coordinates (m,n). All the other

unit cells of the infinite array and their mutual interactions are then accounted for by the

periodicity.

4.2.1 Integral Equation Formulation

Boundary conditions dictate that the sum of the tangential incident and scattered electric

fields, E' (¡) and ^Et (F) respectively, at location / on the surface S, of each metal strip,

must be zero. Thus the Electric Field Integral Equation (EFIE) associated with this

geometry is given as follows:

[E'ftl]**[E'(¡)]*=0 forre.s. Ø.r)

The scattered electric fields E'(¡)can be expressed in terms of the associated magnetic

vector potential, A as follows

E'=-ja1^¡ YV''l
Jcæol.ro

g

(4.2)



It should be noted that the divergence of A with respect to the source coordinates is primed,

whereas the divergence with respect to the field coordinates is not primed. As shown in

Figure 4.1, the effect of the ground plane is accounted for by including the image of the

infinite anay of metal strips, located at the same distance below the ground plane. Using

the equivalence principle, each metal strip and its image may be replaced by equivalent

nro-dimensional surface currents J(f) in the ry plane. In early infinite array models of

such elenrens [48,49], each of the metal strips was assumed to have an idealised sinusoidal

current distribution. In this model, no assumptions are made about the current distributions

on the metal strips of the infinite ¿uray, except that they a¡e identical. The magnetic vector

potential A is related to 7(f) through the infinite array generalised periodic Green's

function G-, by the following equation:

L= ttofJ 7f'l G- ds (4.3)

At this stage, it is noted that either the spatial form of the generalised periodic Green's

function given in (3.2) or the spectral form given in (3.9) may be used in (4.3). The

equations (4.1) to (4.3) a¡e solved to obtain the equivalent currents on the metal strip of the

reference unit cell. The active impedance at the feed point of the metal strip is then given

by the ratio of the excitation voltage over the equivalent current at the segment. The

solution of the equations (4.1) to (a.3) by the Method of Moments is outlined below.

4.2.2 Numerical Implementation

In the numerical solution of the integral equations using the Method of Moments, the

element geometry is discretised so that the problem becomes a solution of a system of

matrix equations. Because of the rectangular geometry of the element, a numerical

implementation is developed here using the Poínt Matching method in which the cunents

are expanded as rectangular pulse basis functions and the testing points are Dirac delta

functions. Higher order basis functions [50] and the Galerkin method are avoided in order
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to minimise the associated computational overheads and complexity of the analysis, the

aim being to apply a simple and effìcient solution using the Method of Moments for the

metal strip element geometry and for the more complex element geometries described in

the following chapters.

Segmentation, Basis and Testing Functions

For solution by the Method of Moments using the procedure described by Harrington [51],

the centre-fed metal strip is divided into n, identical segments in the ¡ direction, as shown

in Figure 4.2.

{hl source segment

+Ax+ ,ttt point

X

Figure 4.2 : Segmentation of metal strip and location of testing points for point matching to
be applied.

Because the metal strip is narrow in its transverse dimension, it may be modelled as a

single segment in this dimension. Each rectangular segment has dimensions Lx, Ay

respectively, in the ry plane. Since the metal strip is assumed to be infinitesimally thin in

the z dimension, the cunents 7(F) are expanded using two-dimensional pulse basis

functions f¡@',ú in the ry plane, and a diracdelta function fuart, in the z dimension, and

may be represented as follows:

Y

1
Ay

I

J(7) -
n,

\tt,,t + J )iil P,(x',y') õ(z' - z¡)
j=l

lv

where the pulse function are given by:
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7f x',y'e jrl' segment

otherwise
@.aa)

(4.6)

(4.8)

and the 7s te.m in the summation refers to the current expansion of the.¡s source segment

of the metal strip. Using the point matching method, the testing functions consist of Dirac-

delta functions in all three dimensioqs and are given by:

W -õG-¡,)ô(y - y¡)õ(z- z¡) (4.s)

where the i refers to the testing point at the centre of the rú segment, represented by the

dots (o) in Figure 4.2; each source segment being tested once in both the r and y

dimensions. ,I¡¡ and J1¡ are the metal strip's equivalent current coefficients in the x and y

di¡ections, respectively, which may be ordered to give the current vector:

J =lt"'""'J-,' T
J J¡-I; "" t fnr

where the superscript l denotes the vector transpose.

Moment Matrix Elements

Having discretised the geometry of the array element, the currents are related to the

excitation by the Moment Matrix equation:

lzfrn,,r,,Ufr,,., 18f,,.,, (4.7)

Here E is the vector corresponding to the impressed electric held. Since a delta-gap

voltage is used at the feed point located at the centre segment of the metal strip antenna, the

elements of the vector E, denoted by E¡ are given by:

Ej
Eo for afeed point at j =(n, + Ð12

0 otherwise

where E¿ is the impressed electric field caused by a feed point voltage of one volt.
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The Moment Matrix, Z , which takes into account the mutual coupling between source

segments on the antenna and its image, is may be expressed in the form:

[z7rn,,rn, = lr,l.
(4.e)

Z
ñxJtt

where in the evaluation of the matrix elements, the first subscript within the square

brackets of each sub-matrix refens to the direction of the testing function and the second

subscript refers to the direction of the source segment being tested. The derivation of a

typical element of the moment matrix is given below.

The (i,"1)ù element in sub-matrix Zo in (4.9) denotes the action of the current sources with

coefficients ,Ir.¡ in the x direction, onto the lù segment of the metal strip in the same

direction. Based on equations (a.1) to (4.3), the tangential incident hefa [E'(f)]* at the

point in space corresponding to this iù segment where the equations are to be enforced, is

given by:

lzofn,n, lrof^,

t Jlt

lf

yv

l

E',î - -E:î

zo = (Wr. E:î)

(4.10)

Taking the inner product of this expression for the field and the testing function Í421, the

corresponding element of the Z,* suÞmatrix is then given by:

- i arr o [1 ,,i no - ds 
" 
+# (o' - 

II ,,i ,,o- rr. )

=(,rr,. à#lfJfllf" w,il .'c*d)cdv dzdx' dv' dz'
(4.11a)

Because pulse basis functions are used, and the problem is solved using the point matching

method, the source point derivative has been taken outside the integral with no effect to the
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computation. Furthermore, it is also permissible to compute both derivatives with respect

to the held point, since the basis and testing functions are symmetrical. Using the same

procedure, the other sub-matrices in (4.9) may be expressed as follows:

Zo=

Zy

2,,

(,,r, . â#,lrl ll r w*i r,ic*dx dv dz dx' dv' dz'

(t ru, . â#)lr rr" wv¡ I'¡G*dx dv dz dx' dv' dz'

(, rr, . â#]rl ll r" w,¡ l,¡G*dx dv dz dx' dv' dz'

(4.11b)

(4.1lc)

(4.r 1d)

Having derived the expressions for the elemens of the Moment Matrix in (4.9), the

moment equation in (4.7) may now be solved numerically on the computer to obtain the

equivalent currents on the metal strip.

4.3 Maximising Computational Effïciency

The key to obtaining an efflrcient solution using the Generalised Periodic Green's Function

technique lies in identifying areas where the computational load of the solution procedure

may be reduced. The solution of the infinite array problem has two stages - problem

formulation and numerical implementation. For each of these stages, a number of

techniques to maximise the computational efficiency of the solution procedure are

described below.
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4.3.1 Integration of the Periodic Green's

Function over the Sources

It is apparent from (4.11a) to (4.lld) that the elements of the Moment Matrix in (4.9)

involve an integration of the product of the Green's function with the basis and testing

functions over the source and field coordinates. Since the testing function given in (4.5)

involves three Dirac-delta functions, the integral over the field coordinates will yield a

value of unity at the location of each testing point. From (4.4), it can be seen that each

basis function has two pulse functions corresponding to each segment of the metal strip.

Hence, the Moment Matrix elements may be said to involve an integration of the periodic

Green's function over the current sources representing each segment of the metal strip.

Either one of the spatial and spectral forms of the periodic Green's function derived in

Chapter 3 may be used in the evaluation of the integrals, but the computational effrciency

of the solution associated with each of these trvo Green's functions is different.

The evaluation of the sub-matrix element Zo is considered as an illustration. If the spatial

form of the periodic Green's function given by (3.2) is substituted into (4.11a), the

following is obtained:

7 -\i-xx /¿ (4.r2)

where S. is the surface area of a segment of the metal strip, and the integrals are summed

over all the (m,n)h elements of the infinite array. The implementation of ØJ2) is known

as a spatial domain solution, and the integrals have to be evaluated numerically. The

computational load may be minimised by evaluating the integral numerically only for the

self coupling terms which correspond to m = n = 0. For cross coupling terms, a stationary

integrand approximation is used by multiplying the value of the integrand with the surface

area of the metal strip segment. Nevertheless, numerical integration is computationally

time consuming, especially if each array element must be represented by alarge number of

basis functions.

-ik{"b ,-ir4 dS
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However, if the spectral form of the Green's function given by (3.9) is substituted into

(4.1la), the procedure of analysis is known as a spectral domain solution, and (4.1la) may

be expressed as follows:

tt

j r-tr'-u-"'ô(r - x,) p(x' - * ¡) dxdx'iIr=

m=4n=4 ), 
,,, (4.13a)

(4.13b)

(4.13c)

(4.13d)

where the summations are over the (^,r)ú Floquet modes of the infinite may; and 1', 1¡,

and lrare the integrals given below. The integral l, is evaluated by parts, so that:

= 
t-to"'ô(t - 

x) ¿' 
tto'*' 

,rx' - x ¡) dx'

= nr r.4 k,^Lx12) rik'n*¡-x¡)

where sinc(x) - sin(x) I x. I, may be evaluated in the same way to yield:

I, = Ly sinfkr,Ly f 2) ejk'<ti-t't

In the z direction, the integration must be evaluated over each source and its image:

r.:ii - ìk. lz-z'l - ik. (z+z'\
€ "m € "^''

ik_u1m

e- 
jk"'(q+z¡)

õ(r- z,) õ(z'- z¡) dzdz'

- ik- 2h-ffi

jkzü

1 Ie
jkr^ jk,^ jku jkr^

Substituting (a.l3b) to (4.13d) into (4.13a)

(4.r4)

"ikrr(x¡-1)
l- e'jk'^2h

Hence, it is seen that by using the generalised spectral periodic Green's function and

appropriate basis and testing functions, the integration over the sources can be evaluated in
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closed-form. A similar analysis may be performed to obtain all the other sub-matrices in

(4.e).

It should be noted however that integration of the Green's function over the sources is not

the only factor that determines the overall numerical efficiency of the technique. As

described in Section 3.4.2, the numerical convergence properties of the spatial and spectral

forms of the periodic Green's function also have a significant effect [37] on their

application to phased anay analysis. This is illustrated in'fable 4.1 which shows the active

impedance of an infinite array of horizontal metal strips at boresight scan angle (viz., 0 =

0o), computed using both the spatial and spectral Green's function techniques. In the

evaluation of the spatial periodic Green's function, m'and n' represent the total number of

the elements used in the .r and y directions, respectively. For the spectral periodic Green's

function, m" and n" correspond to the total number of Floquet modes used in the

respective directions. It was found that the results are converged when the metal strip is

divided into n, = 2l segments, and that the use of a grcater number of segments did not

change the values in the table by more than l7o.

Table 4.1 : Active impedance for an infinite anay of horizontal metal strips above an

infinite groundplanein theboresight scan angle; I =0.4ü" b =0.6A" d =0.5L h=0.51.
The metal strip is divided into n, = 2l segments.

Spatial Periodic Green's Function Model Spectral Periodic Green's Function Model

Elements in

E-plane

(m')

Elements in

H-plane

(n')

Active

Impedance

(o)

Floquet

Modes in E-

plane (m")

Floquet

Modes in H-

plane (n")

Active

Impedance

(c¿)

3 3 r07.2 - j70.0 2I 1l 0.01 -j1.2

7 7 103.9 - js0.3 3l ll 102.4 - j4.0

ll ll r03.s - j47.t 4T 11 101.8 - j4s.0

4l 4l 102.7 - j43.3 8l ll 102.t - jM.z
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It is noted that numerical convergence does not necessarily conespond to absolute

convergence towards the correct result [52]. In this case, numerical convergence of the

results to approximately the same value using two techniques which employ different

Green's functions provide a measure of confidence in the accuracy of the results. It is also

clear from Table 4.1 that the results at the boresight angle using the spatial periodic

Green's function model are well converged for aJ x 7 element anay. This result confìrms

the fact that the spatial Green's function is well converged at the boresight scan angle. For

the spectral Green's function model, a well converged solution is only obtained when the

number of Floquet modes corresponding to n{' 2 31 is used; it is not dependent on the

value of n". This result is expected because it involves on-plane interactions where the

spectral Green's function is slowly convergent. The CPU time to calculate a converged

value of the active impedance is approximately 2 seconds in both models. Hence, for a

simple element geometry such as a metal strip and at the boresight scan angle, there is no

significant improvement in computation time gained by a technique using the spectral

periodic Green's function in its conventional form, over one using the spatial periodic

Green's function. Table 4.2 shows the data for a grazing scan angle in the H-plane where

the inter-element spacing is 0.5Â and the active resistance is expected to be zero .

Table 4.2 : Active impedance for an infinite array of horizontal metal strips above an

infinite ground plane at the grazing scan angle in the H-plane; I = 0.44L b = 0.6L
d = 0.52" h = 0.51. The metal strip is divided into n, = 2l segments.

Spatial Periodic Green's Function Model Spectral Periodic Green's Function Model

Elements in

E-plane

(m')

Elements in

H-plane

(n')

Floquet

Modes in E-

plane (m" )

Floquet

Modesin H-

plane (n" )

Active

Impedance

(o)

3 3 140.4 + j116.0 2t 11 0.0 + j0.0

15 l5 100.0 +j248.9 3l 11 0.0 + j590.0

3t 3l 77.3 + j288.9 4t 11 0.0 + j5t2.2

6I 6I 58.6 + j315.8 7t 1l 0.0 + j457.5

I0 I I0 I 47.0 +j330.8 91 1l 0.0 + j4r9.2
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The data in Table 4.2 shows that at the grazing scan angle, the results of the spatial periodic

Green's function model are still not converged even after 101 x 101 elements have been

used in the summation, with a conesponding CPU time of about 50 seconds required. kl

contrast, the spectral periodic Green's function model requires the same number of Floquet

modes for convergence as for the case of boresight scan. Clearly, the spectral periodic

Green's function model is superior in terms of accuracy ancl computational efficiency for

large scan angles. The variation of active impedance with scan angle for the two

techniques is given Figure 4.3.

10 20 30 40 50 60
Beam-steer from Boresight (degrees)

70 80 90

Figure 4.3 : Variation of active impedance with scan angle for an infinite array of
horizontal metal strips above an infinite groundplane; I =0.M)" b =0-6L d =0.5)"h =
0.51, n, - 2l; for calculation of spatial periodic Green's function: m' = n' = 2l ; for
calculation of spectral periodic Green's function: m" = 3l and n" =21.
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In Figure 4.3, the results of the spatial and spectral periodic Green's function models in the

are similar in the E-plane scan. As expected, for an inter-element spacing of 0.6Â in this

plane, a grating lobe appears at about 42o scan angle, and consequently the active

resistance does not become zelo at the grazing scan angle. The results in the H-plane are

also similar except at large scan angles. As 0 -> 90o, the spectral periodic Green's function

model correctly predicts the active resistance to tend to zero. The results of the spatial

periodic Green's function model, as expected, are inaccurate because the Green's function

is not well converged at this scan angle. The poor convergence property of the spatial

periodic Green's function for large scan angles is a disadvantage when it is used to model

more complex structures such as a microstrip anay which may have a scan blindness

condition occurring at a large scan angle.

In summary, the results show that rvhen modelling infinite arrays with relatively simple

element geometries like dipoles, the advantage of the spectral domain solution in accuracy

and numerical efficiency is only marginal except at very large scan angles. When scanning

near to the grazing angle, the spectral periodic Green's function model is clearly more

accurate and numerically eff,rcient because unlike the spatial periodic Green's function, it

does not suffer from slow convergence in this region. The next section will describe a

technique to accelerate the convergence of the spectral periodic Green's function for on-

plane interactions, so that the overall computational efficiency of the technique using this

Green's function may be further improved.

4.3.2 Convergence Acceleration of the Spectral Periodic

Green's Function for the On-plane Case

The slow convergence of the spectral periodic Green's function can be overcome in one of

two ways. The first way is to enhance the convergence of the overall solution by using

higher order differentiable basis and testing functions such as triangular, piecewise

sinusoidal or entire domain functions [53]. However, it is widely acknowledged that such

higher order functions tend to increase the complexity of the analysis and the computation
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time for the integration. Furtherrnore, it is often the case that the use of such higher order

basis functions tends to rely on a specific knowledge of the geometry of the structure, and

is therefore undesirable where a generalised approach is sought. The use of pulse basis

functions and Dirac-delta testing functions for all the models described in this thesis has

the advantages of simplicity in problem formulation and minimum computational

overheads in numerical implementation. For comparison, the infinite dipole array used for

illustration in this chapter was also modelled using a Galerkin method involving pulse

basis and testing functions. The results showed neither an appreciable improvement in

accuracy of the results nor a faster rate of convergence of the spectral periodic Green's

function. In fact, the computation time was marginally longer than the model using the

point matching technique. The results thus appear to conhrm a recent finding [54] that in

the numerical solution of electromagnetic radiation and scattering problems, the error in the

equivalent currents obtained by discretizing the integral equations is mainly due to the

basis functions and is largely insensitive to the choice of the testing function; and that the

advantages of the Galerkin method may have been overstated. Based on the above

considerations, the use of higher order differentiable basis and testing functions was not

pursued.

A second approach that is independent of the geometry seeks to improve the convergence

of the series representing the periodic Green's function. A number of techniques have been

successfully developed and documented in the literature" All of them are based on an

understanding of the numerical properties of the spatial and spectral forms of the periodic

Green's function, and of how these properties may be exploited to accelerate the

convergence of the Green's function [37]. The convergence properties of the spatial and

spectral representations of the periodic Green's function have been described in Section

3.4.2. The spatial domain formulation is rapidly convergent everywhere except at large

scan angles, whilst the spectral domain formulation is rapidly convergent except for the on-

plane case. It is feasible to split the periodic Green's function into two parts and to

evaluate each of these parts in the respective domain in which it is more rapidly

convergent. The result is that a converged value of the periodic Green's function is

evaluated more efficiently than evaluating it in either the spatial or spectral domains alone.

6



Jorgenson and Mittra [37] have developed a technique to accelerate the on-plane

component of the spatial Green's function by evaluating it in the spectral domain, where it

converges rapidly. Using a different approach, a technique reported by Singh [38] begins

with the spectral periodic Green's function and translates the on-plane component to be

evaluated in the spatial domain in rvhich it converges more rapidly. Although the two

approaches are expected to offer similar numerical efficiency in the evaluation of the

periodic Green's function, the latter approach has been adopted here because the spectral

formulation of the problem has been used. For completeness, an outline of Singh's

technique is reproduced in Appendix C.

The expression for the spectral periodic Green's function which has accelerated

convergence characteristics, referred to from here onwards as the Generalìsed Hybrid

Períodíc Green's Function, is given by:

h¡-brid 
- 

I ,-ikz^E-z'l 
"-kmlz.-z'lG

?bd Z^ k,* (4.1s)

It is apparent from (4"15) that the new hybrid periodic Green's function consists of two

components. The first component is described as the spectral component and takes the

form of the original spectral periodic Green's function, except that an asymptotic part is

subtracted away from it- The asymptotic part, which causes the slow convergence of the

Green's function, is the second term within the square brackets, and is described by the

parameter:

k,r- = (4.16)

where u is a finite, real variable which is called the smoothing parameter to be described

later. The second component is described as the spatial component. It has a form similar

in all respects to the spatial form of the periodic Green's function given in (3.16), except

that the exponent of the exponential term has the smoothing parameter u which replaces the

jk

m=<
t+

k:^+kl,+u2

m=< n=<

f "i*nt eikr'¿ 
e-u'^

L/ À,
n-* 4ff,r-
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term J/ø in the expression. This spatial component is the Fourier transform of the

asymptotic part of the spectral component. Hence the hybrid periodic Green's function is

actually the spectral periodic Green's function in which the slowly convergent part has

been subtracted away, and returned to the expression in the spatial domain form. As

described in Appendix C, the two components of the hybrid periodic Green's function are

both rapidly convergent, so that a significant improvement in computational efficiency is

achieved by an evaluation of the Green's function in this form rather than in either of the

spatial or spectral forms alone.

The procedure for implementing the Generalised Hybrid Periodic Green's Function

technique to calculate the elements of the Moment Matrix is briefly outlined here. Each

term in the Moment Matrix comprises two parts - the dírect component being the effect of

a source point on a testing point, and the image component being the effect of the image of

this source (representing the reflection from the ground plane) on the same testing point.

As the images for this geometry a¡e located far away from the testing points on the metal

strips, referred to as the offplane condition, the spectral periodic Green's function is

rapidly convergent in this case and is used for the image component. However, the mutual

coupling between source and testing points on the metal strips are all in the on-plane

condition, and hence the hybrid form of the periodic Green's function is used for the direct

component. Since the metal strips are orientated parallel to the ground plane, every term of

the Moment Matrix has a direct component, and thus every term requires convergence

acceleration. Applying the convergence acceleration to the direct component of (4.13d)

yields:

,-ikz*V-z'l ,-k^V-z'l ,-ikz^Q+z')

jk* õ(r- z*) õ(z' - z¡) dzdz'jk^ k*,
,r-- lI (4.17)

11 g-ikr*(z¡+z¡)

jk^
11 - ik_ 2h

e'%

k*, jku k,*, jk^

Subtracting the asymptotic part of the spectral Green's function, transforming that part into

the spatial domain and then adding it back, the expression for Zo in the impedance matrix

then comprises a spectral and a spatial component described by:

jk,^
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Zo=Z'!" +Z'{

where the accelerated spectral component is given by:

(4.18)

(4.1e)

zr" = à ^\(ml 
.,'"(If) r,'.[9)

.7 spalLxx

,ik'^(x ¡-x¡)

The terms in the last bracket are made up of the accelerated direct component within the

square bracket and the unaccelerated image component outside of it. From (4.15) and

(4.19), the spatial component of Zo is given by:

(4.20)
4ron Q ¡¡'=-4'=:

where the integral is over the surface .S, of the metal strip. It should be noted that the

double summations in the above nvo equations have entirely different, though related

meanings. h (4.19), the summation is over the (*,n)ú Floquet modes for the spectral

component. In (4.20), and the sum.mation is over the (m',n)ú elements of the infinite array.

The spectral and spatial components of the hybrid periodic Green's function need not be

truncated with the same number of terms for their evaluation. For convenience, Singh [38]

has proposed an optimum value for the smoothing parameter a such that both the spatial

and spectral components are well converged when the summations in both cases a¡e

truncated at the same numerical value (viz., m = m' and n = n'). This proposed

optimum value of the smoothing parameter u = t / b, where å is one of the inter-element

spacings, has been adopted by Shubair and others [55] for modelling of periodic sources in

layered dielectric media- It has also been found that the results are not sensitive to the

exact value of u provided that it stays within +lAÙVo of the optimum value. Hence Singh's

suggested value of u = 7t / å is used in all the models described in this thesis. The surface

integrals in the spatial component are evaluated numerically using the Fortran double

precision IMSLTM [56] math library routine for multi-dimensional integration using iterated

application of product Gauss formulas which has been found to be effrcient and accurate.

The surface of the metal strip is segmented by a grid as shown in Figure 4.4, and the spatial

i i "tu*'u+a','d) [ot.#)ï,.;*
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Green's function integrals are evaluated for distances between the grid line intersections

and the origin, and stored in a look-up table.

Grid intersection points where spatial
Green's function is evaluated

7

Y
+Ax+

-Ay

Figure 4.4 : Segmentation grid at half inter-element spacings apart, placed over the metal
strip to compute the spatial component of the Hybrid Periodic Green's Function.

In all the cases, the Green's function singularity which occurs when the source and field

point coincide, is integrable [57]. The integrand in (4.20) is symmerical in the .r and y

directions. Hence if a testing point is located at the reference grid position (0,0,0), then the

spatial Green's function involves an integrand GrQt,q,O) for a source segment located at

grid position (pb, qAy, 0 ) which is given by:

Qz pz

Go(p,Q,0) = J J

o-ul^ç 
dxdy

P-ul^
dxdy-

fr

{G,y(p +2,q,0) -zc,r(p,q,0) + Gry(p - 2,q,0)l

1

X

(4.21)

Qt Pt

where the limits of integration are from pt -_ Ax-0.5^x to pz = Ax+0.5á¡ in the x

dimension and from et = Ay-2.5Ay to qt - Ay+0.5Ay in the y dimension. The method of

finite difference is used to evaluate the second order partial derivatives of the integrals, so

that:

rmrr

#'i,l
1

and

Axz
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a2

Ardy

q2 P2

i'i =#,oo(p+1,q+I,o)-GÐ(p+I,q-1,0)
8t Pt

(4.23)

-G,y(p- I,q-r 1,0) + Gry@- I,q- 1,0)l

The second partial derivative with respect to y is calculated in a similar way. The spectral

and spatial components of the impedance matrix are then added together conesponding to

the double summation. Finally, the moment matrix is solved using the Fortran double

precision MSLTM [56] math library routine for solving complex variable equations with

iterative refinement to obtain the equivalent currents on the metal strip.

Computational Burden of Convergence Acceleration

In the Section 4.3-1, it was shown that the spectral form of the periodic Green's function

has a desirable feature in that the integration over the sources can be evaluated analyically.

However, this form of the periodic Green's function also has an undesirable feature in that

it is poorly convergent for on-plane interactions. To overcome this undesirable feature, a

hybrid form of the periodic Green's function has been developed. However, the hybrid

form contains a spatial component in which the integration over the sources has to be

evaluated numerically. Hence it appears that the requirement for numerical integration has

become inevitable in the process. It is acknowledged that convergence acceleration of the

spectral periodic Green's function imposes a computational burden on the solution.

However, it should be noted that evaluation of the spatial component of the hybrid periodic

Green's function is not as computationally demanding as that of the spatial periodic

Green's function for the following reasons:

Firstly, convergence acceleration of the spectral periodic Green's function is required

only for the set of on-plane interactions. All the off-plane interactions, including

interactions from the image sources, can be evaluated using the conventional spectral

periodic Green's function which is rapidly convergent and which does not require

numerical integrations.

o
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a Secondly, the number of numerical integrations required to evaluate the spatial

component which has the form given in (4.21), is only half the number required for

evaluating the spatial periodic Green's function given by the integrand of (4.12)"

Because the integrand in the case of the spatial component has a real exponential, the

numerical integration need only be evaluated once for each set of interaction. kr the

case of the spatial periodic Green's function, the integrand contains a complex

exponential which is more conveniently split into a real and an imaginary part before

evaluating the numerical integration. Each part is integrated separately as a real

function, and the results are then recombined to obtain the f,rnal result. Hence for the

same testing point and source segment, the integrand in (4.12) is twice as

computationally intensive to evaluate as that in (4.21).

The computational efficiency of the Generalised Hybrid Periodic Green's Function

technique is illustrated by in Table 4.3 below for an infinite array of horizontal metal strips.

Table 4.3 : Active impedance for an infinite anay of horizontal metal strips above an

infinite groundplane; I =0.ML b =0.5L d =0.5L h =O.fl. All the above results are

obtained with a metal strip segmentation of n, = 5, except the last row indicated by * in
which the metal strip is divided into n, = 1l segments.

Summation

Terms in

E-plane

Summation

Terms in

H-plane

Active Impedance at

Boresight Scan Angle

(o)

Active Impedance at

Grazing Scan Angle in

E-plane (O)

I I l10.0 - j66.5 0.000r -j3.1

J I rr7.2 - js6.7 0.0001 - j24.s

3 3 122.8 - j44.7 0.000r - j24.7

5 5 r22.t - j43.9 0.0001 - j24.6

11 ll 122.2 - jM.t 0.0001 - j26.s

2l 2t t21.8 - j45.t 0.0001 - j26.2

2l* 2l* 120.9 - j42.8 0.0001 - j26.0
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ln the evaluation of the hybrid periodic Green's function, both the spatial and spectral

components are truncated after m and n terms, respectively in the E-plane and H-plane. In

Table 4.3, it is apparent that the results are converged for values of r¡ and n corresponding

to-l < m11. and-l (n( 1,respectively. Theresultsareconvergedatbothboresightand

grazing scan angles when the metal strip is divided into n, = 5 segments. Compared to the

results using nx = 2l segments to obtain convergence for both the spatial and spectral

periodic Green's function techniques, it is noted that the hybrid periodic Green's function

technique requires a smaller number of basis functions to achieve convergence. The

accuracy of the converged results as compared with those using the unaccelerated spectral

periodic Green's function technique is shown in Figure 4.5.
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Figure 4.5: Compa¡ison of Active Impedance obtained using the Spectral and Hybrid
Periodic Green's Function techniques for va¡ious scan angles; I = 0.t+4)" b = 0.51"

d = 0.5À" h = 0.51. For the spectral periodic Green's function technique, the Floquet
modes used are for -15 I m 1 15 and -10 < n <10 and the segmentation used is n, = 21.
For the hybrid periodic Green's function technique, the Floquet modes used are for -l < m
< I and -l < n <l and the segmentation used is f,x = 5.
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Figure 4.5 shows the active impedance as a function of scan angle in the principal scan

planes for the infinite array of metal strips above an infinite ground plane. The results are

shown for analysis using the spectral and hybrid periodic Green's functions. It can be seen

that the converged results for the two cases are in very good agreement. However, in the

case of the hybrid periodic Green's function, a much smaller number of Floquet modes and

segments are required to obtained converged results. Consequently, the computation time

of 0.05 seconds per scan angle is 40 times faster than that using the spectral or spatial

periodic Green's function models. Hence, the computational efficiency of the Hybrid

Periodic Green's Function technique is shorvn to be signihcantly superior. It should be

noted that for the analysis of microstrip arrays described later in this thesis where the

element geometry is far more complex than the horizontal metal strip, the computational

advantage of the generalised hybrid periodic Green's technique is even more signif,rcant. It

will be shown in Chapter 6 that a spatial periodic Green's function analysis of a typical

microstrip infinite array would typically require supercomputing resources for is numerical

implementation, whereas a hybrid periodic Green's function solution of the same problem

can be implemented very efhciently on a desktop computer.

4.3.3 Exploiting Toeplitz-like Symmetries in the

Moment Matrix

In Section 4.3.I, it was highlighted that the use of the generalised spectral periodic Green's

function enables the integration over the sources to be evaluated anal¡ically. Section 4.3.2

introduced the hybrid form of the periodic Green's function which has bener numerical

convergence characteristics than the spatial and spectral forms. Both of these techniques

are applied at the formulation stage of the problem, and improve the computational

efficiency of the overall solution. In the numerical implementation stage, one way to

minimise computation time is to identify areas in the evaluation procedure in which

repeated calculations may be avoided. This is achieved partly by identifying ToeplitzJike
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symmetries [58] in the expression for spectral periodic Green's function which is restated

below.

