UTILISATION OF MOLECULAR MARKERS IN THE
SELECTION AND CHARACTERISATION OF WHEAT-ALIEN
RECOMBINANT CHROMOSOMES

BY

IMTIAZ AHMED KHAN
M.Sc. (Genetics) University of Karachi
Pakistan

A thesis submitted for the Degree of Doctor of Philosophy in the Faculty of
Agricultural and Natural Resource Science at the University of Adelaide

Department of Plant Science
Waite Agricultural Research Institute
University of Adelaide

October 1996

Awarded 1997
Table of contents

Statement of originality and consent to photocopy or loan ... i
Acknowledgements .. ii
Summary ... iii

CHAPTER - 1
GENERAL INTRODUCTION ... 1

CHAPTER - 2
REVIEW OF LITERATURE .. 6
 2.1. Genomes of wheat and homoeologous chromosomes of Triticeae 6
 2.2. Mechanism of chromosome pairing and recognition of homology 9
 2.3. Genes controlling chromosome pairing .. 12
 2.3.1. \textit{Ph} genes of wheat ... 13
 2.3.2. Location of \textit{Ph} locus ... 14
 2.3.3. Mode of action of \textit{Ph}1 gene .. 15
 2.3.4. Origin and interaction of \textit{Ph} genes with other loci in Triticeae 16
 2.4. Introgression of alien gene(s) into wheat ... 17
 2.4.1. Homologous transfers ... 18
 2.4.2 Homoeologous transfers .. 19
 2.4.3 Irradiation induced transfers .. 20
 2.4.4 Transfers using induced homoeologous pairing ... 21
 2.5. Isolation of wheat-alien recombinant chromosomes .. 23
 2.5.1. Isolation of recombinant chromosomes using cytological techniques 23
 2.5.2. Isolation of recombinant chromosomes using biochemical markers 24
 2.5.3. Use of molecular markers in characterising wheat-alien recombinant chromosomes ... 26
 2.6. Utilisation of \textit{Agropyron} species in wheat improvement 29

CHAPTER - 3
MATERIALS AND METHODS .. 33
 3.1. Plant material .. 33
 3.2. Cytological analyses ... 34
 3.3. Isozyme and water soluble protein-1 analyses ... 35
 3.4. DNA isolation .. 35
3.5. Polymerase chain reaction (PCR) ... 36
3.6. Restriction fragment length polymorphisms (RFLPs) 37
3.7. Stem rust testing .. 38
3.8. BYDV resistance screening .. 38
3.9. Genomic in situ hybridisation ... 39

CHAPTER - 4
DETECTION OF POLYMORPHISM AMONG THE GROUP 7
HOMOELOGOUS CHROMOSOMES OF WHEAT AND AGROPYRON
INTERMEDIATE .. 41

4.1. Introduction ... 41
4.2. Materials and methods .. 42
 4.2.1. Plant material .. 42
 4.2.2. Assay procedures to detect the polymorphism between
different chromosomes ... 44

4.3. Results ... 45
 4.3.1. C-banding ... 45
 4.3.2. Analyses for isozymes and WSP-1 .. 45
 4.3.3. Polymerase chain reaction .. 46
 4.3.4. Restriction fragment length polymorphism 46

4.4. Discussion ... 49

CHAPTER - 5
INDUCTION OF ALLOSYNDEIS AND ISOLATION OF WHEAT -
AGROPYRON RECOMBINANT CHROMOSOMES ... 51

5.1. Introduction ... 51
5.2. Materials and methods .. 53
 5.2.1. Selection of homozygous phlbphlb plants 53
 5.2.2. Crossing procedures ... 55
 5.2.3. Detection of recombinants using co-dominant markers 56

5.3. Results ... 57
 5.3.1. Isolation of critical F2 families .. 57
 5.3.2. Screening of F3 progeny .. 57
 5.3.3. Frequency of allosynthetic recombination detected in
different families .. 60
 5.3.4. Detection of wheat-Agropyron recombinant chromosomes 61
 5.3.5. Progeny testing of the putative recombinants 65
 5.3.5.1. Recombinants carrying single cross-over
 products .. 66
5.3.5.2. Recombinants resulting from two or more homoeologous cross-over events ... 74

