THE BIOLOGY AND ECOLOGY OF THE DAMPWOOD TERMITE,
POROTERMES ADAMSONI (FROGGATT)
(ISOPTERA : TERMOPSIDAE) IN SOUTH AUSTRALIA.

by

PHILLIP OBED YOBE NKUNIKA

B.Sc. (University of Zambia), M.Sc.,
D.I.C (University of London), M.A.I.Biol.

Department of Entomology,
Waite Agricultural Research Institute,
University of Adelaide.

A thesis submitted for the degree of Doctor of Philosophy
in the Faculty of Agricultural Science at the
University of Adelaide.

SUMMARY

The dampwood termite, *Porotermes adamsoni* (Froggatt) is a native Australian insect. It is well known as a pest of eucalypt forest trees in the Australian Capital Territory, Victoria, New South Wales, and Tasmania where it is said to be restricted to these native eucalypt trees. The available literature on the taxonomy, biology, distribution, ecology and pest status is reviewed. In South Australia, however, it is not considered to be an important pest of native forests, although it is widely spread in cut pine (e.g. logs and stumps) in pine plantations. Fire-damaged eucalypts, and their stumps and logs were found to be important sources of infestation of dead radiata pine (*Pinus radiata* D. Don).

Studies on the biology, ecology and distribution of *P. adamsoni* were carried out at Second Valley Forest Reserve in South Australia from 1982 to 1986 with particular emphasis on colony initiation, growth, behaviour, dispersal and establishment on dead pine wood in pine plantations. At Second Valley Forest Reserve, considerable areas of native eucalypt forests have been cleared and replanted with trees of exotic radiata pine, occupying ca. 93% of the total plantation area. Some of these plantations have been thinned leaving behind pine stumps and logs. These transient habitats were attacked by *P. adamsoni*, which was able to survive and reproduce in this new resource. The study was in three stages; stage one involved field observations and experiments, stage two involved simulated field experiments and stage three involved laboratory experiments.
Despite intensive and extensive field sampling, very few *P. adamsoni* colonies were headed by primary reproductives and these were always relatively small colonies, with an average size of 150 termites (range 6 to 945); colonies with more than 945 termites were invariably headed by neotenics, most of them being apterous and the others brachypterous. Few colonies were headed by a mixture of primaries and neotenics.

Simulated and laboratory results showed that the mortality rate in colonies started by primaries in this species is very high (90 to 99%). In some cases, 100% mortality was recorded. In the few successful young colonies initiated by primary reproductive pairs, initial rates of growth were very low. For example, primary pairs held in the laboratory at 22 ± 2°C produced on average 93 offspring (range 73 to 115) in one and a half years. In contrast, neotenic pairs plus workers (by which they are normally accompanied in the field) produced an average of 402 offspring (range 332 to 478), far more than primaries. Experimentally, this comparison between unaccompanied primaries and accompanied neotenics may seem to be weighted in favour of the neotenics, but these are the normal circumstances in nature. The primaries subsist on their stored fat reserves and the neotenics are fed by other members of the colony.

The terminology used in this thesis is based on morphology and function and is in some respects different from that originally used by Miller (1969) for the lower termites. It is suggested that the terms 'dispersal' and 'spread' as defined and discussed by Laughlin (1982) are appropriate for this species.
The fluctuations in numbers of different castes and stages in field colonies of *P. adamsoni* were studied during different months and correlated with meteorological data. Alate production began in January and continued to early March. Swarming appeared to be triggered by the internal economy and physiological interactions within the colony but was also dependent on external environmental conditions. The sex ratio of dispersing alates caught at light traps was biased in favour of males.

P. adamsoni has the ability to spread, i.e. individuals may leave one piece of wood and move to another either when the two are in contact or via subterranean galleries when they are not. This ability together with the production of neotenic reproductives allows the termite to establish new colonies by 'budding'.