G spectrol = I i i"
?bd ^?-^a

e
-,f. V-z'l-.tu - ¡*r^(z+z')

-.¡tr, (r-.r') 

"-1t.,, 

(t-l') *s
(4.24)

jk^

The terms in the square brackets account for the contribution from the primary sources and

their image across the ground plane- It is apparent from the above equation that the value

of the Green's function is identical for interactions which have the same displacements (r-

x') , (y-y'),lz-21, and (z+z). In the case of a metal strip whose axis lies in the x direction,

only repeated calculations in the x dimension can be reduced, since y = y' and e = z'. If for

example, the metal strip is divided into 4 segments, then the elements of the moment

matrix which need to be calculated are shown by the symbol x in (4.25).

(4.2s)

In (4.25), the overall impedance matrix has 4 blocks of elements consistent with the 4

combinations of interactions between the ¡ and y directed currents on the metal strip. If the

metal strip were to be divided into n¡ segments, then each block would be a square matrix

of rank n, , and the overall impedance matrix would have 4(n)2 elements. Based on the

above considerations, it is sufficient to evaluate the Green's function only for coupling

displacements from -(n, -I)Ax to (n -l)Ax in the x dimension, so that a total of 4(2n, -l)

unique interactions need to be evaluated for the whole matrix. This is depicted in the

above matrix equation where x repres€nt the elemens in which the Green's function has to

ztv

2,,
v
x

xyy
xyy

xyyx
xyyx
xyyx

xyyx
xyyx
xyyy

[xvvxl
I' v v *l
l* v v *l
L.vvvl
[xvvxl
l* v v *l
l* v v *l
L'vvvJ
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be evaluated, and y represent those elements in which the Green's function can simply be

copied over from a previous evaluation which has been stored in a look-up table.

4.3.4 Look-up Tables for Repeatedly Used Parameters

Another way to minimise computation time is to avoid repeated calculations of parameters

with the same values which are used many times in the algorithm. The values of the wave

propagation vectors, complex exponentials and sinc functions associated with the closed-

form integration over the pulse basis functions, may be calculated and stored into look-up

tables for each scan angle and Floquet mode, and then recalled when required. The

improvement in computational effrciency from the use of look-up tables is not as

significant as that obtained by working in the spectral domain and from the convergence

acceleration for the spectral periodic Green's function; in fact, there is a marginal increase

in storage requirements for the look-up tables. Nevertheless, the exploitation of Toeplitz-

like symmetries and use of look-up tables have been implemented in all the models

described in this thesis.
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4.4 Modelling of Sources Distributed

Perpendicular to the Array Plane

Up to this point, a procedure of analysis has been provided for an infinite array in which all

the sources are distributed in two-dimensions on the anay plane. In order to model th¡ee-

dimensional element geometries, the analysis needs to be extended to the case where the

sources are distributed perpendicular to the array plane (viz., in the e dimension). To

illustrate this, the analysis is applied to the case where the horizontal metal strips of the

inf,rnite anay depicted in Figure 4.1, arc orientated with their faces pe¡pendicular to the

array plane as shown in Figure 4.6 below.

infinite ground
plane

Y

lmage

Figure 4.6 : Geometry of metal strip element orientated in the yz plane.

Figure 4.6 shows the geometry of an element in the infinite array. The metal strip of length

/ and width w , is located at a height /¡ above the inhnite ground plane. The Electric Field

Integral Equations and expressions for the scattered electric field, magnetic vector potential

and periodic Green's function in equations (a.1) - (4.3) still apply to this geometry, but

have to be adapted to deal with the current sources which are distributed in the yz plane.

Z
T

w

h
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4.4.1 Integrating in the Z-Dimension

In the case of elements orientated parallel to the ground plane as in Section 4.2, the metal

strips are assumed to be infinitesimally thin in the zdimension. Hence there is no

requirement to integrate over the sources in this direction. However, if the elements are

metal strips orientated pe¡pendicula¡ to the ground plane, each of the sources is represented

by a two-dimensional rectangular pulse segment in the )z plane. Here, the centre of each

pulse segment is at the same height above the ground plane as the testing point which is

located either at this same point in the case of self coupling, or at the centre of another

segment of the metal strip in the case of mutual coupling. Hence the cunent distributed on

each pulse segment will lie both above and below the testing point in the z dimension, as

shown in Figure 4.7 below.

Z a source segment

testrng pornt source

zt

Y

Figure 4.7 : Source poins located above and below testing point in the z dimension"

Ignoring for the moment the image component, the integration over the sources in the e

direction is the same as that given in (4.13d) but with the Dirac-delta function replaced by a

pulse function. The term -lz-21 in the exponential indicates the direction of wave

propagation which needs to be accounted for when evaluating the integral. If the modulus

sign is ignored and the integral is evaluated analytically using separation of variables, the

result becomes:

2z

Zj=Zkï
zk
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t. = iil )u,. 
- z¡) P(z' - z¡) dzdz'

(4.26)

In the evanescent wave condition given in (3.18b), k^ = - j k:^+k3,-tt isacomplex

number which is negative and imaginary. l-et kh^=-jk,ç^ where k*"is a real and

positive number whose value increases with rn and n. (4.26) then becomes:

I k- Lz/2 -t- Az/2
€ ''m -e ''w

=-+(ra^M2 -"-to^-t)

Iz
krZ^

For increasing values of m and n, it can be seen that the first term within the brackets, and

consequently the value of .I. increases exponentially without bound. Clearly, this is a

divergent formulation and cannot be successfully implemented on the computer. The key

to the solution of this problem is to take account of the correct direction of Floquet mode

propagation in the z direction when evaluating the integral. The sources below the testing

point should be integrated with an upward direction of Floquet mode propagation, and the

sources above it should be integrated with a downward direction of Floquet mode

propagation. The enforcing of this condition still allows the integration to be evaluated in

closed form, provided it is performed by parts as follows:

2

õ(r- z¡) P(z' - z¡) dzdz'

,-ikz*Q-z')
z¡+Lz/2

(4.27)

,, - I I

I=ï

a

- ik- lz-z'l
ê"m

jk,*

-Az/2
jk,^

l_ e-ik,^Vr\ lr,I l--z^

,-ikz^k'-z)
jk,^

,+
J dz' õ(r- zt)dz Ø.28)

As shown in (4.28), the double integral is evaluated over the sources first, and then over

the testing points. The direction of Floquet mode propagation implicit in the exponential

term within the bracket is øken into account by integrating by parts over the sources below
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the testing point corresponding to the t"rm e-ik'^(z-z'), and over the sources above the

testing point corresponding to e ik'^(z'-z) . It is evident that the result is convergent even

for large values of m and n. It should be noted that this procedure is unnecessary when

integrating over the sources in the ry plane. The significance of the technique is that it

overcomes the problem of integrating in the ¿-dimension and enables the spectral periodic

Green's function to be used for modelling infinite phased arrays with elemens distributed

in all three dimensions.

4.4.2 Convergence Acceleration for On-plane Points

For the geometry of Figure 4.7, the technique described in Section 4.4.1 explicitly enforces

the direction of Floquet mode propagation from every source point to a given testing point,

except for those source points which are exactly the same height above the ground plane as

the testing point. These on-plane points, for which the direction of Floquet mode

propagation is indeterminate, will cause the spectral periodic Green's function to be slowly

converging. Therefore, it is important to use the rapidly convergent hybrid periodic

Green's function, where the spectral component, after integration by parts, becomes:

,-)kz^lz-z'l r-knlz.-z,l

jk,* k*,
õ(z- z) P(z' - z¡) dzdz'r.=ÏT

(4.2e)

Although the analyses derived for the metal strips orientated parallel and perpendicular to

the ground plane are different, the variation of active impedance with sca¡ angle is

expected to be almost identical in the two cases, provided the metal strip is relatively thin

with respect to its length. However, the case of metal strips orientated perpendicula¡ to the

array plane has applications to element geometries where the currents are distributed in the

z dimension as well as in the ry plane. The analyses for infinite arays of horizontal metal
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strips orientated parallel and perpendicular to the array plane, were applied to model the

array of half-wave dipoles analysed by Chang [59]. The dimensions of the array

parameters are given in Figure 4.8.

1

h = 0.2il"

Y

Figure 4.8 : Metal strip elements orientated with their faces parallel and perpendicular to
the anay plane; b = 1.2À. d = 0.25L h = 0.254. w = 0.028),.

This infinite array structure was analysed in [59] using a form of the Integral Equation

method together with a Fourier series and a five-term approximate expansion of the

equivalent currents on the dipoles which were modelled as thin wires with axial cunents

only. All the array dimensions used in [59] are also used in the analysis here, except that

the width of each metal strip is modelled as 4 times the equivalent radius a of his wire

dipole where a = 0.00702ü". It is noted that the inter-element spacing b = 1.2)., has been

specified such that there is a grating lobe appearing in the E-plane. Furthermore, the inter-

element spacing d = 0.2il" results in very strong mutual coupling in the H-plane.

Therefore, this structure constitutes a rigorous validation of the accuracy of the results

obtained using the Generalised Hybrid Periodic Green's Function technique. The variation

of active adminance with scan angle in the principal planes of the array is given in Figure

4.9 below.

I w - 0.028)"
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Figure 4.9 : Active Admittance as a function of scan angle for an infinite array of metal
strips in the parallel and perpendicular orientations above an infinite ground plane;

b=I.24, d=0.25L h=0.2il. w=0.028L nt=J.

As expected, the active conductance becomes zero as the grazing scan angle in the H-plane,

but not for the E-plane because of the grating lobe due to the inter-element spacing of l.ü,.

It can be seen that the results for the models in the two orientations are reasonably close to

those of Chang's data for wire dipoles with a small equivalent radius. Of greater

significance is the potential of this technique to be extended to model metal patches with

two-dimensional currents. In both cases, converged results are obtained with Floquet

modesconespondingto -I<m < I and -l<n<l. Intermsof segmentation,converged

solutions were obtained when the metal strip was divided into 7 segments. All the 38

active impedance results in the two principal scan planes were obtained in about 2 seconds

of CPU time, so that the average CPU time required was about 0.05 seconds per scan

angle. Hence it may be said that this method allows accurate results to be obtained in a

reasonably short time using a desktop computer.
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4.5 Summary

In this chapter, the procedure of analysis using the Generalised Periodic Green's Function

technique has been described and illustrated using the analysis of an infinite array rvith a

relatively simple element geometry consisting of a horizontal dipole above an infinite

ground plane. Apart from the description of the procedure, a major focus of this chapter

has been to describe the methods to maximise the numerical efhciency of the technique. In

the formulation stage of the solution, the possibility of evaluating the integrals over the

sources in closed-form, points to the advantage of working in the spectral domain. The

slow numerical convergence of the spectral periodic Green's function for on-plane

interactions is overcome by the use of a convergence acceleration technique, which leads to

the development of a Generalised H¡'brid Periodic Green's Function having rapid

numerical convergence characteristics. The implementation of this Green's function using

a Moment Method solution is described, and the numerical data shows a 40 times

improvement in computation speed to obtain a set of well converged results. Two

techniques to improve computational efficiency in the numerical implementation stage by

exploiting Toeplitz-like symmetries of the spectral periodic Green's function, and by the

use oflook-up tables, are described.

As a prelude to the modelling of th¡ee-dimensional element geometries, a new technique

for integrating the Green's function over current sources distributed perpendicular to the

array plane has been developed. Finally, the accuracy of the techniques described is

validated by modelling an inf,rnite array of half-wave dipoles which has been analysed by a

different technique and in which the results are used for comparison. The good agreement

with Chang's results and the high computational speed achieved has shown the potential

for this technique to be used for modelling anays having more complicated geometries

such as microstrip antennas.
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In the next chapter, the application of this technique to the modelling of practical metal

strip arrays with different element geometries, metal strip junctions and feedlines will be

described. As preparation for modelling of microstrip dipole ¿urays in chapter 6, Chapter 5

will demonstrate that the high numerical efficiency of the technique enables the geometry

of a more complex metal strip element such as a metal strip folded dipole with coplanar

strip feedlines to be modelled in is entirety with a minimum of idealisations.

The major contributions plesented ilr this chapter are:

o An accurate and numerically efficient technique for the analysis of infinite arrays based

on the Generalised Hybrid Periodic Green's Function has been developed, and the

procedure for implementing this technique has been described.

. Four methods to maximise the computational efficiency of the technique have been

described; some of these methods a¡e also applicable to Integral Equation methods of

analysis in general.

o A method of integrating the hybrid periodic Green's function over current sources

distributed perpendicular to the array plane, rvhich contributes to a more rapidly convergent

solution, has been developed.
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CHAPTER 5

InfÏnite Array Analysis

of Metal Strip Structures

in Various Confïgurations

5.1 Introduction and Overview

In Chapter 4, it was demonstrated how the Generalised Periodic Green's Function

technique could be efficiently implemented using the Method of Moments to model an

infinite array of horizontal metal strips above an infinite ground plane. In preparation for

the analysis of three-dimensional element geometries, the element geometry of a horizontal

metal strip with is face perpendicular to the array plane, was also analysed" It was shown

that for current sources on these metal strips distributed perpendicular to the array plane,

the direction of Floquet mode propagation from a source point the testing point needs to be

correctly accounted for in the analysis. However, because the metal strips are of one
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segment width, all the testing points and the centres of all the metal strip segments are

located on the same horizontal plane, which implies that the interactions between the

source and testing points result in the on-plane condition for all the interactions. The

hybrid periodic Green's function was developed in Section 4.3.2 specifically to deal with

on-plane interactions so that rapid convergence of the solution may be achieved. For the

image sources located far away from the testing points on the metal strip, the interactions

are said to be in the off-plane condition, and the associated spectral periodic Green's

function representing these interactions is rapidly convergent. Therefore the spectral

periodic Green's function is applied without convergence acceleration to these interactions.

h this chapter, the Generalised Periodic Green's Function technique will be applied to

infinite Íurays of metal strip structures in which the element geometry extends over more

than one segment in the z dimension, as well as in the ry plane. Successful modelling of

such structures will mean that the technique can also be extended further to model full

three-dimensional geometries in general.

With the requirement to model a feedline for each metal strip element, and a radiating

element whose impedance is better matched to the feedline than the metal strip, there is

also a need to develop a model for metal strip junctions, which does not appear to be well

developed in the literarure. The junction models more commonly encountered [60] are for

thin wires, and between wires and surfaces. The thin wire model assumes only axial

currents, and Kirchoff s current law is enforced at the wire junctions by the use of the one-

dimensional continuity equation. This model has the drawback that the accuracy of the

model is dependent on the correct specification of the thin wire's equivalent radius which

has to be separately determined [61,62]. Furthermore, it has been found that the thin wire

junction model cannot be adapted to model metal strip junctions in phased anay problems

which are formulated in the spectral domain. It will shown in this chapter that the current

continuity condition can be implicitly enforced for metal strip junctions in a straight

forward manner by using two-dimensional currents on the metal strip segments, and by

taking special care in applying the convergence acceleration technique to the spectral

periodic Green's function for interactions between adjacent junction segments. This

concept will be described in the next section.
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5.2 Convergence Acceleration for the

Near On-Plane Case

In Section 4.3.2, a technique was developed to accelerate the convergence of the spectral

periodic Green's function for the on-plane case where the testing point lies on the same

plane as that of the source. The case when the testing point is located away from the plane

of the sources, is referred to as the offplane case. In this case, no convergence acceleration

is necessary as the spectral periodic Green's function is rapidly convergent. It is found

however, that the spectral periodic Green's function is slowly convergent whenever the

testing point lies near the plane of the sources. Hence, there exists a third condition when

the interaction between source and testing poins may be described as being near on-plane-

A quantitative judgement on how near the testing point should be to the plane of the source

point for the near on-plane condition to be satished, will be made later. In preparation for

modelling of three-dimensional element geometries, this section will demonstrate from the

viewpoint of computational efhciency, the benefit to be gained by accelerating the

convergence of the spectral periodic Green's function, not only for on-plane but also for

near on-plane interactions.

5.2.1 Requirementfor ConvergenceAcceleration

In Figure 4.1, the reference point source, S, of an infinite planar affay on the ry plane, is

located at the origin of the coordinate axes, and a testing point T is at coordinates (Ax, Ay"

Az). The periodic Green's function at f represents the effect of the infinite anay of sources

on the point 7" For a given Az and convergence criterion which is explained later, a

numerical experiment is used to investigate the computational effort needed to obtain a

converged value of the spectral and the hybrid periodic Green's functions.
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Figure 5.1 : A testing point Z located at a distance Az away from the plane of the infinite
array of point sources in the ry plane.

Based on the above considerations, a computer program was written to calculate the

spectral and hybrid periodic Green's functions, and to enable a fair comparison of the

computation time taken in each of the calculations. The objective of the numerical

experiment was to determine the minimum number of Floquet modes required by each of

these two periodic Green's functions to satisfy the convergence criterion for a given

vertical distance of the testing point away from the plane of the sources. Each of the series

representing the spectral and hybrid periodic Green's function given by (3.9) and (4.15) is

used in the f,rrst case to calculate a value of the respective Green's function when the series

is truncated for values of (m,n)where -M < m< M and -N < n< N. In the second case, the

calculations are made for values of (m,n) where -M-l <m< M+I and -N-1 < n < N+/. The

convergence criterion 4r¡ is the relative enor in the value of the Green's function between

the two cases calculated as described above. The calculations were made for relative enors

ranging from lO-s to 10-1, and the total number of Floquet modes used in each of the

truncated doubly infinite series which met the criterion was recorded. Each of these

computations was repeated for different values of Az ran$ng from 0.001¿ to 0.11.; it was

found that the results were relatively insensitive to variations in Ax and Ay. The results in

Tables 5.1 and 5.2 below provide an indication of the convergence properties of the

spectral and hybrid forms of the periodic Green's function.
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Az E"t=10-r E"t=10'2 E t=10-3 Ert=l}a E,t=10's

0.1 L 25 49 49 t2l r69

0.05 h 25 49 8l 225 225

0.03 1 25 8l 225 625 96t

0.01 I 25 361 1 ,52 I 3,481 6,241

0.005 )" 49 36t 2,401 6,24r 1 4, I6 I

0.001 h 81 841 4,761 25,281 101,761

Table 5.1 : Number of Floquet modes used to obtain a converged value for the spectral
periodic Greæn's function for a given relative error and vertical displacement of the testing
point from the plane of the sources.

Az Ea=lO-r E,t=10'2 F-rt=10-3 Ert=l}a Ea=I}-s

0.1 1 9 25 49 49 12t

0.0s L 9 25 49 49 225

0.03 A 9 25 49 49 225

0.01 1 9 25 49 225 729

0.005 )" 9 25 49 289 841

0.0 9 25 49 36r 84r

Table 5.2 : Number of Floquet modes used to obtain a converged value of the hybrid
periodic Green's function for a given relative error and vertical displacement of the testing
point from the plane of the sources.

Comparing the data in the Tables 5.1 and 5.2,it is noted that for values of Az> 0.03)t, both

the spectral and hybrid periodic Green's functions generally require a similar number of

Floquet modes to achieve a given level of numerical convergence. Therefore, if a testing

point is separated by a distance of Áz> 0.03L from the sources, the interaction is described
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here as satisfying the offplane condition. In this case, convergence acceleration yields

only a marginal improvement in computational efficiency and the spectral periodic Green's

function is adequate. For values of Az < 0.001r" the spectral periodic Green's function

series is very slowly convergent, and requires in excess of 100 times as many terms to

achieve convergence when compared with the hybrid periodic Green's function series.

Hence, if a testing point is spaced by a distance of ¿¿ < 0.001Â from the sources, the

interaction is said to satisfy the on-plan¿ condition where the hybrid periodic Green's

function is used. Tables 5.1 and 5.2 also show that for values of Az, between the two

extremes, convergence of the spectral periodic Green's function series requires typically 3

to 5 times as many terrns as the hybrid periodic Green's function series. In this region,

convergence acceleration of the spectral periodic Green's function is also considered

beneficial, and the interactions are described in this thesis as satisfyingthenear on-plane

condition. The conclusions of this section are summarised in Table 5.3 below.

Table 5.3 : Definition of on-plane, near on-plane and off-plane interactions, and the type of
generalised periodic Green's function to be used in the analysis for a numerically effrcient
solution to be obtained.

The conclusions derived here are illustrated below by the modelling of an inhnite array of

vertical monopoles which has an element geometry in which the mutual coupling between

the cunent sources distributed in the z dimension are cha¡acterised by on-plane, near on-

plane and off-plane conditions.

Condition Interaction Distance Periodic Green's Function Used

On-plane Az<0.001 )" Hybrid

Near on-plane 0.001 Â < Az<0.031 Hybrid

Off-plane Az> 0.03L Spectral
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5.2.2 Formulation for an Infïnite Array of

Vertical Monopoles

Figure 5.2 shows an element of an infinite phased array of vertical monopoles above an

infinitely large ground plane, being modelled as a thin metal strip of length / and width w,

orientated vertically in the 1z plane and excited by a Delta-gap voltage at its base. In terms

of modelling, the important difference between this element's geometry and that of the

horizontal metal strip discussed previously is that the current sources are distributed in the

z dimension over more than a single segment so that on-plane, near on-plane and off-plane

conditions apply.

z

w +- metal strip
monopole-1-

infinite ground plane
I

excitation at the
base of metal strip

Y
Figure 5.2 : An element of an infinite array of vertical monopoles above an infinite ground
plane, modelled as a vertical metal strip.

The vertical metal strip in Figure 5.2 is divided into segments, and the bottom two

segments of the metal strip are depicted in Figure 5.3. The lowest segment is in contact

with the ground plane, and its image is depicted as a source segment Si . The effect of

source points on the three segments at a testing point P, located at the centre of segment .S7

is being considered next. It is assumed that the height of a segment, Az = 0.051., so that by

the definitions given in Section 5.2.1, all of the source points in ^S¡ are in either the on-

plane or near on-plane condition with respect to P¡ . Furthermore, some of the source

points in both Sz and Si are also in the near on-plane condition with respectto Pt. It is

not expeditious to represent the effect of only the part of .Sz and Si satisfying the near on-
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plane condition, by means of a hybrid periodic Green's function. Hence, where parts of

adjacent segments have source points which satisfy the nea¡ on-plane condition, the hybrid

periodic Green's function is used to represent the effect of all the sources from those

segments on P¡ .

Pt

S/

Ground plane

si

Figure 5.3 : Adjacent segments on the vertical metal strip in which there are on-plane and

near on-plane interactions.

A model of the infinite anay of vertical monopoles is developed for a rectangular grid

lattice as well as a triangular grid lattice. In the latter case, the spectral periodic Green's

function for a triangular lattice as derived in Section 3.3.1 is used in the numerical

computations. For off-plane interactions, the spectral periodic Green's function is used in

the computations. For on-plane and near on-plane interactions, the hybrid periodic Green's

function is used. The arrangement of the elements in both lattice structures is shown in

Figure 5.4 below. The rectangular grid lattice is represented by the dark ellipses and the

triangular grid lattice is represented by the small rectangles. The dimensions and

segmentation of the elements, and the lattice spacings for the triangular grid lattice are

specified to be identical to those of the monopole array analysed by Schuman [63], so that

the results could be compared.

,Sz
1

Az

I
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Figure 5.4 : Anangement of the array elements in rectangular and triangular grid lanices
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Schuman analysed this infinite array structure using a form of the Integral Equation

solution known as the Plane Wave Expansion Moment Method (PWEMM), and each

element of the array was modelled as a thin wire monopole with axial currents. h this

analysis, each monopole is modelled as a vertical metal strip orientated in the yz plane.

The width of the metal strip, w = 0.A2)" is chosen to be 4 times the equivalent radius of the

wire used by Schuman. In the case of the rectangular grid lattice, the inter-element

spacings are chosen to be å = O.il, and d = 0.577 ), respectively, in the ¡ and y directions.

For the triangular grid lanice, the distance between columns of elements is å = 0.5Â and

the distance between elements in the same column is set at d - 0.577), " Each metal strip

of height h = 0.32. is divided into 4 segments and is excited by a z-direæted delta-gap

voltage at the bottom segment which is in contact with the ground plane. kr this case, it is

only necessary to use the hybrid periodic Green's function for self couplings and mutual
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couplings between adjacent segments; the spectral periodic Green's function is used to

represent all the other sets of interactions. The graph of active impedance variation with

scan angle in the xz plane for the triangular lattice monopole array is given in Figure 5.5

below"

180

160

140

20 30 40 50
Beam-steer from Boresíght (degrees)

60 70

Figure 5.5 : Active impedance as a function of scan angle in the xz plane for a triangular
gridlanice infînite anay of vertical monopoles;h=0.3)"w=0.02À.b=0.5)",d=0.517).,
flz= 4'

h Figure 5.5, it is apparent that the results obtained using the Generalised Periodic Green's

Function technique are in good agreement with Schuman's results for an infinite array of

monopoles in a triangular grid lattice. The results for a rectangular grid lattice anay with

the same element geometry are shown in Figure 5.6. The results for a triangular grid lattice

from Figure 5.5 are superimposed for comparison.
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Figure 5.6 : Active impedance variation with scan angle in the principal planes for a

rectangular grid and a triangular grîd lattice array of vertical monopoles; h = 0.3),,

w = 0.02L b = 0.5)., d = 0.517 )", flz= 4.

In the r¿ plane scan which also the H-plane, the active impedance are similar for the

rectangular and triangular grid lattices. However in the yz plane which is the E-plane, there

is a grating lobe predicted at 47o scan angle for the rectangular lattice array but not for the

triangular lanice array. This observation confirms the expectation in Section 3.4.3 about

the superiority of the triangular grid lattice array in avoiding grating lobes.

æ405060
BearÞsteer f rom Boresight (degrees)
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The numerical efficiency of the Generalised Periodic Green's Function technique for the

infinite anay of metal strip monopoles in which the element geometry involves both on-

plane and near on-plane interactions is shown in Table 5.4 below.

Table 5.4 : Active Impedance at boresight scan for an infinite rectangular grid lattice anay
of vertical metal strips above an infinite ground plane; h = 0.31, w = 0.02)", b = 0.5L
d = 0.577 A" flz= 4.

As shown in Table 5.4,a converged value forthe active impedance is reached when the

hybridperiodic Green's function series is truncated at -3 < m<3 and -3 <n<3. The

corresponding CPU time to calculate the active impedance per scan angle is 0.54 seconds.

Having developed the technique to efhciently model metal strips with current sources

distributed in the dimension peqpendicular to the array plane, the next section extends the

analysis to model the junctions between metal strips which may be required for element

geometries such as folded dipoles and for inclusion of coplanar strip feedlines into the

horizontal metal strips array model.

Number of Floquet Modes used in

Generalised Periodic Green's Function

xZ Plane Yz plane

Active Impedance at

Boresight Scan Angle

(f¿)

I I 0.0 - j 42.6

3 3 0.0 + j 15.8

5 5 O.0 + j4O.2

7 7 0.0 + j 48.3

9 9 0.0 + j 50.7

11 1l 0.0 + j 51.0

2t 2t 0.0 + j 51.7
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5.3 Modelling of Metal Strip Junctions

The infinite array analyses for horizontal and vertical metal strip elements using the

Generalised Periodic Green's Function technique, have been shown to be numerically

effrcient so that the typical CPU time required to calculate the active impedance is less than

one second per scan angle. The high computational efficiency of the technique makes it

possible to include the feedlines into the model, and to model other types of metal strip

elements for purposes of impedance matching. Furthermore, it is also highly desirable to

be able to model these structures in their entirety with a minimum of idealisations. To do

this, it is f,rrst necessary to be able to model metal strip junctions. Apart from accuracy, an

important consideration in junction modelling is to enforce the current continuity condition

at the junction in such a way as to enable a computationally effrcient numerical solution to

be obtained. A number of different techniques have been developed for junction

modelling; three of these methods and their relative merits will be briefly described and

assessed in this section. Finally, a simple but sufficiently accurate method of modelling

metal strip junctions is developed to be used with the Generalised Periodic Green's

Function technique.

5.3.1 Survey of Approaches to Junction Modelling

A rype of junction model which is commonly encountered is known as the wire iunction

model Í60,61,621. The wire is usually modelled with an equivalent radius, and the axial

currents 11, 12, ãîd/3 at the wire junction are expanded using pulse basis functions as shown

in Figure 5.7. The charge density distribution is also expanded using pulse basis functions

with the same pulse length, but off set from the current pulses by half a pulse. The half-

pulses representing the charges protruding beyond the physical ends of the wires are made

to overlap at the junction, and the continuity condition is maintained by enforcing the

conservation of charge at the end of each wire.
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wire I

,r/ Ij

Iz

charge

half-pulse
wire 2

7 Figure 5.7: A wire junction model showing the junction current and charge density pulses.

This wire junction model is particularly suitable for use with the spatial periodic Green's

function where pulse basis functions representing the charges are off-set from those

representing the currents, so that the derivatives contained in the dyadic Green's function

are taken using the method of central finite difference. It is not as suitable for modelling

junctions between metal strips which have two dimensional currents. It is also found to be

incompatible for implementation with the spectral periodic Green's function in which the

current and charge pulses are not off-set from each other. Hence this technique could not

be adopted.

A second junction model was developed by Newman and Poza¡ [58] for modelling wire-to-

surface patch junctions using one-dimensional basis functions for the wires, two-

dimensional basis functions for the flat plate surfaces, and overlapped surface patch modes

where two plates intersect. This method assumes that in the vicinity of a wire-to-plate

junction where the wire lies in a plane orthogonal to the plate, the current may be

decomposed into a quasi-radial component flowing from the wire onto the plate over a

generalised frill, and a slowly varying component distributed over the plate. Such a frill

and the basis functions associated with it is refened to as an attachment mode. However, if
the conducting part of the element geometry consists only of interconnected metal strips

with various orientations which lie in the same vertical plane, then a dominant quasi-radial

component does not exist, and a simpler method for modelling the junctions between the

metal strips is possible.
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A third junction model has been developed by Popovic and Kolundzrja [64] who adopted

entire domain basis functions and a Galerkin approach for solving the integral equations,

and employed wires and quadrilaterals to approximate the element geometry. By

expressing the entire-domain approximation for the equivalent currents in the same

coordinates as the surface elements, they used a procedure for converting any set of basis

functions into a new set which automatically satisfies current continuity at all

interconnections without the need for attachment modes. This technique, though attractive,

cannot be used in this analysis which employs sub-domain basis functions and the point

matching method. However, conclusions about the behavior of the currents in the so called

junction domain in their model, provide useful insights which are applied to the junction

model to be described in the next section. The concept of a junction domain is shown in

Figure 5.8 below.

metal
strips

Junction
Domain

Figure 5.8 : A localised junction model junction showing a junction domain enclosing the

ends of the metal strips which are interconnected.

As depicted in Figure 5.8, at the metal strip junction, the ends of the metal strips are

assumed to be interconnected by small pieces of metallic wire located in an electrically

small region of arbitrary shape known as a junction domain From quasistatic analysis, it

can be shown that provided the junction domain is electrically small, the sum of all the

currents on the metal strips flowing into this region is zero, and that the currents flowing

through the ends of the metal strips are independent of the geometry of the metallic wires
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interconnecting them. Therefore a satisfactory analysis of such a junction can be obtained

by omitting the interconnecting wires from the geometrical model, provided that the

current continuity condition is enforced at the junction.