5.3.6. Follow-up progeny tests of putative short arm recombinants carrying single cross-over products ... 79

5.3.7. Detection of an F3 plant with possible interstitial deletion .. 81

5.4. Discussion ... 83

CHAPTER - 6
CHARACTERISATION OF THE RECOMBINANTS .. 88

6.1. Introduction ... 88

6.2. Materials and methods ... 90

6.3. Results .. 91

6.3.1. RFLP analyses .. 91

6.3.1.1. Location of cross-over points .. 91

6.3.1.2. Relative linear order of the probe loci ... 97

6.3.1.3. Structure of the recombinant chromosomes .. 98

6.3.1.4. Distribution of chiasmata frequencies along length of chromosome arm 7AS ... 99

6.3.2. Genomic in situ hybridisation ... 102

6.3.3. Disease reaction of the progeny carrying the putative recombinant chromosomes .. 104

6.3.3.1. Screening of short arm recombinants for stem rust reaction 104

6.3.3.2. Screening of long arm recombinants for BYDV reaction 109

6.4. Discussion ... 110

CHAPTER - 7
GENERAL DISCUSSION ... 113

APPENDIX ... 123

REFERENCES ... 137
SUMMARY

Attempts to transfer useful alien genetic material into wheat initially involved substitution of a whole chromosome or chromosome arm from the related alien species into wheat genome. Most of these wheat derivatives carrying alien chromosomes / chromosome arms have had limited use in practical breeding because of the linked undesirable genes on the alien segment which resulted in loss of yield and/or quality of the recipient wheats. The amount of alien genetic material in these lines can be reduced by induction of allosyndetic recombination between the alien and homoeologous wheat chromosomes. In the earlier studies, cytological procedures based upon chromosome pairing frequencies and/or biochemical loci (seed storage proteins and isozymes) were used to detect and isolate the wheat-alien recombinant chromosomes. Because of large amount of time and effort required (crossing of the plants carrying the putative recombinant chromosomes with the tester stocks) and the limited resolving power of the technique, chromosome pairing studies though used successfully by the pioneer workers (e.g. E. R. Sears, R. Riley) have not proved very efficient for the identification and isolation of such recombinant chromosomes. Dissociation of linked biochemical loci has been used successfully to identify a limited number of wheat-alien recombinant chromosomes, but the paucity of useful biochemical marker loci over a large part of the genomes has limited the usefulness of this approach. Recent advances in recombinant DNA technology have generated a large number of molecular markers (especially co-dominant RFLP loci) and these have provided new opportunities for using marker-assisted selection of homoeologous recombination between wheat and its related alien species.

This thesis reports a comprehensive study of induced homoeologous recombination along almost the complete genetic length of two homoeologous chromosomes in the Triticeae, using co-dominant DNA markers. The studies were undertaken to
determine the patterns of homoeologous recombination along the whole length of chromosomes 7A of common wheat and 7Ai of *Agropyron intermedium*. Chromosome 7Ai was chosen as a model alien chromosome because it has been reported to carry agronomically important genes conferring resistances to stem rust and barley yellow dwarf virus on its short and long arms, respectively.

Sears' (1977) *ph1b* mutant was used to induce homoeologous pairing between chromosomes 7A of common wheat and 7Ai of *Agropyron intermedium*, in genetic stocks having single doses of chromosomes 7A and 7Ai and which were homozygous or hemizygous for the *ph1b* allele. Cytological, biochemical and molecular assays were carried out to search for useful polymorphic markers for the two chromosomes, but only RFLPs produced polymorphisms suitable for this study.