A synthesis of the results obtained in this study shows that *P. adamsoni* uses two strategies in the process of colonisation. (1) Alates act primarily as colony initiators, although colony growth started by primaries is very slow taking from three to four years until appreciable numbers of workers are produced; colony growth may then start to accelerate. The primaries are short lived and their reproductive function is typically taken over by neotenics which are more fecund, develop swollen abdomens and are long lived. (2) The other strategy is that of spread by colony budding, which, unlike the flight of alates, is not seasonal. It can take place at any time when the colony is expanding or when the original food becomes unsuitable i.e when the wood becomes very decayed. *P. adamsoni* is unusual among termites in that colony budding appears to be the main means by which this insect propagates itself.
Contrary to current belief, the insects are not restricted to the trees in which the primary colony is founded, at least in South Australia, but instead foragers (workers and nymphs) find new food sources via subterranean galleries (e.g. dead pine wood), leading to spread by colonies budding. This study has shown that by means of budding and also by seasonal production of alates that can initiate colonies in dead pine wood, the insect is able to move from eucalypt to pine over a relatively short period. In consequence there is a need to reassess the pest status of P. adamsoni in South Australia.

The study concludes by developing a model of the life history of the termite and discussing it in the context of the insect's ability to establish itself in a marginal environment. The work is also discussed in relation to current theories on insect life history strategies in general and on population growth in social insects in particular. Many of the major summaries and conclusions of the thesis are covered in Chapter nine.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONTISPICE LEGEND</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES AND THEIR LOCATION IN THE TEXT</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES AND THEIR LOCATION IN THE TEXT</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF PLATES AND THEIR LOCATION IN THE TEXT</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 GENERAL INTRODUCTION

1.1 Terminology and definitions of terms 2
1.1.1 Terms relating to distribution 8
1.1.2 Terms relating to the formation of colonies 8
1.2 Taxonomy and biology 9
1.3 Geographical distribution 11
1.4 Host plants 11
1.5 Pest status 12
1.6 Past work in South Australia 14
1.7 Objectives and scope of the study 14
1.8 Approach 15

CHAPTER 2 DESCRIPTION OF THE STUDY AREA AND BIOLOGY OF P. ADAMSONI

2.1 Study sites 17
2.1.1 Location and description of sites 18
2.1.2 Scale of decay and ages of wood samples 19
2.1.3 Climatic conditions 22
2.2 Materials and methods 22
2.2.1 Surveys and sampling procedures 22
2.2.2 Collection, storage and extraction 24
2.2.3 Laboratory culturing 26
2.3 Observations and experiments on the biology of P. adamsoni 27
2.3.1 Field observations on nests 27
2.3.2 Nest sites 29
2.3.3 Nest temperatures 29
2.3.4 Experiment on temperatures inside a P. adamsoni nest 30
2.3.5 Quantification of field colonies of P. adamsoni 31
2.4 Results of observations and experiments on field colonies
 2.4.1 Colony structure and size of field colonies 32
 2.4.2 Termite densities 33
 2.4.3 Caste composition 34
 2.4.4 Determination of colony age 35
 2.4.5 Age and composition of 'young colonies' 35
 2.4.6 Age and composition of 'mature colonies' 36
 2.4.7 Median head size of soldiers as an alternative criterion for determining age of colonies 36
 2.4.8 Seasonal caste composition 38
2.5 Discussion 38

CHAPTER 3 MODES OF DISPERsal AND SPREAD 39

3.1 Alate production and sex ratio 41
3.2 Materials and methods relating to dispersal studies 42
3.3 Results of dispersal studies 43
 3.3.1 Alate flight patterns 43
 3.3.2 Total number of alates and sex ratio 44
3.4 Discussion of dispersal 46
3.5 Spread
 3.5.1 Experiment 1: Baiting experiment 49
 3.5.2 Aims of experiment 50
 3.5.3 Materials and methods 50
 3.5.4 Results 51
3.6 Experiment 2: Second baiting experiment 55
 3.6.1 Materials and methods 55
 3.6.2 Results 55
 3.6.3 Discussion 57
3.7 Subterranean foraging galleries of P. adamsoni 57
 3.7.1 Methods and procedures 58
 3.7.2 Results 59
 3.7.3 Discussion 61