5.3.2 A New Junction Model for Metal Strips

Based on Popovic's arguurents outlined in the previous section, if the junction regiorr

between one or more metal strips is electrically small, then the contribution of the currents

in the junction domain to the radiated field may be ignored provided that the current

continuity condition is obeyed. This principle is used here to derive a new junction model

shown in Figure 5.9 below.

Z

Segmented
horizontal strips

Configuration A Configuration B

Junction
Domains

Segmented
vertical strips

Figure 5.9 : Two configurations of metal strip junctions where the interconnections of
metal strip segments at the junction are within a rectangular junction domain.

There are a number of ways of configuring the metal strip junction in relation to the

segments used to represent the equivalent currents on the metal strip surfaces. kr Figure

5.9, the junction domain is assumed to be an electrically small rectangle which encloses the

line where the vertical a¡d horizontal strips come into contact. There are two possible

configurations that may be used to model the junctioû, ö shown in Figure 5.9.

Configuration A enables the segment size for the vertical and horizontal arms to be

independently specified. In Configuration B, the same segment dimensions are used for

Y
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both the vertical and horizontal metal strips which enable the entire structure to p

common gnd as described in Figure 4.4 so that the spatial component of the

periodic Green's function may be more efficiently computed. Both configurations have

been successfully used to model va¡ious types of phased array elements in this resea¡ch.

Since the metal strip segments have two dimensional equivalent currents, the current

continuity condition is implicitly enforced on the junction segments by the boundary

conditions, provided that the interconnections in the junction domain do not contribute to

the radiation. This latter condition is met since the junction domain is electrically small.

5.3.3 Convergence Acceleration of the Spectral Periodic

Green's Function for Junction Segments

In the spectral periodic Green's function technique, the coefficient of the equivalent current

pulse is evaluated at the centre of each segment. The coefficient of the charge pulse which

represents the derivative of the current, is also evaluated analytically at the centre of each

segment. This procedure of determining the equivalent currents is compatible with the

junction model developed in Section 5.3.2. However, in the case where the testing and

source points are located on segmens which lie just above and below the junction domain,

the more rapidly convergent hybrid periodic Green's function is used. This Green's

function has a spatial component in which the integration has to be evaluated numerically.

The spatial component has a current component and a charge component which is a partial

derivative of the current. The derivative is normally evaluated by the method of central

finite difference [65]. The evaluation of this derivative needs to be performed with some

care in order to preserve the correct contribution of these sources near the junction region.

Figure 5.10a shows how the partial derivatives of the spatial Green's function with respect

to z should be taken in the case where the geometry is a continuous metal strip. Figure

5.10b shows the case when the source and testing points are located in segments adjacent

to the junction domain. The double partial derivative may be taken with respect to any two

dimensions. Because the junction domain can be considered as a thin rectangle cutting
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across the ends of the segments immediately above and below it in the yz plane, only the z

directed currents can flow into this rectangle. Hence only the partial derivatives with

respect to z require special attention.

junction domain

G(n+2)

G(n+2)

G(n+ 1)

G(n)

G(n-1)
G(n+ I )

G(n) 2)

Z

7

I
Az

I

n-

ï
Az

G(n- I )

G(n-2)

a typical
source

segment

Figure 5.10a : Taking of f,rnite

difference for segments on a
continuous metal strip

Figure 5.10b : Taking of f,rnite

difference for segments adjacent
to the metal strip junction

Y

The procedure for taking a double partial derivative with respect to the ¿ direction is first

considered for the case of a continuous metal strip shown in Figure 5.10a. The source

segment centred at S is shaded, and the current basis function is a two-dimensional pulse of

dimensions equal to the segment. If G(n) is the spatial periodic Green's function

representing the effect of an infinite array of sources centred at S, on a testing point Z, then

the double partial derivative of this Green's function with respect to z may be evaluate by

central frnite difference as:

T

+

Sç

T

+

s

tu2

(s.1)



Equation (5.1) describes how the derivative is numerically evaluated in the case of the

continuous metal strip where the Green's function is evaluated at intervals of Az/2. This

procedure also applies to the case of self interaction, when both the source and testing

points are located on the same segment adjacent to the junction domain.

In Figure 5.10b, the location of the source and testing points on different sides of the

junction domain needs to be taken into account when determining the interval between the

points at which the Green's function is evaluated. If the Green's functions are evaluated at

smaller intervals of Azl4, the field points used for taking the f,rnite difference do not cross

over the junction into the source segment. It was found from numerical experiments that

provided this condition is met, the use of even smaller intervals to compute the finite

difference did not lead to significant improvements in the evaluation of the partial

derivatives. Hence the derivative of the spatial component of the hybrid periodic Green's

function for junction segments is given by:

(s.2)

In summary, partial derivatives of the spatial component of the hybrid periodic Green's

function are evaluated by the method of finite difference. For source and testing points

located on different sides of a junction domain, finer intervals must be used when taking

the hnite differences with respect to the ¿ direction. The interval size must be chosen such

that the testing point does not cross over the junction when evaluating the finite difference"

The junction modelling technique developed in this section is next illustrated using the

analysis of an infinite array of folded dipoles.
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5.3.4 Formulation for Infïnite Arrays of Folded Dipoles

Figure 5.11 shows how an element of an infinite array of centre-fed folded dipoles may be

modelled as two metal strips of length / and width /¿, connected to two individual metal

segments of height Az, at an overall height å above an infinite ground plane. The structure

is excited at the centre of the driven arm by a delta-gap voltage, and has a total of 4

junctions connecting the 2 metal strips and 2 thin individual metal segments. The use of

the hybrid periodic Green's function for on-plane and near on-plane interactions, and the

junction modelling technique described in Section 5.3.2 a¡e applied into the analysis of this

structure.

Z

I

1h

Az
infinite ground
plane

Junction domains

Y

Figure 5.9 : Centre-fed metal strip folded dipole element of an infinite array above an

infinite ground plane.

The characteristics of an isolated folded dipole Í66,671and for a two element foldedlipole

[68] are documented in the literature. A folded dipole can be modelled by treating its

current as being composed of a transmission line mode current and an antenna mode

cunent Í69,70,711, provided that its driven and folded anns are electrically thin and closely

spaced. Under these conditions, ¡he Transmissíon Line model of the folded dipole provides

an insight into the behavior of the folded dipole and a numerically effrcient analysis of the

problem. It also describes a relationship between the input impedance of the folded dipole
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and that of the simple dipole, which can be used to validate the accuracy of the junction

modelling technique described in Section 5.3.2. However, it has been found that the

transmission line model of the folded dipole is only accurate Í721if the separation betrveen

the parallel arms of the folded dipole a¡e electrically close together (a maximum of about

0.01Â) so that the usual transmission line equations apply [73]. If the separation between

the two arms is much greater than 0.01Â, the structure behaves more like a narrow

rectangular loop antenna. Lampe [69] has developed an expression for the input

impedance of a folded dipole based on the Transmission Line model:

z,n
z(t+ o)'zoz,

(r * o)' Zo + zzt
(5.3)

where Z¿ and Z, are the impedance of the equivalent dipole and transmission line modes,

respectively; (I+a)2 is the impedance step-up ratio and a is the ratio of the currents on the

two dipole arms in the antenna mode. It can be shown 112) that if the two arms of the

folded dipole are of equal width and the structure is excited near to the frequency of its

half-wave resonance, the input impedance of the metal strip folded dipole given in (5.3) is

four times that of an equivalent width single metal strip dipole. This result will be used to

validate the model for the inf,inite array of folded dipoles based on the junction model

developed in Section 5.3.2.

The model of an infinite array of metal strip dipoles orientated with their faces

perpendicular to the anay plane described in Section 4.4 is used to predict the variation of

active impedance with scan angle. The results for this metal strip dipole ¿uray are plotted

in Figure 5.12. The results of active impedance as a function of scan angle for the infinite

anay of metal strip folded dipoles a¡e also ploned on the same graph, but with the active

impedance values divided by a factor of 4. The length of the metal strip in both cases is set

at I = 0.485L which is the resonant length of the isolated simple dipole in free space [74].

The height of the element above the ground plane in both cases is adjusted so that a

resonance condition is achieved, and the combined width of the metal strip folded dipole

arms is set equal to the width of the metal strip.
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Figure 5.12 shows the variation of active impedance with scan angle in both the principal

planes of scan. It is apparent from the graph that the agreement between the metal strip and

folded dipole results is almost exact at the boresight scan angle. This result is significant

as it shows that the use of the generalised hybrid periodic Green's function for on-plane

and nea¡ on-plane interactions described in Section 5.2 as well as the metal strip junction

model developed in Section 5.3.2 which have been applied to the folded dipole model have

correctly predicted the result for a known condition and complex geometry. The agreement

between the resuls of the two models is very close for all scan angles in the E-plane, and

for scan angles up to about 50o in the H-plane. The slight deviation in the results for larger

angles in the H-plane is probably due to the finite separation between the two arrns of the

folded dipole and the stronger mutual couplings in the H-plane at large scan angles.

10 20 30 40 50 60
Beam-steer f rom Boresight (degrees)

70 80 90

Figure 5.12: Active impedance as a function of scan angle for infinite Íurays of simple

dipoles and folded dipoles in the principal planes of scan; b = d = 0.5L For the metal

strip,/ =0.485h, w=0.02L h=0.22ü.. Forthefoldeddipole, I=0.485A" k=0.014,,
h=0.2245)t, nr=9.
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The accuracy of the folded dipole model has confirmed the validity of the junction

modelling technique employed in the analysis. It is also concluded from the results that

provided the folded dipole's arms are sufficiently close together, the Transmission Line

model of the folded dipole can be applied to the inhnite array environment with good

accuracy over all of scan space. The ability to model the full element geometry of the

folded dipole without idealisations has been made possible by the high computational

efficiency of the Generalised Periodic Green's Function technique.

The numerical efficiency of the technique may be gauged by the number of Floquet modes

used in the Hybrid Periodic Green's Function series and the CPU time taken for the

calculation of a converged value of the active impedance, as shown in Table 5.5 below.

Table 5.5 : Active impedance at boresight scan for an infinite array of centre-fed folded
dipoles (rectangular grid lanice) above an infinite ground plane; b = d = 0.5).,1= 0.485)",

Az = 0.üL h = 0.2245L n, = 9.

It is apparent from Table 5.5 that the result is converged for Floquet modes -2 < m < 2 and

-2 < n < 2 used in the evaluation of the hybrid periodic Green's function, with a

corresponding CPU time of 4.1 seconds used to calculate the active impedance per scan

angle. In the next section, the junction modelling technique is used for the analysis of anay

elements with feedlines.

Floquet Modes Used Active Impedance

(o)

CPU Time Taken

(Seconds)

lxl 450.3 +j 309.0 2.7

3x3 474.8 +j 363.5 3.0

5x5 686.0 + j 0.3 4.1

ll x ll 657.5+j2.3 12.0

ll xll 654.5 + j r"4 23.0
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5.4 Feedline Modelling

Having demonstrated that the metal strip junction modelling technique developed in

Section 5.3 is able to accurately and efficiently model the element geometry of a metal strip

folded dipole, the technique is now extended to model a coplanar strip feedline for a metal

strip dipole. The intention here is to develop the capability to model the feedlines for a

microstrip dipole anay which is described in Chapter 6. A feed strucrure that is commonly

used for a microstrip dipole antenna is the coplanar strip feedline shown in Figure 5.13.

The two feedline+o-radiator junctions can be modelled equally well using either of the

Conhgurations A and B described in Figure 5.9. Configuration A is modelled first so that

the results could be validated against the same model analysed by Schuman [29] using the

Plane Wave Expansion Moment Method (P\VEMM) and by Cooley [75] using a Moment

Method with equivalent fin electric currents and aperture magnetic currents. Configuration

A also has the advantage that the current segments on the radiating element can be different

in dimensions from the those on the feedline.

Configuration A Junction Feedline Model

I

Z

Y

h

Aw

ltz
Y

infnite
ground plane

-q*
Figure 5.13 : Metal strip anay element with coplanar strip feedline. The metal strip -
feedline junction is modelled using ConfigurationA junction feedline model.
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Using the same segmentation scheme as Schuman, the metal strip of length / = 0.375Â is

divided into 5 segments, and the coplanar strip feedline of heigh¡. h = 0.25L is divided into

4 segments. The element is excited by a delta-gap voltage at the centre segment of the

horizontal metal strip. In order to relate this model to a practical antenna structure, it is

assumed that the active impedance obtained at the feed point of the metal strip can be

translated back to the base of the coplanar strip feedline which is connected to a balun

structure located below the ground plane. It is also assumed that the impedance at the base

of the feedline is terminated with a short circuit at the ground plane. Schuman modelled

both the dipole element and feedline as thin wires with the same equivalent radiuS, r =
0.0125L. As the dipole element and feedline are modelled as metal strips in this analysis,

the width of each metal strip is set at lv = 4 r = 0.05,1. The inter-element spacings are set

at b = 0.5Â and d = 0.4),, in the ¡ and y directions, respectively. The results of the model

are given in Figure 5.14 below.

-1

10 20 30 40 50 60
Beam-steer f rom Boresight (degrees)

70 80 90

Figure 5.I4 : Active impedance as a function of scan angle for an inf,rnite rectangular grid
lattice array of metal strips with coplanar strip feedlines in the E-plane; b = 0.5),,

d=0.4),, I=0.375),, h=0.25)., Áty=4=0.051" fly=5, f,z=4.
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Figure 5.14 shows the variation of active impedance with scan angle in the E-plane for

lattice spacings in the ¡ direction of å = 0.5Â and b = 0.61.. It can be seen that the results

obtained with the generalised periodic Green's function technique and the metal strip

junction model developed in this thesis are in very good agreement with Schuman's results.

The occurrence of feedline induced scan blindness in inf,rnite dipole ¿urays is well known

[761. It is apparent that for the å = 0.6,1. lanice spacing there is a feedline induced scan

blindness at about 40o from boresight in the E-plane. 'When the lattice spacing is reduced

to b = 0.5Â, the scan blindness angle correspondingly reduces to 35o from boresight.

Hence the model has confirmed Schuman's findings with regards to the occurrence of scan

blindness as well as the effect of the lattice spacings on the scan blindness angle. The

computational efficiency of the Generalised Period Green's Function technique and

junction modelling technique used for the analysis of this array can be seen in Table 5.6

below.

Table 5.6 : Active impedance at boresight scan for an infinite rectangular grid lattice anay

of centre-fed metal strip dipoles with coplanar strip feedlines (Configuration A junction

modelused)aboveaninhnitegroundplane; b=0.5A,, d=0.4îv,I=0.375),, h=0.2254",
fly= 5, f,z= 4.

Floquet Modes

Used

Active Impedance

(ç¿)

CPU Time Taken

(Seconds)

1 X I s23 -j79.s 7.5

3x3 s2.9 - j37.8 8.6

5x5 71.7 - j rs0.0 r0.7

7x7 130.6 - j 148.9 13.8

9x9 117.r - j r34.0 17.7

ll x 11 rt4.7 - j r3t.t 22.r

2l x2l 113.2 - j 130.7 62.1
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It is apparent from Table 5.6 that the results are converged for Floquet modes

corresponding to 4 3nt < 4 and 41n < 4 used in the evaluation of the hybrid periodic

Green's function, with a conesponding CPU time of 17.7 seconds used to calculate the

active impedance per scan angle. In the next section, the Configuration B junction

modelling technique is used for the analysis of array elements and their feedlines, and the

convergence of the results will be compared with those in Table 5.6.

Configuration B Junction Feedline Model

kr Configuration B, the two metal strips of the coplanar strip feedline are aligned directly

below one of the segments of the metal strip element. In this configuration, the whole

structure can be aligned with a cornmon grid which enables efficient computation of the

spatial component of the hybrid periodic Green's function. A disadvantage of this

conhguration is that the dimensions of the metal strip element and feedline segments

cannot be independently specified. However, if the active impedance is required for an

exact metal strip length which cannot be conveniently modelled using a gnd system, a

solution to the problem is to model the array element twice using the grid system for metal

strip lengths slightly shorter and longer than the desired length, and to inte¡polate the

results. A feedline model using the Configuration B junction is given in Figure 5.15

below.

Az

grid
lines

Y
?'ay

Z

I

h

+ plane

Figure 5.15 : Metal strip anay element with coplanar strip feedline. The metal strip -
feedline junction is modelled using Configuration B junction feedline model.
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Apart from the lattice spacing, another parameter which affects the scan blindness angle is

the feedline separation. A numerical experiment based on the Configuration B junction

model is presented below to demonstrate this effect. As shown in Figure 5.16, a centre-fed

horizontal metal strip element of length I = 0.395L is divided into 9 segments and

connected to a coplanar strip feedline of height h = 0.2il, above the ground plane. The

model is first analysed with the feedlines in the AA'positions when the distance between

feedline centres is 6 segment widths apart. The model is then analysed with the feedlines

at BB'(4 segments apart), CC' (2 segments apart), and DD'(single strip feedline).

ABCDD,C,B,A,

Figure 5.16 : Conhguration B junction feedline model for various feedline separations

The variation of active impedance with scan angle for each of the feedline positions

indicated above is plotted in Figure 5.17 to show the effect of the feedline separation on the

characteristics of the array. The case of the single strip feedline at position DD' in fact

corresponds to a simplihed feedline model Í29,171, where the coplanar strip feedlines are

sufficiently close together that the balanced (transmission line) mode currents are assumed

to have negligible contribution to the radiation characteristics of the array. The analysis of

this model is performed by assuming only radiating mode currents on the feedline. A

simplified feedline model has been developed and the accuracy of the results have been

validated against those obtained by Schuman Í291 for a triangular grid lattice infinite anay.

An outline of the analysis and the results are given in Appendix D. Although in practice,
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the feedlines are unlikely to be separated as far apart as positions AA', the purpose of this

numerical experiment is to highlight the effect of feedline separation on the scan blindness

condition of the array.

150

-200

-250
0 10 20

50

50

1

1

U'
Eco
x
o
fr
doc
(E
Þ
o
o-
E.
o

o

Figure 5-17 : Active impedance as a function of scan angle in the E-plane for the
Configuration B junction feedline model with various feedline separations.

As shown in Figure 5.15, except forthe single strip feedline case, there is a scan blindness

in the E-plane. It is apparent that for close feedline separations, the scan blindness

condition occur further away from the boresight angle. The reason is that the feedline

induced scan blindness effect is caused by the ferdline currents which may be considered

as comprising radiating mode currents and transmission line mode currents. For closer

feedline separation, the transmission line mode current is smaller, and hence has a less

dominant effect. The absence of a scan blindness condition in the results of the single strip

feedline model shown in Figure 5.17 cannot be generalised to all cases. It has been found

that by using other element and lattice parameters, the radiating mode cunents on the

30 40 50 60
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single strip feedline model do cause a scan blindness condition to occur, and the scan

blindness is indicated by the results of the model presented in this section.

The computational effrciency of the Generalised Period Green's Function technique and

Configuration B junction modelling technique used for the analysis of this array can be

seen in Table 5.7 below.

Table 5.7 : Active impedance at boresight scan for an inf,rnite rectangular grid lattice array
of centre-fed metal strip dipoles with coplanar strip feedlines (Configuration B junction

model)aboveaninfinitegroundplane; b=0.5)", d=0.4L1=O.3752. h=0.2h, nr=5,
flz= 4'

It is apparent from Table 5.7 that the result is converged for Floquet modes conesponding

to -2<m32 and -2<n < 2 used in the evaluation of the generalised periodic Green's

function and a CPU time of 5.2 seconds used to calculate the active impedance per scan

angle. In comparison with the results in Table 5.6, the results for the Configuration B

Junction Model converges with the use of 5 x 5 Floquet modes as against 9 x 9 Floquet

modes for the Conf,rguration A Junction Model which requires a CPU time of 17.7 seconds

p€r scan angle. Hence in terms of computational speed in producing converged results, the

Conhguration B model is three times as.fast as Configuration A. Furthermore, the use of a

Floquet Modes

Used

Active knpedance

(o)

CPU Time Taken

(Seconds)

1 X I 724.7 + j 1718.3 3.8

3x3 t24.6 - i 2M.8 4.t

5x5 r02.4 - j r36.3 5.2

7x7 100.4 - j 130.8 5.6

9x9 98.6 - j r27.3 6.t

11x 11 98.0 - i r25.7 6.7

2l x2l 97.4 - i rzs.6 16.8
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common grid for evaluation of the spatial component of the hybrid periodic Green's

function has enabled the Configuration B model to be more efficiently implemented than

Conf,rguration A. This may be observed from Tables 5.6 and 5.7 that for the same number

of Floquet modes used in both cases, the Configuration B results take benveen a quarter to

half the CPU time required for the Configuration A results. Therefore, for reasons of

greater computational efficiency and comparable rate of convergence of the results, the

Configuration B junction model is used for modelling of phased array coplanar strip

feedlines in the rest of this thesis.

5.4.1 Formulation for Infïnite Arrays of Metal Strip

Folded Dipoles with Coplanar Strip Feedlines

In certain types of phased arrays, it may be necessary to design a folded dipole element to

improve the impedance match with the feedlines of the structure. The analysis of the

folded dipole in Section 5.3.4 and the Configuration B junction feedline model in Section

5.4 ue combined here to model an infinite array of folded dipoles with coplanar strip

feedlines above an infinite ground plane.

The model of the folded dipole with feedlines is relatively complex, involving a total of six

metal strips and six junctions. If the full structure cannot be modelled because of

limitations in the analytical tool or computational resources, the problem can be simplified

in a number of ways.

Firstly, the two arms of the folded dipole can be assumed to be very close together so

that the Transmission Line Model of the folded dipole applies [72]. If it is further

assumed that the dipoles anns are of equal width and that the folded dipole is

operated near to its half-wave resonance as is usually the case, then the folded dipole

can be assumed to behave like a metal strip dipole of equivalent width but with

approximately four times the input impedance of the metal strip dipole. In Section

5.3.4, it was demonstrated using a full analysis of the folded dipole that these

o
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assumptions are reasonable, even rvhen the element is radiating within the

environment of an infinite array.

a Secondly, it can be assumed in some cases that the two strips of the feedline a¡e close

together and a quarter wavelength long, so that only the radiation mode curents on

the feedlines need to be considered.

Under the above two conditions, the geometry of the folded dipole with coplanar strip

feedline may be idealised to that of a metal strip dipole with a single strip feedline which is

described in Appendix D. However, it is noted that idealisations may lead to errors in the

solution, particularly when all the conditions required for making the idealisations are not

fully met in the specification of the element geometry's dimensions. The flexibility and

high computational effrciency of the Generalised Periodic Green's Function technique is

exploited to analyse the full model without the idealisations described above and to

implement the solution on a desktop computer. The element geometry is shown in Figure

5.18 below.

metal strip
folded dipole
element

coplanar strip
feedline

Z

I

Az.

inhnite ground
plane

Y

Figure 5.18 : Geometry of a folded dipole element with coplanar strip feedline above an

infinite ground plane.

As shown in Figure 5.18, the structure of the folded dipole with feedlines can be modelled

as a collection of inter-connected metal strips which are segmented using a gnd system.

The graph of the active impedance against scan angle for an infinite array of metal strip

folded dipoles with coplanar strip feedlines is shown in Figure 5.19. In the graph, the
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active impedance of the folded dipole is divided by a factor of 4 and plotted in comparison

with that of the metal strip dipole of width equal to the total width of the two arms of the

folded dipole. In the H-plane, the active resistance variations are similar, but the reactive

component for the folded dipole becomes increasingly capacitive with increasing scan

angle. The main difference between the metal strip and folded dipole results lie in the E-

plane scan. As compared with the metal strip, the folded dipole has a feedline induced

scan blindness in the E-plane at about 40o scan angle from boresight which is evident from

the vanishing active resistance and a large reactance shown in the graph. This result is due

to the relatively large feedline separation specified in the geometry of the model which has

adversely affected the radiation characteristics of the folded dipole.

-100

10 20 30 40 50 60
Beam-steer from Boresight (degrees)

70 80 90

Figure 5.19 : Active impedance as a function of scan angle for an infinite array of folded

dipole with coplanar strip feedlines above an infinite ground plane; b = 0.5),, d = 0.51,
I = 0.49À., h = 0.18),. The length of the folded dipole is segmented into ns = 9 a¡d the

length of the coplanar strip feedline is segmented into flz = 7 segments.
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It should be noted that the geometry of the folded dipole with coplanar strip feedline

represented by the model has a narrow bandwidth because of the transmission line mode

currents from the feedline and the two halves of the folded dipole. Furthermore, the half-

wave resonant length of the folded dipole in free space leads to very strong mutual

coupling between adjacent elements in the E-plane. This is undesirable for practical use,

and some way to shorten the resonant length of the radiating element is required. In

Chapter 6, it will be shown that the dielectric substrate causes a shortening of the resonant

length which is actually beneficial to the radiation characteristics of the folded dipole"

The computational efficiency of the hybrid period Green's function technique and

Conf,rguration B junction modelling technique used for the analysis of this array can be

seen in Table 5.8 below.

Table 5.8 : Active impedance at boresight scan for an infinite rectangular grid lattice anay
of folded dipoles with coplanar strip feedlines (Configuration B junction model) above an

infinite ground plane; b = 0.5À., d = 0.5À., I = 0.49)", h = 0.182", fly = 9, flz= 7.

It is seen from Table 5.8 that the results are converged for Floquet modes corresponding to

-2 1 m < 2 and -2 1 n < 2 used in the evaluation of the generalised periodic Green's

function and a CPU time of 16.2 seconds used to calculate the active impedance p€r scan

angle. The high computational eff,rciency of the method of analysis has enabled this

structure to be model in its entirety with a minimum of idealisations. The ¿dv¡rtege of a

full analysis such as this is useful for design purposes where a simplihed model cannot be

Floquet Modes Used Active Impedance

(o)

CPU Time Taken

(Seconds)

I x I 63.5 + j 54.4 10.9

3x3 6s7.7 - j 83.9 13.6

5x5 620.6 - j r7s.7 r6.2

7x7 615.3 - j 166.4 22.6
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used to investigate the effects of variations in such parameters as feedline separation and

dipole-arms separation to the characteristics of the phased array.

5.5 Summary

In this chapter, the Generalised Periodic Green's Function technique has been extended

from the analysis of the simple element geometry of a horizontal metal strip to the

modelling of anay elements with more complex geometries together with their feedlines.

To maximise the computational efficiency of the technique, a numerical experiment has

been used to demonstrate the need for accelerating the convergence of the spectral periodic

Green's function for both the on-plane and near on-plane case. This technique is then

applied to the modelling of an infinite array of vertical monopoles.

Three conventional junction modelling techniques are described and found to be

incompatible with the Generalised Periodic Green's Function technique of analysis

developed in this thesis. A new technique is therefore developed to model metal strip

junctions. Mutual coupling of the current segments adjacent to the junction satisfy the near

on-plane condition where the hybrid periodic Green's function applies. The calculation of

the derivatives of the spatial component of this Green's function is done using the method

of finite difference. It is shown that by the use of adequately small intervals for taking the

finite difference, the contribution of the currents at the junction is preserved. The metal

strip junction modelling technique is applied to the analysis of an infinite anay of folded

dipoles and extended to the analysis of horizontal metal strips with coplanar strip feedlines.

In the latter case, the model is able to identify feedline induced scan blindness which is

shown to be a function of lattice spacings and feedline separation. Finally, the techniques

developed in this chapter are applied to the modelling of an infinite array of metal strip

folded dipoles with coplanar strip feedlines. The techniques developed in this chapter has

enabled the analysis to be extended to microstrip dipole ¿urays which is described in

Chapter 6.

tt9



The main contributions to research presented in this chapter are as follows:

o A highly efficient Generalised Periodic Green's Function technique has been developed

for the analysis of element geometries distributed over three-dimensions by the use of the

Hybrid Periodic Green's Function to account for on-plane and near on-plane interactions.

o A new metal strip junction model has been developed which enables the analysis of

element geometries such as folded dipoles, and the analysis of the coplanar strip feedlines.

o Numerically efficient models of infinite ¿umys of vertical metal strip monopoles, metal

strip folded dipoles, and horizontal metal strips as well as metal strip folded dipoles with

coplanar strip feedlines have been developed and validated against results found in the

literature.
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CHAPTER 6

Infinite Array Analysis of

Microstrip Dipole Antennas

6.I Introduction and Overview

kr the previous three chapters, the Generalised Periodic Green's Function technique was

developed and implemented for the analysis of infinite planar arrays of metal strip structures.

The flexibility, accuracy and numerical effrciency of the technique was demonstrated ttrough

the modelling of a variety of stn¡ctu¡es such as metal strip dipoles in væious orientations,

vertical mono¡nles and folded dipoles, in both rectangular as well as triangular grid lanice

infinite arays. A new technique of junction modelling was also introduce{ in which the

current continuity condition is implicitly enforced by using a twodimensional pulse basis

function for each source segment. This technique has enabled the effrcient modelling of

feedlines connected to the radiating elements. It was shown that using a conventional desktop

Sparc workstation, the computation time to obtain a well converged active impedance result for

a given scan angle ranged from 0.05 seconds for metal strip dipoles to about 16 seconds for
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folded dipole elements with feedlines. Having developed the techniques for analysing an

infinite array of metal strips in various configurations, it is desirable to extend the analysis to

include the substrate, so that each array element has a metallic part as well as a dielectric

substrate.

The dielectic subsbate itself may be configured in a number of ways in relation to the antenna

and is feed network. The basic architecture of microstip anays may be grouped into one of

two categories [78,79]. The first type is a so called r¡le constn¡ction in which all the antenna

elements, module electronics (amplifiers, phase shifters, etc) and disuibution networks a¡e each

integrated onto separate wafers which are orientated parallel to the transverse array aperture and

stacked in the longitudinal direction to form the array. This architecture is described in this

work as Transverse Integration and Longinditnl Assernbly CItr-A). The second type has been

called abrick constn¡ction in which the antenna element and module electronics are integrated

longitudinally to the array apertue on a single chip module, and identical modules are then

arranged in the transverse direction to build ûre array. This architecture is referred to in this

thesis as t¡ngitudinal krtegration and Transverse Assembly (LIIA). The choice of the anay

a¡chitecture will affect not only the electrical characteristics of the array such as is operating

bandwidth, scanning performance, radiation pattern and impedance matching characteristics

[32], but also other features such as conformity to the surface of the stn¡cture on which it is

mounted, substrate area availability for power distribution and signal routing, heat removal and

maintenance. Therefore, it is desirable to have a method of analysis which is flexible enough to

model array elements appropriate for either the TILA or LITA architecture.

A number of techniques have already been developed for the analysis of conventional

microstrip ¿lrrÍrys. Pozzr, Schaubert and othen [33,34] have analysed TILA ¿urays comprising

printed dipoles or patches on the top surface of a grounded slab of dielectric substrate which

extends continuously across the aperture plane of the array. Because the analysis is based on a

spectral domain Green's function for the infrniæ dielectric slab, it cannot be readily extended to

the case where the slab is finite in one or more dimensions.
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Bayard, Cooley and others [7] have analysed LITA ¿urays consisting of printed dipoles on semi-

infinite dielect¡ic sheets orthogonal to the ground plane, using a combination of the Green's

function Moment Method and a mode matching technique. The technique involves a detailed

formulation using both magnetic and electric cunent sources as well as mode matching.