A total of 390 F3 progeny deficient for the *Ph1* locus were screened using six RFLP marker probes viz. CDO -545, -595 (short arm makers) and CDO673, WG686, PSR-117, -121 (long arm markers). A total of 62 putative recombinants showing dissociation of the RFLP markers within the arm(s) were detected, giving a crude recombination rate of 16%. Recombinants involving the short arm of the two chromosomes were obtained more frequently (40 recombinants) as compared to those involving the long arms (16 recombinants). A few recombinants (6) showed dissociation of markers for both the arms. In most cases the chromosomes showing dissociation of marker loci were detected in the presence of an intact parental homoeologous chromosome (7A or 7Ai), but in a few examples (seven short arm, four long arm recombinants) the recombinant chromosomes were directly isolated as a univalent chromosome in the F3 progeny. In 117 F3 progeny having the *Ph1* allele (control populations), only one suspected recombinant / deletion was observed.
Whenever the recombinants produced seeds either by self fertilising or by crossing with pollen from euploid or NT 7A-7B stock of wheat cv. CS, DNA from a sample of progeny were tested with the same six RFLP probes to confirm the classification of the original plant showing marker dissociation and to isolate the recombinant chromosomes in hemizygous or homozygous state. These progeny tests confirmed the recombinant status of almost all the non-parental F₃ progeny tested and also recombinant chromosomes were isolated in many cases.

The cross-over breakpoints were inferred along the length of the chromosomes. Evidence for the occurrence of more than one homoeologous cross-over involving 2 or more chromosomes were obtained but no evidence for intra-arm wheat-\textit{Agropyron} double cross-overs was obtained during present studies. During the progeny tests, new dissociations of the marker loci were detected with a low frequency presumably arising as a consequence of a second round of homoeologous recombination since the progeny plants were still deficient for \textit{Phl}.

The recombinant chromosomes were characterised using RFLP markers, genomic \textit{in situ} hybridisation and determining their reaction to stem rust and barley yellow dwarf virus diseases. Detailed analysis of recombinant chromosomes using 15 RFLP markers identified the homoeologous cross-over products having varying lengths of \textit{Agropyron} chromatin introgressed onto homoeologous group 7 chromosomes of wheat, especially the targeted chromosome (7A). It was possible to establish the likely linear order of the probe loci along the lengths of chromosomes 7Ai and 7A.

The distribution of chiasmata along chromosome arm 7AS was analysed in the homoeologous recombinants. In most cases the translocation breakpoints were concentrated around the loci which were located distally on 7AS (based upon linear order of probe loci obtained during present work and genetic and physical locations of
the loci reported in literature). The pattern of recombination between the homoeologous chromosomes observed during present study was similar to that reported in other studies for homologous recombination between the same markers on chromosome 7A of wheat.

Genomic *in situ* hybridisation was applied to the recombinant chromosomes and the presence of a small terminal segment of *Agropyron* chromatin was detected in two of the short arm recombinant chromosomes.

The reference stocks (including wheat parents, addition, substitution and ditelosomic addition lines) and the plants carrying short arm recombinant chromosomes were screened with wheat stem rust pathotype ("21-2,3,7"). The recombinants having *Agropyron* segment distal to the locus *Xcdo475* and proximal to the locus *Xpsr119* were found to be resistant to this pathotype, indicating that the stem rust resistance gene (*SrAgi*) was located on the distal part of chromosome 7Ai of *Agropyron intermedium*. Recombinant chromosomes having the *SrAgi* gene and overlapping distal and proximal segments of chromosome 7Ai were isolated which can be used to reduce the amount of alien chromatin in the resistant recombinant lines through allowing homologous chromosome pairing between the overlapping alien segments, to produce an interstitial introgressed segment.

The reference stocks and the plants carrying the long arm recombinant chromosomes were screened against barley yellow dwarf virus, but no clear differences were found between euploid wheat and the addition or substitution lines carrying whole chromosome 7Ai or the long arm of chromosome 7Ai, which suggested that BYDV resistance gene reported to be present on the long arm of chromosome 7Ai was ineffective at least against the BYDV serotype (BYDV.PAV Adel-) used during the present study.
Results of the present study have indicated new and more efficient protocols for the incorporation of alien segments from chromosome 7A1 of *Ag. intermedium* into group 7 homoeologous chromosome of wheat.