CHAPTER 4 SURVIVAL, REPRODUCTION AND COLONY GROWTH 63

4.1 Experimental procedures and preliminary results 65
4.2 Experiment 1: Incipient field colonies 65
 4.2.1 Methods 66
 4.2.2 Results 66
4.3 Experiment 2: Colony initiation in the field 67
 4.3.1 Methods 67
 4.3.2 Results 68
4.4 Experiment 3: Colony initiation under simulated field conditions 68
 4.4.1 Methods 69
 4.4.2 Results 70
4.5 Reproductive strategy
 4.5.1 Experiments on reproductive rate 71
 4.5.2 Materials and methods for experiments on reproductive rate 71
 4.5.3 Results and discussion on reproductive rates 72
 4.5.4 Colony growth in sound and decayed wood under laboratory conditions 73
 4.5.5 Materials and methods for colony growth experiments 73
 4.5.6 Results of colony growth experiments 74
4.6 Discussion 74

CHAPTER 5 REPRODUCTIVE FORMS IN P. ADAMSONI

 5.1 Materials and methods for field observations 77
 5.2 Results of field observations 77
 5.3 Relation between body size and fecundity 81
 5.3.1 Materials and methods 81
 5.3.2 Results 81
 5.4 Discussion 82

CHAPTER 6 THE BEHAVIOURAL REPERTOIRE OF P. ADAMSONI

 6.1 Materials and methods for behavioural investigations 87
 6.2 Experimental design and sample size 87
 6.3 Criteria for selection of behavioural characteristics 88
 6.4 Description of the behavioural repertoire of P. adamsoni 89
 6.5 Recording of termite behaviour 90
 6.6 Data analysis 90
 6.7 Results and discussion relating to behaviour 91
 6.8 Influence of temperature on cannibalism 94
 6.8.1 Materials and methods 95
 6.8.2 Results and discussion 96

CHAPTER 7 FOOD LOCATION, WOOD CONSUMPTION, SURVIVAL AND NEOTENIC FORMATION

 7.1 Experiment 1: Horizontal burrowing 99
 7.1.1 Materials and methods 100
 7.1.2 Results and discussion 100
 7.2 Experiment 2: Vertical burrowing 101
 7.2.1 Materials and methods 101
 7.2.2 Results and discussion 101
 7.3 Experiment 3: Olfactometer trials 101
 7.3.1 Materials and methods 102
 7.3.2 Results and discussion 102
 7.4 Experiment 4: Colonies initiated by workers only 104
 7.4.1 Materials and methods 104
 7.4.2 Results 104
 7.4.3 Discussion 105
7.5 Experiment 5: Does \textit{P. adamsoni} attack live pine?
\hspace{1em} 7.5.1 Materials and methods
\hspace{1em} 7.5.2 Results and discussion

CHAPTER 8 FLIGHT BEHAVIOUR OF \textit{P. ADAMSONI} ALATERS

8.1 Field observations on the swarming flights of alates
\hspace{1em} 8.1.1 Materials and methods
\hspace{1em} 8.1.2 Results: Distances flown in the field
8.2 Further studies on flight behaviour:
\hspace{1em} 8.2.1 Materials and methods
\hspace{1em} 8.2.2 Results
8.3 Flight chamber experiments
\hspace{1em} 8.3.1 Materials and methods
\hspace{1em} 8.3.2 Results
8.4 The process of de-alation
8.5 Courtship behaviour
8.6 Discussion

CHAPTER 9 GENERAL DISCUSSION

9.1 On dispersal and spread
9.2 On reproduction
9.3 On use of the terms 'worker' and 'pseudergate'
9.4 On the behaviour of \textit{P. adamsoni} in attacking dead pine
9.5 Some comparisons with other species of \textit{Porotermes}
9.6 On the life history of \textit{P. adamsoni}
9.7 Summary and conclusions

REFERENCES

APPENDICES

\textbf{Appendix 2.1} Rainfall and mean temperatures at Second Valley Forest Reserve, South Australia during 1982/1983

\textbf{Appendix 2.2} Mean caste/stage composition (%) of 74 \textit{P. adamsoni} colonies collected from Second Valley Forest Reserve, South Australia during 1982/1983

\textbf{Appendix 2.3} Populations in colonies of some species of lower termites (after Lee and Wood 1971)

\textbf{Appendix 5.1} Description of winged adult \textit{Porotermes adamsoni} (Froggatt) from:-- Hill, G.F., \textit{Termites (Isoptera) from the Australian Region}. CSIRO, Melbourne 1942

\textbf{Appendix 5.2} Morphometric measurements on aperous neotenics from nests of \textit{P. adamsoni} from Second Valley Forest Reserve, South Australia