However, in the work reported [80], the two metal stips of the feedline are widely spacd and

because the dielectric sheet is elecuically thin, the effect of radiation from the feedline

dominates the characteristics of the array. Furthermore, the formulation adopted for semi-

infinite dielectric sheets is unsuitable for analysis of substrates which a¡e of finite dimensions

and separated from each other.

A third technique developed by Parhn and others [8,9,10] uses the htegral Equation method

and models the metal strip radiating elements using equivalent surface currents and the

dielectric substrate using volume polarisation cunents. Results have been published for the

analysis of infinite arrays of metal strip antennas with feedlines, individually supported on finite

size dielectric substrates. kr this method of analysis, all the mutual couplings in both the

metallic and dielectric parts of the array elements are accounted for by what is identified in this

thesis as the Generalised Spatial Periodic Green's Function which is not constrained by ttre

geometry of the array element. The use of a single Green's function in the analysis is desirable

because of simplicity in ttre problem formulation and potential user convenience if the method

is developed into a CAD software for general use. Furtherrnore, since the Green's function is

not constrained by the element geomeûry, the technique can also be used for the analysis of array

elements with various novel substrate configurations including inhomogeneous multi-layered

substrates and superstrates. However, as pointed out in Sections 3.4.1 and 3.4.2 respætively,

the use of the spatial periodic Green's function also implies that the integration of the Green's

function over the sources has to be evaluated numerically, and that the results are slowly

convergent for large scan angles. Consequently, a supercomputer was required for the

implementation of this technique for the analysis of infinite a¡rays of substrate supported metal

strip dipoles, and a large number of ærms in the spatial periodic Green's function series had to

be used to in order to obtain converged results for large scan angles [10]. It is noted thæ a

numerical solution which requires an extensive amount of computations may also incur

inaccuracies due to numerical errors of the computer.
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Hence it is concluded that the three techniques described above have a number of limitations in

modelling both TILA and LITA microstrip arrays, and that a generalised and more numerically

effrcient technique of analysis is desirable in order to offer the flexibility of modelling a wide

range of array element geometries. In this chapter, the Generalised Periodic Green's Function

technique is applied to the analysis of infrnite microstrip dipole arrays suitable for both TILA

and LITA architec¡¡res. In Section 6.2 an analysis of an infinite microstrip anay with the

conventional infinite dielectric slab is described. The analysis is then extended to the case

where the dielectric consists of semi-intinite dielectric sheets and completely f,rnite dielectric

substrates in Sections 6.3 and 6.4, respectively. It will also be shown that high computational

effrciency can be achieved by the technique, to the extent that a full analysis of array element

structures such as folded dipoles with their feedlines mounted on hnite-size substrates, is

feasible using desktop computing resources.

In the Chapter 5, it was demonstrated that the Generalised Hybrid Periodic Green's function

technique is able to accurately predict the feedline induced scan blindness effect in both simple

and folded dipole arrays with coplanar strip feedlines radiating in free space. kr this chapteç it

will be shown that the technique can also accurately predict the occurrence of substrate induced

scan blindness in microsrip dipole arrays. For the case where the feedlines are included in the

analysis, it will shown that the technique can be used not only to accurately predict the

occunence of a scan blindness, but also predict which of the feedline or substrate causes the

scan blindness and ttrus allow the antenna designer to explore ways of reducing the effect of

scan blindness in array performance.

6.2 Formulation for an Infinite

Dielectric SIab Structure

Figure 6.1 shows a section of an infinite planar array of metal strip dipoles supported on

the top face of a dielectric substrate which extends continuously in the ry plane. Each

element is assumed for the purpose of the analysis to be excited by an idealised delta-gap
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voltage source at the centre of the metal strip, so that no feedlines are included in this

analysis.

h

X

êb+
Inf,inite

ground plane

dielectric slab of infinite extent

Figure 6.1 : A section of an infinite array of metal strip dipoles supported on the top face of
a dielectric substrate of infinite lateral extent.

6.2.1 Integral Equation Formulation

The method of problem fornulation employed here is similar to that employed by Sarkar

[81] and Parhtt [10]. For the subsequent analysis in this section, primed co-ordinates refer

to the position of the sources and unprimed co-ordinates to the position of the field points.

The electric field integral equations for this geometry a¡e obtained from the boundary

conditions associated with the tangential electric field on the surface of the metal strips and

the conditions which determine the total electric field within the dielectric substrate. The

boundary condition governing the tangential components of the incident electric field

[¡'(t)l^ and scattered electric field [E'(f)]* on the surface of the metal strips at

location F as given in (4.1), is:

z
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[E'(r)],_ +[E'1r¡],,o = o for Fe,s" (6.1)

(6.3)

where S" denotes the surface of the metal strips.

The second boundary condition governing the total electric field in the dielectric substrate

is given by:

E'(r)+ r'(r) - E''^ (7) for r evo (6.2)

where V¿ denotes the volume of the dielectric substrate.

Using the equivalence principle, the metal strips may be replaced by the equivalent surface

current 4 -¿ the dielectric substrate by the equivalent volume polarisation currenß 7, ,

both of which exist in free space. The metal strips are assumed to be infinitesimally thin,

so that the equivalent surface current 7" ,"p."r.nts the total currents on the strips. For this

analysis, the width of each metal strip is assumed to be narrow with respect to its length so

that the metal strip is represented by a single segment in the dimension pe¡pendicular to its

length. However, the technique can also be applied to the analysis of rectangular metal

patch radiating elements by using more than one current segment in each dimension on the

surface of the patch. With the above representations of the currents, the scattered electric

field at a location V may be written as:

¿'(¡) = L,{i,}+ ro{Ío}

The expressions for the operators L, and L¿ will be given below. The relationship

between the total electric field in the dielectric and the volume polarisation current is given

by:

i o(7') = E'o'o'(7) i*oþ. - t) (6.4)

where a¡ is the angular frequency, eo is the permittivity of free space and t is the relative

permittivity of the dielectric slab. For the purpose of this analysis, the dielectric is assumed

to be homogeneous and lossless; however both inhomogeneity and losses in the substrate

can be readily incorporated in the analysis when required. Substituting the expressions for
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the scattered and total electric helds into (6.1) and (6.2), the coupled electric field integral

equations can be expressed in terms of the equivalent currents as follows:

[u'(r)]* - -lL"{¿}]* -lt,{Jo}],_ (6.s)FeS"for

(')E (6.6)

Omitting for the moment the image component, the operator Z. for the current sources on

the metal strip surfaces may be expressed as:

- 
jo!r') 

-- - L,{j,}-,o{¿} ror r evo
jonoþ, - I)

L,{i,}=-iroÃ, -iQ,

- -iatroll,,i,(¡') G*ds: *U p,(7') G*ds:

L,{i,} = - iaøo[,"i,(¡') G*ds:- #rlt u '.i,(7') G-ds:

where ¡¡ is the permeability of free space, p. is the charge density on the surface of the

metal strips, and both the integals are evaluated over the surface of the metal strip Si . As

before, the physical interpretation of this equation is that the first term represents the vector

potential due to the current sources on the metal strips, and the second term represents the

scalar potential due to the charges on the metal strips. The Green's function G_ used in the

above equation is either the generalised spectral periodic Green's function given by (3.9)

for off-plane interactions, or the generalised hybrid periodic Green's function given by

(4.15) for on-plane and near on-plane interactions. The charge density p. on the metal strip

surface is related to the electric currents on the conductors by the continuity equation:

(6.7)

(6.8)Y'.J"=-j@p,

Substituting (6.8) into (6.7), the L, operator can be expressed entirely in terms of the

equivalent current and Green's function as follows:
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where the integration is over the current sources on the surface S, of the metal strips and

over their images formed by the ground plane, and the results are suÍtmed together.

In a similar manner, the L¿ operator is given by:

Lo {i o} = - j rt o III,,j,(r,) G -dv, . *fi,,í, . i o(r') c*n, (6.10)

(6.r 1)

where the integration is evaluated over the volume polarisation current sources in the

dielectric region. However it is known that there is no charge associated with this current

in the interior of the dielectric. Hence on the surface of the dielectric, the charge density p¿

is given by:

1 i'.Í olr'¡
1

n .l o(r') forP o?') Í'eSo
la I (t)

Substituting for p¿ from (6.11), it is seen that the second volume integral in (6.10) is

reduced to a surface integral over the charges on the surface 
^S¿ 

of the dielectric substrate:

Lo {i o} = - i rt, o IIr,i, (î') G -dv'. #, I a . t o f ) G *ds, (6.12)

In summary, by enforcing the boundary conditions for the tangential electric field on the

surface of the metal strips and the total field in the substrate region, the coupled integral

equations are obtained in terms of the equivalent surface currents on metal strips and

volume polarisation currents in the dielectric substrate.

6.2.2 Numerical Implementation

Having formulated the problem in terms of the equivalent currents, the coupled integral

equations (6.5) and (6.6) are used to solve for the current values J, and J¿. In order to

maximise computational efficiency, the whole structure may be segmented in such a
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manner that the segments of the metal strips and dielectric both fall onto a common grid.

However for the microstrip dipole analysed, the width of the metal strip /w is much

narower than the width of the dielectric slab d of a unit cell, as shown in Figure 6.2.

Hence it is computationally more effrcient to use a smaller segment Aw for the metal strip

and larger segments of width Ay for the substrate in the y dimension.

dielectric segment
metal strip

+Lx+

X

h

Figure 6.2 : Segmentation scheme for a unit cell of the inf,rnite anay

The surface currents on the metal strip are then expanded in tenns of N. n¡ro-dimensional

pulse basis functions so that:

Y

1
Ay

I
d

Nc

i,(¡') -\ P,(x',f)(t -,î + t r¡t) (6.13)
j=l

where the two-dimensional pulse functions are given by:

P¡(x',1') = (6.r4)

and Ju¡ and Jr¡ are the unknown metal strip current coeffrcients to be determined. The

volume polarisation currents in the dielectric substrate are expanded in ærms of N¿ three-

dimensional pulse basis functions so that:

1, tf x',y' e jrå segment

0, otherwise
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where the three-dimensional pulse functions are given by:

Q¡(t',1',2')\=
1, ff x' , !',2' e j'n segment

[z] [r]= [n]

0, otherwise

and J¿.,¡, J¿¡¡ and. J¿¡ are the unknown dielectric current coefficients to be determined.

Hence the metal strip cunents have been expanded into 2N. basis functions, and the

dielectric currents have been expanded into 3N¿ basis functions. A point matching

Moment Method is applied, and the Moment Matrix equation is represented by:

N¿

i oF') =ZQ¡(r' ,y' ,r')(J *,î+ I4jî, + J *2)
j=l

N

The meaning of each element in the above matrix equation is described below. The

moment matrix of (?f,{,+3N¿)2 elements is given in (6.18) where each element will be

defined later.

(6.1s)

(6.16)

(6.17)

( 6.18a )

It
I lzuu

Z"¡
(6.18)

Each element of [Z] is determined by the action of a source segment and its image about

the ground plane, at the points in space for which the boundary condition equations (6.5)

and (6.6) are enforced. In the hrst matrix on the right hand side of the above equation,

each sub-matrix has two subscripts. The f,rrst subscript refers to the testing point and the

second subscript refers to the source. The symbol c denotes the metal strip conductor and d

denotes the dielectric. Hence Z* denotes the self-coupling of the metal stnp, Z¿¿ refers to

the self-coupling of the dielectric, and Z¿¿ and Z¿, tefer to the cross{oupling effects of the

composite structure. Each of the sub-matrices is further sub-divided into blocks of matrix

elements denoting the mutual couplings associated with the directions of each pair of

testing and source points, and is given by:

[t,,",f ft,,",l
Íz*f - N,,N, N.'N"

lt,,,,fN",il. \t",,,) Nc,N c
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Z

Wu"f=

lt,,o,]

lt,,o,f

lz,

lt,,o,

N",N¿

( 6.18b )

( 6.18c )

( 6.18d )

(6. re)

ft,,o,l N,,N¿

lt,,o'f r
",N 

¿

N.,l/¿ ,NdN.
cd

]",

]",

],,

l'o,o

Ito,oldd

Ito,,,

Ito,,,

Ito,",

N ¿,N,

]*,o
l*,o

Ito.,,

Ito,",

Nc

Nd

N¿

,Nd

,N"

,Nd

,Nd

,Nd

,1",,",

, J',,',

,1",,',

,rV

NcdN,c t'

Z
,N¿

,Nd

,Nd

Ito,o

zoro,

Ito,o,f *o

Ito,o,f *,

fto,o,f r,

The second matrix on the right hand side of (6.18) refers to the total electric field in the

dielectric due to its volume polarisation current, and is the matrix representation of the

boundary condition equation (6.6). Each element of the matrix has the same rank as the

corresponding element in the first matrix on the right hand side of (6.18); 0 denotes a zero

matrix and I denotes an identity matrix. The current vector comprising (2N.+3N¿) x I

elements, is given by:

J ,rI ,'" J ,rN, , J ,t , "' J ,r rf'

J **o , J ¿yt,"'J or,*o , J drl,".¡ 
^rf

T

I¡ view of the fact that the metal strip is assumed to be excited by a delta-gap voltage at its

centre, and that there is no incident electric field in the dielectric, the excitation vector of

(2N,+3N¿) x I elements is given by:

where the elements of the sub-vectors IEJ and [E¿] are given by:
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(6.20a)

E¿ =0 (6.20b)

Substituting (6.13) into (6.9), the operator L,lor a testing point at the ktå segment due to the

j'å current segment becomes:

o , at the feedpoint

, otherwise

N.
jcopo2

j=l
(J ^,i+ ¡.ii)l[ , 

P,(x',f) G-dx'dy'{J'}* = -L,

i(^d ^a ^al- *. [t ar 
*' 

ar*' a)

{å tr" þ1, *, P,(x" v')G-dx' dv'f

.å ff, þlr,, r,(x', v')G-dx' or']]

(6.2r)

Because the problem is solved by using pulse basis functions and point matching, the

source point derivatives in the above equation may be taken outside the integral with no

effect on the result. Since the pulse basis functions and testing functions are sylnmetrical,

it is also permissible to compute both derivatives at the field point. For each source point,

(6.21) is applied to both the source current and its image, and the results are added. For

off-plane interactions between source and testing points, G-in (6.2I) is implemented using

the Generalised Spectral Periodic Green's Function given in (3.9) where the integration

over the sources is evaluated anal¡ically. For on-plane and near on-plane interactions, as

described in Section 5.2.1, G- is implemented using the Generalised Hybrid Periodic

Green's Function given in (4.15) which has a spectral and a spatial component. The

integration of the spectral component over the sources is evaluated analytically, whereas

the integration of the spatial component is evaluated numerically. All the methods for

maximising computational effrciency of the solution elucidated in Section 4.3 are applied

to this analysis.
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The numerical implementation of the operator L¿ in (6.12) is determined by the geometry

of the dielectric substrate. The dielectric slab shown in Figure 6.1 extends to infinity in the

x and y directions, and is finite only in the z dimension. Furtheûnore, as the bottom face of

the substrate is in contact with the ground plane, the charges on this surface are cancelled

by the image component and need not be considered any further. Therefore, the surface

charges exist only on the top face of the substrate and is image, and the operator ,L¿

becomes:

Nd.

Lo {i ol n = - i wo L (J*r t + J a¡ 
g + J r.t z)lï e ¡ (r', !', z')G *dx' dy' dz'

j=r v¿

å(, *. t *., Ðà,*, {e 
¡(,', y', z')G *dx' dy'

(6.22)

(6.23)

where S', refers to the top face of the dielectric slab and is image over which the surface

integral is evaluated, and

a--
l, ifñ=2

-1 if ñ=-2
0, otherwise

where ñ is the outward pointing unit vector, which in this case, is normal to the top face of

the dielectric slab and is image.

Equation (6.22) relates the incident electric field at a testing point located at the /å segment

to the current sources at the/å segment, and may be inte¡preted to mean that surface charge

is permitted on the surface of every dielectric segment. This interpretation appears to

contradict the physical reality that charges do not exist within the dielectric slab, and has

led to past criticism of the use of rectangular pulse basis functions to model homogeneous

dielectric regions [82]. However, it has been shown [8] that the interpretation of this part

of the model does not in fact contradict reality" Firstly, the physical meaning of (6.11) is

that within a homogeneous dielectric, V.i¿=0, so that any internal surface charge is

frctitious. For the purpose of calculating the surface charge, the polarisation currents in
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adjacent dielectric segments should be interpolated at their junction, so that the pulse

representation of these cunents are effectively smoothened at the junction location. If this

were carried out, the resultant averaged surface charge density function would be zero for

these surfaces within the dielectric, which is in accordance with physical reality. Now, if
the dielectric segment is located at the outer surfaces of the substrate, interpolation is not

appropriate as there is a discontinuity in the polarisation current. For these segments, a

surface charge does exist and is given by the surface integral in (6.22). In (6.23), the

definition of d serves to ensure that surface charges internal to the homogeneous dielectric

substrate are not included into the calculation. The procedure is numerically the same as

the averaging approach explained above for avoiding internal surface charge within the

dielectric.

As before, the use of the generalised spectral periodic Green's function for off-plane

interactions enables the integrals to be evaluated analytically. The generalised hybrid

periodic Green's function used for computing the on-plane and near on-plane interactions

has a spatial component containing both surface and volume integrals which have to be

evaluated numerically. At each source point, (6.22) is applied to both the source current

and its image, and the results a¡e added together.

6.2.3 Design Examples

The inf,rnite array of metal strip dipoles on an infinite dielectric slab is a type of element

suitable for TILA architecture employed in conventional MMIC arrays, and has been

extensively studied. The intention here is not to describe the properties of this array in

detail, but to demonstrate that the Generalised Periodic Green's Function technique is able

to accurately and efhciently model this class of microstrip phased ¿urays using two of the

design examples given in [33]. The design examples also provide a basis for comparison

with other novel substrate conhgurations described later on in this chapter, since the

Green's function is unconstrained by the substrate geometry.
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Design Example 1

Refening to Figure 6.1, the inter-element spacings for the first design example in [33] are

given by b = d = 0.5À and each dipole element has a length I = 0.39L and width w =

0.002h. The infinite dielectric slab has a thickness h = O.Iil, and a relative perminivity e,

= 2.55 . The dipole is resonant at boresight giving an active impedance Zt = 7 5 + j0A. Æl

of these parameters are used directly in the analysis developed in Section 6.2, with the

exception of the metal strip length / for the following reason. As shown in Figure 6.2, the

numerical implementation of the analysis is more efficient if both the substrate and metal

strip in each unit cell are divided into segments of the same lengths in the .r dimension.

However, this implies that the metal strip's length is constrained to be an integral number

of segment lengths. Since the substrate is divided into 7 segments in the.r dimension and 5

segments in the y dimension, the metal strip is modelled using 5 segments along its length

thus giving I = 0.357 )". The height of the dielectric substrate is divided into 3 segments,

resulting in 105 volume segments for the dielectric slab and 5 surface segments for the

metal strip. With this scheme of segmentation, a boresight active impedance of 26 =78.7

+ j 1 1.7Q is obtained, and no effort is made to alter any of the other parameters in order to

achieve the resonance condition. Bearing in mind the difference in the dipole lengths for

the two models, the results are compared in Figure 6.3.
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Figure 6.3 : Magnitude of active reflection coefficient for an inhnite anay of metal strip
dipoles on an infinite dielectric slab in the principal and diagonal scan planes; I = 0.39),,

b=d =0.5Â, h=0.IÐ" w=0.002L Eo=2-55, flx='7, flr-=5, f,z=3, Zt=75+j0Q.

Figure 6.3 shows the variation of the magnitude of active reflection coefflrcient with scan

angle in the principal and diagonal scan planes for the Dielectric Slab Green's Function

model developed in [33] as well as the Generalised Periodic Green's Function model

developed in this chapter. The agreement btween the results computed using the two

methods is very good, particularly with regard to the prediction of the scan blindness angle

which corresponds to a unity magnitude of active reflection coefficient at about 45o scan

angle in the E-plane.

The existence of a scan blindness at an angle close to boresight has implications not only

on scanning performance but also on the useful frequency bandwidth that can be achieved

with this class of ¿urays. Notwithstanding the availability of a variety of bandwidth

enhancing techniques for use with such ¿umys [83,84,85,86], it is still useful to gauge the

136



bandwidth achievable with the array in the form shown in Figure 6.1. The numerical

model described above is used to compute the magnitude of the active reflection coefficient

for a range of frequencies around the resonance condition at a given scan angle. The four

scan angles used for purposes of bandwidth calculation are boresight, and a scan angle of

30o in the E, H and D planes. The magnitude of active reflection coefficient is then plotted

against the frequency, which is normalised to the resonant frequency at boresight scan

angle. The frequency bandwidth achieved by the array for this purpose is clefined as the

frequency range, centred at the boresight resonant frequency, over which the magnitude of

active reflection coefficient satisfies a useful but arbitrary condition of being less than a

value of 0.4 for all four scan angles. The graph of these frequency variations is given

Figure 6.4.
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It is apparent from Figure 6.4 that a greater mismatch occurs for the higher frequencies.

The condition which causes the most severe degradation of the array's bandwidth

corresponds to the 30o scan angle in the E-plane. This condition is directly related to the

fact that the array has a scan blindness at 45o in the E-plane when operated at the centre

frequency. Based on the condition set above, the usable bandwidth for this array is found

to be about 47o.

Design Example 2

Another useful feature of the model is the prediction of grating lobes and the variation of

the active impedance in the vicinity of a grating lobe, as shown in Figure 6.5 below. Using

a second design example from [33], The Generalised Periodic Green's Function technique

is used to analyse an a¡ray shown in Figure 6.1 and having identical parameters as in

Design Example I with the exception of the inter-element spacing in the ¡ dimension

which is chosen to be å = 0.5155Â. From the analysis described in Section 3.4.3, an inter-

element spacing of more than 0.5Â could enable a grating lobe to emerge in visible space.

The variation of the magnirude of active reflection coeff,rcient with scan angle in the

principal and Diagonal planes is given in Figure 6.5 for segmentations of n, = '1, ny = 5,

andnr= 3.
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Figure 6.5 : Magnirude of active reflection coefficient for an infinite array of metal strip
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å =0.5155A, d=0.5L h=0.194, w=0.002),, €o=2.55, fl,=7, flr=5, flz=3,
Zt=75+j0Q.

It can be seen from Figure 6.5 that in the E-plane, there are two scan angles at which the

magnitude of the active reflection coeffrcient approaches unity. The first instance is

associated with a substrate induced scan blindness at about 39o, whilst the second is due to

a grating lobe which emerges into visible space when the scan angle is about 70'. Both of

these features are also observed in the E-plane scan results of [33] which a¡e shown on the

same graph for comparison. The agreement between the E-plane scan results of the

Dielectric Slab Green's Function technique and Generalised Periodic Green's Function

technique is very good except for a slight discrepancy at the gating lobe angle.

The two design examples provided above have demonstrated the capability of the

Generalised Periodic Green's Function technique to accurately model the characteristics of
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an infinite anay of metal strip dipoles supported on top of an infinite slab of dielectric.

The prediction of the active impedance va¡iation with scan angle as well as the angular

location of the scan blindness and grating lobes using this method compares very well with

Pozar's method using the Dielectric Slab Green's Function technique. The numerical

convergence, and consequently the computational efficiency of the technique, can be seen

in Table 6.1.

Floquet Modes

Used

Active Impedance

(o)

CPU Time Taken

(Seconds)

I X I 78.4 - j r.6 33.4

1x3 77.9 - j 1.0 35.8

3xI 79.5 + j II.I 35.8

3x3 78.7 + j tt.7 42.5

5x5 78.6 + j 13.1 51.5

7x7 78.7 + j 13.5 70.9

1l x ll 78.2 + j 14.8 94.6

Table 6.1 : Active impedance of an infinite array of metal strip dipoles supported on an
infinite dielectric slab substrate above an infinite ground plane in the boresight scan angle,
analysed using the Generalised Hybrid Periodic Green's Function technique; I = 0.357 )",

b=d=0.5),, h=0.19)", w=0.002),, €o=2.55, flr=7, flr=5, flz=3.

It can be seen from Table 6.1 that converged results a¡e obtained when the generalised

periodic Green's function is evaluated using Floquet modes (m,n) where -l 1m S I and

n = 0. The conesponding CPU time per scan angle is about 36 seconds which is just over

twice as long to compute an impedance value for an infinite anay of metal strip folded

dipoles with coplanar strip feedlines, the latter being the most complex metal strip anay

without substrate modelled so far using this technique. A total of about 33.5M bytes of
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storage and 4.2M bytes of memory are required for the computer to calculate a value of the

active impedance.

The computation time required is comparable with the Dielectric Slab Green's Function

technique which is reported Í32,331to take about 30 seconds to calculate a value of the

active impedance per scan angle. The main difference is that whilst this latter technique

requires only 3 to 5 basis functions to model the dipole and no basis functions for the

substrate, up to about 120 x 120 Floquet modes are required for converged results to be

obtained. For the results shown in Table 6.1, the Generalised Periodic Green's Function

Technique requires 110 basis functions to represent the equivalent cunents on the metal

strip dipole and substrate, but converged results are obtained with only 3 x 1 Floquet

modes used in the calculation of the periodic Green's functions. Therefore, it is concluded

that while the two techniques have different formulations and relative advantages and

disadvantages in numerical implementation, their overall performance in accuracy and

computational efficiency is comparable. However, the distinct advantage of the

Generalised Periodic Green's Function technique lies in is flexibility for use in the

analysis of other substrate configurations. This useful feature of the technique is described

in the next two sections.
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6.3 Formulation for a Structure with

Semi-infÏnite Dielectric Sheets

Figure 6.6 shows the geometry of an anay of metal strip dipoles supported on the front face

of semi-infinite dielectric sheets which are pe{pendicular to the ground plane. Each

dielectric sheet is infinitely long in ¡ dimension, and there is an intìnite number of rows of

these dielectric sheets with supported metal strip dipoles.

centre-fed metal
strip dipole Z

infinite
ground
plane

d X

dielectric sheet,

infinitely long in x
dimension

Figure 6.6 : Infînite array of metal strip dipoles supported on semi-infinite dielectric sheets
peqpendicular to the infinite ground plane.

From an analytical point of view, there are two main differences between this structure and

the infinite slab structure analysed in the previous section:

o Firstly, the dielectric slab is finite in the y and z dimensions, and infinite only in the x

dimension. There a¡e two important implications to this difference:
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o The first implication is that the Dielectric Slab Green's Function technique

[32,33] is unsuitable for analysing this structure because the substrate is not an

infinite slab of dielectric which is an inherent assumption of that technique. The

flexibility of the Generalised Periodic Green's Function technique is suitable for

analysing this structure as the Green's function is not constrained by the element

geometry.

. The second implication is that charges can exist not only on the top face of the

slab as in the previous case, but also on the front and back faces of the slab as well.

. Secondly, each metal strip dipole, instead of being located on the top face of the infinite

slab as in the previous case, is positioned on the front face of a semi-infinite dielectric

sheet but not necessarily contiguous with the top edge. In this case, a testing point at the

centre of a dipole segment could have source points in the dielectric slab located above and

below it. The implication is that the direction of Floquet mode propagation in the z

direction needs to be explicitly enforced when evaluating the surface and volume integrals

of the Green's function over the source points for the purpose of filling the moment matrix

elements.

With these two differences accounted for, the procedure of analysis is the same as that

described earlier for the infinite slab substrate structure.

6.3.1 Numerical Implementation

The structure in Figure 6.6 is modelled as a metal strip with two dimensional surface

currents in the xz plane, and semi-infinite dielectric substrate with three-dimensional

volume polarisation currents. As in the previous case, the width of the metal strip is much

narrower than the height of the substrate, so that it is computationally more efficient to use

a smaller size segment for the metal strip as compared with those for the substrate in the z

dimension as shown in Figure 6.7. In the x dimension, the metal strip is divided into

segments of the same length as the substrate, although the length / of the metal strip is

shorter than the width b of aunit cell.
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Figure 6.7 : Segmentation scheme for metal strip and dielectric sheet substrate within a unit
cell of the inhnite array.

Figure 6.7 shows a section of a unit cell of the structure" The substrate and metal strip are

both conveniently divided into n, and n, -2 segments of width /x, respectively. As in the

previous case, placing both the metal strip and substrate on a common segmentation grid in

the ¡ direction results in greater computational efficiency but has the disadvantage is that

the length of the metal strip is now constrained by having to be specified in terms of an

integral number of segments. However, the inte¡polation procedure suggested in the

previous case also applies here. In the z dimension, the substrate is divided inÍo n,

segments of width Az, and the metal strip is represented by a segment of width /w"

The surface currents on the metal strips and their images are expanded in terms of N" two-

dimensional pulse basis functions, and the polarisation cunents in the dielectric substrates

and their images in terms of N¿ three-dimensional pulse basis functions as before, so that:

I
^zJ

h

Nc

i,(¡') -LP¡(y',2')(torg + rdZ)
j=l

TU

(6.24)



and

N¿

j=l
J oçt'¡ - Q¡(r' ,y' ,z')(J *¡î + J 

^ry 
+ t oni") (6.2s)

where

P,(y',2')!=
l, if x',y',ej'å segment (6.26)
0, otherwise

and Q(x',1',2' ) is given by (6.16). Jq¡ Jr<¡, J¿rj, Ja¡¡ and J¿a¡ are the unknown current

coefficients to be determined. The Moment Matrix equation is set up in the same way as

for the infinite substrate case given in equations (6.17) to (6.20), except that the two

dimensional pulse basis representation of the metal strips is in the yz plane rather than in

the ry plane.

The l,, operator for a testing point at the ,t'å segment due to the j'h current segment and its

image thus becomes:

(6.27)

L,{i,} * = - i @p ol,Q,,i * r,n2)ll r, 
p,(y', z') G ody' dz'

j=r

i(^a ^a ^al- rr, [te 
*' 

ar*' a)

{å n. $ nr o, r,(t', z')G oú' dz'f

.Eï,.*f r -, P,(t', z') G ,,,v' d r'l\
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Since the surface charges on the substrate exist only on the top, as well as the front and

back surfaces of the substrates as well as their respective images, the L¿ operator becomes:

ro {i o} o = - i rt of| * ; + J a¡g + t rnz)ff ! O ¡(x', y', z')G odx' 
dy' dz'

j=r

¡ (^a ^a ^a-*rltt*'ar*'a.,

L "t r, ![ A,(x', y', z')G odx' dy'
jesrr .s:'

* Z N o,¡ ll Q,(r',r',2')G rdx' dz'
jes= sE

vd

(6.28)

(6.31)

where ^S,, refers to the summation over the segments on the top face and .S'. to the

summation over the segments on the front and back faces of the dielectric substrate and

their images, and

ü=
l, ifñ=2

-l if ñ=-2
0, otherwise

l, if ñ=9

-l if ñ=-9
0, otherwise

p

where ñ is the outward pointing unit vector normal to the surface and its image.

Apart from the above differences, the rest of the procedure for numerical implementation

using the Method of Moments is the same as in the previous section, and will not be

repeated here.

6.3.2 Design Examples

The infinite a¡ray of printed dipoles on semi-infinite dielectric sheets is useful for

application to LITA architectures employed in MMIC ¿urays, and was studied by Bayard,

Cooley and Schaubert [7,80] where results have been presented for electrically thin

substrates. It is known that an electrically thick substrate has a more significant effect on
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the characteristics of the dipole than a thin substrate [5]. The aim of this section therefore

is to demonstrate that the Generalised Periodic Green's Function technique is able to

accurately and efficiently model this type of microstrip arrays, and also to extend the

analysis to the case of electrically thick substrates as would be applied in MMIC antennas

for operation at millimetre wavelengths.

Using the first of the design examples given in [7] and based on the diagram given in

Figure 6.6, the array has inter-element spacings b = d = 0.5L, where Â is the free-space

wavelength. The semi-infinite dielectric sheet has a height h = 0.31il" and thickness t =

0.0084¿ . Each metal strip is of length I = 0.4Ú, and width w = 0.0192Â, and located at a

height of 0.26il, which is equivalent to 0.71h above the ground plane. With a substrate

relative permittivity of €. = 2.2, the equivalent electrical thickness is about 4.5 electrical

degrees.

The segmentation scheme shown in Figure 6.7, is designed for optimal computation

efficiency, but it can only approximately model the metal strip's dimensions given in [7].

As mentioned before, if a given length of the metal strip cannot be conveniently modelled

using the grid system, a solution to this problem is to model the element using the grid

system for a metal strip length slightly shorter than the required length, and then again with

a slightly longer length, and to interpolate the results. However, it has been found that the

results are not sensitive to slight differences in the dimensions of the metal strip; hence the

gdd system is used in this analysis.

In order to model the array given in [7], the substrate within each unit cell is segmented

using fl, = 13, ny = 2 and n, = 4, thus giving a total of 104 volume segments" A

comparison of the arTay parameters used in [7] and in the model using the Generalised

Periodic Green's Function technique is given in Table 6.2 below.
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Anay Parameters Dimensions used in [7] Dimensions used here

b 0.52," 0.5¿

d 0.s1 0.sh

er 2.2 ))

I 0.48Â 0.423ru

t 0.0084r. 0.0084Â

w 0.0r92L 0.025L

h 0.373L 0.373L

Boresight impedance26 175+j0.0C¿ 154+j 2.04

Table 6.2: A,comparison of the array dimensions used in [7] and in the model using the
Generalised Periodic Green's Function technique. For the Generalised Periodic Green's
Function technique, the substrate in a unit cell is divided into n, = 13, ny = 2, nz = 4
segments.

It can be seen from Table 6.2 that the length of the metal strip used in the model is slightly

shorter than that in [7]. Consequently, the width of the metal strip is also adjusted slightly

in order to obtain a resonance condition. All the other parameters used in the model are the

same as in [7]. Figure 6.8 shows the variation of active impedance with scan angle in the

E-plane for the array.
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Figure 6.8 : Active impedance as a function of scan angle in the E-plane for an infinite
array of metal strip dipoles on semi-infinite dielectric sheets. The anay parameters for the

Generalised Periodic Green's Function model and for the model in [7] are as given in Table
6.2_

It can be seen in Figure 6.8 that despite the slight difference in the dipole's dimensions,

agreement in the results of the two models in terms of variation of the active impedance

with scan angle and in the detection of the scan blindness angle, is good. For the

Generalised Periodic Green's Function model, the metal strip dipole's half-wave resonance

occurs at the boresight scan angle with an active impedance of about l55Q . As expected,

the active resistance becomes zero at the grazing scan angle (0 = 90") since the inter-

element spacings are set to preclude grating lobes. In the E-plane, a scan blindness is

detected at 85o scan angle, which is noted to be much further away from boresight than that

for the infinite array of metal strip dipoles supported on an infinite dielectric slab. The

accuracy of the Generalised Periodic Green's Function technique is therefore validated for

a substrate geometry which may be used for LITA architecture affays.

Mode Matching fl

_ Hybrid Periodic Greens Function
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The results shown in Figure 6.8 are for an array element with an electrically thin substrate.

The numerical model developed in this thesis is used to design an array of such antennas

with a resonant condition at boresight scan angle using electrically thicker substrates.

Denoting the antenna parameters in Table 6.2 as those of Antenna A, two other sets of

resonant conditions are computed for the parameters as shown in Table 6.3. The active

impedance variation with scan angle for the three antenna arrays is given in Figure 6.9.

Table 6.3: Array element parameters of an infinite anay of metal strip dipoles supported on
semi-infinite dielectric sheets for substrate electrical thickness of 4.5,8 and 17.2 elertrtcal
degrees.

-1 10 20 30 40 50 60
Beam-steer f rom Boresight (degrees)

70 80 90

Figure 6.9 : Active impedance as a function of scan angle in the E-plane for an infinite
array of metal strip dipoles supported on semi-infînite dielectric sheets, with substraæ
electrical thickness of 4.5,8 and 17.5 electrical degrees. Array parameters for the three
designs Íue as given in Table 6.3
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It can be seen from Table 6.3 and Figure 6.9 that increasing the electrical thickness of the

substrate has two effects on active impedance characteristics of the array:

o Firstly, the half-wave resonant length and active impedance of the dipole are

correspondingly reduced. In the particular antenna designs shown above, an increase in the

electrical thickness by a factor of 4 has led to a reduction of the dipole's resonant length by

a factor of nearly 40Vo , and a reduction of its active impedance by a factor of 6. An

important consequence of this is that with electrically thick substrates such as that for

Antenna C, it is difficult to match the impedance of the dipole radiating element to a

typical coplanar strip feedline. One method for overcoming the problem of poor

impedance matching is to design a resonant folded dipole element in which the higher feed

point impedance is better matched to that of the feedline, as will be shown in the case of a

slightly different antenna structure in the Section 6.4.3.

o The second effect of increasing the substrate's electrical thickness is that the angular

position of the scan blindness in the E-plane is shifted nearer to boresight. Clearly, the

capability of the model to accurately predict the scan blindness location for such antennas

is important in the design process.

The numerical model for Antenna C is extended to investigate the frequency bandwidth

obtained for an array with this particular element geometry. The variation of the magnitude

of active reflection coeffrcient with frequency which is normalised to the resonance

frequency for boresight scan, is given in Figure 6.10. Using the same conditions for

bandwidth as given in Section 6.2.3, the boresight curve in Figure 6.10 yields a bandwidth

of about 107o. However the useful bandwidth is degraded by the E and H-plane curves,

giving a resultant bandwidth of about 6Vo for a substrate thickness of 11.2 electrical

degrees. This is slightly better than the 47o achieved using the infinite slab substrate

geometry, and suggests that breaking the continuity of the substrate in one or more

dimensions leads to the occurrence of a scan blindness condition at a scan angle further

away from boresight. The shifted scan blindness is the mechanism for achieving a larger

bandwidth for the array.
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The numerical convergence and computational effrciency of the Generalised Periodic

Green's Function technique can be seen from Table 6.4 below. It can be seen from the

table that well converged results are obtained when the generalised periodic Green's

function is evaluated using Floquet modes (m¡) where -l <m < 1 and -l < n < l; and the

corresponding CPU time per scan angle is about 40 seconds. A total of about 32.8 MBytes

of storage and 2.5 MBytes of memory are required for the computer to calculate a value of

the active impedance.
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Floquet Modes

Used

Active Impedance

(o)

CPU Time Taken

(Seconds)

lxl 103.3 - j 18.7 28.4

1x3 108.3 - i t4.7 31.6

3xl rr2.0 - j 4.9 31.6

3x3 1r8.2 - j r.2 39.6

5x5 118.5 +j 0.3 40.6

7xl 118.7 + j 0.5 53.8

1 I x I 1 118.7 + j 0.6 94.9

Table 6.4 : Active impedance of an infinite array of metal strip dipoles supported on semi-

infinite dielectric sheets above an inhnite ground plane at the boresight scan angle,

analysed using the Generalised Periodic Green's Function technique; I = 0.3891.

b=d=QjL h=0.45À. w=0.028)"t=0.0217L flx=13, f,y=2, flz=4, eo=2.2.

In the next section, a formulation for an inf,inite microstrip dipole anay with completely

finite substrates will be presented.
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6.4 Formulation for a Structure with

Finite Dielectric Substrates

In Sections 6.2 and 6.3, the analyses of infinite arr¿rys of microstrip dipoles were presented

based on formulations for an infinite slab and semi-infinite sheets of dielectric substrate,

respectively. kr this section, the analysis is described for the case when the array element has a

subsftate which is hnite all thLre€ dimensions. The analysis of metal strip dipoles with idealised

feed is described first, and then extended to include coplanar strip feedlines. Finally, for reasons

of impedance matching with the feedlines, the analysis of finite substrate supported metal strip

folded dipoles with feedlines will be considered

6.4.I Metal Strip Dipoles with Idealised Feed

Figure 6.11 shows a section of an infinite array of metal strip dipoles, each of length / and

width w, spaced a distance of å and d apart, respectively in the ry plane. Each metal strip is

assumed for the moment to be fed by an indealised delta-gap voltage, and is supported on

the front face of a finite-size dielectric substrate of length /, thickness f, and height ft above

an infinite ground plane. There are two important differences between this structure and

the semi-infinite sheet substrate structure analysed in the Section 6.3"

o Firstly, the dielectric substrate is finite in all three dimensions. The implication is that

surface charges can exist on all the six faces of the substrate; however because the bottom

face is in contact with the ground plane, the charges on this face are cancelled out by the

equal and opposite charges of the image and may be discounted in the analysis.

o Secondly, the metal strip is contiguous with the entire top edge of the front face of the

substrate; hence the length of the metal strip is equal to the length of the substrate.
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Other than accounting for these two differences, the procedure of analysis for this structure

is the same as before.

centre-fed metal
strip dipole

finite
dielectric
slab

infinite
ground
plane

Figure 6.1 I : Geometry of an infinite array of metal strip dipoles with idealised feeds

supported on f,inite dielectric substrates

Segmentation and Basis Functions

For each element of the array shown in Figure 6-ll the metal strip is modelled with two-

dimensional surface cunents in the xz plane, and the dielectric substrate with three-

dimensional volume polarisation currents. The simplicity of the element geometry enables

both the metal strip and substrate to be placed on a common grid for computational

purposes. As shown in Figure 6.12, the substrate is divided into nr, nr, and n. segments of

width Ax, Ay, and Az in the x, y, and z dimensions, respectively. The metal strip segments

are aligned with the segments forming the top edge of the substrate. The surface currents

on the metal strip are expanded in terms of N. two-dimensional pulse basis functions, and

the volume polarisation curents in the dielectric substrate in terms of N¿ th¡ee-dimensional

pulse basis functions as given in (6.13) to (6.16).

,/t Y
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surface segment
on metal strip

volume segment in
dielectric substrate
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ô

^z.1,
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Figure 6.12: Segmentation scheme for metal strip and finite dielectric substrate

The I, operator for a testing point at the frtå segment due to the lh current segment is the

same as that given in (6.21). Since the substrate is finite in all dimensions, surface charges

on the substrate exist on all the faces except the bottom face as explained earlier. Hence

the L¿ operator becomes:

t,{i o}, = - i otr,y(l *î + J *,j + J *2)
j=r

![ o,(*',r',z')G odx'þ'dz' - i (^d ^d ^al
ä['o *t 

ar*' ar)'

at*l[a,gJ',z')Gdídy'
(6.30)

+
à, ^t [[n' 

(x', v', z')G,dí dz'

. 
].ø' [[e' 7'" t 

"'' 
¡c' af a'J

wherc.S,n refers to the top face, So to the front and back faces, and ,Sr. to the two faces on

the side of the dielectric slab over which the surface integrals are evaluated, and
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a--
l,

-l
tÏn=z
if íì=-i þ=

otherwise

ifñ=i
ifiî=-Í T

othenvise

l,

-1
0,

tIn=x
if¡ô=-î

otherwise

(6.31)

0,

where rî is the outwa¡d pointing unit vector normal to the surfaces. Apart from the

differences described above, the numerical implementation procedure is the same as in the

previous section and will not be repeated here.

Design Examples

The infinite affay of metal strips supported on finite-size dielectric substrates is another

example of a microstrip anay with LITA architecture, and was first proposed by Parhtt and

others [8,9,10]. Their analysis was performed using the spatial form of the periodic

Green's function, and both anal¡ical and experimental results have been presented for

electrically thick substrates. The design examples are provided below to demonstrate that

the Generalised Hybrid Periodic Green's Function technique is able to accurately model

this type of microstrip array with significantly better computational efficiency than the

spatial domain technique used by Parhtt. The models are also used to investigate the effect

of the electrical thickness of the substrate on the scanning performance of the ¿uray, as

well as the frequency bandwidth achievable for this class of microstrip dipole array.

In the hrst design example based on [10], the array shown in Figure 6.11 is modelled with

inter-elementspacings b = d = 0.5Â. Eachmetal striphas alength I=0.28il,. The

substrate has the same length as the metal strip, a height h = 0.51 and a thickness r =

0.0751. The substrate is modelled with the relative perminivity of RT Duroid 6010 e,' =

10.2, thus resulting in an equivalent electrical thickness of 24.5o. Excitation is provided by

an idealised delta-gap voltage at the centre of the metal strip. The above dimensions have

been experimentally verihed [8] to produce a half-wave resonant condition for the isolated

element. The substrate is segmented using fl, = 9, ny = 2 and n, = 5 thus resulting in 90

volume segments for the substrate and 9 surface segments for the metal strip. The active

impedance as a function of scan angle in the H-plane is given in Figure 6.13:
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Figure 6.13 : Active impedance as function of scan angle in the H-plane for an infinite
array of finite-substrate supported metal strip dipole antennas with idealised feed;

b=d=0.5À", l=0.2851,, h=0.51, t=0.0751, f,r=9, \=2 flz=5, tr=10.2-

The results in the H-plane based on the Generalised Spatial [0] and Hybrid Periodic

Green's Function techniques are in good agreement except for large scan angles. Since

there are no grating lobes, the active resistance should be zero at the grazing angle, as

conectly shown by the spectral domain results. In the spatial domain results, the active

resistance is about lOQ at this angle, suggesting that the results are probably not fully

converged even after 4l x 4l elements have been included in the spatial summations.

Figure 6.14 shows that the E-plane scan results of the Generalised Spatial and Hybrid

Periodic Green's Function techniques are in good agreement, including the prediction of a

scan blindness at 0 =75". Once again, the lack ofconvergence ofthe generalised spatial

periodic Green's function at large scan angles is apparent from the graph. For the

Generalised Hybrid Periodic Green's Function technique, use of Floquet mode (0,0) alone

is not adequate to predict the scan blindness; but the use of as few as 3 Floquet modes in

Gene¡alised Spatial Pedodic Greens Function
Ittt 41x41 elements

Generalised Hybrid Periodic Greens Function:
51x51 Floquet modes
15x15 Floquet modes
5x5 Floquet modes

_ 3x3 Floquet modes
oooo 1x1 Floquet modes

H-plane Scan

o

)L.r - -

x
-7

L
tþ
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each dimension (-l 1m 1 I and -l ( ¿ S l) is sufficient to reasonably compute accurate

active impedance results.

0 10 20 30 40 50 60
Beam-steer from Boresight (degrees)

70 80 90

Figure 6.14:- Active impedance as function of scan angle in the E-plane for an infinite anay

of frnite-substrate supported metal strip dipole antennas with idealised feed; b = d = 0.5h,
I =0.285),, h =0.51, t =O.0751, fl,=9, ny=2 f,z= 5, €r= 10.2.

Table 6.5a shows that the results of the Hybrid Periodic Green's function technique are

well converged with segmentation of the metal strip, and Table 6.5b shows a comparison

of the numerical efficiency of the two techniques in the analysis of the same structure.

Table 6.5a : Active impedance at boresight scan based on ¿uray parameters in Figure 6.14,

for different segmentations of the length of the metal strip dipole based on the Generalised
Hybrid Periodic Green's function technique; f,y = 2, f,z= 5.
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Elements
or Floquet

Modes

Segmentation

llx llv nz

CPU Time
Required

Generalised Spatial Periodic Green's Function technique

4lx4I 2 l9 10 4 min
Generalised Hybrid Periodic Green's Function technique with convergence

acceleration of on-plane points only
5lx5l ) 9 5 56 min
15x15 2 9 5 6.5 min

Generalised Hybrid Periodic Green's Function technique with acceleration of on-
plane and near on-plane points

5x5 2 9 5 55 sec

3x3 2 9 5 42 sec

lxl 2 9 5 35 sec

Table 6.5b : Computational effort needed to obtain converged results for the Generalised
Spatial Periodic Green's Function technique using a supercomputer and the Hybrid
Periodic Green's Function technique using a desktop computer to analyse an inf,rnite array

of substrate supported metal strip antennas; b = d = 0.54, I = 0.28il. h = 0.51, t =
0.0751, €,= 10.2.

In Table 6.5b, the spatial domain results are taken from those reported in [10] and require 4

minutes of CPU time on aYP220O vector supercomputer per scan angle. The results for

the Generalised Hybrid Periodic Green's Function technique are presented for two cases -

convergence acceleration of the spectral periodic Green's function for on-plane interactions

only, and convergence acceleration for both on-plane and near on-plane interactions. The

former case requires nine times as much CPU time (6.5 minutes) to compute a set of

converged results as the latTer (42 seconds). It is apparent that compared with the

Generalised Spatial Periodic Green's Function technique, the computational efficiency

achieved by the Generalised Hybrid Periodic Green's Function technique is signihcantly

better. The efhciency gained is due to two main reasons.

o Firstly, the integration over the sources for the spectral component of the hybrid

periodic Green's function is evaluated in closed form, thus saving much numerical

integration time required by the spatial technique.
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o Secondly, the hybrid periodic Gre€n's function has a very rapid rate of convergence

with Floquet modes. It has been reported [11] that the Dielectric Slab Green's function

requires as many as 120 x 120 Floquet modes to produce a well converged solution. As

demonstrated in Figures 6.13 and 6.14, the results of the Generalised Hybrid Periodic

Green's function requires only 3 x 3 Floquet modes for convergence. One implication of

the computation speed achieved is that this technique should be capable of modelling more

complex element geometries such as folded dipoles and feedlines on a desktop computer.

This extension will be discussed in the next section. Moreover, accurate calculations over

a range of frequencies a¡e feasible in a reasonable time, thus making the technique suitable

for extension to frequency domain analysis of wideband strucrures"

The numerical model developed above is used to design for a resonant condition at

boresight scan for substrates with varying electrical thickness. Denoting the antenna

parameters in Figure 6.13 as those of Antenna E, three other sets of antenna parameters are

specified, with the parameters as shown in Table 6.6 below:

Table 6.6: Resonant metal strip dipole lengths for various substrate electrical thickness for
an infinite array of substrate supported metal strip dipole antennas.

h Table 6.6, Antenna D is designed with the relative perminivity of PTFE, whilst Antenna

G is designed for operation with Gallium A¡senide which would be used for monolithically

fabricated Íurays. It can be seen from the table that the greater the electrical thickness of

the substrate, the shorter is the half-wave resonant length of the metal strip, and also the

smaller the boresight active impedance of the antenna. The characteristics of active

Antenna er Substrate

thickness (t)

Electrical

thickness (t")

Dipole

length (l)

Active
Impedance at

Boresight

D 2.55 0.0r74h 10 degrees 0.383Â 99+j0Q

E t0.2 O.AA4^) 24.5 degrees 0.285h 28.7-j7.74

F r0.2 0.u3sL 50 degrees 0.275h 27-jrQ

G 12.8 0.0582L 75 degrees 0.249h 20+j0A
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impedance with scan angle for this array is very similar to that for the semi-infinite

dielectric sheet array. The scanning performance of Antennas D, F and G a¡e shown in the

Figure 6.15 below.

10 20 30 40 50 60
Beam-steer from Boresight (degrees)

70 80 90

Figure 6.15 : Active impedance as a function of scan angle for an infinite array of f,rnite-
substrate supported metal strip dipole antennas with various substrate electrical
thicknesses. The dimensions for the geometries are as given in Table 6.6 for antennas D, F
and G.

As shown in Figure 6.15, the substrate induced scan blindness conditions in the E-plane

occur at approximately 85o, 70o, and 60o scan angles for substrate thicknesses of 10, 50

and 75 electrical degrees, respectively. This illustrates that the effect of an increase in the

electrical thickness of the substrate is that the angular position of the substrate induced scan

blindness is shifted closer to boresight.
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As in the previous two sections, the model is used to investigate the bandwidth for this

class of microstrip dipole arrays. Using the same condition as before, the graph of the

magnitude of active reflection coeffrcient as a function of normalised frequency for

Antenna E is plotted in Figure 6.16.

0.1

0.

0.5

0

c
.9
.9
ooo
co
o
(¡)

(¡)
Í.
o
()

o
(D
Þ
f
=c
o)
(ú

0.85 0.9 0.95 1 1.05
Normalised frequency

1.1 1.15

Figure 6.16 : Magnitude of active reflection coefficient as a function of normalised

frequency for an infinite array of substrate supported metal strip antennas; b = d = 0.5),,

I = 0.285À., h = 0.51, t = 0.0J51, E, = 10.2.

Figure 6.16 shows that the boresight curve gives a bandwidth of about l'lVo,but this figure

is degraded by the E and H-plane curyes, giving an overall bandwidth of about IlVo which

satisfies all the four conditions. This result is an improvement over the infinite slab and

semi-infinite sheet substrate structures analysed in the Sections 6.2 and 6.3 which have

bandwidths of 4Vo and 6Vo, respectively. Based on the data presented in this chapter, it

appears that a break in the continuity of the substrate causes the scan blindness angle to

occur further away from boresight" and consequently leads to a greater achievable

bandwidth for the array.
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6.4.2 Metal Strip Dipoles with Coplanar Strip Feedlines

Having modelled the infinite array of substrate supported metal strip dipoles with idealised

feed and analysed the effect of the substrate on the characteristics of the array, the analysis

is extended to include a feedline. The geometry of such an array element is shown in

Figure 6.17. The analysis follows as described in Section 6.4.1 for the substrate supported

metal strip dipole with idealised feed, except that the Configuration B junction feedline

model described in Section 5.4 is incorporated into the analysis.

Z
volume segment in
dielectric substrate

aax¿,

coplanar
strip
feedline

X
I

Figure 6.17 : Segmentation scheme for metal strip, coplanar strip feedlines and finite
dielectric slab within a unit cell of the infinite array.

Design Examples

It has been shown in Sections 5.4 and 6.1 that both the feedline and substrate can cause a

scan blindness condition for the array. k¡ the design examples presented here, results a¡e

given for the models of Antennas D and G in the previous section, but with the inclusion of

surface segment
on metal strip

ô
Az
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coplanar strip feedlines. It is noted that Antenna D is configured with a substrate of l0

electrical degrees thickness, and Antenna G has a substrate thickness of 15 electrical

degrees. It is intended to demonstrate in this section the application of the analysis to

explore the effect of feedline induced scan blindness compared with substrate induced scan

blindness for antenna elements with electrically thin and thick substrates.

Antenna D:

Figure 6.18 shows the active impedance va¡iation with scan angle in the E-plane for

Antenna D with and without feedlines. In the case of the antenna without feedlines, the

array element is resonant at the boresight scan angle. The now familiar substrate induced

scan blindness can be seen to occur at a scan angle of 85o. It is noted that both the real and

imaginary parts of the active impedance undergo very rapid changes with scan angle in the

region of the substrate induced scan blindness.

10 20 30 40 50 60
Beam-steer from Boresight (degrees)

70 80 90

Figure 6.18 : Active impedance as a function of scan angle in the E-plane for an infinite
array of metal strip dipoles with and without feedlines supported on electrically thin
substrates; b = d = 0.5L I = 0.3834. h = O.l9l5L t = 0.0174tr" E,=2.55.
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In the case of the structure with feedlines, the metal strip is no longer resonant at the

boresight scan angle, implying that the feedline currents have an effect on the radiation

characteristics of the array. A scan blindness also occurs at about 80o, but it is apparent

from Figure 6.18 that the narure of the impedance variation in the region of the scan

blindness is different from the case without feedlines. In this region, the active resistance

has is maximum at a much lower value and the active reactance does not undergo rapid

variations in a manner observed in the previous case. Furtherrnore, the pattem of the active

impedance variation around the scan blindness region is simila¡ to that described in the

previous chapter for metal strip dipoles with feedlines. Accordingly, this is identified as a

feedline induced scan blindness. As the antenna substrate is electrically thin (about 10

electrical degrees), it is observed that the feedline induced scan blindness effect is

dominant in this case.

Antenna G:

Figure 6.19 shows the active impedance va¡iation with scan angle in the E-plane for

Antenna G which has a substrate thickness of 75 electrical degrees. In the case of the

antenna modelled without feedline, the active impedance shows a resonance condition at

boresight scan angle. A substrate induced scan blindness occurs at about 60o scan angle.

In the case of the antenna modelled with the feedline, the antenna is near to a resonance

condition at the boresight scan angle. A scan blindness occurs at about 65" scan angle, and

the nature and angular location of the rapid variations in active impedance values in this

region are very similar to that of the antenna modelled without feedlines. It is therefore

concluded that this latter case is also a substrate induced scan blindness, and the only effect

of the feedlines is to shift the angular location of the substrate induced scan blindness

further away from boresight.
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Figure 6.19 : Active impedance as a function of scan angle in the E-plane for an infinite
array of metal strip dipoles with and without feedlines supported on electrically thick
substrates; b=d =0.5À l=0.24il. h=0.I245L t=0.0582L €,=I2.8.

Based on the observations made from the results in Figures 6.18 and 6.19, the effects of the

substrate and feedline on the radiation properties of the metal strip dipole ¿uray are

summarised below:

o For electrically thin substrates, the active impedance characteristics a¡e affected by the

feedline currents to the extent that a feedline induced scan blindness condition is observed.

As demonstrated by the design examples in Section 5.4, by designing the antenna with the

feedlines closer together, the angular location of the scan blindness angle will occur further

away from boresight.

o For electrically thick substrates, the polarisation currents in the substrate dominate the

active impedance characteristics of the antenna array and cause a substrate induced scan

blindness. In this case, the effect of the feedlines is signif,rcantly reduced. In the particular

example shown, the effect of the feedlines is actually beneficial in that the scan blindness
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condition occurs at a scan angle further away from boresight as compared with the case

without feedlines. For electrically thick substrates, the occurrence of scan blindness at

a¡ound 60o scan angle may be a serious limitation to the performance of the array.

An indication of the numerical convergence as well as the computational effort required for

the model of the infinite array of substrate supported metal strip dipoles with coplanar strip

feeilir¡es can be seen in Table 6.7 where the computations are based on Antenna E with the

inclusion of coplanar strip feedlines.

Floquet Modes

Used

Active Impedance

(C¿)

CPU Time Taken

(Seconds)

I x I 27.2 - j9.4 38.3

3x3 27.s - j r4.9 48.3

5x5 27.7 - j rs.g 63.0

7x7 27.0 - j 16.2 87.4

9x9 26.9 -j 16.3 120.5

Table 6.7 : Active impedance of an infinite array of substrate supported metal strip dipoles
with coplanar strip feedlines above an infinite ground plane at the boresight scan angle,

analysed using the Generalised Hybrid Periodic Green's Function technique; fu= 10.2,

b=d=0.5),, l=0.285)", h=0.51, t=0.0751, flr=9, f,r=2, flz=5.

It can be seen from Table 6.7 thatwell converged resuls a¡e obtained when the generalised

hybrid periodic Green's function is evaluated using Floquet modes (m,n) where -l <m < I

and -l 1n 11, and the conesponding CPU time per scan angle is about 48.3 seconds. A

total of about 34.1 MBytes of storage and 4.5 MBytes of memory are required for the

computer to calculate a value of the active impedance.
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6.4.3 Metal Strip Folded Dipoles with Coplanar

Strip Feedlines

It was shown in Figure 6.15 that for electrically thick substrates, the active impedance of the

finite substrate supported metal strip dipole affay at resonance is around 28O. For the elements

with substrates considered so fa¡, typical coplanar strip feedline dimensions result in feedline

characteristic impedances of about 100Ç) [87]. The low impedance of the substrate supported

metal strip dipole is therefore not well matched to the feedline. One way to effect an impedance

match is to replace the single metal strip dipole with a metal stripfolded dipole. As discussed in

Section 5.4, at the resonant condition in free space the active impedance of a folded dipole with

equal width driven and folded arms is approximately four times that of the single snip with

equivalent width. It has been shown experimentally [88] that the same impedance stepup ratio

also applies to folded dipole radiating elements mounted on finite-size dielectric substrates. The

model described in Section 6.4.2 is extended here to incorporate the metal strip folded dipole

into the analysis.

Figure 6.20 shows an infinite array element geometry comprising a finite-size substrate

supported coplanar strip folded dipole with a coplanar strip feedline. For the radiating

element to operate effectively as a resonant folded dipole, the driven and parasitic arms

need to be suffìciently close together. The simplest way to achieve this requirement in the

numerical implementation is to place the folded dipole on a coûrmon grid with the rest of

the element in the z dimension, and to divide the whole element structure into a large

number of segments in this dimension in order that the folded dipole arms separation is

sufficiently close. However, this method of segmentation is computationally inefficient as

around 30 segments would be needed in the z dimension in order to achieve a sufficiently

close spacing between the two arms of the folded dipole. A computationally more eff,rcient

method developed for this analysis is divide the top segment of the substrate into 4 equal

sub-segments for convenience, and to make the width of each folded dipole arm equal to

one of these sub-segments (Aw - Az/4). It has been found that by doing this and then

dividing the substrate vertically into 9 segments, the separation of the folded dipole arms
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a¡e sufficiently close for it to operate effectively in the resonant condition. However, the

disadvantage of using different segmentation grids for the folded dipole and substrate is

that it also leads to a more complicated analysis in the integration of the Green's function

over the sources. Apart from the segmentation method described above, the procedure of

analysis is essentially the same as that for the case of the substrate supported metal strip

with coplanar strip feedline element.
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Figure 6.20 : Segmentation scheme for coplanar strip folded dipole, coplanar strip feedlines
and finite dielectric slab of the infinite array element.

An infinite array with element geometry shown in Figure 6.20 is modelled as discussed

above. The structure was found to be narrow band due to the fact that the feed point of the

folded dipole can be considered to be located at the junction of three short-circuited

transmission lines formed by the two atms of the folded dipole and the coplanar strip

feedline. The thickness of the substrate is chosen to be t = 0.034 where the free space

wavelength Â is again used. For a substrate material with e,' = 10.2, this gives an equivalent

electrical thickness of 35 electrical degrees- As before, the inter-element spacing are

chosen to be å = d = 0.5Â in order to avoid any grating lobes. As shown in Figure 6.21,
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the folded dipole is found to have a half-wave resonance with a length of I = 0.272il" for

an overall substrate height of h = 0.1 1Â.

0.5

0.2
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Figure 6.21:Yanation of active impedance (normalised to 50Q) with the ratio / / ),for an

infinite array of substrate supported metal strip folded dipoles with coplanar strip feedlines

atboresightscanangle; €,=10.2, b=d =0.5À h=0.11),, t=0.03L, l,/Âvariesfrom
0.2625 to 0.2765 with a resonant condition at0.2725; fl, = 9, fly = 2, flz= 9.

The plots of the active impedance as a function of scan angle in the H-plane and E-plane

are given in Figures 6.22 and 6.23. Without the substrate, the folded dipole array at

resonance has an active resistance of 640Q at the boresight scan angle with a metal strip

length of I = 0.491. With the substrate and at resonance, an active resistance of 95O at the

boresight scan angle is obtained for the folded dipole anay with a metal strip length of / =

0.2725h. It can be seen that the presence of the substrate has caused a 6.74 times reduction

in the resonant active resistance. For comparison, the active impedance at all scan angles

for the folded dipole array without substrate is scaled down by a factor of 6.74 and ploned

in Figures 6.22 and 6.23.
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The effect of the substrate on the active impedance of an infinite array of folded dipoles

with coplanar strip feedlines can be clearly seen from Figures 6.22 and 6.23.

o At the boresight scan angle, the resonant active resistance of 95O for the substrate

supported folded dipole presents an improved match to the characteristic impedance of the

coplanar strip feedline than that of the single metal strip dipole illustrated by Antenna E in

Table 6.3. Compared with the resonant active resistance of about 28Q for the case of the

single metal strip dipole element, the metal strip folded dipole element's resonant active

resistance of 95Q agrees with the expected impedance step-up ratio of approximately four

times.

¡ In the H-plane scan, the substrate has a beneficial effect on the active impedance

characteristics up to about 65o scan angle; at larger scan angles it causes a large reactance

component in the active impedance.

o In the E-plane scan, the folded dipole array without substrates has a feedline induced

scan blindness at about 40o scan angle which severely degrades the performance of the

array. The feedline induced scan blindness effect is absent for the folded dipole array with

substrate electrical thickness of 35 electrical degrees. As in the case of the H-plane scan,

the substrate has a beneficial effect on the active impedance characteristics up to about 75o

scan angle.

Figure 6.24 provides an indication of the useful frequency bandwidth that can be achieved

by this array. Using the same conditions for determining the bandwidth as before, an

overall bandwidth of about 5.5Vo is obtained for this array. Although the bandwidth is

lower than the ll%o obtuned for the substrate supported single metal strip with idealised

feed, it is noted that this is a more useful model in which a practical feedline has been

incorporated into the analysis.
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The numerical convergence as well as the computational effort required to model the

infinite array of substrate supported metal strip folded dipole with coplanar strip feedlines

is given in Table 6.8 below. It is apparent from the table that well converged results are

obtained when the generalised hybrid periodic Green's function is evaluated using Floquet

modes (m,n) where -l <m < I and -l <n < 1; and the corresponding CPU time per scan

angle is about 3.75 minutes. A total of about 40.7 MBytes of storage and 14.5 MBytes of

memory are required for the computer to calculate a value of the active impedance.

.9

1â'

P

.J

,,Õ

_ Boresight

Halane (30 degrees)

oooo D-plane (30 degrees )

E-plane (30 degrees)

t74



Floquet Modes

Used

Active Impedance

(o)

CPU Time Taken

(Seconds)

I x I 64.6 - j 0.3 185

3xl 8s.8 - j 3.9 193

3x3 9s.3 - j 0.04 224

5x5 e3.9 - j 3.1 282

7x7 ez.e - j 3.0 369

Table 6.8 : Active impedance of an infinite array of substrate supported metal strip dipoles
with coplanar strip feedlines above an infinite ground plane at the boresight scan angle;

4=I0.2, b=d=0.5L, I=0)72il" ft=0.11). t= 0.03r,, flx=9, flv=2, flz=9.

6.5 Summary

In this chapter, the Generalised Periodic Green's Function technique which was used in

Chapter 5 for the analysis of inhnite arays of metal strip structures, is extended to model

microstrip dipole anays in which the element geometry has a metal part and a dielectric

substrate. The integration of the antenna elements with the module electronics and

distribution networks in microstrip arays is described as being of either a TILA and LITA

architecture. Th¡ee techniques for microstrip anay analysis found in the literature are

discussed, and it is observed that these techniques have a number of limitations where it is

required to effrciently model both TILA and LITA microstrip arrays.

The Generalised Periodic Green's Function technique is shown to be capable of accurately

modelling microstrip dipole ¿urays for both the TILA and LITA architectures with a high

degree of computational efficiency. The details of the problem formulation and numerical
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implementation of the technique are described in the context of modelling an infìnite array

of metal strip dipoles with idealised feeds and which are supported on a dielectric substrate

extending continuously in the apeffure plane of the array. The flexibility of the technique

is demonstrated by its application to the cases where the dielectric substrate is

discontinuous in either one, or both dimensions in the array plane. Accuracy is validated

by the design examples for which results using other methods of analysis are available for

comparison. The computational effrciency of the technique is quantified in the tables

indicating that converged active impedance results are obtained typically in less than a

minute of CPU time per scan angle using a desktop computer.

For the case of finite-size substrates, an analysis is developed which incorporates coplanar

strip feedlines into the model. Finally, the issue of improving the impedance match

between the metal strip dipoles and the feedlines is addressed by developing a model for an

infinite anay of substrate supported metal strip folded dipoles in which the active

impedance is better matched to the characteristic impedance of the associated coplanar

strip feedlines. It is shown that the models are able to detect both feedline induced and

substrate induced scan blindness effects in the arrays analysed, and can be used to show

how a knowledge of these effects would enable the design of an array with more desirable

impedance characteristics.

The contributions made in this chapter are as follows

An accurate and computationally efficient method of analysis for microstrip dipole

arays has been developed based on the Generalised Periodic Green's Function

technique which has the flexibility of modelling arrays suitable for both TILA and

LITA architectures.

The use of the technique for the analysis of microstrip dipole arays with and without

substrate discontinuities has been demonstrated.

o
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O Highly efficient numerical models have been developed for microstrip dipole ¿urays

with the substrate configured as an infinite dielectric slab, semi-infinite dielectric sheet

and as finite-size dielectric substrates.

a Based on the models, an understanding of feedline and substrate induced scan blindness

effects, and the conditions under which either of these effects dominate the array's

impedance characteristics, is gained.

In summary, this chapter has demonstrated that the Generalised Periodic Green's Function

technique is an accurate, flexible and highly efficient method of analysis of infinite

microstrip dipole arrays that may be implemented on desktop computers. In practice, an

infinite array environment is itself a form of idealisation, and all arrays are finite. In

Chapter 7, it will be shown how the method of inf,rnite array analysis developed in this

Chapter 3 can be extended to the analysis of finite Íurays by means of a spatial Fourier

windowing technique.
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CHAPTER 7

Generalised Periodic Green's

Function - Spectral Widowing

Analysis of Finite Arrays

7.1 Introduction and Overview

The Generalised Periodic Green's Function technique developed in Chapter 4 has been

shown to be an accurate, flexible and computationally effîcient method of analysis for

infinite arrays of metal strip structures in Chapter 5 and microstrip dipoles with various

substrate conhgurations in Chapter 6. The technique has been applied to the analysis of

array element geometries ranging from the simpler metal strip dipole to the more complex

substrate supported metal sttip folded dipole with coplanar strip feedline. The

corresponding computer CPU time required for the numerical analyses of these two infinite

anays range from 0.05 seconds to 3.75 minutes when implemented on a desktop computer.
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The aim of this chapter is to develop and apply a finite array analysis technique which is

also suitable for implementation on desktop computers. The accurate analysis of finite

arrays using desktop computers presents a formidable challenge, as it is widely recognised

that finite ¿urays of more than a few elements norrnally require considerably more

computational resources to model than either the isolated element or infìnite ¿urays. The

reason is because the current distributions of the elements in a finite anay differ depending

on the location of the element in the array. A full Element-by-Element analysis of a finite

microstrip array would normally result in a very large moment matrix which is more

conveniently solved using a supercomputer. Pozar [11,12] developed a solution for the N2

element finite array of printed dipoles and rectangular microstrip patches using an Infinite

Dielectric Slab Green's Function technique to model each of the array element, and an

Element-by-Element method to model the composite effect of the finite array. While the

individual element analysis can be effrciently performed, it was recognised [12] that the use

of the Element-by-Element method and the complexity of the array elements place a limit

on the size of the array that can be handled. On the other hand, an infinite array analysis

such as the one developed in this thesis is useful for predicting the behavior of elements

located in the central region of a large size array, but does not enable the element to

element va¡iations in the currents to be obtained.

In the last decade, a number of techniques have been developed for numerically efficient

analysis of finite anay problems based on modihcations to the infinite array approach. In

most cases, the techniques are designed to avoid the solution of the full Moment Matrix

obtained using the Element-by-Element method, by means of simplifying approximations

about the current distributions on the elements of the f,rnite array. The approaches taken by

these techniques are briefly summarised below.

o A technique attributed to Roederer [89,90] involves a Fourier windowing of the infinite

anay far-field element pattern to obtain the finite array patterns. However, the

technique does not yield any information about the active impedance of the individual

elements of the array.

. Ishimaru and others [91] developed a hnite periodic structure active impedance for

large finite arays by means of a convolution between the infinite periodic structure
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active impedance and the Fourier transform of the aperture current distribution. While

the approach demonstrates potential for the analysis of finite microstrip arrays, the

method for obtaining the infinite array active impedance was based on a simplif,red

analysis using assumed current distributions. Furthermore, the analysis was only

applied to finite ¿urays of metal strip dipoles in the published work.

a Skrivervik and Mosig [13,14] applied Ishimaru's approach to the analysis of finite

phased anays of microstrip patches; but instead of working with active impedances,

Pozar's Dielectric Slab Green's function was used in the analysis. This technique is

numerically more efficient that the Element-by-Element method because the

computation time is independent of the size of the finite array analysed. However, the

disadvantage associated with the use of an inf,rnite dielectric slab Green's function is

that the technique cannot be used to analyse f,rnite arrays in which the individual

elements are associated with finite-size substrates.

Parfitt [92] has developed a simple and effective technique to analyse the finite array

problem based on a truncated version of the Generalised Spatial Periodic Green's

Function for the infinite array given in Section 3.2. The use of a generalised Green's

function potentially enables the flexibility of modelling of f,rnite microstrip arrays with

various substrate configurations and ground planes. However as discussed in Section

3.4.1 and 3.4.2, the limitations of usingthe Spatial Periodic Green's Function are the

need for time consuming numerical integrations and the poor convergence property of

the resuls for large scan angles.

From the above considerations, this chapter presents a technique for the analysis of finite

¿urays of metal strip and microstrip dipoles based on a Generalísed Periodíc Green's

Functionfor a Finite Array which has the following features:

The technique is based on a Green's Function whose advantages for numerical

modelling has been demonstrated in the previous chapters.

The finite array solution is obtained more efficiently than the full Element-by-Element

method by using Ishimaru's approach of windowing the infinite array data at various

a

a
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scan angles with the Fourier transform of the aperture current distribution of the finite

array.

kr this chapter, the spatial and spectral forms of the Generalised Periodic Green's Function

for a hnite a¡ray are derived using an Element-by-Element approach. The spectral form of

the Green's function is developed into a technique for the analysis of the finite array

problem, and is applied to the modelling of finite arrays of metal strips with idealised feeds

as well as coplanar strip feedlines, and to substrate supported metal strips.

7,2 Generalised Periodic Green's Function

for a Finite Array

Figure 7.1 shows the geometry for a finite planar array of M x N periodically spaced point

current sources phased to produce a beam in the direction @,Ð.

Y point source in a unit cell Z
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Figure 7.1 : Geometry for a finite array of regularly spaced point current sources.
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The point sources are spaced at a distance å and d apart in the ¡ and y dimension,

respectively. The array plane is divided into unit cells of identical dimensions so that each

unit cell contains a point source element located in the center of the cell. The origin of the

co-ordinate axes is located at the bonom left hand corner of the array, so that the unit cells

are numbered from (1,1) through to (M,M. It is required to obtain an expression for the

Green's function at a field point located in the center of cell (,t,Ð due to the mutual

coupling from all the elements of the finite array.

7.2.1 Finite Array Spatial Periodic Green's Function

The array of phase shifted sources J may be represented mathematically as:

MN
J = >I J,*õ(x- x'-mb)õ(y - y' -nd)õ(z- z')e-tko"ur'r-iko'drt

m=ln=l
(7.r)

(7.2)

where T, = sín1cos@ and Ty = sin1cosQ are the direction cosines. As before, the Dirac

delta functions are used to represent the locations of the sources rather than an infinite

value for the sources at those locations"

If the culrents in all the cells are normalised to the current in cell (k,I), then the

representation of the normalised sources becomes:

J
M/Vf

mn,kl = >
n-l-k n-l-l J H

6(,- r'¡ r-i*o@-kþr' r-ikob-t)dr'

The Finite Array Generalísed Spatial Periodic Green's Function at a field point (/çl) due

to the sources of an M x N array is then given by the integral of the free space scalar

Green's function over the sources of the array:
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c\;i!! - [|. f '-* J^n.kt dxdydzJ JJ "-- 478 r
M-k N-l I

= >
m=l-k n=l-l J kt

(7.3)

a

where G(x,!,2) = r-i*on*'u f 4fr R,r ,u is the spatial Green's function for the array

and Rrr,. = xx - x'^-(m- k)bl'z +[y, - y'^ -(n- \al'z +(r- r')'

It is noted that this Green's function representing a finite array has the following features

The periodicity of the array is expressed in the exponentials, which represent a linear

phase shift over the elements with regular inter-element spacings b and d. However, it

is also possible to extend the analysis to inegularly spaced array elemens [91,93].

The finite nature of the array is expressed in the limits m = -(k-I) to (M-k) as well as

n = -(l-I ) to (NJ) of the double summation over the sources in the finite anay aperture.

The summation limits essentially determines the size of the array.

a

o The differing effect of mutunl coupling between the elements is expressed in the

current ratios J^" / Ju. In the case of an inhnite aray, this current ratio takes a value

of unity as the element currents are identical except for the imposed phase shift.

a The edge effect of the finite array is expressed through the position (È,/) of the field

point which uniquely defines each cell, so that a unique Green's function is used to

evaluate the current for each element in the finite anay.

Special Cases for the Infinite Array and Isolated Element

Equation (7.3) represents the periodic Green's function for a general M xlf phased array of

which the infinite array and isolated element Green's functions are special cases. In the

case of an infinite anay, the field point in cell (/qÐ is chosen to be the origin of the co-

ordinate axes and also the reference cell, so that k = I = 0. In this case, the summation over

the current sources extends from -æ to 1*, and the currents J,* = Ju because of the
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infinite array environment. Under these conditions, (7.3) becomes the familiar Generalised

Spatial Periodic Green's Fwtctionfor an infutite array:

G spatial _ T>
m=-@ n=<

- jk6nbT, - jksndT,
e (7.4)

where R =- -fnn (r- r' -^b)' +(y - y' -rd)' +(z- z')'

In the case of the isolated element, the array has only one unit cell, so that the pa¡ameters

M, N, h I, m, n all assume a value of unity, and equation (7.3) reduces to:

Gisotot"d(*, r,'l *', Y','')
I

(7.s)- jk{
4ttr

where ¡ = (, - ,')'+ (y - y')t +(r- ,')' , which is the well-Y'nownfree space Green's

function for a point source

'When applied to the analysis of a finite array of antennas, the method which makes use of

equation (7.3) is called the spatial windorving technique, because the spatial periodic

Green's function for the infinite array is truncated to a window equal to the size of the

finite anay, and then applied to the Moment Method to solve for the equivalent currents on

each element of the array. Parfitt and Yeo Í92,94,951have successfully employed this

technique to obtain reasonably good results for small one- and two-dimensional arrays of

monopoles and dipoles. However, the implementation of this spatial domain technique for

more complex element geometries like microstrip arrays involves a high computational

overhead because of the need for numerical integration, and it is therefore preferable to

work in the spectral domain where the integration can be evaluated analytically"

7.2.2 Finite Array Spectral Periodic Green's Function

As described in Section 3.3, it is possible to represent the point sources of the phased anay

as cuÍent sheets located in the ap€rture plane of the aÍay- This transformation is

expressed mathematically using Poisson's sum formulu

tu



(7.6)

Applying (7.6) to (7.3), a summation of discrete point sources is transformed into an

integration over continuous sources in the aperture of the array as shown below:

i, ur= åf f (m) 
"- 

i2'loa'n ¿,,

M -k N-¿ r 'ks(n-l)dr'
cf,;i! = I > + G(r, !, 2) e- iko(m-k)br',- l

m=l-k n=l-I J kl

N-' M_K

(1.1)
m'=-* n'=-* _(f_l) _(k_l)

,- iko@-l)dT, ,- 
j2m'tru ,-i2n'xv dU dV

where m,n and u,v Ne continuous variables, and m',n' take on integer values which will be

shown Iater to be the Floquet modes for the infinite affay spectral periodic Green's

function. Since the array has regular element spacings, the following spatial displacement

relations apply:

þi^ - x*)= ub =(m- kþ and (yi - y,)=vd =(n- l)d (7.8)

Substituting the relations in (7.8) into (7.7) leads to:

* 
orr, y, z) r- ih(m- k)br'

II' I J

(N-t)d (M-k)b J^, G(x,y,z)
,- ikoT'(x'.-xt)G KI,MN

Jinite
m\* n'=* _(t-t)d -(k-t)b JH bd

"-ibTr(t'"-lt) 
r-jLn'r(x'^-xÐlb 

"-i2n'r(¡-',-y¡)ld 
dx dy

where x=x'^-x* and y -y;- lt Te the displacements of the sourcepoints in thex and

y dimensions with respect to the position of the field point. The next step is to convert the

spatial Green's function into its spectral form by means of the inverse Fourier transform:

G(x,y,z)
1

(zo)'
(7.10)

Substituting (7.10) into (7.9), the following is obtained

(7.e)

!Lr@.,þ r,r) 
riÞ'(f^-'ò ,tÞ'-(','-x¡) dþ, dþ,
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I IG(þ,,þ,,r)

= ii[{å ^L#,w 
* o,T. r'.)}

æ æ (N-l)d (M-k

m =< n =* _1t_t¡a _(*_l

" J^n I
G KI,MN _

finite

A change of variables É, = 2m'nfb+ø and þ, =Zn'nld + þ is introduced to simplify

(7.11) so that the following is obtained:

G

(1.r2)

G(0,^,kr,^,k,^)

Þ J ¡,  ttzbd

KI,MN
finite

,iÞ,Gi-,r) eiþr(ví-v,) dþ, dþr r-ihr,(x'^-+)

,-ibTtOi-tt),-izm'x(x'^-x¡)tb,-i2n'x(y'^-y¡)td d, dy

I -¡*,--lz-z,lÒ "Mlc
i2k_u{m

(7.11)

(7.r3)

{#':,i,'r',r',1,!,'r',u*'-i(hr'-a)(x'^-xe) 
e-i'orrþ)tt'^-tt) 6¿'lf'"'u

The integrand in (7.12) contains a product of two terms within the square brackes. The

first term involves a double inhnite summation over a summand which is a phased shifted

Fourier transform of the spatial Green's function G(x,y,z) within a unit cell of an ¿uray

given in (7.3). It has been shown in Appendix B that by means of the Poisson transform,

the Fourier integral form of this spatial Green's function is given by:

Hence it is recognised that the phased shifted function within the first set of braces in

(7.12) is the Generalised Spectral Periodic Green's Function for the infinite array given

by:

tt I 
e-ik,^(x-x') 

"-¡*r,}t,) 
,-irr^lz-z'l

¡¡'=- ¡t=<
j2k

Zm bd (7.r4)
6spetral

^L.L*'(T*o,T*þ,,)
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The expression within the second set of braces in (7.12) is lhe spectral window fiutction

which appears as a Fourier transform of the normalised current distribution across the

apeffure of the array. This window function is characterised by the following parameters:

o Thefnite nature of the array is expressed through the limis of the double integral

-(k-1) < m <(M-k) nd 1I-I) Sn S(N-l) across the array aperture.

The munal couplùtg between the array sources is expressed in the current ratio J,* / Ja

The edge effect is expressed by the position (k,Ð of the f,ield point.

The above characteristics of the window function resemble those of the spatial periodic

Green's function for the hnite anay, except for the periodicity factor which is inherently

defined by the inf,rnite ¿uray spectral periodic Green's function. Equation (7.I2) may be

expressed as a convolution:

a

a

^KI.MNu¡nit, (r, ,r,) w(r,,rr)GsPectral * (7.1s)

(7.16)

where * denotes convolution, and the spectral window function is given by:

w(ror,-a,tcsTr-Þ)

I (N-t)d (M-k)b J,r 
r- i(hr,-a)x r- i(drr-Ð t

Jo,4nz
dxdy

-(t-r)d -(t-l)å
JJ

The physical meaning of (7.15) is that the spectral form of the periodic Green's function

for a finite array is given by the convolution of the infinite array spectral periodic Green's

function with the Fourier transform of the apeffure current distribution. It can be shown

that the expression in (7.12) becomes the spectral form of the periodic Green's function for

the infinite array under the condition when the size of the array M+- un¿ ¡¿-e"" [911.

Hence, as for the spatial case described in Section J.2.2, the spectral form of the infinite

array periodic Green's function is a special case of (7.12).
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7.3 Generalised Periodic Green's Function

- Spectral Windowing Technique

The spatial and spectral forms of the Generalised Periodic Green's Function were

developed for a finite array. Because of the greater computational efficiency associated

with the spectral form of this Green's ftinction over the spatial form in enabling the

integration over the sources to be evaluated analytically, the spectral form is chosen to be

developed into a technique for the analysis of finite anays. kr this section, the procedure

for applying the technique to the analysis of finite arays is outlined, and illustrated by

modelling a finite array of horizontal metal strips with their faces orientated parallel to the

ground plane. Each of the main features of the technique is described below in turn.

7.3.1 Modelling of the Ground Plane

In practice, any ground plane associated with a finite anay will also be of finite

dimensions. In this analysis, it is assumed that the ground plane is truncated suffrciently

far away from the edges of the array that image theory can be used to account for the

effects of the ground plane. As a second order effect on the radiation pattern, the

Geometrical Theory of Diffraction (GTD) or related high frequency techniques [96] could

be adopted to allow for edge diffraction. It has been found [92] that such corrections are

not necessary for impedance calculations and are therefore neglected here. In certain

practical anay applications, however, the ground plane is truncated close to the array edge,

and GTD cannot be accurately applied for elements near the edge of the anay. In this case,

the ground plane can be modelled as equivalent currents in each of the unit cells identified

in Section 7.2 which are then computed as part of the electric field integral equation.

Important issues arising out of the ground plane modelling in this manner are the non-

physical discontinuities of the ground plane current distributions at the internal cell

boundaries obtained by the analysis and the wedge diffraction effects from the ground

plane edges. These issues have been studied in some depth Í921in order to more properly
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account for the ground plane truncation in the practical application of small arrays in a¡eas

where the need for compact housings preclude the use of extensive ground planes.

7.3.2 Evaluation of the Infinite Array

Periodic Green's Function

It is apparent from (7.15) that the f,rnite array Green's function is given by of the

convolution of the Generalised Spectral Periodíc Green's Function of the infìnite anay

with the Spectral Current Window. It has been shown in Chapters 3 and 4 that significant

computational efficiencies can be achieved by accelerating the convergence of the spectral

periodic Green's function in the on-plane and near on-plane cases of interactions. The

principle also applies when the infinite array periodic Green's function is to be used in

finite array analysis, so that the two forms of the infinite array Green's function that could

be used in the convolution process described by (7.15) are as follows:

o The Generalised Spectral Periodic Green's Function given by (3.9) for off-plane

interactions.

The Generalised Hybrid Periodic Green's Function given by (a.15) for on-plane and

near on-plane interactions.

7.3.3 Evaluation of the Spectral Window Function

It is noted that because the spectral window function given in (7.16) contains a current ratio

term J,* / Ju , the exact numerical evaluation of the spectral window function would

require a-priori knowledge of the currents in the elements of the finite array. This problem

may be overcome by assumini for the purpose of the convolution that variation of the

currents between adjacent elements is small, so that the cunent ratio is approxímately

uníty for all elements. Although a unity current ratio is employed, a unique current

window is still obtained for each cell because the integral in the window function given in

a
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(7.16) takes account of the position (&t) of the field point. In practice, the assumption of a

unity current ratio enables reasonably accurate results to be obtained provided that the

mutual coupling between elements is not very strong. However if the condition of weak

mutual coupling is not met, the effect of the currents is signif,rcant in the convolution and

leads to inaccuracies in the evaluation of the equivalent currents on the elements of the

array. If a unity current ratio is assumed, the rvindow function in (7.16) then becomes:

W(oo-a,þo- þ)
1

=-
4n2

(N-t)d (M-r)à

I e-itlo-Þtt d, 
J 

e-i@o-o),dx
-(r-t)d -(t-r)à

= ry sinc(M,) sinc(u,) 
"ikb(ao-a) 

/a(Þo-Þ)

(7.17)

where M, - Mb(aa-a), My = Nd(þo-þ), aod u , B are the convolution variables. The

window function thus obtained by assuming a unity current ratio is described as a

S implifi e d S p e ctral W indow.

The Simplified Spectral Window is an approximation based on a unity cunent ratio which

assumes no current variation between the elements. However, the effect of the currents can

be incorporated into the solution iteratively by obtaining another approximation of the

spectral window function for evaluating the equivalent currents in the array elements. The

subsequent approximation is presumed to be more accurate because the unity current ratio

is no longer assumed and the effect of the currents has been introduced into the spectral

window function. The procedure for an iterative solution is given below:

. Step 1:The SímplifiedSpectralWindow isusedinthefinitearraytechniquetoobtain

the equivalent cunent in cell (lc|) of a M x N array of sources.

o Step 2; The equivalent currents in all the other cells of the amay are similarly obtained

by application of the Simplihed Spectral Window.

o Step 3: The equivalent currents evaluated for all the cells of the M x N ¿uray are used to

obtain a second approximation of the window function, which is referred to as a Refined

Spectral Window. In this case, the integral in (7.16) is evaluated over each individual unit

cell instead of over the whole aperture of the array, and the contributions of the integrals

are summed over all the unit cells making up the array- For the evaluation of the integral
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over each unit cell, the value of the current ratio is the equivalent current of the element in

that cell which was obtained in the Step 2. The procedure is expressed mathematically as

follows:

W(oo- a, þo- þ)

= 
I= $ $ h¡r-'*yz)'tr-i<Þo-ÞD¿n¡(n-x+rl2)b r-i{ao-a)xdx

ao' #r?, Ja J(n-t-vz>¿- 'r J6-*-t/z¡b -

-bd-6¿,4tc'

b(ao-a) d(þ,- þ)
2

(7.18)

2

MN J,* 
r- i ta o-a)(n- kþ r- i G o- Ðb- I)d

m=l n=l JH

. Step 4: The Refined Spectral Window thus obtained can then be used again to re-

evaluate the equivalent currents on any selected element of the anay by the same process of

convolution with the infinite array data.

In the later part of this section, results will be presented for analyses using both the

simplified and refined spectral windows. The rehned spectral window serves two purposes

in the analysis:

o In the case of the infinite array technique, numerical convergence can be achieved using

an increasing number of basis functions and Floquet modes in the numerical evaluation to

the point where the results show no appreciable difference with further increase of these

two parameters. In the case of the hnite array technique described here, numerical

convergence of the infinite array data can still be achieved in the same manner. However,

this alone may not be suffrcient to ensure the numerical convergence of the overall solution

for the finite array. The iterative use of the Rehned Spectral Window is one way of testing

if the results have not significantly changed for the finite array analysis.

o In the finite anay analysis, the assumption of a unity cunent ratio is an approximation.

By incorporating the effect of the currents into the analysis by the use of a refined spectral

window, a better approximation is thereby achieved.

t9t



7.3.4 Evaluation of the Convolution

The numerical implementation of the Generalised Periodic Green's Function - Spectral

Windowing technique makes use of the Method of Moments to solve for the equivalent

currents in a given element of the finite anay. Assuming that it is desired to evaluate the

currents in element (k,D of a M x N hnite array, the associated Moment Matrix elements

Z[* and finite array periodic Green's tunctions Ci;i! are related by:

nMNLH =(i,r,.#)t t,{cf{!}æ,

=(i rr,. #)t I 
"{G**'a 

*w,(r, ,r,)}as ,

= 
{[rrr. 

. #)n r,G':"not ds.þt, (r,t )

(7.re)

= Z- *wu(r,,rr)

where .ã represents the elements in the Moment Matrix for the infinite array

Equation (7.19) shows that the elements of the finite array Moment Matrix may be

obtained either by a process involving the convolution of the spectral window function

with the infinite anay Green's function, or by the convolution of the same window function

with the associated infinite array Moment Matrix elements. Because the convolution

cannot be readily evaluated analytically in either case, the latter approach is chosen in this

analysis for the following reasons:

o The solution to the finite array problem is conveniently divided into two parts. The

first part involves the analysis of the infinite array which has identical element and lattice

parameters to the finite anay. Having obtained the infinite array Moment Matrix, the

second part of the solution involves the convolution of each of these Moment Matrix

elements with the window function. The second part of the solution is independent of the

way in which the first part is solved. Any infinite ¿uray technique which enables the
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Moment Matrix elements for various scan angles to be obtained, may be used in the first

part of the solution.

o d technique of infinite anay analysis described in Chapters 3 and 4 has already been

developed. The numerical models for the various metal strip and microstrip dipole infinite

arrays described in Chapters 5 and 6 can be readily used to obtain the data required for the

hrst part of the solution. kr this sense, the finite array technique described in this section is

an add-on teclmique which operates on the infinite array data to obtain the solution for the

finite anay.

Having obtained the elements of the Moment Matrix, the equation to solve for the

equivalent currents in element (k,D of aM xNanay is given by:

lrY I [t#']= l"Yf ,, rq

The finite anay excitation vector is conespondingly given by the convolution of the infinite

array excitation vector with the spectral window function.

E #* = E* xWw(r,,rr) ,, .rt,

The convolution in (7.19) is evaluated numerically by first sampling each element of the

Moment Matrix at various angles in scan space and performing a Fast Fourier Transform

(FFI) on the sampled data 1971. In the transformed domain, the convolution becomes a

product of the two functions at each sampled data point. An inverse FFT is then applied to

the product to translate it back into the original domain, and the finite anay moment matrix

equation in (7 .20) is then solved in the usual way for each scan angle used in the sampling.

The wave propagation vectors in the ry plane for the spectral periodic Green's function

given in (3.7b) may be expressed as:

k,^=ff+hr, and or,=T+koT,
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It is apparent that kr. and krn *. periodic in the 4-y space with a period of 2r/b and

2r/d, respentively. This periodicity is also the reciprocal lattice spacings [98] of the grating

lobe lattice, and therefore any sampling of a whole rectangle of these dimensions contains

all the information available. When sampling with a N¡ x N¡ grid for performing the FFT

where N¡ is the number of sample points in each dimension of the grating lobe lattice, N¡

should be a product of small prime numbers for maximum computational efficiency, and

the discrete values of the FFT variables a^ 
^d þn are given by:

m=0d, I Nt -lm

(7.23)

o"=t(T) n=0,1,..... N/ - I

7.3.5 Design Examples

The Generalised Periodic Green's Function - Spectral Windowing technique developed in

this chapter is illustrated using a number of design examples. For convenience, active

impedance results will first be presented for boresight scan angle with various array sizes

and lattice spacings so that impedance variations between elements can be readily

compared. Following this, results of active impedance as a function of scan angle for

elements at various significant locations of a f,rnite array will be presented to show the

general characteristics of the array and to identify specific features such as grating lobes

which are dependent on the scan angle. In each of the graphs shown below:

o Finite anay results using an accurate but computationally demanding Element-by-

Element approach implemented using the free space Green's function given in (7.5) are

displayed as a reference for comparison. Because of the large computer storage

requirement of this technique, a maximum array size is soon attained, which for the

desktop computer used in this resea¡ch is a 9 x 9 array.
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o Infinite array results using the Generalised Periodic Green's Function technique are

displayed to show the difference in characteristics between the elements in the finite array

and infinite array.

o Finite array resuls from the Generalised Periodic Green's Function - Spectral

Windowing technique using both the simplified and ref,tned spectral windows, are

displayed to illustrate the technique which has been developed. Although the iterative

procedure to obtain the refined spectral window can be applied more than once, it has been

found that at the expense of large computational overheads, there are no signif,rcant

changes in the results obtained by redefining a rehned spectral window a second or

subsequent time. Therefore the refined spectral window is used only once in obtaining the

results presented in this chapter.

Design Example 1: Inter-element spacing of O.ü"in the E-plane

The first design example is chosen to be a finite array in which each metal strip dipole has

length I = 0.44L width ry = 0.05/ and is located at a height h = 0.51above an infinite

ground plane. The unit cell dimensions are chosen with å = 0.6L and d = 0.5)". The metal

strip is divided into n, = 21 segments. In the generalised periodic Green's function

technique, the inf,rnite array data used for the convolution is converged after truncation of

theFloquetmodes at-1 < m<l and -1 1n11. Figures 7.2,7.3 and7.4 showthe active

impedanceresultsforeachelementatboresightscananglefora3x3,5x5and9x9anay

with the above element and lattice dimensions. In the case of the 9 x 9 array, to avoid

excessive congestion of the points in the graph, results are displayed only for the bottom

Ieft quadrant of the array. The position of the array element for which the active

impedance is computed is designated by a cell number and cell type along the x axis of

each graph, and is shown schematically by a diagram above each of the graphs. The cell

types are designated C for a corner element, E for an edge element, I for an interior element

and M for the center element"
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The following observations can be made from the graphs given in Figures 7.2,7.3 and7.4:

. The infïnite anay model can only provide a uniform active impedance value for all

elements and so is shown to be unsatisfactory in many instances.

. The Element-by-Element results reveal that the values of element active impedances

fall about the infinite array value. These results are used to test the windowing technique.

. The results obtained with the Generalised Periodic Green's Function - Spectral

Windowing technique using the simplified and refined spectral windows are both in good

agreement with those of obtained using the Element-by-Element method. In almost all

cases, the differences in values between the data points of the two methods do not exceed

llVo of absolute values of the data. In particular, the following more detailed observations

can also be made from the graphs:

. It is noted that for about 50Vo of the data points, the refined spectral window

results show a closer agreement with the Element-by-Element results than those

obtained with the simplified spectral window. Conversely, the simplified spectral

window results are in closer agreement with the Element-by-Element results for

less than l}Vo of the data points. For the remainder of the data points, there is no

appreciable difference between the simplified and refined spectral window results.

It can be concluded that the results obtained with the Generalised Periodic Green's

Function - Spectral Windowing technique exhibit a degree of convergence with the

use of a refined spectral window to incorporate the effect of the currents into the

analysis.

o The size of the array analysed does not appear to affect the accuracy of the

results obtained using the Generalised Periodic Green's Function - Spectral

Windowing technique. However it is noted that for a small anay such as a 3 x 3

¿uray, the width of the main beam is too broad for the array to be useful in practice.

o It appears that the results obtained using the Generalised Periodic Green's

Function - Spectral Windowing technique are generally more accurate for the

elements in the central region of the hnite array and less accurate for the elements at

the periphery.
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Design Example 2: Inter-element spacing of 0.5Â in E-plane

The second design example is a 5 x 5 element metal strip dipole array with inter-element

spacings of b = 0.5,1 and d = 0.5L. Two cases are analysed for a metal strip dipole at a

heighth=O.21labovethegroundplane:alengthof/=0.37il,and/=0.4/.LThelatter

case has a stronger mutual coupling between the elements than the former case. Each

metal strip of the array is of width w = 0.05/. The cell number and cell type designations

are the same as those given in Figure 7.3. Figures 7.5 and 7.6 show the active impedance

results at boresight scan angle.
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Figure 7.5 : Active impedance of elements in bonom left quadrant of a 5 x 5 anay of
horizontal metal strips above an infinite ground plane in the boresight scan angle; b =
0.54" d=O.il" l=0.375L w=0.051, h=0.251" nr=21 segments.
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For the example at hand, the inter-element spacing b = 0.5L, whereas in Design Example 1

the spacing is b = 0.ü.- A closer inter-element spacing potentially increases the mutual

coupling between the elements. Of the two cases considered in this design example, Figure

7.5 shows that the results using the Generalised Periodic Green's Function - Spectral

Windowing technique for the shorter metal strip length I = 0.37il" are in good agreement

with those using the Element-by-Element method. In the case of stronger mutual coupling

between elements caused by a longer metal strip length I = 0.44)., the results show poor

agreement with those of the Elemenrby-Element method. Therefore, it is noted that the

Generalised Periodic Green's Function - Spectral V/indowing technique may produce

inaccurate results for hnite arrays in which there is strong mutual coupling between

elements.
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Design Example 3: Variation of active impedance with scan angle for
significant elements

Having seen the accuracy of the Generalised Periodic Green's Function - Spectral

Windowing technique for two design examples in which the results are presented only at

the boresight scan angle, an analysis of the active impedance variation of a finite array as a

function of scan angle is considered next. It has been found that the accuracy of the

technique at various scan angles is not sensitive to the size of the array considered.

Therefore, indicative results a¡e presented in Figures 7.7 to 7.11 for the E- and H-plane

scans of the center element, a corner element and an edge element of a 9 x 9 array of

horizontal metal strips having the same element and lattice dimensions as for Design

Example 1.
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Figure 7.7 : Active impedance as a function of scan angle in the E- and H-plane for the
centre element of a 9 x9 uray of horizontal metal strips above an infinite ground plane;
b=0.67, d=0.51" l=0.442. w=0.051, h=0.51, n,=21 segments.
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Figure 7.8 : Active impedance as a function of scan angle in the E-plane for a corner

element of a 9 x 9 array of horizontal metal strips above an infinite ground plane;

b=0.62., d=0.5)., I=0.44L, yrr=0.05/, h=0.51, nr=21 segments.
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Figure 7.9 : Active impedance as a function of scan angle in the H-plane for a corner

element of a 9 x 9 array of horizontal metal strips above an inhnite ground plane;

b = 0.6h, d = 0.5h, I = 0.44),, w =0.051, h =0. 51, n'= 2l segments.
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Figure 7 .10 : Active impedance as a function of scan angle in the E-plane for an edge

element of a 9 x 9 array of horizontal metal strips above an inhnite ground plane;

b=0.64, d=O.il. l=0.44L, w=0.05/, /¡ =0- 51, n,=21 segments.
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Figure 7.ll ; Active impedance as a function of scan angle in the H-plane for an edge

element of a 9 x 9 array of horizontal metal strips above an infinite ground plane;

b=0.ü. d=0.5À" l=0.4AL w=0.051, h=0.5i,, nr=2lsegments.
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Based on the graphs in Figures ''1.'l to 7.11, the following observations can be made:

o The infinite ¿uray curves, which convey no position dependent information, indicate the

presence of a grating lobe in the E-plane, as the active resistance does not become zero at

the grazing scan angle. The grating lobe has been calculated to emerge into visible space

for a scan angle of 42o. In the H-plane, there a¡e no grating lobes so that the active

resistance becomes zero and the active reactance has a large value at the grazing scan

angle.

o The Element-by-Element method results show that for the centre element of the 9 x 9

aray, the variation of active impedance with scan angle is similar to that of the infinite

aÍay except at large scan angles in the H-plane. The variations are signihcantly different

for the corner and edge elements, especially for the active reactance term. The active

resistance obtained using the Element-by-Element method does not become zero at the

grazing scan angle even when there is no grating lobe emerging in the corresponding scan

plane. Although this information may not be of signihcant practical use, it shows that

power can be propagated away from a hnite array at the grazing scan angle.

o The results obtained using the Generalised Periodic Green's Function - Spectral

Windowing technique are in good agreement with those obtained using the Element-by-

Element method, with the exception of the active reactance for the corner element.

However, even with this exception, the trend of the curves is similar to those obtained by

the Element-by-Element method.

In summary, the graphs in FiguresT-i to 7.11 show that the GeneralisedPeriodic Green's

Function - Spectral Windowing technique is able to predict with good accuracy the active

impedance variation with scan angle for a hnite metal strip dipole array. The results

suggest that this technique is suitable for application to engineering design and overall

performance assessment of f,rnite arrays. The numerical efficiency of the technique is

evident from the computational resources used to obtain the data presented above

compared with the resources required by the Element-by-Element method, as shown in

Table 7.1. In comparing the computation time taken by the two methods, it should be

noted that in the case of the Element-by-Element method, the active impedance for all the
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elements of the finite array are simultaneously calculated by the computer progmm for each

scan angle. h the case of the Generalised Periodic Green's Function - Spectral Windowing

technique, the active impedance for a range of scan angles a¡e simultaneously calculated by

the computer program for each element of the f,rnite array at a time. Hence an average CPU

time per scan angle for each element is used as a basis for the comparison.

Table 7.1 : Comparison of computational resources required by the Generalised Periodic
Green's Function - Spectral Windowing technique with Simplified and Refìned Spectral
Window, and the Element-by-Element method in calculating the active impedances for a
finite array.

It is apparent from Table 7.1 that even for a simple element geometry of a horizontal metal

strip, the computational resources required by the Element-by-Element method for the

analysis of large finite arrays makes it inconvenient for implementation on desktop

Method

Used

Array

Size

Computer

Storage Used

Computer

Memory Used

CPU Time Used

Simplified

Spectral

V/indow

Any size 21.2 MBytes 1.2 MBytes 17sec for I element at 11

scan angles (1.5sec /

element / scan angle)

Refined

Spectral

Window

9x9 21.2 MBytes 1.9 MBytes 90.5sec for 9 elements at

I I scan angles (0.9sec /

element / scan angle)

Element-

by-EIement

Method

3x3 137 MBytes 1.7 MBytes l2sec for 9 elements at 1

scan angle (1.3sec /

element / scan angle)

Element-

by-Element

Method

5x5 141 MBytes 9.3 MBytes l45sec for 25 elements at

I scan angle (5.8sec /

element / scan angle)

Element-

by-Element

Method

9x9 183 MBytes 58.8 MBytes 3lmin for 8l elements at I

scan angle (23se,c I

element / scan angle)

?Ã6



computers. For a more complicated element geometry involving metallic and substrate

parrs, the same computational resources described in Table 7.1 would probably enable the

analysis of an array with no more than a few elements using this method. In comparison,

the computational resources required by the Generalised Periodic Green's Function -

Spectral Windowing technique using the Simplif,red Spectral Vlindow a¡e relatively more

manageable on desktop computer implementation, and more importantly, are independent

of the anay size. If the Refined Spectral Window is used with the technique, the results for

all the elements are made available simultaneously because the currenS for all the elements

are calculated using the simplified spectral window in the first iteration in order to obtain

the refined spectral window.

In summary, the Generalised Periodic Green's Function - Spectral Windowing technique

has been described using as an example the analysis of a finite array of horizontal metal

strips. It has been shown that except when mutual coupling between the elements is very

strong, the accuracy of the technique though not comparable to the Element-by-Element

method, is adequate to enable general trends in the element to element impedance

characteristics of the finite array to be observed. The use of the Refined Spectral Window

does not result in a significant improvement in the accuracy of the technique. However, it

does demonstrate a degree of convergence of the results even when the effect of the

currents are incorporated into the analysis by means of the refined spectral window. kt this

sense, use of the Refined Spectral Window provides an additional basis for confidence to

be placed in the reliability of the technique.

In the next two sections, the Generalised Periodic Green's Function - Spectral Windowing

technique is extended to the analysis of finite ¿urays of metal strips with coplanar strip

feedlines, and to finite anays of metal strips supported on a dielectric substrate. These two

structures are known to exhibit feedline and substrate induced blindness conditions

respectively, at certain scan angles in the inf,rnite array environment. In addition to

demonstraring the applicability of the technique in modelling finite Íurays of such

structures, the technique is used to investigate the impedance characteristics of the finite

array in the vicinity of the scan blindness angles.
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7.4 Finite Arrays of Metal Strip Dipoles

with Coplanar Strip Feedlines

In Section 7.3, the Generalised Periodic Green's Function - Spectral Windowing technique

for obtaining finite array characteristics from infinite array data was illustrated using a

formulation for a metal strip dipole element. In this section, the technique is implemented

for a finite anay of metal strip dipoles with coplanar strip feedlines. The geometry of the

metal strip dipole element with coplanar strip feedline operating within an infinite array

environment was presented in Section 5.4. It was shown in that analysis that this structure

has a feedline induced scan blindness in the E-plane. The objective of this section is to

describe the behavior of the structure operating in a finite array environment, especially at

scan angles in the vicinity of the infinite ¿uray scan blindness angle. Table 7.2 below

places this section's discussion into context in relation to the analyses of simila¡ geometries

which have been presented in the earlier sections of this thesis.

Table 7 .2 : Confrgurations of the metal strip dipole element and array structure analysed in
this thesis.

Infinite amay of metal strip dipoles without

feedlines:

o Presented in Section 4.2

o No scan blindness

o Tested against Chang's resuls [59]

Finite array of metal strip dipoles without

feedlines:

o Presented in Section 7.3

o No scan blindness

Tested against the Element-by-element
method evaluation

Infinite array of metal strip dipoles with

feedlines:

o Presented in Section 5.4

. Feedline induced scan blindness

o Tested against Schuman's results [29]

Finite array of metal strip dípoles with

feedlines:

o To be presented in this section

Behavior in vicinity of scan blindness
angle to be discussed here

a
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Figure 7.12: Geometry for a finite array of centre-fed metal strip dipoles with coplanar

strip feedline above an infinite ground plane.

Figure 7.12 shows the geometry of a finite array of metal strip dipoles extending above an

infinite ground plane. Each metal strip is fed by a coplanar stripline, and the excitation of

the source at the base of the feedline is translated to the feed point of the metal strip and

modelled as delta-gap voltage. A structure having this geometry is analysed for a metal

striplengthl=0.375À.andwidthy¡=0.055Â,positionedataheightofh=O.2shabove

the ground plane. The inter-element spacings of the array in both the -r and y dimensions

are chosen to be å = d = 0.5Â so as to preclude the emergence of a grating lobe into visible

space for all scan angles. The variation of active impedance with scan angle is given

Figure 7.13 for the infinite ¿uray, and the centre element of 25 x 25, 15 x 15 and 5 x 5

arrays. No anempt was made to analyse this structure using the Element-by-Element

method as the resultant size of the Moment Matrix would be too large for implementation

on the desktop computer used in this research.
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Figure 7.13 : Active impedance as a function of scan angle in the E-plane for infinite and

finite arrays of metal strip dipoles with coplanar strip feedlines; / = 0.37 54, w = 0.055),,

h=0.25land inter-element spacings b = d=0.5)" nr= 5, nz= 4.

As shown in Figure 7.13, the active impedance for the infinite anay indicates a feedline

induced scan blindness at about 63o in the E-plane. The variation of active impedance with

scan angle for the centre element of a25 x25 array is almost identical to that of the inhnite

array, except for scan angles in the vicinity of the grazíng angle. In the case of the infinite

afiay, the active resistance becomes zerc at the grazing scan angle. This does not occur for

the finite array, since some power is propagated away from anay at the grazing scan angle"

h the case ofthe 15 x 15 array, for angles up to about 50o from boresight, the variation of

active impedance with scan angle is again similar to that for the infinite aurray. For larger

angles, a deviation from the inhnite ¿uray curve is noticed. Furthermore, a negative active

resistance is observed close to the feedline induced scan blindness angle for the infinite

anay. This impliei t¡ut near the scan blindness angle, the centre metal strip of the 15 x 15

anay is actually delivering power back to its generator. Since the total power is conserved,

power is being transferred from other radiating elements of the array into this centre metal
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strip at a scan angle of about 63". Again, the active resistance is non-zero at the grazing

scan angle. For the centre element of the 5 x 5 anay, the same phenomenon leading to a

negative resistance near to the infinite array scan blindness angle and non-zero active

resistance at the grazing angle are observed.

So far, the discussion has focussed only on the centre element of the finite anay. Figure

7.14 shows the magnitudes of the active reflection coefficients across the centre row of

elements.

4 6 I 10
Finite Anay Gell Number

12 14

Figure 7.14 : Magnitude of active reflection coeffrcient for elements in the centre row of a
15 x 15 array of metal strip dipoles rvith coplanar strip feedlines, at various scan angles in
the E-plane; I = 0.375L w = 0.055¿ h = 0.2il" and inter-element spacings b = d = 0.51 .

In Figure 7.14, it is noted that the centre element in the centre row is also the centre

element of the entire finite array. Each element is designated in Figure 7.I4 as either an

edge @), interior (t) or centre (M) element of the array. The magnitudes of the active

reflection coefficients are normalised to the centre element of the array which is assumed to

be conjugate matched at boresight scan. At the boresight scan angle, the values of the
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active reflection coefficients are symmetrical about the centre element and small,

suggesting a well-matched condition for the centre element, but a slightly mismatched

condition for the other elements. Near the scan blindness angle for the infinite array which

is predicted to be 63o, the active reflection coeffrcient values are near unity and in some

cases greater than unity. At this scan angle, the elements with less than unity reflection

coefficients are transferring power to those elements with greater than unity reflection

coefficients. Under these conditions, the antenna array is expected to be ineffective. At the

other scan angles (42o and 74o), the active reflection coefficients are stili high, but remain

less than unity.

In summary, the graphs in Figures 7.13 and 7.14 indicate that irrespective of the size of the

finite array, the variation of active impedance with scan angle up to 30o from boresight at

the centre element is similar to that of the infinite array. At larger scan angles for the

centre element and at all scan angles for elements located on the periphery of the finite

aray, the active impedance variation with scan angle shows a deviation from that of the

inf,rnite alray case. The technique developed in this chapter can be used to predict these

deviations. The results also indicate the necessity to predict element active impedances of

the finite array in the vicinity of the infinite array's feedline induced scan blindness angle,

where power being transferred between elements of the hnite array is likely to degrade the

performance of the array. The numerical model developed for this analysis requires 34.9

Mb¡es of computer storage, 3.1 Mbytes of computer memory and37 seconds to calculate

the active impedance for 10 scan angles on a desktop computer, indicating a high

computational efficiency for the algorithm developed here.

7.5 Finite Arrays of Metal Strip Dipoles

Supported on a Dielectric Substrate

In Sections 7.3 and7.4, the Generalised Periodic Green's Function - Spectral Windowing

technique was used to analyse a finite array of metal strip dipoles with idealised feeds and
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with coplanar strip feedlines. kr this section, the technique is extended to the analysis of a

finite array metal strip dipoles supported on a dielectric substrate which is the structure

shown in Figure 6.1 but truncated to a finite size in the lateral dimensions except for the

ground plane. This structure is analysed here because comparative results exist. Before the

results of the model for this structure are compared with data available in [32], it is noted

that there are differences in the technique of analysis used in [32] and in this research.

These differences are given in Table 7.3.

Table 7.3 :Dtfferences between the modelling technique employedinl32l and the method

used in this analysis. 
ZI3

Model Characteristics Dielectric Slab Green's

Function and Element-by-

Element Method [32]

Generalised Periodic Green's

Function - Spectral

Windowing Technique

Unit cell model Single current element on an

inhnite slab dielectric

substrate

Collection of surface

conduction and volume

polarisation current elements

within the unit cell

Unit cell Green's function Spectral Green's function

specific to the inf,rnite

dielectric slab

Same Generalised Hybrid

Periodic Green's function for

metal strip and substrate

Model of dipole Wire with axial currents only Metal strip with two-

dimensional currents

Basis functions Piecewise sinusoid Pulse

Testing functions Galerkin method Point testing

Finite array obtained by: Element-by-Element method Simplified spectral window

Finite array structure

representation

Finite array of printed dipoles

on an infinite slab dielectric

substrate, above an inf,rnite

ground plane

Finite array of printed dipoles

on a finite slab of dielectric

substrate def,rned by the

boundary of the unit cells,

above an infinite ground

plane



Of the differences listed in Table 7.3, the most important is the finite array structure

represented by the two models. kr [31], the substrate is not modelled using basis functions

but as an infinite dielectric slab environmenl Hence the finite nature of the anay is

confined to only the dipoles; both the dielectric substrate and ground plane are still infinite

in extent. For the technique developed in this chapter, both the metal strips and substrate

are modelled using basis functions, but the ground plane is not. Therefore the Fourie.r

windowing procedure results in tn¡ncation of both the size of the metal strip array and the

size of the substrate, leaving only the ground plane as infinite. As mentioned in Section

7.1, the ground plane in this analysis is assumed to be infinite so that image theory applies.

However, a f,rnite ground plane can be incoqporated into the analysis if desired [92], though

at the cost of additional computational overheads.

The element and lanice dimensions used in this analysis a¡e the same as those used in

Design Example 1 in Section 6.2.3. The elements of the infinite array Moment Matrix

obtained in Section 6.2.3 ue used in the convolution with the simplified spectral window

to obtain the ñnite array data. Based on the infinite array boresight active impedance of 26

= 78.7 + j 1 1.7Q, the magnitudes of the active reflection coeff,rcients for the centre element

of a 19 x 19 array at various scan angles are obtained and plotted in Figure 7.15 below. The

graph shows that the infinite array has a substrate induced scan blindness at about 47o scan

angle, as indicated by the near unity magnitude of the active reflection coefficient.
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Figure 7.15 : Magnitude of active reflection coefhcient as a function of scan angle in the E-
plane for the infinite array and centre element of finite anays of metal strip dipoles

supported on asingle slab dielectric substrata, I =0.39h, b = d =0.5L, h=0.I9L,
w =0.02)", €o=2.55, flx=J, fly=5, flz=3, Zt=78.7 + j1l.7O.

For the centre element of the 19 x 19 aûay, the active reflection coefficient indicates a

slight mismatch to that of the inf,rnite ¿uray at boresight scan; otherwise, the curve is similar

to that of the infinite aray. Noting the difference in the two techniques of analysis, Pozar's

results [32] for a 19 x 19 array shows a greater than unity active reflection coefhcient for

the centre element. Using the technique developed in this chapter, the condition of greater

than unity active reflection coeff,rcient is observed for the centre element of the 5 x 5 anay

but not for the 19 x 19 array. As for the model in Section 7.3, this suggests that in the

vicinity of the substrate induced scan blindness angle of the infinite aûay, power is being

transfened between elements of the finite array"
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The active impedance of elements across the centre row of the 19 x 19 anay at different

scan angles is given in Figure 7.16 below.
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Figure 7.16 : Magnitude of active reflection coeff,rcient for elements along the centre row
of a 19 x 19 anay of metal strip dipoles supported on a hnite slab dielectric substrate, for
different scan angles in the E-plane; I = 0.39L b = d = 0.5h, h = 0.191,, w = 0.02)",

Eo=2.55, flx=7, flj-=5, flz=3, Zt=78.7 +jll.7A.

As indicated by the symbols above the x axis of the graph, all the elements along the centre

row are interior elements (I) except for elements I and 19 which are edge elements @) and

element l0 which is the centre element of the row (M) and also the centre element of the

entire array. At the boresight scan angle, the reflection coeffrcient values are near zero and

symmetrical about the centre element, indicating a well-matched condition. The small

variation between the reflection coefficient values of adjacent elements at the boresight

scan angle is in contrast to that for the finite array of metal strip dipoles analysed in Section

E M E

19x 19 Anayatscan angles:

rm< boresightt* 29 degrees
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7.3. This indicates that the relatively higher Q of the structure with substrate results in

small variations in active impedance between the elements of the array. At 47" scan angle,

which corresponds to the substrate induced scan blindness condition for the infrnite a¡ray,

the active reflection coefficient values are highly asymmetrical about the centre element

and close to uniry, indicating a highly mismatched condition. A number of elements a¡e

observed to have a greater than uniry acdve reflection coeffrcient, indicating that power is

being transfened between elements of the anay at this scan angle. Hence the finite array is

not expected to perform effectively at this scan angle. At other scan angles away from 47o,

the active reflection coeffrcient values a¡e lower and exhibit smaller va¡iations between

adjacent elements, thus indicating a better matched condition than at 47o scan angle.

As indicated in Section 7.1, the analysis of hnite anays is computationally more

demanding than infinite array analysis. The computer resources required by the hnite anay

model developed in this section, as compared to those for solving the associated infinite

array problem, are given in Table 7.4.

Table 7.4 : Comparison of computational resources required for the Generalised Hybrid
Periodic Green's Function technique for analysis of infinite alrays, against the same

technique with Fourier Windowing for analysis of finite alrays.

It is apparent from Table 7.4 that the finite array technique based on the Generalised

Hybrid Periodic Green's Function technique coupled with Fourier V/indowing requires

about four times as much computer storage and ten times as much computer memory as the

corresponding inhnite array technique of analysis. However, it has been demonstrated that

the computational resources required for both the finite and inhnite array techniques can be

Technique Computer Storage Computer Memory Computer CPU

Time

Infinite array 33.5 MBytes 4.2 MBytes 42.5slscanangle

Finite array 120.2 MBytes 44 MBytes 10.5 min for l2 scan

angles(52slscan

angle)
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adequately accommodated on a typical desktop computer in use today. Hence there is

scope for developing this technique into a numerically efficient computer software for the

analysis and engineering design of rypical microstrip antenna arrays on desktop computers.

7.6 Summary

The numerical analysis of finite arrays is computationally more demanding than that tbr

infinite arrays because the current distributions on the elements are not identical. The

Element-by-Element approach of modelling a finite anay is potentially accurate, but

normally results in a very large Moment Matrix which makes implementation on a desktop

computer inconvenient except in the case of small arrays with simple element geometries"

In the last decade, a number of advances have been made in analysing a finite array using

an infinite array approach. Of the techniques considered in this chapter, Ishimaru's spectral

windowing approach appears to be the most promising for the analysis of finite microstrip

arrays and has been chosen to be developed into the Generalised Periodic Green's Function

- Spectral Windowing technique described in this thesis. The uniqueness of the technique

is that it is based on a generalised periodic Green's function which is not constrained by the

element geometry.

In this chapter, the spatial and spectral forms of the Generalised Periodic Green's Function

for a finite array are derived using an Element-by-Element approach. In the case of the

spectral form, it is shown that the Green's function is a convolution of the Generalised

Spectral Periodic Green's Function for the infinite array with a Spectral Window Function

which is the Fourier transform of the aperture current distribution of the finite anay. In

both forms, the expression for the Green's function takes account of the periodicity, finite

nature, mutual coupling between elements and edge effects of the f,rnite array. Based on an

insight of the properties of the generalised periodic Green's function described in Sections

3.4 and 4.3.2, a numerically more eff,rcient hybrid form of the periodic Green's function is

chosen to be developed into a technique of analysis of finite arrays.
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A Simplified Spectral Window function is used for the convolution by assuming similar

values of the element currents. However, a new iterative procedure is developed in which

the equivalent currents of the elements obtained using the simplified spectral window are

used to redefine a Ref,rned Spectral Window. Using a numerical example, it is shown that

the use of the refined spectral window can be used to provide confidence that the finite

array results are accurate. It is shown that the elements of the finite array Moment Matrix

are conveniently evaluated by means of a convolution of the spectral window function with

the elements of the infinite array Moment Matrix. The convolution process is efficiently

carried out by sampling the inf,rnite array results at scan angles within a periodic rectangle

of the grating lobe lattice and evaluating the convolution using a Fast Fourier Transform.

Design examples are given to illustrate the modelling procedure and the results indicate

that the technique is sufhciently accurate in predicting the active impedance characteristics

of the elements of a finite array at various scan angles provided that the mutual coupling

between the elements is not too strong. A comparison indicates that the Element-by-

Element method requires on average nearly ten times as much computer storage as well as

fifty times as much computer memory, and takes twenty times as long as the Generalised

Periodic Green's Function - Spectral Windowing technique to calculate a set of active

impedance results for a 9 x 9 array of horizontal metal strip dipoles. The relative

computational efficiency of the technique developed in this chapter is even more

significant when applied to the analysis of hnite microstrip ¿urays.

The Generalised Periodic Green's Function - Spectral Windowing technique is also applied

to the analysis of finite arrays of metal strips with coplanar strip feedlines and substrate

supported metal strips. In both cases, the analysis is able to predict the active impedance of

the finite array's elements at various scan angles and offers new insight into the behavior of

the finite array in the viciniry of the scan blindness angle for the conesponding infinite

array, which is not available using an infinite array analysis. Information on computational

resources used indicates that the analysis of finite microstrip anays, though more

computationally demanding than thar of infinite arrays of simple dipoles, is well within the
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capabilities of desktop computers currently available. Therefore the main significance of

this chapter is in extending the infinite array technique into a reasonably accurate, flexible

and numerically efficient finite array technique which is potentially applicable to the

analysis and design of most types of microstrip antenna alrays.

The contributions to research presented in this chapter are:

The spatial and spectral t'orms of a Generalised Periodic Green's Function have been

derived using the Element-by-Element approach for a finite planar phased array of

regularly spaced point sources arranged in a rectangular grid lattice.

A new Generalised Periodic Green's Function - Spectral Windowing technique has

been developed for the analysis of finite ¿urays of metal strips and microstrip dipoles.

The novelty of this technique is that its kernel is the accurate, flexible and numerically

efficient Generalised Hybrid Periodic Green's Function.

a

o

a

An iterative procedure has been developed leading to the evaluation of a Refined

Spectral Ì[indow used for the convolution, which incorporates the effect of the

element currents into the analysis.

Design examples have been used to illustrate the applicability of the technique for the

analysis of finite arrays of metal strip dipoles and microstrip arrays.

2?Ã



CHAPTER 8

Conclusions and Recommendations

8.1 Conclusions

In recent years, the rapid advances in radar and communications systems have resulted in

considerable current interest in the development of microstrip phased array antennas of greater

complexity to meet modern system specifications. The motivation for the research described in

this thesis is the need to be able to accurately evaluate the performance of a wide variety of

practical microstrip phased array antennas in an efFrcient and insightful manner for purposes of

engineering design. A numerical technique suitable for ttre analysis of microstrip arrays should

desirably have the capability of predicting the characteristics of the array elemens with

adequate accuracy for puqposes of engineering analysis and design, flexibility to model a variety

of array lattice ¿urangements and element geometries, and computational efficiency to enable is

implementation on desktop computers for antennas wittr realistic detail. Having reviewed some

of the coûtmon techniques currently available for the analysis of individual microstrip antennas

as well as antennas operating in an array environment, it is concluded that although each of the
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methds surveyed has certain unique advantages, few a¡e able to fully satisfy all the desirable

characteristics described above. A new technique is identified to cater for all the above

requirements. The technique makes use of Elecric Field Integral Equations for formulating the

problem, a Generalised Periodic Green's Function which accounts for the mutual coupling

between the array elements but which is unconstrained by the element geometry, and the

Method of Moments for is numerical implementation. The technique essentially solves the

infinite array problem as a first step and then transforms the infinite array data into a solution of

ttre frnite array problem as a subsequent step.

The kernel of the new technique is the Generalised Periodic Green's Function which may

be represented in two ways. In the first representation, the periodic Green's function is the

vector potential response due to an infinite array of regularly spaced, phase-shifted point

sources. Arising out of this approach, the spatial form of the Generalised Periodic Green's

Function is derived for both a rectangular and a triangular grid lattice. By representing the

phased array of point sources as a current sheet located at the ape(ure plane of the afray'

the spectral form of the Generalised Periodic Green's Function is also derived for both a

rectangular and a triangular grid lattice. It is recognised that the two forms of the

Generalised Periodic Green's Function have uniquely different properties, and these

properties have been described in relation to the efficient modelling of antenna anays' An

advantage of the spectral form of the Generalised Periodic Green's function is that it

enables closed form evaluation of the integrals whereas for the spatial form, the integration

normally has to be evaluated numerically. The spectral form of the generalised periodic

Green,s function has poor numerical convergence for on-plane interactions whereas the

spatial form is poorly convergent for large scan angles' Two other properties of the

Generalised Spectral Periodic Green's Function related to prediction of grating lobes and

the grazing scan angle condition are also described. The first two properties described

above are critical to the computational efhciency of the technique developed in this thesis,

and are discussed in detail.

The procedure of analysis using the Generalised Periodic Green's Function technique is

illustrated by modelling an inhnite alray of horizontal metal strip dipoles' In order for a
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numerically efficient solution to be obtained, a number of a¡eas in the solution procedure

are identified in which the computational load may be reduced. By choosing to use the

spectral form of the Generalised Periodic Green's Function in the problem formulation, the

integration over the sources is evaluated analytically, and the poor numerical convergence

associated with the spatìal form at large scan angles is avoided. To overcome the poor

numerical convergence of the Generalised Spectral Periodic Green's Function for on-plane

interactions, a technique is used to accelerate its convergence thus resulting in a

Generalised Hybrid Periodic Green's Function having a spatial and a spectral component

both of which are rapidly convergent- In the numerical implementation of the technique,

computational overheads are reduced by avoiding repeated calculations in the evaluation

procedure. This is achieved by the use of a gnd system for segmenting the structure to

minimise the number of numerical integrations for the spatial component of the

Generalised Hybrid Periodic Green's Function, exploitation of the Toeplitz-like

symmetries to avoid repeated calculations of elements in the Moment Matrix which have

identical values, and the use of look-up tables. As a result of applying the above

techniques to improve numerical efflrciencies, the computational speed using the Hybrid

Periodic Green's Function is found to be at least 40 times faster than obtained by use of

either of the Spatial or Spectral Periodic Green's Functions.

Having developed an efficient technique of analysis for inf,rnite ¿urays in which the

elements are distributed in the plane of the array, the technique is extended to three-

dimensional element geometries. For sources distributed peqpendicular to the array plane,

further improvement in computational efficiency is gained by the use of the generalised

hybrid periodic Green's function for interactions which satisfy both the on-plane and near

on-plane conditions. This concept is used to develop a model for an infinite array of

vertical metal strip monopoles in which the results are validated against those found in the

literature. In order to be able to model feedlines and metal strip elements in which the

input impedance is more suitably matched to the characteristic impedance of the feedline, a

new metal strip junction model is developed. Using this model, an analysis of an infinite

array of centre-fed folded dipoles with equal width driven and folded arms is developed

and validated at a known resonant condition" The numerical efficiency associated with the
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technique is attested to by computation times of between half a second and a few seconds

required to obtain a set of active impedance result for the models developed.

The metal strip junction model is used to analyse an element geometry of a metal strip

dipole with coplanar strip feedline and validated against results found in the literature using

another method of analysis. An important feature in practice is the feedline induced scan

blindness effect which exists for such antenna ¿urays. Of relevance to engineering design is

the conclusion that occurrence of the scan blinclness conclition at an angle further away

from boresight can be achieved by designing the array with closer feedline separation or

with larger inter-element spacings in the dimension corresponding to the vertical plane of

the scan blindness angle. In preparation for the analysis of folded dipole elements with

feedlines on substrates, the model for an inf,rnite array of metal strip folded dipoles with

coplanar strip feedlines is also developed. The high numerical eff,rciency of the technique

in modelling array elements with feedlines is indicated by computation times of 5 seconds

and 16 seconds to compute an active impedance value for the metal strip dipole element

with coplanar strip feedline and metal strip folded dipole with coplanar strip feedline,

respectively.

The Generalised Periodic Green's Function technique is next applied to the analysis of

microstrip dipole arrays. It is noted that the conventional method of analysis for such

structures found in the literature is applicable to TILA structures having an infinite

dielectric slab, and is unsuitable for analysis of LITA structures having finite substrate

configurations. The flexibility of the technique described in this thesis is demonstrated by

its use to model an infinite array of centre-fed metal strip dipoles with three practical

alternative substrate configurations. For each substrate configuration, the accuracy of the

model is validated using results found in the literature which are obtained by another

method of analysis. In every case, good agreement in the results is found both for the

active impedance va¡iation with scan angle as well as in the detection of substrate induced

scan blindness conditions for the arrays. The computation times of less than a minute for

obtaining an active impedance result in the models indicate that it can reasonably be

developed into a microstrip array CAD design software for implementation on desktop
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computers. From the model results, it is found that for the case of the semi-infinite sheet

and finite substrate configurations, an increase in the electrical thickness of the substrate

results in the occurence of a substrate induced scan blindness at an angle nearer to

boresight. It is also found that in general, a larger useable bandwidth is obtained for LITA

structures having discontinuous substrates as compared with TILA structures with a single

slab substrate configuration. Hence important design information of the array element can

be readily obtained from the model.

Following this, the finite-substrate element conhguration is extended to the analysis of

infinite aÍays of metal strip dipoles and metal strip folded dipoles with coplanar strip

feedlines. These two element geometries represent practical antenna structures in which all

the important features are modelled with a minimum of idealisations. In the case of the

metal strip dipole element, it is found that the feedline induced scan blindness condition

prevails for electrically thin substrates, whereas the substrate induced scan blindness

condition dominates the characteristics for electrically thick substrates. This finding is of

considerable importance for purposes of engineering design as trade-offs can be made by

varying the substrate electrical thickness parameters. Finally, in order to be suitably

matched to the characteristic impedance of the coplanar strip feedline of about 1000 for

typical dimensions used in such geometries, a metal strip folded dipole array element is

analysed and found to have a active resistance of 95C2 at resonance in the boresight scan.

The model has shown that the substrate parameters actually has a beneficial effect on the

scanning performance of the array. Despite the complexity of the element geometry

modelled, the computation time for a value of active impedance per scan angle taken is

48.3 seconds and 3.75 minutes for the substrate supported metal strip dipole and folded

dipole case, respectively. The computational effrciency afforded by the technique to model

the radiating element, substrate and feedline as an entire structure with a minimum of

idealisations is thus of significance for engineering analysis and design.

The concepts developed for infinite array analysis are then extended to the analysis of finite

¿urays. An accurate and effrcient analysis of finite ¿urays using a desktop computer is more

challenging than for inñnite aÍays because the current distribution on the elements of the
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finite array are not identical as assumed in the infinite array case. The traditional Element-

by-Element method can provide accurate results for finite array analysis, but places a high

demand on computational resources. Having reviewed a number of techniques for finite

anay analysis using the infinite array approach, a spectral windowing procedure is chosen

to be developed into a technique making use of the numerically efficient Generalised

Hybrid Periodic Green's Function which forms the core of this research. Using an

Element-by-Element approach, the spatial and spectral forms of a Generalised Periodic

Green's Function for a finite ¿uray are derived. In both forms, the Green's function

developed takes account of the periodicity, tìnite array size, mutual coupling between

elements and edge effects of the finite array.

For the same reason of computational effîciency as described in the infinite array case, the

spectral form of the periodic Green's function is developed for the analysis of finite arrays.

The process involves a convolution of the data in the Moment Matrix elements of the

infinite anay problem with a spectral windorv function. To evaluate the Moment Matrix

elements, the numerically efficient Generalised Hybrid Periodic Green's Function for an

infinite artay is used. A Simplified Windorv Function is developed by intially assuming

similar element currents in the finite anay. In addition, an iterative procedure is developed

in which the equivalent currents obtained using the Simplif,red Spectral Window are used

to define a Refined Spectral Window which is again applied to the solution procedure to

provide an improved set of current results. The convolution process is carried out by

sampling the infinite array results at chosen scan angles within a periodic rectangle of the

grating lobe lattice and evaluating the convolution discretely using a Fast Fourier

Transform.

For illustration purposes, and also to enable comparison of results with those obtained

using a full Element-by-Element analysis, a finite anay of horizontal metal strip dipoles is

modelled. The results show good agreement between the Generalised Periodic Green's

Function - Spectral Windowing technique and the Element-by-Element method in

predicting the element active impedance of the finite array, provided the mutual coupling

between the elements is not too strong. This is expected since the initial assumption of
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uniform currents has to provide a good starting point. Furthermore, results obtained using

the Rehned Spectral Window are similar to those using the Simplified Spectral V/indow,

thus providing a measure of confidence in the accuracy of the solution. The technique is

applied to the analysis of a finite array of horizontal metal strip dipoles with coplanar strip

feedlines in one case, and with a substrate in a second case. It is noted that the

corresponding infinite array has a feedline induced scan blindness in the first case, and a

substrate induced scan blindness in the second. In both situations, the analysis shows that

in the vicinity of the corresponding infinite array's scan blindness angle, electrical power

being transfened between the elements would degrade the effective performance of the

¿uray as an antenna. Therefore, an ability to predict the va¡iation of the active impedance

of the f,rnite array elements under these conditions is useful for pu¡poses of engineering

analysis and design. Based on the computational resources required by the models, it is

concluded that an analysis of finite microstrip arrays using the Generalised Periodic

Green's Function - Spectral V/indowing technique is well within the capabilities of desktop

computers.

In summary, this thesis presents an accurate, flexible and numerically efficient technique

for the analysis of antenna elements located in the central region as well as the periphery of

a finite array in which a three-dimensional element geometry comprising a metal part with

feed mechanism and a dielectric part in various configurations may be modelled using a

desktop computer. The original contribution of this research is outlined at the end of each

chapter, but the broader achievements of the work described here are:

o An review of the methods for microstrip antenna and array analysis found in the

literature has been made with a view to understand their relative merits and

disadvantages.

o An in-depth analysis and description of the spatial and spectral forms of the

Generalised Periodic Green's Function for both the infinite and finite array has been

presented in relation to the modelling of antenna arrays.
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'I'he research presented has therefore been able to make a significant contribution to the

methods for analysis and design of microstrip phased arrays by offering an alternative

technique of analysis that warrants further development into a computer aided design

software tool for general usage, especially when unconventional substrate geometries are

required.

8.2 Recommendations for Future Work

The research presented in this thesis is intended to demonstrate the capabilities of the

Generalised Periodic Green's Function - Spectral V/indowing technique in the analysis of

infinite and finite metal strip and microstrip ¿urays. Arising from the development of this

technique, a number of areas for future work are identified:

The choice of basis and testing functions which can further enhance the computational

efficiency of the technique is a possible area for further research. The pulse basis

functions - point matching method is employed in this analysis primarily because of

their simplicity and general applicability to both the metal and dielectric parts of the

antenna structure. However, numerical models using entire domain or suÞsectional

basis functions in which a smaller number of such basis functions is required to obtain

well converged solutions may result in even lower computational demands than the

models developed in this thesis.

An accurate, flexible and numerically efficient technique for the analysis of infinite

and finite arrays of metal strip and microstrip dipole structures has been developed

which can be conveniently implemented on a desktop computer.

An extensive number of numerical models of typical infinite and finite arrays have

been developed and used to illustrate the capabilities of the technique as well to study

the effects of feedline and substrate configurations on the impedance characteristics of

the metal strip and microstrip dipole arrays.
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The general applicability of the technique to other antenna array structures not

described in this thesis opens up many possibilities for future work. One possibility is

to develop an analysis for arrays of probe-fed microstrip patches with various substrate

or superstrate configurations, so as to allow more conventional antennas to be

modelled in the same package. Before this analysis can be successfully canied out, the

applicability of the metal strip junction modelling technique to the probe-to-patch

junction needs to be verified. Another possibility is to use this technique for the

modelling of quasi-periodic and broad-band antenna arrays in which efficiency of

multi-frequency computations is important.

Development of a numerical code for the analysis of microstrip phased ¿urays based on

this technique for general usage is a third area of interest. Although the codes written

in this research are modular in design and relatively easy to understand, automation of

the data input is an area of improvement. Automation in segmentation of the element

geometry, setting out and frlling of the Moment Matrix for arbitrary strip and substrate

configuration, and determination of numerical convergence can also be built into the

codes. Furthermore, a software using this technique could be developed for

integration with an overall communication system design software package

implemented on desktop computers. The ultimate objective in such efforts is to enable

the engineer to solve a variety of different element geometries and lattice arrangements

without the need for reformulation of the problem or tedious manipulation of the input

parameters in using the softwa¡e tool.

As microstrip antenna technology matures and the demand for more complex arrays

increases, the technique for the analysis of such antennas must also increase in

sophistication and become more widespread. The areas suggested above provide the

starting point for further stimulating research that can be done.

229



APPENDIXA

SpecifÏcations of Computer

[.]sed in this Thesis

All the numerical results presented in this thesis are obtained using the same desktop

computer with the following specifications given below:

o Maker: Sun Microsystems,Inc.

o Model : Sparc 4/50 GX-16-P40 workstation

. Speed : 60 Mhz

o Memory : 64 MBytes

o Swap space : 250 MBytes
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APPENDIX B

Transformation from the Spatial

to the Spectral Form of the

Periodic Green's Function

The spatial and spectral forms of the Generalised Periodic Green's Function are a Fourier

transform pair, sampled using two phase shifted comb functions. Before embarking on the

derivation, it is first necessary to set down the spatial Fourier transform of a two

dimensional comb function. Int 4x) be a one dimensional phase-shifted comb function

defined as:

c(x) -åU,r - mb) e-ik'mb ( B.l)

The spatial Fourier transform of this function, applying the frequency shift rule, is given

by:

e$ +Ì-õQ'-T,)= +k,)
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Similarly, a two dimensional phased-shifted comb function given by:

c(x,y)= I I ACr - mb) ô(y - nd) ¿-it'tnb e-iryd (B.3)
m=<n=4

has a Fourier transform given by

(B.4)

Next, it is necessary to establish the Fourier transform of a doubly periodic function. A

two dimensional periodic functionflx,y) may be viewed as the same function truncated to

one period å and d in each of the two dimensions within a unit cell, which is then

convolved with a two dimensional phase-shifted comb function in space.

Ío@,1) = f,(x,y) *c(x,y) ( B.5 )

wheref.(x,y) = fp(x,y) for -bl2<x<bl2 nd -dl2<y<d12, and zero everyhwere else,

* represents a convolution operations, and c(x,y) is given by ( 8.3 ).

The Fourier transform of fok,Ð is then given by the product of the transforms as follows:

õ(þ, -T*o.rõrÞ, -!+r,)
(8.6)

Taking the inverse Fourier transform of ( B.6 ) gives

(B.7)

e(p,, p,) =% à,åu,r, -ry + k,) õ(þ, -T * 0,,

= * 2P:, 
(k, 

^' 
k,.¡ 

"i 
Þ'^' 

"t 
Þ nt

2nn
L- d -",

Fo$,, p r)=F,(þ,,þ r) õ(þ,, þ r)

=F,(þ,,þ,)% 
">_p_

f oi,t) = #IiF o(p,, p r) r+i(þ'x+þ,) dþ, dp,

where ß- =2'*-k,undþr,rÌ' 
b
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Because the double summations a¡e from -oo to +æ, and the function is symmetrical in rn

and n, ( 8.7 ) can also be expressed in its more commonly known form as follows:

f ,{r,,=# à,i:,ro*,kr.) 
r-ir"x 

"-ik'n!
(8.8)

where ¿_,m k, and t r,=!+tr-2nm

G o(7,1') =

b

The analysis derived above can now be used to transform the spatial form of the periodic

Green's Function GoQ,r) which is doubly periodic in the ry plane with a reference source

located at a point (x',y',Z) within the unit cell containing the origin, so that:

-it,,,ù e-ikf¿ (B.e)

where r- - -x'-mb +(y-y'-nd) +(z- ,k, = kssin0cos@ *¿ ,t, = ,to sinpsind

We can express this function as the same function truncated to one period (the unit cell),

convolved with the appropriate two dimensional phase-shifted comb function in space:

Gp(7,1')=G,(x,y,z;x',y',2') * I a(r -x'-mb)e-iL'ñb * I aO -f -nd's¿-Í/ (B-10)

where Gu(x,y,z)x',y',2') is the Green's Function for an isolated unit cell given by

Gu(x,y,z;x',1',2')= r-i*"'f 4x rwhere, ¡ - (r - r')' * (y - y')' *(z- z'¡' for -blz< x- x' <bl2

and -¿lZ I y - y' < dlz: and q(x,y,zix',y',2')= 0 everywhere else

If it is further assumed that b and d are of the order of a wavelength and (z-z') range from

-æ [s foo, then the radiation from the point source within the unit cell is essentially in the z

direction. In this case, G"(.r,J,zir',!',2') can be treated as a one-dimensional Green's

Function whose spectral, or Fourier integral, form is given by:
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(8.11)

Therefore, if the form of ( B.10 ) is equated with the form of ( 8.5 ), then ( B.l0 ) can also

be expressed in its spectral form similar to ( B.8 ) with the spectral form of the unit cell

Green's function given by ( B.l1 ). Hence the overall spectral periodic Green's Function is

now given by:

G,(k,^,k rn, k,^) = 
+ 

r- ikz^E-21

G e(í,1' ) = # ààõ " 
(k,., k r., k -¡ r- iL' - (' -'' ) r-'Ê" 

o-t')¿ -y'L r¡-:'t

( 8.12 )_rËË-bd33 "- 
ik,-(x-t') r-jt,, 

(r-.r') 
r- it+lz-z'l

where O,^=T+ k, and kr, =T+ /cr, and in order to satisfy the radiation condition,

k--= kî - l¿, - k:^ for the propagating wave condition t 3 r- lr', + kl.^, and

kr n=-j *'z, +tcl.-tcoz for the evanescent wave condition t|.t1^+kl^; and the

integers m andn representing the (*,r)h Floquet mode in the ry plane.
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APPENDIX C

Convergence Acceleration of

the Spectral Form of the

Periodic Green's Function

INTRODUCTION

In Singh's technique [38] to accelerate the convergence of the spectral form of the periodic

Green's function, the asymptotic part of the Green's function is transformed into the spatial

domain to be evaluated numerically. To begin with, it is useful to restate the two forms of

the periodic Green's function in the equations below" The spatial form is given by:

G p(t,i') = l=à# ¿u'ø rir.t'a

where,
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rn -x'-mb +(y-y'-nd)'+(z- , k, = ko sin? cosQ and k) = kosin| sin¡.

The spectral form is given by:

Gp(î,i')=hZZ (c.2)

where k,^=2tcmfb+t, and kr,-2rnfd+kr, and in order to satisfy the radiation

condition, kr* = *l - *l^ - t<], for the propagating wave condition ko2 > k:^ + k"l , and

k- =-l kl^ + kj, - kj for the evanescent wave condition t 3 . t 1^ + kl^; the integers rz

and n represent the Floquet modes in the ry plane. It should be noted that the expression

within the square brackets contains the asymptotic part of the Green's function, and causes

it to become slowly convergent in the 'on-plare' case where z = z'.

The two representations of the periodic Green's function given above will ideally produce

the same result in an accurate numerical evaluation, but they have quite different

convergence properties. It is known that the spectral form of the Green's function given in

( C.2 ) is rapidly convergent everywhere except in the 'on-plane' case, when the testing

point lies on or near to the aperture plane of the sources. Hence it is required in this case,

to be able to transfer the evaluation of the Green's function to the spatial domain, where it

converges exponentially. This can be done in t\¡/o steps, making use of the Kummer and

Poisson transforms as described below.

KUMMER'S TRANSFORM

Assuming that a sum.S is given by the following doubly infinite series

s I
n¡__a

\f (m,n¡ (c.3)

l- - rr t-zt -l

"-iÌ,.(x-t't 
e-i1,,(t-r-') l"'' Ie ç 

Lro._ l

where the rate of convergence of the series is governed by the asymptotic form of flm,n)

which tends to, (m,n) as m+æ and nloo, such that/¡ (ryn) is defined for all integers m,n.
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Kummer's transformation is given by:

I Z[f @,")-/,(m,n)]+ ) Lf,Qn,n)
,r'=<n=4

(c.4)

(c.7 )

kr this case, the asymptotic part has been subtracted from the original sum, and then added

back as another infînite sum so that the value of the original function is retained. Applying

Kummer's transformation to the spectral periodic Green's function in @.2), allows us to

remove the asymptotic part that causes the slow convergence from the Green's function so

that it becomes rapidly convergent.

The next step is to identify the asymptotic part of the spectral periodic Green's function

that needs to be removed. Since the aperture plane is the ry plane, a testing point is

considered 'off-plane' when it is located away from the ry plane in the z dimension. The

asymptotic part of the Green's function therefore involves the variables in the z dimension

and is given by:

(c.5)

In the 'on-plane' case, it is desired to transfer either a part, or all of the above expression

into the spatial domain. To do this, we introduce a real variable ko, such that:

k^= kl^+kl.^+u2 (c.6)

where ø is a finite, real variable which is called the smoothing parameter. 'We can now

express the z directed wave propagation vector in terms of this new variable as follows:

k- =- kl.+kl^-kî =-i k'z,-, -(tl + u')

Substitutin g (C.7 ) into ( C.5 ), and for large values of m and n:

"-lk^lz-21
k*,

mJl')6
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Using the asymptotic expression for A(m,n) and applying Kummer's transform, the spectral

periodic Green's function can be split into two parts as follows:

l') =Ge (7 ,- lk,. (r-x' ) ri\. lt- t' )
"-i\-u-z't 

,-L^Þ-z'l

k^ (c.e)

"-it,.(x-t'l 
,

-,¡t . (t-)') "-Ntr-z'l
ko

The second part in ( C.9 ) is slowly convergent in its present form. However, it is possible

to transform this second part into a form which is more rapidly convergent by means of the

Poisson transform.

POISSON TRANSFORM

The procedure for applying the Poisson transform to a function consists of sampling the

function with a comb function, and then applying the Fourier transform to the result. The

steps for doing this are given by equations ( B.1 ) to ( 8.6 ) in Appendix B, and will not be

repeated here. By application of the Poisson transform, the second sum on the right hand

side of equation ( C.9 ) is transformed into the spatial domain. This is done recognising the

equivalence of ( C.l ) and ( C.2), and substituting-jufor Iq in ( C.l ), so that finally:

,-ik,.(t-f) r-i),{t-t') "-iL_V-z'l 
,-L_E-z'l

jk,^ k^ ( c.l0 )

The choice of the parameter ø merits some discussion at this stage. One simple choice for

zistoletu=jlØ,bywhich (C.7)reduces to kr^ ---jk^ forallvaluesof mandn. In

this case, the term within the square brackets in ( C.l0 ) is zero and the second sum on the

right hand side of the equation is similar to equation ( C.l ). The implication of this is that

by choosing u = jlq for the 'on-plane' case, the whole of the Green's function is

transferred from the spectral to the spatial domain. Hence in the Moment Method solution,

jk*
t ËË

zbd 33
*1ii

2bd.u_,u_*

r ËË
zbd ?-,L-

* i i eikt',b ei\'d e-u'-

fli- 47tÌ^

Gr(l,l')=

238



the spectral Green's function is employed for the 'off-plane' interactions, and the spatial

Green's function is used for all the 'on-plane' interactions. The advantage of this choice in

the value of r¿ is the simplicity of the implementation. However its disadvantage is that as

the scan angle approaches 90o, the spatial sum itself becomes slowly convergent. Hence

implementation of the acceleration technique using u = jlq is feasible in all cases except

for cases close to the grazing scan angle.

A better choice is to let ube a finite, real number so that for large values of n and n, the

term within the square brackets in (C.10) becomes zero. Physically, this means the

contribution of the evanescent modes to the spectral periodic Green's function, which are

slowly convergent in the 'on-plane' case, are transferred to the spatial domain. However, it

is expected that this component will be slowly converging for large scan angles. Assuming

the absence of grating lobes, the propagation Floquet mode (0,0) as described in Section

3"4.3 is not completely transferred to the spatial domain, so that as ê+90o, k^ - 0 and

by ( C.5 ), .4(0,0)+-j"". Hence at the grazing scan angle, the dominant effect of the

propagation Floquet mode (0,0) forces the real part of the active impedance to zero so that

the value of the entire periodic Green's function in ( C. I 0 ) is converged. Hence, this is a

better choice for the value of n which ensures rapid convergence for all scan angles.

From equation ( C.l0 ), it is seen that u causes the exponential decay of the spatial sum,

and ideally, should be as large as possible to accelerate its convergence. However, a larger

value of ø also means that a smaller proportion of the slowly convergent spectral sum has

been transferred into the spatial domain. In view of the opposite effect of u on the Green's

function in the two domains, Shubair [55] has pointed out that the choice of the specific

value of ¡¿ is not very critical. However, an extreme choice of ø would not be optimal as it

would make one of the two components of the periodic Green's function very slowly

convergent. Hence the choice of u = b 12, ie half the inter-element spacing, appears to be

a good compromise, and is adopted for all the numerical implementations in this research.
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APPEI{DIX D

SimplifÏed Feedline Model

kr Chapter 5, the effect of the coplanar strip feedline on the active impedance of a metal strip

dþle element of an infinite array was discussed When the separation of the two strips of the

feedline is very close, it has been shown 129,7T thæ the transmission line mode cunents on the

feedline can be assumed to have negligible contribution to the radiation characteristics of tl¡e

elemenl Under this condition, a Simplified Feedline Model can be used in the analysis. An

application of this model to the analysis of an infiniæ array of metal strip dipoles with coplanar

strip feedlines is given in this Appendix. The intention is to demonstrate that the Configuration

A Junction Feedline Model developed in Section 5.4 can be applied to the case of a single strip

feedline.
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Figure D.I : Geometry of the simplified feedline model

As shown in Figure D.l, the geometry of an array element with the simplified feedline

model may be represented by a metal strip connected to a single strip feedline" It has been

found [29] that for a for a metal strip with coplanar strip feedline, the active impedance is

given by:

(D.1)z* (+te)
where /¿ is the current on the metal strip dipole, and /. and ¿ are the radiation mode current

and transmission line mode currents on the two strips of the coplanar strip feedline,

respectively. If the separation between the two strips of the feedline is close, the equal and

opposite transmission line mode currents are expected to have minimal radiative coupling

to the rest of the structure. If a further condition were imposed that the transmission line

mode admittances were zero, as would be the case if the metal strip dipole is located at 
^14

above the ground plane, then the transmission line mode current It = 0 and the active

impedance is determined by the radiation problem alone. A numerical model was

developed based on this simplified feedline modelling technique, and the results are given

in Figure D.l below.
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Figure D.2 : Active impedance as a function of scan angle for an infinite array of metal
strip dipoles with simplified feedline model in both the triangular and rectangular grid
lattices; I = 0.437il" h = 0.2il" f,y = 6, nz= 5.

As shown in Figure D.2, the variation of active impedance with scan angle in the E-plane is

first plotted for the triangular grid lanice and the results compared with those given by

Schuman [29]. The agreement between the results using the two different techniques is

found to be good. The results for the H-plane scan are also computed and plotted onto the

graph. It is noted that for the specified inter-element spacings in the triangular grid lanice,

no grating lobe has entered the visible space. The scan results in the E-plane for an array

with a rectangular grid lattice and identical lattice spacings are also plotted for comparison"

It is noted that in the results for the rectangular grid, the active resistance at the grazing

scan angle is not zero, implying the emergence of a grating lobe.
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ERRATA / ADDENDUM

l. On page xiv, "V" should read "V."

Z. In the second last line of Section 4.2.1 on page 55, "... voltage over ..." should read "...

voltage caused by the incident (or impressed) field over ...".

3. In the sentence above equation 4.5 on page 57, "... method, the testing functions ..." should

read "... method [51], in the sense that the testing functions used to reduce the continuous

equations to matrix form ...".

4. Equation  .llaon page 58 should read:

Zo =(W,n,ø',*)

= 
[,'u. 

. &#)iiiii þ,,, no*dx dv dz dx' dv' dz'

Similarly, for equations 4.1lb to 4.1ld found on page 59, the limits of integration for all the six

integrals should be from -oo to oo.

5. In Tables 4.1, 4.2,4.3 and Figures 4.3, 4.5 found on pages 62-73, a metal strip of width w

= 0.05/ was used for the computations.

6. The following should be included at the end of the first paragraph on page 66: " ..' not

pursued. Nevertheless, it is accepted that the use of certain higher order functions could well

iead to a fewer number of basis functions being required to achieve numerical convergence of

the results, though at the cost of additional computations in the implementation of a conìmon

segmentation grid and look-up table as shown in Figure 4.4 and described in Section 4.3.4,

respectively".

7. In the second last line of page 78, "sepatation of variables" should be replaced by "with

respect to the separate variables".

8. In the line above equation 4.28 on page 79, "performed by parts" should read "performed

in the same manner as that described above over the range of the integration".

9. In the last line of page 79, the phrase "by parts" should be deleted.

10. In the line above equation 4.29 onpage 80, "integration by parts" should read "integrating

in the same manner described in Section 4.4.1".

11. Inthefirstlineofsection5.2.lonpage87,"Figure4.l"shouldread"Figure5.l"

lZ. In the last line of page 123, " inaccuracies due to numerical errors of the computer"

should read "round-off errors".
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13. The following should be included at the bottom of page 199: "It is noted that the plots of
the refined spectral window results are not symmetrical about the points corresponding to t¡"
center element owing to errors in the repeated numerical evaluation of the convolutions using
the FFT. However, the numerical errors can be reduced by using a larger sample size for each
FFT operation, though at a cost of longer computation time".

14. The right hand side of equation c.8 on page237 should tead,, e-k^|,-/l f k^^..
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